1
|
King JL, Urie RR, Morris AH, Rad L, Bealer E, Kasputis T, Shea LD. Polymer scaffolds delineate healthy from diseased states at sites distal from the pancreas in two models of type 1 diabetes. Biotechnol Bioeng 2024; 121:3600-3613. [PMID: 39082734 DOI: 10.1002/bit.28824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 10/17/2024]
Abstract
Type 1 diabetes (T1D) prevention is currently limited by the lack of diagnostic tools able to identify disease before autoimmune destruction of the pancreatic β cells. Autoantibody tests are used to predict risk and, in combination with glucose dysregulation indicative of β cell loss, to determine administration of immunotherapies. Our objective was to remotely identify immune changes associated with the disease, and we have employed a subcutaneously implanted microporous poly(e-caprolactone) (PCL) scaffold to function as an immunological niche (IN) in two models of T1D. Biopsy and analysis of the IN enables disease monitoring using transcriptomic changes at a distal site from autoimmune destruction of the pancreas, thereby gaining cellular level information about disease without the need for a biopsy of the native organ. Using this approach, we identified gene signatures that stratify healthy and diseased mice in both an adoptive transfer model and a spontaneous onset model of T1D. The gene signatures identified herein demonstrate the ability of the IN to identify immune activation associated with diabetes across models.
Collapse
Affiliation(s)
- Jessica L King
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Russell R Urie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron H Morris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Laila Rad
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Elizabeth Bealer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Tadas Kasputis
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Nikola L, Iva L. Gut microbiota as a modulator of type 1 diabetes: A molecular perspective. Life Sci 2024; 359:123187. [PMID: 39488260 DOI: 10.1016/j.lfs.2024.123187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Type 1 diabetes (T1D) is defined as an autoimmune metabolic disorder, characterized by destruction of pancreatic β-cells and high blood sugar levels. If left untreated, T1D results in severe health complications, including cardiovascular and kidney disease, as well as nerve damage, with ultimately grave consequences. Besides the role of genetic and certain environmental factors in T1D development, in the last decade, one new player emerged to affect T1D pathology as well, and that is a gut microbiota. Dysbiosis of gut bacteria can contribute to T1D by gut barrier disruption and the activation of autoimmune response, leading to the destruction of insulin producing cells, causing the development and aggravation of T1D symptoms. The relationship between gut microbiota and diabetes is complex and varies between individuals and additional research is needed to fully understand the effects of gut microbiome alternations in T1D pathogenesis. Therefore, the goal of this review is to understand the current knowledge in underlying molecular mechanism of gut microbiota effects, which leads to the new approaches for further studies in the prevention and treatment of T1D.
Collapse
Affiliation(s)
- Lukic Nikola
- Laboratory for Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of the Republic of Serbia, University of Belgrade, Serbia
| | - Lukic Iva
- Laboratory for Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of the Republic of Serbia, University of Belgrade, Serbia.
| |
Collapse
|
3
|
Lopes V, Sousa ME, Lopes SC, Lages ADS. Metabolic impact of residual C-peptide secretion in type 1 diabetes mellitus. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e230503. [PMID: 39529980 PMCID: PMC11554363 DOI: 10.20945/2359-4292-2023-0503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/08/2024] [Indexed: 11/16/2024]
Abstract
Objective This study aimed to evaluate the association of detectable C-peptide levels with various continuous glucose monitoring (CGM) metrics and diabetes complications in patients with type 1 diabetes mellitus (T1DM). Subjects and methods Retrospective, descriptive study of 112 patients with T1DM undergoing intensive insulin therapy, categorized according to fasting C-peptide level into undetectable (<0.05 ng/mL) and detectable (≥0.05 ng/mL) groups. Results The patients' median age at diagnosis was 22 (12-34) years and the median T1DM duration was 18.5 (12-29) years. Patients with detectable versus undetectable C-peptide levels were older (27.5 [16.5-38.5] versus 17.5 [9.8-28.8] years, respectively, p = 0.002) and had shorter disease duration (14 [9-24] versus 20 [14-32] years, respectively, p = 0.004). After adjustment for covariates (sex, disease duration, body mass index, and use of continuous subcutaneous insulin infusion), detectable C-peptide level was associated with lower time above range (TAR; aβ -11.03, p = 0.002), glucose management indicator (GMI, aβ -0.55, p = 0.024), and average glucose (aβ -14.48, p = 0.045) and HbA1c (aβ -0.41, p = 0.035) levels. Patients with detectable versus those with undetectable C-peptide level had significantly higher time in range (TIR) before (β = 7.13, p = 0.044) and after (aβ = 11.42, p = 0.001) adjustments. Detectable C-peptide level was not associated with lower time below range (TBR), coefficient of variation (CV), or prevalence of chronic microvascular and macrovascular complications. Conclusions Persistent C-peptide secretion in patients with T1DM was associated with significantly better metabolic control reflected by different glucose metrics, namely, TIR, TAR, GMI, and HbA1c.
Collapse
Affiliation(s)
- Valentim Lopes
- Departamento de EndocrinologiaULS BragaBragaPortugal Departamento de Endocrinologia, ULS Braga, Braga, Portugal
| | - Maria Eduarda Sousa
- Faculdade de MedicinaUniversidade do Minho,BragaPortugal Faculdade de Medicina, Universidade do Minho, Braga, Portugal
| | - Sara Campos Lopes
- Departamento de EndocrinologiaULS BragaBragaPortugal Departamento de Endocrinologia, ULS Braga, Braga, Portugal
| | - Adriana De Sousa Lages
- Departamento de EndocrinologiaULS BragaBragaPortugal Departamento de Endocrinologia, ULS Braga, Braga, Portugal
- Faculdade de MedicinaUniversidade de CoimbraCoimbraPortugal Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Ayers AT, Ho CN, Wong JC, Kerr D, Mader JK, Klonoff DC. The Benefits of Using Continuous Glucose Monitoring to Diagnose Type 1 Diabetes. J Diabetes Sci Technol 2024:19322968241288923. [PMID: 39394887 DOI: 10.1177/19322968241288923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Affiliation(s)
| | - Cindy N Ho
- Diabetes Technology Society, Burlingame, CA, USA
| | - Jenise C Wong
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - David Kerr
- Center for Health Systems Research, Sutter Health, Santa Barbara, CA, USA
| | - Julia K Mader
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - David C Klonoff
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA, USA
| |
Collapse
|
5
|
Miyamoto T, Fukunaga Y, Munakata A, Murai K. Antibodies against glutamic acid decarboxylase in intravenous immunoglobulin preparations can affect the diagnosis of type 1 diabetes mellitus. Vox Sang 2024; 119:1106-1110. [PMID: 38955431 DOI: 10.1111/vox.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND AND OBJECTIVES Intravenous immunoglobulins (IVIgs) contain various autoantibodies, including those against glutamic acid decarboxylase (GADAb), a valuable biomarker of type 1 diabetes mellitus. Passive transfer of GADAb from IVIgs to patients poses a risk of misdiagnosis, and information on the specific titres of GADAb and their impact on diagnostic accuracy remains limited. This study aimed to provide further insights into the origin of GADAb detected in patient serum following IVIg infusion. MATERIALS AND METHODS GADAb titres in IVIg products from Japan and the United States were measured using enzyme-linked immunosorbent assay-based assays. For reliable quantification, GADAb titres in pooled plasma were quantified and compared with those in the IVIg products. The determined titres were used to estimate the likelihood of passively detecting acquired GADAb in individuals receiving IVIgs. RESULTS GADAbs were prevalent in IVIg products; however, the titres varied significantly among different lots and products. Importantly, IVIg-derived GADAb was estimated to remain detectable in patient serum for up to 100 days following a dosage of 2000 mg/kg. CONCLUSION Clinicians should consider that IVIg preparations may contain GADAb, which can lead to false-positive results in serological assays. Careful interpretation of the assay results is key to the definitive diagnosis of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Tatsuki Miyamoto
- Research and Development Division, Japan Blood Products Organization, Kobe, Hyogo, Japan
- Pharmacovigilance Division, Japan Blood Products Organization, Minato-ku, Tokyo, Japan
| | - Yuki Fukunaga
- Research and Development Division, Japan Blood Products Organization, Kobe, Hyogo, Japan
| | - Ai Munakata
- Pharmacovigilance Division, Japan Blood Products Organization, Minato-ku, Tokyo, Japan
| | - Katsushi Murai
- Pharmacovigilance Division, Japan Blood Products Organization, Minato-ku, Tokyo, Japan
| |
Collapse
|
6
|
Chung YL, Lee JJ, Chien HH, Chang MC, Jeng JH. Interplay between diabetes mellitus and periodontal/pulpal-periapical diseases. J Dent Sci 2024; 19:1338-1347. [PMID: 39035271 PMCID: PMC11259663 DOI: 10.1016/j.jds.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Indexed: 07/23/2024] Open
Abstract
This longevity of life expectancy has indirectly led to an increase in the number of chronic diseases such as periodontitis, apical periodontitis (AP), and diabetes mellitus (DM) in the aging society, thus affecting people's quality of life. There is an interaction between periodontitis/AP and DM with a two-way relationship. Although type 1 and 2 diabetes (T1DM, T2DM) have different etiologies, glycemic control may affect the infection, inflammation and tissue healing of periodontitis and AP. Non-surgical periodontal treatment may influence the glycemic control as shown by decrease of HbA1c level in T2DM patient. However, the effect of periodontal treatment on glycemic control in T1DM and root canal treatment/apical surgery on T1DM and T2DM patients awaits investigation. DM may affect the periodontal and periapical tissues possibly via altered oral microbiota, impairment of neutrophils' activity and host immune responses and cytokine production, induction of oxidative stress etc. While periodontitis associated systemic inflammation and hyperlipidemia is suggested to contribute to the control of T2DM, more intricate studies are necessary to clarify the detailed mechanisms. The interactions between DM (T1DM and T2DM) and periodontitis and AP are therefore reviewed to provide a basis for the treatment of subsequent patients with pulpal/periodontal disease and diabetes. A two-pronged approach of medical and dental treatment is needed for the management of these patients, with emphasis on blood glucose control and improving oral hygiene and periodontal maintenance care, to ensure the best treatment outcome.
Collapse
Affiliation(s)
- Yi-Lun Chung
- Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jang-Jaer Lee
- School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Hua-Hong Chien
- Division of Regenerative Sciences & Periodontology, Department of Advanced Specialty Sciences, Medical University of South Carolina, James B. Edwards College of Dental Medicine, Charleston, SC, USA
| | - Mei-Chi Chang
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
- Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Xing J, Wang K, Xu YC, Pei ZJ, Yu QX, Liu XY, Dong YL, Li SF, Chen Y, Zhao YJ, Yao F, Ding J, Hu W, Zhou RP. Efferocytosis: Unveiling its potential in autoimmune disease and treatment strategies. Autoimmun Rev 2024; 23:103578. [PMID: 39004157 DOI: 10.1016/j.autrev.2024.103578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Efferocytosis is a crucial process whereby phagocytes engulf and eliminate apoptotic cells (ACs). This intricate process can be categorized into four steps: (1) ACs release "find me" signals to attract phagocytes, (2) phagocytosis is directed by "eat me" signals emitted by ACs, (3) phagocytes engulf and internalize ACs, and (4) degradation of ACs occurs. Maintaining immune homeostasis heavily relies on the efficient clearance of ACs, which eliminates self-antigens and facilitates the generation of anti-inflammatory and immunosuppressive signals that maintain immune tolerance. However, any disruptions occurring at any of the efferocytosis steps during apoptosis can lead to a diminished efficacy in removing apoptotic cells. Factors contributing to this inefficiency encompass dysregulation in the release and recognition of "find me" or "eat me" signals, defects in phagocyte surface receptors, bridging molecules, and other signaling pathways. The inadequate clearance of ACs can result in their rupture and subsequent release of self-antigens, thereby promoting immune responses and precipitating the onset of autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. A comprehensive understanding of the efferocytosis process and its implications can provide valuable insights for developing novel therapeutic strategies that target this process to prevent or treat autoimmune diseases.
Collapse
Affiliation(s)
- Jing Xing
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ke Wang
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yu-Cai Xu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ze-Jun Pei
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qiu-Xia Yu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xing-Yu Liu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ya-Lu Dong
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shu-Fang Li
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Feng Yao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jie Ding
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
8
|
Singh AK, Duddempudi PK, Kenchappa DB, Srivastava N, Amdare NP. Immunological landscape of solid cancer: Interplay between tumor and autoimmunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:163-235. [PMID: 39396847 DOI: 10.1016/bs.ircmb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The immune system, a central player in maintaining homeostasis, emerges as a pivotal factor in the pathogenesis and progression of two seemingly disparate yet interconnected categories of diseases: autoimmunity and cancer. This chapter delves into the intricate and multifaceted role of the immune system, particularly T cells, in orchestrating responses that govern the delicate balance between immune surveillance and self-tolerance. T cells, pivotal immune system components, play a central role in both diseases. In autoimmunity, aberrant T cell activation drives damaging immune responses against normal tissues, while in cancer, T cells exhibit suppressed responses, allowing the growth of malignant tumors. Immune checkpoint receptors, example, initially explored in autoimmunity, now revolutionize cancer treatment via immune checkpoint blockade (ICB). Though effective in various tumors, ICB poses risks of immune-related adverse events (irAEs) akin to autoimmunity. This chapter underscores the importance of understanding tumor-associated antigens and their role in autoimmunity, immune checkpoint regulation, and their implications for both diseases. It also explores autoimmunity resulting from cancer immunotherapy and shared molecular pathways in solid tumors and autoimmune diseases, highlighting their interconnectedness at the molecular level. Additionally, it sheds light on common pathways and epigenetic features shared by autoimmunity and cancer, and the potential of repurposing drugs for therapeutic interventions. Delving deeper into these insights could unlock therapeutic strategies for both autoimmunity and cancer.
