1
|
Hachimura S. Editorial: Immunomodulation by food components via dendritic cells. Front Nutr 2024; 11:1532493. [PMID: 39742101 PMCID: PMC11687122 DOI: 10.3389/fnut.2024.1532493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/03/2025] Open
Affiliation(s)
- Satoshi Hachimura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Dündar A, Yalçın P, Arslan N, Acay H, Hatipoğlu A, Boğa M, Karahan S, Yaprak B. Effect of Pleurotus ostreatus Water Extract Consumption on Blood Parameters and Cytokine Values in Healthy Volunteers. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:645-652. [PMID: 38935369 DOI: 10.1080/27697061.2024.2369781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Our aim in this study is, does 29-day regular consumption of Pleurotus ostreatus water extract by volunteer individuals who meet the study criteria have an effect on blood and cytokine values? METHOD In accordance with the purpose of the study, volunteers were asked to consume 100 ml of the extract every morning for 29 days. Three tubes of blood samples were taken from the volunteers on the 15th and 29th days of the study. Biochemical and hematological analysis of the blood samples were performed and immunomodulatory effects through cytokines were examined. The values obtained from 3 tubes of blood obtained from volunteers before the use of mushroom extract were used as control. The chemical composition and β-glucan content of 100 ml of mushroom water extract were also analyzed. RESULT IL-4, IL-6, IL-10 and IL-13 could not be detected because the values were below the lowest standard value. TNF-α, IFN-γ and IL-1β 15th and 29th day values decreased compared to the 1st day (control) values (p < 0.05). However, there was no significant difference observed between the 15th and 29th day. No abnormalities were observed in biochemical and hematological values. Also, the β-glucan content of extract was found 38.12 mg/100 ml. CONCLUSION The frequency range of kidney and liver function test results confirmed that P. osreatus is a reliable food source. Considering the cytokine values these results indicate that P. ostreatus water extract has an anti-inflammatory effect. As no significant difference was observed in 29 days of use, it is thought that 15 days of daily consumption of the extract may be sufficient for the anti-inflammatory effect to occur. However, a large number of qualified clinical trials are needed to support the issue.
Collapse
Affiliation(s)
- Abdurrahman Dündar
- Department of Medical Services and Techniques, Vocational Higher School of Health Services, Mardin, Turkey
| | - Pınar Yalçın
- Department of Biology, Graduate Education Institute, Mardin Artuklu University, Mardin, Turkey
- Şehit İlhan Varank Secondary School, Mardin, Turkey
| | - Nurgül Arslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Dicle University, Diyarbakır, Turkey
| | - Hilal Acay
- Department of Nutrition and Dietetics, Faculty of Health Science, Mardin Artuklu University, Mardin, Turkey
| | - Abdulkerim Hatipoğlu
- Department of Nutrition and Dietetics, Faculty of Health Science, Mardin Artuklu University, Mardin, Turkey
| | - Mehmet Boğa
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır, Turkey
- Dicle University Health Sciences Application and Research Center (DÜSAM), Diyarbakır, Turkey
| | - Selim Karahan
- Department of Pharmacology, Faculty of Medicine, Mardin Artuklu University, Mardin, Turkey
| | - Bülent Yaprak
- Department of Internal Medical Sciences, Turgut Özal Faculty of Medicine, Yesilyurt, Turkey
| |
Collapse
|
3
|
Nathan VB, Eckrote S, Li S, Reddivari L. Crude Blueberry Phenolic Extracts Improve Gut Barrier Integrity and Exert Anti-Inflammatory and Antimicrobial Activity in an In Vitro Weaning Stress Model. Antioxidants (Basel) 2024; 13:1044. [PMID: 39334703 PMCID: PMC11428930 DOI: 10.3390/antiox13091044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Piglet weaning is accompanied by gastrointestinal tract (GIT) dysfunction, resulting in post-weaning diarrhea (PWD). The treatment involves antibiotics due to the susceptibility of the weaned GIT to pathogens. However, antibiotic resistance has shifted attitudes toward a nutraceutical approach by enriching feed with functional compounds. Polyphenols are touted for their antimicrobial activity and ability to improve GIT function. Thus, we investigated the protective effects of crude blueberry phenolic extracts (BPE) in vitro using porcine cells challenged with lipopolysaccharide (LPS) as a weaning model. Cells were pretreated with 1 µg/mL and 2.5 µg/mL BPE for 24 h, followed by 10 µg/mL LPS stimulation for 6 h. Antioxidant status, paracellular permeability, the gene expression of proinflammatory cytokines, and tight junction proteins were measured. The antimicrobial activity of the extract was evaluated against porcine pathogens. The pretreatment of cells with 1 µg/mL BPE preserved catalase (CAT) activity. Reduced paracellular permeability was observed in a dose-dependent manner. The BPE preserved the relative mRNA abundance of tight junctions and reduced inflammatory cytokine expression. Pretreatment with the BPE was able to preserve occludin (OCLN) protein levels. The minimum inhibitory concentration of the BPE against Enterotoxigenic E. coli (ETEC) and Salmonella typhimurium (ST) was 62.50 µg/mL. These findings indicate that blueberry polyphenols hold potential as feed additives in swine weaning.
Collapse
Affiliation(s)
| | | | | | - Lavanya Reddivari
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA; (V.B.N.); (S.E.); (S.L.)
| |
Collapse
|
4
|
Mirzapour-Kouhdasht A, Garcia-Vaquero M, Huang JY. Algae-derived compounds: Bioactivity, allergenicity and technologies enhancing their values. BIORESOURCE TECHNOLOGY 2024; 406:130963. [PMID: 38876282 DOI: 10.1016/j.biortech.2024.130963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
As a rapidly growing source of human nutrients, algae biosynthesize diverse metabolites which have promising bioactivities. However, the potential allergenicity of algal components hinder their widespread adoption. This review provides a comprehensive review of various macro and micronutrients derived from algal biomass, with particular focus on bioactive compounds, including peptides, polyphenols, carotenoids, omega-3 fatty acids and phycocyanins. The approaches used to produce algal bioactive compounds and their health benefits (antioxidant, antidiabetic, cardioprotective, anti-inflammatory and immunomodulatory) are summarised. This review particularly focuses on the state-of-the-art of precision fermentation, encapsulation, cold plasma, high-pressure processing, pulsed electric field, and subcritical water to reduce the allergenicity of algal compounds while increasing their bioactivity and bioavailability. By providing insights into current challenges of algae-derived compounds and opportunities for advancement, this review contributes to the ongoing discourse on maximizing their application potential in the food nutraceuticals, and pharmaceuticals industries.
Collapse
Affiliation(s)
- Armin Mirzapour-Kouhdasht
- Department of Chemical Sciences, SSPC, Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, D04V1W8 Dublin, Ireland
| | - Jen-Yi Huang
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
5
|
Manafu Z, Du R, Malajiang X, Abulikemu G, Xue L, Bierdelieke A, Xie Y, Liu D, Mai Z, Guo Q, Wusiman A, Li B, Abula S. Effects of Alhagi maurorum Medik polysaccharide derived from different regions on the intestinal immune functions of lambs. Front Pharmacol 2024; 15:1422461. [PMID: 39076595 PMCID: PMC11284127 DOI: 10.3389/fphar.2024.1422461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction: Plant polysaccharide are widely studied as potential prebiotics because of their potential to protect and enhance the immunity of lambs. Methods: In this study, the polysaccharide content of Alhagi maurorum Medik from Aksu (AK) and Shanshan (SS) at different cutting periods was determined, and the functions of Alhagi maurorum Medik polysaccharide were investigated to useas an immunomodulator. Results: Our results indicated that the content of Alhagi maurorum Medik polysaccharide is the highest at the maturity stage, and the polysaccharide content of Alhagi maurorum Medik produced in Shanshan area is higher as compared to the Aksu area. The serum IgG, duodenum IgA, TNF-α, IL-4, IL-10 contents, jejunum IgA, TNF-α, IL-4, IL-17 contents, ileum IgA, IL-17 contents, duodenum villus height, crypt depth and jejunum crypt depth of lambs were significantly adjusted in the SS group as compared to CK control group and AK groups (p < 0.05). Furthemore, the sequencing results showed that SS polysaccharide promoted the release of large amounts of IgA and enhanced the immunal function of intestine by regulating the IgA production pathway and B-cell receptor signaling to activate B cells in the T-dependent pathway. Discussion: Altogether, Alhagi maurorum Medik polysaccharide from SS group holds a promising potential to be used as a valuable immunopotentiator for optimizing the immune system of intestine in lambs.
Collapse
Affiliation(s)
- Zulikeyan Manafu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| | - Ronglijiao Du
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
| | - Xieraili Malajiang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
| | - Gulimire Abulikemu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
| | - Lijun Xue
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
| | - Ayibike Bierdelieke
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
| | - Yuan Xie
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
| | - Dandan Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
| | - Zhanhai Mai
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
| | - Adelijiang Wusiman
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
| | - Bin Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
| | - Saifuding Abula
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
6
|
Nakagawa R, Gu W, Mizobuchi H, Kodera S, Takano T, Wang Y, Fujioka I, Uchida K, Nakajima-Adachi H, Hachimura S. Lactococcus lactis subsp. cremoris YRC3780 modifies function of mesenteric lymph node dendritic cells to modulate the balance of T cell differentiation inducing regulatory T cells. Front Immunol 2024; 15:1395380. [PMID: 39040096 PMCID: PMC11261344 DOI: 10.3389/fimmu.2024.1395380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction The intestinal immune system plays a pivotal role in the induction of immune responses against food. In the case of T cell response, dendritic cells (DCs) are especially important. However, the regulation of immune responses to food by intestinal DCs has been poorly described. In this study, we analyzed the effect of Lactococcus lactis subsp. cremoris YRC3780, a lactic acid bacterial strain isolated from kefir, a traditional fermented milk product, on the immune responses induced by antigen presentation by intestinal DCs to T cells as well as the mechanism of action of these immunomodulatory effects. It has been shown that L. cremoris YRC3780 ameliorates the symptoms of pollinosis in both animal and human studies. Methods CD11c+ cells from mesenteric lymph nodes (MLNs) of BALB/c mice were cultured as MLN DCs with L. cremoris YRC3780 and expression of genes inducing regulatory T cells (Tregs) was examined by qPCR. In addition, MLN DCs were cocultured with CD4+ T cells from DO11.10 transgenic mice expressing an ovalbumin (OVA)-specific TCR and the OVA antigen peptide and L. cremoris YRC3780. Induction of Tregs was examined by flow cytometry, gene expression was analyzed by DNA microarray and qPCR, and the production of cytokines was measured by ELISA. MLN DCs from TLR2-deficient mice and components of L. cremoris YRC3780 were used to examine the recognition of YRC3780 by MLN DCs. Results L. cremoris YRC3780 enhanced the expression of genes involved in Treg induction in MLN DCs and induced Foxp3+CD4+T cells in an MLN DC and CD4+ T-cell co-culture system. The effect on MLN DCs was likely mediated by receptors other than TLR2. Together with microarray analyses of CD4+ T cell gene expression and cytokine ELISA, it was demonstrated that L. cremoris YRC3780 promoted the induction of Th1 and Tregs, and regulated the balance of Th1/Th2 and Treg/Th17 cells involving multiple genes via the antigen-presentation of MLN DCs. Discussion Our findings provide insights into the modulation of intestinal immune responses mediated by DCs and the antiallergic effects of lactic acid bacteria.
