1
|
Venter K, Li W, Angel R, Plumstead PW, Proszkowiec-Weglarz M, Enting H, Ellestad LE. Calcium and phosphorus digestibility in broilers as affected by varying phytate concentrations from corn. Poult Sci 2024; 103:104191. [PMID: 39217662 DOI: 10.1016/j.psj.2024.104191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Dietary phytate P (PP) concentration impacts Ca and P digestibility in broilers. Research was conducted to determine the impact of increasing concentration of dietary PP, with and without phytase, on broiler standardized ileal digestibility (SID) of Ca and P. Digestible (Dig) Ca and P were calculated by multiplying SID and the analyzed dietary Ca and P concentrations. The experiment was a factorial arrangement of 2 phytase (0 and 1,000 U/kg) and 4 PP (0.16, 0.23, 0.29, and 0.34%) concentrations. Treatments were fed for 36 h from 20 to 22 d of age (4 b/pen, n ≥ 7 replicate pens/treatment). Different ratios of corn and corn germ were used to achieve the desired PP concentrations. A limestone with 800 µm geometric mean diameter was used as the sole Ca source to achieve 0.7% Ca in the final diets (96% Ca from limestone). An additional diet was fed that was N, Ca- and P-free, for the determination of endogenous losses of each nutrient. Distal ileal digesta were pooled from all birds in a pen. There were no interactions between PP and phytase on SID Ca or Dig Ca from limestone. Irrespective of phytase inclusion, increasing PP from 0.16 to 0.34% decreased SID Ca from 53.8 to 38.1% (P < 0.05). The SID Ca averaged 41.5 and 51.4% in diets containing 0 and 1000 U phytase/kg, respectively, across all PP concentrations (P < 0.05). Interactions were seen between PP and phytase on SID and Dig P (P < 0.05) with SID P of 31.1, 24.0, 20.1, and 16.3% for broilers fed 0.16, 0.23, 0.29, and 0.34% PP diets without phytase, respectively. When phytase was included at 1000 U/kg, SID P was 89.9, 87.5, 73.9 and 60.4% for diets containing 0.16, 0.23, 0.29 and 0.34% PP, respectively (P < 0.05). Overall, phytase improved SID Ca and P independent of PP concentration. However, with increasing PP concentration, both SID Ca and P were negatively affected.
Collapse
Affiliation(s)
- K Venter
- Department of Wildlife and Animal Sciences, University of Pretoria, Hatfield 0028, South Africa; Neuro Livestock Research, Kameeldrift, Brits 0250, South Africa
| | - W Li
- Danisco Animal Nutrition & Health (IFF), Wilmington, DE 19803, USA.
| | - R Angel
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - P W Plumstead
- Neuro Livestock Research, Kameeldrift, Brits 0250, South Africa
| | - M Proszkowiec-Weglarz
- United States Department of Agriculture, Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, Beltsville, MD 20705, USA
| | - H Enting
- Cargill Animal Nutrition and Health, Veilingweg 5334, The Netherlands
| | - L E Ellestad
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Henninger C, Stadelmann T, Heid D, Ochsenreither K, Eisele T. Ion chromatography coupled with optical emission spectrometry (IC-ICP-OES) methodology for the analysis of inositol phosphates in food and feed. Food Chem 2024; 463:141437. [PMID: 39413724 DOI: 10.1016/j.foodchem.2024.141437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/08/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024]
Abstract
This study presents the development of ion chromatography coupled with inductively coupled plasma optical emission spectrometry (IC-ICP-OES) for the simultaneous determination and quantification of inositol phosphates (InsPx). Using a CarboPac PA100 column with a nitric acid-water gradient, 28 InsPx isomers (InsP6 to InsP2) were separated within 33 min. The method eliminates baseline drift and post-column derivatization thereby simplifying detection and quantification. It achieves low detection limits of 63 μg/L P across a range of 63-3200 μg/L P. Various extraction and sample preparation methods for food and feed matrices were tested, including acidic and alkaline agents, C18 SPE and spin concentrators. The analysis shows intra-day and intra-laboratory reproducibility with deviations smaller than 1 % for standard solutions and under 4 % for feed samples (80 % recovery rate of phytate). This methodology is applicable to explore enzymatic degradation pathways and the analysis of InsPx in complex food and animal feed matrices.
Collapse
Affiliation(s)
- Corinna Henninger
- Hochschule Offenburg, Fakultät Maschinenbau und Verfahrenstechnik, Badstraße 24, 77652 Offenburg, Germany; Karlsruhe Institute of Technology (KIT), Department of Chemical and Process Engineering, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Tobias Stadelmann
- Picea Biosolutions GmbH, Carl-Benz-Straße 30, 77797 Ohlsbach, Germany
| | - Daniel Heid
- Picea Biosolutions GmbH, Carl-Benz-Straße 30, 77797 Ohlsbach, Germany
| | - Katrin Ochsenreither
- Karlsruhe Institute of Technology (KIT), Department of Chemical and Process Engineering, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Thomas Eisele
- Hochschule Offenburg, Fakultät Maschinenbau und Verfahrenstechnik, Badstraße 24, 77652 Offenburg, Germany.
| |
Collapse
|
3
|
Wehrmaker AM, de Groot W, Jan van der Goot A, Keppler JK, Bosch G. In vitro digestibility and solubility of phosphorus of three plant-based meat analogues. J Anim Physiol Anim Nutr (Berl) 2024; 108 Suppl 1:24-35. [PMID: 38576126 DOI: 10.1111/jpn.13956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/21/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
Interest in plant-based meat analogues has increased and can be expected to be applied to pet foods, which necessitates the understanding of the nutrient supply in those foods. Our primary aim was to advance our understanding of the digestive properties of sterilized plant-based meat analogues. The impact of the preparatory processing steps on the solubility of meat analogues was studied. Meat analogues were made by mixing water, salt, and wheat gluten with soy protein isolate, pea protein isolate, or faba bean concentrate. Mixed materials were processed into model meat analogues using shear cell technology. Products were canned in water or gravy and sterilized. An animal-based canned pet food was made as a reference. Products sampled at the processing steps (mixing, shearing, sterilization) were digested in vitro. Samples of digestate were taken at the gastric phase (0 and 120 min) and small intestinal phase (120, 200, 280, and 360 min) for analysis of protein hydrolysis. The extent digestion of nitrogen and dry matter was determined at the end of incubation. Total phosphorus, soluble phosphorus after acid treatment, and after acid and enzymatic treatment were determined. The degree of hydrolysis after gastric digestion was low but increased immediately in the small intestinal phase; products based on pea had the highest values (56%). Nitrogen digestibility was above 90% for all materials at each processing step, indicating that bioactive compounds were absent or inactivated in the protein isolates and concentrate. Phytate seemed to play a minor role in meat analogues, but phosphorus solubility was influenced by processing. Shearing decreased soluble phosphorus, but this effect was partly reversed by sterilization. Nutrient digestibility as well as phosphorus solubility in plant-based products was higher than or comparable with the reference pet food. These findings show that the digestive properties of the tested plant-based meat analogues do not limit the supply of amino acids and phosphorus.
Collapse
Affiliation(s)
- Ariane Maike Wehrmaker
- Saturn Petcare GmbH, Senator-Mester-Straße 1, Bremen, Germany
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, the Netherlands
| | - Wouter de Groot
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, the Netherlands
| | - Atze Jan van der Goot
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, the Netherlands
| | | | - Guido Bosch
- Animal Nutrition Group, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
4
|
Deschênes Gagnon R, Langevin MÈ, Lutin F, Bazinet L. Identification of Fouling Occurring during Coupled Electrodialysis and Bipolar Membrane Electrodialysis Treatment for Tofu Whey Protein Recovery. MEMBRANES 2024; 14:88. [PMID: 38668116 PMCID: PMC11052131 DOI: 10.3390/membranes14040088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Tofu whey, a by-product of tofu production, is rich in nutrients such as proteins, minerals, fats, sugars and polyphenols. In a previous work, protein recovery from tofu whey was studied by using a coupled environmental process of ED + EDBM to valorize this by-product. This process allowed protein recovery by reducing the ionic strength of tofu whey during the ED process and acidifying the proteins to their isoelectric point during EDBM. However, membrane fouling was not investigated. The current study focuses on the fouling of membranes at each step of this ED and EDBM process. Despite a reduction in the membrane conductivities and some changes in the mineral composition of the membranes, no scaling was evident after three runs of the process with the same membranes. However, it appeared that the main fouling was due to the presence of isoflavones, the main polyphenols in tofu whey. Indeed, a higher concentration was observed on the AEMs, giving them a yellow coloration, while small amounts were found in the CEMs, and there were no traces on the BPMs. The glycosylated forms of isoflavones were present in higher concentrations than the aglycone forms, probably due to their high amounts of hydroxyl groups, which can interact with the membrane matrices. In addition, the higher concentration of isoflavones on the AEMs seems to be due to a combination of electrostatic interactions, hydrogen bonding, and π-π stacking, whereas only π-π stacking and hydrogen bonds were possible with the CEMs. To the best of our knowledge, this is the first study to investigate the potential fouling of BPMs by polyphenols, report the fouling of IEMs by isoflavones and propose potential interactions.
