1
|
Oleszkiewicz T, Sala-Cholewa K, Godel-Jędrychowska K, Kurczynska E, Kostecka-Gugała A, Petryszak P, Baranski R. Nitrogen availability modulates carotene biosynthesis, chromoplast biogenesis, and cell wall composition in carrot callus. PLANT CELL REPORTS 2025; 44:31. [PMID: 39820593 DOI: 10.1007/s00299-024-03420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
KEY MESSAGE Carrot callus grown on a medium with increased nitrogen have reduced carotenoid accumulation, changed gene expression, high amount of vesicular plastids and altered cell wall composition. Carotenoid biosynthesis is vital for plant development and quality, yet its regulation under varying nutrient conditions remains unclear. To explore the effects of nitrogen (N) availability, we used carrot (Daucus carota L.) model callus cultures in vitro as a controlled system for studying nutrient-regulated metabolic processes. Two mineral media differing in N content and NO₃⁻/NH₄⁺ ratios were used. Comprehensive analyses, HPLC, transmission electron microscopy, immunochemistry, and RNA sequencing, revealed notable cellular and molecular responses to N treatments. The results demonstrated that N supplementation reduced carotenoid content by 50%, particularly β-carotene and α-carotene. The composition of chromoplast types shifted, with vesicular chromoplasts dominating (55%), followed by a globular type (23%), while in the control callus, globular and crystalline types predominated (57% and 33%, respectively). Immunohistochemistry showed increased presence of high-esterified pectins and arabinogalactan proteins in N-treated cells. Transcriptomic analysis identified 1704 differentially expressed genes (DEGs), including only two in the carotenoid biosynthesis pathway: phytoene synthase 2 (PSY2) and zeaxanthin epoxidase (ZEP). PSY2, which encodes the carotenoid rate-limiting enzyme, showed expression levels that corresponded with reduced carotene content. Other DEGs included 15 involved in nitrogen transport, 1 in nitrogen assimilation, 40 in cell wall biosynthesis and modification, and 9 in phenylpropanoid/flavonoid pathways. N-treated callus exhibited altered expression of MADS-box, NLP, bZIP, and ethylene-responsive transcription factors. These findings reveal how nitrogen availability disrupts carotenoid biosynthesis and triggers extensive chromoplast and cell wall remodeling, providing a cellular framework for understanding nutrient-regulated metabolic shifts.
Collapse
Affiliation(s)
- Tomasz Oleszkiewicz
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120, Krakow, Poland.
| | - Katarzyna Sala-Cholewa
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, ul. Jagiellońska 28, 40-032, Katowice, Poland
| | - Kamila Godel-Jędrychowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, ul. Jagiellońska 28, 40-032, Katowice, Poland
| | - Ewa Kurczynska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, ul. Jagiellońska 28, 40-032, Katowice, Poland
| | - Anna Kostecka-Gugała
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Przemysław Petryszak
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Rafal Baranski
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120, Krakow, Poland.
| |
Collapse
|
2
|
Gonçalves B, Aires A, Oliveira I, Baltazar M, Cosme F, Afonso S, Pinto T, Anjos MR, Inês A, Morais MC, Vilela A, Silva AP. From Orchard to Wellness: Unveiling the Health Effects of Sweet Cherry Nutrients. Nutrients 2024; 16:3660. [PMID: 39519493 PMCID: PMC11547742 DOI: 10.3390/nu16213660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
This review paper explores the multifaceted relationship between sweet cherry nutrients and human health, aiming to uncover the comprehensive impact of these bioactive compounds from orchard to wellness. Furthermore, it highlights how advanced crop techniques can be pivotal in optimizing these beneficial compounds. Synthesizing existing literature, the paper examines the diverse bioactive nutrients in sweet cherries, including antioxidants, polyphenols, vitamins, and minerals, and elucidating their mechanisms of action and potential health benefits. From antioxidant properties to anti-inflammatory effects, the paper elucidates how these nutrients may mitigate chronic diseases such as cardiovascular disorders, diabetes, and neurodegenerative conditions. Additionally, it explores their role in promoting gastrointestinal health, enhancing exercise recovery, and modulating sleep patterns. The review discusses emerging research on the potential anti-cancer properties of sweet cherry compounds, highlighting their promising role in cancer prevention and treatment. Furthermore, it delves into the impact of sweet cherry consumption on metabolic health, weight management, and skin health. By providing a comprehensive overview of the current understanding of sweet cherry nutrients and their health effects, this paper offers valuable insights for researchers, healthcare professionals, and consumers interested in utilizing nature's bounty for holistic wellness.
Collapse
Affiliation(s)
- Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Alfredo Aires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Ivo Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Miguel Baltazar
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Fernanda Cosme
- Chemistry Research Centre-Vila Real (CQ-VR), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (F.C.); (A.I.); (A.V.)
| | - Sílvia Afonso
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Teresa Pinto
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Maria Rosário Anjos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - António Inês
- Chemistry Research Centre-Vila Real (CQ-VR), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (F.C.); (A.I.); (A.V.)
| | - Maria Cristina Morais
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Alice Vilela
- Chemistry Research Centre-Vila Real (CQ-VR), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (F.C.); (A.I.); (A.V.)
| | - Ana Paula Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| |
Collapse
|
3
|
Matsui M, Murata T, Kurobe-Takashima Y, Ikeda T, Noguchi-Shinohara M, Ono K, Shidara H, Otsuka K, Kuriki D, Suzuki M, Kobayashi S. Lutein from Chicken Eggs Prevents Amyloid β-Peptide Aggregation In Vitro and Amyloid β-Induced Inflammation in Human Macrophages (THP-1). ACS OMEGA 2024; 9:26616-26627. [PMID: 38911805 PMCID: PMC11191573 DOI: 10.1021/acsomega.4c03353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/25/2024]
Abstract
Epidemiological studies predict that chicken eggs contain constituents other than proteins that prevent Alzheimer's disease. This study screened for constituents that inhibit the aggregation of amyloid β peptide (Aβ)1-42 and elucidated their mechanisms to explore the active components of chicken eggs. Thioflavin T assays and transmission electron microscopy observations showed that arachidonic acid (ARA), lysophosphatidylcholine, lutein (LTN), palmitoleic acid, and zeaxanthin inhibited Aβ aggregation. Among these, ARA and LTN showed the highest activity. Photoinduced cross-linking of unmodified protein assays and infrared absorption spectrometry measurements showed that LTN strongly inhibited highly toxic Aβ1-42 protofibril formation. Furthermore, LTN suppressed Aβ1-42-induced IL 1B and TNF expression in human macrophage-like cells. In summary, LTN plays a crucial role in the AD-preventive effect of chicken eggs by suppressing Aβ1-42 aggregation and Aβ1-42-induced inflammation.
Collapse
Affiliation(s)
- Misuzu Matsui
- Department
of Applied Biological Chemistry, Graduate School of Agricultural and
Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Tomofusa Murata
- Department
of Applied Biological Chemistry, Graduate School of Agricultural and
Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yuki Kurobe-Takashima
- Department
of Applied Biological Chemistry, Graduate School of Agricultural and
Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Tokuhei Ikeda
- Department
of Neurology, Kanazawa University Graduate
School of Medical Sciences, Kanazawa 920-1192, Japan
| | - Moeko Noguchi-Shinohara
- Department
of Neurology, Kanazawa University Graduate
School of Medical Sciences, Kanazawa 920-1192, Japan
| | - Kenjiro Ono
- Department
of Neurology, Kanazawa University Graduate
School of Medical Sciences, Kanazawa 920-1192, Japan
| | | | - Kurataka Otsuka
- R&D
Division, Kewpie Corporation, Tokyo 150-0002, Japan
- Division
of Translational Oncology, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Tokyo
NODAI Research Institute, Tokyo University
of Agriculture, Tokyo 156-8502, Japan
- Division
of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Daisuke Kuriki
- R&D
Division, Kewpie Corporation, Tokyo 150-0002, Japan
- Division
of Translational Oncology, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Michio Suzuki
- Department
of Applied Biological Chemistry, Graduate School of Agricultural and
Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shoko Kobayashi
- Department
of Applied Biological Chemistry, Graduate School of Agricultural and
Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
4
|
Miao Q, Si X, Zhao Q, Zhang H, Qin Y, Tang C, Zhang J. Deposition and enrichment of carotenoids in livestock products: An overview. Food Chem X 2024; 21:101245. [PMID: 38426078 PMCID: PMC10901861 DOI: 10.1016/j.fochx.2024.101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
A wide range of research has illustrated that carotenoids play a key role in human health through their versatile beneficial biological functions. Traditionally, the majority dietary sources of carotenoids for humans are obtained from vegetables and fruits, however, the contribution of animal-derived foods has attracted more interest in recent years. Livestock products such as eggs, meat, and milk have been considered as the appropriate and unique carriers for the deposition of carotenoids. In addition, with the enrichment of carotenoids, the nutritional quality of these animal-origin foods would be improved as well as the economic value. Here, we offer an overview covering aspects including the physicochemical properties of carotenoids, the situation of carotenoids fortified in livestock products, and the pathways that lead to the deposition of carotenoids in livestock products. The summary of these important nutrients in livestock products will provide references for animal husbandry and human health.
Collapse
Affiliation(s)
- Qixiang Miao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xueyang Si
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiyan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Zhang AA, Ha BE, Chen C, Xu MQ, Wang QH, Xie L, Zheng ZA, Zhang JS, Lv WQ, Xiao HW. Vacuum-steam pulsed blanching: An emerging method to enhance texture softening, drying behavior and physicochemical properties of Cornus officinalis. J Food Sci 2024; 89:202-216. [PMID: 38078765 DOI: 10.1111/1750-3841.16868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 01/15/2024]
Abstract
Vacuum steam pulsed blanching (VSPB) was employed as a novel blanching technology on Cornus officinalis to soften the tissue for subsequent coring and dehydration. The current work aims to explore its effect on mass transfer behavior, PPO inactivation, drying characteristics, physicochemical properties, antioxidant capacity, and microstructure of C. officinalis. Results showed that VSPB increased water loss, decreased solid gain, and increased weight reduction with increased blanching cycles. Besides, VSPB significantly changed physical properties and extensively reduced drying time which was attributed to the cell wall components dissolving and cell turgor pressure decreasing, also verified by observing microstructure alteration. PPO was completely denatured after blanching in 6 cycles, but phenolic compounds were still diffused or degraded. Notably, the content of flavonoids and antioxidant capacity significantly increased compared to fresh samples probably due to increased extractability caused by the disrupting cell structure. Besides, the carotenoids and ascorbic acid could be well preserved.