Collapse
Affiliation(s)
- Ajay K Singh
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | | | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nitin P Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
9
|
Rabadam G, Wibrand C, Flynn E, Hartoularos GC, Sun Y, Madubata C, Fragiadakis GK, Ye CJ, Kim S, Gartner ZJ, Sirota M, Neely J. Coordinated immune dysregulation in juvenile dermatomyositis revealed by single-cell genomics. JCI Insight 2024; 9:e176963. [PMID: 38743491 PMCID: PMC11383589 DOI: 10.1172/jci.insight.176963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Juvenile dermatomyositis (JDM) is one of several childhood-onset autoimmune disorders characterized by a type I IFN response and autoantibodies. Treatment options are limited due to an incomplete understanding of how the disease emerges from dysregulated cell states across the immune system. We therefore investigated the blood of patients with JDM at different stages of disease activity using single-cell transcriptomics paired with surface protein expression. By immunophenotyping peripheral blood mononuclear cells, we observed skewing of the B cell compartment toward an immature naive state as a hallmark of JDM at diagnosis. Furthermore, we find that these changes in B cells are paralleled by T cell signatures suggestive of Th2-mediated inflammation that persist despite disease quiescence. We applied network analysis to reveal that hyperactivation of the type I IFN response in all immune populations is coordinated with previously masked cell states including dysfunctional protein processing in CD4+ T cells and regulation of cell death programming in NK cells, CD8+ T cells, and γδ T cells. Together, these findings unveil the coordinated immune dysregulation underpinning JDM and provide insight into strategies for restoring balance in immune function.
Collapse
Affiliation(s)
- Gabrielle Rabadam
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, and
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
| | - Camilla Wibrand
- Aarhus University, Aarhus, Denmark
- Division of Pediatric Rheumatology, Department of Pediatrics
| | | | - George C Hartoularos
- Graduate Program in Biological and Medical Informatics
- Division of Rheumatology, Department of Medicine
- Institute for Human Genetics
| | - Yang Sun
- Division of Rheumatology, Department of Medicine
| | - Chioma Madubata
- Division of Pediatric Rheumatology, Department of Pediatrics
- CoLabs
| | | | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine
- Institute for Human Genetics
- Department of Epidemiology and Biostatistics, and
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Susan Kim
- Division of Pediatric Rheumatology, Department of Pediatrics
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jessica Neely
- Division of Pediatric Rheumatology, Department of Pediatrics
| |
Collapse
|
10
|
Kang Q, Ren J, Cong J, Yu W. Diabetes mellitus and idiopathic pulmonary fibrosis: a Mendelian randomization study. BMC Pulm Med 2024; 24:142. [PMID: 38504175 PMCID: PMC10953180 DOI: 10.1186/s12890-024-02961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND The question as to whether or not diabetes mellitus increases the risk of idiopathic pulmonary fibrosis (IPF) remains controversial. This study aimed to investigate the causal association between type 1 diabetes (T1D), type 2 diabetes (T2D), and IPF using Mendelian randomization (MR) analysis. METHODS We used two-sample univariate and multivariate MR (MVMR) analyses to investigate the causal relationship between T1D or T2D and IPF. We obtained genome-wide association study (GWAS) data for T1D and T2D from the European Bioinformatics Institute, comprising 29,652 T1D samples and 101,101 T1D single nucleotide polymorphisms (SNPs) and 655,666 T2D samples and 5,030,727 T2D SNPs. We also used IPF GWAS data from the FinnGen Biobank comprising 198,014 IPF samples and 16,380,413 IPF SNPs. All cases and controls in these datasets were derived exclusively from European populations. In the univariate MR analysis, we employed inverse variance-weighted (IVW), weighted median (WM), and MR-Egger regression methods. For the MVMR analysis, we used the multivariate IVW method primarily, and supplemented it with multivariate MR-Egger and multivariate MR- least absolute shrinkage and selection operator methods. Heterogeneity tests were conducted using the MR-IVW and MR-Egger regression methods, whereas pleiotropic effects were assessed using the MR-Egger intercept. The results of MR and sensitivity analyses were visualized using forest, scatter, leave-one-out, and funnel plots. RESULTS Univariate MR revealed a significant causal relationship between T1D and IPF (OR = 1.118, 95% CI = 1.021-1.225, P = 0.016); however, no significant causal relationship was found between T2D and IPF (OR = 0.911, 95% CI = 0.796-1.043, P = 0.178). MVMR analysis further confirmed a causal association between T1D and IPF (OR = 1.133, 95% CI = 1.011-1.270, P = 0.032), but no causal relationship between T2D and IPF (OR = 1.009, 95% CI = 0.790-1.288, P = 0.950). Sensitivity analysis results validated the stability and reliability of our findings. CONCLUSION Univariate and multivariate analyses demonstrated a causal relationship between T1D and IPF, whereas no evidence was found to support a causal relationship between T2D and IPF. Therefore, in clinical practice, patients with T1D should undergo lung imaging for early detection of IPF.
Collapse
Affiliation(s)
- Quou Kang
- Department of Pulmonary and Critical Care Medicine, The affiliated hospital of Qingdao University, Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Jing Ren
- Department of Pulmonary and Critical Care Medicine, The affiliated hospital of Qingdao University, Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Jinpeng Cong
- Department of Pulmonary and Critical Care Medicine, The affiliated hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wencheng Yu
- Department of Pulmonary and Critical Care Medicine, The affiliated hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
11
|
Kim T, Martínez-Bonet M, Wang Q, Hackert N, Sparks JA, Baglaenko Y, Koh B, Darbousset R, Laza-Briviesca R, Chen X, Aguiar VRC, Chiu DJ, Westra HJ, Gutierrez-Arcelus M, Weirauch MT, Raychaudhuri S, Rao DA, Nigrovic PA. Non-coding autoimmune risk variant defines role for ICOS in T peripheral helper cell development. Nat Commun 2024; 15:2150. [PMID: 38459032 PMCID: PMC10923805 DOI: 10.1038/s41467-024-46457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Fine-mapping and functional studies implicate rs117701653, a non-coding single nucleotide polymorphism in the CD28/CTLA4/ICOS locus, as a risk variant for rheumatoid arthritis and type 1 diabetes. Here, using DNA pulldown, mass spectrometry, genome editing and eQTL analysis, we establish that the disease-associated risk allele is functional, reducing affinity for the inhibitory chromosomal regulator SMCHD1 to enhance expression of inducible T-cell costimulator (ICOS) in memory CD4+ T cells from healthy donors. Higher ICOS expression is paralleled by an increase in circulating T peripheral helper (Tph) cells and, in rheumatoid arthritis patients, of blood and joint fluid Tph cells as well as circulating plasmablasts. Correspondingly, ICOS ligation and carriage of the rs117701653 risk allele accelerate T cell differentiation into CXCR5-PD-1high Tph cells producing IL-21 and CXCL13. Thus, mechanistic dissection of a functional non-coding variant in human autoimmunity discloses a previously undefined pathway through which ICOS regulates Tph development and abundance.
Collapse
Affiliation(s)
- Taehyeung Kim
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marta Martínez-Bonet
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Laboratory of Immune-regulation, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Qiang Wang
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicolaj Hackert
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jeffrey A Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuriy Baglaenko
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Byunghee Koh
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Roxane Darbousset
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raquel Laza-Briviesca
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Vitor R C Aguiar
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Darren J Chiu
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Harm-Jan Westra
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, The Netherlands
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
- Divisions of Human Genetics, Biomedical Informatics, and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Joshi K, Harris M, Cotterill A, Wentworth JM, Couper JJ, Haynes A, Davis EA, Lomax KE, Huynh T. Continuous glucose monitoring has an increasing role in pre-symptomatic type 1 diabetes: advantages, limitations, and comparisons with laboratory-based testing. Clin Chem Lab Med 2024; 62:41-49. [PMID: 37349976 DOI: 10.1515/cclm-2023-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Type 1 diabetes (T1D) is well-recognised as a continuum heralded by the development of islet autoantibodies, progression to islet autoimmunity causing beta cell destruction, culminating in insulin deficiency and clinical disease. Abnormalities of glucose homeostasis are known to exist well before the onset of typical symptoms. Laboratory-based tests such as the oral glucose tolerance test (OGTT) and glycated haemoglobin (HbA1c) have been used to stage T1D and assess the risk of progression to clinical T1D. Continuous glucose monitoring (CGM) can detect early glycaemic abnormalities and can therefore be used to monitor for metabolic deterioration in pre-symptomatic, islet autoantibody positive, at-risk individuals. Early identification of these children can not only reduce the risk of presentation with diabetic ketoacidosis (DKA), but also determine eligibility for prevention trials, which aim to prevent or delay progression to clinical T1D. Here, we describe the current state with regard to the use of the OGTT, HbA1c, fructosamine and glycated albumin in pre-symptomatic T1D. Using illustrative cases, we present our clinical experience with the use of CGM, and advocate for an increased role of this diabetes technology, for monitoring metabolic deterioration and disease progression in children with pre-symptomatic T1D.
Collapse
Affiliation(s)
- Kriti Joshi
- Department of Endocrinology and Diabetes, Queensland Children's Hospital, South Brisbane, QLD, Australia
- Children's Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Mark Harris
- Department of Endocrinology and Diabetes, Queensland Children's Hospital, South Brisbane, QLD, Australia
| | - Andrew Cotterill
- Department of Endocrinology and Diabetes, Queensland Children's Hospital, South Brisbane, QLD, Australia
| | - John M Wentworth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Jennifer J Couper
- Department of Endocrinology and Diabetes, Women's and Children's Hospital, North Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Aveni Haynes
- Children's Diabetes Centre, Telethon Kids Institute, The University of Western Australia Perth, Crawley, WA, Australia
| | - Elizabeth A Davis
- Children's Diabetes Centre, Telethon Kids Institute, The University of Western Australia Perth, Crawley, WA, Australia
- Department of Endocrinology and Diabetes, Perth Children's Hospital, Nedlands, WA, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Kate E Lomax
- Children's Diabetes Centre, Telethon Kids Institute, The University of Western Australia Perth, Crawley, WA, Australia
- Department of Endocrinology and Diabetes, Perth Children's Hospital, Nedlands, WA, Australia
| | - Tony Huynh
- Department of Endocrinology and Diabetes, Queensland Children's Hospital, South Brisbane, QLD, Australia
- Children's Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Chemical Pathology, Mater Pathology, South Brisbane, QLD, Australia
| |
Collapse
|
13
|
Zakarneh S, Khial Y, Tayyem R. Dietary Factors Associated with Glycemic Control in Children and Adolescents with Type 1 Diabetes. Curr Pediatr Rev 2024; 21:29-39. [PMID: 37608667 DOI: 10.2174/1573396320666230822095948] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 08/24/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease that results from the autoimmune destruction of pancreatic β-cells, leading to insulin deficiency and hyperglycemia. It is a common chronic disease in childhood, with a prevalence of 1 in 300 children in the United States and an increasing incidence of 2-5% annually, worldwide. Managing T1DM requires regular insulin administration, adjustment of food intake and exercise, and a comprehensive understanding of nutrition. This review aims to explore the relationship between dietary factors, physical activity, obesity, genetics, and glycemic control in children and adolescents with T1DM. To conduct this review, we conducted a thorough search of publications from December 2004 through April 2022 using PubMed, ScienceDirect, and Embase databases. Key topics included obesity, children, adolescents, nutrients, carbohydrates, proteins, fat, water-soluble vitamins, fat-soluble vitamins, dietary patterns, fruits and vegetables, physical activity, genetics, food habits, carbohydrate count and environmental factors.
Collapse
Affiliation(s)
- Sara Zakarneh
- Department of Nutrition & Food Technology, Faculty of Agriculture, The University of Jordan, Amman, 11942, Jordan
| | - Yasmin Khial
- Department of Human Nutrition, College of Health Science, Qatar University, Doha, Qatar
| | - Reema Tayyem
- Department of Human Nutrition, College of Health Science, Qatar University, Doha, Qatar
| |
Collapse
|
14
|
Rabadam G, Wibrand C, Flynn E, Hartoularos GC, Sun Y, Ye CJ, Kim S, Gartner Z, Sirota M, Neely J. Coordinated immune dysregulation in Juvenile Dermatomyositis revealed by single-cell genomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566033. [PMID: 37986917 PMCID: PMC10659396 DOI: 10.1101/2023.11.07.566033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Juvenile Dermatomyositis (JDM) is one of several childhood-onset autoimmune disorders characterized by a type I interferon response and autoantibodies. Treatment options are limited due to incomplete understanding of how the disease emerges from dysregulated cell states across the immune system. We therefore investigated the blood of JDM patients at different stages of disease activity using single-cell transcriptomics paired with surface protein expression. By immunophenotyping peripheral blood mononuclear cells, we observed skewing of the B cell compartment towards an immature naive state as a hallmark of JDM. Furthermore, we find that these changes in B cells are paralleled by signatures of Th2-mediated inflammation. Additionally, our work identified SIGLEC-1 expression in monocytes as a composite measure of heterogeneous type I interferon activity in disease. We applied network analysis to reveal that hyperactivation of the type I interferon response in all immune populations is coordinated with dysfunctional protein processing and regulation of cell death programming. This analysis separated the ubiquitously expressed type I interferon response into a central hub and revealed previously masked cell states. Together, these findings reveal the coordinated immune dysregulation underpinning JDM and provide novel insight into strategies for restoring balance in immune function.
Collapse
Affiliation(s)
- Gabrielle Rabadam
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, UCSF, San Francisco, California, USA
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
| | - Camilla Wibrand
- Aarhus University, Aarhus, Denmark
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Emily Flynn
- CoLabs, UCSF, San Francisco, California, USA
| | - George C. Hartoularos
- Graduate Program in Biological and Medical Informatics, UCSF, San Francisco, California, USA
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
- Institute for Human Genetics, UCSF, San Francisco, California, USA
| | - Yang Sun
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
- Institute for Human Genetics, UCSF, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Susan Kim
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Zev Gartner
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jessica Neely
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| |
Collapse
|
15
|
Edwards M, Kudzinskas A, Alazawi A, Hughes W, Goodall R, Harbinson E, Salciccioli J, Marshall D, Shalhoub J. Type 1 diabetes mellitus disease burden in high health expenditure countries between 1990 and 2019. Diab Vasc Dis Res 2023; 20:14791641231221763. [PMID: 38128564 DOI: 10.1177/14791641231221763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVE This observational study assesses trends in type 1 diabetes mellitus (T1DM) disease burden across the 19 countries of the European Union (EU) 15+ between 1990 and 2019. METHODS The Global Burden of Disease Study database was used to gather T1DM age-standardised incidence (ASIR), prevalence (ASPR), mortality (ASMR), and disability-adjusted life-year (DALY) rates per 100,000 for each EU15+ country (1990 - 2019). Joinpoint regression analysis was used to describe the trends. RESULTS From 1990 to 2019, T1DM ASIRs and ASPRs increased globally except for females in Finland (-2.9% and -9.4%), the largest increase in ASPR for males and females was observed in France (+144.4% and +137.5% respectively). All had reductions in ASMRs for males and females, with the largest observed in Spain (-56.7% and -79.0% respectively). Trends in DALYs were variable across countries, with increases in DALYs noted in 14/19 for males, and 9/19 for females. Denmark, Finland, Norway, Netherlands, and Sweden had a reduction in DALYs for both males and females. CONCLUSIONS Mortality from T1DM is reducing across EU15+ countries, despite concomitant increases in incidence and prevalence rates. Trends in DALYs are variable across countries, reflecting differential trends in the disease burden across countries with similarly high health expenditure.