Collapse
Affiliation(s)
- Rosie Deschênes Gagnon
- Institute of Nutrition and Functional Foods (INAF), Food Science Department, Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM/Laboratory of Food Processing and ElectroMembrane Processes), Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Marie-Ève Langevin
- Eurodia Industrie S.A.S—Zac Saint Martin, Impasse Saint Martin, 84120 Pertuis, France; (M.-È.L.); (F.L.)
| | - Florence Lutin
- Eurodia Industrie S.A.S—Zac Saint Martin, Impasse Saint Martin, 84120 Pertuis, France; (M.-È.L.); (F.L.)
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods (INAF), Food Science Department, Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM/Laboratory of Food Processing and ElectroMembrane Processes), Université Laval, Quebec City, QC G1V 0A6, Canada;
| |
Collapse
|
5
|
Zhu X, Ren X, Chen J, Gong M, Mo R, Luo S, Yang S. One-step regeneration and upgrading of spent LiFePO 4 cathodes with phytic acid. NANOSCALE 2024; 16:3417-3421. [PMID: 38230746 DOI: 10.1039/d3nr05387c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The regeneration and upgrading of spent LiFePO4 cathodes (S-LFP) were achieved via a one-step hydrothermal treatment. The reducing effect of phytic acid could restore the degraded structure associated with an aqueous Li source. Meanwhile, Li ions are easily chelated by phytic acid groups, and a Li3PO4 coating layer could be formed to reconstruct the surface of the LFP. The regenerated LFP exhibits faster reaction kinetics, larger high-rate charge/discharge capacity, and better cycling performance than commercial LFPs, suggesting that our proposed strategy is a promising technology for the recovery of spent cathode materials.
Collapse
Affiliation(s)
- Xuhui Zhu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Xueqi Ren
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Junting Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Mengqi Gong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Ran Mo
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Siyuan Luo
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Shun Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| |
Collapse
|
6
|
David LS, Nalle CL, Abdollahi MR, Ravindran V. Feeding Value of Lupins, Field Peas, Faba Beans and Chickpeas for Poultry: An Overview. Animals (Basel) 2024; 14:619. [PMID: 38396587 PMCID: PMC10886283 DOI: 10.3390/ani14040619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Grain legumes are fair sources of protein, amino acids and energy, and can be used as a replacement for soybean meal in poultry feed formulations as the soybean meal becomes short in supply and costly. However, a concern associated with the use of grain legumes in poultry feeding is the presence of antinutritional factors. The effective processing and utilisation of these grain legumes in poultry feeding are well documented. The current review focuses on four selected grain legumes (lupins [Lupinus albus and Lupinus angustifolius], field peas [Phaseolus vulgaris], faba beans [Vicia faba] and chickpeas [Cicer arietinum]) and their nutrient content, the presence of antinutritional factors, processing methods and feeding value, including updated data based on recent research findings.
Collapse
Affiliation(s)
- Laura S. David
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (L.S.D.); (C.L.N.); (M.R.A.)
| | - Catootjie L. Nalle
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (L.S.D.); (C.L.N.); (M.R.A.)
- Animal Husbandry Department, Polytechnic of Agriculture Kupang, Prof. Herman Yohannes St., Lasiana, Kupang 85228, NTT, Indonesia
| | - M. Reza Abdollahi
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (L.S.D.); (C.L.N.); (M.R.A.)
- A2Z Poultry Feed DynamikZ, 69100 Villeurbanne, France
| | - Velmurugu Ravindran
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (L.S.D.); (C.L.N.); (M.R.A.)
| |
Collapse
|
7
|
Priyodip P, Balaji S. Characterization of a putative metal-dependent PTP-like phosphatase from Lactobacillus helveticus 2126. Int Microbiol 2024; 27:37-47. [PMID: 37365352 PMCID: PMC10830716 DOI: 10.1007/s10123-023-00390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 04/01/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
To date, there are very limited reports on sequence analysis and structure-based molecular modeling of phosphatases produced by probiotic bacteria. Therefore, a novel protein tyrosine-like phosphatase was characterized from L. helveticus 2126 in this study. The purified bacterial phosphatase was subjected to mass spectrometric analysis, and the identity of constructed sequence was analyzed using peptide mass fingerprint. The 3-D structure of protein was elucidated using homology modeling, while its stability was assessed using Ramachandran plot, VERIFY 3D, and PROCHECK. The bacterium produced an extracellular phosphatase of zone diameter 15 ± 0.8 mm on screening medium within 24 h of incubation. This bacterial phosphatase was highly specific towards sodium phytate as it yielded the lowest Km value of 299.50 ± 4.95 μM compared to other phosphorylated substrates. The activity was effectively stimulated in the presence of zinc, magnesium, and manganese ions thereby showing its PTP-like behavior. The phosphatase showed a molecular mass of 43 kDa, and the corresponding M/Z ratio data yielded 46% query coverage to Bacillus subtilis (3QY7). This showed a 61.1% sequence similarity to Ligilactobacillus ruminis (WP_046923835.1). The final sequence construct based on these bacteria showed a conserved motif "HCHILPGIDD" in their active site. In addition, homology modeling showed a distorted Tim barrel structure with a trinuclear metal center. The final model after energy minimization showed 90.9% of the residues in the favorable region of Ramachandran's plot. This structural information can be used in genetic engineering for improving the overall stability and catalytic efficiency of probiotic bacterial phosphatases.
Collapse
Affiliation(s)
- Paul Priyodip
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, -576104, Manipal, Karnataka, India
| | - Seetharaman Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, -576104, Manipal, Karnataka, India.
| |
Collapse
|
8
|
Pirzado SA, Liu G, Purba MA, Cai H. Enhancing the Production Performance and Nutrient Utilization of Laying Hens by Augmenting Energy, Phosphorous and Calcium Deficient Diets with Fungal Phytase ( Trichoderma reesei) Supplementation. Animals (Basel) 2024; 14:376. [PMID: 38338019 PMCID: PMC10854802 DOI: 10.3390/ani14030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
A ten-week trial was conducted to evaluate the enhancement of production performance and nutrient utilization of laying hens through augmenting energy, phosphorous, and calcium deficient diets with fungal phytase (Trichoderma reesei) supplementation. 720 Hy-line Brown hens aged 28 weeks were randomly divided into 5 groups; each group had 8 replicates of 18 hens. Five experimental diets were prepared and fed to corresponding groups. A positive control (PC) diet contained 3.50% of calcium (Ca), 0.32% of non-phytate phosphorus (NPP), and apparent metabolic energy (AME) of 11.29MJ/kg, while a negative control (NC) diet contained 3.30% of Ca, 0.12% of NPP, and lower AME of 300 kJ/kg. The other three diets were supplemented with 250 FTU/kg phytase (PHY-250), 1000 FTU/kg phytase (PHY-1000), and 2000 FTU/kg phytase (PHY-2000) in addition to a regular NC diet. Results indicated that the positive control (PC) diet group had higher body weight gain, egg weight, and average daily feed intake. However, laying rate, egg mass, and FCR were most improved in the PHY-2000 group, followed by the PHY-1000 and PHY-250 groups (p < 0.05). Improved yolk color was most notable in laying hens fed the diet with PHY-1000 as opposed to the PC and NC groups (p < 0.05), but no overall difference was found among all of the phytase treated groups. The apparent availability of dry matter, energy, phosphorus, and phytate P was significantly higher in the PHY-2000 group than in the PC and NC groups (p < 0.05). Compared to the PC group, nitrogen retention was significantly higher in the PHY-1000 group, while calcium availability was higher in the PHY-250 group. The results suggested that the addition of phytase to diets with low P, Ca, and AME improved laying performance and apparent availability of dietary nutrients. Thus, it was concluded that the laying hen diet could be supplemented with 1000-2000 FTU/kg phytase for improving laying production and nutrient availability and mitigating the negative impact of reduced nutrient density in laying hen diets.
Collapse
Affiliation(s)
- Shoaib Ahmed Pirzado
- Key Laboratory of Feed Biotechnology of Agricultural Ministry, Feed Research Institute Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.A.P.); (M.A.P.); (H.C.)
- Department of Animal Nutrition, Sindh Agriculture University, Tandojam 70060, Pakistan
| | - Guohua Liu
- Key Laboratory of Feed Biotechnology of Agricultural Ministry, Feed Research Institute Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.A.P.); (M.A.P.); (H.C.)
| | - Muhammad Adanan Purba
- Key Laboratory of Feed Biotechnology of Agricultural Ministry, Feed Research Institute Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.A.P.); (M.A.P.); (H.C.)
| | - Huiyi Cai
- Key Laboratory of Feed Biotechnology of Agricultural Ministry, Feed Research Institute Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.A.P.); (M.A.P.); (H.C.)
| |
Collapse
|
9
|
Medeiros-Ventura WRL, Rabello CBV, Santos MJB, Barros MR, Silva Junior RV, Oliveira HB, Costa FS, Faria AG, Fireman AK. The Impact of Phytase and Different Levels of Supplemental Amino Acid Complexed Minerals in Diets of Older Laying Hens. Animals (Basel) 2023; 13:3709. [PMID: 38067060 PMCID: PMC10705327 DOI: 10.3390/ani13233709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 06/28/2024] Open
Abstract
A study was conducted to evaluate the effects of different sources and levels of supplemental amino acid-complexed minerals (AACM), with and without enzyme phytase (EZ). A total of 512 Dekalb White laying hens at 67 weeks of age were used in a 2 × 3 + 2 factorial arrangement of 8 treatments and 8 replications each. The main effects included EZ supplementation (600 FTU kg-1) and AACM inclusion level (100%, 70%, and 40% of inorganic mineral recommendations), plus two control treatments. The group of hens fed AACM-100 showed lower feed intake than the inorganic mineral (IM) group. The diet containing AACM-EZ-70 provided a higher (p < 0.05) laying percentage and a lower (p < 0.05) feed conversion ratio than both the IM and IM-EZ diets. The groups fed AACM-EZ-40, AACM-EZ-100, and AACM-70 produced heavier yolks (p < 0.05). Hens fed IM laid eggs with the lowest yolk and albumen weights (p < 0.05). Layers fed with AACM-100 and AACM-70 produced the most resistant eggshells to breakage (p < 0.05). In diets containing phytase, the optimal AACM recommendations for better performance and egg quality in older laying hens are: 42, 49, 5.6, 28, 0.175, and 0.70 mg kg-1 for Zn, Mn, Cu, Fe, Se, and I, respectively.