Collapse
Affiliation(s)
- Ryogo Nakagawa
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wenting Gu
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hibine Mizobuchi
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shuhei Kodera
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Takano
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yimei Wang
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikumi Fujioka
- R&D Center, Yotsuba Milk Products, Co., Ltd., Kitahiroshima, Japan
| | - Kenji Uchida
- R&D Center, Yotsuba Milk Products, Co., Ltd., Kitahiroshima, Japan
| | - Haruyo Nakajima-Adachi
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Hachimura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Zhan-Dai S, Grases-Pintó B, Lamuela-Raventós RM, Castell M, Pérez-Cano FJ, Vallverdú-Queralt A, Rodríguez-Lagunas MJ. Exploring the Impact of Extra Virgin Olive Oil on Maternal Immune System and Breast Milk Composition in Rats. Nutrients 2024; 16:1785. [PMID: 38892716 PMCID: PMC11174597 DOI: 10.3390/nu16111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Maternal breast milk plays a key role in providing newborns with passive immunity and stimulating the maturation of an infant's immune system, protecting them from many diseases. It is known that diet can influence the immune system of lactating mothers and the composition of their breast milk. The aim of this study was to establish if a supplementation during the gestation and lactation of Lewis rats with extra virgin olive oil (EVOO), due to the high proportion of antioxidant components in its composition, has an impact on the mother's immune system and on the breast milk's immune composition. For this, 10 mL/kg of either EVOO, refined oil (control oil) or water (REF group) were orally administered once a day to rats during gestation and lactation periods. Immunoglobulin (Ig) concentrations and gene expressions of immune molecules were quantified in several compartments of the mothers. The EVOO group showed higher IgA levels in both the breast milk and the mammary glands than the REF group. In addition, the gene expression of IgA in mammary glands was also boosted by EVOO consumption. Overall, EVOO supplementation during gestation and lactation is safe and does not negatively affect the mother's immune system while improving breast milk immune composition by increasing the presence of IgA, which could be critical for an offspring's immune health.
Collapse
Affiliation(s)
- Sonia Zhan-Dai
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (S.Z.-D.); (B.G.-P.); (M.C.); (M.J.R.-L.)
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (R.M.L.-R.); (A.V.-Q.)
| | - Blanca Grases-Pintó
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (S.Z.-D.); (B.G.-P.); (M.C.); (M.J.R.-L.)
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (R.M.L.-R.); (A.V.-Q.)
| | - Rosa M. Lamuela-Raventós
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (R.M.L.-R.); (A.V.-Q.)
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Margarida Castell
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (S.Z.-D.); (B.G.-P.); (M.C.); (M.J.R.-L.)
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (R.M.L.-R.); (A.V.-Q.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Francisco J. Pérez-Cano
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (S.Z.-D.); (B.G.-P.); (M.C.); (M.J.R.-L.)
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (R.M.L.-R.); (A.V.-Q.)
| | - Anna Vallverdú-Queralt
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (R.M.L.-R.); (A.V.-Q.)
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Maria José Rodríguez-Lagunas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (S.Z.-D.); (B.G.-P.); (M.C.); (M.J.R.-L.)
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (R.M.L.-R.); (A.V.-Q.)
| |
Collapse
|
8
|
El Oirdi M. Harnessing the Power of Polyphenols: A New Frontier in Disease Prevention and Therapy. Pharmaceuticals (Basel) 2024; 17:692. [PMID: 38931359 PMCID: PMC11206774 DOI: 10.3390/ph17060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
There are a wide variety of phytochemicals collectively known as polyphenols. Their structural diversity results in a broad range of characteristics and biological effects. Polyphenols can be found in a variety of foods and drinks, including fruits, cereals, tea, and coffee. Studies both in vitro and in vivo, as well as clinical trials, have shown that they possess potent antioxidant activities, numerous therapeutic effects, and health advantages. Dietary polyphenols have demonstrated the potential to prevent many health problems, including obesity, atherosclerosis, high blood sugar, diabetes, hypertension, cancer, and neurological diseases. In this paper, the protective effects of polyphenols and the mechanisms behind them are investigated in detail, citing the most recent available literature. This review aims to provide a comprehensive overview of the current knowledge on the role of polyphenols in preventing and managing chronic diseases. The cited publications are derived from in vitro, in vivo, and human-based studies and clinical trials. A more complete understanding of these naturally occurring metabolites will pave the way for the development of novel polyphenol-rich diet and drug development programs. This, in turn, provides further evidence of their health benefits.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Department of Life Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
9
|
Park YM, Lee HY, Shin DY, Kim SH, Yoo Y, Kim MJ, Kim MJ, Yang HJ, Park KH. Augmentation of NK-cell activity and immunity by combined natural polyphenols and saccharides in vitro and in vivo. Int J Biol Macromol 2024; 268:131908. [PMID: 38679269 DOI: 10.1016/j.ijbiomac.2024.131908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Curcuma longa and Sargassum coreanum are commonly used in traditional pharmaceutical medicine to improve immune function in chronic diseases. The present study was designed to systematically elucidate the in vitro and in vivo immuno-enhancing effects of a combination of C. longa and S. coreanum extracts (CS) that contain polyphenols and saccharides as functional molecules in a cyclophosphamide (Cy)-induced model of immunosuppression. In primary splenocytes, we observed the ameliorative effects of CS on a Cy-induced immunosuppression model with low cytotoxicity and an optimal mixture procedure. CS treatment enhanced T- and B-cell proliferation, increased splenic natural killer-cell activity, and restored cytokine release. Wistar rats were orally administered low (30 mg/kg), intermediate (100 mg/kg), or high (300 mg/kg) doses of CS for four weeks, followed by oral administration of Cy (5 mg/kg) for four weeks. Compared with the vehicle group, low-, intermediate-, and high-dose CS treatment accelerated dose-dependent recovery of the serum level of tumor necrosis factor-α, interferon-γ, interleukin-2, and interleukin-12. These results suggest that CS treatment accelerates the amelioration of immune deficiency in Cy-treated primary splenocytes and rats, which supports considering it for immunity maintenance. Our findings provide experimental evidence for further research and clinical application in immunosuppressed patients.
Collapse
Affiliation(s)
- Young Mi Park
- INVIVO Co. Ltd., 121, Nonsan 32992, Republic of Korea; Department of Pathology, College of Korean Medicine, Wonkwang University, Iksan 54651, Republic of Korea
| | - Hak Yong Lee
- INVIVO Co. Ltd., 121, Nonsan 32992, Republic of Korea
| | | | - Suk Hun Kim
- Agricultural Corporation Company Nongjeongsim LC., Jeonju 55070, Republic of Korea
| | - Yeol Yoo
- Agricultural Corporation Company Nongjeongsim LC., Jeonju 55070, Republic of Korea
| | - Min Ji Kim
- Agricultural Corporation Company Nongjeongsim LC., Jeonju 55070, Republic of Korea
| | - Min Jung Kim
- Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Hye Jeong Yang
- Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Kwang-Hyun Park
- Department of Emergency Medical Rescue and Department of Oriental Pharmaceutical Development, Nambu University, Gwangju 62271, Republic of Korea; Department of Emergency Medicine and BioMedical Science Graduate Program (BMSGP), Chonnam National University, Gwangju 61469, Republic of Korea.
| |
Collapse
|
10
|
Rawat HK, Nath S, Sharma I, Kango N. Recent developments in the production of prebiotic fructooligosaccharides using fungal fructosyltransferases. Mycology 2024; 15:564-584. [PMID: 39678637 PMCID: PMC11636151 DOI: 10.1080/21501203.2024.2323713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/21/2024] [Indexed: 12/17/2024] Open
Abstract
Prebiotic nutritional ingredients have received attention due to their health-promoting potential and related uses in the food and nutraceutical industries. Recent times have witnessed an increasing interest in the use of fructooligosaccharides (FOS) as prebiotics and their generation using microbial enzymes. FOS consumption is known to confer health benefits such as protection against colon cancer, improved mineral absorption, lowering effect on serum lipid and cholesterol concentration, antioxidant properties, favourable dietary modulation of the human colonic microbiota, and immuno-modulatory effects. Comparative analysis of molecular models of various fructosyltransferases (FTases) reveals the mechanism of action and interaction of substrate with the active site. Microbial FTases carry out transfructosylation of sucrose into fructooligosaccharides (kestose, nystose, and fructofuranosylnystose), the most predominantly used prebiotic oligosaccharides. Furthermore, FOS has also been used for other purposes, such as low-calorie sweeteners, dietary fibres, and as the substrates for fermentation. This review highlights the occurrence, characteristics, immobilisation, and potential applications of FOS-generating fungal FTases. Production, heterologous expression, molecular characteristics, and modelling of fungal FTases underpinning their biotechnological prospects are also discussed.
Collapse
Affiliation(s)
- Hemant Kumar Rawat
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Suresh Nath
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Isha Sharma
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| |
Collapse
|
11
|
Zhang Y, Xu Q, Wang Y, Zhang C, Xu S, Luo M, Yang S. Caragana sinica (Buc'hoz) Rehd. (jin ji er) polysaccharide regulates the immune function and intestinal microbiota of cyclophosphamide (CTX) induced immunosuppressed mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117551. [PMID: 38081398 DOI: 10.1016/j.jep.2023.117551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 01/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Caragana sinica (Buc'hoz) Rehd. is a plant widely grown in Yunnan, China, for both medicinal and edible purposes. The "National Compilation of Chinese Herbal Medicine" describes its nature as "slightly temperate and sweet". Caragana sinica is usually medicated with whole herbs, the main function is to replenish the kidneys and stop bleeding. Caragana sinica was used in folk medicine in Chuxiong, Yunnan, to treat deficiency colds, fatigue, fever, cough, hypertension, and other diseases. AIM OF THE STUDY This article investigates the structural characteristics of Caragana sinica polysaccharide (CSP) and explores its immune-regulatory activity and molecular biological mechanisms in cyclophosphamide-induced immunosuppressed mice, as well as its effects on intestinal bacteria. METHODS With the water-extraction and alcohol-precipitation method, Caragana sinica polysaccharide were extracted, obtaining CSP by purification. A variety of methods and techniques have been used to analyze the chemical properties and structural characteristics of CSP. Immunosuppressive mice model was established through intraperitoneal injection of cyclophosphamide (CTX) to study the immune-regulatory effects and mechanisms of CSP. RESULTS The data indicated that CSP is a neutral heteropolysaccharide mainly composed of arabinose and galactose. This article uses immunosuppressive mice induced by cyclophosphamide (CTX) as the model. The results showed that CSP can promote the immune function of CTX treated immunosuppressed mice and regulate the diversity and composition of intestinal microbiota. CSP can increase macrophage phagocytosis, NK cell killing activity, and lymphocyte proliferation activity. It can also repair the index and morphological damage of the thymus and spleen. And by binding to the TLR4 receptor, MyD88 was activated and interacted with TRAF6 to promote the transfer of NF-κB into the nucleus. Thereby promoting cytokine release and increasing the production of IL-1β, IL-6, IL-10, TNF-α, IgA, and IgG in the serum. CSP also effectively alleviated the liver damage caused by CTX through antioxidant activity. Furthermore, CSP can dramatically affect the intestinal microbiota and the body's immunity by boosting the relative presence of Bacteroides and Verrucamicrobiota. CONCLUSIONS Research results indicated that CSP can regulate the immune function of mice, providing a basis for developing CSP as a potential immune modulator and functional food.