Collapse
Affiliation(s)
- Michael Edwards
- Queen Victoria Hospital NHS Foundation Trust, East Grinstead, UK
| | | | - Andrew Alazawi
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | | | - Richard Goodall
- Queen Victoria Hospital NHS Foundation Trust, East Grinstead, UK
| | | | | | | | - Joseph Shalhoub
- Imperial College London and Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
16
|
Syed U, Subramanian A, Wraith DC, Lord JM, McGee K, Ghokale K, Nirantharakumar K, Haroon S. Incidence of immune-mediated inflammatory diseases following COVID-19: a matched cohort study in UK primary care. BMC Med 2023; 21:363. [PMID: 37735654 PMCID: PMC10512476 DOI: 10.1186/s12916-023-03049-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Some patients infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) go on to experience post-COVID-19 condition or long COVID. Preliminary findings have given rise to the theory that long COVID may be due in part to a deranged immune response. In this study, we assess whether there is an association between SARS-CoV-2 infection and the incidence of immune-mediated inflammatory diseases (IMIDs). METHODS Matched cohort study using primary care electronic health record data from the Clinical Practice Research Datalink Aurum database. The exposed cohort included 458,147 adults aged 18 years and older with a confirmed SARS-CoV-2 infection and no prior diagnosis of IMIDs. They were matched on age, sex, and general practice to 1,818,929 adults with no diagnosis of confirmed or suspected SARS-CoV-2 infection. The primary outcome was a composite of any of the following IMIDs: autoimmune thyroiditis, coeliac disease, inflammatory bowel disease (IBD), myasthenia gravis, pernicious anaemia, psoriasis, rheumatoid arthritis (RA), Sjogren's syndrome, systemic lupus erythematosus (SLE), type 1 diabetes mellitus (T1DM), and vitiligo. The secondary outcomes were each of these conditions separately. Cox proportional hazard models were used to estimate adjusted hazard ratios (aHR) and 95% confidence intervals (CI) for the primary and secondary outcomes, adjusting for age, sex, ethnic group, smoking status, body mass index, relevant infections, and medications. RESULTS Six hundred and nighty six (0.15%) and 2230 (0.12%) patients in the exposed and unexposed cohort developed an IMID during the follow-up period over 0.29 person-years, giving a crude incidence rate of 4.59 and 3.65 per 1000 person-years, respectively. Patients in the exposed cohort had a 22% increased risk of developing an IMID, compared to the unexposed cohort (aHR 1.22, 95% CI 1.12 to 1.33). The incidence of three IMIDs was significantly associated with SARS-CoV-2 infection. These were T1DM (aHR 1.56, 1.09 to 2.23), IBD (aHR 1.36, 1.18 to 1.56), and psoriasis (1.23, 1.05 to 1.42). CONCLUSIONS SARS-CoV-2 was associated with an increased incidence of IMIDs including T1DM, IBD and psoriasis. However, these findings could be potentially due to ascertainment bias. Further research is needed to replicate these findings in other populations and to measure autoantibody profiles in cohorts of individuals with COVID-19.
Collapse
Affiliation(s)
- Umer Syed
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Anuradhaa Subramanian
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - David C Wraith
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
| | - Janet M Lord
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Kirsty McGee
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Krishna Ghokale
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Krishnarajah Nirantharakumar
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Shamil Haroon
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
17
|
Landstra CP, Nijhoff MF, Roelen DL, de Vries APJ, de Koning EJP. Diagnosis and treatment of allograft rejection in islet transplantation. Am J Transplant 2023; 23:1425-1433. [PMID: 37307954 DOI: 10.1016/j.ajt.2023.05.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/07/2023] [Indexed: 06/14/2023]
Abstract
Islet transplantation stabilizes glycemic control in patients with complicated diabetes mellitus. Rapid functional decline could be due to islet allograft rejection. However, there is no reliable method to assess rejection, and treatment protocols are absent. We aimed to characterize diagnostic features of islet allograft rejection and assess effectiveness of high-dose methylprednisolone treatment. Over a median follow-up of 61.8 months, 22% (9 of 41) of islet transplant recipients experienced 10 suspected rejection episodes (SREs). All first SREs occurred within 18 months after transplantation. Important features were unexplained hyperglycemia (all cases), unexplained C-peptide decrease (ΔC-peptide, 77.1% [-59.1% to -91.6%]; ΔC-peptide:glucose, -76.3% [-49.2% to -90.4%]), predisposing event (5 of 10 cases), and increased immunologic risk (5 of 10 cases). At 6 months post-SRE, patients who received protocolized methylprednisolone (n = 4) had significantly better islet function than untreated patients (n = 4), according to C-peptide (1.39 ± 0.59 vs 0.14 ± 0.19 nmol/L; P = .007), Igls score (good [4 of 4 cases] vs failure [3 of 4 cases] or marginal [1 of 4 cases]; P = .018) and β score (6.0 [6.0-6.0] vs 1.0 [0.0-3.5]; P = .013). SREs are prevalent among islet transplant recipients and are associated with loss of islet graft function. Timely treatment with high-dose methylprednisolone mitigates this loss. Unexplained hyperglycemia, unexpected C-peptide decrease, a predisposing event, and elevated immunologic risk are diagnostic indicators for SRE.
Collapse
Affiliation(s)
- Cyril P Landstra
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Michiel F Nijhoff
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands; Leiden Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Dave L Roelen
- Leiden Transplant Center, Leiden University Medical Center, Leiden, The Netherlands; Department of Immunohematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Aiko P J de Vries
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands; Leiden Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Eelco J P de Koning
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands; Leiden Transplant Center, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
18
|
Grubišić B, Švitek L, Ormanac K, Sabo D, Mihaljević I, Bilić-Ćurčić I, Omanović Kolarić T. Molecular Mechanisms Responsible for Diabetogenic Effects of COVID-19 Infection-Induction of Autoimmune Dysregulation and Metabolic Disturbances. Int J Mol Sci 2023; 24:11576. [PMID: 37511334 PMCID: PMC10380525 DOI: 10.3390/ijms241411576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
The COVID-19 pandemic has revealed a significant association between SARS-CoV-2 infection and diabetes, whereby individuals with diabetes are more susceptible to severe disease and higher mortality rates. Interestingly, recent findings suggest a reciprocal relationship between COVID-19 and diabetes, wherein COVID-19 may contribute to developing new-onset diabetes and worsen existing metabolic abnormalities. This narrative review aims to shed light on the intricate molecular mechanisms underlying the diabetogenic effects of COVID-19. Specifically, the review explores the potential role of various factors, including direct damage to β-cells, insulin resistance triggered by systemic inflammation, and disturbances in hormonal regulation, aiming to enhance our understanding of the COVID-19 impact on the development and progression of diabetes. By analysing these mechanisms, the aim is to enhance our understanding of the impact of COVID-19 on the development and progression of diabetes. The binding of SARS-CoV-2 to angiotensin-converting enzyme 2 (ACE2) receptors, which are present in key metabolic organs and tissues, may interfere with glucometabolic pathways, leading to hyperglycaemia, and potentially contribute to the development of new disease mechanisms. The virus's impact on β-cells through direct invasion or systemic inflammation may induce insulin resistance and disrupt glucose homeostasis. Furthermore, glucocorticoids, commonly used to treat COVID-19, may exacerbate hyperglycaemia and insulin resistance, potentially contributing to new-onset diabetes. The long-term effects of COVID-19 on glucose metabolism are still unknown, necessitating further research into the possibility of developing a novel type of diabetes. This article provides a comprehensive overview of the current understanding of the interaction between COVID-19 and diabetes, highlighting potential areas for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Barbara Grubišić
- Department of Infectious Diseases, University Hospital Centre Osijek, 4 Josip Huttler Street, HR-31000 Osijek, Croatia
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 4 Josip Huttler Street, HR-31000 Osijek, Croatia
| | - Luka Švitek
- Department of Infectious Diseases, University Hospital Centre Osijek, 4 Josip Huttler Street, HR-31000 Osijek, Croatia
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 4 Josip Huttler Street, HR-31000 Osijek, Croatia
| | - Klara Ormanac
- Department of Pharmacology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 4 Josip Huttler Street, HR-31000 Osijek, Croatia
| | - Dea Sabo
- Department of Pharmacology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 4 Josip Huttler Street, HR-31000 Osijek, Croatia
| | - Ivica Mihaljević
- Clinical Institute of Nuclear Medicine and Radiation Protection, University Hospital Centre Osijek, 4 Josip Huttler Street, HR-31000 Osijek, Croatia
- Department for Nuclear Medicine and Oncology, Faculty of Medicine, J. J. Strossmayer University of Osijek, 4 Josip Huttler Street, HR-31000 Osijek, Croatia
- Academy of Medical Sciences of Croatia, 15 Kaptol Street, HR-10000 Zagreb, Croatia
| | - Ines Bilić-Ćurčić
- Department of Pharmacology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 4 Josip Huttler Street, HR-31000 Osijek, Croatia
- Department of Endocrinology and Metabolism Disorders, Internal Medicine Clinic, University Hospital Centre Osijek, 4 Josip Huttler Street, HR-31000 Osijek, Croatia
| | - Tea Omanović Kolarić
- Department of Pharmacology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 4 Josip Huttler Street, HR-31000 Osijek, Croatia
- Faculty of Dental Medicine and Health Osijek, University of Osijek, 21 Crkvena Street, HR-31000 Osijek, Croatia
| |
Collapse
|
19
|
Macvanin MT, Gluvic Z, Bajic V, Isenovic ER. Novel insights regarding the role of noncoding RNAs in diabetes. World J Diabetes 2023; 14:958-976. [PMID: 37547582 PMCID: PMC10401459 DOI: 10.4239/wjd.v14.i7.958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/01/2023] [Accepted: 05/23/2023] [Indexed: 07/12/2023] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders defined by hyperglycemia induced by insulin resistance, inadequate insulin secretion, or excessive glucagon secretion. In 2021, the global prevalence of diabetes is anticipated to be 10.7% (537 million people). Noncoding RNAs (ncRNAs) appear to have an important role in the initiation and progression of DM, according to a growing body of research. The two major groups of ncRNAs implicated in diabetic disorders are miRNAs and long noncoding RNAs. miRNAs are single-stranded, short (17–25 nucleotides), ncRNAs that influence gene expression at the post-transcriptional level. Because DM has reached epidemic proportions worldwide, it appears that novel diagnostic and therapeutic strategies are required to identify and treat complications associated with these diseases efficiently. miRNAs are gaining attention as biomarkers for DM diagnosis and potential treatment due to their function in maintaining physiological homeostasis via gene expression regulation. In this review, we address the issue of the gradually expanding global prevalence of DM by presenting a complete and up-to-date synopsis of various regulatory miRNAs involved in these disorders. We hope this review will spark discussion about ncRNAs as prognostic biomarkers and therapeutic tools for DM. We examine and synthesize recent research that used novel, high-throughput technologies to uncover ncRNAs involved in DM, necessitating a systematic approach to examining and summarizing their roles and possible diagnostic and therapeutic uses.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Zoran Gluvic
- Department of Endocrinology and Diabetes, Clinic for Internal Medicine, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Vladan Bajic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
20
|
Seida I, Alrais M, Seida R, Alwani A, Kiyak Z, Elsalti A, Nil Esirgun S, Abali T, Mahroum N. Autoimmune/inflammatory syndrome induced by adjuvants (ASIA): past, present, and future implications. Clin Exp Immunol 2023; 213:87-101. [PMID: 36881788 PMCID: PMC10324553 DOI: 10.1093/cei/uxad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/06/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
Adjuvants, as the name indicates, are adjoined material aimed to assist in functioning as when added to vaccines they are meant to boost the effect and strongly stimulate the immune system. The response of the immune system can be unpredictable, and the autoimmune/inflammatory syndrome induced by adjuvants (ASIA) was developed to address possible adverse reactions of an autoimmune and inflammatory type that may be caused by adjuvants. While ASIA, as a syndrome, was coined and defined in 2011; reports describing patients with vague and nonspecific clinical symptoms following vaccinations appeared much earlier. In other words, ASIA came to define, arrange, and unite the variety of symptoms, related to autoimmunity, caused not by the vaccine itself, rather by the adjuvant part of the vaccine such as aluminum, among others. Accordingly, the introduction of ASIA enabled better understanding, proper diagnosis, and early treatment of the disorder. Furthermore, ASIA was shown to be associated with almost all body systems and various rheumatic and autoimmune diseases such as systemic lupus erythematosus, antiphospholipid syndrome, and systemic sclerosis. In addition, the correlation between COVID-19 and ASIA was noticed during the pandemic. In this review, we summarized the reported effects of adjuvants and medical literature before and after ASIA was defined, the several ways ASIA can manifest and impact different systems of the body, and the incidences of ASIA during the COVID-19 pandemic. It is important to clarify, that vaccines are among, if not the, most effective means of fighting infectious diseases however, we believe that vaccines manufacturing is not above criticism, particularly when it comes to added substances possessing a risk of side effects.
