1
|
Zhao L, Li S, Wang X, Zhang L, Zhang J, Liu X, Hu Y, Xian X, Zhang F, Li W, Zhang M. The AGEs/RAGE Signaling Pathway Regulates NLRP3-Mediated Neuronal Pyroptosis After MCAO Injury in Lepr-/- Obese Rats. J Inflamm Res 2024; 17:6935-6954. [PMID: 39372588 PMCID: PMC11453143 DOI: 10.2147/jir.s476458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
Background Obesity is recognized as a primary risk factor for cerebral ischemia, which has shown a significant increase in its incidence among obese patients. The exact mechanism by which obesity exacerbates cerebral ischemic injury is not fully understood though. The present study validated the hypothesis that obesity mediates pyroptosis by the AGEs/RAGE signaling pathway to exacerbate cerebral ischemic injury. Methods Leptin receptor knockout (Lepr-/- ) rats were used in this study to construct an obesity model, and the middle cerebral artery occlusion (MCAO) models of ischemic stroke were established in Lepr-/- obese rats and their wild-type (WT) littermates respectively. Zea-Longa score, TTC and H&E staining were utilized to evaluate the neurological impairment. Western Blot, immunohistochemistry, and immunofluorescence were used to detect protein expressions. Transmission electron microscopy was used to observe the pores in the neuronal cell membrane in the ischemic penumbra cortex. Results Compared with WT littermates, Lepr-/- obese rats exhibited exacerbated neuronal injury after MCAO, with higher expressions of NLRP3 inflammasome and pyroptosis-related proteins in the cortical tissue of the penumbra. Moreover, more GSDMD pores were observed on the neuronal cell membranes of Lepr-/- obese rats according to the electron microscopy. Inhibition of NLRP3 inflammasome expression with MCC950 inhibited neuronal pyroptosis after cerebral ischemia in Lepr-/- obese rats, thus reducing neuronal injury. We also found that compared with WT littermates, the levels of AGEs and RAGE in the cortex of Lepr-/- obese rats are significantly higher, with further increase after cerebral ischemia. Inhibition of AGEs/RAGE signaling pathway with FPS-ZM1 reduced the NLRP3 inflammasome-mediated neuronal pyroptosis in Lepr-/- obese rats, thereby mitigating the neuronal damage after cerebral ischemia. Conclusion The AGEs/RAGE signaling pathway is involved in the exacerbation of cerebral ischemic injury in Lepr-/- obese rats via regulating NLRP3-mediated neuronal pyroptosis.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- Department of Obstetrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, People’s Republic of China
| | - Shichao Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- Experimental Diagnostic Center for Infectious Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, People’s Republic of China
| | - Xiaoyu Wang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
| | - Lingyan Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
| | - Jingge Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
| | - Xiyun Liu
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
| | - Yuyan Hu
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
| | - Xiaohui Xian
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050051, People’s Republic of China
| | - Wenbin Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei Province, 050017, People’s Republic of China
| |
Collapse
|
2
|
Bronowicka-Szydełko A, Gostomska-Pampuch K, Kuzan A, Pietkiewicz J, Krzystek-Korpacka M, Gamian A. Effect of advanced glycation end-products in a wide range of medical problems including COVID-19. Adv Med Sci 2024; 69:36-50. [PMID: 38335908 DOI: 10.1016/j.advms.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/07/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Glycation is a physiological process that determines the aging of the organism, while in states of metabolic disorders it is significantly intensified. High concentrations of compounds such as reducing sugars or reactive aldehydes derived from lipid oxidation, occurring for example in diabetes, atherosclerosis, dyslipidemia, obesity or metabolic syndrome, lead to increased glycation of proteins, lipids and nucleic acids. The level of advanced glycation end-products (AGEs) in the body depends on rapidity of their production and the rate of their removal by the urinary system. AGEs, accumulated in the extracellular matrix of the blood vessels and other organs, cause irreversible changes in the biochemical and biomechanical properties of tissues. As a consequence, micro- and macroangiopathies appear in the system, and may contribute to the organ failure, like kidneys and heart. Elevated levels of AGEs also increase the risk of Alzheimer's disease and various cancers. In this paper, we propose a new classification due to modified amino acid residues: arginyl-AGEs, monolysyl-AGEs and lysyl-arginyl-AGEs and dilysyl-AGEs. Furthermore, we describe in detail the effect of AGEs on the pathogenesis of metabolic and old age diseases, such as diabetic complications, atherosclerosis and neurodegenerative diseases. We summarize the currently available data on the diagnostic value of AGEs and present the AGEs as a therapeutic goal in a wide range of medical problems, including SARS-CoV-2 infection and so-called long COVID.
Collapse
Affiliation(s)
| | | | - Aleksandra Kuzan
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland.
| | - Jadwiga Pietkiewicz
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | | | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
3
|
Mossine VV, Mawhinney TP. 1-Amino-1-deoxy-d-fructose ("fructosamine") and its derivatives. Adv Carbohydr Chem Biochem 2023; 83:27-132. [PMID: 37968038 DOI: 10.1016/bs.accb.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Fructosamine has long been considered as a key intermediate of the Maillard reaction, which to a large extent is responsible for specific aroma, taste, and color formation in thermally processed or dehydrated foods. Since the 1980s, however, as a product of the Amadori rearrangement reaction between glucose and biologically significant amines such as proteins, fructosamine has experienced a boom in biomedical research, mainly due to its relevance to pathologies in diabetes and aging. In this chapter, we assess the scope of the knowledge on and applications of fructosamine-related molecules in chemistry, food, and health sciences, as reflected mostly in publications within the past decade. Methods of fructosamine synthesis and analysis, its chemical, and biological properties, and degradation reactions, together with fructosamine-modifying and -recognizing proteins are surveyed.
Collapse
Affiliation(s)
- Valeri V Mossine
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Thomas P Mawhinney
- Department of Biochemistry, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
4
|
Reddy VP, Aryal P, Soni P. RAGE Inhibitors in Neurodegenerative Diseases. Biomedicines 2023; 11:biomedicines11041131. [PMID: 37189749 DOI: 10.3390/biomedicines11041131] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Nonenzymatic reactions of reducing sugars with primary amino groups of amino acids, proteins, and nucleic acids, followed by oxidative degradations would lead to the formation of advanced glycation endproducts (AGEs). The AGEs exert multifactorial effects on cell damage leading to the onset of neurological disorders. The interaction of AGEs with the receptors for advanced glycation endproducts (RAGE) contribute to the activation of intracellular signaling and the expression of the pro-inflammatory transcription factors and various inflammatory cytokines. This inflammatory signaling cascade is associated with various neurological diseases, including Alzheimer's disease (AD), secondary effects of traumatic brain injury (TBI), amyotrophic lateral sclerosis (ALS), and diabetic neuropathy, and other AGE-related diseases, including diabetes and atherosclerosis. Furthermore, the imbalance of gut microbiota and intestinal inflammation are also associated with endothelial dysfunction, disrupted blood-brain barrier (BBB) and thereby the onset and progression of AD and other neurological diseases. AGEs and RAGE play an important role in altering the gut microbiota composition and thereby increase the gut permeability and affect the modulation of the immune-related cytokines. The inhibition of the AGE-RAGE interactions, through small molecule-based therapeutics, prevents the inflammatory cascade of events associated with AGE-RAGE interactions, and thereby attenuates the disease progression. Some of the RAGE antagonists, such as Azeliragon, are currently in clinical development for treating neurological diseases, including AD, although currently there have been no FDA-approved therapeutics based on the RAGE antagonists. This review outlines the AGE-RAGE interactions as a leading cause of the onset of neurological diseases and the current efforts on developing therapeutics for neurological diseases based on the RAGE antagonists.