Collapse
Affiliation(s)
- Yan Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Qirui Xu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Yazi Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Chenchen Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Shan Xu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Manhong Luo
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Shuhan Yang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
12
|
Wang B, Liu S, Lin L, Xu W, Gong Z, Xiao W. The protective effect of L-theanine on the intestinal barrier in heat-stressed organisms. Food Funct 2024; 15:3036-3049. [PMID: 38414417 DOI: 10.1039/d3fo04459a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Heat stress caused by heatwaves, extreme temperatures, and other weather can damage the intestinal barrier of organisms. L-Theanine (LTA) attenuates heat stress-induced oxidative stress, inflammatory responses, and impaired immune function, but its protective effect on the intestinal barrier of heat-stressed organisms is unclear. In this study, low (100 mg kg-1 d-1), medium (200 mg kg-1 d-1), and high (400 mg kg-1 d-1) dosages of LTA were used in the gavage of C57BL/6J male mice that were experimented on for 50 d. These mice were subjected to heat stress for 2 h d-1 at 40 ± 1 °C and 60 ± 5% RH in the last 7 d. LTA attenuated the heat stress-induced decreases in body mass and feed intake, and the destruction of intestinal villi and crypt depth; reduced the serum levels of FITC-dextran and D-LA, as well as the DAO activity; and upregulated the colonic tissues of Occludin, Claudin-1, and ZO-1 mRNA and occludin protein expression. The number of goblet cells in the colon tissue of heat-stressed organisms increased in the presence of LTA, and the expression levels of Muc2, Muc4 mRNA, and Muc2 protein were upregulated. LTA increased the abundance of Bifidobacterium and Turicibacter, and decreased the abundance of Enterorhabdus and Desulfovibrio in the intestinal tract of heat-stressed organisms and restored gut microbiota homeostasis. LTA promoted the secretion of IL-4, IL-10, and sIgA and inhibited the secretion of TNF-α and IFN-γ in the colon of heat-stressed organisms. The expressions of Hsf1, Hsp70, Hsph1, TLR4, P38 MAPK, p-P65 NF-κB, MLCK mRNA, and proteins were downregulated by LTA in the colon of heat-stressed organisms. These results suggest that LTA protects the intestinal barrier in heat-stressed organisms by modulating multiple molecular pathways. Therefore, this study provides evidence on how tea-containing LTA treatments could be used to prevent and relieve intestinal problems related to heat stress.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Sha Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Ling Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Wei Xu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Zhihua Gong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
13
|
Mamun MAA, Rakib A, Mandal M, Kumar S, Singla B, Singh UP. Polyphenols: Role in Modulating Immune Function and Obesity. Biomolecules 2024; 14:221. [PMID: 38397458 PMCID: PMC10887194 DOI: 10.3390/biom14020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Polyphenols, long-used components of medicinal plants, have drawn great interest in recent years as potential therapeutic agents because of their safety, efficacy, and wide range of biological effects. Approximately 75% of the world's population still use plant-based medicinal compounds, indicating the ongoing significance of phytochemicals for human health. This study emphasizes the growing body of research investigating the anti-adipogenic and anti-obesity functions of polyphenols. The functions of polyphenols, including phenylpropanoids, flavonoids, terpenoids, alkaloids, glycosides, and phenolic acids, are distinct due to changes in chemical diversity and structural characteristics. This review methodically investigates the mechanisms by which naturally occurring polyphenols mediate obesity and metabolic function in immunomodulation. To this end, hormonal control of hunger has the potential to inhibit pro-obesity enzymes such as pancreatic lipase, the promotion of energy expenditure, and the modulation of adipocytokine production. Specifically, polyphenols affect insulin, a hormone that is essential for regulating blood sugar, and they also play a role, in part, in a complex web of factors that affect the progression of obesity. This review also explores the immunomodulatory properties of polyphenols, providing insight into their ability to improve immune function and the effects of polyphenols on gut health, improving the number of commensal bacteria, cytokine production suppression, and immune cell mediation, including natural killer cells and macrophages. Taken together, continuous studies are required to understand the prudent and precise mechanisms underlying polyphenols' therapeutic potential in obesity and immunomodulation. In the interim, this review emphasizes a holistic approach to health and promotes the consumption of a wide range of foods and drinks high in polyphenols. This review lays the groundwork for future developments, indicating that the components of polyphenols and their derivatives may provide the answer to urgent worldwide health issues. This compilation of the body of knowledge paves the way for future discoveries in the global treatment of pressing health concerns in obesity and metabolic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA; (M.A.A.M.); (A.R.); (M.M.); (S.K.); (B.S.)
| |
Collapse
|
14
|
Li J, Luo T, Wang D, Zhao Y, Jin Y, Yang G, Zhang X. Therapeutic application and potential mechanism of plant-derived extracellular vesicles in inflammatory bowel disease. J Adv Res 2024:S2090-1232(24)00047-X. [PMID: 38341033 DOI: 10.1016/j.jare.2024.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Plant-derived extracellular vesicles (PDEVs) are membrane vesicles characterized by a phospholipid bilayer as the basic skeleton that is wrapped by various functional components of proteins and nucleic acids. An increasing number of studies have confirmed that PDEVs can be a potential treatment of inflammatory bowel disease (IBD) and can, to some extent, compensate for the limitations of existing therapies. AIM OF REVIEW This review summarizes the recent advances and potential mechanisms underlying PDEVs obtained from different sources to alleviate IBD. In addition, the review discusses the possible applications and challenges of PDEVs, providing a theoretical basis for exploring novel and practical therapeutic strategies for IBD. KEY SCIENTIFIC CONCEPTS OF REVIEW In IBD, the crosstalk mechanism of PDEVs may regulate the intestinal microenvironment homeostasis, especially immune responses, the intestinal barrier, and the gut microbiota. In addition, drug loading enhances the therapeutic potential of PDEVs, particularly regarding improved tissue targeting and stability. In the future, not only immunotherapy based on PDEVs may be an effective treatment for IBD, but also the intestinal barrier and intestinal microbiota will be a new direction for the treatment of IBD.
Collapse
Affiliation(s)
- Jinling Li
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang Province, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Yao Zhao
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou 311231, Zhejiang Province, China
| | - Yuanxiang Jin
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou 311231, Zhejiang Province, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China; Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou 311231, Zhejiang Province, China.
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang Province, China.
| |
Collapse
|
15
|
Ghali ENHK, Pranav, Chauhan SC, Yallapu MM. Inulin-based formulations as an emerging therapeutic strategy for cancer: A comprehensive review. Int J Biol Macromol 2024; 259:129216. [PMID: 38185294 PMCID: PMC10922702 DOI: 10.1016/j.ijbiomac.2024.129216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Cancer stands as the second leading cause of death in the United States (US). Most chemotherapeutic agents exhibit severe adverse effects that are attributed to exposure of drugs to off-target tissues, posing a significant challenge in cancer therapy management. In recent years, inulin, a naturally occurring prebiotic fiber has gained substantial attention for its potential in cancer treatment owing to its multitudinous health values. Its distinctive structure, stability, and nutritional properties position it as an effective adjuvant and carrier for drug delivery in cancer therapy. To address some of the above unmet clinical issues, this review summarizes the recent efforts towards the development of inulin-based nanomaterials and nanocomposites for healthcare applications with special emphasis on the multifunctional role of inulin in cancer therapy as a synergist, signaling molecule, immunomodulatory and anticarcinogenic molecule. Furthermore, the review provides a concise overview of ongoing clinical trials and observational studies associated with inulin-based therapy. In conclusion, the current review offers insights on the significant role of inulin interventions in exploring its potential as a therapeutic agent to treat cancer.
Collapse
Affiliation(s)
- Eswara Naga Hanuma Kumar Ghali
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Pranav
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
16
|
Azmat F, Safdar M, Ahmad H, Khan MRJ, Abid J, Naseer MS, Aggarwal S, Imran A, Khalid U, Zahra SM, Islam F, Cheema SA, Shehzadi U, Ali R, Kinki AB, Ali YA, Suleria HAR. Phytochemical profile, nutritional composition of pomegranate peel and peel extract as a potential source of nutraceutical: A comprehensive review. Food Sci Nutr 2024; 12:661-674. [PMID: 38370077 PMCID: PMC10867480 DOI: 10.1002/fsn3.3777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/30/2023] [Accepted: 10/07/2023] [Indexed: 02/20/2024] Open
Abstract
The current study focuses on Punica granatum L. (pomegranate) peel and peel extract and their use as functional foods, food additives, or physiologically active constituents in nutraceutical formulations. The pomegranate peel extract is a good source of bioactive substances needed for the biological activity of the fruit, including phenolic acids, minerals, flavonoids (anthocyanins), and hydrolyzable tannins (gallic acid). The macromolecules found in pomegranate peel and peel extract have been recommended as substitutes for synthetic nutraceuticals, food additives, and chemo-preventive agents because of their well-known ethno-medical significance and chemical properties. Moreover, considering the promises for both their health-promoting activities and chemical properties, the dietary and nutraceutical significance of pomegranate peel and pomegranate peel extract appears to be underestimated. The present review article details their nutritional composition, phytochemical profile, food applications, nutraceutical action, and health benefits.
Collapse
Affiliation(s)
- Faiza Azmat
- Department of Nutritional Sciences and Environmental DesignAllama Iqbal Open UniversityIslamabadPakistan
| | - Mahpara Safdar
- Department of Nutritional Sciences and Environmental DesignAllama Iqbal Open UniversityIslamabadPakistan
| | - Hajra Ahmad
- Department of Nutritional Sciences and Environmental DesignAllama Iqbal Open UniversityIslamabadPakistan
| | | | - Junaid Abid
- Department of Food Science and TechnologyUniversity of HaripurHaripurPakistan
| | | | - Saurabh Aggarwal
- Department of Mechanical Engineering Uttaranchal Institute of TechnologyUttaranchal UniversityDehradunIndia
| | - Ali Imran
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Urma Khalid
- Department of Nutritional Sciences and Environmental DesignAllama Iqbal Open UniversityIslamabadPakistan
| | - Syeda Mahvish Zahra
- Department of Nutritional Sciences and Environmental DesignAllama Iqbal Open UniversityIslamabadPakistan
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Fakhar Islam
- Department of Clinical NutritionNUR International UniversityLahorePakistan
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Sadia Arif Cheema
- Department of Nutritional Sciences and Environmental DesignAllama Iqbal Open UniversityIslamabadPakistan
| | - Umber Shehzadi
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Rehman Ali
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Abdela Befa Kinki
- Food Science and NutritionEthiopian Institute of Agricultural ResearchAddis AbabaEthiopia
| | - Yuosra Amer Ali
- Department of Food Sciences, College of Agriculture and ForestryUniversity of MosulMosulIraq
| | | |
Collapse
|
17
|
Khaledi M, Poureslamfar B, Alsaab HO, Tafaghodi S, Hjazi A, Singh R, Alawadi AH, Alsaalamy A, Qasim QA, Sameni F. The role of gut microbiota in human metabolism and inflammatory diseases: a focus on elderly individuals. ANN MICROBIOL 2024; 74:1. [DOI: 10.1186/s13213-023-01744-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2025] Open
Abstract
Abstract
Background
The gut microbiota plays a crucial role in regulating the host’s immune responses during aging, which was characterized by a different abundance of bacteria in several age groups.
Main body
Gut microbiota dysbiosis is associated with aging, antibiotic exposure, underlying diseases, infections, hormonal variations, circadian rhythm, and malnutrition, either singularly or in combination. The appropriate use of prebiotics and probiotics may be able to prevent or reduce this disruption.
Conclusion
The current review focuses on the gut microbiota composition across the life cycle, factors affecting gut microbiota changes with aging, and interventions to modulate gut microbiota.
