1
|
Zhang Y, Xu C, Yu J, Yang J, Yu S, Li N, Yang S, Yang A, Ma L. Distributions and Trends of the Global Burden of DKD Attributable to Lead Exposure: A Systematic Analysis of GBD from 1990 to 2019. Biol Trace Elem Res 2025; 203:48-60. [PMID: 38546807 DOI: 10.1007/s12011-024-04156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/22/2024] [Indexed: 01/04/2025]
Abstract
Long-term exposure to lead is associated with an increased risk of diabetic kidney disease (DKD). However, limited data exist on global trends in DKD burden attributable to lead exposure, especially across diverse regions categorized by socioeconomic level. We aimed to assess the spatiotemporal changes in DKD burden attributable to lead exposure from 1990 to 2019 across 204 countries and regions with varying socio-demographic index (SDI) metrics. This retrospective analysis utilized data from the Global Burden of Disease Study 2019 (GBD2019) database. We estimated the burden of DKD attributable to lead exposure using the age-standardized mortality rate (ASMR) and age-standardized disability-adjusted life year rate (ASDR), accounting for sex, age, nationality, and SDI. The annual percentage change (APC) and average annual percentage change (AAPC) were calculated using the Joinpoint model to evaluate trends in the ASMR and ASDR attributable to lead exposure from 1990 to 2019. Gaussian process regression was used to model the relationship between the SDI and ASMR/ASDR. Globally, the burden of DKD attributable to lead exposure has significantly increased since 1990, especially among elderly men and in regions such as Asia, Central Latin America, North Africa, the Middle East, and low-SDI regions. In 2019, the ASMR and ASDR of DKD attributable to lead exposure were 0.68 (95% CI: 0.40, 0.98) per 100,000 people and 15.02 (95% CI: 8.68, 22.26) per 100,000 people, respectively. From 1990 to 2019, the global ASMR and ASDR attributable to lead-associated DKD changed by 15.45% and -1.78%, respectively. The global AAPCs of the ASMR and ASDR were 0.55 (95% CI: 0.45, 0.65) and -0.01 (95% CI: -0.12, 0.1), respectively. Significant declining trends were observed in the high-income Asia Pacific region, eastern sub-Saharan Africa, North Africa, the Middle East, and other regions with high SDIs. Over this 30-year study period, the global burden of DKD attributable to lead exposure has increased, particularly in regions with low SDI. Lead exposure remains a significant concern in the global burden of diabetic kidney disease.
Collapse
Affiliation(s)
- Yiwen Zhang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Chengxu Xu
- The Second Hospital of Lanzhou City, Lanzhou, 730030, China
| | - Junpu Yu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jingli Yang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Shuxia Yu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Nan Li
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | | | - Aimin Yang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Special Administrative Region (SAR), Hong Kong, China.
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Henna F, Ahmed F, Iqbal R. Re: Vanadium exposure and kidney markers in a pediatric population. Pediatr Nephrol 2024:10.1007/s00467-024-06647-4. [PMID: 39718607 DOI: 10.1007/s00467-024-06647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Affiliation(s)
| | | | - Reda Iqbal
- Dubai Medical College For Girls, Dubai, UAE
| |
Collapse
|
3
|
Huang Z, Shen M, Luo D, Huang X, Shu Z, Lu Y, Quan J, Duan Y, Xiao Y, Xiao S, He M, Zhang Y, Fan G, Wu T, Yuan H, Chen X. Cohort Profile: The Hunan Cohort of residents exposed to heavy metals. Int J Epidemiol 2024; 54:dyae148. [PMID: 39690522 DOI: 10.1093/ije/dyae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024] Open
Affiliation(s)
- Zhijun Huang
- Center for Clinical Pharmacology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Minxue Shen
- Furong Laboratory, Changsha, Hunan, China
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dan Luo
- Furong Laboratory, Changsha, Hunan, China
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Xiaoyan Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihao Shu
- Center for Clinical Pharmacology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yao Lu
- Center for Clinical Pharmacology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
| | - Jingjing Quan
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanying Duan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yi Xiao
- Furong Laboratory, Changsha, Hunan, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuiyuan Xiao
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meian He
- Department of Environmental and Occupational Health, Tongji School of Public Health, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yirui Zhang
- Hunan Prevention and Treatment Center for Occupational Disease, Changsha, Hunan, China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Tangchun Wu
- Department of Environmental and Occupational Health, Tongji School of Public Health, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong Yuan
- Center for Clinical Pharmacology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
| | - Xiang Chen
- Furong Laboratory, Changsha, Hunan, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Rojas-Lima E, Ortega-Romero M, Aztatzi-Aguilar OG, Rubio-Gutiérrez JC, Narváez-Morales J, Esparza-García M, Méndez-Hernández P, Medeiros M, Barbier OC. Vanadium exposure and kidney markers in a pediatric population: a cross-sectional study. Pediatr Nephrol 2024:10.1007/s00467-024-06561-9. [PMID: 39644336 DOI: 10.1007/s00467-024-06561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/06/2024] [Accepted: 10/07/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Anthropogenic vanadium (V) emissions and exposure in the general population have recently increased. Experimental studies have shown that V is a nephrotoxic agent, but little is known about its effects on human kidney health. This work evaluated the association between urinary V concentrations with early kidney damage biomarkers and function in a pediatric population without any disease diagnosed. METHODS A cross-sectional study was carried out and included 914 healthy subjects and determined urinary V concentrations, glomerular filtration rate (eGFR), albumin-creatinine ratio (ACR), and the presence of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) in urine. We evaluated the V effect using linear and logistic regression models adjusted by confounders. RESULTS Subjects found in the second and third tertiles of V showed an increase in urinary log-NGAL levels (βT2 vs. T1 = 0.39; 95% CI 0.14, 0.64, and βT3 vs. T1 = 1.04; 95% CI 0.75, 1.34) and log-KIM-1(βT2 vs. T1 = 0.25; 95% CI 0.04, 0.45 and βT3 vs. T1 = 0.39; 95% CI 0.15, 0.63); in addition, subjects in the third tertile had a positive and significant association with ACR (ORT3 vs. T1 = 1.96; 95% CI 1.29, 2.97) and increased in eGFR (βT3 vs. T1 = 3.98, 95% CI 0.39, 7.58), compared with subjects in the first tertile. CONCLUSIONS Our study reports the effect of V on kidney markers in a healthy pediatric population. It could be related to tubulointerstitial lesions and function abnormalities.
Collapse
Affiliation(s)
- Elodia Rojas-Lima
- Unidad de Investigación en Salud en El Trabajo, Centro Médico Nacional "Siglo XXI", Instituto Mexicano Del Seguro Social (IMSS), Ciudad de Mexico, Mexico
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (Conahcyt), Ciudad de Mexico, Mexico
| | - Manolo Ortega-Romero
- Unidad de Investigación en Salud en El Trabajo, Centro Médico Nacional "Siglo XXI", Instituto Mexicano Del Seguro Social (IMSS), Ciudad de Mexico, Mexico
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (Conahcyt), Ciudad de Mexico, Mexico
| | - Octavio Gamaliel Aztatzi-Aguilar
- Departamento de Toxicología, Centro de Investigacio´n y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - Juan Carlos Rubio-Gutiérrez
- Departamento de Toxicología, Centro de Investigacio´n y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - Juana Narváez-Morales
- Departamento de Toxicología, Centro de Investigacio´n y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - Mariela Esparza-García
- Unidad de Investigación y Diagnóstico en Nefrología y Metabolismo Mineral Óseo, Hospital Infantil de México Federico Gómez, Ciudad de Mexico, Mexico
| | - Pablo Méndez-Hernández
- Secretaría de Salud de Tlaxcala, Tlaxcala, Mexico
- Facultad de Ciencias de la Salud, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Mara Medeiros
- Unidad de Investigación y Diagnóstico en Nefrología y Metabolismo Mineral Óseo, Hospital Infantil de México Federico Gómez, Ciudad de Mexico, Mexico
- Departamento de Farmacología, Facultad de Medicina, UNAM, Ciudad de Mexico, Mexico
| | - Olivier Christophe Barbier
- Unidad de Investigación en Salud en El Trabajo, Centro Médico Nacional "Siglo XXI", Instituto Mexicano Del Seguro Social (IMSS), Ciudad de Mexico, Mexico.
- Departamento de Toxicología, Centro de Investigacio´n y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico.
| |
Collapse
|
5
|
Upadhyay K, Viramgami A, Bagepally BS, Balachandar R. Association between chronic lead exposure and markers of kidney injury: A systematic review and meta-analysis. Toxicol Rep 2024; 13:101837. [PMID: 39717854 PMCID: PMC11664089 DOI: 10.1016/j.toxrep.2024.101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
In view of inconsistent reports on the association between chronic lead (Pb) exposure and renal injury markers (potential site of injury), the present systematic review explored their association by reviewing studies that investigated chronic Pb-exposed and those without obvious Pb exposure. Studies reporting blood Pb levels(BLL) and biomarkers of kidney injury [i.e. N-acetyl-β-D-glucosaminidase (NAG), Micro-Globulin(μG) and others] among chronic Pb-exposed and unexposed individuals were systematically searched from digital databases available until February 26, 2024. Preferred Reporting Items of Systematic Reviews and Meta-Analysis Guidelines were adhered to during the execution. Pooled effect size and heterogeneity were estimated using the random effect model and I2Studies reporting blood Pb levels(BLL) and biomarkers of kidney injury [i.e. N-acetyl-β-D-glucosaminidase (NAG), Micro-Globulin(μG) and others] among chronic Pb-exposed and unexposed individuals were systematically searched from digital databases available until February 26, 2024. Preferred Reporting Items of Systematic Reviews and Meta-Analysis Guidelines were adhered to during the execution. Pooled effect size and heterogeneity were estimated using the random effect model and I2. Pooled quantitative analysis revealed elevated BLL [25.64 (21.59-29.70) µg/dL] Pb-exposed group. The pooled analysis confirmed significantly higher urinary NAG [0.68(0.26-1.10) units], α1μG [3.82(0.96-6.68) mg/g creatinine] β2μG [1.5(0.86-2.14) units and serum creatinine [0.03(0.00-0.05) mg/dL] levels in Pb-exposed group, with high heterogeneity. Current observations indicate the proximal tubular injury as the early and potential site of Pb-induced renal injury. Pb-exposed individuals experience proximal tubular injury (KIM-1, NAG) and dysfunction (β2μG, α1μG, Cystatin-C) prior to obvious clinical renal failure. Present observations should caution the policymakers towards drafting regulations for periodic screening with markers of renal injury and / or dysfunction among those chronically exposed to lead despite the certainty of evidence is very low.