Collapse
Affiliation(s)
- An-An Zhang
- College of Engineering, China Agricultural University, Beijing, China
| | - Bu-Er Ha
- College of Engineering, China Agricultural University, Beijing, China
| | - Chang Chen
- Department of Food Science, Cornell University, Geneva, New York, USA
| | - Ming-Qiang Xu
- Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Qing-Hui Wang
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Long Xie
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhi-An Zheng
- College of Engineering, China Agricultural University, Beijing, China
| | - Jing-Shou Zhang
- College of Engineering, China Agricultural University, Beijing, China
| | - Wei-Qiao Lv
- College of Engineering, China Agricultural University, Beijing, China
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
McClements DJ. Ultraprocessed plant-based foods: Designing the next generation of healthy and sustainable alternatives to animal-based foods. Compr Rev Food Sci Food Saf 2023; 22:3531-3559. [PMID: 37350040 DOI: 10.1111/1541-4337.13204] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Numerous examples of next-generation plant-based foods, such as meat, seafood, egg, and dairy analogs, are commercially available. These products are usually designed to have physicochemical properties, sensory attributes, and functional behaviors that match those of the animal-sourced products they are designed to replace. However, there has been concern about the potential negative impacts of these foods on human nutrition and health. In particular, many of these products have been criticized for being ultraprocessed foods that contain numerous ingredients and are manufactured using harsh processing operations. In this article, the concept of ultraprocessed foods is introduced and its relevance to describe the properties of next-generation plant-based foods is discussed. Most commercial plant-based meat, seafood, egg, and dairy analogs currently available do fall into this category, and so can be classified as ultraprocessed plant-based (UPB) foods. The nutrient content, digestibility, bioavailability, and gut microbiome effects of UPB foods are compared to those of animal-based foods, and the potential consequences of any differences on human health are discussed. Some commercial UPB foods would not be considered healthy based on their nutrient profiles, especially those plant-based cheeses that contain low levels of protein and high levels of fat, starch, and salt. However, it is argued that UPB foods can be designed to have good nutritional profiles and beneficial health effects. Finally, areas where further research are still needed to create a more healthy and sustainable food supply are discussed.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
7
|
Guan Z, Li X, Yang J, Zhao J, Wang K, Hu J, Zhang B, Liu K. The mechanism of white flower formation in Brassica rapa is distinct from that in other Brassica species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:133. [PMID: 37204504 DOI: 10.1007/s00122-023-04344-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/10/2023] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE A single nucleotide (G) deletion in the third exon of BraA02.PES2-2 (Bra032957) leads to the conversion of flower color from yellow to white in B. rapa, and knockout mutants of its orthologous genes in B. napus showed white or pale yellow flowers. Brassica rapa (2n = 20, AA) is grown worldwide as an important crop for edible oil and vegetables. The bright yellow flower color and long-lasting flowering period give it aesthetic qualities appealing to countryside tourists. However, the mechanism controlling the accumulation of yellow pigments in B. rapa has not yet been completely revealed. In this study, we characterized the mechanism of white flower formation using a white-flowered natural B. rapa mutant W01. Compared to the petals of yellow-flowered P3246, the petals of W01 have significantly reduced content of yellowish carotenoids. Furthermore, the chromoplasts in white petals of W01 are abnormal with irregularly structured plastoglobules. Genetic analysis indicated that the white flower was controlled by a single recessive gene. By combining BSA-seq with fine mapping, we identified the target gene BraA02.PES2-2 (Bra032957) homologous to AtPES2, which has a single nucleotide (G) deletion in the third exon. Seven homologous PES2 genes including BnaA02.PES2-2 (BnaA02g28340D) and BnaC02.PES2-2 (BnaC02g36410D) were identified in B. napus (2n = 38, AACC), an allotetraploid derived from B. rapa and B. oleracea (2n = 18, CC). Knockout mutants of either one or two of BnaA02.PES2-2 and BnaC02.PES2-2 in the yellow-flowered B. napus cv. Westar by the CRISPR/Cas9 system showed pale-yellow or white flowers. The knock-out mutants of BnaA02.PES2-2 and BnaC02.PES2-2 had fewer esterified carotenoids. These results demonstrated that BraA02.PES2-2 in B. rapa, and BnaA02.PES2-2 and BnaC02.PES2-2 in B. napus play important roles in carotenoids esterification in chromoplasts that contributes to the accumulation of carotenoids in flower petals.
Collapse
Affiliation(s)
- Zhilin Guan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuewei Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Nanchang, 330046, China
| | - Jianshun Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junwei Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaiyue Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianlin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bao Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Hao DL, Zhou JY, Huang YN, Wang HR, Li XH, Guo HL, Liu JX. Roles of plastid-located phosphate transporters in carotenoid accumulation. FRONTIERS IN PLANT SCIENCE 2022; 13:1059536. [PMID: 36589064 PMCID: PMC9798012 DOI: 10.3389/fpls.2022.1059536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Enhanced carotenoid accumulation in plants is crucial for the nutritional and health demands of the human body since these beneficial substances are acquired through dietary intake. Plastids are the major organelles to accumulate carotenoids in plants and it is reported that manipulation of a single plastid phosphate transporter gene enhances carotenoid accumulation. Amongst all phosphate transport proteins including phosphate transporters (PHTs), plastidial phosphate translocators (pPTs), PHOSPHATE1 (PHO1), vacuolar phosphate efflux transporter (VPE), and Sulfate transporter [SULTR]-like phosphorus distribution transporter (SPDT) in plants, plastidic PHTs (PHT2 & PHT4) are found as the only clade that is plastid located, and manipulation of which affects carotenoid accumulation. Manipulation of a single chromoplast PHT (PHT4;2) enhances carotenoid accumulation, whereas manipulation of a single chloroplast PHT has no impact on carotenoid accumulation. The underlying mechanism is mainly attributed to their different effects on plastid orthophosphate (Pi) concentration. PHT4;2 is the only chromoplast Pi efflux transporter, and manipulating this single chromoplast PHT significantly regulates chromoplast Pi concentration. This variation subsequently modulates the carotenoid accumulation by affecting the supply of glyceraldehyde 3-phosphate, a substrate for carotenoid biosynthesis, by modulating the transcript abundances of carotenoid biosynthesis limited enzyme genes, and by regulating chromoplast biogenesis (facilitating carotenoid storage). However, at least five orthophosphate influx PHTs are identified in the chloroplast, and manipulating one of the five does not substantially modulate the chloroplast Pi concentration in a long term due to their functional redundancy. This stable chloroplast Pi concentration upon one chloroplast PHT absence, therefore, is unable to modulate Pi-involved carotenoid accumulation processes and finally does affect carotenoid accumulation in photosynthetic tissues. Despite these advances, several cases including the precise location of plastid PHTs, the phosphate transport direction mediated by these plastid PHTs, the plastid PHTs participating in carotenoid accumulation signal pathway, the potential roles of these plastid PHTs in leaf carotenoid accumulation, and the roles of these plastid PHTs in other secondary metabolites are waiting for further research. The clarification of the above-mentioned cases is beneficial for breeding high-carotenoid accumulation plants (either in photosynthetic or non-photosynthetic edible parts of plants) through the gene engineering of these transporters.
Collapse
Affiliation(s)
- Dong-Li Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Jin-Yan Zhou
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Jurong, China
| | - Ya-Nan Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Hao-Ran Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Xiao-Hui Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Hai-Lin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Jian-Xiu Liu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| |
Collapse
|
9
|
Zacarías-García J, Cronje PJ, Diretto G, Zacarías L, Rodrigo MJ. A comprehensive analysis of carotenoids metabolism in two red-fleshed mutants of Navel and Valencia sweet oranges ( Citrus sinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:1034204. [PMID: 36330241 PMCID: PMC9623303 DOI: 10.3389/fpls.2022.1034204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 06/01/2023]
Abstract
Kirkwood Navel and Ruby Valencia are two spontaneous bud mutations of the respective parental lines of sweet orange (Citrus sinensis) Palmer Navel and Olinda Valencia, showing an atypical red pigmentation of the pulp. These red-fleshed varieties are commercially available and highly attractive for consumers but their carotenoid metabolism and the basis of the mutation have not been investigated. The red colour of Kirkwood and Ruby pulp was observed from the very early stages of fruit development until full maturity and associated with an altered carotenoid profiling. The red-fleshed varieties accumulated from 6- up to 1000-times more total carotenoids compared to the standard oranges. Specifically, the pulp of Kirkwood and Ruby accumulated large amounts of phytoene and phytofluene, and moderate contents of lycopene. Moreover, the red-fleshed oranges contained other unusual carotenes as δ-carotene, and lower concentrations of downstream products such as β,β-xanthophylls, abscisic acid (ABA) and ABA-glucosyl ester. This peculiar profile was associated with chromoplasts with lycopene crystalloid structures and round vesicles likely containing colourless carotenes. The flavedo and leaves of Kirkwood and Ruby showed minor changes in carotenoids, mainly limited to higher levels of phytoene. The carotenoid composition in Kirkwood and Ruby fruits was not explained by differences in the transcriptional profile of 26 genes related to carotenoid metabolism, covering the main steps of biosynthesis, catabolism and other processes related to carotenoid accumulation. Moreover, sequence analysis of the lycopene cyclase genes revealed no alterations in those of the red-fleshed oranges compared to the genes of the standard varieties. A striking event observed in Kirkwood and Ruby trees was the reddish coloration of the inner side of the bark tissue, with larger amounts of phytoene, accumulation of lycopene and lower ABA content. These observation lead to the conclusion that the mutation is not only manifested in fruit, affecting other carotenogenic tissues of the mutant plants, but with different consequences in the carotenoid profile. Overall, the carotenoid composition in the red-fleshed mutants suggests a partial blockage of the lycopene β-cyclization in the carotenoid pathway, rendering a high accumulation of carotenes upstream lycopene and a reduced flow to downstream xanthophylls and ABA.
Collapse
Affiliation(s)
- Jaime Zacarías-García
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Paul J. Cronje
- Citrus Research International (CRI), Department of Horticultural Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Biotechnology Laboratory, Casaccia Research Center, Roma, Italy
| | - Lorenzo Zacarías
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - María Jesús Rodrigo
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
10
|
Song X, Li N, Zhang Y, Liang Y, Zhou R, Yu T, Shen S, Feng S, Zhang Y, Li X, Lin H, Wang X. Transcriptomics and Genomics Analysis Uncover the Differentially Expressed Chlorophyll and Carotenoid-Related Genes in Celery. Int J Mol Sci 2022; 23:ijms23168986. [PMID: 36012264 PMCID: PMC9409461 DOI: 10.3390/ijms23168986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Celery (Apium graveolens L.), a plant from Apiaceae, is one of the most important vegetables and is grown worldwide. Carotenoids can capture light energy and transfer it to chlorophyll, which plays a central role in photosynthesis. Here, by performing transcriptomics and genomics analysis, we identified and conducted a comprehensive analysis of chlorophyll and carotenoid-related genes in celery and six representative species. Significantly, different contents and gene expression patterns were found among three celery varieties. In total, 237 and 290 chlorophyll and carotenoid-related genes were identified in seven species. No notable gene expansion of chlorophyll biosynthesis was detected in examined species. However, the gene encoding ζ-carotene desaturase (ZDS) enzyme in carotenoid was expanded in celery. Comparative genomics and RNA-seq analyses revealed 16 and 5 key genes, respectively, regulating chlorophyll and carotenoid. An intriguing finding is that chlorophyll and carotenoid-related genes were coordinately regulated by transcriptional factors, which could be distinctively classified into positive- and negative-regulation groups. Six CONSTANS (CO)-like transcription factors co-regulated chlorophyll and carotenoid-related genes were identified in celery. In conclusion, this study provides new insights into the regulation of chlorophyll and carotenoid by transcription factors.
Collapse
Affiliation(s)
- Xiaoming Song
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- Center for Genomics and Bio-Computing, School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Nan Li
- Center for Genomics and Bio-Computing, School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yingchao Zhang
- Center for Genomics and Bio-Computing, School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yi Liang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Rong Zhou
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark
| | - Tong Yu
- Center for Genomics and Bio-Computing, School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Shaoqin Shen
- Center for Genomics and Bio-Computing, School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Shuyan Feng
- Center for Genomics and Bio-Computing, School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yu Zhang
- Center for Genomics and Bio-Computing, School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Xiuqing Li
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB E3B 4Z7, Canada
| | - Hao Lin
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- Correspondence: (H.L.); (X.W.)
| | - Xiyin Wang
- Center for Genomics and Bio-Computing, School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
- Correspondence: (H.L.); (X.W.)
| |
Collapse
|
11
|
Xylanase Supplementation in Wheat-Based Diets of Laying Hens Affects the Egg Yolk Color, Carotenoid and Fatty Acid Profiles. Foods 2022; 11:foods11152209. [PMID: 35892794 PMCID: PMC9331567 DOI: 10.3390/foods11152209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Wheat is rich in non-starch polysaccharides (NSP) and their degradation in poultry diets is promoted by exogenous carbohydrases. The objective here was to evaluate the effect of adding an intrinsically thermostable xylanase on wheat-based diets for laying hens in yolk color, carotenoid and fatty acid profiles of eggs. A total of 128 laying hens were used for 12 weeks. They were randomly allocated to four dietary treatments with different levels of xylanase: T1: control (no xylanase), T2: 30,000 U/g, T3: 45,000 U/g and T4: 90,000 U/g, with 32 birds, 16 replicates per treatment (2 birds/replicate). At the end of the experimental period, egg yolk color index, redness (a*) and yellowness (b*) of egg yolks were found significantly higher in all the enzyme supplemented diet groups (T2, T3, T4) compared with the control (T1). Canthaxanthin levels were significantly higher in T3 than T1 (p < 0.05). Total n-3, n-6 and total polyunsaturated fatty acids (FAs) were significantly higher in T4 compared with the control (p < 0.01), while the reverse trend was evidenced for monounsaturated FAs. Additionally, total n-3 FAs were higher in the T2 than T1 (p < 0.005). Overall, the results showed that exogenous xylanase enzyme supplementation in wheat-based diets for laying hens contribute to maintaining egg yolk color. Overall, exogenous xylanase enzyme supplemented at all levels in wheat-based laying hens’ diets improved egg yolk color compared to the control diet. The enzyme supplemented at the higher level (90,000 U/g) improved polyunsaturated and reduced monounsaturated egg yolk fatty acid content.