Collapse
Affiliation(s)
- Waleska R. L. Medeiros-Ventura
- Animal Science Department, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife 52171-900, Brazil; (W.R.L.M.-V.); (C.B.V.R.); (R.V.S.J.); (H.B.O.); (A.G.F.)
| | - Carlos B. V. Rabello
- Animal Science Department, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife 52171-900, Brazil; (W.R.L.M.-V.); (C.B.V.R.); (R.V.S.J.); (H.B.O.); (A.G.F.)
| | - Marcos J. B. Santos
- Animal Science Department, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife 52171-900, Brazil; (W.R.L.M.-V.); (C.B.V.R.); (R.V.S.J.); (H.B.O.); (A.G.F.)
| | - Mércia R. Barros
- Veterinary Science Department, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife 52171-900, Brazil; (M.R.B.); (F.S.C.)
| | - Rogério V. Silva Junior
- Animal Science Department, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife 52171-900, Brazil; (W.R.L.M.-V.); (C.B.V.R.); (R.V.S.J.); (H.B.O.); (A.G.F.)
| | - Heraldo B. Oliveira
- Animal Science Department, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife 52171-900, Brazil; (W.R.L.M.-V.); (C.B.V.R.); (R.V.S.J.); (H.B.O.); (A.G.F.)
| | - Fabiano S. Costa
- Veterinary Science Department, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife 52171-900, Brazil; (M.R.B.); (F.S.C.)
| | - Andresa G. Faria
- Animal Science Department, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife 52171-900, Brazil; (W.R.L.M.-V.); (C.B.V.R.); (R.V.S.J.); (H.B.O.); (A.G.F.)
| | | |
Collapse
|
10
|
Amat T, Assifaoui A, Schmitt C, Saurel R. Importance of binary and ternary complex formation on the functional and nutritional properties of legume proteins in presence of phytic acid and calcium. Crit Rev Food Sci Nutr 2023; 63:12036-12058. [PMID: 35852135 DOI: 10.1080/10408398.2022.2098247] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nowadays, legumes are considered as a good source of plant-based proteins to replace animal ones. They are more favorable regarding environmental aspects and health benefits, therefore many people consider moving toward a greener diet. Interestingly, recent consumer trends are promoting pea and faba bean as alternatives to soybean. Both are rich in protein and a good source of essential nutrients and minerals (calcium). However, these advantages can be partially impaired due to their high phytic acid content. This natural polyphosphate is a major antinutrient in plant-based foods, as it can bind minerals (particularly calcium) and proteins, thereby reducing their digestibility and subsequent bioavailability. Indeed, complexes formed are insoluble and limiting the absorption of nutrients, thus lowering the nutritional value of pulses. To understand and overcome these issues, the present review will refine specific mechanisms involved in assemblies between these three essential compounds in legumes as soluble/insoluble binary or ternary complexes. Molecular interactions are influenced by the environmental medium including pH, ionic strength and molar concentrations modulating the stability of these complexes during protein extraction. Protein/phytic acid/calcium complexes stability is of high relevance for food processing affecting not only structure but also functional and nutritional properties of proteins in legume-based foods.
Collapse
Affiliation(s)
- Tiffany Amat
- Université de Bourgogne Franche-Comté (UBFC), L'Institut Agro Dijon, UMR PAM A 02.102, Dijon, France
| | - Ali Assifaoui
- Université de Bourgogne Franche-Comté (UBFC), L'Institut Agro Dijon, UMR PAM A 02.102, Dijon, France
| | - Christophe Schmitt
- Department of Chemistry, Nestlé Research, Nestlé Institute of Material Sciences, Lausanne 26, Switzerland
| | - Rémi Saurel
- Université de Bourgogne Franche-Comté (UBFC), L'Institut Agro Dijon, UMR PAM A 02.102, Dijon, France
| |
Collapse
|
11
|
González-Félix GK, Luna-Suárez S, García-Ulloa M, Martínez-Montaño E, Barreto-Curiel F, Rodríguez-González H. Extraction methods and nutritional characterization of protein concentrates obtained from bean, chickpea, and corn discard grains. Curr Res Food Sci 2023; 7:100612. [PMID: 37868001 PMCID: PMC10587706 DOI: 10.1016/j.crfs.2023.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
Protein concentrates obtained from discarded grain flours of white chickpea Sinaloa (Cicer arietinum) (CC), "Azufrazin" bean (Phaseolus vulgaris) (BC), and white corn (Zea mays) (MC), were characterized biochemically through bromatological analyses (protein, lipid, fiber, moisture, ashes, and nitrogen free extract), HPLC techniques (amino acids content), and spectrophotometry (anti-nutrients: phytic acid, trypsin inhibitors, and saponins). The percentage of protein obtained from CC, BC, and MC was 71.23, 81.10, and 55.69%, respectively. Most peptides in the BC and CC flours had a molecular weight of <1.35 kDa, meanwhile, MC peptides were heavier (1.35 to 17 kDa). The amino acids (AA) profile of flours and protein concentrates were similar; however, all the protein concentrates showed an increased AA accumulation (300 to -400%) compared with their flours. The protein concentrates from BC registered the highest AA accumulation (77.4 g of AA/100 g of protein concentrates). Except for the phytic acid in CC and trypsin inhibitor in CC and MC, respectively, the rest of the protein concentrates exhibited higher amounts of the anti-nutrients compared with their flours; however, these levels do not exceed the reported toxicity for some animals, mainly when used in combination with other ingredients for feed formulations. It is concluded that CC and BC protein concentrates showed better nutritional characteristics than MC (level of protein, size of peptides, and AA profile). After biochemical characterization, protein concentrates derived from by-products have nutritional potential for the animal feed industry.
Collapse
Affiliation(s)
- Griselda Karina González-Félix
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa, Departamento de Acuacultura, Guasave, Sinaloa, 81101, Mexico
| | - Silvia Luna-Suárez
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Tepetitla, Tlaxcala, 90700, Mexico
| | - Manuel García-Ulloa
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa, Departamento de Acuacultura, Guasave, Sinaloa, 81101, Mexico
| | - Emmanuel Martínez-Montaño
- Maestría en Ciencias Aplicadas. Unidad Académica de Ingeniería en Biotecnología. Universidad Politécnica de Sinaloa, Mazatlán, Sinaloa, 82199, Mexico
- Consejo Nacional de Humanidades Ciencias y Tecnologías, CONAHCYT, México City, Mexico
| | - Fernando Barreto-Curiel
- Universidada Autónoma de Baja California, Facultad de Ciencias Marinas, Ensenada, BCS, Mexico
| | - Hervey Rodríguez-González
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa, Departamento de Acuacultura, Guasave, Sinaloa, 81101, Mexico
| |
Collapse
|
12
|
Vashishth A, Tehri N, Tehri P, Sharma A, Sharma AK, Kumar V. Unraveling the potential of bacterial phytases for sustainable management of phosphorous. Biotechnol Appl Biochem 2023; 70:1690-1706. [PMID: 37042496 DOI: 10.1002/bab.2466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/31/2023] [Indexed: 04/13/2023]
Abstract
Phosphorous actively participates in numerous metabolic and regulatory activities of almost all living organisms including animals and humans. Therefore, it is considered as an essential macronutrient required supporting their proper growth. On contrary, phytic acid (PA), an antinutritional substance, is widely known for its strong affinity to chelate essential mineral ions including PO4 3- , Ca2+ , Fe2+ , Mg2+ , and Zn2+ . Being one the major reservoir of PO4 3- ions, PA has great potential to bind PO4 3- ions in diverse range of foods. Once combined with P, PA transforms into an undigested and insoluble complex namely phytate. Produced phytate leads to a notable reduction in the bioavailability of P due to negligible activity of phytases in monogastric animals and humans. This highlights the importance and consequent need of enhancement of phytase level in these life forms. Interestingly, phytases, catalyzing the breakdown of phytate complex and recycling the phosphate into ecosystem to its available form, have naturally been reported in a variety of plants and microorganisms over past few decades. In pursuit of a reliable solution, the focus of this review is to explore the keynote potential of bacterial phytases for sustainable management of phosphorous via efficient utilization of soil phytate. The core of the review covers detailed discussion on bacterial phytases along with their widely reported applications viz. biofertilizers, phosphorus acquisition, and plant growth promotion. Moreover, meticulous description on fermentation-based strategies and future trends on bacterial phytases have also been included.