Collapse
|
18
|
Poeta M, Del Bene M, Lo Vecchio A, Guarino A. Acute Infectious Diarrhea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1449:143-156. [PMID: 39060736 DOI: 10.1007/978-3-031-58572-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Acute infectious diarrhea (AID) is one of the most common diseases in pediatric age with relevant burden both in high and in low-income countries. Thanks to their direct action on enterocyte functions and indirect actions on the mucosal and systemic immune system and on intestinal microbiome, probiotics are an ideal intervention to treat AID in childhood. However, their efficacy is strictly related to strains and indications, and practitioners should take this information into account in clinical practice. This chapter summarizes the main mechanisms of action of probiotics in AID, with a focus on proof of efficacy supporting their use in prevention and treatment of childhood AID. The use of selected strains in appropriate doses is strongly recommended by guidelines of AID, based on compelling proofs of efficacy and safety. At present, therapy with probiotics of AID is probably the strongest indication for probiotic use in medicine. Their role in prevention of AID is however questionable in healthy population, whereas it should be considered in at-risk population. Evidence for prevention of diarrhea in day-care centers and communities is lacking, but consistent evidence supports efficacy in prevention of hospital acquired diarrhea. Finally, this chapter presents novelties on this topic, in particular the role of rotavirus immunization on probiotics effectiveness and the effect of probiotics and postbiotics on Covid-associated diarrhea.Overall: AID is the most convincing area for probiotic use in children with gastrointestinal disorders, and effective strains should be used early on after onset of symptoms.
Collapse
Affiliation(s)
- Marco Poeta
- Department of Translational Medical Sciences - Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Margherita Del Bene
- Department of Translational Medical Sciences - Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Andrea Lo Vecchio
- Department of Translational Medical Sciences - Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Alfredo Guarino
- Department of Translational Medical Sciences - Section of Pediatrics, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
19
|
Ali SI, Salama A. Natural Immunomodulatory Agents as a Complementary Therapy for Poxviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:337-354. [PMID: 38801589 DOI: 10.1007/978-3-031-57165-7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxviruses target innate immunity mediators such as tumor necrosis factors, interleukins, interferons, complement, and chemokines. It also targets adaptive immunity such as CD4+ T cells, CD4+ T cells, and B cells. Emerging of the recent epidemic of monkeypox virus (MPXV), a zoonotic disease native to Central and Western Africa, besides the lack of permitted treatments for poxviruses infections, encouraged researchers to identify effective inhibitors to help in preventing and treating poxviruses infections. Natural bioactive components, particularly polyphenolics, are promising for creating powerful antioxidants, anti-inflammatory, immune-stimulating, and antiviral agents. As a result, they are potentially effective therapies for preventing and treating viral diseases, such as infections caused by poxviruses including the recent pandemic MPXV. Polyphenolics: rosmarinic acid, caffeic acid, resveratrol, quercitrin, myricitrin, gingerol, gallotannin, and propolis-benzofuran A, as well as isoquinoline alkaloids: galanthamine and thalimonine represent prospective antiviral agents against MPXV, they can inhibit MPXV and other poxviruses via targeting different viral elements including DNA Topoisomerase I (TOP1), Thymidine Kinase (TK), serine/threonine protein kinase (Ser/Thr kinase), and protein A48R. The bioactive extracts of different traditional plants including Guiera senegalensis, Larrea tridentata, Sarracenia purpurea, Kalanchoe pinnata (Lam.) Pers., Zingiber officinale Roscoe, Quercus infectoria, Rhus chinensis, Prunella vulgaris L., Salvia rosmarinus, and Origanum vulgare also can inhibit the growth of different poxviruses including MPXV, vaccinia virus (VACV), variola virus, buffalopox virus, fowlpox virus, and cowpox virus. There is an urgent need for additional molecular studies to identify and confirm the anti-poxviruses properties of various natural bioactive components, especially those that showed potent antiviral activity against other viruses.
Collapse
Affiliation(s)
- Sami I Ali
- Plant Biochemistry Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt.
| | - Abeer Salama
- Pharmacology Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt
| |
Collapse
|
20
|
Zhu F, Cao J, Song Y, Yu P, Su E. Plant Protein-Derived Active Peptides: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20479-20499. [PMID: 38109192 DOI: 10.1021/acs.jafc.3c06882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Active peptides are a class of physiologically active protein fragments, which can be prepared from different sources. In the past few decades, the production of peptides with various effects from different plant proteins continues to receive academic attention. With advances in extraction, purification, and characterization techniques, plant protein-derived active peptides continue to be discovered. They have been proven to have various functional activities such as antioxidant, antihypertensive, immunomodulatory, antimicrobial, anti-inflammatory, antidiabetic, antithrombotic, and so on. In this review, we searched Web of Science and China National Knowledge Infrastructure for relevant articles published in recent years. There are 184 articles included in this manuscript. The current status of plant protein-derived active peptides is systematically introduced, including their sources, preparation, purification and identification methods, physiological activities, and applications in the food industry. Special emphasis has been placed on the problems of active peptide exploration and the future trend. Based on these, it is expected to provide theoretical reference for the further exploitation of plant protein-derived active peptides, and promote the healthy and rapid development of active peptide industry.
Collapse
Affiliation(s)
- Feng Zhu
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jiarui Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yiting Song
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Pengfei Yu
- Suining County Runqi Investment Company, Limited, Xuzhou 221225, P. R. China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, P. R. China
- Bai Ma Future Food Research Institute, Nanjing 211225, P. R. China
| |
Collapse
|
21
|
Singh DN, Bohra JS, Dubey TP, Shivahre PR, Singh RK, Singh T, Jaiswal DK. Common foods for boosting human immunity: A review. Food Sci Nutr 2023; 11:6761-6774. [PMID: 37970422 PMCID: PMC10630845 DOI: 10.1002/fsn3.3628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 11/17/2023] Open
Abstract
We are frequently exposed to potentially harmful microbes of various types on a daily basis. Our immune system is an amazing collection of unique organs and cells that defends us from hazardous germs as well as certain diseases. It plays a crucial role in protecting the body against external invaders, including bacteria, viruses, and parasites. Maintaining a healthy immune system requires consuming a balanced diet that provides a variety of macro- and micronutrients. By consuming sufficient amounts of water, minerals such as zinc and magnesium, micronutrients, herbs, and foods rich in vitamins C, D, and E, and adopting a healthy lifestyle, one can enhance their health and immunity, and prevent infections. This article provides a comprehensive review of the scientific literature on common foods known for their potential to boost human immunity. The review begins by discussing the various components of the immune system and their functions. It then delves into the current understanding of how nutrition can influence immune response, highlighting the importance of a well-balanced diet in supporting optimal immune function. The article presents an extensive analysis of a range of common foods that have been studied for their immune-boosting properties. These foods include fruits, vegetables, whole grains, and animal-based foods. Each food category is explored in terms of its specific nutrients and bioactive compounds that contribute to immune support. Foods such as milk, eggs, fruits, leafy greens, and spices like onion, garlic, and turmeric contain beneficial compounds that can enhance the immune system's function, activate and inhibit immune cells, and interfere with multiple pathways that eventually lead to improved immune responses and defense. The available literature on the issue was accessed via online resources and evaluated thoroughly as a methodology for preparing this manuscript.
Collapse
Affiliation(s)
| | - Jitendra Singh Bohra
- Department of Agronomy, Institute of Agricultural SciencesBanaras Hindu UniversityVaranasiIndia
| | - Tej Pratap Dubey
- Council for Technical Education and Vocational Training (CTEVT)BhaktapurNepal
| | - Pushp Raj Shivahre
- Department of Animal Husbandry and DairyingUdai Pratap Autonomous CollegeVaranasiIndia
| | - Ram Kumar Singh
- Department of Agronomy, Institute of Agricultural SciencesBanaras Hindu UniversityVaranasiIndia
| | - Tejbal Singh
- Department of Agronomy, Institute of Agricultural SciencesBanaras Hindu UniversityVaranasiIndia
| | | |
Collapse
|
22
|
Yu C, Dong Q, Chen M, Zhao R, Zha L, Zhao Y, Zhang M, Zhang B, Ma A. The Effect of Mushroom Dietary Fiber on the Gut Microbiota and Related Health Benefits: A Review. J Fungi (Basel) 2023; 9:1028. [PMID: 37888284 PMCID: PMC10608147 DOI: 10.3390/jof9101028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Mushroom dietary fiber is a type of bioactive macromolecule derived from the mycelia, fruiting bodies, or sclerotia of edible or medicinal fungi. The use of mushroom dietary fiber as a prebiotic has recently gained significant attention for providing health benefits to the host by promoting the growth of beneficial microorganisms; therefore, mushroom dietary fiber has promising prospects for application in the functional food industry and in drug development. This review summarizes methods for the preparation and modification of mushroom dietary fiber, its degradation and metabolism in the intestine, its impact on the gut microbiota community, and the generation of short-chain fatty acids (SCFAs); this review also systematically summarizes the beneficial effects of mushroom dietary fiber on host health. Overall, this review aims to provide theoretical guidance and a fresh perspective for the prebiotic application of mushroom dietary fiber in the development of new functional foods and drugs.
Collapse
Affiliation(s)
- Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Qin Dong
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Ruihua Zhao
- School of Life Sciences, Yan’an University, Yan’an 716000, China;
| | - Lei Zha
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Mengke Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Baosheng Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
23
|
Fanaro GB, Marques MR, Calaza KDC, Brito R, Pessoni AM, Mendonça HR, Lemos DEDA, de Brito Alves JL, de Souza EL, Cavalcanti Neto MP. New Insights on Dietary Polyphenols for the Management of Oxidative Stress and Neuroinflammation in Diabetic Retinopathy. Antioxidants (Basel) 2023; 12:1237. [PMID: 37371967 PMCID: PMC10295526 DOI: 10.3390/antiox12061237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic retinopathy (DR) is a neurodegenerative and vascular pathology that is considered one of the leading causes of blindness worldwide, resulting from complications of advanced diabetes mellitus (DM). Current therapies consist of protocols aiming to alleviate the existing clinical signs associated with microvascular alterations limited to the advanced disease stages. In response to the low resolution and limitations of the DR treatment, there is an urgent need to develop more effective alternative therapies to optimize glycemic, vascular, and neuronal parameters, including the reduction in the cellular damage promoted by inflammation and oxidative stress. Recent evidence has shown that dietary polyphenols reduce oxidative and inflammatory parameters of various diseases by modulating multiple cell signaling pathways and gene expression, contributing to the improvement of several chronic diseases, including metabolic and neurodegenerative diseases. However, despite the growing evidence for the bioactivities of phenolic compounds, there is still a lack of data, especially from human studies, on the therapeutic potential of these substances. This review aims to comprehensively describe and clarify the effects of dietary phenolic compounds on the pathophysiological mechanisms involved in DR, especially those of oxidative and inflammatory nature, through evidence from experimental studies. Finally, the review highlights the potential of dietary phenolic compounds as a prophylactic and therapeutic strategy and the need for further clinical studies approaching the efficacy of these substances in DR management.
Collapse
Affiliation(s)
- Gustavo Bernardes Fanaro
- Institute of Health and Biotechnology, Federal University of Amazonas, Manaus 69460000, Amazonas, Brazil;
| | | | - Karin da Costa Calaza
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói 24210201, Rio de Janeiro, Brazil;
| | - Rafael Brito
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niterói 24210201, Rio de Janeiro, Brazil;
| | | | - Henrique Rocha Mendonça
- Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Macaé 27965045, Rio de Janeiro, Brazil; (H.R.M.); (M.P.C.N.)
| | | | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051900, Paraíba, Brazil; (D.E.d.A.L.); (J.L.d.B.A.)