Collapse
|
12
|
Sun T, Rao S, Zhou X, Li L. Plant carotenoids: recent advances and future perspectives. MOLECULAR HORTICULTURE 2022; 2:3. [PMID: 37789426 PMCID: PMC10515021 DOI: 10.1186/s43897-022-00023-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/03/2022] [Indexed: 10/05/2023]
Abstract
Carotenoids are isoprenoid metabolites synthesized de novo in all photosynthetic organisms. Carotenoids are essential for plants with diverse functions in photosynthesis, photoprotection, pigmentation, phytohormone synthesis, and signaling. They are also critically important for humans as precursors of vitamin A synthesis and as dietary antioxidants. The vital roles of carotenoids to plants and humans have prompted significant progress toward our understanding of carotenoid metabolism and regulation. New regulators and novel roles of carotenoid metabolites are continuously revealed. This review focuses on current status of carotenoid metabolism and highlights recent advances in comprehension of the intrinsic and multi-dimensional regulation of carotenoid accumulation. We also discuss the functional evolution of carotenoids, the agricultural and horticultural application, and some key areas for future research.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Sombir Rao
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xuesong Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
13
|
Stiefvatter L, Lehnert K, Frick K, Montoya-Arroyo A, Frank J, Vetter W, Schmid-Staiger U, Bischoff SC. Oral Bioavailability of Omega-3 Fatty Acids and Carotenoids from the Microalgae Phaeodactylum tricornutum in Healthy Young Adults. Mar Drugs 2021; 19:700. [PMID: 34940699 PMCID: PMC8709223 DOI: 10.3390/md19120700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
The microalgae Phaeodactylum tricornutum (PT) contains valuable nutrients such as proteins, polyunsaturated omega-3 fatty acids (n-3 PUFA), particularly eicosapentaenoic acid (EPA) and some docosahexaenoic acid (DHA), carotenoids such as fucoxanthin (FX), and beta-glucans, which may confer health benefits. In a randomized intervention trial involving 22 healthy individuals, we administered for two weeks in a crossover manner the whole biomass of PT (5.3 g/day), or fish oil (FO) containing equal amounts of EPA and DHA (together 300 mg/day). In an additional experiment, sea fish at 185 g/week resulting in a similar EPA and DHA intake was administered in nine individuals. We determined the bioavailability of fatty acids and carotenoids and assessed safety parameters. The intake of PT resulted in a similar increase in the n-3 PUFA and EPA content and a decrease in the PUFA n-6:n-3 ratio in plasma. PT intake caused an uptake of FX that is metabolized to fucoxanthinol (FXOH) and amarouciaxanthin A (AxA). No relevant adverse effects occurred following PT consumption. The study shows that PT is a safe and effective source of EPA and FX-and likely other nutrients-and therefore should be considered as a future sustainable food item.
Collapse
Affiliation(s)
- Lena Stiefvatter
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70593 Stuttgart, Germany;
| | - Katja Lehnert
- Institute of Food Chemistry, University of Hohenheim, 70593 Stuttgart, Germany; (K.L.); (W.V.)
| | - Konstantin Frick
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, 70569 Stuttgart, Germany;
| | - Alexander Montoya-Arroyo
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70593 Stuttgart, Germany; (A.M.-A.); (J.F.)
| | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70593 Stuttgart, Germany; (A.M.-A.); (J.F.)
| | - Walter Vetter
- Institute of Food Chemistry, University of Hohenheim, 70593 Stuttgart, Germany; (K.L.); (W.V.)
| | - Ulrike Schmid-Staiger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Innovation Field Algae Biotechnology-Development, 70569 Stuttgart, Germany;
| | - Stephan C. Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70593 Stuttgart, Germany;
| |
Collapse
|
14
|
Pérez-Lamela C, Franco I, Falqué E. Impact of High-Pressure Processing on Antioxidant Activity during Storage of Fruits and Fruit Products: A Review. Molecules 2021; 26:5265. [PMID: 34500700 PMCID: PMC8434123 DOI: 10.3390/molecules26175265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Fruits and fruit products are an essential part of the human diet. Their health benefits are directly related to their content of valuable bioactive compounds, such as polyphenols, anthocyanins, or vitamins. Heat treatments allow the production of stable and safe products; however, their sensory quality and chemical composition are subject to significant negative changes. The use of emerging non-thermal technologies, such as HPP (High Pressure Processing), has the potential to inactivate the microbial load while exerting minimal effects on the nutritional and organoleptic properties of food products. HPP is an adequate alternative to heat treatments and simultaneously achieves the purposes of preservation and maintenance of freshness characteristics and health benefits of the final products. However, compounds responsible for antioxidant activity can be significantly affected during treatment and storage of HPP-processed products. Therefore, this article reviews the effect of HPP treatment and subsequent storage on the antioxidant activity (oxygen radical absorbance capacity (ORAC) assay), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay, ferric reducing antioxidant power (FRAP) assay, 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity assay or Trolox equivalent antioxidant capacity (TEAC) assay), and on the total phenolic, flavonoid, carotenoid, anthocyanin and vitamin contents of fruits and different processed fruit-based products.
Collapse
Affiliation(s)
- Concepción Pérez-Lamela
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| | - Inmaculada Franco
- Food Technology Area, Faculty of Sciences, University of Vigo—Ourense Campus, E32004 Ourense, Spain;
| | - Elena Falqué
- Analytical Chemistry Group, Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo–Ourense Campus, E32004 Ourense, Spain;
| |
Collapse
|
15
|
Chen QH, Wu BK, Pan D, Sang LX, Chang B. Beta-carotene and its protective effect on gastric cancer. World J Clin Cases 2021; 9:6591-6607. [PMID: 34447808 PMCID: PMC8362528 DOI: 10.12998/wjcc.v9.i23.6591] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/16/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Beta-carotene is an important natural pigment that is very beneficial to human health. It is widely found in vegetables and fruits. The three main functions are antioxidant effects, cell gap junction-related functions and immune-related functions. Because of its diverse functions, beta-carotene is believed to prevent and treat many chronic diseases. Gastric cancer is one of the most important diseases it can treat. Gastric cancer is a type of cancer with a high incidence. Its etiology varies, and the pathogenesis is complex. Gastric cancer seriously affects human health. The role of beta-carotene, a natural nutrient, in gastric cancer has been explored by many researchers, including molecular mechanisms and epidemiological studies. Molecular studies have mainly focused on oxidative stress, cell cycle, signal transduction pathways and immune-related mechanisms of beta-carotene in gastric cancer. Many epidemiological surveys and cohort studies of patients with gastric cancer have been conducted, and the results of these epidemiological studies vary due to the use of different research methods and analysis of different regions. This paper will summarize the results of these studies, mainly in terms of molecular mechanisms and epidemiological research results, which will provide a systematic basis for future studies of the treatment and prognosis of gastric cancer. This paper will help researchers identify new research directions.
Collapse
Affiliation(s)
- Qian-Hui Chen
- Department of Intensive Care Unit, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bao-Kang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Dan Pan
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
16
|
de Castro NT, de Alencar ER, Zandonadi RP, Han H, Raposo A, Ariza-Montes A, Araya-Castillo L, Botelho RBA. Influence of Cooking Method on the Nutritional Quality of Organic and Conventional Brazilian Vegetables: A Study on Sodium, Potassium, and Carotenoids. Foods 2021; 10:foods10081782. [PMID: 34441559 PMCID: PMC8391696 DOI: 10.3390/foods10081782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 02/08/2023] Open
Abstract
Vegetable consumption is associated with increased health benefits, and vegetables are consumed both in cooked form and raw form in salads. All cooking techniques cause changes in a vegetable’s the nutrient content. Consumers are increasingly health-conscious and have less time to prepare meals, and they do not know which cooking times and cooking methods are best suited to preserve the nutrients. This study aimed to determine the best method of cooking vegetables to maintain minerals (potassium and sodium) and carotenoids. The studied vegetables were broccoli (Brassica oleracea, var. Italica), carrots (Daucus carota), and zucchini (Cucurbita moschata). The cooking methods were: boiling, steaming, combined oven, microwave steaming, and microwave cooking. Samples of organic and conventionally grown vegetables were prepared in triplicate. Samples were analyzed to determine the availability of target minerals and carotenoids in the raw food and in each recommended cooking situation according to technical standards. Only the carrot showed a higher concentration in organic cultivation for carotenoids in raw vegetables, with both zucchini and broccoli having higher concentrations when grown by conventional cultivation. The zucchini from organic cultivation presented a reduction of potassium and sodium, almost consistently, in all cooking techniques. Regarding the conventionally cultivated zucchini, potassium remained stable in boiling. Broccoli from organic and conventional cultivation showed similar potassium levels for boiling and traditional steam cooking. Organic carrots showed easier sodium extraction compared with conventional cultivation. Heat treatment, in general, improves the accessibility of carotenoids.
Collapse
Affiliation(s)
- Neide Torres de Castro
- Department of Nutrition, University of Brasília, Brasília 70910-900, Brazil; (N.T.d.C.); (R.P.Z.); (R.B.A.B.)
| | | | - Renata Puppin Zandonadi
- Department of Nutrition, University of Brasília, Brasília 70910-900, Brazil; (N.T.d.C.); (R.P.Z.); (R.B.A.B.)
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, 98 Gunja-Dong, Gwanjin-Gu, Seoul 143-747, Korea
- Correspondence: (H.H.); (A.R.)
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
- Correspondence: (H.H.); (A.R.)
| | - Antonio Ariza-Montes
- Social Matters Research Group, Universidad Loyola Andalucía, C/Escritor Castilla Aguayo, 4, 14004 Córdoba, Spain;
| | - Luis Araya-Castillo
- Facultad de Economía y Negocios, Universidad Andrés Bello, Santiago de Chile 7591538, Chile;
| | | |
Collapse
|
17
|
Inhibition of Carotenoid Biosynthesis by CRISPR/Cas9 Triggers Cell Wall Remodelling in Carrot. Int J Mol Sci 2021; 22:ijms22126516. [PMID: 34204559 PMCID: PMC8234013 DOI: 10.3390/ijms22126516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022] Open
Abstract
Recent data indicate that modifications to carotenoid biosynthesis pathway in plants alter the expression of genes affecting chemical composition of the cell wall. Phytoene synthase (PSY) is a rate limiting factor of carotenoid biosynthesis and it may exhibit species-specific and organ-specific roles determined by the presence of psy paralogous genes, the importance of which often remains unrevealed. Thus, the aim of this work was to elaborate the roles of two psy paralogs in a model system and to reveal biochemical changes in the cell wall of psy knockout mutants. For this purpose, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated (Cas9) proteins (CRISPR/Cas9) vectors were introduced to carotenoid-rich carrot (Daucus carota) callus cells in order to induce mutations in the psy1 and psy2 genes. Gene sequencing, expression analysis, and carotenoid content analysis revealed that the psy2 gene is critical for carotenoid biosynthesis in this model and its knockout blocks carotenogenesis. The psy2 knockout also decreased the expression of the psy1 paralog. Immunohistochemical staining of the psy2 mutant cells showed altered composition of arabinogalactan proteins, pectins, and extensins in the mutant cell walls. In particular, low-methylesterified pectins were abundantly present in the cell walls of carotenoid-rich callus in contrast to the carotenoid-free psy2 mutant. Transmission electron microscopy revealed altered plastid transition to amyloplasts instead of chromoplasts. The results demonstrate for the first time that the inhibited biosynthesis of carotenoids triggers the cell wall remodelling.