Collapse
Affiliation(s)
- Amit Vashishth
- Department of Science and Humanities, SRM Institute of Science & Technology, Ghaziabad, Uttar Pradesh, India
| | - Nimisha Tehri
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Piyush Tehri
- Department of Applied Sciences, MIET, Meerut, Uttar Pradesh, India
| | - Avinash Sharma
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, Arunachal Pradesh, India
| | - Anil Kumar Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Vineet Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan, India
| |
Collapse
|
13
|
Kaufman M, Nguyen C, Shetty M, Oppezzo M, Barrack M, Fredericson M. Popular Dietary Trends' Impact on Athletic Performance: A Critical Analysis Review. Nutrients 2023; 15:3511. [PMID: 37630702 PMCID: PMC10460072 DOI: 10.3390/nu15163511] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Nutrition fuels optimal performance for athletes. With increased research developments, numerous diets available, and publicity from professional athletes, a review of dietary patterns impact on athletic performance is warranted. RESULTS The Mediterranean diet is a low inflammatory diet linked to improved power and muscle endurance and body composition. Ketogenic diets are restrictive of carbohydrates and proteins. Though both show no decrements in weight loss, ketogenic diets, which is a more restrictive form of low-carbohydrate diets, can be more difficult to follow. High-protein and protein-paced versions of low-carbohydrate diets have also shown to benefit athletic performance. Plant-based diets have many variations. Vegans are at risk of micronutrient deficiencies and decreased leucine content, and therefore, decreased muscle protein synthesis. However, the literature has not shown decreases in performance compared to omnivores. Intermittent fasting has many different versions, which may not suit those with comorbidities or specific needs as well as lead to decreases in sprint speed and worsening time to exhaustion. CONCLUSIONS This paper critically evaluates the research on diets in relation to athletic performance and details some of the potential risks that should be monitored. No one diet is universally recommend for athletes; however, this article provides the information for athletes to analyze, in conjunction with medical professional counsel, their own diet and consider sustainable changes that can help achieve performance and body habitus goals.
Collapse
Affiliation(s)
- Matthew Kaufman
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA 94063, USA
| | - Chantal Nguyen
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA 94063, USA
| | - Maya Shetty
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA 94063, USA
| | - Marily Oppezzo
- Prevention Research Center, Stanford University, Redwood City, CA 94063, USA
| | - Michelle Barrack
- Department of Family and Consumer Sciences, California State University, Long Beach, CA 90840, USA
| | - Michael Fredericson
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA 94063, USA
| |
Collapse
|
14
|
Sharma A, Kumar S, Singh R. Formulation of Zinc oxide/Gum acacia nanocomposite as a novel slow-release fertilizer for enhancing Zn uptake and growth performance of Spinacia oleracea L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107884. [PMID: 37451005 DOI: 10.1016/j.plaphy.2023.107884] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Zinc (Zn) deficiency has caused nutritional disorders in 17% of the world's population; thus, producing Zn-enriched plants as a dietary source is necessary. Recently, nanofertilizers have gained much attention as a substitute for conventional fertilizers; however, soil application of polymer-coated Zn-based nanofertilizer has not been explored much. The present study depicts the green synthesis of ZnO nanoparticles using Melia azedarach L. leaf extract, whose phytoconstituents have reducing abilities. The synthesized nanoparticles were combined with gum acacia (GA) to form a ZnOGA nanocomposite. The structural and morphological properties of ZnOGA were studied using XRD, FTIR, FESEM, and EDX. A pot experiment study was carried out with Spinacia oleracea L. at various doses (3, 5, and 10 mg/kg) of the synthesized ZnOGA to evaluate its effectiveness as a slow-release fertilizer and was compared with a commercial Zn fertilizer. The plant growth studies revealed a significant increase in the phyto-morphological traits of the plants fertilized with ZnOGA compared to commercial fertilizer. The plants also displayed significantly higher contents of protein (17-47%), phenols (25-60%), proline (82-94%), total soluble sugar (20-31%), DPPH activity (70-72%), and Zn uptake (91-106%). The doses of ZnOGA played an imperative role in determining the growth and productivity of the plant. Soil column studies showed that ZnOGA reduces Zn leaching by 52% compared to commercial Zn fertilizer. This study signifies the potential of ZnOGA to be applied as an eco-friendly and sustainable substitute for conventional Zn fertilizer minimizing Zn losses and Zn deficiency-related health problems in human populations.
Collapse
Affiliation(s)
- Avimanu Sharma
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India
| | - Sanjeev Kumar
- Department of Geology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
15
|
Kumari A, Roy A. Enhancing micronutrient absorption through simultaneous fortification and phytic acid degradation. Food Sci Biotechnol 2023; 32:1235-1256. [PMID: 37362807 PMCID: PMC10290024 DOI: 10.1007/s10068-023-01255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Phytic acid (PA), an endogenous antinutrient in cereals and legumes, hinders mineral absorption by forming less bioavailable, stable PA-mineral complexes. For individual micronutrients, the PA-to-mineral molar ratio below the critical level ensures better bioavailability and is achieved by adding minerals or removing PA from cereals and pulses. Although several PA reduction and fortification strategies are available, the inability to completely eradicate or degrade PA using available techniques always subdues fortification's impact by hindering fortified micronutrient absorption. The bioavailability of micronutrients could be increased through simultaneous PA degradation and fortification. Following primary PA reduction of the raw material, the fortification step should also incorporate additional essential control stages to further PA inactivation, improving micronutrient absorption. In this review, the chemistry of PA interaction with metal ions, associated controlling parameters, and its impact on PA reduction during fortification is also evaluated, and further suggestions were made for the fortification's success.
Collapse
Affiliation(s)
- Ankanksha Kumari
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, Jharkhand India
| | - Anupam Roy
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, Jharkhand India
| |
Collapse
|
16
|
Nezhad NG, Rahman RNZRA, Normi YM, Oslan SN, Shariff FM, Leow TC. Isolation, screening and molecular characterization of phytase-producing microorganisms to discover the novel phytase. Biologia (Bratisl) 2023; 78:2527-2537. [DOI: 10.1007/s11756-023-01391-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/10/2023] [Indexed: 09/02/2023]
|
17
|
Chigwedere CM, Stone A, Konieczny D, Lindsay D, Huang S, Glahn R, House JD, Warkentin TD, Nickerson M. Examination of the functional properties, protein quality, and iron bioavailability of low-phytate pea protein ingredients. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04232-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
18
|
Food-to-Food Fortification of a Traditional Pearl Millet Gruel with a Natural Source of β-Carotene (Sweet Potato) Improves the Bioaccessibility of Iron and Zinc. J FOOD QUALITY 2023. [DOI: 10.1155/2023/6413244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Iron and zinc deficiencies are still a major public health concern in the Far North Region of Cameroon where staple foods are mainly mineral rich cereals which equally contain inhibitors of their bioaccessibility. The effect of food-to-food fortification of a traditional pearl millet gruel with a natural source of β-carotene on the bioaccessibility of iron and zinc was assessed. A sensory evaluation of gruels fortified at 20, 30, and 40% with mashed sweet potato was carried out. The samples were analysed for carotenoids, phytates, polyphenols, iron, and zinc contents. Bioaccessible iron and zinc were evaluated using in vitro digestion method. The gruel fortified at 20% with mashed sweet potato had better scores (
< 0.05) of taste (3.93), colour (3.36), and overall acceptability (3.80) compared to the control. Carotenoid, polyphenol, and phytate contents were higher in fortified gruels (
< 0.05) compared to the control, while iron and zinc contents were lower. A significant increase (
< 0.05) in bioaccessibility of 8.08% and 26.96% for iron and 53.79% and 62.92% for zinc was observed at 20 and 30% incorporation level, respectively. However, at 40% incorporation level, the increase in bioaccessible iron was less important and bioaccessible zinc decreased. Mashed sweet potato can be used as a fortificant to improve the bioaccessibility of iron and zinc contents of local pearl millet gruel, if added moderately.
Collapse
|
19
|
Moita VHC, Kim SW. Efficacy of a bacterial 6-phytase supplemented beyond traditional dose levels on jejunal mucosa-associated microbiota, ileal nutrient digestibility, bone parameters, and intestinal health, and growth performance of nursery pigs. J Anim Sci 2023; 101:skad134. [PMID: 37115619 PMCID: PMC10224734 DOI: 10.1093/jas/skad134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/27/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to determine the efficacy of a bacterial 6-phytase (Buttiauxella spp.) supplemented beyond traditional dose levels based on jejunal mucosa-associated microbiota, apparent ileal digestibility (AID), intestinal health and bone parameters, and growth performance of nursery pigs. Seventy-two weaned pigs (36 barrows and 36 gilts at 21 d of age with 5.8 ± 0.5 kg BW) were allotted to six treatments based on randomized complete block design with sex and initial BW as blocks and fed in three dietary phases (phase 1 for 14 d, phase 2 for 10 d, and phase 3 for 14 d). The treatments included a negative control (NC) diet without phytase formulated meeting nutrient requirements by NRC and the other five treatments were deficient in calcium (Ca) and phosphorus (P) by 0.12% with increasing levels of a bacterial 6-phytase (0, 500, 1,000, 2,000, and 5,000 FTU/kg feed). Titanium dioxide (0.4%) was added to phase 3 diets as an indigestible marker to measure AID of nutrients. On day 45, all pigs were euthanized to collect ileal digesta to measure AID, the third metacarpus to measure bone parameters, and jejunal mucosa to evaluate intestinal health and microbiota. Data were analyzed using the MIXED procedure for polynomial contrasts and the NLMIXED procedure for broken line analysis using the SAS 9.4. Broken line analysis demonstrated that 948 FTU/kg feed increased (P < 0.05) the ADG and the bone P content. Increasing phytase supplementation increased (linear, P < 0.05) AID of CP, bone P, and ash content. Increasing phytase supplementation reduced (P < 0.05) the fecal score during phases 2 and 3. Broken line analysis demonstrated that 1,889 FTU/kg feed increased (P < 0.05) bone breaking strength. Increasing phytase supplementation (PC vs. Phy) increased (P < 0.05) AID of ether extract (EE) and P. The supplementation of phytase at 2,000 FTU/kg feed tended (P = 0.087) to reduce the relative abundance of Prevotellaceae. In conclusion, the supplementation of a bacterial 6-phytase beyond traditional dose levels improved bone breaking strength, bone ash, and P content, AID of CP, EE, and P, and growth performance of nursery pigs with reduced relative abundance of Bacteroidetes specifically Prevotellaceae in the jejunal mucosa. Supplementation of a bacterial 6-phytase between 1,000 and 2,000 FTU/kg feed provided benefits associated with growth performance and bone parameters of nursery pigs.
