1
|
Chen M, Zhang Z, Zhu M, Liu K, Farag MA, Song L, Gao F, Tao H. Biofortification of flavonoids in nuts along the agro-food chain for improved nutritional and health benefits, a comprehensive review and future prespectives. Food Chem 2025; 464:141754. [PMID: 39461312 DOI: 10.1016/j.foodchem.2024.141754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Flavonoids are found ubiquitous in dietary sources with potential antioxidant properties, and have received widespread attention for their health benefits. Nuts, rich in flavonoids, are popular among consumers for their crunchy flavor and nutritious content. The review summarizes studies pertaining to the diverse types and distribution of flavonoids in nuts, their potential health benefits, as well as management strategies for flavonoids accumulation and enhancement across the whole agro-food chain, including the selection of nut varieties, the suitable growing conditions, the optimal harvesting period of nuts, and appropriate post-harvest measures, such as chemical conditioning, ideal storage conditions, and post-harvest processing methods. Furthermore, associated metabolic pathways, and applied metabolic engineering to improve flavonoids´ levels in nuts are described. This review examines the application of flavonoids biofortification in nuts across the agro-food chain, exploring its potential for sustainable development in the nut flavonoids industry, and emphasizing its importance for people's diet and health.
Collapse
Affiliation(s)
- Miaomiao Chen
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Zuying Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang Province 311300, China
| | - Mingwei Zhu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Kexin Liu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang Province 311300, China.
| | - Fei Gao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China.
| | - Han Tao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
2
|
Pan J, Nawaz M, Liu J, Liu H, Lv Z, Yang W, Jiao Z, Zhang Q. Exploring synergistic inhibitory mechanisms of flavonoid mixtures on α-glucosidase by experimental analysis and molecular dynamics simulation. Food Chem 2025; 464:141560. [PMID: 39396467 DOI: 10.1016/j.foodchem.2024.141560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
The study was the first to evaluate the synergistic interaction of luteolin + quercetin, luteolin + 3-O-methylquercetin, and quercetin + 3-O-methylquercetin mixtures on α-glucosidase and the binding mechanisms were explored using both experimental and theoretical approaches. The results showed that three flavonoid mixtures exhibited a mixed type of inhibition and demonstrated the most potent synergistic effects on α-glucosidase inhibition at 6:4 ratio, with interaction index (γ) of 0.85, 0.78 and 0.73, respectively. The three mixtures had a great influence on α-glucosidase secondary structures. Molecular simulation further demonstrated that three flavonoid mixtures formed hydrophobic interactions and hydrogen bonds with amino acid residues at different sites of α-glucosidase. Collectively, luteolin + quercetin, luteolin + 3-O-methylquercetin and quercetin + 3-O-methylquercetin were found to inhibit α-glucosidase in a synergistic manner and can be potentially used for the development of hypoglycemic food products.
Collapse
Affiliation(s)
- Junkun Pan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Muhammad Nawaz
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Jiechao Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Hui Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Zhenzhen Lv
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Wenbo Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Zhonggao Jiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China.
| | - Qiang Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China.
| |
Collapse
|
3
|
Wang D, Li Z, Jiang Z, Li Y, Chen Q, Zhou Z. Polymethoxylated flavone variations and in vitro biological activities of locally cultivated Citrus varieties in China. Food Chem 2025; 463:141047. [PMID: 39236394 DOI: 10.1016/j.foodchem.2024.141047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Citrus peels are rich in polymethoxylated flavones (PMFs), which have beneficial health and pharmacological properties. In this study, the profiles, variations, and biological activities of PMFs in the peel extracts of 27 Citrus varieties (eight species) native to China were investigated. UPLC-QTOF-MS/MS analysis revealed that mandarin accumulated more diversity and higher detectable PMF contents. Wangcangzhoupigan (ZPG) possessed the highest antioxidant capacity. Gailiangcheng (GLC) and Bingtangcheng (BTC), sweet oranges showed excellent inhibitory effects against pancreatic lipase and α-glucosidase, respectively. Most citrus extracts effectively inhibited the production of ROS and pro-inflammatory cytokines, while increasing the accumulation of anti-inflammatory cytokines. In addition, Limeng (LM), Cupig-oushigan (GSG), and Yanxiwanlu (YXWL) showed anti-proliferative effects against DU145 and PC3 cancer cells. This study provides a comprehensive PMF profile and biological activities of various citrus species and will benefit future functional citrus breeding practices aimed at designing plants rich in total or specific PMFs for health benefits.
Collapse
Affiliation(s)
- Dan Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610299, China
| | - Zhenqing Li
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Zixiao Jiang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Yi Li
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Qiyang Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Zhiqin Zhou
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; The Southwest Institute of Fruits Nutrition, Banan District, Chongqing 400054, China.
| |
Collapse
|
4
|
Özdaş S, Canatar İ, Derici GE, Koç M. Bolanthus turcicus: a promising antidiabetic with in-vitro antioxidant, enzyme inhibitory and antiadipogenic activities. J Mol Histol 2024; 56:59. [PMID: 39729235 DOI: 10.1007/s10735-024-10283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/01/2024] [Indexed: 12/28/2024]
Abstract
It is crucial to investigate new anti-diabetic agents and therapeutic approaches targeting molecules in potential signaling pathways for the treatment of Type 2 diabetes mellitus (T2DM). The objective of the study was to investigate the total phenolic content, antioxidant capacity, α-glucosidase, and α-amylase inhibitory activities of Bolanthus turcicus (B. turcicus), as well as their cytotoxic, anti-adipogenic, anti-diabetic, apoptotic, and anti-migration potential on adipocytes. B. turcicus samples were extracted with methanol (MeOH), ethyl acetate (EA) and aqueous (Aq) solvents. The MeOH extract had the highest phenolic content (81.14 mg GAE/g), followed by EA (74.93 mg GAE/g) and Aq (51.09 mg GAE/g). All extracts exhibited dose-dependent increases in α-glycosidase and α-amylase inhibitory activity. B. turcicus extracts showed cytotoxic effect on adipocytes with IC50 values of MeOH (141.0 µg/mL) < Aq (155.3 µg/mL) < EA (199.5 µg/mL). Furthermore, B. turcicus extracts reduced lipid droplet formation and adipocyte diameter size. All extracts altered cell morphology to resemble fibroblasts. B. turcicus extracts exhibited anti-migratory effect delaying wound healing for up to 96 h. The B. turcicus extracts showed a pro-apoptotic effects on adipocytes by increasing Caspase-3 enzyme activity and the population of DAPI-positive cell with apoptotic nuclear-morphology. B. turcicus extracts upregulated the expression of the Glut-4 gene at the mRNA, protein and intracellular level in adipocytes. In conclusion, our findings indicate that B. turcicus not only exhibits strong antioxidant properties and enzyme inhibitory activities but also exerts significant anti-adipogenic and pro-apoptotic effects in adipocytes, thereby providing a comprehensive mechanism through which it may contribute to the management of T2DM. These effects highlight the potential of B. turcicus as a therapeutic agent for improving glucose homeostasis and insulin sensitivity.
Collapse
Affiliation(s)
- Sibel Özdaş
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye, Turkey.
| | - İpek Canatar
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye, Turkey
| | - Gizem Ece Derici
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye, Turkey
| | - Murat Koç
- Complementary and Integrative Medicine, Department of Traditional, Ankara Yıldırım Beyazıt University, Ankara, Türkiye, Turkey
| |
Collapse
|
5
|
Assaggaf HM. Investigating the antidiabetic properties of Apium graveolens extract and its inhibition of enzymes associated with hyperglycemia. Int J Biol Macromol 2024; 290:138873. [PMID: 39706415 DOI: 10.1016/j.ijbiomac.2024.138873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Apium graveolens Linn., also known as celery, is a member of the Apiaceae family and has shown promising pharmacological properties, including diabetes. Indeed, the current investigation aimed to investigate the potential inhibitory effects of A. graveolens seed aqueous extract on the digestive enzymes involved in carbohydrate metabolism and its efficiency in reducing blood sugar levels in diabetic mice induced by streptozotocin. METHODS I administered oral doses of an aqueous extract from A. graveolens seeds to both normal and diabetic animals to evaluate acute toxicity and its potential antidiabetic effects. I observed the glycemia and body weight of the animals for four weeks. In vitro tests were also done to see how the seed extract affected the activities of α-amylase and α-glucosidase. Following administration of the extract, diabetic mice showed a notable reduction in blood glucose concentration. This reduction was similar to the standard metformin treatment after two and four weeks. Moreover, A. graveolens demonstrated significant inhibitory effects on α-amylase and α-glucosidase activity, with IC50 values of 840.15 ± 0.02 and 114.81 ± 0.05, respectively. At 500 mg/kg/day, histological analysis indicated degenerative alterations in pancreatic islet cells. These results indicate that the aqueous extract derived from the seeds of A. graveolens possesses promising antihyperglycemic properties in diabetic mice, along with notable inhibition of α-amylase and α-glucosidase activity. Further investigation is needed to characterize the active compounds present in A. graveolens seeds.
Collapse
Affiliation(s)
- Hamza Mohammad Assaggaf
- Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| |
Collapse
|
6
|
Kajszczak D, Sosnowska D, Frąszczak B, Podsędek A. Composition, Anti-Diabetic, and Antioxidant Potential of Raphanus sativus Leaves. Molecules 2024; 29:5689. [PMID: 39683848 DOI: 10.3390/molecules29235689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Limiting and/or slowing down the starch digestion process and consequently the release of glucose can be an important strategy for the prevention of type 2 diabetes (T2D). The aim of the current in vitro study was to assess the anti-diabetic and antioxidant potential of red radish leaves of the Carmen, Jutrzenka, Saxa, and Warta cultivars. In the context of anti-diabetic activity, the effect of leaves on potato starch digestion and free glucose binding, as well as inhibitory effects of leaf extracts against α-amylase and α-glucosidase and non-enzymatic glycation (AGEs) were determined. The basic chemical composition, quantitative composition of phenolic compounds, and antioxidant activity of leaves were also estimated. This study showed that all radish leaves inhibited the breakdown of potato starch and showed their ability to bind glucose. This activity was correlated with the content of hydroxycinnamic acids, protein and dietary fiber while flavones was probably responsible for glucose binding. Leaf extracts inhibited α-glucosidase activity and formation of AGEs but were practically inactive towards α-amylase. Inhibition of α-glucosidase activity was related to the content of proanthocyanidins and inhibition of AGEs formation to flavonols. These results point to radish leaves, especially the Warta and Jutrzenka cultivars, as a potential natural remedy for treating T2D.
Collapse
Affiliation(s)
- Dominika Kajszczak
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland
| | - Dorota Sosnowska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland
| | - Barbara Frąszczak
- Department of Vegetable Crops, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland
| | - Anna Podsędek
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland
| |
Collapse
|
7
|
Uuh-Narvaez JJ, Guerrero-Analco JA, Monribot-Villanueva JL, Campos MRS. Mechanistic in vitro study of the effect of Cucurbita moschata (Cucurbitaceae) on carbohydrate digestive enzymes. J Food Sci 2024; 89:9923-9935. [PMID: 39437304 DOI: 10.1111/1750-3841.17476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Diabetes is marked by postprandial hyperglycemia (PHG), an abnormal rise in blood glucose after meals. A key therapeutic goal to reduce PHG is the inhibition of α-amylase (αAM) and α-glucosidase (αGL), enzymes that break down carbohydrates into sugars. Cucurbita moschata has been shown to inhibit both enzymes. However, its inhibition mechanism has not been explored. This study investigated the in vitro inhibition mechanisms of αAM and αGL and conducted a metabolomic analysis of C. moschata (edible part) water-extract (CME), aiming to preliminarily identify its bioactive compounds (BCs). The inhibitory mechanisms were determined using Lineweaver-Burk plots. The BCs were identified and quantified using HPLC-QTOF-MS, employing both targeted and untargeted metabolomic approaches. CME had a significant higher effect (p < 0.05) on αAM activity than against αGL with IC50 of 28.99 and 698.42 mg/mL, respectively. The extract showed mixed and uncompetitive type inhibitions on αAM and αGL, respectively. The lowest inhibition constant (Ki) was 47.68 mg/mL on αAM activity at 20 mg/mL. Untargeted metabolic profiling by UPLC-MS-ESI-QTOF putatively identified 30 compounds in CME, such as amino acids, vitamins, phytohormones, fatty acids, cucurbitacins and phenolic acids, and flavonoids. Functional analysis of CME identified significant pathways, including pantothenate and CoA biosynthesis and phenylpropanoids, among others. The targeted analysis by UPLC-MS-ESI-QqQ allowed us to identify 12 compounds, with l-phenylalanine, p-hydroxybenzoic, and p-coumaric acid as majors. This study demonstrated the inhibitory potential of CME on αAM and αGL activities, which may be attributed to its metabolites. Thus, this plant represents a valuable source of BC against PHG. Practical Application: The research highlights that Cucurbita moschata has significant potential in managing postprandial hyperglycemia in diabetic patients by inhibiting enzymes like α-amylase and α-glucosidase. In addition, the identification of its compounds emphasizes its importance as a source of bioactive compounds. Therefore, C. moschata could be effectively utilized in the development of nutraceuticals or as an ingredient in functional foods specifically designed for postprandial hyperglycemia management. Thus, integrating C. moschata as part of the daily diet could offer patients with diabetes a natural alternative to control their blood glucose levels after eating.