Collapse
|
18
|
Tudor C, Gherasim EC, Dulf FV, Pintea A. In vitro bioaccessibility of macular xanthophylls from commercial microalgal powders of Arthrospira platensis and Chlorella pyrenoidosa. Food Sci Nutr 2021; 9:1896-1906. [PMID: 33841808 PMCID: PMC8020956 DOI: 10.1002/fsn3.2150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 12/24/2022] Open
Abstract
The bioaccessibility of the major carotenoids present in two commercial microalgal supplements in powder form was investigated through a standardized in vitro digestion method. The dried biomass of Arthrospira platensis contained β-carotene (36.8 mg/100 g) and zeaxanthin (20.8 mg/100 g) as the main carotenoids as well as a high content of saturated fatty acids (61% of total fatty acids), whereas that of Chlorella pyrenoidosa was rich in lutein (37.8 mg/100 g) and had a high level of unsaturated fatty acids (65% of total fatty acids). In the case of the latter, lutein bioaccessibility was not statistically enhanced after the replacement of porcine bile extract with bovine bile extract in the in vitro digestion protocol and after the addition of coconut oil (17.8% as against to 19.2% and 19.2% vs. 18.5%, respectively). In contrast, the use of bovine bile extract along with co-digestion with coconut oil significantly enhanced the bioaccessibility of zeaxanthin from A. platensis, reaching the highest bioaccessibility of 42.8%.
Collapse
Affiliation(s)
- Cristina Tudor
- University of Agricultural Sciences and Veterinary MedicineCluj‐NapocaRomania
| | | | | | - Adela Pintea
- University of Agricultural Sciences and Veterinary MedicineCluj‐NapocaRomania
| |
Collapse
|
19
|
Pires FCS, de Oliveira JC, Menezes EGO, Silva APDSE, Ferreira MCR, Siqueira LMM, Almada-Vilhena AO, Pieczarka JC, Nagamachi CY, de Carvalho Junior RN. Bioactive Compounds and Evaluation of Antioxidant, Cytotoxic and Cytoprotective Effects of Murici Pulp Extracts ( Byrsonima crassifolia) Obtained by Supercritical Extraction in HepG2 Cells Treated with H 2O 2. Foods 2021; 10:737. [PMID: 33808511 PMCID: PMC8065398 DOI: 10.3390/foods10040737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/27/2022] Open
Abstract
The use of clean technologies in the development of bioactive plant extracts has been encouraged, but it is necessary to verify the cytotoxicity and cytoprotection for food and pharmaceutical applications. Therefore, the objective of this work was to obtain the experimental data of the supercritical sequential extraction of murici pulp, to determine the main bioactive compounds obtained and to evaluate the possible cytotoxicity and cytoprotection of the extracts in models of HepG2 cells treated with H2O2. The murici pulp was subjected to sequential extraction with supercritical CO2 and CO2+ethanol, at 343.15 K, and 22, 32, and 49 MPa. Higher extraction yields were obtained at 49 MPa. The oil presented lutein (224.77 µg/g), oleic, palmitic, and linoleic, as the main fatty acids, and POLi (17.63%), POO (15.84%), PPO (13.63%), and LiOO (10.26%), as the main triglycerides. The ethanolic extract presented lutein (242.16 µg/g), phenolic compounds (20.63 mg GAE/g), and flavonoids (0.65 mg QE/g). The ethanolic extract showed greater antioxidant activity (122.61 and 17.14 µmol TE/g) than oil (43.48 and 6.04 µmol TE/g). Both extracts did not show cytotoxicity and only murici oil showed a cytoprotective effect. Despite this, the results qualify both extracts for food/pharmaceutical applications.
Collapse
Affiliation(s)
- Flávia Cristina Seabra Pires
- LABEX (Extraction Laboratory), LABTECS (Supercritical Technology Laboratory), PPGCTA (PostGraduate Program in Food Science and Technology), ITEC (Institute of Technology), UFPA (Federal University of Pará), Augusto Corrêa Street S/N, Guamá, Belém, PA 66075-900, Brazil; (F.C.S.P.); (A.P.d.S.eS.); (M.C.R.F.)
| | - Joicy Corrêa de Oliveira
- LABEX (Extraction Laboratory), FEA (College of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Pará), Augusto Corrêa Street S/N, Guamá, Belém, PA 66075-900, Brazil;
| | - Eduardo Gama Ortiz Menezes
- LABEX (Extraction Laboratory), PRODERNA (Postgraduate Program in Natural Resources Engineering in the Amazon), ITEC (Institute of Technology), UFPA (Federal University of Pará), Augusto Corrêa Street S/N, Guamá, Belém, PA 66075-900, Brazil; (E.G.O.M.); (L.M.M.S.)
| | - Ana Paula de Souza e Silva
- LABEX (Extraction Laboratory), LABTECS (Supercritical Technology Laboratory), PPGCTA (PostGraduate Program in Food Science and Technology), ITEC (Institute of Technology), UFPA (Federal University of Pará), Augusto Corrêa Street S/N, Guamá, Belém, PA 66075-900, Brazil; (F.C.S.P.); (A.P.d.S.eS.); (M.C.R.F.)
| | - Maria Caroline Rodrigues Ferreira
- LABEX (Extraction Laboratory), LABTECS (Supercritical Technology Laboratory), PPGCTA (PostGraduate Program in Food Science and Technology), ITEC (Institute of Technology), UFPA (Federal University of Pará), Augusto Corrêa Street S/N, Guamá, Belém, PA 66075-900, Brazil; (F.C.S.P.); (A.P.d.S.eS.); (M.C.R.F.)
| | - Leticia Maria Martins Siqueira
- LABEX (Extraction Laboratory), PRODERNA (Postgraduate Program in Natural Resources Engineering in the Amazon), ITEC (Institute of Technology), UFPA (Federal University of Pará), Augusto Corrêa Street S/N, Guamá, Belém, PA 66075-900, Brazil; (E.G.O.M.); (L.M.M.S.)
| | - Andryo Orfi Almada-Vilhena
- CEABIO (Center for Advanced Studies of the Biodiversity and Cell Culture Laboratory), PCT-Guamá (Guamá Science and Technology Park), UFPA (Federal University of Pará), Augusto Corrêa Street S/N, Guamá, Belém, PA 66075-900, Brazil; (A.O.A.-V.); (J.C.P.); (C.Y.N.)
| | - Julio Cesar Pieczarka
- CEABIO (Center for Advanced Studies of the Biodiversity and Cell Culture Laboratory), PCT-Guamá (Guamá Science and Technology Park), UFPA (Federal University of Pará), Augusto Corrêa Street S/N, Guamá, Belém, PA 66075-900, Brazil; (A.O.A.-V.); (J.C.P.); (C.Y.N.)
| | - Cleusa Yoshiko Nagamachi
- CEABIO (Center for Advanced Studies of the Biodiversity and Cell Culture Laboratory), PCT-Guamá (Guamá Science and Technology Park), UFPA (Federal University of Pará), Augusto Corrêa Street S/N, Guamá, Belém, PA 66075-900, Brazil; (A.O.A.-V.); (J.C.P.); (C.Y.N.)
| | - Raul Nunes de Carvalho Junior
- LABEX (Extraction Laboratory), LABTECS (Supercritical Technology Laboratory), FEA (College of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Pará), Augusto Corrêa Street S/N, Guamá, Belém, PA 66075-900, Brazil
| |
Collapse
|
20
|
Lara-Abia S, Lobo-Rodrigo G, Welti-Chanes J, Cano MP. Carotenoid and Carotenoid Ester Profile and Their Deposition in Plastids in Fruits of New Papaya ( Carica papaya L.) Varieties from the Canary Islands. Foods 2021; 10:434. [PMID: 33671129 PMCID: PMC7921962 DOI: 10.3390/foods10020434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
The carotenoid profile of non-saponified and saponified extracts of different tissues (pulp and peel) of fruits of three new papaya varieties, Sweet Mary, Alicia, and Eksotika, was characterized for the first time, and almost all carotenoid compounds were quantified. Carotenoids and carotenoid esters were analyzed and characterized using HPLC-photo diode array (PDA-MS with atmospheric pressure chemical ionization with positive ion mode (APCI+) with a C30 reversed-phase column. The carotenoid deposition in collenchyma and chlorenchyma cells of papaya pulp and peel tissues was assessed by optical microscopy, confocal laser scanning microscopy, and transmission electron microscopy. The most abundant carotenoids in the fruit of the three papaya varieties (pulp and peel) were (all-E)-lycopene (230.0-421.2 µg/100 g fresh weight), (all-E)-β-carotene (120.3-233.2 µg/100 g fresh weight), and (all-E)-β-cryptoxanthin laurate (74.4-223.2 µg/100 g fresh weight. Moreover, high concentrations of (all-E)-lutein (922.5-1381.1 µg/100 g fresh weight) and its esters, such as (all-E)-lutein-3-O-myristate and (all-E)-lutein dimyristate, were found in peel extracts. The optical microscopy study of papaya pulps showed that carotenoid deposition in all papaya varieties, including Maradol, was mainly localized close to the cell walls, showing the presence of some crystalloids and round-shaped structures, with different sizes and distribution due to the different carotenoid content among varieties. No crystalloids or globular depositions were found in any of the peel sections, and no remarkable differences were found in the papaya peel microstructure of the different papaya varieties.
Collapse
Affiliation(s)
- Sara Lara-Abia
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL) (CSIC-UAM), 28001 Madrid, Spain;
- School of Sciences and Engineering, Tecnológico de Monterrey (ITESM), Monterrey 64000, Mexico;
| | - Gloria Lobo-Rodrigo
- Department of Crop Production in Tropical and Subtropical Areas, Instituto Canario de Investigaciones Agrarias (ICIA), 38270 Tenerife, Spain;
| | - Jorge Welti-Chanes
- School of Sciences and Engineering, Tecnológico de Monterrey (ITESM), Monterrey 64000, Mexico;
| | - M. Pilar Cano
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL) (CSIC-UAM), 28001 Madrid, Spain;
- School of Sciences and Engineering, Tecnológico de Monterrey (ITESM), Monterrey 64000, Mexico;
| |
Collapse
|
21
|
Soldatou S, Eldjárn GH, Ramsay A, van der Hooft JJJ, Hughes AH, Rogers S, Duncan KR. Comparative Metabologenomics Analysis of Polar Actinomycetes. Mar Drugs 2021; 19:103. [PMID: 33578887 PMCID: PMC7916644 DOI: 10.3390/md19020103] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Biosynthetic and chemical datasets are the two major pillars for microbial drug discovery in the omics era. Despite the advancement of analysis tools and platforms for multi-strain metabolomics and genomics, linking these information sources remains a considerable bottleneck in strain prioritisation and natural product discovery. In this study, molecular networking of the 100 metabolite extracts derived from applying the OSMAC approach to 25 Polar bacterial strains, showed growth media specificity and potential chemical novelty was suggested. Moreover, the metabolite extracts were screened for antibacterial activity and promising selective bioactivity against drug-persistent pathogens such as Klebsiella pneumoniae and Acinetobacter baumannii was observed. Genome sequencing data were combined with metabolomics experiments in the recently developed computational approach, NPLinker, which was used to link BGC and molecular features to prioritise strains for further investigation based on biosynthetic and chemical information. Herein, we putatively identified the known metabolites ectoine and chrloramphenicol which, through NPLinker, were linked to their associated BGCs. The metabologenomics approach followed in this study can potentially be applied to any large microbial datasets for accelerating the discovery of new (bioactive) specialised metabolites.