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051900, Paraíba, Brazil; (D.E.d.A.L.); (J.L.d.B.A.)
| | - Marinaldo Pacífico Cavalcanti Neto
- Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Macaé 27965045, Rio de Janeiro, Brazil; (H.R.M.); (M.P.C.N.)
| |
Collapse
|
24
|
Bibi Z, Ashraf K, Shehzadi A, Rehman A, Abbas Bukhari D. Evaluation of isolated probiotics on the efficacy of immune system in male and female Wistar rats. Saudi Pharm J 2023; 31:1036-1046. [PMID: 37250360 PMCID: PMC10209143 DOI: 10.1016/j.jsps.2023.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/23/2023] [Indexed: 05/31/2023] Open
Abstract
Probiotics were isolated from fruits and vegetables. Microscopic, biochemical, and molecular tests were carried out for the characterization of strains of probiotics. To assess the effects of isolated probiotics on immunity, male and female (15 + 15) Wistar rats (n = 3) were randomly distributed into 5 groups: 0-day, negative control, positive control (commercially available Lactobacillus acidophilus-14), laboratory isolated probiotics with accession numbers; Lactobacillus plantarum (MZ707748) and Lactobacillus plantarum (MZ729681), respectively. After hematological investigations, the amounts of IgA and IgG in male and female groups were significantly different (p < 0.05). At the same time, the values of Alanine-transaminase (ALT) and Aspartate-aminotransferase (AST) in both genders were average, and there were no differences (p > 0.05). Male probiotic-treated groups had decreased levels of interleukin-6, bilirubin, and creatinine, but female probiotic-treated groups had a slight rise in bilirubin and creatinine values (p = 0.05). Cellular blood count levels of Hematocrit (HCT) and white blood cells (WBC) in male groups showed considerable differences (p < 0.05), while there were no differences (p > 0.05) in female groups. Levels of Red blood cells (RBC) and mean corpuscular hemoglobin concentration (MCHC) showed distinct changes (p < 0.05) in female groups, while these values were insignificant changes (p > 0.05) among male groups. There were considerable differences between the control and groups that were given probiotics. Histopathological results showed no damage to the liver and thymus. A fecal examination of rats was used to examine the viability and survival of Lactobacilli. Based on blood tests, it was observed that the immune system was boosted and improved in probiotic-treated groups compared to control groups.
Collapse
Affiliation(s)
- Zuhra Bibi
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Khadija Ashraf
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Areeba Shehzadi
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, 54590 Lahore, Pakistan
| | | |
Collapse
|
25
|
Bešlo D, Golubić N, Rastija V, Agić D, Karnaš M, Šubarić D, Lučić B. Antioxidant Activity, Metabolism, and Bioavailability of Polyphenols in the Diet of Animals. Antioxidants (Basel) 2023; 12:1141. [PMCID: PMC10294820 DOI: 10.3390/antiox12061141] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023] Open
Abstract
As the world’s population grows, so does the need for more and more animal feed. In 2006, the EU banned the use of antibiotics and other chemicals in order to reduce chemical residues in food consumed by humans. It is well known that oxidative stress and inflammatory processes must be combated to achieve higher productivity. The adverse effects of the use of pharmaceuticals and other synthetic compounds on animal health and product quality and safety have increased interest in phytocompounds. With the use of plant polyphenols in animal nutrition, they are gaining more attention as a supplement to animal feed. Livestock feeding based on a sustainable, environmentally friendly approach (clean, safe, and green agriculture) would also be a win–win for farmers and society. There is an increasing interest in producing healthier products of animal origin with a higher ratio of polyunsaturated fatty acids (PUFAs) to saturated fatty acids by modulating animal nutrition. Secondary plant metabolites (polyphenols) are essential chemical compounds for plant physiology as they are involved in various functions such as growth, pigmentation, and resistance to pathogenic organisms. Polyphenols are exogenous antioxidants that act as one of the first lines of cell defense. Therefore, the discoveries on the intracellular antioxidant activity of polyphenols as a plant supplement have contributed significantly to the improvement of antioxidant activity, as polyphenols prevent oxidative stress damage and eliminate excessively produced free radicals. To achieve animal welfare, reduce stress and the need for medicines, and increase the quality of food of animal origin, the addition of polyphenols to research and breeding can be practised in part with a free-choice approach to animal nutrition.
Collapse
Affiliation(s)
- Drago Bešlo
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Nataša Golubić
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Vesna Rastija
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Dejan Agić
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Maja Karnaš
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Domagoj Šubarić
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Bono Lučić
- NMR Center, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
| |
Collapse
|
26
|
Onisei T, Tihăuan BM, Dolete G, Axinie Bucos M, Răscol M, Isvoranu G. In Vivo Acute Toxicity and Immunomodulation Assessment of a Novel Nutraceutical in Mice. Pharmaceutics 2023; 15:pharmaceutics15041292. [PMID: 37111777 PMCID: PMC10144505 DOI: 10.3390/pharmaceutics15041292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Achieving and maintaining a well-balanced immune system has righteously become an insightful task for the general population and an even more fundamental goal for those affected by immune-related diseases. Since our immune functions are indispensable in defending the body against pathogens, diseases and other external attacks, while playing a vital role in maintaining health and modulating the immune response, we require an on-point grasp of their shortcoming as a foundation for the development of functional foods and novel nutraceuticals. Seeing that immunoceuticals are considered effective in improving immune functions and reducing the incidence of immunological disorders, the main focus of this study was to assess the immunomodulatory properties and possible acute toxicity of a novel nutraceutical with active substances of natural origin on C57BL/6 mice for 21 days. We evaluated the potential hazards (microbial contamination and heavy metals) of the novel nutraceutical and addressed the acute toxicity according to OECD guidelines of a 2000 mg/kg dose on mice for 21 days. The immunomodulatory effect was assessed at three concentrations (50 mg/kg, 100 mg/kg and 200 mg/kg) by determining body and organ indexes through a leukocyte analysis; flow cytometry immunophenotyping of lymphocytes populations and their subpopulations (T lymphocytes (LyCD3+), cytotoxic suppressor T lymphocytes (CD3+CD8+), helper T lymphocytes (CD3+CD4+), B lymphocytes (CD3-CD19+) and NK cells (CD3-NK1.1.+); and the expression of the CD69 activation marker. The results obtained for the novel nutraceutical referred to as ImunoBoost indicated no acute toxicity, an increased number of lymphocytes and the stimulation of lymphocyte activation and proliferation, demonstrating its immunomodulatory effect. The safe human consumption dose was established at 30 mg/day.
Collapse
Affiliation(s)
- Tatiana Onisei
- The National Institute for Research and Development in Food Bioresources, Dinu Vintilă Street, No.6, 021102 Bucharest, Romania
| | - Bianca-Maria Tihăuan
- The National Institute for Research and Development in Food Bioresources, Dinu Vintilă Street, No.6, 021102 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 50567 Bucharest, Romania
- Research & Development for Advanced Biotechnologies and Medical Devices, SC Sanimed International Impex SRL, 087040 Călugăreni, Romania
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Mădălina Axinie Bucos
- Research & Development for Advanced Biotechnologies and Medical Devices, SC Sanimed International Impex SRL, 087040 Călugăreni, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Manuela Răscol
- The National Institute for Research and Development in Food Bioresources, Dinu Vintilă Street, No.6, 021102 Bucharest, Romania
| | - Gheorghița Isvoranu
- National Institute of Pathology Victor Babeş-Bucharest, 99-101 Spl. Independenței, 050096 Bucharest, Romania
| |
Collapse
|
27
|
Tian J, Zhao X, Tang C, Wang X, Zhang X, Xiao L, Li W. Protective effect of Paecilomyces cicadae TJJ11213 exopolysaccharide on intestinal mucosa and regulation of gut microbiota in immunosuppressed mice. Food Res Int 2023; 165:112477. [PMID: 36869490 DOI: 10.1016/j.foodres.2023.112477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/26/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
The exopolysaccharide (EPS) form Paecilomyces cicadae TJJ1213 possessed immunomodulatory activity in vitro, but whether it could regulate the immune system and intestinal microbiota in vivo remained unknown. In this study, the cyclophosphamide (CTX)-induced immunosuppressive mouse model was established to explore the immunomodulatory activity of EPS. Results showed that EPS could increase the immune organ indices, promote the secretion of serum immunoglobulins and up-regulate the expression of cytokines. Additionally, EPS could repair CTX-induced intestinal injury by increasing the expression of tight junction proteins and promoting the production of short-chain fatty acids. Moreover, EPS could remarkably enhance immunity through TLR4/MyD88/NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways. Furthermore, EPS regulated intestinal microbiota by increasing the abundance of beneficial bacteria (Muribaculaceae, Lachnospiraceae NK4A136, Bacteroides, Odoribacter) and reducing the level of harmful bacteria (Alistipes, Helicobacter). In conclusion, our study suggested that EPS had the abilities to enhance immunity, restore intestinal mucosal injury and modulate intestinal microbiota, and may serve as a potential prebiotic to maintain health in the future.
Collapse
Affiliation(s)
- Juanjuan Tian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; College of Tea and Food Science Technology, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu 212400, PR China
| | - Xiaogan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Chao Tang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaomeng Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xueliang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Luyao Xiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wei Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
28
|
Trigui A, Rose CF, Bémeur C. Nutritional Strategies to Manage Malnutrition and Sarcopenia following Liver Transplantation: A Narrative Review. Nutrients 2023; 15:nu15040903. [PMID: 36839261 PMCID: PMC9965211 DOI: 10.3390/nu15040903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Persisting or newly developed malnutrition and sarcopenia after liver transplant (LT) are correlated with adverse health outcomes. This narrative review aims to examine the literature regarding nutrition strategies to manage malnutrition and sarcopenia after LT. The secondary aims are to provide an overview of the effect of nutrition strategies on the incidence of infections, hospital length of stay (LOS), acute cellular rejection (ACR), and mortality after LT. Four databases were searched. A total of 25 studies, mostly of mid-high quality, were included. Six studies found a beneficial effect on nutritional parameters using branched-chain amino acids (BCAA), immunomodulating diet (IMD), or enteral nutrition (EN) whereas two studies using beta-hydroxy-beta-methylbutyrate (HMB) found a beneficial effect on muscle mass and function. Fourteen studies using pre- or pro-biotics, IMD, and EN were effective in lowering infection and six studies using IMD, BCAA or HMB reported reduced hospital LOS. Finally, four studies using HMB and vitamin D were effective in reducing ACR and one study reported reduced mortality using vitamin D after LT. In conclusion, nutritional intervention after LT has different beneficial effects on malnutrition, sarcopenia, and other advert outcomes. Additional large and well-constructed RCTs using validated tools to assess nutritional status and sarcopenia are warranted to ensure more robust conclusions.