Collapse
Affiliation(s)
- V Prakash Reddy
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Puspa Aryal
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Pallavi Soni
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| |
Collapse
|
5
|
Chadwick W, Maudsley S, Hull W, Havolli E, Boshoff E, Hill MDW, Goetghebeur PJD, Harrison DC, Nizami S, Bedford DC, Coope G, Real K, Thiemermann C, Maycox P, Carlton M, Cole SL. The oDGal Mouse: A Novel, Physiologically Relevant Rodent Model of Sporadic Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24086953. [PMID: 37108119 PMCID: PMC10138655 DOI: 10.3390/ijms24086953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Sporadic Alzheimer's disease (sAD) represents a serious and growing worldwide economic and healthcare burden. Almost 95% of current AD patients are associated with sAD as opposed to patients presenting with well-characterized genetic mutations that lead to AD predisposition, i.e., familial AD (fAD). Presently, the use of transgenic (Tg) animals overexpressing human versions of these causative fAD genes represents the dominant research model for AD therapeutic development. As significant differences in etiology exist between sAD and fAD, it is perhaps more appropriate to develop novel, more sAD-reminiscent experimental models that would expedite the discovery of effective therapies for the majority of AD patients. Here we present the oDGal mouse model, a novel model of sAD that displays a range of AD-like pathologies as well as multiple cognitive deficits reminiscent of AD symptomology. Hippocampal cognitive impairment and pathology were delayed with N-acetyl-cysteine (NaC) treatment, which strongly suggests that reactive oxygen species (ROS) are the drivers of downstream pathologies such as elevated amyloid beta and hyperphosphorylated tau. These features demonstrate a desired pathophenotype that distinguishes our model from current transgenic rodent AD models. A preclinical model that presents a phenotype of non-genetic AD-like pathologies and cognitive deficits would benefit the sAD field, particularly when translating therapeutics from the preclinical to the clinical phase.
Collapse
Affiliation(s)
- Wayne Chadwick
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2000 Antwerp, Belgium
| | - William Hull
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Centre for Translational Medicine and Therapeutics, Queen Mary University of London, London E1 4NS, UK
| | - Enes Havolli
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Eugene Boshoff
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Mark D W Hill
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | | | - David C Harrison
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Sohaib Nizami
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - David C Bedford
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Gareth Coope
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Katia Real
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Christoph Thiemermann
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Centre for Translational Medicine and Therapeutics, Queen Mary University of London, London E1 4NS, UK
| | - Peter Maycox
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Mark Carlton
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Sarah L Cole
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| |
Collapse
|
6
|
Obrenovich M, Singh SK, Li Y, Perry G, Siddiqui B, Haq W, Reddy VP. Natural Product Co-Metabolism and the Microbiota-Gut-Brain Axis in Age-Related Diseases. Life (Basel) 2022; 13:41. [PMID: 36675988 PMCID: PMC9865576 DOI: 10.3390/life13010041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Complementary alternative medicine approaches are growing treatments of diseases to standard medicine practice. Many of these concepts are being adopted into standard practice and orthomolecular medicine. Age-related diseases, in particular neurodegenerative disorders, are particularly difficult to treat and a cure is likely a distant expectation for many of them. Shifting attention from pharmaceuticals to phytoceuticals and "bugs as drugs" represents a paradigm shift and novel approaches to intervention and management of age-related diseases and downstream effects of aging. Although they have their own unique pathologies, a growing body of evidence suggests Alzheimer's disease (AD) and vascular dementia (VaD) share common pathology and features. Moreover, normal metabolic processes contribute to detrimental aging and age-related diseases such as AD. Recognizing the role that the cerebral and cardiovascular pathways play in AD and age-related diseases represents a common denominator in their pathobiology. Understanding how prosaic foods and medications are co-metabolized with the gut microbiota (GMB) would advance personalized medicine and represents a paradigm shift in our view of human physiology and biochemistry. Extending that advance to include a new physiology for the advanced age-related diseases would provide new treatment targets for mild cognitive impairment, dementia, and neurodegeneration and may speed up medical advancements for these particularly devastating and debilitating diseases. Here, we explore selected foods and their derivatives and suggest new dementia treatment approaches for age-related diseases that focus on reexamining the role of the GMB.
Collapse
Affiliation(s)
- Mark Obrenovich
- Research Service, Department of Veteran's Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- The Gilgamesh Foundation for Medical Science and Research, Cleveland, OH 44116, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
- Departments of Chemistry and Biological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology (ISET) Foundation, Lucknow 226002, India
| | - Yi Li
- Department of Nutrition and Dietetics, Saint Louis University, Saint Louis, MO 63103, USA
| | - George Perry
- Department of Neuroscience Developmental and Regenerative Biology, University of Texas, San Antonio, TX 78249, USA
| | - Bushra Siddiqui
- School of Medicine, Northeast Ohio College of Medicine, Rootstown, OH 44272, USA
| | - Waqas Haq
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - V Prakash Reddy
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| |
Collapse
|
7
|
Endogenous Synthesis of Tetrahydroisoquinoline Derivatives from Dietary Factors: Neurotoxicity Assessment on a 3D Neurosphere Culture. Molecules 2022; 27:molecules27217443. [PMID: 36364268 PMCID: PMC9656915 DOI: 10.3390/molecules27217443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Tetrahydroisoquinoline (THIQ) alkaloids and their derivatives have a structural similarity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a well-known neurotoxin. THIQs seem to present a broad range of actions in the brain, critically dependent on their catechol moieties and metabolism. These properties make it reasonable to assume that an acute or chronic exposure to some THIQs might lead to neurodegenerative diseases including essential tremor (ET). We developed a method to search for precursor carbonyl compounds produced during the Maillard reaction in overcooked meats to study their reactivity with endogenous amines and identify the reaction products. Then, we predicted in silico their pharmacokinetic and toxicological properties toward the central nervous system. Finally, their possible neurological effects on a novel in vitro 3D neurosphere model were assessed. The obtained data indicate that meat is an alkaloid precursor, and we identified the alkaloid 1-benzyl-1,2,3,4-tetrahydroisoquinoline-6,7-diol (1-benz-6,7-diol THIQ) as the condensation product of phenylacetaldehyde with dopamine; in silico study of 1-benz-6,7-diol-THIQ reveals modulation of dopamine receptor D1 and D2; and in vitro study of 1-benz-6,7-diol-THIQ for cytotoxicity and oxidative stress induction does not show any difference after 24 h contact for all tested concentrations. To conclude, our in vitro data do not support an eventual neurotoxic effect for 1-benz-6,7-diol-THIQ.
Collapse
|
8
|
Advanced Glycation End Products in Health and Disease. Microorganisms 2022; 10:microorganisms10091848. [PMID: 36144449 PMCID: PMC9501837 DOI: 10.3390/microorganisms10091848] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Advanced glycation end products (AGEs), formed through the nonenzymatic reaction of reducing sugars with the side-chain amino groups of lysine or arginine of proteins, followed by further glycoxidation reactions under oxidative stress conditions, are involved in the onset and exacerbation of a variety of diseases, including diabetes, atherosclerosis, and Alzheimer’s disease (AD) as well as in the secondary stages of traumatic brain injury (TBI). AGEs, in the form of intra- and interprotein crosslinks, deactivate various enzymes, exacerbating disease progression. The interactions of AGEs with the receptors for the AGEs (RAGE) also result in further downstream inflammatory cascade events. The overexpression of RAGE and the AGE-RAGE interactions are especially involved in cases of Alzheimer’s disease and other neurodegenerative diseases, including TBI and amyotrophic lateral sclerosis (ALS). Maillard reactions are also observed in the gut bacterial species. The protein aggregates found in the bacterial species resemble those of AD and Parkinson’s disease (PD), and AGE inhibitors increase the life span of the bacteria. Dietary AGEs alter the gut microbiota composition and elevate plasma glycosylation, thereby leading to systemic proinflammatory effects and endothelial dysfunction. There is emerging interest in developing AGE inhibitor and AGE breaker compounds to treat AGE-mediated pathologies, including diabetes and neurodegenerative diseases. Gut-microbiota-derived enzymes may also function as AGE-breaker biocatalysts. Thus, AGEs have a prominent role in the pathogenesis of various diseases, and the AGE inhibitor and AGE breaker approach may lead to novel therapeutic candidates.