Collapse
Affiliation(s)
| | - José A Guerrero-Analco
- Laboratory of Chemistry of Natural Products, Network of Advanced Molecular Studies, Institute of Ecology A. C., Xalapa, Veracruz, Mexico
| | - Juan L Monribot-Villanueva
- Laboratory of Chemistry of Natural Products, Network of Advanced Molecular Studies, Institute of Ecology A. C., Xalapa, Veracruz, Mexico
| | | |
Collapse
|
8
|
Kumari S, Saini R, Bhatnagar A, Mishra A. Exploring plant-based alpha-glucosidase inhibitors: promising contenders for combatting type-2 diabetes. Arch Physiol Biochem 2024; 130:694-709. [PMID: 37767958 DOI: 10.1080/13813455.2023.2262167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
OBJECTIVE This systematic review aimed to provide comprehensive details on the α-G inhibitory potential of various bioactive compounds derived from natural sources. METHODS A comprehensive literature search was conducted using various databases and search engines, including Science Direct, Google Scholar, SciFinder, Web of Science, and PubMed until May, 2023. RESULTS AND CONCLUSIONS The enzyme alpha-glucosidase (α-G) is found in the brush border epithelium of the small intestine and consists of duplicated glycoside hydrolase (GH31) domain. It involves the conversion of disaccharides and oligosaccharides into monosaccharides by acting on alpha (1 → 4) and (1 → 6) linked glucose residue. Once absorbed, glucose enters the bloodstream and elevates postprandial glucose, which is associated with the development of type 2 Diabetes (T2D). Epidemic obesity, cardiovascular disease, and nephropathy are linked to T2D. Traditional medicinal plants with α-G inhibitory potential are commonly used to treat T2D due to the adverse effects of currently used α-G inhibitors miglitol, acarbose, and voglibose. Various bioactive compounds derived from natural sources, including lupenone, Wilforlide A, Baicalein, Betulinic acid, Ursolic acid, Oleanolic acid, Katononic acid, Carnosol, Hypericin, Astilbin, lupeol, betulonic acid, Fagomine, Lactucaxanthin, Erythritol, GP90-1B, Procyanidins, Galangin, and vomifoliol retain α-G inhibitory potential for regulating hyperglycaemia.
Collapse
Affiliation(s)
- Sonali Kumari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Ravi Saini
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Aditi Bhatnagar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
9
|
Zhang L, Li Z, Kong H, Ban X, Gu Z, Hong Y, Cheng L, Li C. Advances in microbial exopolysaccharides as α-amylase inhibitors: Effects, structure-activity relationships, and anti-diabetic effects in vivo. Int J Biol Macromol 2024; 281:136174. [PMID: 39366595 DOI: 10.1016/j.ijbiomac.2024.136174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
The rapid digestion of starch, as the main source of energy in the human diet, causes an acute increase in blood sugar levels that will affect blood glucose homeostasis. The inhibition of α-amylase activity is an effective way of reducing starch digestibility, thereby controlling postprandial glycemia. As a class of carbohydrate polymers, microbial exopolysaccharides (EPSs) have garnered widespread attention for their inhibitory effects on α-amylase, but there is a lack of comprehensive review in this area. This paper aimed to review the inhibitory activity of microbial EPSs on α-amylase and their interaction mechanisms, and the effect of microbial EPSs on lowering blood glucose levels and regulating glycolipid metabolism in vivo were also discussed. Numerous studies have reported that EPSs with α-amylase inhibition activity are primarily produced by lactic acid bacteria. Microbial EPSs with an appropriate range of molecular weight, high proportion of glucose or mannose or arabinose residues, and high uronic acid content might be acceptable to inhibit α-amylase activity. Additionally, microbial EPSs exhibited potential anti-diabetic effects in mice, reducing blood glucose levels, and regulating glycolipid metabolism and gut microbiota. The information covered in this review may enhance the development and application of EPSs in functional food and pharmaceutical research.
Collapse
Affiliation(s)
- Lan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
10
|
Zhang Y, Yu X, Li J, Liang B, Sun J, Min X, Xiong Z, Chen WH, Xu X. Design, synthesis and biological evaluation of novel betulinic acid derivatives containing 1,2,4-triazole-derived schiff bases as α-glucosidase inhibitors. J Mol Struct 2024; 1315:138889. [DOI: 10.1016/j.molstruc.2024.138889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Fan S, Liu Q, Du Q, Zeng X, Wu Z, Pan D, Tu M. Multiple roles of food-derived bioactive peptides in the management of T2DM and commercial solutions: A review. Int J Biol Macromol 2024; 279:134993. [PMID: 39181375 DOI: 10.1016/j.ijbiomac.2024.134993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Type 2 diabetes mellitus (T2DM), a disease that threatens public health worldwide and can cause a series of irreversible complications, has been a major concern. Although the treatment based on hypoglycemic drugs is effective, its side effects should not be ignored, which has led to an urgent need for developing new hypoglycemic drugs. Bioactive peptides with antidiabetic effects obtained from food proteins have become a research hotspot as they are safer and with higher specificity than traditional hypoglycemic drugs. Here, we reviewed antidiabetic peptides that have the ability to inhibit key enzymes (α-glucosidase, α-amylase, and DPP-IV) in T2DM, the hypoglycemic mechanisms and structure-activity relationships were summarized, some antidiabetic peptides that improve insulin resistance and reverse gut microbiota and their metabolites were overviewed, the bitterness of antidiabetic peptides was predicted in silico, proposed solutions to the current challenges encountered in the development of antidiabetic peptide drugs, and provided an outlook on the future focus of commercial production. It provides a reference for the application of food-derived antidiabetic peptides.
Collapse
Affiliation(s)
- Shuo Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Qirui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China.
| |
Collapse
|
12
|
Cherfi I, Mahboub N, Toumi I, Eddine Laouini S, Gamal Hasan G, Bouafia A, Alharthi F, Bin Emran T. Assessment of Artemisia Campestris L. Leaf Extract Effects on Polycystic Ovarian Syndrome in Rats, Antioxidant and α-Amylase Inhibition Activities. Chem Biodivers 2024:e202402184. [PMID: 39462196 DOI: 10.1002/cbdv.202402184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Polycystic Ovarian Syndrome (PCOS) is characterized by metabolic and reproductive dysfunction, often associated with elevated oxidative stress markers in the bloodstream. This study examines the potential antioxidant properties and α-amylase inhibitory activity of Artemisia campestris leaves extract (Artemisia campestris L) and its effects on rats with induced PCOS. Estradiol valerate was administered to ten mature Wistar rats to induce PCOS, while a control group consisted of five mature Wistar rats. Following a 16-day induction period, the rats were categorized into three groups: a control group, a PCOS group, and an experimental group receiving 200 mg/kg body weight of A. campestris L. extract orally for 15 days. Serum levels of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were measured using the ELISA technique. The group treated with A. campestris L. extract exhibited significantly reduced LH levels compared to the PCOS group. Histomorphometric analysis indicated notable changes in follicle counts and the thickness of the theca layer. These findings suggest a significant alleviation of PCOS symptoms, potentially linked to the effects of A. campestris L. on oxidative stress pathways. Furthermore, aqueous extracts of A. campestris L. displayed potent in vitro inhibition of α-amylase, with an IC50 value of 2.418 μg/mL.
Collapse
Affiliation(s)
- Inasse Cherfi
- Faculty of Natural Science and Life, Department of Molecular and Cellular Biology, El Oued University, Algeria
- Laboratory Biology, Environment, and Health, Faculty of Natural Sciences and Life, El-Oued University, P.O. Box 789, El-Oued, Algeria
| | - Nasma Mahboub
- Faculty of Natural Science and Life, Department of Molecular and Cellular Biology, El Oued University, Algeria
- Laboratory Biology, Environment, and Health, Faculty of Natural Sciences and Life, El-Oued University, P.O. Box 789, El-Oued, Algeria
| | - Ikram Toumi
- Faculty of Natural Science and Life, Department of Molecular and Cellular Biology, El Oued University, Algeria
- Laboratory Biology, Environment, and Health, Faculty of Natural Sciences and Life, El-Oued University, P.O. Box 789, El-Oued, Algeria
| | - Salah Eddine Laouini
- Department of process engineering, Faculty of Technology, University of El Oued, El-Oued, 39000, Algeria
- Laboratory of Biotechnology Biomaterial and Condensed Matter, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
| | - Gamil Gamal Hasan
- Department of process engineering, Faculty of Technology, University of El Oued, El-Oued, 39000, Algeria
| | - Abderrhmane Bouafia
- Department of process engineering, Faculty of Technology, University of El Oued, El-Oued, 39000, Algeria
- Laboratory of Biotechnology Biomaterial and Condensed Matter, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
| | - Fahad Alharthi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Kingdom of, Saudi Arabia
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI, 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| |
Collapse
|
13
|
Moreira FD, Reis CEG, Gallassi AD, Moreira DC, Welker AF. Suppression of the postprandial hyperglycemia in patients with type 2 diabetes by a raw medicinal herb powder is weakened when consumed in ordinary hard gelatin capsules: A randomized crossover clinical trial. PLoS One 2024; 19:e0311501. [PMID: 39383145 PMCID: PMC11463819 DOI: 10.1371/journal.pone.0311501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/16/2024] [Indexed: 10/11/2024] Open
Abstract
INTRODUCTION Contradictory claims about the efficacy of several medicinal plants to promote glycemic control in patients with type 2 diabetes mellitus (T2DM) have been explained by divergences in the administration form and by extrapolation of data obtained from healthy individuals. It is not known whether the antidiabetic effects of traditional herbal medicines are influenced by gelatin capsules. This randomized crossover trial aimed to evaluate the acute effect of a single dose of raw cinnamon consumed orally either dissolved in water as a beverage or as ordinary hard gelatin capsules on postprandial hyperglycemia (>140 mg/dL; >7.8 mmol/L) in T2DM patients elicited by a nutritionally-balanced meal providing 50 g of complex carbohydrates. METHODS Fasting T2DM patients (n = 19) randomly ingested a standardized meal in five experimental sessions, one alone (Control) and the other after prior intake of 3 or 6 g of crude cinnamon in the form of hard gelatin capsules or powder dissolved in water. Blood glucose was measured at fasting and at 0.25, 0.5, 0.75, 1, 1.5 and 2 hours postprandially. After each breakfast, its palatability scores for visual appeal, smell and pleasantness of taste were assessed, as well as the taste intensity sweetness, saltiness, bitterness, sourness and creaminess. RESULTS The intake of raw cinnamon dissolved in water, independently of the dose, decreased the meal-induced large glucose spike (peak-rise of +87 mg/dL and Δ1-hour glycemia of +79 mg/dL) and the hyperglycemic blood glucose peak. When cinnamon was taken as capsules, these anti-hyperglycemic effects were lost or significantly diminished. Raw cinnamon intake did not change time-to-peak or the 2-h post-meal glycaemia, but flattened the glycemic curve (lower iAUC) without changing the shape that is typical of T2DM patients. CONCLUSIONS This cinnamon's antihyperglycemic action confirms its acarbose-like property to inhibit the activities of the carbohydrate-digesting enzymes α-amylases/α-glucosidases, which is in accordance with its exceptionally high content of raw insoluble fiber. The efficacy of using raw cinnamon as a diabetes treatment strategy seems to require its intake at a specific time before/concomitantly the main hyperglycemic daily meals. Trial registration: Registro Brasileiro de Ensaios Clínicos (ReBEC), number RBR-98tx28b.