Collapse
Affiliation(s)
- Amal Trigui
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1A8, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Christopher F. Rose
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Chantal Bémeur
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1A8, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
- Correspondence: ; Tel.: +1-5148908000 (ext. 23607)
| |
Collapse
|
29
|
Wang X, Chan YS, Wong K, Yoshitake R, Sadava D, Synold TW, Frankel P, Twardowski PW, Lau C, Chen S. Mechanism-Driven and Clinically Focused Development of Botanical Foods as Multitarget Anticancer Medicine: Collective Perspectives and Insights from Preclinical Studies, IND Applications and Early-Phase Clinical Trials. Cancers (Basel) 2023; 15:701. [PMID: 36765659 PMCID: PMC9913787 DOI: 10.3390/cancers15030701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Cancer progression and mortality remain challenging because of current obstacles and limitations in cancer treatment. Continuous efforts are being made to explore complementary and alternative approaches to alleviate the suffering of cancer patients. Epidemiological and nutritional studies have indicated that consuming botanical foods is linked to a lower risk of cancer incidence and/or improved cancer prognosis after diagnosis. From these observations, a variety of preclinical and clinical studies have been carried out to evaluate the potential of botanical food products as anticancer medicines. Unfortunately, many investigations have been poorly designed, and encouraging preclinical results have not been translated into clinical success. Botanical products contain a wide variety of chemicals, making them more difficult to study than traditional drugs. In this review, with the consideration of the regulatory framework of the USFDA, we share our collective experiences and lessons learned from 20 years of defining anticancer foods, focusing on the critical aspects of preclinical studies that are required for an IND application, as well as the checkpoints needed for early-phase clinical trials. We recommend a developmental pipeline that is based on mechanisms and clinical considerations.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Yin S. Chan
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Kelly Wong
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Ryohei Yoshitake
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - David Sadava
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Timothy W. Synold
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Paul Frankel
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Przemyslaw W. Twardowski
- Department of Urologic Oncology, Saint John’s Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | - Clayton Lau
- Department of Surgery, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Shiuan Chen
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| |
Collapse
|
30
|
HACHIMURA S. Immunomodulation by Food: Novel Collaborations between Food Components and Microbiota. J Nutr Sci Vitaminol (Tokyo) 2022; 68:S126-S127. [DOI: 10.3177/jnsv.68.s126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Satoshi HACHIMURA
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
31
|
Phytochemical characterization and immunomodulatory effects of aqueous, ethanolic extracts and essential oil of Syzygium aromaticum L. on human neutrophils. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
32
|
Höglund P. Antigen presentation in mucosal tissues: Dendritic cells and
GP2. Scand J Immunol 2022. [DOI: 10.1111/sji.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Petter Höglund
- Department of Medicine Huddinge Center for Hematology and Regenerative Medicine (HERM), Karolinska Institutet Stockholm Sweden
| |
Collapse
|
33
|
Jagielski P, Wnęk D, Łuszczki E, Bolesławska I, Micek A, Kozioł-Kozakowska A, Piórecka B, Koczur K, Jankowska K, Gaździńska A, Turczyńska M, Kawalec P. Proposition of a New POLA Index to Assess the Immunomodulatory Properties of the Diet and Its Relationship with the Gut Microbiota, Using the Example of the Incidence of COVID-19 in a Group of People without Comorbidities. Nutrients 2022; 14:4227. [PMID: 36296911 PMCID: PMC9607188 DOI: 10.3390/nu14204227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/26/2022] Open
Abstract
A rise in the incidence of infections with severe acute respiratory syndrome coronavirus 2 has sparked the search for protective strategies against the new pathogen. It is known that individual food components can interact with different immune cells, modulating the immune response of the body. The aim of this study was to develop an index assessing the immunomodulatory potential of diet (POLA index) and to test its utility for the prediction of coronavirus disease 2019 (COVID-19) in a group of healthy young people following a traditional or vegetarian diet. Data on body composition, anthropometric measurements, physical activity, dietary intake, and gut microbiota were obtained from 95 adults (mean age, 34.66 ± 5.76 years). There was a strong correlation between the dietary inflammatory index and the POLA index (r = 0.90; p < 0.0001). Based on Cohen’s kappa statistic, there was a good agreement in qualitative interpretation between the two indices (kappa = 0.61; p < 0.0001). People on a diet with beneficial immunomodulatory effects had a lower risk of COVID-19 of approximately 80%, as compared with those on a diet with highly unbeneficial immunomodulatory effects. In daily practice, the POLA index might serve as a useful tool for dietitians to identify individuals whose diet is deficient in ingredients for optimal immune system function and change their dietary behavior to ensure optimal immune function that reduces the risk of infection.
Collapse
Affiliation(s)
- Paweł Jagielski
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College,31-066 Krakow, Poland
| | - Dominika Wnęk
- The Cracow’s Higher School of Health Promotion, 31-158 Krakow, Poland
| | - Edyta Łuszczki
- Institute of Health Sciences, Medical College of Rzeszów University, 35-310 Rzeszów, Poland
| | - Izabela Bolesławska
- Department of Bromatology, Poznan University of Medical Sciences, 3 Rokietnicka Str., 60-806 Poznań, Poland
| | - Agnieszka Micek
- Department of Nursing Management and Epidemiology Nursing, Jagiellonian University Medical College, 31-007 Cracow, Poland
| | - Agnieszka Kozioł-Kozakowska
- Department of Pediatrics, Gastroenterology and Nutrition, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Beata Piórecka
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College,31-066 Krakow, Poland
| | - Karolina Koczur
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College,31-066 Krakow, Poland
| | - Katarzyna Jankowska
- Department of Endocrinology, Bielanski Hospital, Center of Postgraduate Medical Education, ul. Cegłowska 80, 01-809 Warsaw, Poland
| | - Agata Gaździńska
- Laboratory of Dietetics and Obesity Treatment, Department of Psychophysiological Measurements and Human Factor Research, Military Institute of Aviation Medicine, Krasińskiego 54/56, 01-755 Warsaw, Poland
| | - Marta Turczyńska
- Laboratory of Dietetics and Obesity Treatment, Department of Psychophysiological Measurements and Human Factor Research, Military Institute of Aviation Medicine, Krasińskiego 54/56, 01-755 Warsaw, Poland
| | - Paweł Kawalec
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College,31-066 Krakow, Poland
| |
Collapse
|
34
|
Immunostimulatory Effect of Postbiotics Prepared from Phellinus linteus Mycelial Submerged Culture via Activation of Spleen and Peyer's Patch in C3H/HeN Mice. Pharmaceuticals (Basel) 2022; 15:ph15101215. [PMID: 36297326 PMCID: PMC9612016 DOI: 10.3390/ph15101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Medicinal mushrooms are an important natural resource promoting health benefits. Herein, Phellinus linteus mycelia were prepared under submerged cultivation, the mycelium-containing culture broth was extracted as a whole to obtain the postbiotic materials (PLME), and its effect on the immune system was evaluated in normal C3H/HeN mice. Oral administration of PLME for 4 weeks was well tolerated and safe. In the PLME-administered groups, in addition to the production of immunostimulatory cytokines, such as interferon gamma (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6), the mitogenic activity was significantly increased. PLME administration also significantly increased the levels of serum immunoglobulin G (IgG) and IgA in the small intestinal fluid and Peyer's patches and enhanced Peyer's patch-mediated bone marrow cell proliferation activity and cytokine production (IL-2, IL-6, and IFN-γ). Histomorphometric analyses showed an increase in immune cells in the spleen and small intestinal tissues of mice administered PLME, supporting the rationale for its immune system activation. PLME mainly contained neutral sugar (969.1 mg/g), comprising primarily of glucose as a monosaccharide unit. The β-glucan content was 88.5 mg/g. Data suggest that PLME effectively promote immune function by stimulating the systemic immune system through the spleen and intestinal immune tissues. PLME can thus be developed as a functional ingredient to enhance immune functions.
Collapse
|
35
|
Feng Y, Song Y, Zhou J, Duan Y, Kong T, Ma H, Zhang H. Recent progress of Lycium barbarum polysaccharides on intestinal microbiota, microbial metabolites and health: a review. Crit Rev Food Sci Nutr 2022; 64:2917-2940. [PMID: 36168931 DOI: 10.1080/10408398.2022.2128037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Intestinal microbiota is symbiotically associated with host health, learning about the characteristics of microbiota and the factors that modulate it could assist in developing strategies to promote human health and prevent diseases. Polysaccharides from Lycium barbarum (LBPs) are found beneficial for enhancing the activity of gut microbiota, as a potential prebiotic, which not only participates in improving body immunity, obesity, hyperlipidemia and systemic inflammation induced by oxidative stress, but also plays a magnificent role in regulating intestinal microenvironment and improving host health and target intestinal effects via its biological activities, as well as gut microbiota and metabolites. To highlight the internal relationship between intestinal microbiota and LBPs, this review focuses on the latest advances in LBPs on the intestinal microbiota, metabolites, immune regulation, intestinal barrier protection, microbiota-gut-brain axis and host health. Moreover, the preparation, structure, bioactivity and modification of LBPs were also discussed. This review may offer new perspective on LBPs improving health of gut and host via intestinal microbiota, and provide useful guidelines for the application of LBPs in the food industry.
Collapse
Affiliation(s)
- Yuqin Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yating Song
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jie Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Tianyu Kong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
36
|
Mecocci S, De Paolis L, Fruscione F, Pietrucci D, De Ciucis CG, Giudici SD, Franzoni G, Chillemi G, Cappelli K, Razzuoli E. In vitro evaluation of immunomodulatory activities of goat milk Extracellular Vesicles (mEVs) in a model of gut inflammation. Res Vet Sci 2022; 152:546-556. [PMID: 36179548 DOI: 10.1016/j.rvsc.2022.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022]
Abstract
Gut represents a major immunological defense barrier with mucosal immune system and intestinal epithelial cells (IECs). In all intestinal diseases, in particular inflammatory bowel disease (IBD), both the absorption and the local immune system are compromised and alternative effective therapies are sought after. Extracellular Vesicles (EVs) have the capability to regulate immune cells within the inflammatory microenvironment, by dampening inflammation and restoring intestinal barrier integrity. Recently, the immune-modulatory role of EVs has also been confirmed for milk EVs (mEVs), notable for their easy production, high sample volumes, cost-effective scalable production and non-toxic and non-immunogenic behavior. In this context, the aim of this study was to evaluate goat mEV anti-inflammatory and immuno-modulating effects on an in vitro model (IPEC-J2) of intestinal inflammation through gene expression evaluation with RT-qPCR and cytokine release dosage with ELISA test. After the establishment of a pro-inflammatory environment due to LPS stimuli, IL6, CXCL8, IL12p35, IL12p40, IFNB, IL18, TLR7 and NOS2 resulted significantly up-regulated in stimulated IPEC-J2 cells compared to those of the basal culture. After 48 h of mEV treatment in inflamed IPEC-J2 a partial restoration of initial conditions was detected, with the IL18 and IL12p40 significant down-regulation, and IL12p35, EBI3, TLR7, BD1 and BD3 up-regulation. IL-18 reduced protein production was also detected in supernatants. Moreover, a decrease of MMP9 and NOS2 together with a strong up-regulation of MUC2 indicated a recovery of cellular homeostasis and, therefore, potential beneficial effects on the intestinal mucosa. Nevertheless, 48 h post-treatment, an increased gene expression and protein release of IL-8 was observed. This paper is one of the firsts to assess the effect of goat mEVs and the first one, in particular, of doing this on an in vitro model of gut inflammation. The obtained results show a potential capability of goat mEVs to modulate inflammation and to play beneficial effects on the intestinal mucosa.
Collapse
Affiliation(s)
- Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06123 Perugia, Italy; Sports Horse Research Center (CRCS), University of Perugia, 06123 Perugia, Italy.
| | - Livia De Paolis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39/24, 16129 Genova, Italy.
| | - Floriana Fruscione
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39/24, 16129 Genova, Italy.
| | - Daniele Pietrucci
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, IBIOM, CNR, 70126 Bari, Italy; Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39/24, 16129 Genova, Italy.
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy.
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy.
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy.
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06123 Perugia, Italy; Sports Horse Research Center (CRCS), University of Perugia, 06123 Perugia, Italy.
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39/24, 16129 Genova, Italy.
| |
Collapse
|
37
|
Extracellular Vesicles—Oral Therapeutics of the Future. Int J Mol Sci 2022; 23:ijms23147554. [PMID: 35886902 PMCID: PMC9315796 DOI: 10.3390/ijms23147554] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
Considered an artifact just after discovery, the possibility of oral delivery of extracellular vesicles (EVs) and their functional cargos has recently gained much research attention. EVs from various sources, including edible plants, milk, bacteria and mammalian cells, have emerged as a platform for miRNA and drug delivery that seem to induce the expected immune effects locally and in distant tissues after oral administration. Such a possibility greatly expands the clinical applicability of EVs. The present review summarizes research findings that either support or deny the biological/therapeutical activity of orally administered EVs and their role in cross-species and cross-kingdom signaling.