Collapse
|
9
|
Hormesis and Oxidative Distress: Pathophysiology of Reactive Oxygen Species and the Open Question of Antioxidant Modulation and Supplementation. Antioxidants (Basel) 2022; 11:antiox11081613. [PMID: 36009331 PMCID: PMC9405171 DOI: 10.3390/antiox11081613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Alterations of redox homeostasis leads to a condition of resilience known as hormesis that is due to the activation of redox-sensitive pathways stimulating cell proliferation, growth, differentiation, and angiogenesis. Instead, supraphysiological production of reactive oxygen species (ROS) exceeds antioxidant defence and leads to oxidative distress. This condition induces damage to biomolecules and is responsible or co-responsible for the onset of several chronic pathologies. Thus, a dietary antioxidant supplementation has been proposed in order to prevent aging, cardiovascular and degenerative diseases as well as carcinogenesis. However, this approach has failed to demonstrate efficacy, often leading to harmful side effects, in particular in patients affected by cancer. In this latter case, an approach based on endogenous antioxidant depletion, leading to ROS overproduction, has shown an interesting potential for enhancing susceptibility of patients to anticancer therapies. Therefore, a deep investigation of molecular pathways involved in redox balance is crucial in order to identify new molecular targets useful for the development of more effective therapeutic approaches. The review herein provides an overview of the pathophysiological role of ROS and focuses the attention on positive and negative aspects of antioxidant modulation with the intent to find new insights for a successful clinical application.
Collapse
|
10
|
Comparison of bovine serum albumin glycation by ribose and fructose in vitro and in vivo. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166283. [PMID: 34601015 DOI: 10.1016/j.bbadis.2021.166283] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/24/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022]
Abstract
Advanced glycation end products (AGEs) play a critical pathogenic role in the development of diabetic complications. Recent studies have shown that diabetes is associated with not only abnormal glucose metabolism but also abnormal ribose and fructose metabolism, although glucose is present at the highest concentration in humans. The glycation ability and contribution of ribose and fructose to diabetic complications remain unclear. Here, the glycation ability of ribose, fructose and glucose under a mimic physiological condition, in which the concentration of ribose or fructose was one-fiftieth that of glucose, was compared. Bovine serum albumin (BSA) was used as the working protein in our experiments. Ribose generated more AGEs and was markedly more cytotoxic to SH-SY5Y cells than fructose. The first-order rate constant of ribose glycation was found to be significantly greater than that of fructose glycation. LC-MS/MS analysis revealed 41 ribose-glycated Lys residues and 12 fructose-glycated residues. Except for the shared Lys residues, ribose reacted selectively with 17 Lys, while no selective Lys was found in fructose-glycated BSA. Protein conformational changes suggested that ribose glycation may induce BSA into amyloid-like monomers compared with fructose glycation. The levels of serum ribose were correlated positively with glycated serum protein (GSP) and diabetic duration in type 2 diabetes mellitus (T2DM), respectively. These results indicate that ribose has a greater glycation ability than fructose, while ribose largely contributes to the production of AGEs and provides a new insight to understand in the occurrence and development of diabetes complications.
Collapse
|
11
|
Ahmad SS, Younis K, Philippe J, Aschner M, Khan H. Strategic approaches to target the enzymes using natural compounds for the management of Alzheimer's disease: A review. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:610-620. [PMID: 34382514 DOI: 10.2174/1871527320666210811160007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/21/2021] [Accepted: 07/18/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease. It is clinically characterized by memory loss and intellectual decrease, among other neurological deficits. The etiology of AD is not completely understood but includes amyloid plaques and intracellular helical filaments as well as neurofibrillary tangles with hyperphosphorylated tau protein. AD is also associated with alterations in amyloid processing genes, such as PSEN1 or PSEN2 and APP. The modulation immune system, cholesterol metabolism, and synaptic vesicle endocytosis have all been shown to remediate AD. In this review, enzymes such as AChE, BuChE, β-secretase, γ-secretase, MAO, and RAGE are discussed as potential targets for AD treatment. The aim of this review was to addresses the molecular mechanisms as well as various genetic factors in AD etiology. The use of natural compounds against these targets might be beneficial for the management of AD.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541. Korea
| | - Kaiser Younis
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow. India
| | - Jeandet Philippe
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2. France
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461. United States
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan 23200. Pakistan
| |
Collapse
|
12
|
Avram S, Udrea AM, Nuta DC, Limban C, Balea AC, Caproiu MT, Dumitrascu F, Buiu C, Bordei AT. Synthesis and Bioinformatic Characterization of New Schiff Bases with Possible Applicability in Brain Disorders. Molecules 2021; 26:molecules26144160. [PMID: 34299440 PMCID: PMC8307098 DOI: 10.3390/molecules26144160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/11/2023] Open
Abstract
(1) Background: The research aims to find new treatments for neurodegenerative diseases, in particular, Alzheimer’s disease. (2) Methods: This article presents a bioinformatics and pathology study of new Schiff bases, (EZ)-N′-benzylidene-(2RS)-2-(6-chloro-9H-carbazol-2-yl)propanehydrazide derivatives, and aims to evaluate the drug-like, pharmacokinetic, pharmacodynamic and pharmacogenomic properties, as well as to predict the binding to therapeutic targets by applying bioinformatics, cheminformatics and computational pharmacological methods. (3) Results: We obtained these Schiff bases by condensing (2RS)-2-(6-chloro-9H-carbazol-2-yl)propanehydrazide with aromatic aldehydes, using the advantages of microwave irradiation. The newly synthesized compounds were characterized spectrally, using FT-IR and NMR spectroscopy, which confirmed their structure. Using bioinformatics tools, we noticed that all new compounds are drug-likeness features and may be proposed as potentially neuropsychiatric drugs (4) Conclusions: Using bioinformatics tools, we determined that the new compound 1e had a high potential to be used as a good candidate in neurodegenerative disorders treatment.
Collapse
Affiliation(s)
- Speranta Avram
- Department of Anatomy, Animal Physiology, and Biophysics, Faculty of Biology, University of Bucharest, 36-46 M. Kogălniceanu Boulevard, 050107 Bucharest, Romania
| | - Ana Maria Udrea
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania
| | - Diana Camelia Nuta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Adrian Cosmin Balea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Miron Teodor Caproiu
- The Organic Chemistry Center of Romanian Academy "C. D. Neniţescu", Splaiul Independenţei 202B, 060023 Bucharest, Romania
| | - Florea Dumitrascu
- The Organic Chemistry Center of Romanian Academy "C. D. Neniţescu", Splaiul Independenţei 202B, 060023 Bucharest, Romania
| | - Cătălin Buiu
- Department of Automatic Control and Systems Engineering, Politehnica University of Bucharest, Spl. Independenţei 313, 060042 Bucharest, Romania
| | - Alexandra Teodora Bordei
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| |
Collapse
|
13
|
Obrenovich M, Tabrez S, Siddiqui B, McCloskey B, Perry G. The Microbiota-Gut-Brain Axis-Heart Shunt Part II: Prosaic Foods and the Brain-Heart Connection in Alzheimer Disease. Microorganisms 2020; 8:E493. [PMID: 32244373 PMCID: PMC7232206 DOI: 10.3390/microorganisms8040493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
There is a strong cerebrovascular component to brain aging, Alzheimer disease, and vascular dementia. Foods, common drugs, and the polyphenolic compounds contained in wine modulate health both directly and through the gut microbiota. This observation and novel findings centered on nutrition, biochemistry, and metabolism, as well as the newer insights we gain into the microbiota-gut-brain axis, now lead us to propose a shunt to this classic triad, which involves the heart and cerebrovascular systems. The French paradox and prosaic foods, as they relate to the microbiota-gut-brain axis and neurodegenerative diseases, are discussed in this manuscript, which is the second part of a two-part series of concept papers addressing the notion that the microbiota and host liver metabolism all play roles in brain and heart health.