Collapse
Affiliation(s)
- Isa Seida
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Mahmoud Alrais
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ravend Seida
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Abdulkarim Alwani
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Zeynep Kiyak
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Abdulrahman Elsalti
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Sevval Nil Esirgun
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Tunahan Abali
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Naim Mahroum
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
21
|
McNitt DH, Joosse BA, Thomas JW, Bonami RH. Productive Germinal Center Responses Depend on the Nature of Stimuli Received by Anti-Insulin B Cells in Type 1 Diabetes-Prone Mice. Immunohorizons 2023; 7:384-397. [PMID: 37261716 PMCID: PMC10448785 DOI: 10.4049/immunohorizons.2300036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
Islet autoantibodies, including those directed at insulin, predict type 1 diabetes (T1D) in mice and humans and signal immune tolerance breach by B lymphocytes. High-affinity insulin autoantibodies and T follicular helper cell involvement implicate germinal centers (GCs) in T1D. The VH125SD BCR transgenic model, in which 1-2% of peripheral B lymphocytes recognize insulin, enables direct study of insulin-binding B cells. Our prior studies showed that anti-insulin B cell receptor transgene site-directed to H chain locus mice fail to generate insulin Ab following T-dependent immunization, but it was unclear whether anti-insulin B cells were blocked for GC initiation, survival, or differentiation into Ab-secreting cells. Here, we show that insulin-binding B cells in T1D-prone anti-insulin B cell receptor transgene site-directed to H chain locus mice can spontaneously adopt a GC phenotype and undergo class switching to the IgG1 isotype, with little if any switching to IgG2b. T-dependent immunizations with insulin SRBC or insulin CFA drove anti-insulin B lymphocytes to adopt a GC phenotype, despite blunted insulin Ab production. Dual immunization against self (insulin) and foreign (4-hydroxy-3-nitrophenylacetyl hapten conjugated to keyhole limpet hemocyanin) Ags showed an anti-insulin (but not anti-4-hydroxy-3-nitrophenylacetyl) Ab block that tracked with increased expression of the apoptosis marker, activated caspase 3, in self-reactive GC B cells. Finally, T-independent immunization with insulin conjugated to Brucella abortus ring test Ag released immune tolerance to allow robust expansion of anti-insulin GC B cells and IgG-switched insulin Ab production. Overall, these data pinpoint GC survival and Ab-secreting cell differentiation as immune tolerance blocks that limit T-dependent, but not T-independent, stimulation of anti-insulin B cell responses.
Collapse
Affiliation(s)
- Dudley H. McNitt
- Division of Rheumatology and Immunology, Department of
Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Bryan A. Joosse
- Division of Rheumatology and Immunology, Department of
Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - James W. Thomas
- Division of Rheumatology and Immunology, Department of
Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and
Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Rachel H. Bonami
- Division of Rheumatology and Immunology, Department of
Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and
Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
22
|
Boboc AA, Novac CN, Marin AG, Ieșanu MI, Plătică C, Buzescu T, Coșoreanu MT, Galoș F. SARS-CoV-2 Positive Serology and Islet Autoantibodies in Newly Diagnosed Pediatric Cases of Type 1 Diabetes Mellitus: A Single-Center Cohort Study. Int J Mol Sci 2023; 24:ijms24108885. [PMID: 37240231 DOI: 10.3390/ijms24108885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, although presenting less severe forms of the disease in children, seems to play a role in the development of other conditions, including type 1 diabetes mellitus (T1DM). After the beginning of the pandemic, an increase in the number of T1DM pediatric patients was observed in several countries, thus leading to many questions about the complex relationship between SARS-CoV-2 infection and T1DM. Our study aimed to highlight possible correlations between SARS-CoV-2 serology and T1DM onset. Therefore, we performed an observational retrospective cohort study that included 158 children diagnosed with T1DM in the period April 2021-April 2022. The presence or absence of SARS-CoV-2 and T1DM-specific antibodies and other laboratory findings were assessed. In the group of patients with positive SARS-CoV-2 serology, a higher percentage had detectable IA-2A antibodies, more children were positive for all three islet autoantibodies determined (GADA, ICA, and IA-2A), and a higher mean HbA1c value was found. No difference existed between the two groups regarding DKA presence and severity. A lower C-peptide level was found in the patients presenting diabetic ketoacidosis (DKA) at T1DM onset. When compared to a group of patients diagnosed before the pandemic, an increased incidence of both DKA and severe DKA, as well as a higher age at diagnosis and higher levels of HbA1c were present in our study group. These findings have important implications for the ongoing monitoring and management of children with T1DM after the COVID-19 pandemic and highlight the need for further research to better understand the complex relationship between SARS-CoV-2 infection and T1DM.
Collapse
Affiliation(s)
- Anca Andreea Boboc
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pediatrics, Marie Curie Emergency Children's Hospital, 041451 Bucharest, Romania
| | - Carmen Nicoleta Novac
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pediatrics, Marie Curie Emergency Children's Hospital, 041451 Bucharest, Romania
| | - Alexandra Gabriela Marin
- Department of Infectious Diseases, Prof. Dr. Matei Balș National Institute of Infectious Diseases, 021105 Bucharest, Romania
| | - Mara Ioana Ieșanu
- Department of Pediatrics, Marie Curie Emergency Children's Hospital, 041451 Bucharest, Romania
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cristina Plătică
- Department of Pediatrics, Marie Curie Emergency Children's Hospital, 041451 Bucharest, Romania
| | - Teodora Buzescu
- Department of Pediatrics, Marie Curie Emergency Children's Hospital, 041451 Bucharest, Romania
| | - Maria Teodora Coșoreanu
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pediatrics, Marie Curie Emergency Children's Hospital, 041451 Bucharest, Romania
| | - Felicia Galoș
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pediatrics, Marie Curie Emergency Children's Hospital, 041451 Bucharest, Romania
| |
Collapse
|
23
|
Siddiqui K, Nawaz SS, Alfadda AA, Mujammami M. Islet Autoantibodies to Pancreatic Insulin-Producing Beta Cells in Adolescent and Adults with Type 1 Diabetes Mellitus: A Cross-Sectional Study. Diagnostics (Basel) 2023; 13:diagnostics13101736. [PMID: 37238221 DOI: 10.3390/diagnostics13101736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Type 1 diabetes mellitus (T1D) is a chronic autoimmune disease caused by the destruction of pancreatic insulin-producing beta cells. T1D is one of the most common endocrine and metabolic disorders occurring in children. Autoantibodies against pancreatic insulin-producing beta cells are important immunological and serological markers of T1D. Zinc transporter 8 autoantibody (ZnT8) is a recently identified autoantibody in T1D; however, no data on ZnT8 autoantibody in the Saudi Arabian population have been reported. Thus, we aimed to investigate the prevalence of islet autoantibodies (IA-2 and ZnT8) in adolescents and adults with T1D according to age and disease duration. (2) Methods: In total, 270 patients were enrolled in this cross-sectional study. After meeting the study's inclusion and exclusion criteria, 108 patients with T1D (50 men and 58 women) were assessed for T1D autoantibody levels. Serum ZnT8 and IA-2 autoantibodies were measured using commercial enzyme-linked immunosorbent assay kits. (3) Results: IA-2 and ZnT8 autoantibodies were present in 67.6% and 54.6% of patients with T1D, respectively. Autoantibody positivity was found in 79.6% of the patients with T1D. Both the IA-2 and ZnT8 autoantibodies were frequently observed in adolescents. The prevalence of IA-2 and ZnT8 autoantibodies in patients with a disease duration < 1 year was 100% and 62.5%, respectively, which declined with an increase in disease duration (p < 0.020). Logistic regression analysis revealed a significant relationship between age and autoantibodies (p < 0.004). (4) Conclusions: The prevalence of IA-2 and ZnT8 autoantibodies in the Saudi Arabian T1D population appears to be higher in adolescents. The current study also showed that the prevalence of autoantibodies decreased with disease duration and age. IA-2 and ZnT8 autoantibodies are important immunological and serological markers for T1D diagnosis in the Saudi Arabian population.
Collapse
Affiliation(s)
- Khalid Siddiqui
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Shaik Sarfaraz Nawaz
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Assim A Alfadda
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Department of Medicine, College of Medicine & King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia
- Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Muhammad Mujammami
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Department of Medicine, College of Medicine & King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia
- University Diabetes Center, King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia
| |
Collapse
|
24
|
Limanaqi F, Vicentini C, Saulle I, Clerici M, Biasin M. The role of endoplasmic reticulum aminopeptidases in type 1 diabetes mellitus. Life Sci 2023; 323:121701. [PMID: 37059356 DOI: 10.1016/j.lfs.2023.121701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Type-I diabetes mellitus (T1DM) is generally considered as a chronic, T-cell mediated autoimmune disease. This notwithstanding, both the endogenous characteristics of β-cells, and their response to environmental factors and exogenous inflammatory stimuli are key events in disease progression and exacerbation. As such, T1DM is now recognized as a multifactorial condition, with its onset being influenced by both genetic predisposition and environmental factors, among which, viral infections represent major triggers. In this frame, endoplasmic reticulum aminopeptidase 1 (ERAP1) and 2 (ERAP2) hold center stage. ERAPs represent the main hydrolytic enzymes specialized in trimming of N-terminal antigen peptides to be bound by MHC class I molecules and presented to CD8+ T cells. Thus, abnormalities in ERAPs expression alter the peptide-MHC-I repertoire both quantitatively and qualitatively, fostering both autoimmune and infectious diseases. Although only a few studies succeeded in determining direct associations between ERAPs variants and T1DM susceptibility/outbreak, alterations of ERAPs do impinge on a plethora of biological events which might indeed contribute to the disease development/exacerbation. Beyond abnormal self-antigen peptide trimming, these include preproinsulin processing, nitric oxide (NO) production, ER stress, cytokine responsiveness, and immune cell recruitment/activity. The present review brings together direct and indirect evidence focused on the immunobiological role of ERAPs in T1DM onset and progression, covering both genetic and environmental aspects.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Chiara Vicentini
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy; Don C. Gnocchi Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation, Via A. Capecelatro 66, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy.
| |
Collapse
|
25
|
Rai U, Senapati D, Arora MK. Insights on the role of anti-inflammatory and immunosuppressive agents in the amelioration of diabetes. Diabetol Int 2023; 14:134-144. [PMID: 37090130 PMCID: PMC10113422 DOI: 10.1007/s13340-022-00607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/30/2022] [Indexed: 11/18/2022]
Abstract
Diabetes is a major health problem worldwide. It is a chronic metabolic disorder that produces overt hyperglycemic condition that occurs either when the pancreas does not produce enough insulin due to excessive destruction of pancreatic β-cells (type 1 diabetes) or due to development of insulin resistance (type 2 diabetes). An autoimmune condition known as type 1 diabetes (T1D) results in the targeted immune death of β-cells that produce insulin. The only available treatment for T1D at the moment is the lifelong use of insulin. Multiple islet autoantibody positivity is used to diagnose T1D. There are four standard autoantibodies observed whose presence shows the development of T1D: antibodies against insulin, glutamic acid decarboxylase (GAD65), zinc T8 transporter (ZnT8), and tyrosine phosphatase-like protein (ICA512). In type 2 diabetes (T2D), an inflammatory response precipitates as a consequence of the immune response to high blood glucose level along with the presence of inflammation mediators produced by macrophages and adipocytes in fat tissue. The slow and chronic inflammatory condition of adipose tissue produces insulin resistance leading to increased stress on pancreatic β-cells to produce more insulin to compensate for the insulin resistance. Thus, this stress condition exacerbates the apoptosis of β-cells leading to insufficient production of insulin, resulting in hyperglycemia which signifies late stage T2D. Therefore, the therapeutic utilization of immunosuppressive agents may be a better alternative over the use of insulin and oral hypoglycemic agents for the treatment of T1D and T2D, respectively. This review enlightens the immune intervention for the prevention and amelioration of T1D and T2D in humans with main focus on the antigen-specific immune suppressive therapy.
Collapse
Affiliation(s)
- Uddipak Rai
- School of Pharmaceutical and Population Health Informatics, DIT University, 248009, Dehradun, Uttarakhand India
| | - Dhirodatta Senapati
- School of Pharmaceutical and Population Health Informatics, DIT University, 248009, Dehradun, Uttarakhand India
| | - Mandeep Kumar Arora
- School of Pharmaceutical and Population Health Informatics, DIT University, 248009, Dehradun, Uttarakhand India
| |
Collapse
|
26
|
Räisänen LK, Kääriäinen SE, Sund R, Engberg E, Viljakainen HT, Kolho KL. Antibiotic exposures and the development of pediatric autoimmune diseases: a register-based case-control study. Pediatr Res 2023; 93:1096-1104. [PMID: 35854091 PMCID: PMC10033398 DOI: 10.1038/s41390-022-02188-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Antibiotics have been associated with several individual autoimmune diseases (ADs). This study aims to discover whether pre-diagnostic antibiotics are associated with the onset of ADs in general. METHODS From a cohort of 11,407 children, 242 developed ADs (type 1 diabetes, autoimmune thyroiditis, juvenile idiopathic arthritis (JIA), or inflammatory bowel diseases) by a median age of 16 years. Antibiotic purchases from birth until the date of diagnosis (or respective date in the matched controls n = 708) were traced from national registers. RESULTS Total number of antibiotic purchases was not related to the onset of ADs when studied as a group. Of specific diagnoses, JIA was associated with the total number of antibiotics throughout the childhood and with broad-spectrum antibiotics before the age of 3 years. Intriguingly, recent and frequent antibiotic use (within 2 years before diagnosis and ≥3 purchases) was associated with the onset of ADs (OR 1.72, 95% CI 1.08-2.74). Regardless of frequent use in childhood (40% of all antibiotics), penicillin group antibiotics were not related to any ADs. CONCLUSIONS Use of antibiotics was relatively safe regarding the overall development of ADs. However, broad-spectrum antibiotics should be used considerately as they may associate with an increased likelihood of JIA. IMPACT Increasing numbers of antibiotic purchases before the age of 3 years or throughout childhood were not associated with the development of pediatric autoimmune diseases. Broad-spectrum antibiotics were related to the development of autoimmune diseases, especially juvenile idiopathic arthritis in children, while penicillin group antibiotics were not. The use of broad-spectrum antibiotics in children should be cautious as they may carry along a risk for autoimmune disease development.
Collapse
Affiliation(s)
- Laura K Räisänen
- Faculty of Medicine and Health Technology (MET), Tampere University, Tampere, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | | | - Reijo Sund
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elina Engberg
- Folkhälsan Research Center, Helsinki, Finland
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Heli T Viljakainen
- Folkhälsan Research Center, Helsinki, Finland
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kaija-Leena Kolho
- Faculty of Medicine and Health Technology (MET), Tampere University, Tampere, Finland.
- Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
27
|
Räisänen L, Viljakainen H, Kolho KL. Exposure to proton pump inhibitors is associated with the development of pediatric autoimmune diseases. Front Pediatr 2023; 11:1157547. [PMID: 37051434 PMCID: PMC10083351 DOI: 10.3389/fped.2023.1157547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/08/2023] [Indexed: 04/14/2023] Open
Abstract
Proton pump inhibitors (PPIs) have been associated with decreased gut microbiota diversity. Disrupted gut microbiota composition has been reported in several autoimmune diseases (ADs), such as type 1 diabetes mellitus (DM), autoimmune thyroiditis (AIT), juvenile idiopathic arthritis (JIA), and inflammatory bowel diseases (IBD). We investigated whether PPIs are associated with the development of ADs in children and concluded that PPI exposures could be related to the onset of ADs, especially IBD and potentially AIT as well.