Collapse
|
38
|
Li C, Cheng X, Cao W, Wang Y, Xue C, Tang Q. Enzymatic hydrolysate of porphyra enhances the intestinal mucosal functions in obese mice. J Food Biochem 2022; 46:e14175. [PMID: 35510340 DOI: 10.1111/jfbc.14175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/13/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022]
Abstract
Intestinal mucosal immunity is important to human body; however, obesity induced by high-fat diet may bring a series of problems, such as chronic inflammation which may damage intestinal mucosal immunity. In this study, the effects of two different enzymatic hydrolysates of porphyra on the function of intestinal mucosal were explored in obese mice. The results showed that 10 consecutive weeks of high-fat dietary intake resulted in weight gain and intestinal abnormalities in C57BL/6 mice. However, the administration of enzymatic hydrolysate of porphyra effectively protected the intestinal mucosa from these injuries while reducing levels of oxidative stress (MDA, GSH, and GSH-Px). Specifically, they were found to improve small intestine morphological structure, increase growth of goblet cells and mucous, raise expression levels of lysozyme, and stimulate SIgA secretion, especially in the group administered with the enzymatic hydrolysate containing protease and polysaccharide enzyme (EHPP). The results showed that the enzymatic hydrolysates of porphyra may provide a protective measure to maintain intestinal mucosal barriers, which is beneficial to overall health. Porphyra is widely distributed all over the world. Moreover, an increasing number of studies have described its diverse biological functions. Therefore, it is necessary to find a way to develop products related to porphyra. In this study, a new type of polysaccharide enzyme of porphyra found in our previous research was used to make a clear porphyra energy drink with a lower molecular weight polysaccharide. Our findings highlighted the repaired intestinal barriers in obese bodies after the treatment with the enzymatic hydrolysate. PRACTICAL APPLICATIONS: Porphyra is widely distributed all over the world. Moreover, an increasing number of studies have described its diverse biological functions. Therefore, it is necessary to find a way to develop products related to porphyra. In this study, a new type of polysaccharide enzyme of porphyra found in our previous research was used to make a clear porphyra energy drink with a lower molecular weight polysaccharide. Our findings highlighted the repaired intestinal barriers in obese bodies after the treatment with the enzymatic hydrolysate.
Collapse
Affiliation(s)
- Chunjun Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Xiaojie Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Wanxiu Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P. R. China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P. R. China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| |
Collapse
|
39
|
Zhang Y, Capanoglu E, Jiao L, Yin L, Liu X, Wang R, Xiao J, Lu B. Coarse cereals modulating chronic low-grade inflammation: review. Crit Rev Food Sci Nutr 2022; 63:9694-9715. [PMID: 35503432 DOI: 10.1080/10408398.2022.2070596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic low-grade inflammation (CLGI) is closely associated with various chronic diseases. Researchers have paid attention to the comprehensive application and development of food materials with potential anti-inflammatory activity. Owing to their abundant nutrients and biological activities, coarse cereals have emerged as an important component of human diet. Increasing evidence has revealed their potential protective effects against CLGI in chronic conditions. However, this property has not been systematically discussed and summarized. In the present work, numerous published reports were reviewed to systematically analyze and summarize the protective effects of coarse cereals and their main active ingredients against CLGI. Their current utilization state was investigated. The future prospects, such as the synergistic effects among the active compounds in coarse cereals and the biomarker signatures of CLGI, were also discussed. Coarse cereals show promise as food diet resources for preventing CLGI in diseased individuals. Their active ingredients, including β-glucan, resistant starch, arabinoxylan, phenolic acids, flavonoids, phytosterols and lignans, function against CLGI through multiple possible intracellular signaling pathways and immunomodulatory effects. Therefore, coarse cereals play a crucial role in the food industry due to their health effects on chronic diseases and are worthy of further development for possible application in modulating chronic inflammation.
Collapse
Affiliation(s)
- Yongzhu Zhang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Linshu Jiao
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liqing Yin
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
| | - Xianjin Liu
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ran Wang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Baiyi Lu
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Calatayud-Sáez FM, Calatayud B, Calatayud A. Effects of the Mediterranean Diet on Morbidity from Inflammatory and Recurrent Diseases with Special Reference to Childhood Asthma. Nutrients 2022; 14:936. [PMID: 35267912 PMCID: PMC8912337 DOI: 10.3390/nu14050936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/03/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Objective: For 15 years, we have been working with a nutritional programme based on the traditional Mediterranean diet (TMD) to complete the treatment of inflammatory and recurrent diseases (IRD), such as childhood asthma. The objective of this study is to verify the effects of TMD in the prevention and treatment of IRD by measuring the incidence of infant morbidity over 8 years. Material and Methods: The number of patients who suffered from IRD each year (just before the pandemic) was determined, as well as the frequentation and the percentage of scheduled and on-demand consultations. Results: The incidence of infant morbidity decreased as they were incorporated into a TMD, and we observed a progressive disappearance of IRD. At the beginning of the study, 20% of the patients had been diagnosed with some type of IRD. At the study's end, the prevalence of IRD decreased to less than 2%, and the use of drugs and surgical interventions decreased markedly. Conclusions: A diet based on the TMD reduces the incidence of infant morbidity and contributes to the disappearance of IRD, whereas some non-traditional foods with high antigenic power could be involved in the appearance of IRD.
Collapse
|
41
|
Zhang H, Jiang F, Zhang J, Wang W, Li L, Yan J. Modulatory effects of polysaccharides from plants, marine algae and edible mushrooms on gut microbiota and related health benefits: A review. Int J Biol Macromol 2022; 204:169-192. [PMID: 35122806 DOI: 10.1016/j.ijbiomac.2022.01.166] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Naturally occurring carbohydrate polymers containing non-starch polysaccharides (NPs) are a class of biomacromolecules isolated from plants, marine algae, and edible mushrooms, and their biological activities has shown potential uses in the prevention and treatment of human diseases. Importantly, NPs serve as prebiotics to provide health benefits to the host through stimulating the proliferation of beneficial gut microbiota (GM) and enhancing the production of short-chain fatty acids (SCFAs). The composition and diversity of GM play a critical role in regulating host health and have been extensively studied in recent years. In this review, the extraction, isolation, purification, and structural characterization of NPs derived from plants, marine algae, and edible mushrooms are outlined. Importantly, the degradation and metabolism of these NPs in the intestinal tract, the effects of NPs on the microbial community and SCFAs generation, and the beneficial effects of NPs on host health by modulating GM are systematically highlighted. Overall, we hope that this review can provide some theoretical references and a new perspective for applications of NPs as prebiotics in functional food and drug development.
Collapse
Affiliation(s)
- Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China.
| | - Fuchun Jiang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Jinsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Wenhan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Lin Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Jingkun Yan
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
42
|
Immune-enhancing effects of postbiotic produced by Bacillus velezensis Kh2-2 isolated from Korea Foods. Food Res Int 2022; 152:110911. [DOI: 10.1016/j.foodres.2021.110911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/28/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022]
|
43
|
Nurliyani N, Harmayani E, Sunarti S. Synbiotic goat milk kefir improves health status in rats fed a high-fat and high-fructose diet. Vet World 2022; 15:173-181. [PMID: 35369595 PMCID: PMC8924388 DOI: 10.14202/vetworld.2022.173-181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Background and Aim: Kefir, a natural probiotic containing bacteria and yeast, is a fermented milk product, whereas glucomannan from porang tuber (Amorphophallus oncophyllus) is prebiotic in vivo. Simvastatin is a potent lipid-lowering statin that can be utilized for pharmacological therapy in obesity. This study aimed to determine the effect of goat milk kefir supplemented with porang glucomannan (synbiotic kefir) and goat milk kefir without glucomannan (probiotic kefir) on blood glucose, hemoglobin A1c (HbA1c), free fatty acids (FFAs), tumor necrosis factor-alpha (TNF-α), gene expression of peroxisome proliferator-activated receptor gamma (PPARg), and insulin-producing cells in rats fed a high-fat and high-fructose (HFHF) diet. Materials and Methods: Male Sprague-Dawley rats were divided into five dietary groups: (1) Normal control, (2) rats fed HFHF, (3) rats fed HFHF+probiotic kefir, (4) rats fed HFHF+synbiotic kefir, and (5) rats fed HFHF+simvastatin. All of these treatments were administered for 4 weeks. Results: There were no significant differences in plasma glucose levels in HFHF diet-fed rats before and after treatment. However, plasma HbA1c and TNF-α decreased, and FFAs were inhibited in rats after treatment with synbiotic kefir. Synbiotic kefir decreased the gene expression of PPARγ2 in HFHF diet-fed rats but did not affect the total number of islets of Langerhans and insulin-producing cells. Conclusion: Synbiotic kefir improved the health of rats fed an HFHF diet by decreasing HbA1c, TNF-α, and PPARγ2 gene expression and preventing an increase in FFAs.
Collapse
Affiliation(s)
- Nurliyani Nurliyani
- Department of Animal Product Technology, Faculty of Animal Science, Universitas Gadjah Mada, Jl. Fauna 3, Kampus UGM, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Eni Harmayani
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora 1 Bulaksumur, Yogyakarta 55281, Indonesia
| | - Sunarti Sunarti
- Department of Biochemistry, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Farmako, Senolowo, Sekip Utara, Yogyakarta 55281, Indonesia
| |
Collapse
|
44
|
Huo J, Wu Z, Sun W, Wang Z, Wu J, Huang M, Wang B, Sun B. Protective Effects of Natural Polysaccharides on Intestinal Barrier Injury: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:711-735. [PMID: 35078319 DOI: 10.1021/acs.jafc.1c05966] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to their minimal side effects and effective protection from oxidative stress, inflammation, and malignant growth, natural polysaccharides (NPs) are a potential adjuvant therapy for several diseases caused by intestinal barrier injury (IBI). More studies are accumulating on the protective effects of NPs with respect to IBI, but the underlying mechanisms remain unclear. Thus, this review aims to represent current studies that investigate the protective effects of NPs on IBI by directly maintaining intestinal epithelial barrier integrity (inhibiting oxidative stress, regulating inflammatory cytokine expression, and increasing tight junction protein expression) and indirectly regulating intestinal immunity and microbiota. Furthermore, the mechanisms underlying IBI development are briefly introduced, and the structure-activity relationships of polysaccharides with intestinal barrier protection effects are discussed. Potential developments and challenges associated with NPs exhibiting protective effects against IBI have also been highlighted to guide the application of NPs in the treatment of intestinal diseases caused by IBI.