Collapse
Affiliation(s)
- Mark Obrenovich
- Research Service, Louis Stokes Cleveland, Department of Veteran’s Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- The Gilgamesh Foundation for Medical Science and Research, Cleveland, OH 44116, USA;
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
- Departments of Chemistry and Biological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bushra Siddiqui
- North East Ohio College of Medicine, Rootstown, OH 44272, USA;
| | - Benjamin McCloskey
- The Gilgamesh Foundation for Medical Science and Research, Cleveland, OH 44116, USA;
| | - George Perry
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| |
Collapse
|
14
|
Das R, Chinnathambi S. Microglial priming of antigen presentation and adaptive stimulation in Alzheimer's disease. Cell Mol Life Sci 2019; 76:3681-3694. [PMID: 31093687 PMCID: PMC11105582 DOI: 10.1007/s00018-019-03132-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/21/2022]
Abstract
The prominent pathological consequences of Alzheimer's disease (AD) are the misfolding and mis-sorting of two cellular proteins, amyloid-β and microtubule-associated protein Tau. The accumulation of toxic phosphorylated Tau inside the neurons induces the increased processing of amyloid-β-associated signaling cascade and vice versa. Neuroinflammation-driven synaptic depletion and cognitive decline are substantiated by the cross talk of activated microglia and astroglia, leading to neuron degeneration. Microglia are the brain-resident immune effectors that prove their diverse functions in maintaining CNS homeostasis via collaboration with astrocytes and T lymphocytes. Age-related senescence and chronic inflammation activate microglia with increased pro-inflammatory markers, oxidative damage and phagocytosis. But the improper processing of misfolded protein via lysosomal pathway destines the spreading of 'seed' constituents to the nearby healthy neurons. Primed microglia process and present self-antigen such as amyloid-β and modified Tau to the infiltrated T lymphocytes through MHC I/II molecules. After an effective conversation with CD4+ T cells, microglial phenotype can be altered from pro-active M1 to neuro-protective M2 type, which corresponds to the tissue remodeling and homeostasis. In this review, we are focusing on the change in functionality of microglia from innate to adaptive immune response in the context of neuroprotection, which may help in the search of novel immune therapy in AD.
Collapse
Affiliation(s)
- Rashmi Das
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India.
| |
Collapse
|
15
|
Boteva E, Mironova R. Maillard reaction and aging: can bacteria shed light on the link? BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1590160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Elitsa Boteva
- Department of Gene Regulation, Institute of Molecular Biology ‘Roumen Tsanev’, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Roumyana Mironova
- Department of Gene Regulation, Institute of Molecular Biology ‘Roumen Tsanev’, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
16
|
Dhananjayan K, Irrgang F, Raju R, Harman DG, Moran C, Srikanth V, Münch G. Determination of glyoxal and methylglyoxal in serum by UHPLC coupled with fluorescence detection. Anal Biochem 2019; 573:51-66. [PMID: 30796906 DOI: 10.1016/j.ab.2019.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/16/2019] [Indexed: 01/17/2023]
Abstract
Glyoxal (GO) and methylglyoxal (MGO) are two important biomarkers in diabetes. Analytical methods for determination of GO and MGO in serum samples are either HPLC with UV-Vis (low sensitivity) or MS/MS (expensive) detection. These disadvantages have hampered the introduction of these biomarkers as a routine analyte for diabetes diagnostics into the clinical laboratory. In this study, we introduce a UHPLC method with fluorescence detection for the measurement of GO and MGO in serum samples by pre-column derivatization at neutral pH with 5, 6-diamino-2,4-dihydroxypyrimidine sulfate (DDP) to form lumazines. The method was validated as per FDA guidelines. Using this method, we have determined GO and MGO in a variety of animal serum samples, and for example, determined the GO and MGO concentration in adult bovine serum to be 852 ± 27 and 192 ± 10 nmol/L, respectively. In human serum, GO and MGO levels in non-diabetic subjects (n = 14) were determined to be 154 ± 88 and 98 ± 27 nmol/L, and in serum samples from subjects with diabetes (n = 14) 244 ± 137 and 190 ± 68 nmol/L, respectively. In addition, interference studies showed that physiological serum components did not lead to an artificial increase in the levels of GO and MGO.
Collapse
Affiliation(s)
- Karthik Dhananjayan
- Department of Pharmacology, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Felix Irrgang
- Department of Pharmacology, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Ritesh Raju
- Department of Pharmacology, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - David G Harman
- Department of Pharmacology, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Chris Moran
- Department of Medicine, Peninsula Health & Peninsula Clinical School, Monash University, Victoria, 3199, Australia
| | - Velandai Srikanth
- Department of Medicine, Peninsula Health & Peninsula Clinical School, Monash University, Victoria, 3199, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia; NICM Health Research Institute, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
17
|
Marques CMS, Nunes EA, Lago L, Pedron CN, Manieri TM, Sato RH, Oliveira VX, Cerchiaro G. Generation of Advanced Glycation End-Products (AGEs) by glycoxidation mediated by copper and ROS in a human serum albumin (HSA) model peptide: reaction mechanism and damage in motor neuron cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 824:42-51. [PMID: 29150049 DOI: 10.1016/j.mrgentox.2017.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Glucose, in the presence of reactive oxygen species (ROS), acts as an as an oxidative agent and drives deleterious processes in Diabetes Mellitus. We have studied the mechanism and the toxicological effects of glucose-dependent glycoxidation reactions driven by copper and ROS, using a model peptide based on the exposed sequence of Human Serum Albumin (HSA) and containing a lysine residue susceptible to copper complexation. The main products of these reactions are Advanced Glycation End-products (AGEs). Carboxymethyl lysine and pyrraline condensed on the model peptide, generating a Modified Peptide (MP). These products were isolated, purified, and tested on cultured motor neuron cells. We observed DNA damage, enhancement of membrane roughness, and formation of domes. We evaluated nuclear abnormalities by the cytokinesis-blocked micronucleus assay and we measured cytostatic and cytotoxic effects, chromosomal breakage, nuclear abnormalities, and cell death. AGEs formed by glycoxidation caused large micronucleus aberrations, apoptosis, and large-scale nuclear abnormalities, even at low concentrations.
Collapse
Affiliation(s)
| | - Emilene Arusievicz Nunes
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Larissa Lago
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Cibele Nicolaski Pedron
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Tânia Maria Manieri
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Roseli Hiromi Sato
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Vani Xavier Oliveira
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Giselle Cerchiaro
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil.
| |
Collapse
|
18
|
Barrett EJ, Liu Z, Khamaisi M, King GL, Klein R, Klein BEK, Hughes TM, Craft S, Freedman BI, Bowden DW, Vinik AI, Casellini CM. Diabetic Microvascular Disease: An Endocrine Society Scientific Statement. J Clin Endocrinol Metab 2017; 102:4343-4410. [PMID: 29126250 PMCID: PMC5718697 DOI: 10.1210/jc.2017-01922] [Citation(s) in RCA: 305] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 01/18/2023]
Abstract
Both type 1 and type 2 diabetes adversely affect the microvasculature in multiple organs. Our understanding of the genesis of this injury and of potential interventions to prevent, limit, or reverse injury/dysfunction is continuously evolving. This statement reviews biochemical/cellular pathways involved in facilitating and abrogating microvascular injury. The statement summarizes the types of injury/dysfunction that occur in the three classical diabetes microvascular target tissues, the eye, the kidney, and the peripheral nervous system; the statement also reviews information on the effects of diabetes and insulin resistance on the microvasculature of skin, brain, adipose tissue, and cardiac and skeletal muscle. Despite extensive and intensive research, it is disappointing that microvascular complications of diabetes continue to compromise the quantity and quality of life for patients with diabetes. Hopefully, by understanding and building on current research findings, we will discover new approaches for prevention and treatment that will be effective for future generations.