Collapse
Affiliation(s)
- Fernanda Duarte Moreira
- Ministério da Saúde, Brasília, Brazil
- Secretaria de Estado de Saúde do Distrito Federal, Brasília, Brazil
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil
| | | | - Andrea Donatti Gallassi
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil
| | | | - Alexis Fonseca Welker
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
14
|
Dong S, Ding L, Zheng X, Wang O, Cai S. Phenolic Compositions of Different Fractions from Coffee Silver Skin and Their Antioxidant Activities and Inhibition towards Carbohydrate-Digesting Enzymes. Foods 2024; 13:3083. [PMID: 39410118 PMCID: PMC11475555 DOI: 10.3390/foods13193083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Seeking food-derived antioxidants and inhibitors of α-glucosidase and α-amylase has been recognized as an effective way for managing diabetes. Coffee silver skin (CSS) is rich in phenolic compounds, which may be potential agents as antioxidants and for α-glucosidase and α-amylase inhibition. But whether phenolics in different forms show similar bioactivity remains unknown. In this study, phenolic compounds in CSS were extracted as free phenolics (FPs), esterified phenolics (EPs), and bound phenolics (BPs). The phenolic profiles and antioxidant activities of them were investigated. Their inhibitory effects on α-glucosidase and α-amylase were analyzed, and the inhibitory mechanisms were elucidated by molecular docking and molecular dynamic simulation. Results showed that FPs exhibited the best antioxidant ability and inhibitory effects on α-glucosidase and α-amylase. A total of 17 compounds were identified in FPs with 3-caffeoylquinic acid, 4-feruloylquinic acid, and dicaffeoylquinic acids as the dominant ones. Typical phenolics in FPs could bind to α-glucosidase and α-amylase through hydrogen bonds and form hydrophobic interaction with several key amino acid residues. In addition, 3,4-dicaffeoylquinic acid and 3-caffeoylquinic acid might be the principal components that account for the inhibitory effect of FPs on α-glucosidase. The results of this study may provide some scientific support for CSS utilization as a health-beneficial component in functional food development for type 2 diabetes mellitus management.
Collapse
Affiliation(s)
- Shiyu Dong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Yunnan Engineering Research Center for Fruit & Vegetable Products, Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; (S.D.); (L.D.); (X.Z.)
| | - Lixin Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Yunnan Engineering Research Center for Fruit & Vegetable Products, Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; (S.D.); (L.D.); (X.Z.)
| | - Xiuqing Zheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Yunnan Engineering Research Center for Fruit & Vegetable Products, Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; (S.D.); (L.D.); (X.Z.)
| | - Ou Wang
- NHC Key Laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Yunnan Engineering Research Center for Fruit & Vegetable Products, Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; (S.D.); (L.D.); (X.Z.)
| |
Collapse
|
15
|
Sara EA, Reda BM, Zakia Z, Bitwell C, Abdelhamid E, Imad K, Mohamed N, Fatiha C. Antioxidants from Rubus idaeus leaves: LC-MS/MS chemical profiling, in vitro antiglycation, α-glucosidase and α-amylase inhibitory activities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-13. [PMID: 39290154 DOI: 10.1080/09603123.2024.2404248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
The present study evaluated a range of biological activities of Rubus idaeus leaves, often considered as by-products, in relation to hyperglycemia. The antiglycation potential of this plant has not been previously reported. In this research, the methanolic leaf extract of R. idaeus was assessed for its antioxidant, enzyme inhibitory and antiglycation activities. The bioactive compounds present in the extract were screened using LC-MS/MS. Enzyme inhibitory activities were tested on α-glucosidase and α-amylase, and the antiglycation effect was investigated using BSA-fructose model. The methanolic extract showed a high polyphenolic contents (176.26 ± 2.26 mg GAE/g) and important IC50 values for DPPH (34.79 ± 2.40 µg/mL) and ABTS radical scavenging activities (49.75 ± 2.47 µg/mL). In addition, the plant leaf extract significantly inhibited hyperglycemia-related enzymes in a dose-dependent manner and demonstrated a reduction in fluorescent AGEs, fructosamine, and dicarbonyl compounds. Therefore, R. idaeus cv Maravilla could be an effective source of therapeutics for improving the healthcare outcomes of diabetic patients.
Collapse
Affiliation(s)
- El Asri Sara
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Ben Mrid Reda
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
- Institute of Biological Sciences (ISSB-P), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
| | - Zouaoui Zakia
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | | | - Ennoury Abdelhamid
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Kabach Imad
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Nhiri Mohamed
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Chibi Fatiha
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
16
|
Rocha S, Luísa Corvo M, Freitas M, Fernandes E. Liposomal quercetin: A promising strategy to combat hepatic insulin resistance and inflammation in type 2 diabetes mellitus. Int J Pharm 2024; 661:124441. [PMID: 38977164 DOI: 10.1016/j.ijpharm.2024.124441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
In type 2 diabetes mellitus, hepatic insulin resistance is intricately associated with oxidative stress and inflammation. Nonetheless, the lack of therapeutic interventions directly targeting hepatic dysfunction represents a notable gap in current treatment options. Flavonoids have been explored due to their potential antidiabetic effects. However, these compounds are associated with low bioavailability and high metabolization. In the present study, four flavonoids, kaempferol, quercetin, kaempferol-7-O-glucoside and quercetin-7-O-glucoside, were studied in a cellular model of hepatic insulin resistance using HepG2 cells. Quercetin was selected as the most promising flavonoid and incorporated into liposomes to enhance its therapeutic effect. Quercetin liposomes had a mean size of 0.12 µm, with an incorporation efficiency of 93 %. Quercetin liposomes exhibited increased efficacy in modulating insulin resistance. This was achieved through the modulation of Akt expression and the attenuation of inflammation, particularly via the NF-κB pathway, as well as the regulation of PGE2 and COX-2 expression. Furthermore, quercetin liposomes displayed a significant advantage over free quercetin in attenuating the production of reactive pro-oxidant species. These findings open new avenues for developing innovative therapeutic strategies to manage diabetes, emphasizing the potential of quercetin liposomes as a promising approach for targeting both hepatic insulin resistance and associated inflammation.
Collapse
Affiliation(s)
- Sónia Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - M Luísa Corvo
- Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
17
|
Singh G, Singh R, Monga V, Mehan S. Thiazolidine-2,4-dione hybrids as dual alpha-amylase and alpha-glucosidase inhibitors: design, synthesis, in vitro and in vivo anti-diabetic evaluation. RSC Med Chem 2024; 15:2826-2854. [PMID: 39149094 PMCID: PMC11324062 DOI: 10.1039/d4md00199k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/17/2024] [Indexed: 08/17/2024] Open
Abstract
Twelve 3,5-disubstituted-thiazolidine-2,4-dione (TZD) hybrids were synthesized using solution phase chemistry. Continuing our previous work, nine O-modified ethyl vanillin (8a-i) derivatives were synthesized and reacted with the TZD core via Knoevenagel condensation under primary reaction conditions to obtain final derivatives 9a-i. Additionally, three isatin-TZD hybrids (11a-c) were synthesized. The intermediates and final derivatives were characterized using 1H and 13C NMR spectroscopy, and the observed chemical shifts agreed with the proposed structures. The in vitro alpha-amylase and alpha-glucosidase inhibitory evaluation of newly synthesized derivatives revealed compounds 9F and 9G as the best dual inhibitors, with IC50 values of 9.8 ± 0.047 μM for alpha-glucosidase (9F) and 5.15 ± 0.0017 μM for alpha-glucosidase (9G), 17.10 ± 0.015 μM for alpha-amylase (9F), and 9.2 ± 0.092 μM for alpha-amylase (9G). The docking analysis of synthesized compounds indicated that compounds have a higher binding affinity for alpha-glucosidase as compared to alpha-amylase, as seen from docking scores ranging from -1.202 to -5.467 (for alpha-amylase) and -4.373 to -7.300 (for alpha-glucosidase). Further, the molecules possess a high LD50 value, typically ranging from 1000 to 1600 mg kg-1 of body weight, and exhibit non-toxic properties. The in vitro cytotoxicity assay results on PANC-1 and INS-1 cells demonstrated that the compounds were devoid of significant toxicity against the tested cells. Compounds 9F and 9G showed high oral absorption, i.e., oral absorption >96%, and their molecular dynamics simulation yielded results closely aligned with the observed docking outcomes. Finally, compounds 9F and 9G were evaluated for in vivo antidiabetic assessment by the induction of diabetes in Wistar rats using streptozotocin. Molecule 9G has been identified as the most effective anti-diabetic molecule due to its ability to modulate several biochemical markers in blood plasma and tissue homogenates. The results were further confirmed by histology investigations conducted on isolated pancreas, liver, and kidney.
Collapse
Affiliation(s)
- Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Kapurthala) GT Road, Ghal Kalan Moga-142001 Punjab India
- Research Scholar, IK Gujral Punjab Technical University Kapurthala Punjab India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy GT Road, Ghal Kalan Moga Punjab India
| | - Vikramdeep Monga
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab VPO-Ghudda Bathinda Punjab India
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Kapurthala) GT Road, Ghal Kalan Moga Punjab India
| |
Collapse
|
18
|
Li X, Xia Y, Song X, Xiong Z, Ai L, Wang G. Probiotics intervention for type 2 diabetes mellitus therapy: a review from proposed mechanisms to future prospects. Crit Rev Food Sci Nutr 2024:1-19. [DOI: 10.1080/10408398.2024.2387765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Xue Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Xiong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
19
|
Prakulanon J, Duangsrisai S, Vajrodaya S, Thongchin T. Evaluation of phytochemical profile, and antioxidant, antidiabetic activities of indigenous Thai fruits. PeerJ 2024; 12:e17681. [PMID: 39011385 PMCID: PMC11249001 DOI: 10.7717/peerj.17681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Background This research aims to explore the phenolics identification, phenolics quantification, antioxidant and potential biofunctional properties of lesser-known Thai fruits and their potency to treat type 2 diabetes mellitus (T2DM). Including, Antidesma puncticulatum, Dillenia indica, Diospyros decandra, Elaeagnus latifolia, Flacourtia indica, Garcinia dulcis, Lepisanthes fruticose, Mimusops elengi, Muntingia calabura, Phyllanthus reticulatus, Streblus asper, Syzygium cumini, Syzygium malaccense, Willughbeia edulis and Schleichera oleosa were analyzed by their phenolic and flavonoid content. These fruits have received limited scientific attention, prompting an investigation into their health benefits, particularly their relevance to diabetes management. Methods The study utilized methanolic crude extracts to measure phenolic and flavonoid levels. Additionally, UHPLC-DAD was utilized to identify and quantify phenolics. The methanolic extracts were assessed for antioxidant and antidiabetic abilities, including α-glucosidase and α-amylase inhibition. Results and Conclusion The study highlighted S. cumini as a rich source of phenolic (980.42 ± 0.89 mg GAE/g and flavonoid (3.55 ± 0.02 mg QE/g) compounds with strong antioxidant activity (IC50 by DPPH; 3.00 ± 0.01 µg/ml, IC50 by ABTS; 40 ± 0.01 µg/ml, FRAP; 898.63 ± 0.02 mg TE/ml). Additionally, S. cumini exhibited promising antidiabetic effects (S. cumini IC50; 0.13 ± 0.01 mg/ml for α-glucosidase inhibition, 3.91 ± 0.05 mg/ml for α-amylase inhibition), compared to Acarbose (IC50; 0.86 ± 0.01 mg/ml for α-glucosidase inhibition, 0.39 ± 0.05 mg/ml for α-amylase inhibition). Remarkably, compounds like catechins, gallic acid, kaempferol, and ellagic acid were identified in various quantities.This study suggests that these fruits, packed with phenolics, hold the potential to be included in an anti-diabetic diet and even pharmaceutical applications due to their health-promoting properties.