Collapse
Affiliation(s)
- Vitor Hugo C Moita
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
20
|
Ou J, Li B, Deng H, Li K, Wang H. A carbon-covered silicon material modified by phytic acid with 3D conductive network as anode for lithium-ion batteries. ADV POWDER TECHNOL 2023. [DOI: 10.1016/j.apt.2022.103891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
21
|
Forgione D, Nassar M, Seseogullari-Dirihan R, Jamleh A, Tezvergil-Mutluay A. Effect of phytic acid on dentinal collagen solubilization and its binding and debinding potentials to dentin. J Dent 2023; 128:104361. [PMID: 36379300 DOI: 10.1016/j.jdent.2022.104361] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To study phytic acid (IP6) effect on collagen solubilization by assessing hydroxyproline (HYP) release, evaluate its binding to demineralized (DD) and mineralized dentin (MD) and determine the effect of different media on debinding of IP6. METHODS Demineralized dentin beams were incubated in 1%, 2% or 3% IP6 and HYP release was evaluated at 1 or 3 weeks and compared to those obtained in untreated control or phosphoric acid (PA)-treated beams. DD or MD powder was treated with 1%, 2% or 3% IP6 and the decrease in IP6 amount was quantitated by ultraviolet-visible spectroscopy. IP6-treated samples were re-suspended in distilled water, ethanol, urea or sodium chloride and the amount of IP6 displaced was determined. RESULTS At 1 week, the control group and IP6 showed lower HYP release when compared to PA (P < 0.05). There was no difference among PA, IP6 and control at 3 weeks (P = 0.22). IP6 binding was concentration dependent. 1% IP6 had higher binding potential with MD compared to DD while 2% IP6 showed the opposite result (P<0.05). 3% IP6 had similar binding values between DD and MD (P = 0.53). The highest debinding in MD occurred with urea for 2%, 3% and 1% IP6 in descending manner. Within each concentration of IP6 in DD, the highest debinding effect was reported with ethanol. CONCLUSIONS IP6 bound to DD and MD in a concentration-dependent manner. IP6 was debound from DD mostly by the action of ethanol, while in MD, urea caused the most displacement. Collagen solubilization of IP6-treated DD was comparable to untreated DD. CLINICAL SIGNIFICANCE These findings add to the potential use of IP6 as an alternative to PA for dentin etching which possibly results in long-term stability of resin-dentin adhesion.
Collapse
Affiliation(s)
| | - Mohannad Nassar
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| | | | - Ahmed Jamleh
- Restorative and Prosthetic Dental Sciences, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Centre, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Arzu Tezvergil-Mutluay
- Institute of Dentistry, University of Turku, Turku, Finland; Turku University Hospital, Turku, Finland
| |
Collapse
|
22
|
Suchintita Das R, Tiwari BK, Chemat F, Garcia-Vaquero M. Impact of ultrasound processing on alternative protein systems: Protein extraction, nutritional effects and associated challenges. ULTRASONICS SONOCHEMISTRY 2022; 91:106234. [PMID: 36435088 PMCID: PMC9685360 DOI: 10.1016/j.ultsonch.2022.106234] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/03/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Proteins from alternative sources including terrestrial and aquatic plants, microbes and insects are being increasingly explored to combat the dietary, environmental and ethical challenges linked primarily to conventional sources of protein, mainly meat and dairy proteins. Ultrasound (US) technologies have emerged as a clean, green and efficient methods for the extraction of proteins from alternative sources compared to conventional methods. However, the application of US can also lead to modifications of the proteins extracted from alternative sources, including changes in their nutritional quality (protein content, amino acid composition, protein digestibility, anti-nutritional factors) and allergenicity, as well as damage of the compounds associated with an increased degradation resulting from extreme US processing conditions. This work aims to summarise the main advances in US equipment currently available to date, including the main US parameters and their effects on the extraction of protein from alternative sources, as well as the studies available on the effects of US processing on the nutritional value, allergenicity and degradation damage of these alternative protein ingredients. The main research gaps identified in this work and future challenges associated to the widespread application of US and their scale-up to industry operations are also covered in detail.
Collapse
Affiliation(s)
- Rahel Suchintita Das
- Section of Food and Nutrition, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; TEAGASC, Food Research Centre, Ashtown, Dublin 15, Ireland
| | | | - Farid Chemat
- GREEN Team Extraction, UMR408, INRA, Université D'Avignon et des Pays de Vaucluse, Avignon Cedex, France
| | - Marco Garcia-Vaquero
- Section of Food and Nutrition, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
23
|
Moita VHC, Kim SW. Nutritional and Functional Roles of Phytase and Xylanase Enhancing the Intestinal Health and Growth of Nursery Pigs and Broiler Chickens. Animals (Basel) 2022; 12:3322. [PMID: 36496844 PMCID: PMC9740087 DOI: 10.3390/ani12233322] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
This review paper discussed the nutritional and functional roles of phytase and xylanase enhancing the intestinal and growth of nursery pigs and broiler chickens. There are different feed enzymes that are currently supplemented to feeds for nursery pigs and broiler chickens. Phytase and xylanase have been extensively studied showing consistent results especially related to enhancement of nutrient digestibility and growth performance of nursery pigs and broiler chickens. Findings from recent studies raise the hypothesis that phytase and xylanase could play functional roles beyond increasing nutrient digestibility, but also enhancing the intestinal health and positively modulating the intestinal microbiota of nursery pigs and broiler chickens. In conclusion, the supplementation of phytase and xylanase for nursery pigs and broiler chickens reaffirmed the benefits related to enhancement of nutrient digestibility and growth performance, whilst also playing functional roles benefiting the intestinal microbiota and reducing the intestinal oxidative damages. As a result, it could contribute to a reduction in the feed costs by allowing the use of a wider range of feedstuffs without compromising the optimal performance of the animals, as well as the environmental concerns associated with a poor hydrolysis of antinutritional factors present in the diets for swine and poultry.
Collapse
Affiliation(s)
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
24
|
Wang L, Zhou Y, Chen W, Jiang JL, Guo ZH. Preparation of LiFePO4 composite based on dual carbon sources of phytic acid and glucose and its performance for lithium extraction from Salt Lake. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
25
|
Attia AM, Abo-Elezz AF, Safy RK. Effect of phytic acid on bond strength and interfacial integrity of universal adhesive to deep dentin. Braz Dent J 2022; 33:116-125. [DOI: 10.1590/0103-6440202204810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 07/13/2022] [Indexed: 11/07/2022] Open
Abstract
Abstract This study investigated the effect of phytic acid (IP6) in different concentrations and application times on microtensile bond strength (µTBS) and interfacial integrity of universal adhesive to deep dentin. Flat deep dentin surfaces of 48 human molars were either etched with 37% phosphoric acid (PA) for 15 sec (control); or received no acid treatment and universal adhesive was applied directly in a self-etch mode (SE); or divided according to IP6 concentration (C) into two main groups: C1, 0.5%, and C2, 1%. Specimens of IP6 groups were further subdivided into three subgroups according to application time of IP6 (T) where; T1, 15 sec; T2, 30 sec and T3, 60 sec. Single Bond Universal Adhesive was then applied and resin composite blocks were built-up. Forty Specimens were then sectioned to produce resin/dentin beams that were used for µTBS testing using a universal testing machine. The remaining eight specimens were sectioned into slabs that were immersed into ammonical silver nitrate solution and nanoleakage was observed using a field emission scanning electron microscope (FE-SEM). The results showed that the application of IP6 in 0.5% and 1% produced significantly higher µTBS and less nanoleakage compared to PA and SE groups. Also, the application of IP6 for 60 sec recorded the highest µTBS and the lowest nanoleakage followed by 30 sec, and 15 sec respectively. Therefore, conditioning of deep dentin with IP6 enhances µTBS and interfacial integrity of universal adhesive to deep dentin in comparison to PA etching or using the universal adhesive in SE mode.