Collapse
Affiliation(s)
- Laura Räisänen
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
- Correspondence: Laura Räisänen Kaija-Leena Kolho
| | - Heli Viljakainen
- Public Health Research Program, Folkhälsan Research Center, Helsinki, Finland
- Children’s Hospital, University of Helsinki and HUS, Helsinki, Finland
| | - Kaija-Leena Kolho
- Children’s Hospital, University of Helsinki and HUS, Helsinki, Finland
- Faculty of Medicine and Medical Technology, Tampere University, Tampere, Finland
- Correspondence: Laura Räisänen Kaija-Leena Kolho
| |
Collapse
|
28
|
A Monovalent Mt10-CVB3 Vaccine Prevents CVB4-Accelerated Type 1 Diabetes in NOD Mice. Vaccines (Basel) 2022; 11:vaccines11010076. [PMID: 36679922 PMCID: PMC9864234 DOI: 10.3390/vaccines11010076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
Enteroviruses, which include Coxsackieviruses, are a common cause of virus infections in humans, and multiple serotypes of the group B Coxsackievirus (CVB) can induce similar diseases. No vaccines are currently available to prevent CVB infections because developing serotype-specific vaccines is not practical. Thus, developing a vaccine that induces protective immune responses for multiple serotypes is desired. In that direction, we created a live-attenuated CVB3 vaccine virus, designated mutant (Mt)10, that offers protection against myocarditis and pancreatitis induced by CVB3 and CVB4 in disease-susceptible A/J mice. Here, we report that the Mt10 vaccine protected against CVB4-triggered type 1 diabetes (T1D) in non-obese diabetic (NOD) mice but the expected subsequent development of spontaneous T1D in these genetically predisposed NOD mice was not altered. We noted that Mt10 vaccine induced significant amounts of neutralizing antibodies, predominantly of the IgG2c isotype, and the virus was not detected in vaccine-challenged animals. Furthermore, monitoring blood glucose levels-and to a lesser extent, insulin antibodies-was found to be helpful in predicting vaccine responses. Taken together, our data suggest that the monovalent Mt10 vaccine has the potential to prevent infections caused by multiple CVB serotypes, as we have demonstrated in various pre-clinical models.
Collapse
|
29
|
Jhun J, Moon J, Kim SY, Cho KH, Na HS, Choi J, Jung YJ, Song KY, Min JK, Cho ML. Rebamipide treatment ameliorates obesity phenotype by regulation of immune cells and adipocytes. PLoS One 2022; 17:e0277692. [PMID: 36574392 PMCID: PMC9794058 DOI: 10.1371/journal.pone.0277692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/01/2022] [Indexed: 12/28/2022] Open
Abstract
Obesity is a medical term used to describe an over-accumulation of adipose tissue. It causes abnormal physiological and pathological processes in the body. Obesity is associated with systemic inflammation and abnormalities in immune cell function. Rebamipide, an amino acid derivative of 2-(1H)-quinolinone, has been used as a therapeutic for the protection from mucosal damage. Our previous studies have demonstrated that rebamipide treatment regulates lipid metabolism and inflammation, leading to prevention of weight gain in high-fat diet mice. In this study, mice were put on a high calorie diet for 11 weeks while receiving injections of rebamipide. Rebamipide treatment reduced the body weight, liver weight and blood glucose levels compared to control mice and reduced both glucose and insulin resistance. Fat accumulation has been shown to cause pro-inflammatory activity in mice. Treatment with rebamipide decreased the prevalence of inflammatory cells such as Th2, Th17 and M1 macrophages and increased anti-inflammatory Treg and M2 macrophages in epididymal fat tissue. Additionally, rebamipide addition inhibited adipocyte differentiation in 3T3-L1 cell lines. Taken together, our study demonstrates that rebamipide treatment is a novel and effective method to prevent diet-induced obesity.
Collapse
Affiliation(s)
- JooYeon Jhun
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeonghyeon Moon
- Departments of Immunobiology and Neurology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Se-Young Kim
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Keun-Hyung Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Sik Na
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - JeongWon Choi
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoon Ju Jung
- Division of Gastrointestinal Surgery, Department of Surgery, Yeouido St. Mary’s Hospital, Seoul, Korea
| | - Kyo Young Song
- Division of Gastrointestinal Surgery, Department of General Surgery, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Jun-Ki Min
- Department of Internal Medicine, and the Clinical Medicine Research Institute of Bucheon St. Mary’s Hospital, Bucheon si, Gyeonggi-do, Republic of Korea
- * E-mail: (JKM); (MLC)
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail: (JKM); (MLC)
| |
Collapse
|
30
|
Deng P, Li Z, Yi B, Leng Y. A Mendelian randomization study to assess the genetic liability of type 1 diabetes mellitus for IgA nephropathy. Front Endocrinol (Lausanne) 2022; 13:1000627. [PMID: 36589806 PMCID: PMC9797097 DOI: 10.3389/fendo.2022.1000627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Background The prevalence of immunoglobulin A nephropathy (IgAN) seems to be higher in patients with type 1 diabetes mellitus (T1DM) than that in the general population. However, whether there exists a causal relationship between T1DM and IgAN remains unknown. Methods This study conducted a standard two-sample Mendelian randomization (MR) analysis to assess the causal inference by four MR methods, and the inverse variance-weighted (IVW) approach was selected as the primary method. To further test the independent causal effect of T1DM on IgAN, multivariable MR (MVMR) analysis was undertaken. Sensitivity analyses incorporating multiple complementary MR methods were applied to evaluate how strong the association was and identify potential pleiotropy. Results MR analyses utilized 81 single-nucleotide polymorphisms (SNPs) for T1DM. The evidence supports a significant causal relationship between T1DM and increased risk of IgAN [odds ratio (OR): 1.39, 95% confidence interval (CI): 1.10-1.74 for IVW, p < 0.05]. The association still exists after adjusting for triglyceride (TG), fasting insulin (FI), fasting blood glucose (FBG), homeostasis model assessment of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR), and glycated hemoglobin (HbA1c). MVMR analysis indicated that the effect of T1DM on IgAN vanished upon accounting for low-density lipoprotein cholesterol (LDL-c; OR: 0.97, 95% CI: 0.90-1.05, p > 0.05). Conclusions This MR study provided evidence that T1DM may be a risk factor for the onset of IgAN, which might be driven by LDL-c. Lipid-lowering strategies targeting LDL-c should be enhanced in patients with T1DM to prevent IgAN.
Collapse
Affiliation(s)
- Peizhi Deng
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixin Li
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiping Leng
- The Affiliated Changsha Central Hospital, Research Center for Phase I Clinical Trials, Hengyang Medical School, University of South China, Changsha, Hunan, China
| |
Collapse
|
31
|
Del Chierico F, Rapini N, Deodati A, Matteoli MC, Cianfarani S, Putignani L. Pathophysiology of Type 1 Diabetes and Gut Microbiota Role. Int J Mol Sci 2022; 23:ijms232314650. [PMID: 36498975 PMCID: PMC9737253 DOI: 10.3390/ijms232314650] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Type 1 diabetes (T1D) is a multifactorial autoimmune disease driven by T-cells against the insulin-producing islet β-cells, resulting in a marked loss of β-cell mass and function. Although a genetic predisposal increases susceptibility, the role of epigenetic and environmental factors seems to be much more significant. A dysbiotic gut microbial profile has been associated with T1D patients. Moreover, new evidence propose that perturbation in gut microbiota may influence the T1D onset and progression. One of the prominent features in clinically silent phase before the onset of T1D is the presence of a microbiota characterized by low numbers of commensals butyrate producers, thus negatively influencing the gut permeability. The loss of gut permeability leads to the translocation of microbes and microbial metabolites and could lead to the activation of immune cells. Moreover, microbiota-based therapies to slow down disease progression or reverse T1D have shown promising results. Starting from this evidence, the correction of dysbiosis in early life of genetically susceptible individuals could help in promoting immune tolerance and thus in reducing the autoantibodies production. This review summarizes the associations between gut microbiota and T1D for future therapeutic perspectives and other exciting areas of research.
Collapse
Affiliation(s)
- Federica Del Chierico
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Novella Rapini
- Diabetes & Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Annalisa Deodati
- Diabetes & Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Maria Cristina Matteoli
- Diabetes & Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Stefano Cianfarani
- Diabetes & Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Women’s and Children Health, Karolisnska Institute and University Hospital, 17177 Stockholm, Sweden
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Correspondence: ; Tel.: +39-0668592980
| |
Collapse
|
32
|
Kocivnik N, Velnar T. A Review Pertaining to SARS-CoV-2 and Autoimmune Diseases: What Is the Connection? LIFE (BASEL, SWITZERLAND) 2022; 12:life12111918. [PMID: 36431053 PMCID: PMC9698792 DOI: 10.3390/life12111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious viral disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). It is known that infection with SARS-CoV-2 can lead to various autoimmune and autoinflammatory diseases. There are few reports in the literature on the association between SARS-CoV-2 and autoimmune diseases, and the number of reports has been increasing since 2020. Autoimmune diseases and SARS-CoV-2 infections are intertwined in several ways. Both conditions lead to immune-mediated tissue damage, the immune response is accompanied by the increased secretion of inflammatory cytokines and both conditions can be treated using immunomodulatory drugs. Patients with certain autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, cardiac sarcoidosis, idiopathic pulmonary fibrosis, autoimmune hepatitis, multiple sclerosis and others, are more susceptible to SARS-CoV-2 infection, either because of the active autoimmune disease or because of the medications used to treat it. Conversely, SARS-CoV-2 infection can also cause certain autoimmune diseases. In this paper, we describe the development of autoimmune diseases after COVID-19 and the recovery from COVID-19 in people with autoimmune diseases.
Collapse
Affiliation(s)
- Nina Kocivnik
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tomaz Velnar
- Department of Neurosurgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
33
|
Jeyagaran A, Lu CE, Zbinden A, Birkenfeld AL, Brucker SY, Layland SL. Type 1 diabetes and engineering enhanced islet transplantation. Adv Drug Deliv Rev 2022; 189:114481. [PMID: 36002043 PMCID: PMC9531713 DOI: 10.1016/j.addr.2022.114481] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/24/2023]
Abstract
The development of new therapeutic approaches to treat type 1 diabetes mellitus (T1D) relies on the precise understanding and deciphering of insulin-secreting β-cell biology, as well as the mechanisms responsible for their autoimmune destruction. β-cell or islet transplantation is viewed as a potential long-term therapy for the millions of patients with diabetes. To advance the field of insulin-secreting cell transplantation, two main research areas are currently investigated by the scientific community: (1) the identification of the developmental pathways that drive the differentiation of stem cells into insulin-producing cells, providing an inexhaustible source of cells; and (2) transplantation strategies and engineered transplants to provide protection and enhance the functionality of transplanted cells. In this review, we discuss the biology of pancreatic β-cells, pathology of T1D and current state of β-cell differentiation. We give a comprehensive view and discuss the different possibilities to engineer enhanced insulin-secreting cell/islet transplantation from a translational perspective.
Collapse
Affiliation(s)
- Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University Tübingen, 72770 Reutlingen, Germany
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Aline Zbinden
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD e.V.), Munich, Germany
| | - Sara Y Brucker
- Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
34
|
Valta M, Yoshihara M, Einarsdottir E, Pahkuri S, Ezer S, Katayama S, Knip M, Veijola R, Toppari J, Ilonen J, Kere J, Lempainen J. Viral infection-related gene upregulation in monocytes in children with signs of β-cell autoimmunity. Pediatr Diabetes 2022; 23:703-713. [PMID: 35419920 PMCID: PMC9545759 DOI: 10.1111/pedi.13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/24/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The pathogenesis of type 1 diabetes (T1D) is associated with genetic predisposition and immunological changes during presymptomatic disease. Differences in immune cell subset numbers and phenotypes between T1D patients and healthy controls have been described; however, the role and function of these changes in the pathogenesis is still unclear. Here we aimed to analyze the transcriptomic landscapes of peripheral blood mononuclear cells (PBMCs) during presymptomatic disease. METHODS Transcriptomic differences in PBMCs were compared between cases positive for islet autoantibodies and autoantibody negative controls (9 case-control pairs) and further in monocytes and lymphocytes separately in autoantibody positive subjects and control subjects (25 case-control pairs). RESULTS No significant differential expression was found in either data set. However, when gene set enrichment analysis was performed, the gene sets "defence response to virus" (FDR <0.001, ranking 2), "response to virus" (FDR <0.001, ranking 3) and "response to type I interferon" (FDR = 0.002, ranking 12) were enriched in the upregulated genes among PBMCs in cases. Upon further analysis, this was also seen in monocytes in cases (FDR = 0.01, ranking 2; FDR = 0.04, ranking 3 and FDR = 0.02, ranking 1, respectively) but not in lymphocytes. CONCLUSION Gene set enrichment analysis of children with T1D-associated autoimmunity revealed changes in pathways relevant for virus infection in PBMCs, particularly in monocytes. Virus infections have been repeatedly implicated in the pathogenesis of T1D. These results support the viral hypothesis by suggesting altered immune activation of viral immune pathways in monocytes during diabetes.