Collapse
Affiliation(s)
| | | | | | - Thanawat Thongchin
- Department of Medical Science, Ministry of Public Health, Medicinal Plant Research Institute, Nonthaburi, Thailand
| |
Collapse
|
20
|
Thembane N, Hlatshwayo S, Ngcobo M, Ngubane P, Gqaleni N. Review on the Anti-Hyperglycemic Potential of Psidium guajava and Seriphium plumosum L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1608. [PMID: 38931040 PMCID: PMC11207340 DOI: 10.3390/plants13121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
The treatment and management of diabetes mellitus (DM) with conventional therapies, such as insulin injections and oral hypoglycemic agents, present significant challenges due to their side effects and burdensome administration. Therapies often manage symptoms rather than addressing insulin regulation, akin to medications like thiazolidinediones and glinides, which resemble many medicinal plants. Medicinal plants offer potential alternative treatments due to bioactive compounds targeting diabetes causes. We aimed to explore the antidiabetic potential of two medicinal plants, Psidium guajava and Seriphium plumosum L., by investigating their phytochemical constituents, medicinal uses, pharmacological actions, and mechanisms. This review followed specific guidelines and searched databases including PubMed, Scopus, ScienceDirect, and Web of Science for studies on medicinal plants and DM. Eligible studies underwent quality assessment and were categorized based on their design and interventions for data synthesis. This review identified the phytochemical constituents in Psidium guajava and Seriphium plumosum L., including tannins, flavonoids, phenols, and steroids, exerting antidiabetic effects through various mechanisms like antioxidant activity, anti-inflammatory effects, stimulation of insulin secretion, glucose regulation, and inhibition of carbohydrate-digesting enzymes. Psidium guajava and Seriphium plumosum L. exhibit promising antidiabetic potential, offering alternative approaches to diabetes management. Polyherbalism, combining multiple plant extracts, may enhance therapeutic efficacy in diabetes treatment. Comprehensive research is needed to explore the combined therapeutic effects of these plants and develop more effective antidiabetic treatments. This review highlights the importance of harnessing natural resources to combat the global burden of DM. Further research is warranted to fully explore the combined therapeutic effects of these plants and develop novel treatments.
Collapse
Affiliation(s)
- Nokukhanya Thembane
- Department of Biomedical Sciences, Mangosuthu University of Technology, Durban 4026, South Africa
- Traditional Medicine Laboratory, University of KwaZulu-Natal, Durban 4041, South Africa (M.N.); (N.G.)
| | - Sphamandla Hlatshwayo
- Traditional Medicine Laboratory, University of KwaZulu-Natal, Durban 4041, South Africa (M.N.); (N.G.)
| | - Mlungisi Ngcobo
- Traditional Medicine Laboratory, University of KwaZulu-Natal, Durban 4041, South Africa (M.N.); (N.G.)
| | - Phikelelani Ngubane
- Discipline of Medical Microbiology, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Nceba Gqaleni
- Traditional Medicine Laboratory, University of KwaZulu-Natal, Durban 4041, South Africa (M.N.); (N.G.)
- Africa Health Research Institute, Durban 4013, South Africa
| |
Collapse
|
21
|
Mai TT, Phan MH, Thai TT, Lam TP, Lai NVT, Nguyen TT, Nguyen TVP, Vo CVT, Thai KM, Tran TD. Discovery of novel flavonoid derivatives as potential dual inhibitors against α-glucosidase and α-amylase: virtual screening, synthesis, and biological evaluation. Mol Divers 2024; 28:1629-1650. [PMID: 37369956 DOI: 10.1007/s11030-023-10680-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Diabetes mellitus is one of the top ten causes of death worldwide, accounting for 6.7 million deaths in 2021, and is one of the most rapidly growing global health emergencies of this century. Although several classes of therapeutic drugs have been invented and applied in clinical practice, diabetes continues to pose a serious and growing threat to public health and places a tremendous burden on those affected and their families. The strategy of reducing carbohydrate digestibility by inhibiting the activities of α-glucosidase and α-amylase is regarded as a promising preventative treatment for type 2 diabetes. In this study, we investigated the dual inhibitory effect against two polysaccharide hydrolytic enzymes of flavonoid derivatives from an in-house chemical database. By combining molecular docking and structure-activity relationship analysis, twelve compounds with docking energies less than or equal to - 8.0 kcal mol-1 and containing required structural features for dual inhibition of the two enzymes were identified and subjected to chemical synthesis and in vitro evaluation. The obtained results showed that five compounds exhibited dual inhibitory effects on the target enzymes with better IC50 values than the approved positive control acarbose. Molecular dynamics simulations were performed to elucidate the binding of these flavonoids to the enzymes. The predicted pharmacokinetic and toxicological properties suggest that these compounds are viable for further development as type 2 diabetes drugs.
Collapse
Affiliation(s)
- Tan Thanh Mai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Minh-Hoang Phan
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Thao Thi Thai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Thua-Phong Lam
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Nghia Vo-Trong Lai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Thanh-Thao Nguyen
- Faculty of Medicine and Pharmacy, Tay Nguyen University, Buon Ma Thuot, Dak Lak, 630000, Vietnam
| | - Thuy-Viet-Phuong Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Cam-Van Thi Vo
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Khac-Minh Thai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Thanh-Dao Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
22
|
Li F, Zhang X, Liu X, Zhang J, Zang D, Zhang X, Shao M. Interactions between corn starch and lingonberry polyphenols and their effects on starch digestion and glucose transport. Int J Biol Macromol 2024; 271:132444. [PMID: 38797300 DOI: 10.1016/j.ijbiomac.2024.132444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/06/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
This study investigated the interaction mechanism between corn starch (CS) and lingonberry polyphenols (LBP) during starch gelatinization, focusing on their effects on starch structure and physicochemical properties. Moreover, it explored the effect of this interaction on starch digestion and glucose transport. The results indicated that LBP interacted non-covalently with CS during starch gelatinization, disrupted the short-range ordered structure of starch, decreased gelatinization enthalpy of starch, and formed a dense network structure. Furthermore, the incorporation of LBP remarkably reduced the digestibility of CS. In particular, the addition of 10 % LBP decreased the terminal digestibility (C∞) from 77.87 % to 60.43 % and increased the amount of resistant starch (RS) by 21.63 %. LBP was found to inhibit α-amylase and α-glucosidase in a mixed manner. Additionally, LBP inhibited glucose transport in Caco-2 cells following starch digestion. When 10 % LBP was added, there was a 34.17 % decrease in glucose transport compared with starch digestion without LBP. This study helps establish the foundation for the development of LBP-containing starch or starch-based healthy foods and provides new insights into the mechanism by which LBP lowers blood glucose.
Collapse
Affiliation(s)
- Fengfeng Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinhua Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xu Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jing Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Dandan Zang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Meili Shao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
23
|
Cai G, Yi X, Wu Z, Zhou H, Yang H. Synchronous reducing anti-nutritional factors and enhancing biological activity of soybean by the fermentation of edible fungus Auricularia auricula. Food Microbiol 2024; 120:104486. [PMID: 38431331 DOI: 10.1016/j.fm.2024.104486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 03/05/2024]
Abstract
Auricularia auricula fermentation was performed to reduce anti-nutritional factors, improve nutritional components, and enhance biological activity of soybean. Results showed that the contents of raffinose, stachyose, and trypsin inhibitor were significantly decreased from initial 1.65 g L-1, 1.60 g L-1, and 284.67 μg g-1 to 0.14 g L-1, 0.35 g L-1, and 4.52 μg g-1 after 144 h of fermentation, respectively. Simultaneously, the contents of polysaccharide, total phenolics, and total flavonoids were increased, and melanin was secreted. The isoflavone glycosides were converted to their aglycones, and the contents of glyctin and genistin were decreased from initial 1107.99 μg g-1 and 2852.26 μg g-1 to non-detection after 72 h of fermentation, respectively. After 96 h of fermentation, the IC50 values of samples against DPPH and ABTS radicals scavenging were decreased from 17.61 mg mL-1 and 3.43 mg mL-1 to 4.63 mg mL-1 and 0.89 mg mL-1, and those of samples inhibiting α-glucosidase and angiotensin I-converting enzyme were decreased from 53.89 mg mL-1 and 11.27 mg mL-1 to 18.24 mg mL-1 and 6.78 mg mL-1, respectively, indicating the significant increase in these bioactivities. These results suggested A. auricula fermentation can enhance the nutritional quality and biological activity of soybean, and the fermented soybean products have the potential to be processed into health foods/food additives.
Collapse
Affiliation(s)
- Gonglin Cai
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, School of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Xiaotong Yi
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, School of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Zhichao Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, School of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Huabin Zhou
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, School of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China.
| | - Hailong Yang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, School of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
24
|
Wei B, Zheng W, Peng Z, Xiao M, Huang T, Xie M, Xiong T. Probiotic-fermented tomato with hepatic lipid metabolism modulation effects: analysis of physicochemical properties, bioactivities, and potential bioactive compounds. Food Funct 2024; 15:4874-4886. [PMID: 38590277 DOI: 10.1039/d3fo05535c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Lactiplantibacillus plantarum NCUH001046 (LP)-fermented tomatoes exhibited the potential to alleviate obesity in our previous study. This subsequent study further delves deeper into the effects of LP fermentation on the physicochemical properties, bioactivities, and hepatic lipid metabolism modulation of tomatoes, as well as the analysis of potential bioactive compounds exerting obesity-alleviating effects. Results showed that after LP fermentation, viable bacterial counts peaked at 9.11 log CFU mL-1 and sugar decreased, while organic acids, umami amino acids, total phenols, and total flavonoids increased. LP fermentation also improved the inhibition capacities of three digestive enzyme activities and Enterobacter cloacae growth, as well as antioxidant activities. Western blot results indicated that fermented tomatoes, especially live probiotic-fermented tomatoes (LFT), showed improved effects compared to unfermented tomatoes in reducing hepatic lipid accumulation by activating the AMPK signal pathway. UHPLC-Q-TOF/MS-based untargeted metabolomics analysis showed that chlorogenic acid, capsiate, tiliroside, irisflorentin, and homoeriodictyol levels increased after fermentation. Subsequent cell culture assays demonstrated that irisflorentin and homoeriodictyol reduced lipid accumulation via enhancing AMPK expression in oleic acid-induced hyperlipidemic HepG2 cells. Furthermore, Spearman's correlation analysis indicated that the five phenols were positively associated with hepatic AMPK pathway activation. Consequently, it could be inferred that the five phenols may be potential bioactive compounds in LFT to alleviate obesity and lipid metabolism disorders. In summary, these findings underscored the transformative potential of LP fermentation in enhancing the bioactive profile of tomatoes and augmenting its capacity to alleviate obesity and lipid metabolism disorders. This study furnished theoretical underpinnings for the functional investigation of probiotic-fermented plant-based foods.
Collapse
Affiliation(s)
- Benliang Wei
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Wendi Zheng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Zhen Peng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Muyan Xiao
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
- International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Tao Huang
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
- International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Tao Xiong
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| |
Collapse
|
25
|
Xu Z, Hileuskaya K, Kraskouski A, Yang Y, Huang Z, Zhao Z. Inhibition of α-glucosidase activity and intestinal glucose transport to assess the in vivo anti-hyperglycemic potential of dodecyl-acylated phlorizin and polydatin derivatives. Food Funct 2024; 15:4785-4804. [PMID: 38511466 DOI: 10.1039/d3fo05233h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
A diet containing natural active compounds that can inhibit the hydrolytic activity of α-glucosidase on carbohydrates and intestinal glucose absorption is an effective means of controlling postprandial hyperglycemia. Phlorizin and polydatin as phenolic glycosides have a high affinity for the catalytic site of α-glucosidase, but exhibited unsatisfactory competitive inhibitory capacity, with an IC50 of 0.97 and >2 mM, respectively. However, dodecyl-acylated derivatives of phlorizin and polydatin exerted α-glucosidase inhibitory capacity, with an IC50 of 55.10 and 70.95 μM, respectively, which were greatly enhanced and much stronger than that of acarbose with an IC50 of 2.46 mM. The SPR assay suggested the high affinity of dodecyl phlorizin and dodecyl polydatin to α-glucosidase with equilibrium dissociation constant (KD) values of 12.0 and 7.9 μM, respectively. Both dodecyl phlorizin and dodecyl polydatin reduced the catalytic ability of α-glucosidase by reversible noncompetitive and uncompetitive mixed inhibition, which bind noncovalently to the allosteric site 2 through hydrogen bonds and hydrophobic interactions, thereby inducing the secondary structure unfolding and intrinsic fluorescence quenching of α-glucosidase. Confocal microscopy detection visually showed significant inhibitory effects on FITC-labeled glucose uptake in intestinal Caco-2 cells by phlorizin, polydatin, dodecyl phlorizin and dodecyl polydatin. In addition, based on the differentiated Caco-2 cell monolayer model, dodecyl phlorizin and dodecyl polydatin suppressed intestinal glucose transport more effectively than phlorizin and polydatin, suggesting that they were promising in vivo hypoglycemic active compounds.