Collapse
Affiliation(s)
- Kuldip Upadhyay
- ICMR – National Institute of Occupational Health, Ahmedabad, India
| | - Ankit Viramgami
- ICMR – National Institute of Occupational Health, Ahmedabad, India
| | | | | |
Collapse
|
6
|
Kim NE, Heo M, Shin H, Do AR, Kim J, Kang HG, Mun S, Yoo HJ, Kim MJ, Kim JW, Kim CH, Hong YS, Cho YM, Jin H, Park K, Kim WJ, Won S. Heavy metal exposure and its effects on APOC3, CFAI, and ZA2G. JOURNAL OF HAZARDOUS MATERIALS 2024; 482:136574. [PMID: 39579699 DOI: 10.1016/j.jhazmat.2024.136574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Despite increasing heavy metal pollution, traditional epidemiology often fails to link exposure to health outcomes. This study used multi-omics to investigate associations between heavy metal exposure and health. Blood and urine samples from 294 participants in heavy metal-exposed and control areas were analyzed, revealing key biomarkers. Meta P analysis revealed consistent trends in apolipoprotein C3 (APOC3) expression, and mediation analysis showed significant effects of APOC3 and zinc-alpha-2-glycoprotein (ZA2G) on metabolites: the mediating effect of APOC3 from blood cadmium to serotonin was 0.023 (P < 0.001) and that to 3-phosphoglyceric acid (3PG) was 0.0125 (P = 0.002). Mendelian randomization confirmed the positive impact of APOC3 and Complement Factor I (CFAI) and the negative effect of ZA2G on metabolites, with apolipoprotein H (APOH) methylation significantly altering APOC3 (β = -0.22, P = 0.017), CFAI (β = 0.176, P = 0.035), and ZA2G (β = 0.139, P = 0.048) protein levels. Liver function variables, including albumin, total protein, calcium, and lactate dehydrogenase, correlated with 3PG and serotonin levels in the exposed areas. Sex-specific analysis showed that men exhibited stronger compensatory mechanisms via CFAI and myo-inositol, while women's greater vulnerability to heavy metal exposure highlighted the need for targeted interventions. These findings suggest APOH methylation affects APOC3, CFAI, and ZA2G levels, elevating 3PG, inosine monophosphate, and serotonin levels and harming liver function via lipolysis, supporting the use of these markers in health monitoring, therapies, and policies to limit heavy metal risks.
Collapse
Affiliation(s)
- Nam-Eun Kim
- Institute of Health and Environment, Seoul National University, Seoul 08826, South Korea
| | - Min Heo
- Interdisciplinary Program in Bioinformatics, Seoul National University, 08826 Seoul, South Korea
| | - Hyeongyu Shin
- Interdisciplinary Program in Bioinformatics, Seoul National University, 08826 Seoul, South Korea
| | - Ah Ra Do
- RexSoft Corp, Seoul 08826, South Korea
| | - Jeeyoung Kim
- Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea
| | - Hee-Gyoo Kang
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam 13135, South Korea
| | - Sora Mun
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam 13135, South Korea
| | - Hyun Ju Yoo
- Biomedical Research Center, Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05535, South Korea
| | - Mi Jeong Kim
- Biomedical Research Center, Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05535, South Korea
| | - Jung-Woong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06911, South Korea
| | - Chul-Hong Kim
- Department of Preventive Medicine, College of Medicine, Dong-A University, Busan 49315, South Korea
| | - Young-Seoub Hong
- Busan Environmental Health Center, Dong-A University, Busan 49315, South Korea; Environmental Health Center, Seokyeong University, Seoul 02713, South Korea
| | - Yong Min Cho
- Department of Nano Chemical and Biological Engineering, Seokyeong University, Seoul 02713, South Korea
| | - Heejin Jin
- Institute of Health and Environment, Seoul National University, Seoul 08826, South Korea
| | - Kyungtaek Park
- Institute of Health and Environment, Seoul National University, Seoul 08826, South Korea
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea.
| | - Sungho Won
- Institute of Health and Environment, Seoul National University, Seoul 08826, South Korea; Interdisciplinary Program in Bioinformatics, Seoul National University, 08826 Seoul, South Korea; RexSoft Corp, Seoul 08826, South Korea; Department of Public Health Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
7
|
Kumaresan M, Vijayan A, Ramkumar M, Philip NE. Unraveling the enigma: chronic kidney disease of unknown etiology and its causative factors with a specific focus on dissolved organic compounds in groundwater-reviews and future prospects. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:510. [PMID: 39527132 DOI: 10.1007/s10653-024-02287-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Chronic kidney disease is globally recognized as a highly impactful non-communicable disease. The inability of early identification contributes to its high mortality rate and financial burden on affected individuals. Chronic kidney disease of uncertain etiology (CKDu) constitutes a significant global public health concern. This condition does not arise from traditional risk factors such as diabetes, hypertension, or glomerulonephritis. More than 150 articles were analysed to understand risk factors of CKDu. This study aimed to investigate the potential association between dissolved organic compounds, such as Polycyclic Aromatic Hydrocarbons and Humic Acid, and the incidence of CKDu. Through a comprehensive literature review, we identified CKDu clusters worldwide, including notable nephropathies, and explored their potential links with organic compounds. Our analysis revealed that organic compounds can leach from sediments and low-rank lignite deposits into groundwater, subsequently contaminating water supplies and food. These compounds have been implicated in the development of diabetes and increased heavy metal mobility, both of which are risk factors for kidney disease. Our findings suggest that exposure to organic compounds may contribute to the etiology of CKDu, underscoring the need for regular monitoring and establishment of baseline and threshold values in water and soil. We also emphasize the importance of analyzing organic compounds in groundwater in CKDu hotspots and establishing distinct registries for CKD and CKDu implementation.
Collapse
Affiliation(s)
- Madhumitha Kumaresan
- Department of Geology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India
| | - Anjali Vijayan
- Department of Geology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India.
| | - Mu Ramkumar
- Department of Geology, Periyar University, Salem, 636011, India
| | - Neena Elezebeth Philip
- Department of Epidemiology and Public Health, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India
| |
Collapse
|
8
|
Ghelichi-Ghojogh M, Fararouei M, Seif M, Pakfetrat M. Environmental factors and chronic kidney disease: a case-control study. Sci Rep 2024; 14:26511. [PMID: 39489732 PMCID: PMC11532473 DOI: 10.1038/s41598-024-72685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/10/2024] [Indexed: 11/05/2024] Open
Abstract
Chronic kidney disease (CKD) is a non-communicable disease that includes a range of different physiological disorders causing abnormal renal function and progressive decline in the glomerular filtration rate (GFR). This study aimed to investigate the associations of several Environmental factors with CKD in the Iranian population. This is the second phase of a hospital-based case-control study, which was conducted on 700 participants (350 CKD cases and 350 controls, age and gender frequency matched). Multiple logistic regression was applied to measure the associations between the selected factors and CKD. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. All p-values were two-sided and the results were considered statistically significant at p < 0.05. The results suggested that environmental factors including proximity of residence to mines (OR yes/no=3.98, 95%CI: 2.20-7.21, p < 0.001), proximity of residence to mobile antenna (OR yes/no=2.20, 95%CI: 1.24-3.89, p = 0.006), and exposure to chemicals (OR chemical/no=4.40, 95%CI: 2.27-8.53, p < 0.001), were significantly associated with a higher risk of CKD. The present study covered a large number of factors in association with CKD and highlighted the importance of some environmental factors in development of CKD. One of the main causes of heat in the work environment being a risk factor is dehydration caused by high heat. In order to reduce damage to the kidneys in jobs that deal with high heat, the following tips are recommended: drinking fluids, reducing working hours and shifts, proper ventilation in the workplace, using suitable clothes and heat protection.
Collapse
Affiliation(s)
- Mousa Ghelichi-Ghojogh
- Neonatal and Children's Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Fararouei
- HIV/AIDS Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz University of Medical Sciences, P.O. Box: 71645-111, Shiraz, Iran.
| | - Mozhgan Seif
- Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Pakfetrat
- Shiraz Nephro-Urology Research Center, Department of Internal Medicine, Emergency Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Howard JA, David L, Lux F, Tillement O. Low-level, chronic ingestion of lead and cadmium: The unspoken danger for at-risk populations. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135361. [PMID: 39116748 DOI: 10.1016/j.jhazmat.2024.135361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
The long-term effects of low-level, chronic exposure to lead and cadmium through ingestion are often overlooked, despite the urgency surrounding the clinical onset and worsening of certain pathologies caused by these metals. This work reviews current legislation, global ingestion levels, and blood levels in the general population to emphasize the need for reactivity towards this exposure, especially in at-risk populations, including patients with early-stage renal and chronic kidney disease. Global data indicates persistent chronic ingestion of lead and cadmium, with no decreasing trend in recent years, and a daily consumption of tens of micrograms worldwide. Moreover, the average blood lead and cadmium levels in the general population are concerning in many countries with some significantly exceeding healthy limits, particularly for children. Technologies developed to cleanse soil and prevent heavy metal contamination in food are not yet applicable on a global scale and remain financially inaccessible for many communities. Addressing this chronic ingestion at the human level may prove more beneficial in delaying the onset of associated clinical pathologies or preventing them all together.
Collapse
Affiliation(s)
- Jordyn Ann Howard
- MexBrain, 13 Avenue Albert Einstein, 69100 Villeurbanne, France; Institute of Light and Matter, UMR 5306, University of Lyon 1-CNRS, University of Lyon 1, Villeurbanne Cedex, France
| | - Laurent David
- Universite Claude Bernard Lyon 1, INSA de Lyon, Universite Jean Monet, CNRS, UMR 5223 Ingénierie des Matériaux Polymères (IMP), 15 Bd A. Latarjet, F-69622 Villeurbanne Cedex, France
| | - Francois Lux
- Institute of Light and Matter, UMR 5306, University of Lyon 1-CNRS, University of Lyon 1, Villeurbanne Cedex, France; Institut Universitaire de France (IUF), France.
| | - Olivier Tillement
- Institute of Light and Matter, UMR 5306, University of Lyon 1-CNRS, University of Lyon 1, Villeurbanne Cedex, France
| |
Collapse
|
10
|
Liang KH, Colombijn JMT, Verhaar MC, Ghannoum M, Timmermans EJ, Vernooij RWM. The general external exposome and the development or progression of chronic kidney disease: A systematic review and meta-analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124509. [PMID: 38968981 DOI: 10.1016/j.envpol.2024.124509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
The impact of environmental risk factors on chronic kidney disease (CKD) remains unclear. This systematic review aims to provide an overview of the literature on the association between the general external exposome and CKD development or progression. We searched MEDLINE and EMBASE for case-control or cohort studies, that investigated the association of the general external exposome with a change in eGFR or albuminuria, diagnosis or progression of CKD, or CKD-related mortality. The risk of bias of included studies was assessed using the Newcastle-Ottawa Scale. Summary effect estimates were calculated using random-effects meta-analyses. Most of the 66 included studies focused on air pollution (n = 33), e.g. particulate matter (PM) and nitric oxides (NOx), and heavy metals (n = 21) e.g. lead and cadmium. Few studies investigated chemicals (n = 7) or built environmental factors (n = 5). No articles on other environment factors such as noise, food supply, or urbanization were found. PM2.5 exposure was associated with an increased CKD and end-stage kidney disease incidence, but not with CKD-related mortality. There was mixed evidence regarding the association of NO2 and PM10 on CKD incidence. Exposure to heavy metals might be associated with an increased risk of adverse kidney outcomes, however, evidence was inconsistent. Studies on effects of chemicals or built environment on kidney outcomes were inconclusive. In conclusion, prolonged exposure to PM2.5 is associated with an increased risk of CKD incidence and progression to kidney failure. Current studies predominantly investigate the exposure to air pollution and heavy metals, whereas chemicals and the built environment remains understudied. Substantial heterogeneity and mixed evidence were found across studies. Therefore, long-term high-quality studies are needed to elucidate the impact of exposure to chemicals or other (built) environmental factors and CKD.