Collapse
Affiliation(s)
- Sylvia Soldatou
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (S.S.); (A.H.H.)
| | | | - Andrew Ramsay
- School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK; (G.H.E.); (A.R.); (S.R.)
| | | | - Alison H. Hughes
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (S.S.); (A.H.H.)
| | - Simon Rogers
- School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK; (G.H.E.); (A.R.); (S.R.)
| | - Katherine R. Duncan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (S.S.); (A.H.H.)
| |
Collapse
|
22
|
Meléndez-Martínez AJ, Mandić AI, Bantis F, Böhm V, Borge GIA, Brnčić M, Bysted A, Cano MP, Dias MG, Elgersma A, Fikselová M, García-Alonso J, Giuffrida D, Gonçalves VSS, Hornero-Méndez D, Kljak K, Lavelli V, Manganaris GA, Mapelli-Brahm P, Marounek M, Olmedilla-Alonso B, Periago-Castón MJ, Pintea A, Sheehan JJ, Tumbas Šaponjac V, Valšíková-Frey M, Meulebroek LV, O'Brien N. A comprehensive review on carotenoids in foods and feeds: status quo, applications, patents, and research needs. Crit Rev Food Sci Nutr 2021; 62:1999-2049. [PMID: 33399015 DOI: 10.1080/10408398.2020.1867959] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carotenoids are isoprenoids widely distributed in foods that have been always part of the diet of humans. Unlike the other so-called food bioactives, some carotenoids can be converted into retinoids exhibiting vitamin A activity, which is essential for humans. Furthermore, they are much more versatile as they are relevant in foods not only as sources of vitamin A, but also as natural pigments, antioxidants, and health-promoting compounds. Lately, they are also attracting interest in the context of nutricosmetics, as they have been shown to provide cosmetic benefits when ingested in appropriate amounts. In this work, resulting from the collaborative work of participants of the COST Action European network to advance carotenoid research and applications in agro-food and health (EUROCAROTEN, www.eurocaroten.eu, https://www.cost.eu/actions/CA15136/#tabs|Name:overview) research on carotenoids in foods and feeds is thoroughly reviewed covering aspects such as analysis, carotenoid food sources, carotenoid databases, effect of processing and storage conditions, new trends in carotenoid extraction, daily intakes, use as human, and feed additives are addressed. Furthermore, classical and recent patents regarding the obtaining and formulation of carotenoids for several purposes are pinpointed and briefly discussed. Lastly, emerging research lines as well as research needs are highlighted.
Collapse
Affiliation(s)
- Antonio J Meléndez-Martínez
- Nutrition and Food Science, Toxicology and Legal Medicine Department, Universidad de Sevilla, Sevilla, Spain
| | - Anamarija I Mandić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Filippos Bantis
- Department of Horticulture, Aristotle University, Thessaloniki, Greece
| | - Volker Böhm
- Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Grethe Iren A Borge
- Fisheries and Aquaculture Research, Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Mladen Brnčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Anette Bysted
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - M Pilar Cano
- Institute of Food Science Research (CIAL) (CSIC-UAM), Madrid, Spain
| | - M Graça Dias
- Instituto Nacional de Saúde Doutor Ricardo Jorge, I.P., Lisboa, Portugal
| | | | - Martina Fikselová
- Department of Food Hygiene and Safety, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | | | | | | | | | - Kristina Kljak
- Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Vera Lavelli
- DeFENS-Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - George A Manganaris
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Paula Mapelli-Brahm
- Institute of Food Technology in Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | | | | | | | - Adela Pintea
- Chemistry and Biochemistry Department, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | | | | | | | - Lieven Van Meulebroek
- Department of Veterinary Public Health and Food Safety, Ghent University, Merelbeke, Belgium
| | - Nora O'Brien
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
23
|
Esquivel P, Viñas M, Steingass CB, Gruschwitz M, Guevara E, Carle R, Schweiggert RM, Jiménez VM. Coffee (Coffea arabica L.) by-Products as a Source of Carotenoids and Phenolic Compounds—Evaluation of Varieties With Different Peel Color. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.590597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
24
|
Debong MW, Loos HM. Diet-Induced Flavor Changes in Human Milk: Update and Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10275-10280. [PMID: 32003562 DOI: 10.1021/acs.jafc.0c00223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dietary aroma transfer into human milk has been studied in many scenarios, including direct transmission and biotransformation. This perspective highlights recent research that focuses on the latter, with examples given in relation to 1,8-cineole and garlic-derived odorants. Three future directions are discussed, comprising (a) achieving a more comprehensive understanding of the chemical and physiological basis of aroma transfer into milk via pharmacological methods, advanced analytical techniques, and ecologically valid study designs, (b) assessing the bioactivity of odorants and their metabolites present in milk that are ingested by the infant, and (c) translating the insights gained on aroma transmission in relation to taste attributes and bioactive components of the maternal diet.
Collapse
Affiliation(s)
- Marcel W Debong
- Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9, 91054 Erlangen, Germany
| | - Helene M Loos
- Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9, 91054 Erlangen, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany
| |
Collapse
|
25
|
A Brief Overview of Dietary Zeaxanthin Occurrence and Bioaccessibility. Molecules 2020; 25:molecules25184067. [PMID: 32899907 PMCID: PMC7570536 DOI: 10.3390/molecules25184067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022] Open
Abstract
As it exhibits no provitamin A activity, the dietary intake of zeaxanthin is not considered essential. However, its contribution to ocular health has long been acknowledged. Numerous publications emphasize the importance of zeaxanthin alongside lutein in ocular diseases such as cataracts and age-related macular degeneration which constitute an important health concern, especially among the elderly. Considering that the average dietary ratio of lutein to zeaxanthin favors the first, more bioaccessible food sources of zeaxanthin that can hinder the development and progression of the above-mentioned disorders are of great interest. In this paper, a brief overview of the more recent state of knowledge as regards dietary sources together with their respective zeaxanthin bioaccessibility assessed through a standardized in vitro digestion method was provided.
Collapse
|
26
|
Wang M, Han Y, Qiao F, Yan H. Improved Solid-Phase Extraction for Simple, Sensitive, and Efficient Determination of Trace Plant Growth Regulators in Cherry Tomatoes by High-Performance Liquid Chromatography. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8447-8454. [PMID: 32659084 DOI: 10.1021/acs.jafc.0c02636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The overuse of plant growth regulators (PGRs) in agricultural products has gradually increased in recent years, resulting in hazardous effects on food safety and human health. For the first time, a sensitive, accurate, and low-cost analytical method involving improved solid-phase extraction coupled with high-performance liquid chromatography was developed to determine trace PGRs in cherry tomatoes. Thereafter, the extraction mechanism and conditions were elucidated. Under optimized conditions, good linearity (0.04-400 ng g-1; r ≥ 0.9996) and lower limits of detection (0.005-0.006 ng g-1) were observed. The recoveries were 81.4-90.1%, with relative standard deviations of ≤6.7% (three levels). Finally, the developed method was successfully used to detect trace PGRs in cherry tomatoes. The results illustrated that this sensitive method shows great potential for application to monitor trace PGRs in agricultural products and, thus, provide technical support for food safety and public health.
Collapse
Affiliation(s)
- Mingwei Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, People's Republic of China
| | - Yehong Han
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, People's Republic of China
| | - Fengxia Qiao
- Department of Biochemistry, Baoding University, Baoding, Hebei 071002, People's Republic of China
| | - Hongyuan Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, People's Republic of China
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, People's Republic of China
| |
Collapse
|
27
|
Yan H, Pengfei W, Brennan H, Ping Q, Bingxiang L, Feiyan Z, Hongbo C, Haijiang C. Diversity of carotenoid composition, sequestering structures and gene transcription in mature fruits of four Prunus species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:113-123. [PMID: 32213457 DOI: 10.1016/j.plaphy.2020.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/26/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
The genus Prunus contains many fruits used in the human diet, which exhibit a variety of different flavors. However, publications on the diversity of carotenoid profiles and sequestering structures in Prunus fruits are limited. In this study, carotenoids and their associated sequestering structures in mature fruits of four Prunus species, including peach [Prunus persica (L.) Batschi], nectarine [Prunus persica (L.) Batschi var. nucipersica], plum (Prunus salicina L.), and apricot (Prunus armeniaca L.) were investigated. HPLC-PAD analysis revealed that mature fruits all accumulated carotenoid esters, while their profiles and levels differed significantly. Transcription analysis suggested a positive correlation between carotenogenic genes and carotenoid profiles. Transmission electron microscopy (TEM) analysis revealed a common globular chromoplast in Prunus. However, the number and size of plastids and plastoglobules varied between species. Noticeably, the white-flesh Ruiguang 19 nectarine contained plastids similar to chromoplasts, except with smaller plastoglobules. In addition, it seemed like a lipid-dissolved β-carotene form in apricot fruits, which is more effectively absorbed by humans than the solid-crystalline form. Moreover, the lowest transcriptions of plastid-related genes were found in Friar plum, and GLK2 and OR genes were presumed to be associated with the largest chromoplasts observed in apricot. We investigated the correlations among carotenoid accumulation, plastid characteristics and gene transcription and found that chromoplast development is likely more important in determining carotenoid accumulation than carotenogenic transcription in Prunus fruits. This study presents the first report on the diversity of carotenoid sequestering structures in Prunus fruits and suggests some crucial genes associated with diversity.
Collapse
Affiliation(s)
- Han Yan
- College of Horticulture, Agricultural University of Hebei, Baoding Hebei, 071000, China
| | - Wang Pengfei
- College of Horticulture, Agricultural University of Hebei, Baoding Hebei, 071000, China
| | - Hyden Brennan
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Qu Ping
- Institute of Science and Technology, Agricultural University of Hebei, Baoding Hebei, 071000, China
| | - Liu Bingxiang
- College of Forest, Agricultural University of Hebei, Baoding Hebei, 071000, China
| | - Zhang Feiyan
- College of Horticulture, Agricultural University of Hebei, Baoding Hebei, 071000, China
| | - Cao Hongbo
- College of Horticulture, Agricultural University of Hebei, Baoding Hebei, 071000, China.
| | - Chen Haijiang
- College of Horticulture, Agricultural University of Hebei, Baoding Hebei, 071000, China.
| |
Collapse
|
28
|
Lux PE, Carle R, Zacarías L, Rodrigo MJ, Schweiggert RM, Steingass CB. Genuine Carotenoid Profiles in Sweet Orange [ Citrus sinensis (L.) Osbeck cv. Navel] Peel and Pulp at Different Maturity Stages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13164-13175. [PMID: 31665598 DOI: 10.1021/acs.jafc.9b06098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The carotenogenesis in the endocarp and flavedo of Navel oranges over four consecutive maturity stages was assessed by high-performance liquid chromatography-diode array detection-atmospheric pressure chemical ionization-multistage mass spectrometry. After optimization of the extraction method, 77 carotenoids, including 26 monoesters and 33 diesters of violaxanthin, β-citraurin, and antheraxanthin, were characterized. Whereas chloroplast-specific pigments, such as (all-E)-lutein and (all-E)-β-carotene, predominated in the flavedo of green-ripe fruit, a highly complex pattern of xanthophyll esters was found in the mature oranges. Total carotenoid contents of flavedo were approximately 9-fold higher [12 605 μg/100 g of fresh weight (FW)] than those in the endocarp (1354 μg/100 g of FW) at the fully mature stage. The mature endocarp abundantly contained violaxanthin mono- and diesters, in addition to diverse antheraxanthin esters, which were exclusively detected in this fruit fraction. Likewise, β-citraurin esters were found to be unique flavedo constituents of mature fruit. Therefore, they may support the detection of fraudulent use of peel fractions during orange juice production.