Collapse
Affiliation(s)
- Zhengming Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Kseniya Hileuskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Aliaksandr Kraskouski
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Yujiao Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Zhe Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Zhengang Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
26
|
Yuan X, Xue X, Liang Z, He C. Study on the potential hypoglycemic flavonoids in Abrus precatorius leaves: purification process, quality profile and activity mechanisms by transcriptomics and network pharmacology. Nat Prod Res 2024:1-8. [PMID: 38623836 DOI: 10.1080/14786419.2024.2340756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/31/2024] [Indexed: 04/17/2024]
Abstract
The aim of the study was to investigate the relationship between flavonoids in Abrus precatorius leaves (APL) and their hypoglycaemic effects, which have not been studied before. An efficient purification process, transcriptomics and network pharmacology analysis were applied for the first time. High-performance liquid chromatography (HPLC) was used to determine the content of total flavonoids. The results showed that D101 resin was most suitable for purification of flavonoids of APL, which could increase its purity from 25.2% to 85.2% and achieve a recovery rate of 86.9%. The analysis of transcriptomics and network pharmacology revealed that flavonoids of APL could play a hypoglycaemic role by regulating 31 targets through AGE-RAGE and other signal pathways. Flavonoids of APL could exert hydroglycaemic effects by inhibiting AGEs, α-glucosidase and DPPH. This study provides a solid basis for hypoglycaemic product development and in-depth research of flavonoids in APL.
Collapse
Key Words
- APL, Abrus precatorius leaves; HPLC, High-performance liquid chromatography; T2D, type 2 diabetes; AGEs, advanced glycation end products; LPS, lipopolysaccharide; DPPH, 2,2-Diphenyl-1-picrylhydrazyl; BV, bed volume; DEGs, differentially expressed genes; GO, gene ontology; KEGG, Kyoto Encyclopaedia of Genes and Genomes.
- Abrus precatorius L
- hypoglycaemic activity
- network pharmacology
- purification
- total flavonoids
- transcriptomics
Collapse
Affiliation(s)
- Xujiang Yuan
- Center for Drug Research and Development/Class III Laboratory of Modern Chinese Medicine Preparation, State Administration of Traditional Chinese Medicine of the P.R.C/ Key Laboratory of modern Chinese medicine of Education Department of Guangdong Province/Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems/ Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, P R China
| | - Xianmei Xue
- Center for Drug Research and Development/Class III Laboratory of Modern Chinese Medicine Preparation, State Administration of Traditional Chinese Medicine of the P.R.C/ Key Laboratory of modern Chinese medicine of Education Department of Guangdong Province/Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems/ Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, P R China
| | - Zhike Liang
- Center for Drug Research and Development/Class III Laboratory of Modern Chinese Medicine Preparation, State Administration of Traditional Chinese Medicine of the P.R.C/ Key Laboratory of modern Chinese medicine of Education Department of Guangdong Province/Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems/ Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, P R China
| | - Cuimin He
- Center for Drug Research and Development/Class III Laboratory of Modern Chinese Medicine Preparation, State Administration of Traditional Chinese Medicine of the P.R.C/ Key Laboratory of modern Chinese medicine of Education Department of Guangdong Province/Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems/ Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, P R China
| |
Collapse
|
27
|
Jiang MY, Pu XY, Li WT, Liu J, Zeng XL, Li HR, Bai XS, Hu L, Huang XZ. Two new monoterpene esters from Illigera paviflora Dunn roots. Nat Prod Res 2024; 38:1230-1237. [PMID: 36287603 DOI: 10.1080/14786419.2022.2137802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
Abstract
Two new monoterpene esters, illigerates H and I (1 and 2), and six known compounds actinodaphine (3), bulbocupnine (4), stephanine (5), hypserpanine B (6), betulinic acid (7) and gallic acid (8) were obtained from the root of Illigera paviflora Dunn. Their structures were elucidated by spectroscopic analysis. Anti-inflammatory and α-glucosidase inhibitory activity of some isolated compounds were assessed. Two monoterpenes 1 and 2 exhibited weak in vitro anti-inflammatory activity (IC50 64.5 ± 5.3 and 79.2 ± 7.5 μM) while compounds 3-6 showed inhibition of α-glucosidase with IC50 values ranged from 87.17 to 118.74 μM.
Collapse
Affiliation(s)
- Meng-Yuan Jiang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Xiao-Yun Pu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Wen-Ting Li
- Kunming Center for Disease Control and Prevention, Kunming, China
| | - Juan Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Xiao-Li Zeng
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Hong-Rui Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Xi-Shan Bai
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Lin Hu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Xiang-Zhong Huang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, China
| |
Collapse
|
28
|
Abdella FI, Toumi A, Boudriga S, Alanazi TY, Alshamari AK, Alrashdi AA, Hamden K. Antiobesity and antidiabetes effects of Cyperus rotundus rhizomes presenting protein tyrosine phosphatase, dipeptidyl peptidase 4, metabolic enzymes, stress oxidant and inflammation inhibitory potential. Heliyon 2024; 10:e27598. [PMID: 38486768 PMCID: PMC10937842 DOI: 10.1016/j.heliyon.2024.e27598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
Diabetes is a significant global health concern that increases the vulnerability to various chronic illnesses. In view of this issue, the current research aimed to examine the effects of administering an extract derived from the tubers of Cyperus rotundus L (CrE) on obesity, type 1 diabetes, and liver-kidney toxicity. Through the utilization of HPLC-DAD analysis, it was discovered that the extract contained several components, including quercetin (47.8%), luteolin glucoside (17%), luteolin (7.56%), apigenin-7-glucoside (6.29%), naringinin (4.52%), and seven others. In vitro experiments they have demonstrated that CrE effectively inhibited key digestive enzymes associated with obesity and type 2 diabetes, such as DPP-4, PTP1B, lipase, and α-amylase, as evidenced by their respective IC50 values are about 23, 51,83, and 67 μg/ml respectively. Furthermore, when diabetic rats were administered CrE, the activity of pancreatic enzymes linked to inflammation, namely 5-lipoxygenase (5-LO), hyaluronidase (HAase), and myeloperoxidase (MPO), was significantly suppressed by 48, 41, 75, and 47%, respectively. Moreover, CrE exhibited protective effects on pancreatic β-cells by inhibiting the formation of thiobarbituric acid reactive substances (TBARS) by 65% and the induction of superoxide Dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activities by 62, 108, and 112% respectively as compared to diabetic untreated rat. Additionally, CrE significantly inhibited the activities of intestinal, pancreatic, and serum lipase and α-amylase activities. In diabetic rats, CrE administration suppressed glycogen phosphorylase (GP) stimulated glycogen synthase (GS) activities by 45 and 30%; and this increased liver glycogen content by 45%. Furthermore, CrE modulated key hepatic enzymes involved in carbohydrate metabolism, including hexokinase (HK), glucose-6-phosphate dehydrogenase (G6PD), glucose-6-phosphatase (G6P), and fructose-1,6-bisphosphatase (FBP). Notably, the average food and water intake (AFI and AWI) of diabetic rats treated with CrE was reduced by 15 and 16% respectively as compared to those without any treatment. Therefore, this study demonstrated the effectiveness of Cyperus rotundus tubers in preventing and treating obesity and diabetes.
Collapse
Affiliation(s)
- Faiza I.A. Abdella
- Department of Chemistry, College of Science, Ha'il University, Ha'il, 81451, Saudi Arabia
| | - Amani Toumi
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir, 5019, Tunisia
| | - Sarra Boudriga
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir, 5019, Tunisia
| | - Tahani Y.A. Alanazi
- Department of Chemistry, College of Science, Ha'il University, Ha'il, 81451, Saudi Arabia
| | - Asma K. Alshamari
- Department of Chemistry, College of Science, Ha'il University, Ha'il, 81451, Saudi Arabia
| | | | - Khaled Hamden
- Laboratory of Bioresources: Integrative Biology and Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, 5000, Tunisia
| |
Collapse
|
29
|
Erukainure OL, Chukwuma CI. Coconut ( Cocos nucifera (L.)) Water Improves Glucose Uptake with Concomitant Modulation of Antioxidant and Purinergic Activities in Isolated Rat Psoas Muscles. PLANTS (BASEL, SWITZERLAND) 2024; 13:665. [PMID: 38475510 DOI: 10.3390/plants13050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The present study investigated the effect of coconut water on glucose uptake and utilization, and metabolic activities linked to hyperglycemia in isolated rat psoas muscles. Coconut water was subjected to in vitro antioxidant and antidiabetic assays, which cover 2,2'-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, ferric reducing antioxidant power (FRAP), and inhibition of α-glucosidase and α-amylase activities. Psoas muscles were isolated from male Sprague Dawley rats and incubated with coconut water in the presence of glucose. Control consisted of muscles incubated with glucose only, while normal control consisted of muscles not incubated in coconut water and/or glucose. The standard antidiabetic drug was metformin. Incubation with coconut water led to a significant increase in muscle glucose uptake, with concomitant exacerbation of glutathione level, and SOD and catalase activities, while suppressing malondialdehyde level, and ATPase and E-NTDase activities. Coconut water showed significant scavenging activity against DPPH, and significantly inhibited α-glucosidase and α-amylase activities. LC-MS analysis of coconut water revealed the presence of ellagic acid, butin, quercetin, protocatechuic acid, baicalin, and silibinin. Molecular docking analysis revealed potent molecular interactions between the LC-MS-identified compounds, and AKT-2 serine and PI-3 kinase. These results indicate the potential of coconut water to enhance glucose uptake, while concomitantly improving antioxidative and purinergic activities. They also indicate the potential of coconut water to suppress postprandial hyperglycemia. These activities may be attributed to the synergistic effects of the LC-MS-identified compounds.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Chika I Chukwuma
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, South Africa
| |
Collapse
|
30
|
Andrés CMC, Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-Lebeña E. Antioxidant Metabolism Pathways in Vitamins, Polyphenols, and Selenium: Parallels and Divergences. Int J Mol Sci 2024; 25:2600. [PMID: 38473850 DOI: 10.3390/ijms25052600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Free radicals (FRs) are unstable molecules that cause reactive stress (RS), an imbalance between reactive oxygen and nitrogen species in the body and its ability to neutralize them. These species are generated by both internal and external factors and can damage cellular lipids, proteins, and DNA. Antioxidants prevent or slow down the oxidation process by interrupting the transfer of electrons between substances and reactive agents. This is particularly important at the cellular level because oxidation reactions lead to the formation of FR and contribute to various diseases. As we age, RS accumulates and leads to organ dysfunction and age-related disorders. Polyphenols; vitamins A, C, and E; and selenoproteins possess antioxidant properties and may have a role in preventing and treating certain human diseases associated with RS. In this review, we explore the current evidence on the potential benefits of dietary supplementation and investigate the intricate connection between SIRT1, a crucial regulator of aging and longevity; the transcription factor NRF2; and polyphenols, vitamins, and selenium. Finally, we discuss the positive effects of antioxidant molecules, such as reducing RS, and their potential in slowing down several diseases.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain
| | | |
Collapse
|
31
|
Zheng Z, Xu Y, Qu H, Zhou H, Yang H. Enhancement of anti-diabetic activity of pomelo peel by the fermentation of Aspergillus oryzae CGMCC23295: In vitro and in silico docking studies. Food Chem 2024; 432:137195. [PMID: 37625298 DOI: 10.1016/j.foodchem.2023.137195] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/30/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
In this work, pomelo peel was fermented by Aspergillus oryzae CGMCC23295 to enhance its anti-diabetic properties. Results showed the total phenolic and flavonoids contents, ferric reducing antioxidant power (FRAP), scavenging capacities against 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radicals, as well as inhibitory abilities against α-amylase and α-glucosidase of pomelo peel were increased and fermentation for 8 days was the best. Additionally, the fermented sample could also enhance the glucose consumption and glycogen of HepG2 cell. Based on UPLC-MS/MS analysis, binding energy calculation, concentration determination and IC50 measurement, purpurin, apigenin, genistein, and paxilline could be concluded to be the main compounds to enhance the inhibition activities of fermented sample against α-amylase and α-glucosidase. Furthermore, computational studies were performed to reveal the the binding site and molecular interactions between paxilline and α-amylase, as well as purpurin and α-glucosidase. These findings provide a base for the utilization and valorization of pomelo peels as functional food additives by fermentation.