Collapse
Affiliation(s)
- Kate H Liang
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Julia M T Colombijn
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marc Ghannoum
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands; National Poison Information Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Erik J Timmermans
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Robin W M Vernooij
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
11
|
Kort S, Wickliffe J, Shankar A, Covert HH, Lichtveld M, Zijlmans W. Association between Liver and Kidney Function and Birth Outcomes in Pregnant Surinamese Women Exposed to Mercury and Lead in the Caribbean Consortium for Research in Environmental and Occupational Health (CCREOH) Environmental Epidemiologic Cohort Study. J Xenobiot 2024; 14:1051-1063. [PMID: 39189174 PMCID: PMC11348017 DOI: 10.3390/jox14030059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Exposure to mercury (Hg) and lead (Pb), in combination with liver and kidney impairment, may result in adverse birth outcomes. From 408 women in the age range of 16 to 46 years, living in rural and urban areas in the interior of Suriname, we looked at the association between adverse birth outcomes and exposure to Hg and Pb in combination with liver and kidney function. This group of women represented a subcohort of pregnant women who participated in the Caribbean Consortium for Research in Environmental and Occupational Health (CCREOH)-Meki Tamara study. Liver function was assessed by measuring aspartate amino transferase (AST), alanine amino transferase (ALT), and gamma-glutamyl transferase (GGT). Kidney function was assessed by measuring creatinine, urea, and cystatin C. We defined preterm births as birth before 37 weeks of gestation, low birthweight as birthweight < 2500 g, and low Apgar score as a score < 7 at 5 min, and these were used as indicators for adverse birth outcomes. Small size for gestational age was defined as gestational age < -2SD weight for GA. We found significant statistical associations between biomarkers for liver and kidney functions and adverse birth outcomes Apgar score and gestational age. No significant association was found between heavy metals Hg and lead and adverse birth outcomes.
Collapse
Affiliation(s)
- Sheila Kort
- Faculty of Medical Sciences, Anton de Kom University of Suriname, P.O. Box 9212 Paramaribo, Suriname;
| | - Jeffrey Wickliffe
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Arti Shankar
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Hannah H. Covert
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (H.H.C.); (M.L.)
| | - Maureen Lichtveld
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (H.H.C.); (M.L.)
| | - Wilco Zijlmans
- Faculty of Medical Sciences, Anton de Kom University of Suriname, P.O. Box 9212 Paramaribo, Suriname;
| |
Collapse
|
12
|
An Q, Wang Q, Liu R, Zhang J, Li S, Shen W, Zhou H, Liang Y, Li Y, Mu L, Lei L. Analysis of relationship between mixed heavy metal exposure and early renal damage based on a weighted quantile sum regression and Bayesian kernel machine regression model. J Trace Elem Med Biol 2024; 84:127438. [PMID: 38520795 DOI: 10.1016/j.jtemb.2024.127438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Occupation, environmental heavy metal exposure, and renal function impairment are closely related. The relationship between mixed metal exposure and chronic renal injury is inadequately described, and the interaction between each metal is poorly explored. OBJECTIVE This cross-sectional study assessed mixed heavy metal exposure in the general population and their relationship with early renal impairment, as well as possible interactions between metals. METHODS The study was conducted in two communities in Taiyuan City in northern China. Multiple linear regression, weighted quantile sum (WQS) and bayesian kernel machine regression (BKMR) regression were used to explore the relationship of mixed heavy metal exposure with indicators of early kidney injury (N-acetyl-β-D- glucosidase (UNAG), urinary albumin (UALB)). Meanwhile, BKMR was used to explore the possible interactions between mixed heavy metal and indicators of early kidney injury. RESULTS Based on the WQS regression results, we observed adjusted WQS coefficient β (β-WQS) of 0.711 (95% CI: 0.543, 0.879). Notably, this change was primarily driven by As (35.6%) and Cd (22.5%). In the UALB model, the adjusted β-WQS was 0.657 (95% CI: 0.567, 0.747), with Ni (30.5%), Mn (22.1%), Cd (21.2%), and As (18.6%) exhibiting higher weights in the overall effect. The BKMR results showed a negative interaction between As and other metals in the UNAG and UALB models, a positive interaction between Mn and Ni and other metals. No significant pairwise interaction was observed in the association of metals with indicators of early kidney injury. CONCLUSION Through multiple linear regression, WQS regression, and BKMR analyses, we found that exposure to mixed heavy metals such as Cd, Cr, Pb, Mn, As, Co and Ni was positively correlated with UNAG and UALB. Moreover, there are complex interactions between two or more heavy metals in more than one direction.
Collapse
Affiliation(s)
- Qi An
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan 030001, China
| | - Qingyao Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan 030001, China
| | - Rujie Liu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jiachen Zhang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Shuangjing Li
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Weitong Shen
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Han Zhou
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Yufen Liang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Yang Li
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan 030001, China
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Lijian Lei
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan 030001, China.
| |
Collapse
|
13
|
Milanković V, Tasić T, Leskovac A, Petrović S, Mitić M, Lazarević-Pašti T, Novković M, Potkonjak N. Metals on the Menu-Analyzing the Presence, Importance, and Consequences. Foods 2024; 13:1890. [PMID: 38928831 PMCID: PMC11203375 DOI: 10.3390/foods13121890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Metals are integral components of the natural environment, and their presence in the food supply is inevitable and complex. While essential metals such as sodium, potassium, magnesium, calcium, iron, zinc, and copper are crucial for various physiological functions and must be consumed through the diet, others, like lead, mercury, and cadmium, are toxic even at low concentrations and pose serious health risks. This study comprehensively analyzes the presence, importance, and consequences of metals in the food chain. We explore the pathways through which metals enter the food supply, their distribution across different food types, and the associated health implications. By examining current regulatory standards for maximum allowable levels of various metals, we highlight the importance of ensuring food safety and protecting public health. Furthermore, this research underscores the need for continuous monitoring and management of metal content in food, especially as global agricultural and food production practices evolve. Our findings aim to inform dietary recommendations, food fortification strategies, and regulatory policies, ultimately contributing to safer and more nutritionally balanced diets.
Collapse
Affiliation(s)
- Vedran Milanković
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Tamara Tasić
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Andreja Leskovac
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Sandra Petrović
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Miloš Mitić
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Tamara Lazarević-Pašti
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Mirjana Novković
- Group for Muscle Cellular and Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia;
| | - Nebojša Potkonjak
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| |
Collapse
|
14
|
Shi X, Wang X, Zhang J, Dang Y, Ouyang C, Pan J, Yang A, Hu X. Associations of mixed metal exposure with chronic kidney disease from NHANES 2011-2018. Sci Rep 2024; 14:13062. [PMID: 38844557 PMCID: PMC11156859 DOI: 10.1038/s41598-024-63858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Metals have been proved to be one of risk factors for chronic kidney disease (CKD) and diabetes, but the effect of mixed metal co-exposure and potential interaction between metals are still unclear. We assessed the urine and whole blood levels of cadmium (Cd), manganese (Mn), lead (Pb), mercury (Hg), and renal function in 3080 adults from National Health and Nutrition Survey (NHANES) (2011-2018) to explore the effect of mixed metal exposure on CKD especially in people with type 2 diabetes mellitus (T2DM). Weighted quantile sum regression model and Bayesian Kernel Machine Regression model were used to evaluate the overall exposure impact of metal mixture and potential interaction between metals. The results showed that the exposure to mixed metals was significantly associated with an increased risk of CKD in blood glucose stratification, with the risk of CKD being 1.58 (1.26,1.99) times in urine and 1.67 (1.19,2.34) times in whole blood higher in individuals exposed to high concentrations of the metal mixture compared to those exposed to low concentrations. The effect of urine metal mixture was elevated magnitude in stratified analysis. There were interactions between urine Pb and Cd, Pb and Mn, Pb and Hg, Cd and Mn, Cd and Hg, and blood Pb and Hg, Mn and Cd, Mn and Pb, Mn and Hg on the risk of CKD in patients with T2DM and no significant interaction between metals was observed in non-diabetics. In summary, mixed metal exposure increased the risk of CKD in patients with T2DM, and there were complex interactions between metals. More in-depth studies are needed to explore the mechanism and demonstrate the causal relationship.
Collapse
MESH Headings
- Humans
- Renal Insufficiency, Chronic/chemically induced
- Renal Insufficiency, Chronic/blood
- Renal Insufficiency, Chronic/epidemiology
- Renal Insufficiency, Chronic/urine
- Female
- Male
- Middle Aged
- Nutrition Surveys
- Adult
- Environmental Exposure/adverse effects
- Diabetes Mellitus, Type 2/epidemiology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Cadmium/blood
- Cadmium/urine
- Cadmium/adverse effects
- Cadmium/toxicity
- Risk Factors
- Lead/blood
- Lead/urine
- Lead/toxicity
- Metals, Heavy/blood
- Metals, Heavy/urine
- Metals, Heavy/adverse effects
- Metals, Heavy/toxicity
- Aged
- Metals/urine
- Metals/blood
- Metals/adverse effects
- Manganese/urine
- Manganese/blood
- Manganese/adverse effects
- Bayes Theorem
Collapse
Affiliation(s)
- Xiaoru Shi
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, No.199, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu Province, China
| | - Xiao Wang
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, No.199, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu Province, China
| | - Jia Zhang
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, No.199, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu Province, China
| | - Ying Dang
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, No.199, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu Province, China
| | - Changping Ouyang
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, No.199, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu Province, China
| | - Jinhua Pan
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, No.199, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu Province, China
| | - Aimin Yang
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Xiaobin Hu
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, No.199, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
15
|
Ramos-Guivar JA, Rueda-Vellasmin R, Manrique-Castillo EV, Mendoza-Villa F, Checca-Huaman NR, Passamani EC. Synthesis and Characterization of Maghemite Nanoparticles Functionalized with Poly(Sodium 4-Styrene Sulfonate) Saloplastic and Its Acute Ecotoxicological Impact on the Cladoceran Daphnia magna. Polymers (Basel) 2024; 16:1581. [PMID: 38891527 PMCID: PMC11174764 DOI: 10.3390/polym16111581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Using a modified co-precipitation method, 11(2) nm γ-Fe2O3 nanoparticles functionalized with PSSNa [Poly(sodium 4-styrenesulfonate)] saloplastic polymer were successfully synthesized, and their structural, vibrational, electronic, thermal, colloidal, hyperfine, and magnetic properties were systematically studied using various analytic techniques. The results showed that the functionalized γ-Fe2O3/PSSNa nanohybrid has physicochemical properties that allow it to be applied in the magnetic remediation process of water. Before being applied as a nanoadsorbent in real water treatment, a short-term acute assay was developed and standardized using a Daphnia magna biomarker. The ecotoxicological tests indicated that the different concentrations of the functionalized nanohybrid may affect the mortality of the Daphnia magna population during the first 24 h of exposure. A lethal concentration of 533(5) mg L-1 was found. At high concentrations, morphological changes were also seen in the body, heart, and antenna. Therefore, these results suggested the presence of alterations in normal growth and swimming skills. The main changes observed in the D. magna features were basically caused by the PSSNa polymer due to its highly stable colloidal properties (zeta potential > -30 mV) that permit a direct and constant interaction with the Daphnia magna neonates.