Collapse
Affiliation(s)
- Eugene J. Barrett
- Division of Endocrinology, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Zhenqi Liu
- Division of Endocrinology, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Mogher Khamaisi
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - George L. King
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Barbara E. K. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Timothy M. Hughes
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Suzanne Craft
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Barry I. Freedman
- Divisions of Nephrology and Endocrinology, Department of Internal Medicine, Centers for Diabetes Research, and Center for Human Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Donald W. Bowden
- Divisions of Nephrology and Endocrinology, Department of Internal Medicine, Centers for Diabetes Research, and Center for Human Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Aaron I. Vinik
- EVMS Strelitz Diabetes Center, Eastern Virginia Medical Center, Norfolk, Virginia 23510
| | - Carolina M. Casellini
- EVMS Strelitz Diabetes Center, Eastern Virginia Medical Center, Norfolk, Virginia 23510
| |
Collapse
|
19
|
de Oliveira MR, Peres A, Ferreira GC. Pinocembrin Attenuates Mitochondrial Dysfunction in Human Neuroblastoma SH-SY5Y Cells Exposed to Methylglyoxal: Role for the Erk1/2-Nrf2 Signaling Pathway. Neurochem Res 2016; 42:1057-1072. [PMID: 28000163 DOI: 10.1007/s11064-016-2140-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/31/2016] [Accepted: 12/08/2016] [Indexed: 01/03/2023]
Abstract
Pinocembrin (PB; 5,7-dihydroxyflavanone) is found in propolis and exhibits antioxidant activity in several experimental models. The antioxidant capacity of PB is associated with the activation of the nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signaling pathway. The Nrf2/ARE axis mediates the expression of antioxidant and detoxifying enzymes, such as glutathione peroxidase (GPx), glutathione reductase (GR), heme oxygenase-1 (HO-1), and the catalytic (GCLC) and regulatory (GCLM) subunits of the rate-limiting enzyme in the synthesis of glutathione (GSH), γ-glutamate-cysteine ligase (γ-GCL). Nonetheless, it is not clear how PB exerts mitochondrial protection in mammalian cells. Human neuroblastoma SH-SY5Y cells were pretreated (4 h) with PB (0-25 µM) and then exposed to methylglyoxal (MG; 500 µM) for further 24 h. Mitochondria were isolated by differential centrifugation. PB (25 µM) provided mitochondrial protection (decreased lipid peroxidation, protein carbonylation, and protein nitration in mitochondrial membranes; decreased mitochondrial free radical production; enhanced the content of GSH in mitochondria; rescued mitochondrial membrane potential-MMP) and blocked MG-triggered cell death by a mechanism dependent on the activation of the extracellular-related kinase (Erk1/2) and consequent upregulation of Nrf2. PB increased the levels of GPx, GR, HO-1, and mitochondrial GSH. The PB-induced effects were suppressed by silencing of Nrf2 with siRNA. Therefore, PB activated the Erk1/2-Nrf2 signaling pathway resulting in mitochondrial protection in SH-SY5Y cells exposed to MG. Our work shows that PB is a strong candidate to figure among mitochondria-focusing agents with pharmacological potential.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry/ICET, Federal University of Mato Grosso (UFMT, Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil.
| | - Alessandra Peres
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.,Centro de Pesquisa da Pós-Graduação, Centro Universitário Metodista IPA, Porto Alegre, Brazil
| | - Gustavo Costa Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
20
|
Gong YS, Guo J, Hu K, Gao YQ, Xie BJ, Sun ZD, Yang EN, Hou FL. Ameliorative effect of lotus seedpod proanthocyanidins on cognitive impairment and brain aging induced by d-galactose. Exp Gerontol 2016; 74:21-8. [DOI: 10.1016/j.exger.2015.11.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 11/10/2015] [Accepted: 11/30/2015] [Indexed: 12/24/2022]
|
21
|
de Oliveira MR, Ferreira GC, Schuck PF, Dal Bosco SM. Role for the PI3K/Akt/Nrf2 signaling pathway in the protective effects of carnosic acid against methylglyoxal-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Chem Biol Interact 2015; 242:396-406. [DOI: 10.1016/j.cbi.2015.11.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/07/2015] [Accepted: 11/04/2015] [Indexed: 02/07/2023]
|
22
|
Yin MC. Inhibitory effects and actions of pentacyclic triterpenes upon glycation. Biomedicine (Taipei) 2015; 5:13. [PMID: 26260291 PMCID: PMC4530523 DOI: 10.7603/s40681-015-0013-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022] Open
Abstract
Pentacyclic triterpenic compounds including asiatic, betulinic, maslinic, oleanolic and ursolic acid occur naturally in many herbs and plant foods. It is well known that these triterpenoids possess anti-oxidative and anti-inflammatory activities. Furthermore, recent in vitro and in vivo researches indicated that these compounds could inhibit the production of advanced glycation end-products (AGEs). The impact of these triterpenes upon the activity and protein expression of enzymes involved in polyol pathway including aldose reductase and sorbitol dehydrogenase has been examined, and positive results are reported. These studies suggest that certain triterpenes are potent anti-glycative agents, and may benefit the prevention and/or therapy of glycation-related diseases such as diabetes mellitus and Alzheimer’s disease. In this review article, the anti-glycative activity and action mode of certain triterpenes are highlighted. These information may promote the anti-glycative application of these natural compounds.
Collapse
Affiliation(s)
- Mei-Chin Yin
- Department of Nutrition, China Medical University, 16th Floor, No. 91, Hsueh-Shih Road, 404, Taichung, Taiwan,
| |
Collapse
|
23
|
Salahuddin P, Rabbani G, Khan RH. The role of advanced glycation end products in various types of neurodegenerative disease: a therapeutic approach. Cell Mol Biol Lett 2014; 19:407-37. [PMID: 25141979 PMCID: PMC6275793 DOI: 10.2478/s11658-014-0205-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 07/28/2014] [Indexed: 12/12/2022] Open
Abstract
Protein glycation is initiated by a nucleophilic addition reaction between the free amino group from a protein, lipid or nucleic acid and the carbonyl group of a reducing sugar. This reaction forms a reversible Schiff base, which rearranges over a period of days to produce ketoamine or Amadori products. The Amadori products undergo dehydration and rearrangements and develop a cross-link between adjacent proteins, giving rise to protein aggregation or advanced glycation end products (AGEs). A number of studies have shown that glycation induces the formation of the β-sheet structure in β-amyloid protein, α-synuclein, transthyretin (TTR), copper-zinc superoxide dismutase 1 (Cu, Zn-SOD-1), and prion protein. Aggregation of the β-sheet structure in each case creates fibrillar structures, respectively causing Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, familial amyloid polyneuropathy, and prion disease. It has been suggested that oligomeric species of glycated α-synuclein and prion are more toxic than fibrils. This review focuses on the pathway of AGE formation, the synthesis of different types of AGE, and the molecular mechanisms by which glycation causes various types of neurodegenerative disease. It discusses several new therapeutic approaches that have been applied to treat these devastating disorders, including the use of various synthetic and naturally occurring inhibitors. Modulation of the AGE-RAGE axis is now considered promising in the prevention of neurodegenerative diseases. Additionally, the review covers several defense enzymes and proteins in the human body that are important anti-glycating systems acting to prevent the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Parveen Salahuddin
- Distributed Information Sub Center Unit, Aligarh Muslim University, Aligarh, 202 002 India
| | - Gulam Rabbani
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202 002 India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202 002 India
| |
Collapse
|
24
|
Tajes M, Eraso-Pichot A, Rubio-Moscardó F, Guivernau B, Bosch-Morató M, Valls-Comamala V, Muñoz FJ. Methylglyoxal reduces mitochondrial potential and activates Bax and caspase-3 in neurons: Implications for Alzheimer's disease. Neurosci Lett 2014; 580:78-82. [PMID: 25102327 DOI: 10.1016/j.neulet.2014.07.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/23/2014] [Accepted: 07/25/2014] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is characterized by the oxidative stress generated from amyloid β-peptide (Aβ) aggregates. It produces protein nitrotyrosination, after the reaction with nitric oxide to form peroxynitrite, being triosephosphate isomerase (TPI) one of the most affected proteins. TPI is a glycolytic enzyme that catalyzes the interconversion between glyceraldehyde 3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP). Methylglyoxal (MG) is a by-product of TPI activity whose production is triggered when TPI is nitrotyrosinated. MG is harmful to cells because it glycates proteins. Here we found protein glycation when human neuroblastoma cells were treated with Aβ. Moreover glycation was also observed when neuroblastoma cells overexpressed mutated TPI where Tyr165 or Tyr209, the two tyrosines close to the catalytic center, were changed by Phe in order to mimic the effect of nitrotyrosination. The pathological relevance of these findings was studied by challenging cells with Aβ oligomers and MG. A significant decrease in mitochondrial transmembrane potential, one of the first apoptotic events, was obtained. Therefore, increasing concentrations of MG were assayed searching for MG effect in neuronal apoptosis. We found a decrease of the protective Bcl2 and an increase of the proapoptotic caspase-3 and Bax levels. Our results suggest that MG is triggering apoptosis in neurons and it would play a key role in AD neurodegeneration.