Collapse
|
26
|
Zinc Fortification: Current Trends and Strategies. Nutrients 2022; 14:nu14193895. [PMID: 36235548 PMCID: PMC9572300 DOI: 10.3390/nu14193895] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Zinc, through its structural and cofactor roles, affects a broad range of critical physiological functions, including growth, metabolism, immune and neurological functions. Zinc deficiency is widespread among populations around the world, and it may, therefore, underlie much of the global burden of malnutrition. Current zinc fortification strategies include biofortification and fortification with zinc salts with a primary focus on staple foods, such as wheat or rice and their products. However, zinc fortification presents unique challenges. Due to the influences of phytate and protein on zinc absorption, successful zinc fortification strategies should consider the impact on zinc bioavailability in the whole diet. When zinc is absorbed with food, shifts in plasma zinc concentrations are minor. However, co-absorbing zinc with food may preferentially direct zinc to cellular compartments where zinc-dependent metabolic processes primarily occur. Although the current lack of sensitive biomarkers of zinc nutritional status reduces the capacity to assess the impact of fortifying foods with zinc, new approaches for assessing zinc utilization are increasing. In this article, we review the tools available for assessing bioavailable zinc, approaches for evaluating the zinc nutritional status of populations consuming zinc fortified foods, and recent trends in fortification strategies to increase zinc absorption.
Collapse
|
27
|
Impact of Protein Content on the Antioxidants, Anti-Inflammatory Properties and Glycemic Index of Wheat and Wheat Bran. Foods 2022; 11:foods11142049. [PMID: 35885294 PMCID: PMC9322734 DOI: 10.3390/foods11142049] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022] Open
Abstract
Conventional wheat milling generates important volumes of wheat bran (WB), which is a concentrated source of polyphenols and insoluble fiber. In terms of health benefits and based on epidemiological and experimental evidence, these compounds contribute to reducing the risk of certain chronic pathologies. Protein concentration is the main quality factor conditioning wheat use in the agroindustry. When turning waste into feasible resources, it is essential to evaluate the variability of the raw material. The aim of this study was the evaluation of the impact of protein content in the valorization of WB based on its antioxidants, anti-inflammatory properties and glycemic index (GI). A significantly (p ≤ 0.05) lower content of phenolic compounds was found in the whole grain (WG) fractions, both free (FP) and bound (BP), as compared to the WB phenolic fractions, differences that ranged from 4- to 6-fold (538 to 561 mg GAE 100 g−1 in WG vs. 1027 to 1236 in WB mg GAE 100 g−1 in FP and 2245 to 2378 vs. 6344 to 7232 mg GAE 100 g−1 in BP). A significant (p ≤ 0.05) effect of the protein content on the resulting phenolic content and antioxidant capacity was observed, especially in WG, but also in WB, although in the latter a significant (p ≤ 0.05) negative correlation was observed, and increasing the protein content resulted in decreasing total phenolic content, antioxidants, and ferric-reducing capacities, probably due to their different types of proteins. The highest protein content in WB produced a significant (p ≤ 0.05) reduction in GI value, probably due to the role of protein structure in protecting starch from gelatinization, along with phytic acid, which may bind to proteins closely associated to starch and chelate calcium ions, required for α-amylase activity. A significant (p ≤ 0.05) effect of the protein content on the GI was also found, which may be explained by the structural effect of the proteins associated with starch, reducing the GI (21.64). The results obtained show the importance of segregation of WB in valorization strategies in order to increase the efficiency of the processes.
Collapse
|
28
|
Impact of Phytase Treatment and Calcium Addition on Gelation of a Protein-Enriched Rapeseed Fraction. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractRapeseed press cake was upcycled as a protein-enriched ingredient through dry fractionation. The protein-enriched fraction contained higher amounts of phytic acid compared to press cake, and phytase treatment was applied to decrease the phytic acid content from 6.8 to 0.5%. The effect of phytase treatment leading to the release of cations was also mimicked by extrinsic calcium addition. Both phytase treatment and calcium addition significantly improved the heat-induced gel properties but had a minor effect on protein solubility and dispersion stability at pH 8. Water and protein holding capacities of the gels were the highest for the phytase-treated sample (91 and 97%, respectively), followed by the sample with added calcium (86 and 94%, respectively) and control sample (60 and 86%, respectively). Gel firmness followed the same pattern. Scanning electron microscopy images revealed an interconnected structured network in the phytase-treated gel, while in the control gel, a more rigid and open structure was observed. The improved gelation properties resulting from the phytase treatment suggest that the protein and soluble dietary fibre-enriched rapeseed press cake ingredient serve as a promising raw material for gelled food systems. The positive effect of calcium addition on gel properties proposes that part of the improvement observed after phytase treatment may be caused by cations released from phytate.
Collapse
|
29
|
Paquet F, Leggett RW, Blanchardon E, Bailey MR, Gregoratto D, Smith T, Ratia G, Davesne E, Berkovski V, Harrison JD. Occupational Intakes of Radionuclides: Part 5. Ann ICRP 2022; 51:11-415. [PMID: 35414227 DOI: 10.1177/01466453211028755] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Ishwarya D, Victor Samuel A, Kavitha R. Effect of different etching time on etch pattern and etch depth using 1% phytic acid in primary teeth – A Scanning Electron Microscopic study. PEDIATRIC DENTAL JOURNAL 2022. [DOI: 10.1016/j.pdj.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Kinetic control of Phytic acid/Lixisenatide/Fe (III) ternary nanoparticles assembly process for sustained peptide release. Int J Pharm 2022; 611:121317. [PMID: 34838624 DOI: 10.1016/j.ijpharm.2021.121317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022]
Abstract
The preferable choice of sustained peptide delivery systems is generally polymer-based microspheres in which their large particle size, wide size distribution, low drug encapsulation efficacy, poor colloidal stability, and undesirable burst release eventually hinder their clinical translation. In this study, a nanoscale ternary Lixisenatide (Lix) sustained delivery system based on strong multivalent interactions (electrostatic and coordination complexation) among small molecular phytic acid (PA), Lix and Fe3+ was developed. Flash nanocomplexation (FNC) was utilized to facilitate the rapid and efficient mixing of the three components and kinetically control the assembly process that enabled dynamic balance of two competitive chemical reactions with different kinetic rates (slow chemical reaction of PA/Lix and fast chemical reaction of PA/Fe3+) to generate structural uniform ternary nanoparticles and avoid heterogeneous complexes. By tuning the mixing conditions (i.e., flow rate, mass ratio, concentration, pH value, etc.), the ternary PA/Lix/Fe3+ nanoparticles were assembled with reproducible production in a manner of high uniformity and scalability, achieving small size (∼50 nm), uniform composition (PDI: ∼0.12), favourable colloidal stability, high encapsulation efficiency (∼100%), and tunable drug release kinetics. The optimized formulation exhibited a minor Lix release (<20%) in the first day and extended peptide release period over 8 days. Unexpectedly, upon a single injection administration, the as-prepared formulation (600 μg/kg) rapidly brought the high BGL (∼30 mmol/L) back to normal range (<10 mmol/L) within the initial 6 h and achieved a 180 h glycemic control in T2D mouse model. Moreover, this sustained peptide delivery system demonstrated a repeatable hypoglycemic effects and significantly suppressed the pathological damage of major organs following multiple injection. This sustained peptide delivery system with aqueous, facile and reproducible preparation process possesses good biocompatibility, tunable release kinetics, and prolonged hypoglycemic effects, portending its great translational potential in the chronic disease treatment.
Collapse
|
32
|
Albe-Slabi S, Defaix C, Beaubier S, Galet O, Kapel R. Selective extraction of napins: Process optimization and impact on structural and functional properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Liu H, Zhao H, Ye L, Fan D, Wang Z. Effects of the combination of phytic acid and vacuum packaging on storage quality of fresh-cut lettuce. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2022. [DOI: 10.3136/fstr.fstr-d-21-00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Huan Liu
- Mountain Grape Resources Development for Innovative Research Team of Jilin Province
| | - Hanyu Zhao
- College of Food Engineering, Jilin Engineering Normal University
| | - Lulu Ye
- College of Food Engineering, Jilin Engineering Normal University
| | - Duoduo Fan
- College of Food Engineering, Jilin Engineering Normal University
| | - Zhenzhen Wang
- College of Food Engineering, Jilin Engineering Normal University
| |
Collapse
|
34
|
Xiong Z, Fu Y, Yao J, Zhang N, He R, Ju X, Wang Z. Removal of anti-nutritional factors of rapeseed protein isolate (RPI) and toxicity assessment of RPI. Food Funct 2022; 13:664-674. [DOI: 10.1039/d1fo03217h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We prepared a detoxified rapeseed protein isolate (RPI) by phytase/ethanol treatment based on alkaline extraction and acidic precipitation.
Collapse
Affiliation(s)
- Zheng Xiong
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yaoyao Fu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jun Yao
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Nan Zhang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Rong He
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xingrong Ju
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhigao Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
35
|
Lautrou M, Narcy A, Dourmad JY, Pomar C, Schmidely P, Létourneau Montminy MP. Dietary Phosphorus and Calcium Utilization in Growing Pigs: Requirements and Improvements. Front Vet Sci 2021; 8:734365. [PMID: 34901241 PMCID: PMC8654138 DOI: 10.3389/fvets.2021.734365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
The sustainability of animal production relies on the judicious use of phosphorus (P). Phosphate, the mined source of agricultural phosphorus supplements, is a non-renewable resource, but phosphorus is essential for animal growth, health, and well-being. P must be provided by efficient and sustainable means that minimize the phosphorus footprint of livestock production by developing precise assessment of the bioavailability of dietary P using robust models. About 60% of the phosphorus in an animal's body occurs in bone at a fixed ratio with calcium (Ca) and the rest is found in muscle. The P and Ca requirements must be estimated together; they cannot be dissociated. While precise assessment of P and Ca requirements is important for animal well-being, it can also help to mitigate the environmental effects of pig farming. These strategies refer to multicriteria approaches of modeling, efficient use of the new generations of phytase, depletion and repletion strategies to prime the animal to be more efficient, and finally combining these strategies into a precision feeding model that provides daily tailored diets for individuals. The industry will need to use strategies such as these to ensure a sustainable plant-animal-soil system and an efficient P cycle.