Collapse
Affiliation(s)
- Juan A. Ramos-Guivar
- Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Peru; (J.A.R.-G.); (R.R.-V.); (F.M.-V.)
| | - Renzo Rueda-Vellasmin
- Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Peru; (J.A.R.-G.); (R.R.-V.); (F.M.-V.)
- Departamento de Física, Universidade Federal do Espírito Santo, Vitória 29075-910, Brazil;
| | - Erich V. Manrique-Castillo
- Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Peru; (J.A.R.-G.); (R.R.-V.); (F.M.-V.)
- Departamento de Física, Universidade Federal do Espírito Santo, Vitória 29075-910, Brazil;
| | - F. Mendoza-Villa
- Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Peru; (J.A.R.-G.); (R.R.-V.); (F.M.-V.)
| | - Noemi-Raquel Checca-Huaman
- Centro Brasileiro de Pesquisas Físicas (CBPF), R. Xavier Sigaud, 150, Urca, Rio de Janeiro 22290-180, Brazil;
| | - Edson C. Passamani
- Departamento de Física, Universidade Federal do Espírito Santo, Vitória 29075-910, Brazil;
| |
Collapse
|
16
|
Zangiabadian M, Jolfayi AG, Nejadghaderi SA, Amirkhosravi L, Sanjari M. The association between heavy metal exposure and obesity: A systematic review and meta-analysis. J Diabetes Metab Disord 2024; 23:11-26. [PMID: 38932800 PMCID: PMC11196503 DOI: 10.1007/s40200-023-01307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/05/2023] [Indexed: 06/28/2024]
Abstract
Background Obesity and metabolic syndrome are global health concerns associated with development of different types of diseases and serious health threats in the long term. Their metabolic imbalance can be attributable to inherited and environmental factors. As a considerable environmental agent, heavy metals exposure can predispose individuals to diseases like obesity. This systematic review and meta-analysis aimed to evaluate the association between heavy metals exposure and the risk of obesity. Methods PubMed/MEDLINE, EMBASE and Web of Science were systematically searched until December 17, 2022. Only observational studies that evaluated heavy metals exposure and obesity were included. Studies were excluded if they assessed maternal or prenatal exposure, the mixture of heavy metals and other chemicals, reported the association with overweight or other diseases, and undesirable study designs. The Joanna Briggs Institute checklist was used for quality assessment. The pooled adjusted odds ratio (aOR) and the pooled standardized mean difference (SMD) with their 95% confidence intervals (CIs) were calculated, respectively. The publication bias was evaluated using Egger's and Begg's tests. Results Twenty studies (n = 127755), four case-control and sixteen analytical cross-sectional studies, were included. Lead exposure was significantly associated with a lower risk of obesity (aOR: 0.705, 95% CI: 0.498-0.997), while mercury (aOR: 1.458, 95% CI: 1.048-2.031) and barium (aOR: 1.439, 95% CI: 1.142-1.813) exposure increased the risk of obesity. No significant publication bias was found and the studies had a low risk of bias. Conclusion Overall, lead exposure reduced obesity risk, while mercury and barium exposure raised it. Further large-scale observational studies are recommended to determine the roles of heavy metals in obesity.Study registration ID: CRD42023394865. Supplementary information The online version contains supplementary material available at 10.1007/s40200-023-01307-0.
Collapse
Affiliation(s)
- Moein Zangiabadian
- Endocrinology and Metabolism Re-Search Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Seyed Aria Nejadghaderi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ladan Amirkhosravi
- Endocrinology and Metabolism Re-Search Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojgan Sanjari
- Endocrinology and Metabolism Re-Search Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
17
|
Drikvandi M, Jorfi S, Cheraghian B, Ahmadi M. Relationship between heavy metal concentrations and Chronic kidney disease in population of Hoveyzeh cohort study: A cross-sectional study in Iran. J Trace Elem Med Biol 2024; 83:127412. [PMID: 38394967 DOI: 10.1016/j.jtemb.2024.127412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a multifactorial disease whose prevalence is increasing worldwide. CKD affects 700 million to 1 billion people worldwide, with a prevalence of 9.1% to 13.4%. In Iran, the reported prevalence of CKD is 15.14%, even higher than the global prevalence. Some studies introduced heavy metals as possible risk factors of CKD. We conducted the first study in Iran to examine the relationship between 10 selected urinary heavy metals and CKD in the Hovayzeh cohort study population. METHODS In this cross-sectional study, urine samples were collected from two groups of ca ses (suffering from CKD) and controls (without CKD) with equal size (47 people each). Analysis of the 10 sellected heavy metals in the samples was conducted using inductively coupled plasma emission spectroscopy. Basic Information was obtained from the Howayizeh Cohort Study Center. The data was analyzed using SPSS-26 and Excel-2016 software. RESULTS There were no significant differences between urinary heavy metal concentrations of case and control groups (P < 0.05). While, the concentration of As, Cr, Cu, Mn, and Ni exceeded the reference limits of Germany, Canada, England, and Belgium. Se and Cd also surpassed the reference limits of England. After adjusting for confounding variables for each μg/l increase in urinary Cd, Ni, Pb, and Se the OR of CKD increased by 20.2%, 4.8%, 3.1%, and 2.6%, respectively. Although, these relationships were not statistically significant. In addition, two groups of heavy metals had a positive and significant correlation: (1) Se, Zn, As, Cu, and Cr; (2) Pb, Cd, and As; and (3) Cd and Ni. CONCLUSION we found no significant relationship between urinary heavy metal and CKD. However, there was significant positive correlation in some of urinary heavy metals may indicate their shared resources. Furthermore, the concentration of most heavy metals in the urine of the participants was higher than the reference limits of these metals in the urine of healthy people from other countries. Thus, the elevated levels of these metals could still pose a risk to human health. Therefore, it is necessary to conduct prospective studies with a larger sample size in this area.
Collapse
Affiliation(s)
- Mehrsa Drikvandi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sahand Jorfi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Cheraghian
- Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Ahmadi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
18
|
Chen X, Yan X, Tang X, Wang Y, Zhang X, Cao X, Ran X, Ma G, Hu T, Qureshi A, Luo P, Shen L. Study on the mechanism of arsenic-induced renal injury based on SWATH proteomics technology. J Trace Elem Med Biol 2024; 83:127390. [PMID: 38266420 DOI: 10.1016/j.jtemb.2024.127390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Arsenic (As) poisoning is a worldwide endemic disease affecting thousands of people. As is excreted mainly through the renal system, and arsenic has toxic effects on the kidneys, but the mechanism has not been elucidated. In this study, the molecular basis of arsenic's nephrotoxicity was studied by using a high-throughput proteomics technique. METHODS Eight SD (Sprague-Dawley) rats, half male and half female, were fed an As diet containing 50 mg/kg NaAsO2. Age- and sex-matched rats fed with regular chow were used as controls. At the end of the experiment (90 days), kidney tissue samples were collected and assessed for pathological changes using hematoxylin-eosin staining. Proteomic methods were used to identify alterations in protein expression levels in kidney tissues, and bioinformatic analyses of differentially expressed proteins between arsenic-treated and control groups were performed. The expression of some representative proteins was validated by Western blot analysis. RESULTS NaAsO2 could induce renal injury. Compared with the control group, 112 proteins were up-regulated, and 46 proteins were down-regulated in the arsenic-treated group. These proteins were associated with the electron transport chain, oxidative phosphorylation, mitochondrial membrane, apoptosis, and proximal tubules, suggesting that the mechanisms associated with them were related to arsenic-induced kidney injury and nephrotoxicity. The expressions of Atp6v1f, Cycs and Ndufs1 were verified, consistent with the results of omics. CONCLUSION These results provide important evidence for arsenic-induced kidney injury and provide new insights into the molecular mechanism of arsenic-induced kidney injury.
Collapse
Affiliation(s)
- Xiaolu Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xi Yan
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yi Wang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xinglai Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoqian Ran
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Guanwei Ma
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Ting Hu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Ayesha Qureshi
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Peng Luo
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China.
| | - Liming Shen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
19
|
Akinleye A, Oremade O, Xu X. Exposure to low levels of heavy metals and chronic kidney disease in the US population: A cross sectional study. PLoS One 2024; 19:e0288190. [PMID: 38625896 PMCID: PMC11020388 DOI: 10.1371/journal.pone.0288190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 02/10/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND Exposure to heavy metals (cadmium, mercury, and lead) has been linked with adverse health outcomes, especially their nephrotoxic effects at high levels of exposure. We conducted a replication study to examine the association of low-level heavy metal exposure and chronic kidney disease (CKD) using a larger NHANES data set compared to previous studies. METHODS The large cross-sectional study comprised 5,175 CKD cases out of 55677 participants aged 20-85 years from the 1999-2020 National Health and Nutrition Examination Survey [NHANES]. Logistic regression analysis was applied to estimate the associations between CKD and heavy metals [Cd, Pb, Hg] measured as categorical variables after adjusting with age, race, gender, socioeconomic status, hypertension, diabetes mellitus and blood cotinine level as smoking status. RESULTS Compared to the lowest quartile of blood Cd, exposures to the 2nd, 3rd and 4th quartiles of blood Cd were statistically significantly associated with higher odds of CKD after adjustment for blood Pb and Hg, with OR = 1.79, [95% CI; 1.55-2.07, p<0.0001], OR = 2.17, [95% CI; 1.88-2.51, p<0.0001] and OR = 1.52, [95% CI; 1.30-1.76, p<0.0001] respectively. The 2nd, 3rd and 4th quartiles of blood Cd remained statistically significantly associated with higher odds of CKD after adjustment for blood cotinine level, with OR = 2.06, [95% CI; 1.80-2.36, p<0.0001], OR = 3.18, [95% CI; 2.79-3.63, p<0.0001] and OR = 5.54, [95% CI; 4.82-6.37, p<0.0001] respectively. Exposure to blood Pb was statistically significantly associated with higher odds of CKD in the 2nd, 3rd and 4th quartile groups, after adjustment for all co-variates (ag, gender, race, socio-economic status, hypertension, diabetes mellitus, blood cadmium, mercury, and cotinine levels) in all the four models. Blood Hg level was statistically significantly associated with lower odds of CKD in the 2nd quartile group in model 2, 3rd quartile group in model 1, 2 and 3, and the 4th quartile group in all the four models. CONCLUSIONS Our findings showed that low blood levels of Cd and Pb were associated with higher odds of CKD while low blood levels of Hg were associated with lower odds of CKD in the US adult population. However, temporal association cannot be determined as it is a cross sectional study.