Collapse
Affiliation(s)
- Milla Valta
- Immunogenetics Laboratory, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Masahito Yoshihara
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Elisabet Einarsdottir
- Science for Life Laboratory, Department of Gene TechnologyKTH‐Royal Institute of TechnologySolnaSweden
| | - Sirpa Pahkuri
- Immunogenetics Laboratory, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Sini Ezer
- Stem Cells and Metabolism Research ProgramUniversity of Helsinki, and Folkhälsan Research CenterHelsinkiFinland
| | - Shintaro Katayama
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden,Stem Cells and Metabolism Research ProgramUniversity of Helsinki, and Folkhälsan Research CenterHelsinkiFinland
| | - Mikael Knip
- Pediatric Research Center, Children's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland,Research Program for Clinical and Molecular MetabolismFaculty of Medicine, University of HelsinkiHelsinkiFinland,Folkhälsan Research CenterHelsinkiFinland,Department of PediatricsTampere University HospitalTampereFinland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, MRC OuluOulu University Hospital and University of OuluOuluFinland
| | - Jorma Toppari
- Institute of Biomedicine, Research Centre for Integrative Physiology and PharmacologyUniversity of TurkuTurkuFinland,Department of PediatricsUniversity of Turku and Turku University HospitalTurkuFinland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Juha Kere
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden,Stem Cells and Metabolism Research ProgramUniversity of Helsinki, and Folkhälsan Research CenterHelsinkiFinland
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of BiomedicineUniversity of TurkuTurkuFinland,Department of PediatricsUniversity of Turku and Turku University HospitalTurkuFinland,Clinical MicrobiologyTurku University HospitalTurkuFinland
| |
Collapse
|
35
|
Alzahrani N. Hepatitis C Virus, Insulin Resistance, and Diabetes: A Review. Microbiol Immunol 2022; 66:453-459. [PMID: 35941761 DOI: 10.1111/1348-0421.13023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022]
Abstract
Hepatitis C virus (HCV) infection and diabetes mellitus (DM) are two chronic diseases that are a cause of significant health and economic burdens worldwide. HCV is associated with the development of insulin resistance (IR) and diabetes mellitus (DM). The mechanisms through which HCV induces IR and DM include direct viral effects, pro-inflammatory cytokines and other immune-mediated processes. Type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) are both chronic diseases that involve impaired glucose homeostasis, albeit through different mechanisms. T1DM is an autoimmune disease that leads to the destruction of pancreatic beta cells resulting in insulin deficiency. In T2DM, a combination of peripheral insulin resistance and irregular production of insulin eventually lead to beta cell destruction and insulin insufficiency. Both type 1 and type 2 DM etiologies involve a combination of genetic and environmental factors. The data on HCV and T1DM association is limited, unlike T2DM, where a large body of evidence linking HCV to T2DM is available. Here, we intend to outline the current state of knowledge on HCV, IR, and DM. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nabeel Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 14611, Saudi Arabia
| |
Collapse
|
36
|
Rudman N, Kifer D, Kaur S, Simunović V, Cvetko A, Pociot F, Morahan G, Gornik O. Children at onset of type 1 diabetes show altered N-glycosylation of plasma proteins and IgG. Diabetologia 2022; 65:1315-1327. [PMID: 35622127 PMCID: PMC9283363 DOI: 10.1007/s00125-022-05703-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS Individual variation in plasma N-glycosylation has mainly been studied in the context of diabetes complications, and its role in type 1 diabetes onset is largely unknown. Our aims were to undertake a detailed characterisation of the plasma and IgG N-glycomes in patients with recent onset type 1 diabetes, and to evaluate their discriminative potential in risk assessment. METHODS In the first part of the study, plasma and IgG N-glycans were chromatographically analysed in a study population from the DanDiabKids registry, comprising 1917 children and adolescents (0.6-19.1 years) who were newly diagnosed with type 1 diabetes. A follow-up study compared the results for 188 of these participants with those for their 244 unaffected siblings. Correlation of N-glycan abundance with the levels and number of various autoantibodies (against IA-2, GAD, ZnT8R, ZnT8W), as well as with sex and age at diagnosis, were estimated by using general linear modelling. A disease predictive model was built using logistic mixed-model elastic net regression, and evaluated using a 10-fold cross-validation. RESULTS Our study showed that onset of type 1 diabetes was associated with an increase in the proportion of plasma and IgG high-mannose and bisecting GlcNAc structures, a decrease in monogalactosylation, and an increase in IgG disialylation. ZnT8R autoantibody levels were associated with higher IgG digalactosylated glycan with bisecting GlcNAc. Finally, an increase in the number of autoantibodies (which is a better predictor of progression to overt diabetes than the level of any individual antibody) was accompanied by a decrease in the proportions of some of the highly branched plasma N-glycans. Models including age, sex and N-glycans yielded notable discriminative power between children with type 1 diabetes and their healthy siblings, with AUCs of 0.915 and 0.869 for addition of plasma and IgG N-glycans, respectively. CONCLUSIONS/INTERPRETATION We defined N-glycan changes accompanying onset of type 1 diabetes, and developed a predictive model based on N-glycan profiles that could have valuable potential in risk assessment. Increasing the power of tests to identify individuals at risk of disease development would be a considerable asset for type 1 diabetes prevention trials.
Collapse
Affiliation(s)
- Najda Rudman
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - Vesna Simunović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Ana Cvetko
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Flemming Pociot
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics E, Herlev Hospital, Herlev, Denmark
| | - Grant Morahan
- Centre for Diabetes Research, The Harry Perkins Institute for Medical Research, Perth, WA, Australia.
- University of Melbourne, Parkville, VIC, Australia.
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
37
|
B cells in autoimmune hepatitis: bystanders or central players? Semin Immunopathol 2022; 44:411-427. [PMID: 35488094 PMCID: PMC9256567 DOI: 10.1007/s00281-022-00937-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
B cells are central for the adaptive immune system to mount successful immune responses not only as antibody producers but also as regulators of cellular immunity. These multifaceted features are also reflected in autoimmunity where autoreactive B cells can fuel disease by production of cytotoxic autoantibodies, presentation of autoantigens to autoreactive T cells, and secretion of cytokines and chemokines that either promote detrimental immune activation or impair regulatory T and B cells. The role of B cells and autoantibodies in autoimmune hepatitis (AIH) have been controversially discussed, with typical autoantibodies and hypergammaglobulinemia indicating a key role, while strong HLA class II association suggests T cells as key players. In this review, we summarize current knowledge on B cells in AIH and how different B cell subpopulations may drive AIH progression beyond autoantibodies. We also discuss recent findings of B cell-directed therapies in AIH.
Collapse
|
38
|
Qeadan F, Tingey B, Egbert J, Pezzolesi MG, Burge MR, Peterson KA, Honda T. The associations between COVID-19 diagnosis, type 1 diabetes, and the risk of diabetic ketoacidosis: A nationwide cohort from the US using the Cerner Real-World Data. PLoS One 2022; 17:e0266809. [PMID: 35439266 PMCID: PMC9017888 DOI: 10.1371/journal.pone.0266809] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/28/2022] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To assess the risk of new-onset type 1 diabetes mellitus (T1D) diagnosis following COVID-19 diagnosis and the impact of COVID-19 diagnosis on the risk of diabetic ketoacidosis (DKA) in patients with prior T1D diagnosis. RESEARCH DESIGN AND METHODS Retrospective data consisting of 27,292,879 patients from the Cerner Real-World Data were used. Odds ratios, overall and stratified by demographic predictors, were calculated to assess associations between COVID-19 and T1D. Odds ratios from multivariable logistic regression models, adjusted for demographic and clinical predictors, were calculated to assess adjusted associations between COVID-19 and DKA. Multiple imputation with multivariate imputation by chained equations (MICE) was used to account for missing data. RESULTS The odds of developing new-onset T1D significantly increased in patients with COVID-19 diagnosis (OR: 1.42, 95% CI: 1.38, 1.46) compared to those without COVID-19. Risk varied by demographic groups, with the largest risk among pediatric patients ages 0-1 years (OR: 6.84, 95% CI: 2.75, 17.02) American Indian/Alaskan Natives (OR: 2.30, 95% CI: 1.86, 2.82), Asian or Pacific Islanders (OR: 2.01, 95% CI: 1.61, 2.53), older adult patients ages 51-65 years (OR: 1.77, 95% CI: 1.66, 1.88), those living in the Northeast (OR: 1.71, 95% CI: 1.61, 1.81), those living in the West (OR: 1.65, 95% CI: 1.56, 1.74), and Black patients (OR: 1.59, 95% CI: 1.47, 1.71). Among patients with diagnosed T1D at baseline (n = 55,359), 26.7% (n = 14,759) were diagnosed with COVID-19 over the study period. The odds of developing DKA for those with COVID-19 were significantly higher (OR 2.26, 95% CI: 2.04, 2.50) than those without COVID-19, and the largest risk was among patients with higher Elixhauser Comorbidity Index. CONCLUSIONS COVID-19 diagnosis is associated with significantly increased risk of new-onset T1D, and American Indian/Alaskan Native, Asian/Pacific Islander, and Black populations are disproportionately at risk. In patients with pre-existing T1D, the risk of developing DKA is significantly increased following COVID-19 diagnosis.
Collapse
Affiliation(s)
- Fares Qeadan
- Parkinson School of Health Sciences and Public Health, Loyola Univesity Chicago, Maywood, Illinois, United States of America
- * E-mail:
| | - Benjamin Tingey
- Parkinson School of Health Sciences and Public Health, Loyola Univesity Chicago, Maywood, Illinois, United States of America
| | - Jamie Egbert
- Parkinson School of Health Sciences and Public Health, Loyola Univesity Chicago, Maywood, Illinois, United States of America
| | - Marcus G. Pezzolesi
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Mark R. Burge
- Department of Internal Medicine, University of New Mexico Hospital, Albuquerque, New Mexico, United States of America
| | - Kathryn A. Peterson
- Department of Gastroenterology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Trenton Honda
- School of Clinical and Rehabilitation Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
39
|
Autoreactive antibodies control blood glucose by regulating insulin homeostasis. Proc Natl Acad Sci U S A 2022; 119:2115695119. [PMID: 35131852 PMCID: PMC8833180 DOI: 10.1073/pnas.2115695119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 12/31/2022] Open
Abstract
The random nature of antibody repertoire generation includes the potential of producing autoantibodies recognizing self-structures. It is believed that establishing immunological tolerance and prevention of autoimmune diseases require the removal of antibody specificities recognizing self. Using insulin as a common and physiologically important autoantigen, we show that anti-insulin antibodies associated with autoimmune diabetes can readily be detected in mice and humans and are involved in the physiological regulation of blood glucose levels. Importantly, human high-affinity, anti-insulin IgM antibodies protect insulin from autoimmune degradation by anti-insulin IgG antibodies. Thus, in contrast to the proposed negative selection, self-recognition and the production of highly autoreactive IgM antibodies are important for tolerance induction. Homeostasis of metabolism by hormone production is crucial for maintaining physiological integrity, as disbalance can cause severe metabolic disorders such as diabetes mellitus. Here, we show that antibody-deficient mice and immunodeficiency patients have subphysiological blood glucose concentrations. Restoring blood glucose physiology required total IgG injections and insulin-specific IgG antibodies detected in total IgG preparations and in the serum of healthy individuals. In addition to the insulin-neutralizing anti-insulin IgG, we identified two fractions of anti-insulin IgM in the serum of healthy individuals. These autoreactive IgM fractions differ in their affinity to insulin. Interestingly, the low-affinity IgM fraction (anti-insulin IgMlow) neutralizes insulin and leads to increased blood glucose, whereas the high-affinity IgM fraction (anti-insulin IgMhigh) protects insulin from neutralization by anti-insulin IgG, thereby preventing blood glucose dysregulation. To demonstrate that anti-insulin IgMhigh acts as a protector of insulin and counteracts insulin neutralization by anti-insulin IgG, we expressed the variable regions of a high-affinity anti-insulin antibody as IgG and IgM. Remarkably, the recombinant anti-insulin IgMhigh normalized insulin function and prevented IgG-mediated insulin neutralization. These results suggest that autoreactive antibodies recognizing insulin are key regulators of blood glucose and metabolism, as they control the concentration of insulin in the blood. Moreover, our data suggest that preventing autoimmune damage and maintaining physiological homeostasis requires adaptive tolerance mechanisms generating high-affinity autoreactive IgM antibodies during memory responses.
Collapse
|
40
|
Ross C, Ward ZJ, Gomber A, Owais M, Yeh JM, Reddy CL, Atun R. The Prevalence of Islet Autoantibodies in Children and Adolescents With Type 1 Diabetes Mellitus: A Global Scoping Review. Front Endocrinol (Lausanne) 2022; 13:815703. [PMID: 35185797 PMCID: PMC8851309 DOI: 10.3389/fendo.2022.815703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 01/13/2023] Open
Abstract
Background and Purpose Pancreatic islet autoantibodies (iAb) are the hallmark of autoimmunity in type 1 diabetes. A more comprehensive understanding of the global iAb prevalence could help reduce avertible morbidity and mortality among children and adolescents and contribute to the understanding in the observed differences in the incidence, prevalence and health outcomes of children and adolescents with type 1 diabetes across and within countries. We present the first scoping review that provides a global synthesis of the prevalence of iAb in children and adolescents with type 1 diabetes. Research Design and Methods We searched Ovid MEDLINE® with Daily Update, Embase (Elsevier, embase.com) and PubMed (National Library of Medicine -NCBI), for studies pertaining to prevalence in children and adolescents (0-19) with type 1 diabetes published between 1 Jan 1990 and 18 June 2021. Results were synthesized using Covidence systematic review software and meta-analysis was completed using R v3·6·1. Two reviewers independently screened abstracts with a third reviewer resolving conflicts (k= 0·92). Results The review revealed 125 studies from 48 different countries, with 92 from high-income countries. Globally, in new-onset type 1 diabetes, IA-2A was the most prevalent iAb 0·714 [95% CI (0·71, 0·72)], followed by ICA 0·681 [95% CI (0·67, 0·69)], ZnT8A was 0·654 [95% CI (0·64, 0·66)], GADA 0·636 [95% CI (0·63, 0·66)] and then IAA 0·424 [95% CI (0·42, 0·43)], with substantial variation across world regions. The weighted mean prevalence of IA-2A was more variable, highest in Europe at 0·749 [95% CI (0·74, 0·76)] followed by Northern America 0·662 [95% CI (0·64, 0·69)], Latin America and the Caribbean 0·632 [95% CI (0·54, 0·72)], Oceania 0·603 [95% CI (0·54, 0·67)], Asia 0·466 [95% CI (0·44, 0·50)] and Africa 0·311 [95% CI (0·23, 0·40)]. In established cases of type 1 diabetes, GADA was the most prevalent iAb 0·407 [95% CI (0·39, 0·42)] followed by ZnT8A 0·322 [95% CI (0·29, 0·36)], IA-2A 0·302 [95% CI (0·29, 0·32)], IAA 0·258 [95% CI (0·24, 0·26)] and ICA 0·145 [95% CI (0·13, 0·16)], again with substantial variation across world regions. Conclusion Understanding the global prevalence of iAb in children and adolescents with type 1 diabetes could help with earlier identification of those at-risk of developing type 1 diabetes and inform clinical practice, health policies, resource allocation, and targeted healthcare interventions to better screen, diagnose and manage children and adolescents with type 1 diabetes.