Collapse
Affiliation(s)
- Marta Tajes
- Laboratory of Molecular Physiology and Channelopathies, Departament de Ciències Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Abel Eraso-Pichot
- Laboratory of Molecular Physiology and Channelopathies, Departament de Ciències Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Fanny Rubio-Moscardó
- Laboratory of Molecular Physiology and Channelopathies, Departament de Ciències Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Biuse Guivernau
- Laboratory of Molecular Physiology and Channelopathies, Departament de Ciències Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Mònica Bosch-Morató
- Laboratory of Molecular Physiology and Channelopathies, Departament de Ciències Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Victòria Valls-Comamala
- Laboratory of Molecular Physiology and Channelopathies, Departament de Ciències Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Francisco J Muñoz
- Laboratory of Molecular Physiology and Channelopathies, Departament de Ciències Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
25
|
Autoantibodies to posttranslational modifications in rheumatoid arthritis. Mediators Inflamm 2014; 2014:492873. [PMID: 24782594 PMCID: PMC3981057 DOI: 10.1155/2014/492873] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/10/2014] [Indexed: 12/11/2022] Open
Abstract
Autoantibodies have been associated with human pathologies for a long time, particularly with autoimmune diseases (AIDs). Rheumatoid factor (RF) is known since the late 1930s to be associated with rheumatoid arthritis (RA). The discovery of anticitrullinated protein antibodies in the last century has changed this and other posttranslational modifications (PTM) relevant to RA have since been described. Such PTM introduce neoepitopes in proteins that can generate novel autoantibody specificities. The recent recognition of these novel specificities in RA provides a unique opportunity to understand human B-cell development in vivo. In this paper, we will review the three of the main classes of PTMs already associated with RA: citrullination, carbamylation, and oxidation. With the advancement of research methodologies it should be expected that other autoantibodies against PTM proteins could be discovered in patients with autoimmune diseases. Many of such autoantibodies may provide significant biomarker potential.
Collapse
|
26
|
Role of methylglyoxal in Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:238485. [PMID: 24734229 PMCID: PMC3966409 DOI: 10.1155/2014/238485] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/28/2014] [Accepted: 01/30/2014] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is the most common and lethal neurodegenerative disorder. The major hallmarks of Alzheimer's disease are extracellular aggregation of amyloid β peptides and, the presence of intracellular neurofibrillary tangles formed by precipitation/aggregation of hyperphosphorylated tau protein. The etiology of Alzheimer's disease is multifactorial and a full understanding of its pathogenesis remains elusive. Some years ago, it has been suggested that glycation may contribute to both extensive protein cross-linking and oxidative stress in Alzheimer's disease. Glycation is an endogenous process that leads to the production of a class of compounds known as advanced glycation end products (AGEs). Interestingly, increased levels of AGEs have been observed in brains of Alzheimer's disease patients. Methylglyoxal, a reactive intermediate of cellular metabolism, is the most potent precursor of AGEs and is strictly correlated with an increase of oxidative stress in Alzheimer's disease. Many studies are showing that methylglyoxal and methylglyoxal-derived AGEs play a key role in the etiopathogenesis of Alzheimer's disease.
Collapse
|
27
|
Rota C, Rimbach G, Minihane AM, Stoecklin E, Barella L. Dietary vitamin E modulates differential gene expression in the rat hippocampus: Potential implications for its neuroprotective properties. Nutr Neurosci 2013; 8:21-9. [PMID: 15909764 DOI: 10.1080/10284150400027123] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A wide range of cell culture, animal and human epidemiological studies are suggestive of a role of vitamin E (VE) in brain function and in the prevention of neurodegeneration. However, the underlying molecular mechanisms remain largely unknown. In the current investigation Affymetrix gene chip technology was utilised to establish the impact of chronic VE deficiency on hippocampal genes expression. Male albino rats were fed either a VE deficient or standard diet (60 mg/kg feed) for a period of 9 months. Rats were sacrificed, the hippocampus removed and genes expression established in individual animals. VE deficiency showed to have a strong impact on genes expression in the hippocampus. An important number of genes found to be regulated by VE was associated with hormones and hormone metabolism, nerve growth factor, apoptosis, dopaminergic neurotransmission, and clearance of amyloid-beta and advanced glycated endproducts. In particular, VE strongly affected the expression of an array of genes encoding for proteins directly or indirectly involved in the clearance of amyloid beta, changes which are consistent with a protective effect of VE on Alzheimer's disease progression.
Collapse
Affiliation(s)
- Cristina Rota
- Hugh Sinclair Human Nutrition Unit, School of Food Biosciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | | | | | | | | |
Collapse
|
28
|
Abstract
Diseases of elderly adults are becoming increasingly important as life expectancy gradually rises worldwide. To promote healthy aging, it is important to understand the skin changes associated with aging. This review focuses on the special considerations for some of the more common dermatological disorders in elderly adults and examines presentation, contributing factors, and association with systemic diseases.
Collapse
|
29
|
Tuning three-dimensional collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior. Acta Biomater 2013; 9:4635-44. [PMID: 22902816 DOI: 10.1016/j.actbio.2012.08.007] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 08/08/2012] [Accepted: 08/08/2012] [Indexed: 12/11/2022]
Abstract
Numerous studies have described the effects of matrix stiffening on cell behavior using two-dimensional synthetic surfaces; however, less is known about the effects of matrix stiffening on cells embedded in three-dimensional in vivo-like matrices. A primary limitation in investigating the effects of matrix stiffness in three dimensions is the lack of materials that can be tuned to control stiffness independently of matrix density. Here, we use collagen-based scaffolds where the mechanical properties are tuned using non-enzymatic glycation of the collagen in solution, prior to polymerization. Collagen solutions glycated prior to polymerization result in collagen gels with a threefold increase in compressive modulus without significant changes to the collagen architecture. Using these scaffolds, we show that endothelial cell spreading increases with matrix stiffness, as does the number and length of angiogenic sprouts and the overall spheroid outgrowth. Differences in sprout length are maintained even when the receptor for advanced glycation end products is inhibited. Our results demonstrate the ability to de-couple matrix stiffness from matrix density and structure in collagen gels, and that increased matrix stiffness results in increased sprouting and outgrowth.
Collapse
|
30
|
Wang Y, Sørensen MG, Zheng Q, Zhang C, Karsdal MA, Henriksen K. Will posttranslational modifications of brain proteins provide novel serological markers for dementias? Int J Alzheimers Dis 2012; 2012:209409. [PMID: 22779024 PMCID: PMC3388459 DOI: 10.1155/2012/209409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/26/2012] [Indexed: 11/23/2022] Open
Abstract
Drug development for dementias is significantly hampered by the lack of easily accessible biomarkers. Fluid biomarkers of dementias provide indications of disease stage, but have little prognostic value, cannot detect early pathological changes, and can only be measured in CSF (cerebrospinal fluid) which significantly limits their applicability. In contrast, imaging based biomarkers can provide indications of probability of disease progression, yet are limited in applicability due to cost, radiation and radio-tracers. These aspects highlight the need for other approaches to the development of biomarkers of dementia, which should focus on not only providing information about pathological changes, but also on being measured easily and reproducibly. For other diseases, focus on development of assays monitoring highly specific protease-generated cleavage fragments of proteins has provided assays, which in serum or plasma have the ability to predict early pathological changes. Proteolytic processing of brain proteins, such as tau, APP, and α-synuclein, is a key pathological event in dementias. Here, we speculate that aiming biomarker development for dementias at detecting small brain protein degradation fragments of generated by brain-derived proteases specifically in blood samples could lead to the development of novel markers of disease progression, stage and importantly of treatment efficacy.