Collapse
Affiliation(s)
- Akintayo Akinleye
- Department of Internal Medicine, Yale school of Medicine, Yale-Waterbury Internal Medicine Program, Waterbury, Connecticut, United States of America
| | - Olayinka Oremade
- Department of Patient Safety and Care Improvement, Griffin Hospital, Derby, Connecticut, United States of America
| | - Xiaohui Xu
- Department of Epidemiology and Biostatistics, Texas A&M University School of Public Health, College Station, Texas, United States of America
| |
Collapse
|
20
|
Dang P, Tang M, Fan H, Hao J. Chronic lead exposure and burden of cardiovascular disease during 1990-2019: a systematic analysis of the global burden of disease study. Front Cardiovasc Med 2024; 11:1367681. [PMID: 38655496 PMCID: PMC11035890 DOI: 10.3389/fcvm.2024.1367681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Background Cardiovascular diseases (CVD) are the leading causes of death and disability worldwide. Lead exposure is an important risk factor for CVD. In our study, we aimed to estimate spatial and temporal trends in the burden of cardiovascular disease associated with chronic lead exposure. Methods The data collected for our study were obtained from Global Burden of Disease (GBD) study 2019 and analyzed by age, sex, cause, and location. To assess the temporal trends in burden of CVD attributable to chronic lead exposure over 30 years, we used Joinpoint regression analysis. Results In 2019, the number of lead exposure-attributable CVD deaths and disability-adjusted life-years (DALYs) were 0.85 and 17.73 million, 1.7 and 1.4 times more than those observed in 1990, respectively. However, the corresponding age-standardized rates (ASR) of death and DALY gradually decreased from 1990 to 2019, especially from 2013 to 2019. Over the last 30 years, among 21 GBD regions and 204 countries and territories, the High-income Asia Pacific and the Republic of Korea experienced the largest reductions in age-standardized DALY and death rates, while Central Asia and Afghanistan experienced the largest increases. Males and the elderly population suffered higher death rates and DALY burdens than females and the young population. Furthermore, we observed that higher socio-demographic index (SDI) regions demonstrated lower ASR of death and DALY rates. In 2019, the low and low-middle SDI regions, especially South Asia, exhibited the highest burden of CVD attributable to lead exposure. Conclusion Our study provides a thorough understanding of the burden of CVD attributable to chronic lead exposure. The findings confirm the significance of implementing lead mitigation strategies and increasing investment in CVD prevention and treatment. These measures are crucial in reducing the burden of CVD and promoting public health on a global scale.
Collapse
Affiliation(s)
- Peizhu Dang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| | - Manyun Tang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| | - Heze Fan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| | - Junjun Hao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| |
Collapse
|
21
|
Satarug S. Is Chronic Kidney Disease Due to Cadmium Exposure Inevitable and Can It Be Reversed? Biomedicines 2024; 12:718. [PMID: 38672074 PMCID: PMC11048639 DOI: 10.3390/biomedicines12040718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Cadmium (Cd) is a metal with no nutritional value or physiological role. However, it is found in the body of most people because it is a contaminant of nearly all food types and is readily absorbed. The body burden of Cd is determined principally by its intestinal absorption rate as there is no mechanism for its elimination. Most acquired Cd accumulates within the kidney tubular cells, where its levels increase through to the age of 50 years but decline thereafter due to its release into the urine as the injured tubular cells die. This is associated with progressive kidney disease, which is signified by a sustained decline in the estimated glomerular filtration rate (eGFR) and albuminuria. Generally, reductions in eGFR after Cd exposure are irreversible, and are likely to decline further towards kidney failure if exposure persists. There is no evidence that the elimination of current environmental exposure can reverse these effects and no theoretical reason to believe that such a reversal is possible. This review aims to provide an update on urinary and blood Cd levels that were found to be associated with GFR loss and albuminuria in the general populations. A special emphasis is placed on the mechanisms underlying albumin excretion in Cd-exposed persons, and for an accurate measure of the doses-response relationships between Cd exposure and eGFR, its excretion rate must be normalised to creatinine clearance. The difficult challenge of establishing realistic Cd exposure guidelines such that human health is protected, is discussed.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
22
|
Nan Y, Yang J, Yang J, Wei L, Bai Y. Associations Between Individual and Combined Metal Exposures in Whole Blood and Kidney Function in U.S. Adults Aged 40 Years and Older. Biol Trace Elem Res 2024; 202:850-865. [PMID: 37291467 DOI: 10.1007/s12011-023-03722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
The effects of metal exposure on kidney function have been reported in previous literature. There is limited and inconsistent information on the associations between individual and combined exposures to metals and kidney function among the middle-aged and older population. The aim of this study was to clarify the associations of exposure to individual metals with kidney function while accounting for potential coexposure to metal mixtures and to evaluate the joint and interactive associations of blood metals with kidney function. A total of 1669 adults aged 40 years and older were enrolled in the present cross-sectional study using the 2015-2016 National Health and Nutrition Examination Survey (NHANES). Single-metal and multimetal multivariable logistic regression models, quantile G-computation, and Bayesian kernel machine regression models (BKMR) were fitted to explore the individual and joint associations of whole blood metals [lead (Pb), cadmium (Cd), mercury (Hg), cobalt (Co), manganese (Mn), and selenium (Se)] with the odds of decreased estimated glomerular filtration rate (eGFR) and albuminuria. A decreased eGFR was defined as an eGFR ≤ 60 mL/min per 1.73 m2, and albuminuria was categorized as a urinary albumin-creatinine ratio (UACR) of ≥ 30.0 mg/g. The results from quantile G-computation and BKMR indicated positive associations between exposure to the metal mixture and the prevalence of decreased eGFR and albuminuria (all P values < 0.05). These positive associations were mainly driven by blood Co, Cd, and Pb. Furthermore, blood Mn was identified as an influential element contributing to an inverse correlation with kidney dysfunction within metal mixtures. Increasing blood Se levels were negatively associated with the prevalence of decreased eGFR and positively associated with albuminuria. In addition, a potential pairwise interaction between Mn-Co on decreased eGFR was identified by BKMR analysis. Findings from our study suggested a positive association between exposure to the whole blood metal mixture and decreased kidney function, with blood Co, Pb, and Cd being the main contributors to this association, while Mn demonstrated an inverse relationship with renal dysfunction. However, as our study was cross-sectional in nature, further prospective studies are warranted to better understand the individual and combined effects of metals on kidney function.
Collapse
Affiliation(s)
- Yaxing Nan
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
- College of Earth and Environmental Sciences, Lanzhou University, Dong Gang Xi Road 199, Lanzhou, Gansu, 730000, China
| | - Jingli Yang
- College of Earth and Environmental Sciences, Lanzhou University, Dong Gang Xi Road 199, Lanzhou, Gansu, 730000, China
| | - Jinyu Yang
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Lili Wei
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yana Bai
- College of Earth and Environmental Sciences, Lanzhou University, Dong Gang Xi Road 199, Lanzhou, Gansu, 730000, China.
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, 730000, Lanzhou, China.
| |
Collapse
|
23
|
Masoud A, McKenna ZJ, Li Z, Deyhle MR, Mermier CM, Schlader ZJ, Amorim FT. Strategies to mitigate acute kidney injury risk during physical work in hot environments. Am J Physiol Renal Physiol 2024; 326:F499-F510. [PMID: 38299216 DOI: 10.1152/ajprenal.00350.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/02/2024] Open
Abstract
Prolonged physical work in the heat can reduce renal function and increase the risk of acute kidney injury (AKI). This is concerning given that the latest climate change projections forecast a rise in global temperature as well as the frequency, intensity, and duration of heatwaves. This means that outdoor and indoor workers in the agriculture or construction industries will be exposed to higher heat stress in the years ahead. Several studies indicate a higher incidence of chronic kidney disease from nontraditional origins (CKDnt) in individuals exposed to high temperatures, intense physical work, and/or recurrent dehydration. It has been proposed that prolonged physical work in the heat accompanied by dehydration results in recurrent episodes of AKI that ultimately lead to permanent kidney damage and the development of CKDnt. Thus, there is a need to identify and test strategies that can alleviate AKI risk during physical work in the heat. The purpose of this review is to present strategies that might prevent and mitigate the risk of AKI induced by physical work in the heat.
Collapse
Affiliation(s)
- Abdulaziz Masoud
- Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Zachary J McKenna
- Institute for Exercise and Environmental Medicine, Institute for Exercise and Environmental Medicine, Dallas, TX, United States
| | - Zidong Li
- Department of Molecular Biology & Chemistry, Christopher Newport University, Newport News, VA, United States
| | - Michael R Deyhle
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Christine M Mermier
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Zachary J Schlader
- Department of Kinesiology, Indiana University Bloomington, Bloomington, IN, United States
| | - Fabiano T Amorim
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
24
|
Sijko-Szpańska M, Kozłowska L. Analysis of Relationships between Metabolic Changes and Selected Nutrient Intake in Women Environmentally Exposed to Arsenic. Metabolites 2024; 14:75. [PMID: 38276310 PMCID: PMC10820439 DOI: 10.3390/metabo14010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Nutrients involved in the metabolism of inorganic arsenic (iAs) may play a crucial role in mitigating the adverse health effects associated with such exposure. Consequently, the objective of this study was to analyze the association between the intake levels of nutrients involved in iAs metabolism and alterations in the metabolic profile during arsenic exposure. The study cohort comprised environmentally exposed women: WL (lower total urinary arsenic (As), n = 73) and WH (higher As, n = 73). The analysis included urinary untargeted metabolomics (conducted via liquid chromatography-mass spectrometry) and the assessment of nutrient intake involved in iAs metabolism, specifically methionine, vitamins B2, B6, and B12, folate, and zinc (based on 3-day dietary records of food and beverages). In the WL group, the intake of all analyzed nutrients exhibited a negative correlation with 5 metabolites (argininosuccinic acid, 5-hydroxy-L-tryptophan, 11-trans-LTE4, mevalonic acid, aminoadipic acid), while in the WH group, it correlated with 10 metabolites (5-hydroxy-L-tryptophan, dihyroxy-1H-indole glucuronide I, 11-trans-LTE4, isovalerylglucuronide, 18-oxocortisol, 3-hydroxydecanedioic acid, S-3-oxodecanoyl cysteamine, L-arginine, p-cresol glucuronide, thromboxane B2). Furthermore, nutrient intake demonstrated a positive association with 3 metabolites in the WL group (inosine, deoxyuridine, glutamine) and the WH group (inosine, N-acetyl-L-aspartic acid, tetrahydrodeoxycorticosterone). Altering the intake of nutrients involved in iAs metabolism could be a pivotal factor in reducing the negative impact of arsenic exposure on the human body. This study underscores the significance of maintaining adequate nutrient intake, particularly in populations exposed to arsenic.