Collapse
Affiliation(s)
- Peter E Lux
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis , University of Hohenheim , Garbenstraße 25 , 70599 Stuttgart , Germany
- Institute of Nutritional Sciences, Chair Food Biofunctionality , University of Hohenheim , Garbenstraße 28 , 70599 Stuttgart , Germany
| | - Reinhold Carle
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis , University of Hohenheim , Garbenstraße 25 , 70599 Stuttgart , Germany
- Biological Science Department, Faculty of Science , King Abdulaziz University , Post Office Box 80257, Jeddah 21589 , Saudi Arabia
| | - Lorenzo Zacarías
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA) , Consejo Superior de Investigaciones Científicas (CSIC) , Catedrático Agustin Escardino 7 , 46980 Paterna , Valencia , Spain
| | - María-Jesús Rodrigo
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA) , Consejo Superior de Investigaciones Científicas (CSIC) , Catedrático Agustin Escardino 7 , 46980 Paterna , Valencia , Spain
| | - Ralf M Schweiggert
- Department of Beverage Research, Chair Analysis & Technology of Plant-Based Foods , Geisenheim University , Von-Lade-Straße 1 , 65366 Geisenheim , Germany
| | - Christof B Steingass
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis , University of Hohenheim , Garbenstraße 25 , 70599 Stuttgart , Germany
- Department of Beverage Research, Chair Analysis & Technology of Plant-Based Foods , Geisenheim University , Von-Lade-Straße 1 , 65366 Geisenheim , Germany
| |
Collapse
|
29
|
Xavier AAO, Garrido-López JE, Aguayo-Maldonado J, Garrido-Fernández J, Fontecha J, Pérez-Gálvez AA. In Vitro Digestion of Human Milk: Influence of the Lactation Stage on the Micellar Carotenoids Content. Antioxidants (Basel) 2019; 8:E291. [PMID: 31394852 PMCID: PMC6720515 DOI: 10.3390/antiox8080291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/27/2022] Open
Abstract
Human milk is a complex fluid with nutritive and non-nutritive functions specifically structured to cover the needs of the newborn. The present study started with the study of carotenoid composition during progress of lactation (colostrum, collected at 3-5 d postpartum; mature milk, collected at 30 d postpartum) with samples donated from full-term lactating mothers (women with no chronic diseases, nonsmokers on a regular diet without supplements, n = 30). Subsequently, we applied an in vitro protocol to determine the micellarization efficiency of the carotenoids, which were separated by HPLC and quantified by the external standard method. That in vitro protocol is tailored for the biochemistry of the digestive tract of a newborn. To the best of our knowledge, the present study is the first report of carotenoids micellar contents, obtained in vitro. This study reveals, from the in vitro perspective, that colostrum and mature milk produce significant micellar contents of carotenoids despite lipids in milk are within highly complex structures. Indeed, the lactation period develops some influence on the micellarization efficiency, influence that might be attributed to the dynamics of the milk fat globule membrane (MFGM) during the progress of lactation.
Collapse
Affiliation(s)
- Ana A O Xavier
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), Campus Universitario, Building 46, 41013 Sevilla, Spain
| | - Juan E Garrido-López
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), Campus Universitario, Building 46, 41013 Sevilla, Spain
| | | | - Juan Garrido-Fernández
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), Campus Universitario, Building 46, 41013 Sevilla, Spain
| | - Javier Fontecha
- Institute of Food Science Research (CSIC-UAM), 28049 Madrid, Spain
| | - And Antonio Pérez-Gálvez
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), Campus Universitario, Building 46, 41013 Sevilla, Spain.
| |
Collapse
|
30
|
Influence of Pulsed Electric Field and Ohmic Heating Pretreatments on Enzyme and Antioxidant Activity of Fruit and Vegetable Juices. Foods 2019; 8:foods8070247. [PMID: 31288407 PMCID: PMC6678408 DOI: 10.3390/foods8070247] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 11/17/2022] Open
Abstract
The objective of this work was to optimize pulsed electric field (PEF) or ohmic heating (OH) application for carrot and apple mashes treatment at different preheating temperatures (40, 60 or 80 °C). The effect of tissue disintegration on the properties of recovered juices was quantified, taking into account the colour change, the antioxidant activity and the enzyme activity of peroxidase (POD) in both carrot and apple juice and polyphenol oxidase (PPO) in apple juice. Lower ΔE and an increase of the antioxidant activity were obtained for juice samples treated with temperature at 80 °C with or without PEF and OH pretreatment compared with those of untreated samples. The inactivation by 90% for POD and PPO was achieved when a temperature of 80 °C was applied for both carrot and apple mash. A better retention of plant secondary metabolites from carrot and apple mashes could be achieved by additional PEF or OH application. Obtained results are the basis for the development of targeted processing concepts considering the release, inactivation and retention of ingredients.
Collapse
|
31
|
Ilahy R, Tlili I, Siddiqui MW, Hdider C, Lenucci MS. Inside and Beyond Color: Comparative Overview of Functional Quality of Tomato and Watermelon Fruits. FRONTIERS IN PLANT SCIENCE 2019; 10:769. [PMID: 31263475 PMCID: PMC6585571 DOI: 10.3389/fpls.2019.00769] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/28/2019] [Indexed: 05/15/2023]
Abstract
The quali-quantitative evaluation and the improvement of the levels of plant bioactive secondary metabolites are increasingly gaining consideration by growers, breeders and processors, particularly in those fruits and vegetables that, due to their supposed health promoting properties, are considered "functional." Worldwide, tomato and watermelon are among the main grown and consumed crops and represent important sources not only of dietary lycopene but also of other health beneficial bioactives. Tomato and watermelon synthesize and store lycopene as their major ripe fruit carotenoid responsible of their typical red color at full maturity. It is also the precursor of some characteristic aroma volatiles in both fruits playing, thus, an important visual and olfactory impact in consumer choice. While sharing the same main pigment, tomato and watermelon fruits show substantial biochemical and physiological differences during ripening. Tomato is climacteric while watermelon is non-climacteric; unripe tomato fruit is green, mainly contributed by chlorophylls and xanthophylls, while young watermelon fruit mesocarp is white and contains only traces of carotenoids. Various studies comparatively evaluated in vivo pigment development in ripening tomato and watermelon fruits. However, in most cases, other classes of compounds have not been considered. We believe this knowledge is fundamental for targeted breeding aimed at improving the functional quality of elite cultivars. Hence, in this paper, we critically review the recent understanding underlying the biosynthesis, accumulation and regulation of different bioactive compounds (carotenoids, phenolics, aroma volatiles, and vitamin C) during tomato and watermelon fruit ripening. We also highlight some concerns about possible harmful effects of excessive uptake of bioactive compound on human health. We found that a complex interweaving of anabolic, catabolic and recycling reactions, finely regulated at multiple levels and with temporal and spatial precision, ensures a certain homeostasis in the concentrations of carotenoids, phenolics, aroma volatiles and Vitamin C within the fruit tissues. Nevertheless, several exogenous factors including light and temperature conditions, pathogen attack, as well as pre- and post-harvest manipulations can drive their amounts far away from homeostasis. These adaptive responses allow crops to better cope with abiotic and biotic stresses but may severely affect the supposed functional quality of fruits.
Collapse
Affiliation(s)
- Riadh Ilahy
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Imen Tlili
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Mohammed Wasim Siddiqui
- Department of Food Science and Postharvest Technology, Bihar Agricultural University, Bhagalpur, India
| | - Chafik Hdider
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Marcello Salvatore Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento (DiSTeBA), Lecce, Italy
| |
Collapse
|
32
|
Dzakovich MP, Gas-Pascual E, Orchard CJ, Sari EN, Riedl KM, Schwartz SJ, Francis DM, Cooperstone JL. Analysis of Tomato Carotenoids: Comparing Extraction and Chromatographic Methods. J AOAC Int 2019; 102:1069-1079. [PMID: 30786953 DOI: 10.5740/jaoacint.19-0017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Tomatoes (Solanum lycopersicum) are an economically and nutritionally important crop colored by carotenoids such as lycopene and β-carotene. Market diversification and interest in the health benefits of carotenoids has created the desire in plant, food, and nutritional scientists for improved extraction and quantification protocols that avoid the analytical bottlenecks caused by current methods. Objective: Our objective was to compare standard and rapid extraction as well as chromatographic separation methods for tomato carotenoids. Method: Comparison was based on accuracy and the ability to discriminate between alleles and genetic backgrounds. Estimates of the contribution to variance in the presence of genetic and environmental effects were further used for comparison. Selections of cherry and processing tomatoes with varying carotenoid profiles were assessed using both established extraction and HPLC-diode array detector (HPLC-DAD) methods and rapid extraction and ultra-HPLC-DAD (UHPLC-DAD) protocols. Results: Discrimination of alleles in samples extracted rapidly (<5 min/sample) was similar to samples extracted using a standard method (10 min/sample), although carotenoid concentrations were lower due to reduced extraction efficiency. Quantification by HPLC-DAD (21.5 min/sample) and UHPLC-DAD (4.2 min/sample) were comparable, but the UHPLC-DAD method could not separate all carotenoids and isomers of tangerine tomatoes. Random effects modeling indicated that extraction and chromatographic methods explained a small proportion of variance compared with genetic and environmental sources. Conclusions: The rapid extraction and UHPLC-DAD methods could enhance throughput for some applications compared with standard protocols.
Collapse
Affiliation(s)
- Michael P Dzakovich
- The Ohio State University, Department of Horticulture and Crop Science, 2001 Fyffe Court, Columbus, OH 43210
| | - Elisabet Gas-Pascual
- The Ohio State University, Ohio Agricultural Research and Development Center, Department of Horticulture and Crop Science, 1680 Madison Ave, Wooster, OH 44691
| | - Caleb J Orchard
- The Ohio State University, Ohio Agricultural Research and Development Center, Department of Horticulture and Crop Science, 1680 Madison Ave, Wooster, OH 44691
| | - Eka N Sari
- The Ohio State University, Ohio Agricultural Research and Development Center, Department of Horticulture and Crop Science, 1680 Madison Ave, Wooster, OH 44691
| | - Ken M Riedl
- The Ohio State University, Department of Food Science and Technology, 2015 Fyffe Court, Columbus, OH 43210
| | - Steven J Schwartz
- The Ohio State University, Department of Food Science and Technology, 2015 Fyffe Court, Columbus, OH 43210
| | - David M Francis
- The Ohio State University, Ohio Agricultural Research and Development Center, Department of Horticulture and Crop Science, 1680 Madison Ave, Wooster, OH 44691
| | - Jessica L Cooperstone
- The Ohio State University, Department of Horticulture and Crop Science, 2001 Fyffe Court, Columbus, OH 43210
| |
Collapse
|
33
|
Oleszkiewicz T, Klimek-Chodacka M, Milewska-Hendel A, Zubko M, Stróż D, Kurczyńska E, Boba A, Szopa J, Baranski R. Unique chromoplast organisation and carotenoid gene expression in carotenoid-rich carrot callus. PLANTA 2018; 248:1455-1471. [PMID: 30132151 PMCID: PMC6244651 DOI: 10.1007/s00425-018-2988-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/15/2018] [Indexed: 05/17/2023]
Abstract
MAIN CONCLUSION The new model orange callus line, similar to carrot root, was rich in carotenoids due to altered expression of some carotenogenesis-associated genes and possessed unique diversity of chromoplast ultrastructure. Callus induced from carrot root segments cultured in vitro is usually pale yellow (p-y) and poor in carotenoids. A unique, non-engineered callus line of dark orange (d-o) colour was developed in this work. The content of carotenoid pigments in d-o callus was at the same level as in an orange carrot storage root and nine-fold higher than in p-y callus. Carotenoids accumulated mainly in abundant crystalline chromoplasts that are also common in carrot root but not in p-y callus. Using transmission electron microscopy, other types of chromoplasts were also found in d-o callus, including membranous chromoplasts rarely identified in plants and not observed in carrot root until now. At the transcriptional level, most carotenogenesis-associated genes were upregulated in d-o callus in comparison to p-y callus, but their expression was downregulated or unchanged when compared to root tissue. Two pathway steps were critical and could explain the massive carotenoid accumulation in this tissue. The geranylgeranyl diphosphate synthase gene involved in the biosynthesis of carotenoid precursors was highly expressed, while the β-carotene hydroxylase gene involved in β-carotene conversion to downstream xanthophylls was highly repressed. Additionally, paralogues of these genes and phytoene synthase were differentially expressed, indicating their tissue-specific roles in carotenoid biosynthesis and metabolism. The established system may serve as a novel model for elucidating plastid biogenesis that coincides with carotenogenesis.