Collapse
Affiliation(s)
- Zhihan Zheng
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yicheng Xu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Hang Qu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huabin Zhou
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Hailong Yang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
32
|
Li K, Xia T, Jiang Y, Wang N, Lai L, Xu S, Yue X, Xin H. A review on ethnopharmacology, phytochemistry, pharmacology and potential uses of Portulaca oleracea L. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117211. [PMID: 37739100 DOI: 10.1016/j.jep.2023.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Portulaca oleracea L. (PO), popularly known as purslane, has been documented in ethnopharmacology in various countries and regions. Traditional application records indicated that PO might be used extensively to treat the common cold, dysentery, urinary tract infections, coughing, eye infections, skin problems, gynecological diseases, and pediatric illnesses. AIM OF THE REVIEW This paper includes a systematic review of the traditional usage, phytochemicals, pharmacological activity, and potential uses of PO to provide an overview of the research for further exploitation of PO resources. MATERIALS AND METHODS This article uses "Portulaca oleracea L." and "purslane" as the keywords and collects relevant information on PO from different databases, including PubMed, Web of Science, Springer, Science Direct, ACS, Wiley, CNKI, Baidu Scholar, Google Scholar, and ancient meteria medica. RESULTS PO is a member of the Portulacaceae family and is grown worldwide. Traditional Chinese medicine believes that purslane has the effect of improving eyesight, eliminating evil qi, quenching thirst, purgation, diuresis, hemostasis, regulating qi, promoting hair growth, detoxifying, and avoiding epidemic qi. Recent phytochemical investigations have shown that PO is a rich source of flavonoids, homoisoflavonoids, alkaloids, organic acids, esters, lignans, terpenoids, catecholamines, sterols, and cerebrosides. The purslane extracts or compounds have exhibited numerous biological activities such as anti-inflammatory, immunomodulatory, antimicrobial, antiviral, antioxidant, anticancer, renoprotective, hepatoprotective, gastroprotective, metabolic, muscle relaxant, anti-asthmatic and anti-osteoporosis properties. The significant omega-3 fatty acids, vital amino acids, minerals, and vitamins found in purslane also provide nutritional benefits. Purslane as a food/feed additive in the food industry and animal husbandry has caused concern. Its global wide distribution and tolerance to abiotic stress characteristics make it in the future sustainable development of agriculture a certain position. CONCLUSIONS Based on traditional usage, phytochemicals, and pharmacological activity, PO is a potential medicinal and edible plant with diverse pharmacological effects. Due to purslane's various advantages, it may have vast application potential in the food and pharmaceutical industries and animal husbandry.
Collapse
Affiliation(s)
- Kun Li
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China; Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Tianshuang Xia
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yiping Jiang
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Liyong Lai
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Shengyan Xu
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xiaoqiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Hailiang Xin
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China.
| |
Collapse
|
33
|
Sun Y, Cao Q, Huang Y, Lu T, Ma H, Chen X. Mechanistic study on the inhibition of α-amylase and α-glucosidase using the extract of ultrasound-treated coffee leaves. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:63-74. [PMID: 37515816 DOI: 10.1002/jsfa.12890] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Our previous studies have shown that ultrasound-treated γ-aminobutyric acid (GABA)-rich coffee leaves have higher angiotensin-I-converting enzyme inhibitory activity than their untreated counterpart. However, whether they have antidiabetic activity remains unknown. In this study, we aimed to investigate the inhibitory activities of coffee leaf extracts (CLEs) prepared with ultrasound (CLE-U) or without ultrasound (CLE-NU) pretreatment on α-amylase and α-glucosidase. Subsequently, we evaluated the binding interaction between CLE-U and both enzymes using multi-spectroscopic and in silico analyses. RESULTS Ultrasound pretreatment increased the inhibitory activities of CLE-U against α-amylase and α-glucosidase by 21.78% and 25.13%, respectively. CLE-U reversibly inhibits both enzymes, with competitive inhibition observed for α-amylase and non-competitive inhibition for α-glucosidase. The static quenching of CLE-U against both enzymes was primarily driven by hydrogen bond and van der Waals interactions. The α-helices of α-amylase and α-glucosidase were increased by 1.8% and 21.3%, respectively. Molecular docking results showed that the key differential compounds, including mangiferin, 5-caffeoylquinic acid, rutin, trigonelline, GABA, caffeine, glutamate, and others, present in coffee leaves interacted with specific amino acid residues located at the active site of α-amylase (ASP197, GLU233, and ASP300). The binding of α-glucosidase and these bioactive components involved amino acid residues, such as PHE1289, PRO1329, and GLU1397, located outside the active site. CONCLUSION Ultrasound-treated coffee leaves are potential anti-diabetic substances, capable of preventing diabetes by inhibiting the activities of α-amylase and α-glucosidase, thus delaying starch digestion. Our study provides valuable information to elucidate the possible antidiabetic capacity of coffee leaves through the inhibition of α-amylase and α-glucosidase activities. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qingwei Cao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Yuanyuan Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Tingting Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
34
|
Lam TP, Tran NVN, Pham LHD, Lai NVT, Dang BTN, Truong NLN, Nguyen-Vo SK, Hoang TL, Mai TT, Tran TD. Flavonoids as dual-target inhibitors against α-glucosidase and α-amylase: a systematic review of in vitro studies. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:4. [PMID: 38185713 PMCID: PMC10772047 DOI: 10.1007/s13659-023-00424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024]
Abstract
Diabetes mellitus remains a major global health issue, and great attention is directed at natural therapeutics. This systematic review aimed to assess the potential of flavonoids as antidiabetic agents by investigating their inhibitory effects on α-glucosidase and α-amylase, two key enzymes involved in starch digestion. Six scientific databases (PubMed, Virtual Health Library, EMBASE, SCOPUS, Web of Science, and WHO Global Index Medicus) were searched until August 21, 2022, for in vitro studies reporting IC50 values of purified flavonoids on α-amylase and α-glucosidase, along with corresponding data for acarbose as a positive control. A total of 339 eligible articles were analyzed, resulting in the retrieval of 1643 flavonoid structures. These structures were rigorously standardized and curated, yielding 974 unique compounds, among which 177 flavonoids exhibited inhibition of both α-glucosidase and α-amylase are presented. Quality assessment utilizing a modified CONSORT checklist and structure-activity relationship (SAR) analysis were performed, revealing crucial features for the simultaneous inhibition of flavonoids against both enzymes. Moreover, the review also addressed several limitations in the current research landscape and proposed potential solutions. The curated datasets are available online at https://github.com/MedChemUMP/FDIGA .
Collapse
Affiliation(s)
- Thua-Phong Lam
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Uppsala University, 75105, Uppsala, Sweden
| | - Ngoc-Vi Nguyen Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Uppsala University, 75105, Uppsala, Sweden
| | - Long-Hung Dinh Pham
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
| | - Nghia Vo-Trong Lai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Bao-Tran Ngoc Dang
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Ngoc-Lam Nguyen Truong
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Song-Ky Nguyen-Vo
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Thuy-Linh Hoang
- California Northstate University College of Pharmacy, California, 95757, USA
| | - Tan Thanh Mai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam.
| | - Thanh-Dao Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam.
| |
Collapse
|
35
|
Saha C, Naskar R, Chakraborty S. Antiviral Flavonoids: A Natural Scaffold with Prospects as Phytomedicines against SARS-CoV2. Mini Rev Med Chem 2024; 24:39-59. [PMID: 37138419 DOI: 10.2174/1389557523666230503105053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 05/05/2023]
Abstract
Flavonoids are vital candidates to fight against a wide range of pathogenic microbial infections. Due to their therapeutic potential, many flavonoids from the herbs of traditional medicine systems are now being evaluated as lead compounds to develop potential antimicrobial hits. The emergence of SARS-CoV-2 caused one of the deadliest pandemics that has ever been known to mankind. To date, more than 600 million confirmed cases of SARS-CoV2 infection have been reported worldwide. Situations are worse due to the unavailability of therapeutics to combat the viral disease. Thus, there is an urgent need to develop drugs against SARS-CoV2 and its emerging variants. Here, we have carried out a detailed mechanistic analysis of the antiviral efficacy of flavonoids in terms of their potential targets and structural feature required for exerting their antiviral activity. A catalog of various promising flavonoid compounds has been shown to elicit inhibitory effects against SARS-CoV and MERS-CoV proteases. However, they act in the high-micromolar regime. Thus a proper leadoptimization against the various proteases of SARS-CoV2 can lead to high-affinity SARS-CoV2 protease inhibitors. To enable lead optimization, a quantitative structure-activity relationship (QSAR) analysis has been developed for the flavonoids that have shown antiviral activity against viral proteases of SARS-CoV and MERS-CoV. High sequence similarities between coronavirus proteases enable the applicability of the developed QSAR to SARS-CoV2 proteases inhibitor screening. The detailed mechanistic analysis of the antiviral flavonoids and the developed QSAR models is a step forward toward the development of flavonoid-based therapeutics or supplements to fight against COVID-19.
Collapse
Affiliation(s)
- Chiranjeet Saha
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Roumi Naskar
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| |
Collapse
|
36
|
Zhao Q, Li Y, Li S, He X, Gu R. Comparative bioactivity evaluation and metabolic profiling of different parts of Duhaldea nervosa based on GC-MS and LC-MS. Front Nutr 2023; 10:1301715. [PMID: 38144429 PMCID: PMC10748410 DOI: 10.3389/fnut.2023.1301715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Duhaldea nervosa (Wallich ex Candolle) Anderberg has been widely used as medicine and food additive in China for a long history. Its roots, known as Xiaoheiyao, are the mainly used medicinal part, while the other tissues of D. nervosa are ignored as non-medicinal parts despite their high biomass, resulting in a huge waste of resources. To mine and expand the medicinal values of different parts of D. nervosa, metabolic analysis by GC/LC-MS and bioactivity evaluation were performed. Based on the antioxidant activity and correlation analysis, a metabolite-related network was constructed. A total of 45 volatile and 174 non-volatile compounds were identified. Among them, caffeoylquinic acids and derivatives were more abundant in roots and flowers, while coumaroyltartaric acids and derivatives were mainly present in stems and leaves. By multivariate analysis, 13 volatile and 37 non-volatile differential metabolites were found, respectively. In the bioactivity evaluation of different parts, the order of antioxidant capacity was flowers > roots > leaves or stems. The flowers showed the highest FRAP value (354.47 μM TE/g DW) and the lowest IC50 values in the DPPH (0.06 mg/mL) and ABTS (0.19 mg/mL) assay, while higher inhibitory activity against α-glucosidase was exhibited by flowers and leaves. This study first established the similarities and differences of phytochemicals and bioactivities in D. nervosa, providing a scientific basis for developing non-medicinal parts and guiding the clinical application of this medicinal and edible herb.
Collapse
Affiliation(s)
- Qian Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofeng He
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
37
|
Liu H, Li Z, Xia X, Zhang R, Wang W, Xiang X. Chemical profile of phenolic extracts from rapeseed meal and inhibitory effects on α-glucosidase: UPLC-MS/MS analysis, multispectral approaches, molecular simulation and ADMET analysis. Food Res Int 2023; 174:113517. [PMID: 37986420 DOI: 10.1016/j.foodres.2023.113517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 11/22/2023]
Abstract
Rapeseed meal (RSM) is the by-product of rapeseed processing that enriches phenolic compounds. However, the comprehensive characterization of its phenolic substances in terms of composition and potential activities remains incomplete, leading to limited utilization in the food industry. In this study, the phenolic profile from RSM (referred to as RMP) was identified, and their inhibitory effects on α-glucosidase were investigated. UPLC-MS/MS analysis showed that a total of 466 phenolic compounds were detected in RMP. The primary components were sinapic acid (SA), caffeic acid (CA), salicylic acid (SAA), and astragalin (AS). Multispectral approaches demonstrated significant inhibitory capacity of RMP against α-glucosidase with a half inhibition value (IC50) of 0.32 mg/mL, with a stronger inhibition compared to CA/SAA/AS (IC50: 4.0, 5.9, and 0.9 mg/mL) in addition to the previously reported SA, suggesting a synergistic effect. Both RMP and CA/SAA/AS altered the secondary structure of α-glucosidase to quench its intrinsic fluorescence. Molecular simulation results revealed that hydrogen bonds and van der Waals forces primarily contributed to the interaction between CA/SAA/AS and α-glucosidase, as well as verified the stability of the binding process over the entire simulation duration. The ADMET analysis showed that CYP2D6 was not inhibited by CA/SAA/AS, which had no AMES toxicity, hepatotoxicity, and skin sensitization. This finding suggests the potential of RMP against α-glucosidase for the treatment of diabetes.