Collapse
Affiliation(s)
- Monika Sijko-Szpańska
- Laboratory of Human Metabolism Research, Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02776 Warsaw, Poland
| | - Lucyna Kozłowska
- Laboratory of Human Metabolism Research, Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02776 Warsaw, Poland
| |
Collapse
|
25
|
Song J, Pan T, Xu Z, Yi W, Pan R, Cheng J, Hu W, Su H. A systematic analysis of chronic kidney disease burden attributable to lead exposure based on the global burden of disease study 2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168189. [PMID: 37907111 DOI: 10.1016/j.scitotenv.2023.168189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/07/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
AIM As an important toxic heavy metal, lead exposure can lead to the occurrence of chronic kidney disease (CKD). However, the analysis of its disease burden pattern on a global scale is lacking. This study aimed to analyze the CKD burden attributable to lead exposure globally, regionally and temporally, as well as to examine the role of socio-economic factors. METHOD This study used data from the Global Burden of Disease (GBD) study 2019. We obtained the global burden of CKD caused by lead exposure between 1990 and 2019, and stratified this burden according to factors such as gender, age, GBD regions, and countries. From 1990 to 2019, the changing trend of the disease burden of CKD attributed to lead exposure was estimated using Joinpoint regression model with the average annual percent change (AAPC) estimated. Finally, the relationship between country-level socio-economic factors and lead exposure related CKD burden was explored using a panel data model analysis. RESULTS In 2019, worldwide, there were 52.94 thousand deaths (95 % uncertainty interval (UI): 31.64, 76.23) and 1225.2 thousand disability-adjusted life years (DALYs) (95 % UI: 707.88, 1818) of CKD caused by lead exposure, accounting for 3.71 % of total CKD deaths and 2.95 % of total CKD DALYs. The age-standardized death and DALY rates per 100,000 population were 0.68 (95 % UI: 0.40, 0.98) and 15.02 (95 % UI: 8.68, 22.26) respectively, indicating an upward trend and stable trend between 1990 and 2019. However, the age-standardized rates attributed to lead exposure showed a wide variability across regions, with the highest rates in Central Latin America and the lowest in Eastern Europe. Moreover, the results of panel model analysis indicated that GDP growth was positively associated with lead exposure related CKD death rate and DALY rate. However, there were inverse associations between life expectancy at birth and hospital beds (per 1000 people) with lead exposure-related CKD DALY rate. CONCLUSION In summary, a significant burden of CKD can be attributed to lead exposure, with noticeable regional discrepancies. Findings here are valuable to deploy efficient measures at curbing lead exposure worldwide.
Collapse
Affiliation(s)
- Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, No.81 Meishan road, Shushan District, Hefei, Anhui 230031, China; Ecosystem Change and Population Health Research Group, School of Public Health and Social Work, Queensland University of Technology, Australia
| | - TianRong Pan
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230061, Anhui Province, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230061, Anhui Province, China
| | - Zhiwei Xu
- School of Medicine and Dentistry, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, No.81 Meishan road, Shushan District, Hefei, Anhui 230031, China; School of Medicine and Dentistry, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, No.81 Meishan road, Shushan District, Hefei, Anhui 230031, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, No.81 Meishan road, Shushan District, Hefei, Anhui 230031, China
| | - Wenbiao Hu
- Ecosystem Change and Population Health Research Group, School of Public Health and Social Work, Queensland University of Technology, Australia.
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, No.81 Meishan road, Shushan District, Hefei, Anhui 230031, China.
| |
Collapse
|
26
|
Zhang Y, Gong X, Li R, Gao W, Hu D, Yi X, Liu Y, Fang J, Shao J, Ma Y, Jin L. Exposure to cadmium and lead is associated with diabetic kidney disease in diabetic patients. Environ Health 2024; 23:1. [PMID: 38166936 PMCID: PMC10763104 DOI: 10.1186/s12940-023-01045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Cadmium (Cd) and lead (Pb) exhibit nephrotoxic activity and may accelerate kidney disease complications in diabetic patients, but studies investigating the relation to diabetic kidney disease (DKD) have been limited. We aimed to examine the associations of Cd and Pb with DKD in diabetic patients. METHODS 3763 adults with blood metal measurements and 1604 adults with urinary ones who were diabetic from National Health and Nutrition Examination Survey (NHANES) 2007-2016 were involved. Multivariate logistic regression models were used to analyze the associations of blood Cd (BCd), blood Pb (BPb), urinary Cd (UCd), and urinary Pb (UPb) with DKD. RESULTS BPb, BCd, and UCd levels were higher among participants with DKD than diabetics without nephropathy, but UPb performed the opposite result. BPb and UCd were significantly associated with DKD in the adjusted models (aOR, 1.17 (1.06, 1.29);1.52 (1.06, 2.02)). Participants in the 2nd and 3rd tertiles of BPb and BCd levels had higher odds of DKD, with a significant trend across tertiles, respectively (all P-trend < 0.005). Multiplication interaction was also identified for BPb and BCd (P for interaction = 0.044). CONCLUSION BPb, BCd, and UCd were positively associated with the risk of DKD among diabetic patients. Furthermore, there were the dose-response relationship and multiplication interaction in the associations of BPb, BCd with DKD.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin, 130021, P.R. China
| | - Xiaoyu Gong
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P.R. China
| | - Runhong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin, 130021, P.R. China
| | - Wenhui Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin, 130021, P.R. China
| | - Daibao Hu
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P.R. China
| | - Xiaoting Yi
- Department of Public Health, Xinjiang Medical University, Urumqi, 830011, P.R. China
| | - Yang Liu
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P.R. China
| | - Jiaxin Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin, 130021, P.R. China
| | - Jinang Shao
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P.R. China
| | - Yanan Ma
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P.R. China.
| | - Lina Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin, 130021, P.R. China.
| |
Collapse
|
27
|
Doccioli C, Sera F, Francavilla A, Cupisti A, Biggeri A. Association of cadmium environmental exposure with chronic kidney disease: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167165. [PMID: 37758140 DOI: 10.1016/j.scitotenv.2023.167165] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Several observational studies investigated the relationship between environmental cadmium exposure and risk of chronic kidney disease (CKD). However, results from epidemiological studies are conflicting and wide variabilities have been reported. OBJECTIVES We conducted a meta-analysis to evaluate the relationship between environmental cadmium exposure and CKD risk, as assessed by decreased estimated Glomerular Filtration Rate (eGFR) in adults. METHODS PubMed, Embase and the Cochrane library databases were searched for studies published up to July 2023. A random-effects model using the restricted maximum likelihood (REML) method was used to calculate the overall estimate to assess the association between cadmium exposure and eGFR. Subgroup analysis, funnel plot, Egger's test, and the trim-and-fill method were also conducted. RESULTS Thirty-one articles, 3 cohorts, 2 case-control and 26 cross-sectional studies, across 8 countries, involving 195.015 participants were included. The meta-analysis demonstrated an inverse association between high cadmium exposure and eGFR levels (standardized regression coefficient β = -0.09; 95 % CI = -0.15, -0.04). The subgroup analysis showed that the inverse association was significantly higher for blood cadmium exposure (β = -0.12; 95 % CI = -0.18, -0.06) than for urinary concentrations (β = -0.04; 95 % CI: -0.10, 0.03) or dietary exposure (β = -0.03; 95 % CI = -0.19, 0.14). Stratified analysis by different study design also showed an inverse association between cadmium exposure and eGFR, more evident in the cross-sectional studies (β = -0.11; 95 % CI = -0.18, -0.03) than in the cohort (β = -0.05; 95 % CI = -0.26, 0.17) and in the case-control studies (β = -0.05; 95 % CI = -0.32, 0.21). DISCUSSION Our meta-analysis indicated that environmental cadmium exposure is associated with increased risk of CKD, as assessed by decreased eGFR, and this association is more evident for blood cadmium concentrations than for urinary concentrations or dietary exposure. Nevertheless, additional high quality prospective studies are needed to confirm the association between cadmium exposure and risk of CKD.
Collapse
Affiliation(s)
- Chiara Doccioli
- Department of Statistic, Computer Science and Applications "G.Parenti", University of Florence, Florence, Italy.
| | - Francesco Sera
- Department of Statistic, Computer Science and Applications "G.Parenti", University of Florence, Florence, Italy
| | - Andrea Francavilla
- Department of Cardio, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Adamasco Cupisti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Annibale Biggeri
- Department of Cardio, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| |
Collapse
|
28
|
Gui C, Shan X, Liu C, He L, Zhao H, Luo B. Disease burden of chronic kidney disease attributable to lead exposure: A global analysis of 30 years since 1990. CHEMOSPHERE 2023; 341:140029. [PMID: 37669716 DOI: 10.1016/j.chemosphere.2023.140029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Exposure to lead (Pb) is associated with an increased risk of chronic kidney disease (CKD). However, limited studies explored the global burden of CKD attributable to Pb exposure, especially in countries with different development levels. This study aimed to comprehensively evaluate the temporal and spatial trend in the disease burden of CKD attributable to Pb exposure in 204 countries and territories from 1990 to 2019. METHODS We used the data from Global Burden of Disease Study (GBD) 2019 to estimate annual deaths, disability-adjusted life years (DALYs), age-standardized mortality rates (ASMR), and age-standardized DALYs rate (ASDR) of CKD attributable to Pb exposure. The annual average percentage change (AAPCs) was calculated using the Joinpoint model to evaluate the changing trend of CKD ASMR and ASDR attributable to Pb exposure from 1990 to 2019. Meanwhile, age-period-cohort (APC) model was used to assess changes in the mortality of CKD attributable to Pb exposure from 1990 to 2019. RESULTS Global ASMR for CKD attributable to Pb exposure trended upward from 1990 to 2019. ASMR and ASDR were the highest in low and low-middle SDI regions. With the APC model, we found that global mortality rates for CKD attributable to Pb exposure increased with age. The global period rate ratio showed the highest value in 2000-2004 and the lowest in 2015-2019, while the global cohort rate ratio showed the highest value in 1941-1949 and the lowest during 1986-1994. CONCLUSIONS From 1990 to 2019, the global burden of CKD attributable to Pb exposure increased globally, especially in low and low-middle SDI regions, as well as the elderly. Pb exposure is still a great threat to the global burden of CKD, and the implementation of effective prevention measures to reduce Pb exposure in the environment should be continually strengthened.