Collapse
Affiliation(s)
- Tomasz Oleszkiewicz
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. 29 Listopada 54, 31-425, Kraków, Poland
| | - Magdalena Klimek-Chodacka
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. 29 Listopada 54, 31-425, Kraków, Poland
| | - Anna Milewska-Hendel
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Maciej Zubko
- Institute of Materials Science, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500, Chorzow, Poland
| | - Danuta Stróż
- Institute of Materials Science, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500, Chorzow, Poland
| | - Ewa Kurczyńska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Aleksandra Boba
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Jan Szopa
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 24A, 50-363, Wrocław, Poland
| | - Rafal Baranski
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. 29 Listopada 54, 31-425, Kraków, Poland.
| |
Collapse
|
34
|
Effects of Wall Materials and Operating Parameters on Physicochemical Properties, Process Efficiency, and Total Carotenoid Content of Microencapsulated Banana Passionfruit Pulp (Passiflora tripartita var. mollissima) by Spray-Drying. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2143-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Al-Yafeai A, Böhm V. In Vitro Bioaccessibility of Carotenoids and Vitamin E in Rosehip Products and Tomato Paste As Affected by Pectin Contents and Food Processing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3801-3809. [PMID: 29624382 DOI: 10.1021/acs.jafc.7b05855] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Limited bioavailability of antioxidants present in food from fruits and vegetables matrices is determined by their low bioaccessibility due to the physical and chemical interactions of the antioxidants with the indigestible polysaccharides of cell walls. Therefore, this in vitro investigation aimed to assess the bioaccessibility of carotenoids and vitamin E from rosehips as well as from tomato paste and to investigate several aspects of effects of pectin contents and food processing on bioaccessibility. Following the addition of the enzyme mixture Fructozym P6-XL, the bioaccessibility of carotenoids from rosehips as well as from tomato paste significantly increased. The average relative increase in bioaccessibility from rosehips was lower for ( all-E)-β-carotene compared with ( all-E)-lycopene and ( all-E)-rubixanthin. In contrast, increases of bioaccessibility of α-tocopherol were comparable for rosehip samples and tomato paste.
Collapse
Affiliation(s)
- Ahlam Al-Yafeai
- Institute of Nutrition, Friedrich Schiller University Jena , Dornburger Straße 25-29 , 07743 Jena , Germany
- Department of Biology, Science Faculty , Ibb University , Ibb , Yemen
| | - Volker Böhm
- Institute of Nutrition, Friedrich Schiller University Jena , Dornburger Straße 25-29 , 07743 Jena , Germany
| |
Collapse
|
36
|
Recent Advances in Studies on the Therapeutic Potential of Dietary Carotenoids in Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4120458. [PMID: 29849893 PMCID: PMC5926482 DOI: 10.1155/2018/4120458] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/22/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022]
Abstract
Carotenoids, symmetrical tetraterpenes with a linear C40 hydrocarbon backbone, are natural pigment molecules produced by plants, algae, and fungi. Carotenoids have important functions in the organisms (including animals) that obtain them from food. Due to their characteristic structure, carotenoids have bioactive properties, such as antioxidant, anti-inflammatory, and autophagy-modulatory activities. Given the protective function of carotenoids, their levels in the human body have been significantly associated with the treatment and prevention of various diseases, including neurodegenerative diseases. In this paper, we review the latest studies on the effects of carotenoids on neurodegenerative diseases in humans. Furthermore, animal and cellular model studies on the beneficial effects of carotenoids on neurodegeneration are also reviewed. Finally, we discuss the possible mechanisms and limitations of carotenoids in the treatment and prevention of neurological diseases.
Collapse
|
37
|
Schaub P, Rodriguez-Franco M, Cazzonelli CI, Álvarez D, Wüst F, Welsch R. Establishment of an Arabidopsis callus system to study the interrelations of biosynthesis, degradation and accumulation of carotenoids. PLoS One 2018; 13:e0192158. [PMID: 29394270 PMCID: PMC5796706 DOI: 10.1371/journal.pone.0192158] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/17/2018] [Indexed: 12/02/2022] Open
Abstract
The net amounts of carotenoids accumulating in plant tissues are determined by the rates of biosynthesis and degradation. While biosynthesis is rate-limited by the activity of PHYTOENE SYNTHASE (PSY), carotenoid losses are caused by catabolic enzymatic and non-enzymatic degradation. We established a system based on non-green Arabidopsis callus which allowed investigating major determinants for high steady-state levels of β-carotene. Wild-type callus development was characterized by strong carotenoid degradation which was only marginally caused by the activity of carotenoid cleavage oxygenases. In contrast, carotenoid degradation occurred mostly non-enzymatically and selectively affected carotenoids in a molecule-dependent manner. Using carotenogenic pathway mutants, we found that linear carotenes such as phytoene, phytofluene and pro-lycopene resisted degradation and accumulated while β-carotene was highly susceptible towards degradation. Moderately increased pathway activity through PSY overexpression was compensated by degradation revealing no net increase in β-carotene. However, higher pathway activities outcompeted carotenoid degradation and efficiently increased steady-state β-carotene amounts to up to 500 μg g-1 dry mass. Furthermore, we identified oxidative β-carotene degradation products which correlated with pathway activities, yielding β-apocarotenals of different chain length and various apocarotene-dialdehydes. The latter included methylglyoxal and glyoxal as putative oxidative end products suggesting a potential recovery of carotenoid-derived carbon for primary metabolic pathways. Moreover, we investigated the site of β-carotene sequestration by co-localization experiments which revealed that β-carotene accumulated as intra-plastid crystals which was confirmed by electron microscopy with carotenoid-accumulating roots. The results are discussed in the context of using the non-green calli carotenoid assay system for approaches targeting high steady-state β-carotene levels prior to their application in crops.
Collapse
Affiliation(s)
- Patrick Schaub
- University of Freiburg, Faculty of Biology, Institute for Biology II, Freiburg, Germany
| | | | - Christopher Ian Cazzonelli
- Hawkesbury Institute for the Environment, University of Western Sydney, Hawkesbury Campus, Richmond, NSW Australia
| | - Daniel Álvarez
- University of Freiburg, Faculty of Biology, Institute for Biology II, Freiburg, Germany
| | - Florian Wüst
- University of Freiburg, Faculty of Biology, Institute for Biology II, Freiburg, Germany
| | - Ralf Welsch
- University of Freiburg, Faculty of Biology, Institute for Biology II, Freiburg, Germany
| |
Collapse
|
38
|
Rodrigues DB, Chitchumroonchokchai C, Mariutti LRB, Mercadante AZ, Failla ML. Comparison of Two Static in Vitro Digestion Methods for Screening the Bioaccessibility of Carotenoids in Fruits, Vegetables, and Animal Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11220-11228. [PMID: 29205039 DOI: 10.1021/acs.jafc.7b04854] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In vitro digestion methods are routinely used to assess the bioaccessibility of carotenoids and other dietary lipophilic compounds. Here, we compared the recovery of carotenoids and their efficiency of micellarization in digested fruits, vegetables, egg yolk, and salmon and also in mixed-vegetable salads with and without either egg yolk or salmon using the static INFOGEST method22 and the procedure of Failla et al.16 Carotenoid stability during the simulated digestion was ≥70%. The efficiencies of the partitioning of carotenoids into mixed micelles were similar when individual plant foods and salad meals were digested using the two static methods. Furthermore, the addition of cooked egg or salmon to vegetable salads increased the bioaccessibility of some carotenoids. Our findings showed that the two methods of in vitro digestion generated similar estimates of carotenoid retention and bioaccessibility for diverse foods.
Collapse
Affiliation(s)
- Daniele B Rodrigues
- Department of Food Science, Faculty of Food Engineering, University of Campinas , Campinas, São Paulo 13083-862, Brazil
| | | | - Lilian R B Mariutti
- Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas , Campinas, São Paulo 13083-862, Brazil
| | - Adriana Z Mercadante
- Department of Food Science, Faculty of Food Engineering, University of Campinas , Campinas, São Paulo 13083-862, Brazil
| | - Mark L Failla
- Human Nutrition Program, Department of Human Sciences, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
39
|
Wen X, Hempel J, Schweiggert RM, Ni Y, Carle R. Carotenoids and Carotenoid Esters of Red and Yellow Physalis (Physalis alkekengi L. and P. pubescens L.) Fruits and Calyces. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6140-6151. [PMID: 28696106 DOI: 10.1021/acs.jafc.7b02514] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Carotenoid profiles of fruits and calyces of red (Physalis alkekengi L.) and yellow (P. pubescens L.) Physalis were characterized by HPLC-DAD-APCI-MSn. Altogether 69 carotenoids were detected in red Physalis, thereof, 45 were identified. In yellow Physalis, 40 carotenoids were detected and 33 were identified. Zeaxanthin esters with various fatty acids were found to be the most abundant carotenoids in red Physalis, accounting for 51-63% of total carotenoids, followed by β-cryptoxanthin esters (16-24%). In yellow Physalis, mainly free carotenoids such as lutein and β-carotene were found. Total carotenoid contents ranged between 19.8 and 21.6 mg/100 g fresh red Physalis fruits and 1.28-1.38 mg/100 g fresh yellow Physalis fruits, demonstrating that Physalis fruits are rich sources of dietary carotenoids. Yellow Physalis calyces contained only 153-306 μg carotenoids/g dry weight, while those of red Physalis contained substantially higher amounts (14.6-17.6 mg/g dry weight), thus possibly exhibiting great potential as a natural source for commercial zeaxanthin extraction.
Collapse
Affiliation(s)
- Xin Wen
- Institute of Food Science and Biotechnology, University of Hohenheim , 70599 Stuttgart, Germany
- College of Food Science and Nutritional Engineering, China Agricultural University , 100083 Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing , 100083 Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture , 100083 Beijing, China
| | - Judith Hempel
- Institute of Food Science and Biotechnology, University of Hohenheim , 70599 Stuttgart, Germany
| | - Ralf M Schweiggert
- Institute of Food Science and Biotechnology, University of Hohenheim , 70599 Stuttgart, Germany
| | - Yuanying Ni
- College of Food Science and Nutritional Engineering, China Agricultural University , 100083 Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing , 100083 Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture , 100083 Beijing, China
| | - Reinhold Carle
- Institute of Food Science and Biotechnology, University of Hohenheim , 70599 Stuttgart, Germany
- Biological Science Department, King Abdulaziz University , P.O. Box 80257, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
40
|
Chacón-Ordóñez T, Schweiggert RM, Bosy-Westphal A, Jiménez VM, Carle R, Esquivel P. Carotenoids and carotenoid esters of orange- and yellow-fleshed mamey sapote (Pouteria sapota (Jacq.) H.E. Moore & Stearn) fruit and their post-prandial absorption in humans. Food Chem 2017; 221:673-682. [DOI: 10.1016/j.foodchem.2016.11.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/20/2016] [Accepted: 11/22/2016] [Indexed: 12/20/2022]
|
41
|
Granado-Lorencio F, Blanco-Navarro I, Pérez-Sacristán B, Hernández-Álvarez E. Biomarkers of carotenoid bioavailability. Food Res Int 2017; 99:902-916. [PMID: 28847427 DOI: 10.1016/j.foodres.2017.03.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 12/31/2022]
Abstract
The use of biomarkers constitutes an essential tool to assess the bioavailability of carotenoids in humans. The present article aims to review several methodological, host-related and modulating factors relevant on assessing and interpreting carotenoid bioavailability. Markers for carotenoid bioavailability can be broadly divided into direct, biochemical or "analytical" markers and indirect, physiological or "functional" indicators. Analytical markers usually refer to biochemical indicators of intake and/or status (short and long term exposure) while functional measures may be interpreted in terms of cumulative exposure, biological effect (bioactivity) or modification of risk factors. Both types of markers display advantages and limitations but, in general, a relationship exists among the type of marker, the biological specimen needed and the time required for a change. Humans may absorb a wide range of carotenes and xanthophylls and many of them may be found in serum and tissues. However, under physiological conditions, the several classes of dietary carotenoids may behave unequally leading to a different systemic profile and, moreover, they can be selectively accumulated at target tissues. In addition, some carotenoids may be chemically and enzymatically modified generating different oxidative metabolites and apocarotenoids. Quantitatively, the biological response upon carotenoid intervention (assessed by analytical and functional markers) is highly variable but the use of large doses and long-term protocols may lead to saturation effects and the loss of linearity in the response. Also, despite carotenoid exposition is considered to be safe, markers of overexposure include clinical signs (i.e. carotenodermia, corneal rings and retinopathy) and biochemical indicators (hypercarotenemia, xanthophyll esters). Overall, both host-related and methodological factors may influence analytical and functional markers to assess carotenoid bioavailability although the different subclasses of carotenoids may not be equally affected.