Collapse
Affiliation(s)
- Huihui Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Ziliang Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xiaoyang Xia
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Ruiying Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China; School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Wen Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Xia Xiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China.
| |
Collapse
|
38
|
Kotik M, Kulik N, Valentová K. Flavonoids as Aglycones in Retaining Glycosidase-Catalyzed Reactions: Prospects for Green Chemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14890-14910. [PMID: 37800688 PMCID: PMC10591481 DOI: 10.1021/acs.jafc.3c04389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
Flavonoids and their glycosides are abundant in many plant-based foods. The (de)glycosylation of flavonoids by retaining glycoside hydrolases has recently attracted much interest in basic and applied research, including the possibility of altering the glycosylation pattern of flavonoids. Research in this area is driven by significant differences in physicochemical, organoleptic, and bioactive properties between flavonoid aglycones and their glycosylated counterparts. While many flavonoid glycosides are present in nature at low levels, some occur in substantial quantities, making them readily available low-cost glycosyl donors for transglycosylations. Retaining glycosidases can be used to synthesize natural and novel glycosides, which serve as standards for bioactivity experiments and analyses, using flavonoid glycosides as glycosyl donors. Engineered glycosidases also prove valuable for the synthesis of flavonoid glycosides using chemically synthesized activated glycosyl donors. This review outlines the bioactivities of flavonoids and their glycosides and highlights the applications of retaining glycosidases in the context of flavonoid glycosides, acting as substrates, products, or glycosyl donors in deglycosylation or transglycosylation reactions.
Collapse
Affiliation(s)
- Michael Kotik
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Prague 4, Czech Republic
| | - Natalia Kulik
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Prague 4, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Prague 4, Czech Republic
| |
Collapse
|
39
|
Hou Y, Bai L, Wang X, Zhang S, Liu S, Hu J, Gao J, Guo S, Ho CT, Bai N. Gut Microbiota Combined with Serum Metabolomics to Investigate the Hypoglycemic Effect of Actinidia arguta Leaves. Nutrients 2023; 15:4115. [PMID: 37836402 PMCID: PMC10574697 DOI: 10.3390/nu15194115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Actinidia arguta leaves (AAL) are an excellent source of bioactive components for the food industry and possess many functional properties. However, the hypoglycemic effect and mechanism of AAL remain unclear. The aim of this work was to investigate the potential hypoglycemic effect of AAL and explore its possible mechanism using 16S rRNA sequencing and serum metabolomics in diabetic mice induced by high-fat feeding in combination with streptozotocin injection. A total of 25 flavonoids from AAL were isolated and characterized, and the contents of the extract from the AAL ranged from 0.14 mg/g DW to 8.97 mg/g DW. The compound quercetin (2) had the highest content of 8.97 ± 0.09 mg/g DW, and the compound kaempferol-3-O-(2'-O-D-glucopyl)-β-D-rutinoside (12) had the lowest content of 0.14 ± 0.01 mg/g DW. In vivo experimental studies showed that AAL reduced blood glucose and cholesterol levels, improved insulin sensitivity, and ameliorated oxidative stress and liver and kidney pathological damage. In addition, gut microbiota analysis found that AAL significantly reduced the F/B ratio, enriched the beneficial bacteria Bacteroides and Bifidobacterium, and inhibited the harmful bacteria Lactobacillus and Desulfovibrio, thereby playing an active role in intestinal imbalance. In addition, metabolomics analysis showed that AAL could improve amino acid metabolism and arachidonic acid metabolism, thereby exerting a hypoglycemic effect. This study confirmed that AAL can alleviate type 2 diabetes mellitus (T2DM) by regulating intestinal flora and interfering with related metabolic pathways, providing a scientific basis for its use as a dietary supplement and for further exploration of the mechanism of AAL against T2DM.
Collapse
Affiliation(s)
- Yufei Hou
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (Y.H.); (S.G.)
| | - Lu Bai
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (Y.H.); (S.G.)
- Instrument Analysis Center, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710048, China
| | - Xin Wang
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (Y.H.); (S.G.)
| | - Shanshan Zhang
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi’an 710069, China
| | - Shaojing Liu
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi’an 710069, China
- College of Pharmacy, Xi’an Medical University, 1 Xinwang Road, Xi’an 710021, China
| | - Jiabing Hu
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (Y.H.); (S.G.)
| | - Jing Gao
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (Y.H.); (S.G.)
| | - Sen Guo
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (Y.H.); (S.G.)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Naisheng Bai
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (Y.H.); (S.G.)
| |
Collapse
|
40
|
Guo F, An J, Wang M, Zhang W, Chen C, Mao X, Liu S, Wang P, Ren F. Inhibitory Mechanism of Quercimeritrin as a Novel α-Glucosidase Selective Inhibitor. Foods 2023; 12:3415. [PMID: 37761124 PMCID: PMC10528180 DOI: 10.3390/foods12183415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, 12 flavonoid glycosides were selected based on virtual screening and the literature, and Quercimeritrin was selected as the best selective inhibitor of α-glucosidase through in vitro enzyme activity inhibition experiments. Its IC50 value for α-glucosidase was 79.88 µM, and its IC50 value for α-amylase >250 µM. As such, it could be used as a new selective inhibitor of α-glucosidase. The selective inhibition mechanism of Quercimeritrin on the two starch-digesting enzymes was further explored, and it was confirmed that Quercimeritrin had a strong binding affinity for α-glucosidase and occupied the binding pocket of α-glucosidase through non-covalent binding. Subsequently, animal experiments demonstrated that Quercimeritrin can effectively control postprandial blood glucose in vivo, with the same inhibitory effect as acarbose but without side effects. Our results, therefore, provide insights into how flavone aglycones can be used to effectively control the rate of digestion to improve postprandial blood glucose levels.
Collapse
Affiliation(s)
- Fengyu Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (F.G.); (X.M.)
| | - Jie An
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (J.A.); (M.W.); (W.Z.); (C.C.); (S.L.)
| | - Minlong Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (J.A.); (M.W.); (W.Z.); (C.C.); (S.L.)
| | - Weibo Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (J.A.); (M.W.); (W.Z.); (C.C.); (S.L.)
| | - Chong Chen
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (J.A.); (M.W.); (W.Z.); (C.C.); (S.L.)
| | - Xueying Mao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (F.G.); (X.M.)
| | - Siyuan Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (J.A.); (M.W.); (W.Z.); (C.C.); (S.L.)
- Food Laboratory of Zhongyuan, China Agricultural University, Beijing 100083, China
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (J.A.); (M.W.); (W.Z.); (C.C.); (S.L.)
- Food Laboratory of Zhongyuan, China Agricultural University, Beijing 100083, China
| | - Fazheng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (F.G.); (X.M.)
| |
Collapse
|
41
|
Sun Y, Mehmood A, Giampieri F, Battino MA, Chen X. Insights into the cellular, molecular, and epigenetic targets of gamma-aminobutyric acid against diabetes: a comprehensive review on its mechanisms. Crit Rev Food Sci Nutr 2023; 64:12620-12637. [PMID: 37694998 DOI: 10.1080/10408398.2023.2255666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Diabetes is a metabolic disease due to impaired or defective insulin secretion and is considered one of the most serious chronic diseases worldwide. Gamma-aminobutyric acid (GABA) is a naturally occurring non-protein amino acid commonly present in a wide range of foods. A number of studies documented that GABA has good anti-diabetic potential. This review summarized the available dietary sources of GABA as well as animal and human studies on the anti-diabetic properties of GABA, while also discussing the underlying mechanisms. GABA may modulate diabetes through various pathways such as inhibiting the activities of α-amylase and α-glucosidase, promoting β-cell proliferation, stimulating insulin secretion from β-cells, inhibiting glucagon secretion from α-cells, improving insulin resistance and glucose tolerance, and increasing antioxidant and anti-inflammatory activities. However, further mechanistic studies on animals and human are needed to confirm the therapeutic effects of GABA against diabetes.
Collapse
Affiliation(s)
- Yu Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Arshad Mehmood
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Maurizio Antonio Battino
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| |
Collapse
|
42
|
Kashtoh H, Baek KH. New Insights into the Latest Advancement in α-Amylase Inhibitors of Plant Origin with Anti-Diabetic Effects. PLANTS (BASEL, SWITZERLAND) 2023; 12:2944. [PMID: 37631156 PMCID: PMC10458243 DOI: 10.3390/plants12162944] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023]
Abstract
The rising predominance of type 2 diabetes, combined with the poor medical effects seen with commercially available anti-diabetic medications, has motivated the development of innovative treatment approaches for regulating postprandial glucose levels. Natural carbohydrate digestion enzyme inhibitors might be a viable option for blocking dietary carbohydrate absorption with fewer side effects than manufactured medicines. Alpha-amylase is a metalloenzyme that facilitates digestion by breaking down polysaccharides into smaller molecules such as maltose and maltotriose. It also contributes to elevated blood glucose levels and postprandial hyperglycemia. As a result, scientists are being urged to target α-amylase and create inhibitors that can slow down the release of glucose from carbohydrate chains and prolong its absorption, thereby resulting in lower postprandial plasma glucose levels. Natural α-amylase inhibitors derived from plants have gained popularity as safe and cost-effective alternatives. The bioactive components responsible for the inhibitory actions of various plant extracts have been identified through phytochemical research, paving the way for further development and application. The majority of the findings, however, are based on in vitro investigations. Only a few animal experiments and very few human investigations have confirmed these findings. Despite some promising results, additional investigation is needed to develop feasible anti-diabetic drugs based on plant-derived pancreatic α-amylase inhibitors. This review summarizes the most recent findings from research on plant-derived pancreatic α-amylase inhibitors, including plant extracts and plant-derived bioactive compounds. Furthermore, it offers insights into the structural aspects of the crucial therapeutic target, α-amylases, in addition to their interactions with inhibitors.
Collapse
Affiliation(s)
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
43
|
Lu F, Sun J, Jiang X, Song J, Yan X, Teng Q, Li D. Identification and Isolation of α-Glucosidase Inhibitors from Siraitia grosvenorii Roots Using Bio-Affinity Ultrafiltration and Comprehensive Chromatography. Int J Mol Sci 2023; 24:10178. [PMID: 37373326 DOI: 10.3390/ijms241210178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The discovery of bioactive compounds from medicinal plants has played a crucial role in drug discovery. In this study, a simple and efficient method utilizing affinity-based ultrafiltration (UF) coupled with high-performance liquid chromatography (HPLC) was developed for the rapid screening and targeted separation of α-glucosidase inhibitors from Siraitia grosvenorii roots. First, an active fraction of S. grosvenorii roots (SGR2) was prepared, and 17 potential α-glucosidase inhibitors were identified based on UF-HPLC analysis. Second, guided by UF-HPLC, a combination of MCI gel CHP-20P column chromatography, high-speed counter-current countercurrent chromatography, and preparative HPLC were conducted to isolate the compounds producing active peaks. Sixteen compounds were successfully isolated from SGR2, including two lignans and fourteen cucurbitane-type triterpenoids. The structures of the novel compounds (4, 6, 7, 8, 9, and 11) were elucidated using spectroscopic methods, including one- and two-dimensional nuclear magnetic resonance spectroscopy and high-resolution electrospray ionization mass spectrometry. Finally, the α-glucosidase inhibitory activities of the isolated compounds were verified via enzyme inhibition assays and molecular docking analysis, all of which were found to exhibit certain inhibitory activity. Compound 14 exhibited the strongest inhibitory activity, with an IC50 value of 430.13 ± 13.33 μM, which was superior to that of acarbose (1332.50 ± 58.53 μM). The relationships between the structures of the compounds and their inhibitory activities were also investigated. Molecular docking showed that the highly active inhibitors interacted with α-glucosidase through hydrogen bonds and hydrophobic interactions. Our results demonstrate the beneficial effects of S. grosvenorii roots and their constituents on α-glucosidase inhibition.