Collapse
Affiliation(s)
- Chunyan Gui
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Xiaobing Shan
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Ce Liu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Li He
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Hao Zhao
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China.
| |
Collapse
|
29
|
Huang Y, Wan Z, Zhang M, Hu L, Song L, Wang Y, Lv Y, Wang L. The association between urinary metals/metalloids and chronic kidney disease among general adults in Wuhan, China. Sci Rep 2023; 13:15321. [PMID: 37714886 PMCID: PMC10504376 DOI: 10.1038/s41598-023-42282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
The relation between exposure to single metal/metalloid and the risk of chronic kidney disease (CKD) remains unclear. We aimed to determine the single and mixed associations of 21 heavy metals/metalloids exposure and the risk of CKD. We performed a cross-sectional study that recruited 4055 participants. Multivariate logistic regression, linear regression and weighted quantile sum (WQS) regression were conducted to explore the possible effects of single and mixed metals/metalloids exposure on the risk of CKD, the risk of albuminuria and changes in the estimated glomerular filtration rate (eGFR). In single-metal models, Cu, Fe, and Zn were positively associated with increased risks of CKD (P-trend < 0.05). Compared to the lowest level, the highest quartiles of Cu (OR = 2.94; 95% CI: 1.70, 5.11; P-trend < 0.05), Fe (OR = 2.39; 95% CI: 1.42, 4.02; P-trend < 0.05), and Zn (OR = 2.35; 95% CI: 1.31, 4.24; P-trend < 0.05) were associated with an increased risk of CKD. After multi-metal adjustment, the association with the risk of CKD remained robust for Cu (P < 0.05). Weighted quantile sum regression revealed a positive association between mixed metals/metalloids and the risk of CKD, and the association was largely driven by Cu (43.7%). Specifically, the mixture of urinary metals/metalloids was positively associated with the risk of albuminuria and negatively associated with eGFR.
Collapse
Affiliation(s)
- Yuchai Huang
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengce Wan
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingye Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Hu
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Le Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Hubei, China.
| |
Collapse
|
30
|
Li L, Xu J, Zhang W, Wang Z, Liu S, Jin L, Wang Q, Wu S, Shang X, Guo X, Huang Q, Deng F. Associations between multiple metals during early pregnancy and gestational diabetes mellitus under four statistical models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96689-96700. [PMID: 37578585 DOI: 10.1007/s11356-023-29121-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
Gestational diabetes mellitus (GDM) is one of the most common complications of pregnancy. Metal exposure is an emerging factor affecting the risk of GDM. However, the effects of metal mixture on GDM and key metals within the mixture remain unclear. This study was aimed at investigating the association between metal mixture during early pregnancy and the risk of GDM using four statistical methods and further at identifying the key metals within the mixture associated with GDM. A nested case-control study including 128 GDM cases and 318 controls was conducted in Beijing, China. Urine samples were collected before 13 gestational weeks and the concentrations of 13 metals were measured. Single-metal analysis (unconditional logistic regression) and mixture analyses (Bayesian kernel machine regression (BKMR), quantile g-computation, and elastic-net regression (ENET) models) were applied to estimate the associations between exposure to multiple metals and GDM. Single-metal analysis showed that Ni was associated with lower risk of GDM, while positive associations of Sr and Sb with GDM were observed. Compared with the lowest quartile of Ni, the ORs of GDM in the highest quartiles were 0.49 (95% CI 0.24, 0.98). In mixture analyses, Ni and Mg showed negative associations with GDM, while Co and Sb were positively associated with GDM in BKMR and quantile g-computation models. No significant joint effect of metal mixture on GDM was observed. However, interestingly, Ni was identified as a key metal within the mixture associated with decreased risk of GDM by all three mixture methods. Our study emphasized that metal exposure during early pregnancy was associated with GDM, and Ni might have important association with decreased GDM risk.
Collapse
Affiliation(s)
- Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Jialin Xu
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Zhaokun Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Lei Jin
- Institute of Reproductive and Child Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, 710061, Shaanxi, China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| |
Collapse
|
31
|
Ding M, Shi S, Qie S, Li J, Xi X. Association between heavy metals exposure (cadmium, lead, arsenic, mercury) and child autistic disorder: a systematic review and meta-analysis. Front Pediatr 2023; 11:1169733. [PMID: 37469682 PMCID: PMC10353844 DOI: 10.3389/fped.2023.1169733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023] Open
Abstract
Background Studies have found that toxic heavy metals exposure could induce the generation of reactive oxygen species (ROS), and is of epigenetic effect, which might be associated with the occurrence of Autistic Disorder (ASD). This systematic review and meta-analysis aims to elucidate the association between exposure to 4 heavy metals, cadmium (Cd), lead (Pb), arsenic(As), and mercury (Hg), and the occurrence of ASD in children. Methods We searched PubMed, Web of Science, Embase, and Cochrane Library, from their inception to October 2022, for epidemiological investigations that explore the association between exposure to Cd, Pb, As, or Hg and the occurrence of child ASD. Results A total of 53 studies were included, involving 5,054 individuals aged less than 18 (2,533 ASD patients and 2,521 healthy controls). Compared with the healthy controls, in hair and blood tests, concentrations of the 4 heavy metals were significantly higher in the ASD group than in the healthy control group, and the differences in Pb, arsenic and Hg were statistically significant (P < 0.05). In the urine test, concentrations of arsenic and Hg were significantly higher in the ASD group than in the healthy control group (P < 0.05), while the results of Cd and Pb were opposite to those of arsenic and Hg (P > 0.05). Subgroup analysis for geographic regions showed that ASD patients in Asia and Europe had higher concentrations of the 4 heavy metals, compared with the healthy controls, in which the differences in Pb, arsenic, and Hg were statistically significant (P < 0.05), while in North America, the healthy controls had higher Cd, arsenic, and Hg concentrations (P > 0.05). Conclusion Compared with the healthy control group, the ASD group had higher concentrations of Cd, Pb, arsenic, and Hg. These 4 heavy metals play different roles in the occurrence and progression of ASD. Moreover, there is significant heterogeneity among the included studies due to controversies about the study results among different countries and regions and different sources of detection materials. The results of this study firmly support the policies to limit heavy metals exposure, especially among pregnant women and young children, so as to help reduce the incidence of ASD.
Collapse
Affiliation(s)
- Mengmeng Ding
- Correspondence: Mengmeng Ding Shanshan Shi Shuyan Qie
| | - Shanshan Shi
- Correspondence: Mengmeng Ding Shanshan Shi Shuyan Qie
| | - Shuyan Qie
- Correspondence: Mengmeng Ding Shanshan Shi Shuyan Qie
| | | | | |
Collapse
|
32
|
Quan J, Li Y, Shen M, Lu Y, Yuan H, Yi B, Chen X, Huang Z. Coexposure to multiple metals and renal tubular damage: a population-based cross-sectional study in China's rural regions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52421-52432. [PMID: 36829093 DOI: 10.1007/s11356-023-25909-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Previous studies have indicated that exposure to a single toxic metal can cause renal tubular damage, while evidence about the effects of multimetal exposure on renal tubular damage is relatively limited. We aimed to evaluate the relationships of multimetal coexposure with renal tubular damage in adults in heavy metal-polluted rural regions of China. A cross-sectional study of 1918 adults in China's heavy metal-contaminated rural regions was conducted. Inductively coupled plasma-mass spectrometry (ICP-MS) was used to measure the plasma levels of 18 metals in participants, and immune turbidimetry was used to measure sensitive biological indicators, reflecting renal tubular damage (including retinol-binding protein and β2-microglobulin). Least absolute shrinkage and selection operator (LASSO) penalized regression analysis, logistic and linear regression analysis, restricted cubic spline (RCS) regression analysis and the Bayesian kernel machine regression (BKMR) method were used to explore associations of multimetal coexposure with renal tubular damage risk or renal tubular damage indicators. Plasma selenium, cadmium, arsenic, and iron were identified as the main plasma metals associated with renal tubular damage risk after dimensionality reduction. Multimetal regression models showed that selenium was positively associated, and iron was negatively associated with renal tubular damage risk or its biological indicators. Multimetal RCS analyses additionally revealed a non-linear relationship of selenium with renal tubular damage risk. The BKMR models showed that the metal mixtures were positively associated with biological indicators of renal tubular damage when the metal mixtures were above the 50th percentile of concentration. Our findings indicated that natural exposure to high levels of multimetal mixtures increases the risk of renal tubular damage. Under the conditions of multimetal exposure, selenium was positively associated, and iron was negatively associated with renal tubular damage risk or its biological indicators.
Collapse
Affiliation(s)
- JingJing Quan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yan Li
- Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Minxue Shen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Yao Lu
- Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Department of Life Science and Medicine, King's College London, London, UK
| | - Hong Yuan
- Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhijun Huang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
- Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
33
|
Rawee P, Kremer D, Nolte IM, Leuvenink HGD, Touw DJ, De Borst MH, Bakker SJL, Hanudel MR, Eisenga MF. Iron Deficiency and Nephrotoxic Heavy Metals: A Dangerous Interplay? Int J Mol Sci 2023; 24:5315. [PMID: 36982393 PMCID: PMC10049453 DOI: 10.3390/ijms24065315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Heavy metals are common in our environment, and all individuals are exposed to them to some extent. These toxic metals have several harmful effects on the body, including the kidney, which is a very sensitive organ. Indeed, heavy metal exposure has been linked to an increased risk of chronic kidney disease (CKD) and its progression, which may be explained by the well-established nephrotoxic effects of these metals. In this hypothesis and narrative literature review, we will shed light on the potential role that another highly common problem in patients with CKD, iron deficiency, may play in the damaging effects of heavy metal exposure in this patient group. Iron deficiency has previously been linked with an increased uptake of heavy metals in the intestine due to the upregulation of iron receptors that also take up other metals. Furthermore, recent research suggests a role of iron deficiency in the retention of heavy metals in the kidney. Therefore, we hypothesize that iron deficiency plays a crucial role in the damaging effects of heavy metal exposure in patients with CKD and that iron supplementation might be a strategy to combat these detrimental processes.
Collapse
Affiliation(s)
- Pien Rawee
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Daan Kremer
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Ilja M. Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Henri G. D. Leuvenink
- Department of Surgery, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Daan J. Touw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Martin H. De Borst
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Stephan J. L. Bakker
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Mark R. Hanudel
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Michele F. Eisenga
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| |
Collapse
|
34
|
Flores-Collado G, Mérida-Ortega Á, Ramirez N, López-Carrillo L. Urinary cadmium concentrations and intake of nutrients, food groups and dietary patterns in women from Northern Mexico. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:247-261. [PMID: 36649226 PMCID: PMC10431751 DOI: 10.1080/19440049.2022.2157050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 01/18/2023]
Abstract
Cadmium (Cd) is a toxic metal found in some foods. There is limited evidence about the relationship of Cd exposure with nutrient and food groups consumption, and almost no information regarding dietary patterns. The objective was to evaluate the association between diet and urinary Cd, and to explore whether metal concentrations vary according to the intake of some nutrients. Urinary Cd concentrations of 891 female residents of northern Mexico were determined by tandem mass spectrometry. We obtained food consumption through a food frequency questionnaire and we used previously defined food groups and estimated dietary patterns by factor analysis. We found positive associations between Cd and daily consumption of non-starchy vegetables (ß = 0.067, 95% CI 0.030, 0.1023), legumes (ß = 0.139, 95% CI 0.065, 0.213) and processed meats (ß = 0.163, 95% CI 0.035.0.291), as well as the Western (ß = 0.083, 95% CI: 0.027.0.139) and Prudent dietary patterns (ß = 0.035, 95% CI: -0.020, 0.091). In contrast, we observed a negative association with the vegetable oil group (ß = -0.070, 95% CI -0.125, -0.014). In addition, we found higher concentrations of Cd in women under 50 years of age with a lower iron intake than recommended. Food is a source of exposure to this metal and at the same time provides nutrients that modulate its metabolism. It is important to generate dietary guidelines to reduce the health effects of Cd exposure.