Collapse
Affiliation(s)
- F Granado-Lorencio
- Grupo Metabolismo y Nutrición, IDIPHIM, Spain; Unidad de Vitaminas, Spain; Servicio de Bioquímica Clínica, Hospital Universitario Puerta de Hierro-Majadahonda, 28222 Madrid, Spain.
| | - I Blanco-Navarro
- Grupo Metabolismo y Nutrición, IDIPHIM, Spain; Unidad de Vitaminas, Spain; Servicio de Bioquímica Clínica, Hospital Universitario Puerta de Hierro-Majadahonda, 28222 Madrid, Spain
| | - B Pérez-Sacristán
- Grupo Metabolismo y Nutrición, IDIPHIM, Spain; Unidad de Vitaminas, Spain
| | - E Hernández-Álvarez
- Grupo Metabolismo y Nutrición, IDIPHIM, Spain; Unidad de Vitaminas, Spain; Servicio de Bioquímica Clínica, Hospital Universitario Puerta de Hierro-Majadahonda, 28222 Madrid, Spain
| |
Collapse
|
42
|
Hempel J, Schädle CN, Sprenger J, Heller A, Carle R, Schweiggert RM. Ultrastructural deposition forms and bioaccessibility of carotenoids and carotenoid esters from goji berries (Lycium barbarum L.). Food Chem 2017; 218:525-533. [DOI: 10.1016/j.foodchem.2016.09.065] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 10/21/2022]
|
43
|
Mercadante AZ, Rodrigues DB, Petry FC, Mariutti LRB. Carotenoid esters in foods - A review and practical directions on analysis and occurrence. Food Res Int 2016; 99:830-850. [PMID: 28847421 DOI: 10.1016/j.foodres.2016.12.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 10/20/2022]
Abstract
Carotenoids are naturally found in both free form and esterified with fatty acids in most fruits and some vegetables; however, up to now the great majority of studies presents data on carotenoid composition only after saponification. The reasons for this approach are that a single xanthophyll can be esterified with several different fatty acids, generating a great number of different compounds with similar chemical and structural characteristics, thus, increasing the complexity of analysis compared to the respective saponified extract. This means that since UV/Vis spectrum does not change due to esterification, differentiation between free and acylated xanthophylls is dependent at least on elution order and mass spectrometry (MS) features. The presence of interfering compounds, especially triacylglycerides (TAGs), in the non-saponified extract of carotenoids can also impair carotenoid ester analyses by MS due to high background noise and ionization suppression since TAGs can be present in much higher concentrations than the carotenoid esters. This leads to the need of development of new and effective clean-up procedures to remove the potential interferents. In addition, only few standards of xanthophyll esters are commercially available, making identification and quantification of such compounds even more difficult. Xanthophyll esterification may also alter some properties of these compounds, including solubility, thermostability and bioavailability. Considering that commonly consumed foods are dietary sources of xanthophyll esters and that it is the actual form of ingestion of such compounds, an increasing interest on the native carotenoid composition of foods is observed nowadays. This review presents a compilation of the current available information about xanthophyll ester analyses and occurrence and a practical guide for extraction, pre-chromatographic procedures, separation and identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS).
Collapse
Affiliation(s)
- Adriana Zerlotti Mercadante
- Food Research Center (FoRC), Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil.
| | - Daniele B Rodrigues
- Food Research Center (FoRC), Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Fabiane C Petry
- Food Research Center (FoRC), Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Lilian Regina Barros Mariutti
- Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| |
Collapse
|
44
|
Esatbeyoglu T, Rimbach G. Canthaxanthin: From molecule to function. Mol Nutr Food Res 2016; 61. [DOI: 10.1002/mnfr.201600469] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Tuba Esatbeyoglu
- Institute of Human Nutrition and Food Science; University of Kiel; Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science; University of Kiel; Germany
| |
Collapse
|
45
|
Carotenoids from gac fruit aril (Momordica cochinchinensis [Lour.] Spreng.) are more bioaccessible than those from carrot root and tomato fruit. Food Res Int 2016; 99:928-935. [PMID: 28847429 DOI: 10.1016/j.foodres.2016.10.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 01/07/2023]
Abstract
Using a simulated digestion procedure in vitro, liberation and bioaccessibility of β-carotene (29.5±1.7% and 22.6±0.9%, respectively) and lycopene (51.3±2.6% and 33.2±3.1%, respectively) from gac fruit aril were found to be significantly higher than from carrot root (β-carotene, 5.2±0.5% and 0.5±0.2%, respectively) and tomato fruit (lycopene, 15.9±2.8% and 1.8±0.5%, respectively). Gac fruit aril naturally contained significantly more lipids (11% on fresh weight base) than carrot root and tomato fruit (<1%). However, when test meals were supplemented with an O/W emulsion to match the content of gac fruit aril, carotenoid bioaccessibility was still considerably lower than that from genuine gac fruit aril. Carotenoids in gac fruit aril were found to be stored in small, round-shaped chromoplasts. Despite the high lipid content, these carotenoids are unlikely to occur in a lipid-dissolved state according to simple solubility estimations, instead being possibly deposited as submicroscopic crystallites. In contrast, carotenoids of carrot root and tomato fruit were stored in large, needle-like crystallous chromoplasts. Consequently, we hypothesized the natural deposition form to be majorly responsible for the observed differences in bioaccessibility. A favorable surface-to-volume ratio of the deposition form in gac fruit aril might have allowed a more rapid micellization during digestion, and thus, an enhanced bioaccessibility. Irrespective of the ultimate reason, gac fruit aril provided a highly bioaccessible form of both lycopene and provitamin A (β-carotene), thus offering a most valuable dietary source of both carotenoids. Currently, gac is majorly grown in Southeast Asia, where its consumption might help to diminish the 'hidden hunger' namely the insufficient supply with vitamin A. Ultimately, gac fruit might thus contribute to alleviating most severe health implications of vitamin A deficiency, such as anaemia and xerophthalmia, the prevailing cause of preventable childhood blindness, as well as mortality from infectious diseases.
Collapse
|
46
|
Carotenoids, carotenoid esters, and anthocyanins of yellow-, orange-, and red-peeled cashew apples (Anacardium occidentale L.). Food Chem 2016; 200:274-82. [DOI: 10.1016/j.foodchem.2016.01.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 12/27/2022]
|
47
|
Chacón-Ordóñez T, Esquivel P, Jiménez VM, Carle R, Schweiggert RM. Deposition Form and Bioaccessibility of Keto-carotenoids from Mamey Sapote (Pouteria sapota), Red Bell Pepper (Capsicum annuum), and Sockeye Salmon (Oncorhynchus nerka) Filet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1989-98. [PMID: 26888016 DOI: 10.1021/acs.jafc.5b06039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The ultrastructure and carotenoid-bearing structures of mamey sapote (Pouteria sapota) chromoplasts were elucidated using light and transmission electron microscopy and compared to carotenoid deposition forms in red bell pepper (Capsicum annuum) and sockeye salmon (Oncorhynchus nerka). Globular-tubular chromoplasts of sapote contained numerous lipid globules and tubules embodying unique provitamin A keto-carotenoids in a lipid-dissolved and presumably liquid-crystalline form, respectively. Bioaccessibility of sapotexanthin and cryptocapsin was compared to that of structurally related keto-carotenoids from red bell pepper and salmon. Capsanthin from bell pepper was the most bioaccessible pigment, followed by sapotexanthin and cryptocapsin esters from mamey sapote. In contrast, astaxanthin from salmon was the least bioaccessible keto-carotenoid. Thermal treatment and fat addition consistently enhanced bioaccessibility, except for astaxanthin from naturally lipid-rich salmon, which remained unaffected. Although the provitamin A keto-carotenoids from sapote were highly bioaccessible, their qualitative and quantitative in vivo bioavailability and their conversion to vitamin A remains to be confirmed.
Collapse
Affiliation(s)
- Tania Chacón-Ordóñez
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim , Garbenstrasse 25, D-70599 Stuttgart, Germany
- CIEMic, University of Costa Rica , 2060 San José, Costa Rica
| | - Patricia Esquivel
- School of Food Technology, University of Costa Rica , 2060 San José, Costa Rica
| | - Víctor M Jiménez
- CIGRAS, University of Costa Rica , 2060 San José, Costa Rica
- Food Security Center, University of Hohenheim , D-70599 Stuttgart, Germany
| | - Reinhold Carle
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim , Garbenstrasse 25, D-70599 Stuttgart, Germany
- Biological Science Department, King Abdulaziz University , P.O. Box 80257, Jeddah 21589, Saudi Arabia
| | - Ralf M Schweiggert
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim , Garbenstrasse 25, D-70599 Stuttgart, Germany
| |
Collapse
|
48
|
Nwachukwu ID, Udenigwe CC, Aluko RE. Lutein and zeaxanthin: Production technology, bioavailability, mechanisms of action, visual function, and health claim status. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2015.12.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Ziegler JU, Flockerzie M, Longin CFH, Würschum T, Carle R, Schweiggert RM. Development of Lipophilic Antioxidants and Chloroplasts during the Sprouting of Diverse Triticum spp. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:913-922. [PMID: 26752117 DOI: 10.1021/acs.jafc.5b05474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The influence of sprouting times and illumination conditions on lipophilic antioxidants (carotenoids, tocochromanols, alkylresorcinols, and steryl ferulates), chlorophylls, and α-amylase activity was investigated using four varieties each of bread wheat (Triticum aestivum ssp. aestivum), spelt (T. aestivum ssp. spelta), durum (T. durum), emmer (T. dicoccum), and einkorn (T. monococcum). Carotenoid levels significantly increased during sprouting, particularly, under light exposure. In contrast, concentrations of other lipophilic antioxidants were affected to a lesser extent. Moreover, the quantitative development of lipophilic antioxidants was evidently determined by genotype. On the basis of the levels of carotenoids newly synthesized during sprouting, a chloroplast development index indicated that chloroplast ontogenesis during sprouting occurred at different species-dependent rates. Thermal degradation of carotenoids, tocochromanols, chlorophylls, and α-amylase activity was observed during the drying of sprouts at 40 and 90 °C, while alkylresorcinol and steryl ferulate levels remained unaffected. Wheat sprouts were shown to be potential functional ingredients to increase the nutritional value of cereal products.
Collapse
Affiliation(s)
- Jochen U Ziegler
- Institute of Food Science and Biotechnology, University of Hohenheim , Garbenstraße 25, D-70599 Stuttgart, Germany
| | - Miriam Flockerzie
- Institute of Food Science and Biotechnology, University of Hohenheim , Garbenstraße 25, D-70599 Stuttgart, Germany
| | - C Friedrich H Longin
- State Plant Breeding Institute, University of Hohenheim , Fruwirthstraße 21, D-70599, Stuttgart, Germany
| | - Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim , Fruwirthstraße 21, D-70599, Stuttgart, Germany
| | - Reinhold Carle
- Institute of Food Science and Biotechnology, University of Hohenheim , Garbenstraße 25, D-70599 Stuttgart, Germany
- Faculty of Science, Biological Science Department, King Abdulaziz University , P.O. Box 80257, Jeddah 21589, Saudi Arabia
| | - Ralf M Schweiggert
- Institute of Food Science and Biotechnology, University of Hohenheim , Garbenstraße 25, D-70599 Stuttgart, Germany
| |
Collapse
|
50
|
|