Collapse
Affiliation(s)
- Fenglai Lu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Jiayi Sun
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Xiaohua Jiang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Jingru Song
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Xiaojie Yan
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Qinghu Teng
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Dianpeng Li
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| |
Collapse
|
44
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
45
|
Song H, Ma H, Shi J, Liu Y, Kan C, Hou N, Han J, Sun X, Qiu H. Optimizing glycation control in diabetes: An integrated approach for inhibiting nonenzymatic glycation reactions of biological macromolecules. Int J Biol Macromol 2023:125148. [PMID: 37268079 DOI: 10.1016/j.ijbiomac.2023.125148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/16/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
Diabetes is a multifactorial disorder that increases mortality and disability due to its complications. A key driver of these complications is nonenzymatic glycation, which generates advanced glycation end-products (AGEs) that impair tissue function. Therefore, effective nonenzymatic glycation prevention and control strategies are urgently needed. This review comprehensively describes the molecular mechanisms and pathological consequences of nonenzymatic glycation in diabetes and outlines various anti-glycation strategies, such as lowering plasma glucose, interfering with the glycation reaction, and degrading early and late glycation products. Diet, exercise, and hypoglycemic medications can reduce the onset of high glucose at the source. Glucose or amino acid analogs such as flavonoids, lysine and aminoguanidine competitively bind to proteins or glucose to block the initial nonenzymatic glycation reaction. In addition, deglycation enzymes such as amadoriase, fructosamine-3-kinase, parkinson's disease protein, glutamine amidotransferase-like class 1 domain-containing 3A and terminal FraB deglycase can eliminate existing nonenzymatic glycation products. These strategies involve nutritional, pharmacological, and enzymatic interventions that target different stages of nonenzymatic glycation. This review also emphasizes the therapeutic potential of anti-glycation drugs for preventing and treating diabetes complications.
Collapse
Affiliation(s)
- Hongwei Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongyan Ma
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yongping Liu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jing Han
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261053, Shandong, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
46
|
Bellachioma L, Morresi C, Albacete A, Martínez-Melgarejo PA, Ferretti G, Giorgini G, Galeazzi R, Damiani E, Bacchetti T. Insights on the Hypoglycemic Potential of Crocus sativus Tepal Polyphenols: An In Vitro and In Silico Study. Int J Mol Sci 2023; 24:ijms24119213. [PMID: 37298165 DOI: 10.3390/ijms24119213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Post-prandial hyperglycemia typical of diabetes mellitus could be alleviated using plant-derived compounds such as polyphenols, which could influence the activities of enzymes involved in carbohydrate digestion and of intestinal glucose transporters. Here, we report on the potential anti-hyperglycemic effect of Crocus sativus tepals compared to stigmas, within the framework of valorizing these by-products of the saffron industry, since the anti-diabetic properties of saffron are well-known, but not those of its tepals. In vitro assays showed that tepal extracts (TE) had a greater inhibitory action than stigma extracts (SE) on α-amylase activity (IC50: TE = 0.60 ± 0.09 mg/mL; SE = 1.10 ± 0.08 mg/mL; acarbose = 0.051 ± 0.07) and on glucose absorption in Caco-2 differentiated cells (TE = 1.20 ± 0.02 mg/mL; SE = 2.30 ± 0.02 mg/mL; phlorizin = 0.23 ± 0.01). Virtual screening performed with principal compounds from stigma and tepals of C. sativus and human pancreatic α-amylase, glucose transporter 2 (GLUT2) and sodium glucose co-transporter-1 (SGLT1) were validated via molecular docking, e.g., for human pancreatic α-amylase, epicatechin 3-o-gallate and catechin-3-o-gallate were the best scored ligands from tepals (-9.5 kcal/mol and -9.4 kcal/mol, respectively), while sesamin and episesamin were the best scored ones from stigmas (-10.1 kcal/mol). Overall, the results point to the potential of C. sativus tepal extracts in the prevention/management of diabetes, likely due to the rich pool of phytocompounds characterized using high-resolution mass spectrometry, some of which are capable of binding and interacting with proteins involved in starch digestion and intestinal glucose transport.
Collapse
Affiliation(s)
- Luisa Bellachioma
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Camilla Morresi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Alfonso Albacete
- Centro de Edafología y Biología Aplicada del Segura, Agencia Estatal Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario de Espinardo, E-30100 Murcia, Spain
| | - Purificación A Martínez-Melgarejo
- Centro de Edafología y Biología Aplicada del Segura, Agencia Estatal Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario de Espinardo, E-30100 Murcia, Spain
| | - Gianna Ferretti
- Department of Clinical Science and Odontostomatology, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Giorgia Giorgini
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
47
|
Nguyen VB, Wang SL, Phan TQ, Pham THT, Huang HT, Liaw CC, Nguyen AD. Screening and Elucidation of Chemical Structures of Novel Mammalian α-Glucosidase Inhibitors Targeting Anti-Diabetes Drug from Herbals Used by E De Ethnic Tribe in Vietnam. Pharmaceuticals (Basel) 2023; 16:ph16050756. [PMID: 37242539 DOI: 10.3390/ph16050756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Among ten extracts of indigenous medicinal plants, the MeOH extract of Terminalia triptera Stapf. (TTS) showed the most efficient mammalian α-glucosidase inhibition for the first time. The data of screening bioactive parts used indicated that the TTS trunk bark and leaves extracts demonstrated comparable and higher effects compared to acarbose, a commercial anti-diabetic drug, with half-maximal inhibitory concentration (IC50) values of 181, 331, and 309 µg/mL, respectively. Further bioassay-guided purification led to the isolation of three active compounds from the TTS trunk bark extract and identified as (-)-epicatechin (1), eschweilenol C (2), and gallic acid (3). Of these, compounds 1 and 2 were determined as novel and potent mammalian α-glucosidase inhibitors. The virtual study indicated that these compounds bind to α-glucosidase (Q6P7A9) with acceptable RMSD values (1.16-1.56 Å) and good binding energy (DS values in the range of -11.4 to -12.8 kcal/mol) by interacting with various prominent amino acids to generate five and six linkages, respectively. The data of Lipinski's rule of five and absorption, distribution, metabolism, excretion and toxicity (ADMET)-based pharmacokinetics and pharmacology revealed that these purified compounds possess anti-diabetic drug properties, and the compounds are almost not toxic for human use. Thus, the findings of this work suggested that (-)-epicatechin and eschweilenol C are novel potential mammalian α-glucosidase inhibitor candidates for type 2 diabetes treatment.
Collapse
Affiliation(s)
- Van Bon Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| | - Tu Quy Phan
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
| | - Thi Huyen Thoa Pham
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
| | - Hung-Tse Huang
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 11221, Taiwan
| | - Chia-Ching Liaw
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 11221, Taiwan
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
| |
Collapse
|
48
|
Gao J, Zhou M, Chen D, Xu J, Wang Z, Peng J, Lin Z, Yu S, Lin Z, Dai W. High-throughput screening and investigation of the inhibitory mechanism of α-glucosidase inhibitors in teas using an affinity selection-mass spectrometry method. Food Chem 2023; 422:136179. [PMID: 37119598 DOI: 10.1016/j.foodchem.2023.136179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023]
Abstract
An affinity selection-mass spectrometry method was applied for high-throughput screening of α-glucosidase (AGH) inhibitors from teas. Fourteen out of nineteen screened AGH inhibitor candidates were clustered as galloylated polyphenols (GPs). "AGH-GPs" interaction studies, including enzyme kinetics, fluorescence spectroscopy, circular dichroism, and molecular docking, jointly suggested that GPs noncompetitively inhibit AGH activity by interacting with amino acid residues near the active site of AGH and inducing changes in AGH secondary structure. Representative GPs and white tea extract (WTE) showed comparable AGH inhibition effects in Caco2 cells and postprandial hypoglycemic efficacy in diabetic mice as acarbose. The area under the curve of oral sucrose tolerance test was lower by 8.16%, 6.17%, and 7.37% than control group in 15 mg/kg EGCG, 15 mg/kg strictinin, and 150 mg/kg WTE group, respectively. Our study presents a high-efficiency approach to discover novel AGH inhibitors and elucidates a potential mechanism by which tea decreases diabetes risks.
Collapse
Affiliation(s)
- Jianjian Gao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengxue Zhou
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China
| | - Dan Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China
| | - Jiye Xu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhe Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China
| | - Jiakun Peng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyuan Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China
| | - Shuai Yu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China.
| | - Weidong Dai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China.
| |
Collapse
|
49
|
Glucoregulatory Properties of Fermented Soybean Products. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Type 2 diabetes mellitus is a chronic metabolic disease, characterized by persistent hyperglycemia, the prevalence of which is on the rise worldwide. Fermented soybean products (FSP) are rich in diverse functional ingredients which have been shown to exhibit therapeutic properties in alleviating hyperglycemia. This review summarizes the hypoglycemic actions of FSP from the perspective of different target-related molecular signaling mechanisms in vitro, in vivo and clinical trials. FSP can ameliorate glucose metabolism disorder by functioning as carbohydrate digestive enzyme inhibitors, facilitating glucose transporter 4 translocation, accelerating muscular glucose utilization, inhibiting hepatic gluconeogenesis, ameliorating pancreatic dysfunction, relieving adipose tissue inflammation, and improving gut microbiota disorder. Sufficiently recognizing and exploiting the hypoglycemic activity of traditional fermented soybean foods could provide a new strategy in the development of the food fermentation industry.
Collapse
|
50
|
Soltani S, Koubaa I, Dhouib I, Khemakhem B, Marchand P, Allouche N. New Specific α-Glucosidase Inhibitor Flavonoid from Thymelaea tartonraira Leaves: Structure Elucidation, Biological and Molecular Docking Studies. Chem Biodivers 2023; 20:e202200944. [PMID: 36757004 DOI: 10.1002/cbdv.202200944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
The phytochemical investigation of Thymelaea tartonraira leaves led to the isolation and characterization of six compounds, including one new flavonoid glycoside identified as hypolaetin 8-O-β-D-galactopyranoside (4) along with five known compounds, daphnoretin (1), triumbelletin (2), genkwanin (3), tiliroside (5) and yuankanin (6). Their structures were established based on spectroscopic methods, such as UV, IR, NMR, and HR-ESI-MS. Triumbelletin (2) and tiliroside (5) were isolated for the first time from T. tartonraira leaves. The antioxidant property of all isolated compounds was tested based on DPPH, FRAP and total antioxidant capacity assays. Compound 4 displayed an antioxidant potency more interesting than vitamin C with an IC50 =15.00±0.50 μg/ml, followed by compound 5. Furthermore, the both compounds 4 and 5 were tested for their α-amylase inhibitory activity in-vitro. Compound 4 displayed higher potency to inhibit α-amylase, with an IC50 =46.49±2.32 μg/ml, than compound 5, with an IC50 =184.2±9.2 μg/ml, while the reference compound acarbose presented the highest potency to inhibit α-amylase with an IC50 =0.44±0.022 μg/ml. Compound 4 displayed a strong inhibitory ability of α-glucosidase activity approximately twice more than the reference compound, acarbose, with IC50 values of 60.00±3.00 and 125.00±6.25 μg/ml, respectively. Thus, compound 4 exhibited a specific inhibitory activity for α-glucosidase. The molecular docking studies have supported our findings and suggested that compound 4 has been involved in various binding interactions within the active site of both enzymes α-amylase and α-glucosidase.
Collapse
Affiliation(s)
- Siwar Soltani
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, P. B.1171, Sfax, 3000, Tunisia
| | - Imed Koubaa
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, P. B.1171, Sfax, 3000, Tunisia
| | - Ines Dhouib
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, University of Sfax, P. B.1171, Sfax, 3000, Tunisia
| | - Bassem Khemakhem
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, University of Sfax, P. B.1171, Sfax, 3000, Tunisia
| | - Pascal Marchand
- Nantes Université, Cibles et médicaments des infections et de l'immunité, IICiMed, UR 1155, F-44000 Nantes, France
| | - Noureddine Allouche
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, P. B.1171, Sfax, 3000, Tunisia
| |
Collapse
|