Collapse
Affiliation(s)
- Carlo Ross
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Academic Foundation Programme, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Zachary J. Ward
- Centre for Health Decision Science, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Apoorva Gomber
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Maira Owais
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Department of Biology and Department of Economics, Amherst College, Amherst, MA, United States
| | - Jennifer M. Yeh
- Division of General Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Ché-L. Reddy
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Rifat Atun
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
41
|
Nguyen LM, Omage JI, Noble K, McNew KL, Moore DJ, Aronoff DM, Doster RS. Group B streptococcal infection of the genitourinary tract in pregnant and non-pregnant patients with diabetes mellitus: An immunocompromised host or something more? Am J Reprod Immunol 2021; 86:e13501. [PMID: 34570418 PMCID: PMC8668237 DOI: 10.1111/aji.13501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/27/2021] [Accepted: 09/23/2021] [Indexed: 12/01/2022] Open
Abstract
Group B Streptococcus (GBS), also known as Streptococcus agalactiae is a Gram-positive bacterium commonly encountered as part of the microbiota within the human gastrointestinal tract. A common cause of infections during pregnancy, GBS is responsible for invasive diseases ranging from urinary tract infections to chorioamnionitis and neonatal sepsis. Diabetes mellitus (DM) is a chronic disease resulting from impaired regulation of blood glucose levels. The incidence of DM has steadily increased worldwide to affecting over 450 million people. Poorly controlled DM is associated with multiple health comorbidities including an increased risk for infection. Epidemiologic studies have clearly demonstrated that DM correlates with an increased risk for invasive GBS infections, including skin and soft tissue infections and sepsis in non-pregnant adults. However, the impact of DM on risk for invasive GBS urogenital infections, particularly during the already vulnerable time of pregnancy, is less clear. We review the evolving epidemiology, immunology, and pathophysiology of GBS urogenital infections including rectovaginal colonization during pregnancy, neonatal infections of infants exposed to DM in utero, and urinary tract infections in pregnant and non-pregnant adults in the context of DM and highlight in vitro studies examining why DM might increase risk for GBS urogenital infection.
Collapse
Affiliation(s)
- Lynsa M Nguyen
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Joel I Omage
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kristen Noble
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kelsey L McNew
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel J Moore
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David M Aronoff
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ryan S Doster
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
42
|
Kahn SE, Chen YC, Esser N, Taylor AJ, van Raalte DH, Zraika S, Verchere CB. The β Cell in Diabetes: Integrating Biomarkers With Functional Measures. Endocr Rev 2021; 42:528-583. [PMID: 34180979 PMCID: PMC9115372 DOI: 10.1210/endrev/bnab021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 02/08/2023]
Abstract
The pathogenesis of hyperglycemia observed in most forms of diabetes is intimately tied to the islet β cell. Impairments in propeptide processing and secretory function, along with the loss of these vital cells, is demonstrable not only in those in whom the diagnosis is established but typically also in individuals who are at increased risk of developing the disease. Biomarkers are used to inform on the state of a biological process, pathological condition, or response to an intervention and are increasingly being used for predicting, diagnosing, and prognosticating disease. They are also proving to be of use in the different forms of diabetes in both research and clinical settings. This review focuses on the β cell, addressing the potential utility of genetic markers, circulating molecules, immune cell phenotyping, and imaging approaches as biomarkers of cellular function and loss of this critical cell. Further, we consider how these biomarkers complement the more long-established, dynamic, and often complex measurements of β-cell secretory function that themselves could be considered biomarkers.
Collapse
Affiliation(s)
- Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Yi-Chun Chen
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Austin J Taylor
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Daniël H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, 1007 MB Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - C Bruce Verchere
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| |
Collapse
|
43
|
Noli M, Meloni G, Manca P, Cossu D, Palermo M, Sechi LA. HERV-W and Mycobacteriumavium subspecies paratuberculosis Are at Play in Pediatric Patients at Onset of Type 1 Diabetes. Pathogens 2021; 10:pathogens10091135. [PMID: 34578167 PMCID: PMC8471288 DOI: 10.3390/pathogens10091135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 01/31/2023] Open
Abstract
The etiology of T1D remains unknown, although a variety of etiological agents have been proposed as potential candidates to trigger autoimmunity in susceptible individuals. Emerging evidence has indicated that endogenous human retrovirus (HERV) may play a role in the disease etiopathogenesis; although several epigenetic mechanisms keep most HERVs silenced, environmental stimuli such as infections may contribute to the transcriptional reactivation of HERV-Wand thus promote pathological conditions. Previous studies have indicated that also Mycobacterium avium subspecies paratuberculosis (MAP) could be a potential risk factor for T1D, particularly in the Sardinian population. In the present study, the humoral response against HERV-W envelope and MAP-derived peptides was analyzed to investigate their potential role in T1D etiopathogenesis, in a Sardinian population at T1D onset (n = 26), T1D (45) and an age-matched healthy population (n = 45). For the first time, a high serum-prevalence of anti-Map and anti-HERV-W Abs was observed in pediatric patients at onset of T1D compared to T1D patients and healthy controls. Our results support the hypothesis that external infections and internal reactivations are involved in the etiology of T1D, and that HERV-W activation may be induced by infectious agents such as MAP.
Collapse
Affiliation(s)
- Marta Noli
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, 07100 Sassari, Italy; (M.N.); (D.C.)
| | - Gianfranco Meloni
- Dipartimento di Medicina Mediche, Chirurgiche e Sperimentali, Università degli Studi di Sassari, 07100 Sassari, Italy;
| | - Pietro Manca
- Servizio Centro Trasfusionale, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy;
| | - Davide Cossu
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, 07100 Sassari, Italy; (M.N.); (D.C.)
| | - Mario Palermo
- Servizio di Endocrinologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy;
| | - Leonardo A. Sechi
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, 07100 Sassari, Italy; (M.N.); (D.C.)
- Struttura Complessa di Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy
- Mediterranean Center for Disease Control, Università degli Studi di Sassari, 07100 Sassari, Italy
- Correspondence:
| |
Collapse
|
44
|
Isaacs SR, Foskett DB, Maxwell AJ, Ward EJ, Faulkner CL, Luo JYX, Rawlinson WD, Craig ME, Kim KW. Viruses and Type 1 Diabetes: From Enteroviruses to the Virome. Microorganisms 2021; 9:microorganisms9071519. [PMID: 34361954 PMCID: PMC8306446 DOI: 10.3390/microorganisms9071519] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
For over a century, viruses have left a long trail of evidence implicating them as frequent suspects in the development of type 1 diabetes. Through vigorous interrogation of viral infections in individuals with islet autoimmunity and type 1 diabetes using serological and molecular virus detection methods, as well as mechanistic studies of virus-infected human pancreatic β-cells, the prime suspects have been narrowed down to predominantly human enteroviruses. Here, we provide a comprehensive overview of evidence supporting the hypothesised role of enteroviruses in the development of islet autoimmunity and type 1 diabetes. We also discuss concerns over the historical focus and investigation bias toward enteroviruses and summarise current unbiased efforts aimed at characterising the complete population of viruses (the “virome”) contributing early in life to the development of islet autoimmunity and type 1 diabetes. Finally, we review the range of vaccine and antiviral drug candidates currently being evaluated in clinical trials for the prevention and potential treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Sonia R. Isaacs
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Dylan B. Foskett
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Anna J. Maxwell
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Emily J. Ward
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Clare L. Faulkner
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Jessica Y. X. Luo
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - William D. Rawlinson
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maria E. Craig
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Institute of Endocrinology and Diabetes, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Ki Wook Kim
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Correspondence: ; Tel.: +61-2-9382-9096
| |
Collapse
|
45
|
Hiwasa T, Wang H, Goto KI, Mine S, Machida T, Kobayashi E, Yoshida Y, Adachi A, Matsutani T, Sata M, Yamagishi K, Iso H, Sawada N, Tsugane S, Kunimatsu M, Kamitsukasa I, Mori M, Sugimoto K, Uzawa A, Muto M, Kuwabara S, Kobayashi Y, Ohno M, Nishi E, Hattori A, Yamamoto M, Maezawa Y, Kobayashi K, Ishibashi R, Takemoto M, Yokote K, Takizawa H, Kishimoto T, Matsushita K, Kobayashi S, Nomura F, Arasawa T, Kagaya A, Maruyama T, Matsubara H, Tomiita M, Hamanaka S, Imai Y, Nakagawa T, Kato N, Terada J, Matsumura T, Katsumata Y, Naito A, Tanabe N, Sakao S, Tatsumi K, Ito M, Shiratori F, Sumazaki M, Yajima S, Shimada H, Shirouzu M, Yokoyama S, Kudo T, Doi H, Iwase K, Ashino H, Li SY, Kubota M, Tomiyoshi G, Shinmen N, Nakamura R, Kuroda H, Iwadate Y. Serum anti-DIDO1, anti-CPSF2, and anti-FOXJ2 antibodies as predictive risk markers for acute ischemic stroke. BMC Med 2021; 19:131. [PMID: 34103026 PMCID: PMC8188684 DOI: 10.1186/s12916-021-02001-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 04/30/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Acute ischemic stroke (AIS) is a serious cause of mortality and disability. AIS is a serious cause of mortality and disability. Early diagnosis of atherosclerosis, which is the major cause of AIS, allows therapeutic intervention before the onset, leading to prevention of AIS. METHODS Serological identification by cDNA expression cDNA libraries and the protein array method were used for the screening of antigens recognized by serum IgG antibodies in patients with atherosclerosis. Recombinant proteins or synthetic peptides derived from candidate antigens were used as antigens to compare serum IgG levels between healthy donors (HDs) and patients with atherosclerosis-related disease using the amplified luminescent proximity homogeneous assay-linked immunosorbent assay. RESULTS The first screening using the protein array method identified death-inducer obliterator 1 (DIDO1), forkhead box J2 (FOXJ2), and cleavage and polyadenylation specificity factor (CPSF2) as the target antigens of serum IgG antibodies in patients with AIS. Then, we prepared various antigens including glutathione S-transferase-fused DIDO1 protein as well as peptides of the amino acids 297-311 of DIDO1, 426-440 of FOXJ2, and 607-621 of CPSF2 to examine serum antibody levels. Compared with HDs, a significant increase in antibody levels of the DIDO1 protein and peptide in patients with AIS, transient ischemic attack (TIA), and chronic kidney disease (CKD) but not in those with acute myocardial infarction and diabetes mellitus (DM). Serum anti-FOXJ2 antibody levels were elevated in most patients with atherosclerosis-related diseases, whereas serum anti-CPSF2 antibody levels were associated with AIS, TIA, and DM. Receiver operating characteristic curves showed that serum DIDO1 antibody levels were highly associated with CKD, and correlation analysis revealed that serum anti-FOXJ2 antibody levels were associated with hypertension. A prospective case-control study on ischemic stroke verified that the serum antibody levels of the DIDO1 protein and DIDO1, FOXJ2, and CPSF2 peptides showed significantly higher odds ratios with a risk of AIS in patients with the highest quartile than in those with the lowest quartile, indicating that these antibody markers are useful as risk factors for AIS. CONCLUSIONS Serum antibody levels of DIDO1, FOXJ2, and CPSF2 are useful in predicting the onset of atherosclerosis-related AIS caused by kidney failure, hypertension, and DM, respectively.
Collapse
Affiliation(s)
- Takaki Hiwasa
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan. .,Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan. .,Comprehensive Stroke Center, Chiba University Hospital, Chiba, 260-8677, Japan.