Collapse
Affiliation(s)
- Y. Wang
- Department of Biomarker Development, Nordic Bioscience A/S, Beijing 102206, China
| | - M. G. Sørensen
- Neurodegenerative Diseases, Nordic Bioscience A/S, Herlev Hovedgade 207, 2730 Herlev, Denmark
| | - Q. Zheng
- Department of Biomarker Development, Nordic Bioscience A/S, Beijing 102206, China
| | - C. Zhang
- Neurodegenerative Diseases, Nordic Bioscience A/S, Herlev Hovedgade 207, 2730 Herlev, Denmark
| | - M. A. Karsdal
- Neurodegenerative Diseases, Nordic Bioscience A/S, Herlev Hovedgade 207, 2730 Herlev, Denmark
| | - K. Henriksen
- Neurodegenerative Diseases, Nordic Bioscience A/S, Herlev Hovedgade 207, 2730 Herlev, Denmark
| |
Collapse
|
31
|
|
32
|
Calabrese V, Cornelius C, Dinkova-Kostova AT, Iavicoli I, Di Paola R, Koverech A, Cuzzocrea S, Rizzarelli E, Calabrese EJ. Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta Mol Basis Dis 2011; 1822:753-83. [PMID: 22108204 DOI: 10.1016/j.bbadis.2011.11.002] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 12/30/2022]
Abstract
Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This paper introduces the emerging role of exogenous molecules in hormetic-based neuroprotection and the mitochondrial redox signaling concept of hormesis and its applications to the field of neuroprotection and longevity. Maintenance of optimal long-term health conditions is accomplished by a complex network of longevity assurance processes that are controlled by vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, such as polyphenols and L-carnitine/acetyl-L-carnitine, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. Hormesis provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose response relationships, their mechanistic foundations, their relationship to the concept of biological plasticity as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This paper describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways including sirtuin, Nrfs and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Collapse
|
33
|
Caldés C, Vilanova B, Adrover M, Muñoz F, Donoso J. Understanding non-enzymatic aminophospholipid glycation and its inhibition. Polar head features affect the kinetics of Schiff base formation. Bioorg Med Chem 2011; 19:4536-43. [DOI: 10.1016/j.bmc.2011.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/01/2011] [Accepted: 06/08/2011] [Indexed: 02/02/2023]
|
34
|
Zhang Q, Monroe ME, Schepmoes AA, Clauss TRW, Gritsenko MA, Meng D, Petyuk VA, Smith RD, Metz TO. Comprehensive identification of glycated peptides and their glycation motifs in plasma and erythrocytes of control and diabetic subjects. J Proteome Res 2011; 10:3076-88. [PMID: 21612289 DOI: 10.1021/pr200040j] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nonenzymatic glycation of proteins sets the stage for formation of advanced glycation end-products and development of chronic complications of diabetes. In this report, we extended our previous methods on proteomics analysis of glycated proteins to comprehensively identify glycated proteins in control and diabetic human plasma and erythrocytes. Using immunodepletion, enrichment, and fractionation strategies, we identified 7749 unique glycated peptides, corresponding to 3742 unique glycated proteins. Semiquantitative comparisons showed that glycation levels of a number of proteins were significantly increased in diabetes and that erythrocyte proteins were more extensively glycated than plasma proteins. A glycation motif analysis revealed that some amino acids were favored more than others in the protein primary structures in the vicinity of the glycation sites in both sample types. The glycated peptides and corresponding proteins reported here provide a foundation for potential identification of novel markers for diabetes, hyperglycemia, and diabetic complications in future studies.
Collapse
Affiliation(s)
- Qibin Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tsai SJ, Chiu CP, Yang HT, Yin MC. s-Allyl cysteine, s-ethyl cysteine, and s-propyl cysteine alleviate β-amyloid, glycative, and oxidative injury in brain of mice treated by D-galactose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:6319-6326. [PMID: 21548553 DOI: 10.1021/jf201160a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The neuroprotective effects of s-allyl cysteine, s-ethyl cysteine, and s-propyl cysteine in D-galactose (DG)-treated mice were examined. DG treatment increased the formation of Aβ(1-40) and Aβ(1-42), enhanced mRNA expression of β-amyloid precursor protein (APP) and β-site APP cleavage enzyme 1 (BACE1), and reduced neprilysin expression in brain (P < 0.05); however, the intake of three test compounds significantly decreased the production of Aβ(1-40) and Aβ(1-42) and suppressed the expression of APP and BACE1 (P < 0.05). DG treatments declined brain protein kinase C (PKC) activity and mRNA expression (P < 0.05). Intake of test compounds significantly retained PKC activity, and the expression of PKC-α and PKC-γ (P < 0.05). DG treatments elevated brain activity and mRNA expression of aldose reductase (AR) and sorbitol dehydrogenase as well as increased brain levels of carboxymethyllysine (CML), pentosidine, sorbitol, and fructose (P < 0.05). Test compounds significantly lowered AR activity, AR expression, and CML and pentosidine levels (P < 0.05). DG treatments also significantly increased the formation of reactive oxygen species (ROS) and protein carbonyl and decreased the activity of glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (P < 0.05); however, the intake of test compounds in DG-treated mice significantly decreased ROS and protein carbonyl levels and restored brain GPX, SOD, and catalase activities (P < 0.05). These findings support that these compounds via their anti-Aβ, antiglycative, and antioxidative effects were potent agents against the progression of neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Shih-Jei Tsai
- School of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| | | | | | | |
Collapse
|
36
|
Rahmadi A, Steiner N, Münch G. Advanced glycation endproducts as gerontotoxins and biomarkers for carbonyl-based degenerative processes in Alzheimer's disease. Clin Chem Lab Med 2011; 49:385-91. [PMID: 21275816 DOI: 10.1515/cclm.2011.079] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia disorder of later life. Although there might be various different triggering events in the early stages of the disease, they appear to converge on a few characteristic final pathways in the late stages, characterized by inflammation and neurodegeneration. Here, we review the hypothesis that advanced glycation end products (AGEs), which reflect carbonyl stress, an imbalance between the production of reactive carbonyl compounds and their detoxification, can serve as biomarkers for the progression of disorder. AGE modification may explain many of the neuropathological and biochemical features of AD, such as extensive protein cross-linking shown as amyloid plaques and neurofibrillary tangles, inflammation, oxidative stress and neuronal cell death. Although accumulation of AGEs is a normal feature of aging, it appears to be significantly accelerated in AD. We suggest that higher AGE concentrations in brain tissue and in cerebrospinal fluid might be able to distinguish between normal aging and AD.
Collapse
Affiliation(s)
- Anton Rahmadi
- Department of Pharmacology, School of Medicine, University of Western Sydney, Campbelltown, Australia
| | | | | |
Collapse
|
37
|
Advanced glycation end products as biomarkers and gerontotoxins – A basis to explore methylglyoxal-lowering agents for Alzheimer’s disease? Exp Gerontol 2010; 45:744-51. [DOI: 10.1016/j.exger.2010.03.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/23/2010] [Accepted: 03/01/2010] [Indexed: 12/21/2022]
|
38
|
Karsdal MA, Henriksen K, Leeming DJ, Woodworth T, Vassiliadis E, Bay-Jensen AC. Novel combinations of Post-Translational Modification (PTM) neo-epitopes provide tissue-specific biochemical markers—are they the cause or the consequence of the disease? Clin Biochem 2010; 43:793-804. [DOI: 10.1016/j.clinbiochem.2010.03.015] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/22/2010] [Accepted: 03/28/2010] [Indexed: 12/31/2022]
|
39
|
Daroux M, Prévost G, Maillard-Lefebvre H, Gaxatte C, D’Agati V, Schmidt A, Boulanger É. Advanced glycation end-products: Implications for diabetic and non-diabetic nephropathies. DIABETES & METABOLISM 2010; 36:1-10. [DOI: 10.1016/j.diabet.2009.06.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 06/21/2009] [Accepted: 06/23/2009] [Indexed: 01/28/2023]
|
40
|
Anti-Glycation Effect of Mixed Herbal Extract in Individuals with Pre-Diabetes Mellitus. ACTA ACUST UNITED AC 2010. [DOI: 10.3793/jaam.7.26] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
|
42
|
Reddy VP, Zhu X, Perry G, Smith MA. Oxidative stress in diabetes and Alzheimer's disease. J Alzheimers Dis 2009; 16:763-74. [PMID: 19387111 DOI: 10.3233/jad-2009-1013] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxidative stress plays a major role in diabetes as well as in Alzheimer's disease and other related neurological diseases. Intracellular oxidative stress arises due to the imbalance in the production of reactive oxygen/reactive nitrogen species and cellular antioxidant defense mechanisms. In turn, the excess reactive oxygen/reactive nitrogen species mediate the damage of proteins and nucleic acids, which have been shown to have direct and deleterious consequences in diabetes and Alzheimer's disease. Oxidative stress also contributes to the production of advanced glycation end products through glycoxidation and lipid peroxidation. The advanced glycation end products and lipid peroxidation products are ubiquitous to diabetes and Alzheimer's disease and serve as markers of disease progression in both disorders. Antioxidants and advanced glycation end products inhibitors, either induced endogenously or exogenously introduced, may counteract with the deleterious effects of the reactive oxygen/reactive nitrogen species and thereby, in prevention or treatment paradigms, attenuate or substantially delay the onset of these devastating pathologies.