Collapse
Affiliation(s)
- Jiaying Huo
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Ziyan Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Bowen Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| |
Collapse
|
45
|
Kim JH, Kim DH, Jo S, Cho MJ, Cho YR, Lee YJ, Byun S. Immunomodulatory functional foods and their molecular mechanisms. Exp Mol Med 2022; 54:1-11. [PMID: 35079119 PMCID: PMC8787967 DOI: 10.1038/s12276-022-00724-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/04/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
The immune system comprises a complex group of processes that provide defense against diverse pathogens. These defenses can be divided into innate and adaptive immunity, in which specific immune components converge to limit infections. In addition to genetic factors, aging, lifestyle, and environmental factors can influence immune function, potentially affecting the susceptibility of the host to disease-causing agents. Chemical compounds in certain foods have been shown to regulate signal transduction and cell phenotypes, ultimately impacting pathophysiology. Research has shown that the consumption of specific functional foods can stimulate the activity of immune cells, providing protection against cancer, viruses, and bacteria. Here, we review a number of functional foods reported to strengthen immunity, including ginseng, mushrooms, chlorella, and probiotics (Lactobacillus plantarum). We also discuss the molecular mechanisms involved in regulating the activity of various types of immune cells. Identifying immune-enhancing functional foods and understanding their mechanisms of action will support new approaches to maintain proper health and combat immunological diseases. Evidence is building to support the idea that specific ‘functional foods’ can stimulate the activity of cells and signaling systems of the immune system to provide protection against cancer, viruses and bacteria. Sanguine Byun and colleagues at Yonsei University in Seoul, South Korea, review research into a range of functional foods, foods thought to have health benefits beyond their nutritional value. These include ginseng, mushrooms, the green algae called Chlorella and the probiotic bacteria Lactobacillus plantarum. They also consider individual components of foods such as poly-gamma-glutamate, a natural polymer made by bacteria. A wide body of research is revealing diverse molecular mechanisms through which biochemicals in functional foods can modulate different aspects of the immune system. These include effects on both non-specific innate immunity and adaptive immunity, which targets specific invading pathogens and diseased cells.
Collapse
|
46
|
Sun Y, Wang F, Liu Y, An Y, Chang D, Wang J, Xia F, Liu N, Chen X, Cao Y. Comparison of water- and alkali-extracted polysaccharides from Fuzhuan brick tea and their immunomodulatory effects in vitro and in vivo. Food Funct 2022; 13:806-824. [PMID: 34985061 DOI: 10.1039/d1fo02944d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present study, the purpose is to compare the effect of water extraction and alkali-assisted extraction on the structural characteristics and immunomodulatory activity of polysaccharides from Fuzhuan brick tea (FBTPs). The results indicated that water-extracted FBTPs (W-FBTPs) and alkali-extracted FBTPs (A-FBTPs) had similar molecular weights but different monosaccharide compositions, of which A-FBTPs had a higher yield and uronic acid groups corresponding to galacturonic acid (GalA). Moreover, A-FBTPs had stronger ability to promote phagocytic capacity, acid phosphatase activity and nitric oxide (NO) secretion in macrophages in vitro. In the in vivo study, A-FBTPs exhibited a promising effect to adjust the immune imbalance by enhancing the body features, antioxidant activities, immune response and intestinal mucosal barrier in cytoxan (CTX)-induced immunosuppressive mice. Besides, A-FBTP supplementation effectively improved CTX-induced gut microbiota dysbiosis, including promoting the abundance of beneficial bacteria (e.g., Lactobacillus) and short chain fatty acid (SCFA)-producing bacteria (e.g., Lachnospiraceae, Prevotellaceae and Ruminococcaceae), along with reducing the growth of potentially pathogenic microbes (e.g., Desulfovibrionaceae and Helicobacter). These findings suggested that alkaline extraction might be a promising way to obtain high-quality acidic polysaccharides from Fuzhuan brick tea (FBT), and A-FBTPs could be developed as novel potential prebiotics and immunomodulators for further application in food formulations.
Collapse
Affiliation(s)
- Yujiao Sun
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Fan Wang
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Yuye An
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Dawei Chang
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Jiankang Wang
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Fei Xia
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Ning Liu
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Xuefeng Chen
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Yungang Cao
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| |
Collapse
|
47
|
Exploring the Immune-Boosting Functions of Vitamins and Minerals as Nutritional Food Bioactive Compounds: A Comprehensive Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020555. [PMID: 35056870 PMCID: PMC8779769 DOI: 10.3390/molecules27020555] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
Food components have long been recognized to play a fundamental role in the growth and development of the human body, conferring protective functionalities against foreign matter that can be severe public health problems. Micronutrients such as vitamins and minerals are essential to the human body, and individuals must meet their daily requirements through dietary sources. Micronutrients act as immunomodulators and protect the host immune response, thus preventing immune evasion by pathogenic organisms. Several experimental investigations have been undertaken to appraise the immunomodulatory functions of vitamins and minerals. Based on these experimental findings, this review describes the immune-boosting functionalities of micronutrients and the mechanisms of action through which these functions are mediated. Deficiencies of vitamins and minerals in plasma concentrations can lead to a reduction in the performance of the immune system functioning, representing a key contributor to unfavorable immunological states. This review provides a descriptive overview of the characteristics of the immune system and the utilization of micronutrients (vitamins and minerals) in preventative strategies designed to reduce morbidity and mortality among patients suffering from immune invasions or autoimmune disorders.
Collapse
|
48
|
Abdelhamid L, Luo XM. Diet and Hygiene in Modulating Autoimmunity During the Pandemic Era. Front Immunol 2022; 12:749774. [PMID: 35069526 PMCID: PMC8766844 DOI: 10.3389/fimmu.2021.749774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
The immune system is an efficiently toned machinery that discriminates between friends and foes for achieving both host defense and homeostasis. Deviation of immune recognition from foreign to self and/or long-lasting inflammatory responses results in the breakdown of tolerance. Meanwhile, educating the immune system and developing immunological memory are crucial for mounting defensive immune responses while protecting against autoimmunity. Still to elucidate is how diverse environmental factors could shape autoimmunity. The emergence of a world pandemic such as SARS-CoV-2 (COVID-19) not only threatens the more vulnerable individuals including those with autoimmune conditions but also promotes an unprecedented shift in people's dietary approaches while urging for extraordinary hygiene measures that likely contribute to the development or exacerbation of autoimmunity. Thus, there is an urgent need to understand how environmental factors modulate systemic autoimmunity to better mitigate the incidence and or severity of COVID-19 among the more vulnerable populations. Here, we discuss the effects of diet (macronutrients and micronutrients) and hygiene (the use of disinfectants) on autoimmunity with a focus on systemic lupus erythematosus.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Microbiology, College of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
49
|
Xu D, Feng M, Chu Y, Wang S, Shete V, Tuohy KM, Liu F, Zhou X, Kamil A, Pan D, Liu H, Yang X, Yang C, Zhu B, Lv N, Xiong Q, Wang X, Sun J, Sun G, Yang Y. The Prebiotic Effects of Oats on Blood Lipids, Gut Microbiota, and Short-Chain Fatty Acids in Mildly Hypercholesterolemic Subjects Compared With Rice: A Randomized, Controlled Trial. Front Immunol 2021; 12:787797. [PMID: 34956218 PMCID: PMC8697019 DOI: 10.3389/fimmu.2021.787797] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/22/2021] [Indexed: 01/14/2023] Open
Abstract
Phytochemicals derived from oats are reported to possess a beneficial effect on modulating dyslipidemia, specifically on lowering total and LDL cholesterol. However, deeper insights into its mechanism remain unclear. In this randomized controlled study, we assigned 210 mildly hypercholesterolemic subjects from three study centers across China (Beijing, Nanjing, and Shanghai) to consume 80 g of oats or rice daily for 45 days. Plasma lipid profiles, short chain fatty acids (SCFAs), and fecal microbiota were measured. The results showed that total cholesterol (TC) and non-high-density lipoprotein cholesterol (non-HDL-C) decreased significantly with both oats and rice intake after 30 and 45 days. The reduction in TC and non-HDL-C was greater in the participants consuming oats compared with rice at day 45 (p = 0.011 and 0.049, respectively). Oat consumption significantly increased the abundance of Akkermansia muciniphila and Roseburia, and the relative abundance of Dialister, Butyrivibrio, and Paraprevotella, and decreased unclassified f-Sutterellaceae. In the oat group, Bifidobacterium abundance was negatively correlated with LDL-C (p = 0.01, r = −0.31) and, TC and LDL-C were negatively correlated to Faecalibacterium prausnitzii (p = 0.02, r = −0.29; p = 0.03, r = −0.27, respectively). Enterobacteriaceae, Roseburia, and Faecalibacterium prausnitzii were positively correlated with plasma butyric acid and valeric acid concentrations and negatively correlated to isobutyric acid. HDL-C was negatively correlated with valeric acid (p = 0.02, r = −0.25) and total triglyceride (TG) was positively correlated to isovaleric acid (p = 0.03, r = 0.23). Taken together, oats consumption significantly reduced TC and LDL-C, and also mediated a prebiotic effect on gut microbiome. Akkermansia muciniphila, Roseburia, Bifidobacterium, and Faecalibacterium prausnitzii, and plasma SCFA correlated with oat-induced changes in plasma lipids, suggesting prebiotic activity of oats to modulate gut microbiome could contribute towards its cholesterol-lowering effect.
Collapse
Affiliation(s)
- Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Meiyuan Feng
- Department of R&D Life Science, PepsiCo, Inc., Shanghai, China
| | - YiFang Chu
- Department of R&D Life Science, PepsiCo, Inc., Barrington, IL, United States
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Varsha Shete
- Department of R&D Life Science, PepsiCo, Inc., Barrington, IL, United States
| | - Kieran M Tuohy
- Department of Food Quality and Nutrition, Research Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Feng Liu
- Department of R&D Life Science, PepsiCo, Inc., Shanghai, China
| | - Xirui Zhou
- Department of R&D Life Science, PepsiCo, Inc., Shanghai, China
| | - Alison Kamil
- Department of R&D Life Science, PepsiCo, Inc., Barrington, IL, United States
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Hechun Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Xian Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Na Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qian Xiong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin Wang
- Department of Nutrition and Functional Food Research, Beijing Research Institute for Nutritional Resources, Beijing, China
| | - Jianqin Sun
- Department of Clinical Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Yuexin Yang
- National Institute for Nutrition and Health, Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
50
|
Chen X, Sun W, Xu B, Wu E, Cui Y, Hao K, Zhang G, Zhou C, Xu Y, Li J, Si H. Polysaccharides From the Roots of Millettia Speciosa Champ Modulate Gut Health and Ameliorate Cyclophosphamide-Induced Intestinal Injury and Immunosuppression. Front Immunol 2021; 12:766296. [PMID: 34745141 PMCID: PMC8567740 DOI: 10.3389/fimmu.2021.766296] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022] Open
Abstract
Cyclophosphamide (CTX), a common anticancer drug, can cause a variety of side effects such as immunosuppression and intestinal mucosal injury. Polysaccharides are the major bioactive components of the roots of Millettia Speciosa Champ and have gained attention for their immunomodulatory activity. This study was designed to evaluate the immunomodulatory effect of Millettia Speciosa Champ polysaccharide (MSCP) on CTX-induced mice and the possible mechanism. The results showed that MSCP attenuated the CTX-induced decrease in body weight and immune organ indices in mice and promoted the secretion of immune-related cytokines (IL-2, IL-4, IL-10, TNF-α, and IgG). Meanwhile, MSCP restored intestinal morphology, increased the ratio of villus height/crypt depth (V/C), and improved the number of goblet cells and mucins expression. At the mRNA level, MSCP activated the TLRs/MyD88/NF-κB p65 pathway and enhanced the expression of genes related to intestinal mucosal integrity (Occludin1, Claudin1, and MUC-2). In addition, MSCP as a prebiotic improved microbial community diversity, regulated the relative abundance of dominant microbiota from the phylum level to the genus level, restored CTX-induced gut microbial dysbiosis, and promoted short-chain fatty acid production in mice. Based on the present findings, MSCP may modulate the immune response depending on enhancing intestinal health, suggesting that MSCP holds promise as a promising immunostimulant in functional foods and drugs.
Collapse
Affiliation(s)
- Xiaogang Chen
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Wenjing Sun
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Baichang Xu
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Enyun Wu
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Yao Cui
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Kaiyuan Hao
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Geyin Zhang
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Congcong Zhou
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Yanping Xu
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Jiang Li
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Hongbin Si
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| |
Collapse
|