| | - Hao Wang
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.,Department of Anesthesia, The First Affiliated Hospital, Jinan University, Guanzhou, 510632, P. R. China
| | - Ken-Ichiro Goto
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Seiichiro Mine
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.,Department of Neurological Surgery, Chiba Prefectural Sawara Hospital, Chiba, 287-0003, Japan.,Department of Neurological Surgery, Chiba Cerebral and Cardiovascular Center, Chiba, 290-0512, Japan
| | - Toshio Machida
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.,Department of Neurological Surgery, Chiba Cerebral and Cardiovascular Center, Chiba, 290-0512, Japan.,Department of Neurosurgery, Eastern Chiba Medical Center, Chiba, 283-8686, Japan
| | - Eiichi Kobayashi
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.,Comprehensive Stroke Center, Chiba University Hospital, Chiba, 260-8677, Japan
| | - Yoichi Yoshida
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.,Comprehensive Stroke Center, Chiba University Hospital, Chiba, 260-8677, Japan
| | - Akihiko Adachi
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.,Comprehensive Stroke Center, Chiba University Hospital, Chiba, 260-8677, Japan
| | - Tomoo Matsutani
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.,Comprehensive Stroke Center, Chiba University Hospital, Chiba, 260-8677, Japan
| | - Mizuki Sata
- Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba, Tsukuba, 305-8575, Japan.,Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kazumasa Yamagishi
- Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Hiroyasu Iso
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Norie Sawada
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, 104-0045, Japan
| | - Shoichiro Tsugane
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, 104-0045, Japan
| | - Mitoshi Kunimatsu
- Department of Home Economics, Nagoya Women's University, Nagoya, 467-8610, Japan
| | - Ikuo Kamitsukasa
- Department of Neurology, Chiba Rosai Hospital, Chiba, 290-0003, Japan.,Department of Neurology, Chibaken Saiseikai Narashino Hospital, Chiba, 275-8580, Japan
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Kazuo Sugimoto
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.,Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Akiyuki Uzawa
- Comprehensive Stroke Center, Chiba University Hospital, Chiba, 260-8677, Japan.,Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Mayumi Muto
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Satoshi Kuwabara
- Comprehensive Stroke Center, Chiba University Hospital, Chiba, 260-8677, Japan.,Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Mikiko Ohno
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.,Department of Pharmacology, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.,Department of Pharmacology, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Akiko Hattori
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Masashi Yamamoto
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Kazuki Kobayashi
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Ryoichi Ishibashi
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Minoru Takemoto
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.,Department of Diabetes, Metabolism and Endocrinology, School of Medicine, International University of Health and Welfare, Chiba, 286-8686, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Hirotaka Takizawa
- Port Square Kashiwado Clinic, Kashiwado Memorial Foundation, Chiba, 260-0025, Japan
| | - Takashi Kishimoto
- Department of Molecular Pathology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Kazuyuki Matsushita
- Department of Laboratory Medicine & Division of Clinical Genetics, Chiba University Hospital, Chiba, 260-8677, Japan
| | - Sohei Kobayashi
- Department of Laboratory Medicine & Division of Clinical Genetics, Chiba University Hospital, Chiba, 260-8677, Japan.,Department of Medical Technology and Sciences, School of Health Sciences at Narita, International University of Health and Welfare, Chiba, 286-8686, Japan
| | - Fumio Nomura
- Division of Clinical Genetics, Chiba Foundation for Health Promotion and Disease Prevention, Chiba, 261-0002, Japan
| | - Takahiro Arasawa
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.,Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Akiko Kagaya
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Tetsuro Maruyama
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Minako Tomiita
- Department of Allergy and Rheumatology, Chiba Children's Hospital, Chiba, 266-0007, Japan
| | - Shinsaku Hamanaka
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Yushi Imai
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Tomoo Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Jiro Terada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Takuma Matsumura
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Yusuke Katsumata
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Akira Naito
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Nobuhiro Tanabe
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.,Department of Advanced Medicine in Pulmonary Hypertension, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Seiichiro Sakao
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Masaaki Ito
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, 143-8541, Japan
| | - Fumiaki Shiratori
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, 143-8541, Japan
| | - Makoto Sumazaki
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, 143-8541, Japan
| | - Satoshi Yajima
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, 143-8541, Japan
| | - Hideaki Shimada
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, 143-8541, Japan
| | - Mikako Shirouzu
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Structural Biology Laboratory, Yokohama, Kanagawa, 230-0045, Japan
| | | | | | - Katsuro Iwase
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Hiromi Ashino
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Shu-Yang Li
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.,Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Masaaki Kubota
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Go Tomiyoshi
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.,Medical Project Division, Research Development Center, Fujikura Kasei Co., Saitama, 340-0203, Japan
| | - Natsuko Shinmen
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.,Medical Project Division, Research Development Center, Fujikura Kasei Co., Saitama, 340-0203, Japan
| | - Rika Nakamura
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.,Medical Project Division, Research Development Center, Fujikura Kasei Co., Saitama, 340-0203, Japan
| | - Hideyuki Kuroda
- Medical Project Division, Research Development Center, Fujikura Kasei Co., Saitama, 340-0203, Japan
| | - Yasuo Iwadate
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.,Comprehensive Stroke Center, Chiba University Hospital, Chiba, 260-8677, Japan
| |
Collapse
|
46
|
Emerson AE, Slaby EM, Hiremath SC, Weaver JD. Biomaterial-based approaches to engineering immune tolerance. Biomater Sci 2021; 8:7014-7032. [PMID: 33179649 DOI: 10.1039/d0bm01171a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of biomaterial-based therapeutics to induce immune tolerance holds great promise for the treatment of autoimmune diseases, allergy, and graft rejection in transplantation. Historical approaches to treat these immunological challenges have primarily relied on systemic delivery of broadly-acting immunosuppressive agents that confer undesirable, off-target effects. The evolution and expansion of biomaterial platforms has proven to be a powerful tool in engineering immunotherapeutics and enabled a great diversity of novel and targeted approaches in engineering immune tolerance, with the potential to eliminate side effects associated with systemic, non-specific immunosuppressive approaches. In this review, we summarize the technological advances within three broad biomaterials-based strategies to engineering immune tolerance: nonspecific tolerogenic agent delivery, antigen-specific tolerogenic therapy, and the emergent area of tolerogenic cell therapy.
Collapse
Affiliation(s)
- Amy E Emerson
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | | | | | | |
Collapse
|
47
|
Tang X, Tang R, Sun X, Yan X, Huang G, Zhou H, Xie G, Li X, Zhou Z. A clinical diagnostic model based on an eXtreme Gradient Boosting algorithm to distinguish type 1 diabetes. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:409. [PMID: 33842630 PMCID: PMC8033361 DOI: 10.21037/atm-20-7115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Accurate classification of type 1 diabetes (T1DM) and type 2 diabetes (T2DM) in the early phase is crucial for individual precision treatment. This study aimed to develop a classification model having fewer and easier to access clinical variables to distinguish T1DM in newly diagnosed diabetes in adults. METHODS Clinical and laboratory data were collected from 15,206 adults with newly diagnosed diabetes in this cross-sectional study. This cohort represented 20 provinces and 4 municipalities in China. Types of diabetes were determined based on postprandial C-peptide (PCP) level and glutamic acid decarboxylase autoantibody (GADA) titer. We developed multivariable clinical diagnostic models using the eXtreme Gradient Boosting (XGBoost) algorithm. Classification variables included in the final model were based on their scores of importance. Model performance was evaluated by area under the receiver operating characteristic curve (ROC AUC), sensitivity, and specificity. The performance of models with different variable combinations was compared. Calibration intercept and slope were evaluated for the final model. RESULTS Among the newly diagnosed diabetes cohort, 1,465 (9.63%) persons had T1DM and 13,741 (90.37%) had T2DM. Body mass index (BMI) contributed the most to the model, followed by age of onset and hemoglobin A1c (HbA1c). Compared with models with other clinical variable combinations, a final model that integrated age of onset, BMI and HbA1c had relatively higher performance. The ROC AUC, sensitivity, and specificity for this model were 0.83 (95% CI, 0.80 to 0.85), 0.77, and 0.76, respectively. The calibration intercept and slope were 0.02 (95% CI, -0.03 to 0.06) and 0.90 (95% CI, 0.79 to 1.02), respectively, which suggested a good calibration performance. CONCLUSIONS Our classification model that integrated age of onset, BMI, and HbA1c could distinguish T1DM from T2DM, which provides a useful tool in assisting physicians in subtyping and precising treatment in diabetes.
Collapse
Affiliation(s)
- Xiaohan Tang
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Rui Tang
- Department of Intelligent Clinical Decision Support, Ping An Healthcare Technology, Beijing, China
| | - Xingzhi Sun
- Department of Intelligent Clinical Decision Support, Ping An Healthcare Technology, Beijing, China
| | - Xiang Yan
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Gan Huang
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Houde Zhou
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Changsha, China
- Institute of Metabolism and Endocrinology, Hunan Key Laboratory for Metabolic Bone Diseases, Changsha, China
| | - Guotong Xie
- Department of Intelligent Clinical Decision Support, Ping An Healthcare Technology, Beijing, China
| | - Xia Li
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Changsha, China
| |
Collapse
|
48
|
Tootee A, Nikbin B, Ghahary A, Esfahani EN, Arjmand B, Aghayan H, Qorbani M, Larijani B. Immunopathology of Type 1 Diabetes and Immunomodulatory Effects of Stem Cells: A Narrative Review of the Literature. Endocr Metab Immune Disord Drug Targets 2021; 22:169-197. [PMID: 33538679 DOI: 10.2174/1871530321666210203212809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/11/2020] [Accepted: 10/27/2020] [Indexed: 11/22/2022]
Abstract
Type 1 Diabetes (T1D) is a complex autoimmune disorder which occurs as a result of an intricate series of pathologic interactions between pancreatic β-cells and a wide range of components of both the innate and the adaptive immune systems. Stem-cell therapy, a recently-emerged potentially therapeutic option for curative treatment of diabetes, is demonstrated to cause significant alternations to both different immune cells such as macrophages, natural killer (NK) cells, dendritic cells, T cells, and B cells and non-cellular elements including serum cytokines and different components of the complement system. Although there exists overwhelming evidence indicating that the documented therapeutic effects of stem cells on patients with T1D is primarily due to their potential for immune regulation rather than pancreatic tissue regeneration, to date, the precise underlying mechanisms remain obscure. On the other hand, immune-mediated rejection of stem cells remains one of the main obstacles to regenerative medicine. Moreover, the consequences of efferocytosis of stem-cells by the recipients' lung-resident macrophages have recently emerged as a responsible mechanism for some immune-mediated therapeutic effects of stem-cells. This review focuses on the nature of the interactions amongst different compartments of the immune systems which are involved in the pathogenesis of T1D and provides explanation as to how stem cell-based interventions can influence immune system and maintain the physiologic equilibrium.
Collapse
Affiliation(s)
- Ali Tootee
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| | - Behrouz Nikbin
- Research Center of Molecular Immunology, Tehran University of Medical Sciences, Tehran, . Iran
| | - Aziz Ghahary
- British Columbia Professional Firefighters' Burn and Wound Healing Research Laboratory, Department of Surgery, Plastic Surgery, University of British Columbia, Vancouver, . Canada
| | - Ensieh Nasli Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| | - Babak Arjmand
- Cell therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| | - Hamidreza Aghayan
- Cell therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, . Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| |
Collapse
|
49
|
Broome DT, Pantalone KM, Kashyap SR, Philipson LH. Approach to the Patient with MODY-Monogenic Diabetes. J Clin Endocrinol Metab 2021; 106:237-250. [PMID: 33034350 PMCID: PMC7765647 DOI: 10.1210/clinem/dgaa710] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/02/2020] [Indexed: 12/14/2022]
Abstract
UNLABELLED Maturity-onset diabetes of the young, or MODY-monogenic diabetes, is a not-so-rare collection of inherited disorders of non-autoimmune diabetes mellitus that remains insufficiently diagnosed despite increasing awareness. These cases are important to efficiently and accurately diagnose, given the clinical implications of syndromic features, cost-effective treatment regimen, and the potential impact on multiple family members. Proper recognition of the clinical manifestations, family history, and cost-effective lab and genetic testing provide the diagnosis. All patients must undergo a thorough history, physical examination, multigenerational family history, lab evaluation (glycated hemoglobin A1c [HbA1c], glutamic acid decarboxylase antibodies [GADA], islet antigen 2 antibodies [IA-2A], and zinc transporter 8 [ZnT8] antibodies). The presence of clinical features with 3 (or more) negative antibodies may be indicative of MODY-monogenic diabetes, and is followed by genetic testing. Molecular genetic testing should be performed before attempting specific treatments in most cases. Additional testing that is helpful in determining the risk of MODY-monogenic diabetes is the MODY clinical risk calculator (>25% post-test probability in patients not treated with insulin within 6 months of diagnosis should trigger genetic testing) and 2-hour postprandial (after largest meal of day) urinary C-peptide to creatinine ratio (with a ≥0.2 nmol/mmol to distinguish HNF1A- or 4A-MODY from type 1 diabetes). Treatment, as well as monitoring for microvascular and macrovascular complications, is determined by the specific variant that is identified. In addition to the diagnostic approach, this article will highlight recent therapeutic advancements when patients no longer respond to first-line therapy (historically sulfonylurea treatment in many variants). LEARNING OBJECTIVES Upon completion of this educational activity, participants should be able to. TARGET AUDIENCE This continuing medical education activity should be of substantial interest to endocrinologists and all health care professionals who care for people with diabetes mellitus.
Collapse
Affiliation(s)
- David T Broome
- Department of Endocrinology, Diabetes & Metabolism, Cleveland Clinic Foundation, Cleveland, Ohio
- Correspondence and Reprint Requests: David T. Broome, MD, Department of Endocrinology, Diabetes & Metabolism, Cleveland Clinic Foundation, 9500 Euclid Avenue, Mail code: F-20, Cleveland, OH 44195, USA. E-mail:
| | - Kevin M Pantalone
- Department of Endocrinology, Diabetes & Metabolism, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Sangeeta R Kashyap
- Department of Endocrinology, Diabetes & Metabolism, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Louis H Philipson
- Kovler Diabetes Center, Departments of Medicine and Pediatrics, University of Chicago, Chicago, Illinois
| |
Collapse
|
50
|
Enck K, Tamburrini R, Deborah C, Gazia C, Jost A, Khalil F, Alwan A, Orlando G, Opara EC. Effect of alginate matrix engineered to mimic the pancreatic microenvironment on encapsulated islet function. Biotechnol Bioeng 2020; 118:1177-1185. [PMID: 33270214 DOI: 10.1002/bit.27641] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/15/2020] [Accepted: 11/21/2020] [Indexed: 12/13/2022]
Abstract
Islet transplantation is emerging as a therapeutic option for type 1 diabetes, albeit, only a small number of patients meeting very stringent criteria are eligible for the treatment because of the side effects of the necessary immunosuppressive therapy and the relatively short time frame of normoglycemia that most patients achieve. The challenge of the immune-suppressive regimen can be overcome through microencapsulation of the islets in a perm-selective coating of alginate microbeads with poly-l-lysine or poly- l-ornithine. In addition to other issues including the nutrient supply challenge of encapsulated islets a critical requirement for these cells has emerged as the need to engineer the microenvironment of the encapsulation matrix to mimic that of the native pancreatic scaffold that houses islet cells. That microenvironment includes biological and mechanical cues that support the viability and function of the cells. In this study, the alginate hydrogel was modified to mimic the pancreatic microenvironment by incorporation of extracellular matrix (ECM). Mechanical and biological changes in the encapsulating alginate matrix were made through stiffness modulation and incorporation of decellularized ECM, respectively. Islets were then encapsulated in this new biomimetic hydrogel and their insulin production was measured after 7 days in vitro. We found that manipulation of the alginate hydrogel matrix to simulate both physical and biological cues for the encapsulated islets enhances the mechanical strength of the encapsulated islet constructs as well as their function. Our data suggest that these modifications have the potential to improve the success rate of encapsulated islet transplantation.
Collapse
Affiliation(s)
- Kevin Enck
- Wake Forest School of Medicine, Virginia Tech School of Biomedical Engineering & Sciences (SBES), Wake Forest University, Winston-Salem, North Carolina.,Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine (WFIRM), Winston-Salem, North Carolina
| | - Riccardo Tamburrini
- Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine (WFIRM), Winston-Salem, North Carolina.,Department of Surgery, Wake Forest University, Winston-Salem, North Carolina
| | - Chaimov Deborah
- Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine (WFIRM), Winston-Salem, North Carolina.,Department of Surgery, Wake Forest University, Winston-Salem, North Carolina
| | - Carlo Gazia
- Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine (WFIRM), Winston-Salem, North Carolina.,Department of Surgery, Wake Forest University, Winston-Salem, North Carolina
| | - Alec Jost
- Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Fatma Khalil
- Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine (WFIRM), Winston-Salem, North Carolina
| | - Abdelrahman Alwan
- Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine (WFIRM), Winston-Salem, North Carolina
| | - Giuseppe Orlando
- Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine (WFIRM), Winston-Salem, North Carolina.,Department of Surgery, Wake Forest University, Winston-Salem, North Carolina
| | - Emmanuel C Opara
- Wake Forest School of Medicine, Virginia Tech School of Biomedical Engineering & Sciences (SBES), Wake Forest University, Winston-Salem, North Carolina.,Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine (WFIRM), Winston-Salem, North Carolina
| |
Collapse
|