Collapse
Affiliation(s)
- V Prakash Reddy
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA.
| | | | | | | |
Collapse
|
43
|
Jellinger KA. Recent advances in our understanding of neurodegeneration. J Neural Transm (Vienna) 2009; 116:1111-62. [DOI: 10.1007/s00702-009-0240-y] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 05/05/2009] [Indexed: 12/12/2022]
|
44
|
Mazzei F, Botrè F, Favero G, Podestà E, Botrè C. Partially disposable biosensors for the quick assessment of damage in foodstuff after thermal treatment. Microchem J 2009. [DOI: 10.1016/j.microc.2008.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Su B, Wang X, Nunomura A, Moreira PI, Lee HG, Perry G, Smith MA, Zhu X. Oxidative stress signaling in Alzheimer's disease. Curr Alzheimer Res 2009; 5:525-32. [PMID: 19075578 DOI: 10.2174/156720508786898451] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple lines of evidence demonstrate that oxidative stress is an early event in Alzheimer's disease (AD), occurring prior to cytopathology, and therefore may play a key pathogenic role in AD. Oxidative stress not only temporally precedes the pathological lesions of the disease but also activates cell signaling pathways, which, in turn, contribute to lesion formation and, at the same time, provoke cellular responses such as compensatory upregulation of antioxidant enzymes found in vulnerable neurons in AD. In this review, we provide an overview of the evidence of oxidative stress and compensatory responses that occur in AD, particularly focused on potential sources of oxidative stress and the roles and mechanism of activation of stress-activated protein kinase pathways.
Collapse
Affiliation(s)
- B Su
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hipkiss AR. Carnosine and its possible roles in nutrition and health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2009; 57:87-154. [PMID: 19595386 DOI: 10.1016/s1043-4526(09)57003-9] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The dipeptide carnosine has been observed to exert antiaging activity at cellular and whole animal levels. This review discusses the possible mechanisms by which carnosine may exert antiaging action and considers whether the dipeptide could be beneficial to humans. Carnosine's possible biological activities include scavenger of reactive oxygen species (ROS) and reactive nitrogen species (RNS), chelator of zinc and copper ions, and antiglycating and anticross-linking activities. Carnosine's ability to react with deleterious aldehydes such as malondialdehyde, methylglyoxal, hydroxynonenal, and acetaldehyde may also contribute to its protective functions. Physiologically carnosine may help to suppress some secondary complications of diabetes, and the deleterious consequences of ischemic-reperfusion injury, most likely due to antioxidation and carbonyl-scavenging functions. Other, and much more speculative, possible functions of carnosine considered include transglutaminase inhibition, stimulation of proteolysis mediated via effects on proteasome activity or induction of protease and stress-protein gene expression, upregulation of corticosteroid synthesis, stimulation of protein repair, and effects on ADP-ribose metabolism associated with sirtuin and poly-ADP-ribose polymerase (PARP) activities. Evidence for carnosine's possible protective action against secondary diabetic complications, neurodegeneration, cancer, and other age-related pathologies is briefly discussed.
Collapse
Affiliation(s)
- Alan R Hipkiss
- School of Clinicial and Experimental Medicine, College of Medical and Dental Sciences, The Univeristy of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
47
|
Lee D, Park CW, Paik SR, Choi KY. The modification of alpha-synuclein by dicarbonyl compounds inhibits its fibril-forming process. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:421-30. [PMID: 19103312 DOI: 10.1016/j.bbapap.2008.11.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 12/29/2022]
Abstract
Oxidative modification of alpha-synuclein (alphaSyn) was reported to have significant effects on its amyloidogenic properties. Dicarbonyl compounds are metabolites accumulated by various oxidative processes in the intracellular environment. In this study, two dicarbonyl compounds, methylglyoxal (MGO) and glyoxal (GO), were investigated for their effects on the structural and fibril-forming properties of alphaSyn. Both compounds were found to induce the oligomerization of alphaSyn. By adding substoichiometric amounts of alphaSyn modified by MGO or GO, the fibrillization of alphaSyn was substantially inhibited. The heterogeneously-modified alphaSyns were separated into three fractions: monomers, oligomers, and high molecular mass oligomers. When each modified alphaSyn species was used to seed fibril formation, protein fibrillization was significantly suppressed. Temperature scanning and interactions with liposomes revealed that both MGO- and GO-modified monomers were not as susceptible as the unmodified alphaSyn to conformational changes into partially folded intermediates and alpha-helixes. Our observations suggest that dicarbonyl modification of alphaSyn reduces conformational flexibility of the protein, thereby contributing to a reduction in the ability of alphaSyn to form fibrils, and the modified protein inhibits the fibrillization of the unmodified alphaSyn.
Collapse
Affiliation(s)
- Daekyun Lee
- Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea
| | | | | | | |
Collapse
|
48
|
Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2008; 1792:482-96. [PMID: 19026743 DOI: 10.1016/j.bbadis.2008.10.014] [Citation(s) in RCA: 240] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Revised: 10/18/2008] [Accepted: 10/21/2008] [Indexed: 12/22/2022]
Abstract
Characterized as a peripheral metabolic disorder and a degenerative disease of the central nervous system respectively, it is now widely recognized that type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) share several common abnormalities including impaired glucose metabolism, increased oxidative stress, insulin resistance and amyloidogenesis. Several recent studies suggest that this is not an epiphenomenon, but rather these two diseases disrupt common molecular pathways and each disease compounds the progression of the other. For instance, in AD the accumulation of the amyloid-beta peptide (Abeta), which characterizes the disease and is thought to participate in the neurodegenerative process, may also induce neuronal insulin resistance. Conversely, disrupting normal glucose metabolism in transgenic animal models of AD that over-express the human amyloid precursor protein (hAPP) promotes amyloid-peptide aggregation and accelerates the disease progression. Studying these processes at a cellular level suggests that insulin resistance and Abeta aggregation may not only be the consequence of excitotoxicity, aberrant Ca(2+) signals, and proinflammatory cytokines such as TNF-alpha, but may also promote these pathological effectors. At the molecular level, insulin resistance and Abeta disrupt common signal transduction cascades including the insulin receptor family/PI3 kinase/Akt/GSK3 pathway. Thus both disease processes contribute to overlapping pathology, thereby compounding disease symptoms and progression.
Collapse
|
49
|
Spiteller G. Peroxyl radicals are essential reagents in the oxidation steps of the Maillard reaction leading to generation of advanced glycation end products. Ann N Y Acad Sci 2008; 1126:128-33. [PMID: 18448806 DOI: 10.1196/annals.1433.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are incorporated in all membranes of mammalian and plant cells and are extremely sensitive to oxygen. This property is used in nature to respond to any changes in cell membrane structure. In the first step of a response, lipid hydroperoxide molecules are generated. An increasing impact switches the enzymatic reaction to a nonenzymatic one by generation of lipid peroxyl radicals, which attack sugars by oxidation. In the course of these reactions, hydrogen peroxyl radicals are generated, resembling lipid peroxyl radicals in their reactivity. The reactions induced by these radicals are not under genetic control, they attack nearly all types of biological molecules (such as proteins, lipids, and sugars), and are responsible for the deleterious cell alterations in aging and age-related diseases (such as diabetes, Alzheimer's disease, or atherosclerosis) and probably also in autoimmune diseases, which involve sugars at the cell membranes. Lipid peroxidation processes are induced by heating fats, meat, and other nutritional products. The oxidation products generated by consumption of heated food cause damage of mammalian cells. The deleterious reactions can be partly reduced by consumption of plants and/or algae. These contain, among other well-known antioxidants, furan fatty acids, which are important scavengers of peroxyl radicals.
Collapse
Affiliation(s)
- Gerhard Spiteller
- Institute of Organic Chemistry, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
50
|
A comparative study of the chemical reactivity of pyridoxamine, Ac-Phe-Lys and Ac-Cys with various glycating carbonyl compounds. Amino Acids 2008; 36:437-48. [DOI: 10.1007/s00726-008-0098-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 04/26/2008] [Indexed: 11/26/2022]
|