Collapse
Affiliation(s)
- Marion Lautrou
- Département des sciences animales, Université Laval, Quebec, QC, Canada
- UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
| | - Agnès Narcy
- UMR Biologie des oiseaux et aviculture, INRA, Nouzilly, France
| | | | - Candido Pomar
- Agriculture et Agroalimentaire Canada, Sherbrooke, QC, Canada
| | - Philippe Schmidely
- UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
| | | |
Collapse
|
36
|
Synthesis of environment-friendly and label-free SERS probe for Iron(III) detection in integrated circuit cleaning solution waste. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Lall SP, Kaushik SJ. Nutrition and Metabolism of Minerals in Fish. Animals (Basel) 2021; 11:ani11092711. [PMID: 34573676 PMCID: PMC8466162 DOI: 10.3390/ani11092711] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Our aim is to introduce the mineral nutrition of fish and explain the complexity of determining requirements for these elements, which are absorbed and excreted by the fish into the surrounding water. To date, only the requirements for nine minerals have been investigated. The review is focused on the absorption and the dietary factors that reduce their absorption from feed ingredients of plant and animal origin. Some diseases, such as cataracts, anemia and bone deformity, have been linked to dietary deficiency of minerals. Abstract Aquatic animals have unique physiological mechanisms to absorb and retain minerals from their diets and water. Research and development in the area of mineral nutrition of farmed fish and crustaceans have been relatively slow and major gaps exist in the knowledge of trace element requirements, physiological functions and bioavailability from feed ingredients. Quantitative dietary requirements have been reported for three macroelements (calcium, phosphorus and magnesium) and six trace minerals (zinc, iron, copper, manganese, iodine and selenium) for selected fish species. Mineral deficiency signs in fish include reduced bone mineralization, anorexia, lens cataracts (zinc), skeletal deformities (phosphorus, magnesium, zinc), fin erosion (copper, zinc), nephrocalcinosis (magnesium deficiency, selenium toxicity), thyroid hyperplasia (iodine), muscular dystrophy (selenium) and hypochromic microcytic anemia (iron). An excessive intake of minerals from either diet or gill uptake causes toxicity and therefore a fine balance between mineral deficiency and toxicity is vital for aquatic organisms to maintain their homeostasis, either through increased absorption or excretion. Release of minerals from uneaten or undigested feed and from urinary excretion can cause eutrophication of natural waters, which requires additional consideration in feed formulation. The current knowledge in mineral nutrition of fish is briefly reviewed.
Collapse
Affiliation(s)
- Santosh P. Lall
- National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
- Correspondence: (S.P.L.); (S.J.K.)
| | - Sadasivam J. Kaushik
- Retd. INRA, 64310 St Pée sur Nivelle, France
- Ecoaqua Institute, Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas, Spain
- Correspondence: (S.P.L.); (S.J.K.)
| |
Collapse
|
38
|
Huang L, Yang Y, Niu Z, Wu R, Fan W, Dai Q, He J, Bai C. Catalyst-Free Vitrimer Cross-Linked by Biomass-Derived Compounds with Mechanical Robustness, Reprocessability, and Multishape Memory Effects. Macromol Rapid Commun 2021; 42:e2100432. [PMID: 34524718 DOI: 10.1002/marc.202100432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/27/2021] [Indexed: 12/17/2022]
Abstract
Vitrimerization of thermoset polymers plays an important role in addressing resource recovery and reuse. Vitrimer elastomers with good mechanical properties often require well-designed crosslinking agents or fillers, but this increases processing complexity or reduces vitrimer dynamic properties. In this report, a simple green strategy to build a strong vitrimer elastomer is designed. Commercially available epoxidized natural rubber (ENR) is cross-linked with biomass-derived D-Fructose 1,6-bisphosphoric acid to get a vitrimer elastomer cross-linked by β-hydroxy phosphate ester bonds and has abundant hydrogen bonds. Hydrogen bonds can preferentially break and dissipate energy under external forces, which makes the sample robust. The topological network can be reformed at high temperatures through the dynamic exchange of β-hydroxy phosphate ester bonds, which gives the material malleability and recyclability. In addition, through the strategy of combining reprocessing and welding, multiple shape memory effects can be achieved in one postprocessing step. Considering that a variety of commercially available epoxy polymers are easily available, it is believed that this strategy can be a simple and versatile way to enable commercial epoxy polymers to achieve green crosslinking through biomass crosslink agents, which results in robust and recyclable vitrimers based on β-hydroxy phosphate bonds.
Collapse
Affiliation(s)
- Lingyun Huang
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yinxin Yang
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhen Niu
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ruiyao Wu
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Weifeng Fan
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Quanquan Dai
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jianyun He
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Chenxi Bai
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
39
|
An insight into phytic acid biosynthesis and its reduction strategies to improve mineral bioavailability. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00371-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
40
|
Eco-approach for pharmaceutical removal: Thermochemical waste valorisation, biochar adsorption and electro-assisted regeneration. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Li Z, Zhou M, Cui M, Wang Y, Li H. Improvement of whole wheat dough fermentation for steamed bread making using selected phytate-degrading Wickerhamomyces anomalus P4. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Tous N, Tarradas J, Francesch M, Font-i-Furnols M, Ader P, Torrallardona D. Effects of Exogenous 6-Phytase (EC 3.1.3.26) Supplementation on Performance, Calcium and Phosphorous Digestibility, and Bone Mineralisation and Density in Weaned Piglets. Animals (Basel) 2021; 11:1787. [PMID: 34203822 PMCID: PMC8232799 DOI: 10.3390/ani11061787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 11/16/2022] Open
Abstract
Phosphorus (P) is an essential mineral for growing piglets, which is poorly accessible in vegetable feedstuffs as it is stored as phytates. Thus, phytase supplementation is essential to increase P availability. Two experiments were conducted to evaluate a novel 6-phytase (EC 3.1.3.26) in weaned pigs fed low-P diets. In each experiment, one hundred and twenty piglets were fed a positive control (PC; adequate in Ca and P), a negative control (NC; limiting in Ca and P), or NC supplemented with 125, 250, or 500 FTU/kg of phytase (NC125, NC250, and NC500, respectively). P content was lower in diets of Experiment 1 than diets of Experiment 2. In Experiment 1, piglets offered PC or phytase diets had higher growth and efficiency compared with NC diets. In Experiment 2, similar effects were obtained, but the effects were less significant. In both experiments, P and Ca ATTD and bone density were significantly increased with phytase supplementation. Moreover, PC and NC500 had higher P concentrations and lower alkaline phosphatase activity in plasma than NC. To conclude, supplementation with the new 6-phytase at doses up to 500 FTU/kg enhanced P utilization, growth performance, and bone density in piglets fed P-limiting diets.
Collapse
Affiliation(s)
- Núria Tous
- Animal Nutrition, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre Mas Bové, Ctra. Reus-El Morell km. 3.8, 43120 Constantí, Spain; (N.T.); (J.T.); (M.F.)
| | - Joan Tarradas
- Animal Nutrition, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre Mas Bové, Ctra. Reus-El Morell km. 3.8, 43120 Constantí, Spain; (N.T.); (J.T.); (M.F.)
| | - Maria Francesch
- Animal Nutrition, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre Mas Bové, Ctra. Reus-El Morell km. 3.8, 43120 Constantí, Spain; (N.T.); (J.T.); (M.F.)
| | - Maria Font-i-Furnols
- Product Quality and Technology, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Finca Camps i Armet, 17121 Monells, Spain;
| | - Peter Ader
- BASF SE, Animal Nutrition, Europe. Chemiestrasse 22, 68623 Lampertheim, Germany;
| | - David Torrallardona
- Animal Nutrition, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre Mas Bové, Ctra. Reus-El Morell km. 3.8, 43120 Constantí, Spain; (N.T.); (J.T.); (M.F.)
| |
Collapse
|
43
|
Synthesis, optical and magnetic studies of cerium and europium phytate complexes - new microporous materials. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Kim IS, Hwang CW, Yang WS, Kim CH. Current Perspectives on the Physiological Activities of Fermented Soybean-Derived Cheonggukjang. Int J Mol Sci 2021; 22:5746. [PMID: 34072216 PMCID: PMC8198423 DOI: 10.3390/ijms22115746] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Cheonggukjang (CGJ, fermented soybean paste), a traditional Korean fermented dish, has recently emerged as a functional food that improves blood circulation and intestinal regulation. Considering that excessive consumption of refined salt is associated with increased incidence of gastric cancer, high blood pressure, and stroke in Koreans, consuming CGJ may be desirable, as it can be made without salt, unlike other pastes. Soybeans in CGJ are fermented by Bacillus strains (B. subtilis or B. licheniformis), Lactobacillus spp., Leuconostoc spp., and Enterococcus faecium, which weaken the activity of putrefactive bacteria in the intestines, act as antibacterial agents against pathogens, and facilitate the excretion of harmful substances. Studies on CGJ have either focused on improving product quality or evaluating the bioactive substances contained in CGJ. The fermentation process of CGJ results in the production of enzymes and various physiologically active substances that are not found in raw soybeans, including dietary fiber, phospholipids, isoflavones (e.g., genistein and daidzein), phenolic acids, saponins, trypsin inhibitors, and phytic acids. These components prevent atherosclerosis, oxidative stress-mediated heart disease and inflammation, obesity, diabetes, senile dementia, cancer (e.g., breast and lung), and osteoporosis. They have also been shown to have thrombolytic, blood pressure-lowering, lipid-lowering, antimutagenic, immunostimulatory, anti-allergic, antibacterial, anti-atopic dermatitis, anti-androgenetic alopecia, and anti-asthmatic activities, as well as skin improvement properties. In this review, we examined the physiological activities of CGJ and confirmed its potential as a functional food.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu 41566, Korea;
| | - Cher-Won Hwang
- Global Leadership School, Handong Global University, Pohang 37554, Korea
| | | | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon 16419, Korea
- Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|
45
|
The effect of copper source on the stability and activity of α-tocopherol acetate, butylated hydroxytoulene and phytase. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractThe supplementation of Copper (Cu) is essential for the optimum performance of physiological functions, including growth performance and immune function. Cu is usually formulated into animal premixes in the form of inorganic salts, such as sulphates, or organic minerals. Organic minerals are mineral salts that are either complexed or chelated to organic ligands such as proteins, amino acids, and polysaccharides. Cu is often formulated into premixes alongside other essential components such as vitamins, enzymes and synthetic antioxidants, all of which are susceptible to negative interactions with Cu which can detrimentally effect both their stability and activity. The aim of this study was to determine the effect of five different commercially available Cu sources in relation to their effect on the stability of α-tocopherol acetate and on the activity of Butylated Hydroxytoluene (BHT) and three commercially available phytases in vitro. The results determined that Cu source played a significant role in relation to limiting the interactions between Cu and each of the other components in vitro. There were significant differences (p ≤ 0.05), not only, between the inorganic and organic Cu sources but also between some of the individual organic Cu sources in relation to their effect on α-tocopherol acetate, BHT and phytase.
Collapse
|
46
|
Cardinali F, Osimani A, Milanović V, Garofalo C, Aquilanti L. Innovative Fermented Beverages Made with Red Rice, Barley, and Buckwheat. Foods 2021; 10:613. [PMID: 33805698 PMCID: PMC8000499 DOI: 10.3390/foods10030613] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
The increase in food intolerances, allergies, and food-based lifestyle choices has dramatically increased the consumer demand for healthy foods characterized by pleasant sensory traits. In such a context, innovative cereal-based beverages are characterized by high nutritional value, pleasant palatability, and potential healthy properties. In the present study, a pool of 23 lactic acid bacteria strains was preliminary assayed as monocultures for the fermentation of three ad hoc formulated cereal- (red rice and barley) and pseudocereal (buckwheat) -based substrates. Eight strains with the best performance in terms of acidification rate were selected for the formulation of three multiple strain cultures to be further exploited for the manufacture of laboratory-scale prototypes of fermented beverages. The compositional and microbiological features of the three experimental beverages highlighted their high biological value for further exploitation.
Collapse
Affiliation(s)
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari, ed Ambientali (D3A), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.C.); (V.M.); (C.G.); (L.A.)
| | | | | | | |
Collapse
|
47
|
Wang Q, Wu M, Xu X, Ding C, Luo J, Li J. Direct Current Stimulation for Improved Osteogenesis of MC3T3 Cells Using Mineralized Conductive Polyaniline. ACS Biomater Sci Eng 2021; 7:852-861. [PMID: 33715374 DOI: 10.1021/acsbiomaterials.9b01821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydroxyapatites (HAPs) are usually coated on the surface of an implant to improve the osseointegration with defect bone tissue. Besides, conducting polymers have the advantages of good conductivity, reasonable biocompatibility, and easy of modification, which endow them applicable to electrical stimulation therapy. However, it still remains a great challenge to fabricate hybrid coating combing HAP with conducting polymer on implant surface efficiently. In this work, phytic acid-doped polyaniline (PANI) were successfully synthesized on medical titanium (Ti) sheets. By virtue of the abundant anodic phosphoric groups of phytic acid, HAP nanocrystals were biomineralized on PANI. The PANI-HAP hybrid layer exhibits good cell compatibility with MC3T3 cells. More importantly, HAP nanocrystals and PANI operate synergistically on cell proliferation and osteogenesis through electrical stimulation. Alkaline phosphatase activity and extracellular calcium contents of cells on PANI-HAP display 3-fold and 2.6-fold increases, compared with bare Ti sheets, respectively. The valid integration of mineralization and electrical stimulation in this work renders an efficient strategy for implant coating, which might have potential applications in bone-related defects.
Collapse
Affiliation(s)
- Quanxin Wang
- College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China.,College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, No. 16 South Section 4, Yihuan Road, Chengdu 610041, China
| | - Mingzhen Wu
- College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Xiaoyang Xu
- College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Chunmei Ding
- College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Jianbin Luo
- College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, No. 16 South Section 4, Yihuan Road, Chengdu 610041, China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
48
|
Fang Y, Liu X, Wu X, Tao X, Fei W. Electrospun polyurethane/phytic acid nanofibrous membrane for high efficient removal of heavy metal ions. ENVIRONMENTAL TECHNOLOGY 2021; 42:1053-1060. [PMID: 31401935 DOI: 10.1080/09593330.2019.1652695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Polyurethane (PU) nanofibers possess large specific surface area and excellent mechanical properties which have been used as the matrix for many applications. Phytic acid is the biocompatible and environment-friendly organic acid with excellent chelating ability of heavy metal ions due to it contains 6 phosphate groups. In this study, the PU/phytic acid nanofibrous membrane has been successfully produced by electrospinning which was used for Pb2+ removal. Though phytic acid would improve the hydrophilicity and reduce the mechanical properties to a certain extent, the phytic acid-modified PU nanofibrous membrane still possessed excellent mechanical properties. The PU/phytic acid nanofibrous membrane achieved the highest adsorption capacity (136.52 mg/g) of Pb2+ under the condition of the pH of Pb2+ solution was 6 and the adsorption temperature and time were 20°C and 10 h which was over 6 times higher the unmodified one's (21.06 mg/g). These results demonstrated that the electrospun PU/phytic acid nanofibrous membrane could obtain high adsorption capacity of Pb2+ and it would achieve the potential application in the fields of the removal of heavy metal ions.
Collapse
Affiliation(s)
- Yinchun Fang
- College of Textile and Clothing, Anhui Polytechnic University, Wuhu, China
| | - Xinhua Liu
- College of Textile and Clothing, Anhui Polytechnic University, Wuhu, China
- Technology Public Service Platform for Textile Industry of Anhui Province, Wuhu, China
| | - Xiao Wu
- College of Textile and Clothing, Anhui Polytechnic University, Wuhu, China
| | - Xuchen Tao
- College of Textile and Clothing, Anhui Polytechnic University, Wuhu, China
| | - Wenqing Fei
- College of Textile and Clothing, Anhui Polytechnic University, Wuhu, China
| |
Collapse
|
49
|
Forgione D, Nassar M, Seseogullari-Dirihan R, Thitthaweerat S, Tezvergil-Mutluay A. The effect of phytic acid on enzymatic degradation of dentin. Eur J Oral Sci 2021; 129:e12771. [PMID: 33644893 DOI: 10.1111/eos.12771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 11/29/2022]
Abstract
We evaluated the effect of phytic acid on matrix metalloproteinase (MMP)- or cysteine cathepsin (CC)-mediated dentin degradation. Demineralized dentin beams were divided into five groups (n = 12) and treated with 1%, 2%, or 3% phytic acid or with 37% phosphoric acid. Untreated demineralized beams served as controls. After incubation for 1 or 3 wk, dry mass loss was determined and aliquots of incubation media were analysed for cross-linked telopeptide of type I collagen (ICTP) fragments for MMP-mediated and c-terminal telopeptide of type I collagen (CTX) for cathepsin-k-mediated degradation. The direct effect of phytic acid was evaluated using MMP activity assay. Data were analysed using repeated-measures anova. ICTP releases with 1% and 2% phytic acid treatment were statistically significantly lower than those following phosphoric acid treatment at 3 wk. The CTX release for phytic acid-treated beams at 3 wk was not significantly different from that of untreated control beams, but it was significantly lower than that of phosphoric acid-treated beams. Their MMP activities at 3 wk were not significantly different from those of the controls but they were significantly lower than those seen for phosphoric acid-treated beams. Compared to phosphoric acid, phytic acid treatment resulted in a reduced dentinal host-derived endogenous enzymatic activity and collagen degradation.
Collapse
Affiliation(s)
| | - Mohannad Nassar
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | | | - Arzu Tezvergil-Mutluay
- Institute of Dentistry, University of Turku, Turku, Finland.,Turku University Hospital, Turku, Finland
| |
Collapse
|
50
|
Wang R, Guo S. Phytic acid and its interactions: Contributions to protein functionality, food processing, and safety. Compr Rev Food Sci Food Saf 2021; 20:2081-2105. [DOI: 10.1111/1541-4337.12714] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/15/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Ruican Wang
- Department of Food Science University of Wisconsin‐Madison Madison Wisconsin USA
| | - Shuntang Guo
- Beijing Key Laboratory of Plant Protein and Cereal Processing, College of Food Science & Nutritional Engineering China Agricultural University Beijing China
| |
Collapse
|