Collapse
Affiliation(s)
- Gisela Flores-Collado
- Centro de Investigación en Salud Poblacional,
Instituto Nacional de Salud Pública, Cuernavaca, Morelos, C.P. 62100
| | - Ángel Mérida-Ortega
- Centro de Investigación en Salud Poblacional,
Instituto Nacional de Salud Pública, Cuernavaca, Morelos, C.P. 62100
| | - Natalia Ramirez
- Centro de Investigación en Salud Poblacional,
Instituto Nacional de Salud Pública, Cuernavaca, Morelos, C.P. 62100
- Rollins School of Public Health, Emory University, Atlanta,
GA 30322, USA
| | - Lizbeth López-Carrillo
- Centro de Investigación en Salud Poblacional,
Instituto Nacional de Salud Pública, Cuernavaca, Morelos, C.P. 62100
| |
Collapse
|
35
|
Satarug S, Vesey DA, Gobe GC, Phelps KR. Estimation of health risks associated with dietary cadmium exposure. Arch Toxicol 2023; 97:329-358. [PMID: 36592197 DOI: 10.1007/s00204-022-03432-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2023]
Abstract
In much of the world, currently employed upper limits of tolerable intake and acceptable excretion of cadmium (Cd) (ECd/Ecr) are 0.83 µg/kg body weight/day and 5.24 µg/g creatinine, respectively. These figures were derived from a risk assessment model that interpreted β2-microglobulin (β2MG) excretion > 300 μg/g creatinine as a "critical" endpoint. However, current evidence suggests that Cd accumulation reduces glomerular filtration rate at values of ECd/Ecr much lower than 5.24 µg/g creatinine. Low ECd/Ecr has also been associated with increased risks of kidney disease, type 2 diabetes, osteoporosis, cancer, and other disorders. These associations have cast considerable doubt on conventional guidelines. The goals of this paper are to evaluate whether these guidelines are low enough to minimize associated health risks reliably, and indeed whether permissible intake of a cumulative toxin like Cd is a valid concept. We highlight sources and levels of Cd in the human diet and review absorption, distribution, kidney accumulation, and excretion of the metal. We present evidence for the following propositions: excreted Cd emanates from injured tubular epithelial cells of the kidney; Cd excretion is a manifestation of current tissue injury; reduction of present and future exposure to environmental Cd cannot mitigate injury in progress; and Cd excretion is optimally expressed as a function of creatinine clearance rather than creatinine excretion. We comprehensively review the adverse health effects of Cd and urine and blood Cd levels at which adverse effects have been observed. The cumulative nature of Cd toxicity and the susceptibility of multiple organs to toxicity at low body burdens raise serious doubt that guidelines concerning permissible intake of Cd can be meaningful.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia.
| | - David A Vesey
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Kenneth R Phelps
- Stratton Veterans Affairs Medical Center and Albany Medical College, Albany, NY, USA
| |
Collapse
|
36
|
Little BB, Vu GT, Walsh B. Cadmium exposure is associated with chronic kidney disease in a superfund site lead smelter community in Dallas, Texas. Ann Hum Biol 2023; 50:360-369. [PMID: 37615209 DOI: 10.1080/03014460.2023.2236017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 08/25/2023]
Abstract
Background: The study was conducted in a Dallas lead smelter community following an Environmental Protection Agency (EPA) Superfund Cleanup project. Lead smelters operated in the Dallas community since the mid-1930s.Aim: To test the hypothesis that cadmium (Cd) exposure is associated with chronic kidney disease (CKD) ≥ stage 3.Subjects and methods: Subjects were African American residents aged ≥19 to ≤ 89 years (n=835). CKD ≥ stage 3 was predicted by blood Cd concentration with covariates.Results: In logistic regression analysis, CKD ≥ stage 3 was predicted by age ≥ 50 years (OR = 4.41, p < 0.0001), Cd level (OR = 1.89, p < .05), hypertension (OR = 3.15, p < 0.03), decades living in the community (OR = 1.34, p < 0.003) and T2DM (OR = 2.51, p < 0.01). Meta-analysis of 11 studies of Cd and CKD ≥ stage 3 yielded an ORRANDOM of 1.40 (p < 0.0001). Chronic environmental Cd exposure is associated with CKD ≥ stage 3 in a Dallas lead smelter community controlling covariates.Conclusion: Public health implications include screening for heavy metals including Cd, cleanup efforts to remove Cd from the environment and treating CKD with newer renal-sparing medications (e.g., SGLT-2 inhibitors, GLP-1s).
Collapse
Affiliation(s)
- Bert B Little
- Department of Health Management and Systems Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Giang T Vu
- School of Global Health Management and Informatics, University of Central Florida, Orlando, FL, USA
| | - Brad Walsh
- Parkland Hospital and Health System, Dallas, TX, USA
| |
Collapse
|
37
|
Cadmium-Induced Proteinuria: Mechanistic Insights from Dose-Effect Analyses. Int J Mol Sci 2023; 24:ijms24031893. [PMID: 36768208 PMCID: PMC9915107 DOI: 10.3390/ijms24031893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Cadmium (Cd) is a toxic metal that accumulates in kidneys, especially in the proximal tubular epithelial cells, where virtually all proteins in the glomerular ultrafiltrate are reabsorbed. Here, we analyzed archived data on the estimated glomerular filtration rate (eGFR) and excretion rates of Cd (ECd), total protein (EProt), albumin (Ealb), β2-microglobulin (Eβ2M), and α1-microglobulin (Eα1M), which were recorded for residents of a Cd contamination area and a low-exposure control area of Thailand. Excretion of Cd and all proteins were normalized to creatinine clearance (Ccr) as ECd/Ccr and EProt/Ccr to correct for differences among subjects in the number of surviving nephrons. Low eGFR was defined as eGFR ≤ 60 mL/min/1.73 m2, while proteinuria was indicted by EPro/Ccr ≥ 20 mg/L of filtrate. EProt/Ccr varied directly with ECd/Ccr (β = 0.263, p < 0.001) and age (β = 0.252, p < 0.001). In contrast, eGFR values were inversely associated with ECd/Ccr (β = -0.266, p < 0.001) and age (β = -0.558, p < 0.001). At ECd/Ccr > 8.28 ng/L of filtrate, the prevalence odds ratios for proteinuria and low eGFR were increased 4.6- and 5.1-fold, respectively (p < 0.001 for both parameters). Thus, the eGFR and tubular protein retrieval were both simultaneously diminished by Cd exposure. Of interest, ECd/Ccr was more closely correlated with EProt/Ccr (r = 0.507), Eβ2M (r = 0.430), and Eα1M/Ccr (r = 0.364) than with EAlb/Ccr (r = 0.152). These data suggest that Cd may differentially reduce the ability of tubular epithelial cells to reclaim proteins, resulting in preferential reabsorption of albumin.
Collapse
|
38
|
Metabolic Changes and Their Associations with Selected Nutrients Intake in the Group of Workers Exposed to Arsenic. Metabolites 2023; 13:metabo13010070. [PMID: 36676995 PMCID: PMC9866863 DOI: 10.3390/metabo13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Arsenic (As) exposure causes numerous adverse health effects, which can be reduced by the nutrients involved in the metabolism of iAs (inorganic As). This study was carried out on two groups of copper-smelting workers: WN, workers with a urinary total arsenic (tAs) concentration within the norm (n = 75), and WH, workers with a urinary tAs concentration above the norm (n = 41). This study aimed to analyze the association between the intake level of the nutrients involved in iAs metabolism and the signal intensity of the metabolites that were affected by iAs exposure. An untargeted metabolomics analysis was carried out on urine samples using liquid chromatography-mass spectrometry, and the intake of the nutrients was analyzed based on 3-day dietary records. Compared with the WN group, five pathways (the metabolism of amino acids, carbohydrates, glycans, vitamins, and nucleotides) with twenty-five putatively annotated metabolites were found to be increased in the WH group. In the WN group, the intake of nutrients (methionine; vitamins B2, B6, and B12; folate; and zinc) was negatively associated with six metabolites (cytosine, D-glucuronic acid, N-acetyl-D-glucosamine, pyroglutamic acid, uridine, and urocanic acid), whereas in the WH group, it was associated with five metabolites (D-glucuronic acid, L-glutamic acid, N-acetyl-D-glucosamine, N-acetylneuraminic acid, and uridine). Furthermore, in the WH group, positive associations between methionine, folate, and zinc intake and the signal intensity of succinic acid and 3-mercaptolactic acid were observed. These results highlight the need to educate the participants about the intake level of the nutrients involved in iAs metabolism and may contribute to further considerations with respect to the formulation of dietary recommendations for people exposed to iAs.
Collapse
|
39
|
Kshirsagar AV, Zeitler EM, Weaver A, Franceschini N, Engel LS. Environmental Exposures and Kidney Disease. KIDNEY360 2022; 3:2174-2182. [PMID: 36591345 PMCID: PMC9802544 DOI: 10.34067/kid.0007962021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/04/2022] [Indexed: 12/31/2022]
Abstract
Accumulating evidence underscores the large role played by the environment in the health of communities and individuals. We review the currently known contribution of environmental exposures and pollutants on kidney disease and its associated morbidity. We review air pollutants, such as particulate matter; water pollutants, such as trace elements, per- and polyfluoroalkyl substances, and pesticides; and extreme weather events and natural disasters. We also discuss gaps in the evidence that presently relies heavily on observational studies and animal models, and propose using recently developed analytic methods to help bridge the gaps. With the expected increase in the intensity and frequency of many environmental exposures in the decades to come, an improved understanding of their potential effect on kidney disease is crucial to mitigate potential morbidity and mortality.
Collapse
Affiliation(s)
- Abhijit V. Kshirsagar
- UNC Kidney Center and Division of Nephrology and Hypertension, University of North Carolina, Chapel Hill, North Carolina
| | - Evan M. Zeitler
- UNC Kidney Center and Division of Nephrology and Hypertension, University of North Carolina, Chapel Hill, North Carolina
| | - Anne Weaver
- Center for Public Health and Environmental Assessment, Office of Research and Development, United States Environmental Protection Agency, Chapel Hill, North Carolina
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence S. Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
40
|
Wang T, Lv Z, Fu X, Zheng S, Yang Z, Zou X, Liu Y, Zhang Y, Wen Y, Lu Q, Huang H, Huang S, Liu R. Associations between plasma metal levels and mild renal impairment in the general population of Southern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114209. [PMID: 36308880 DOI: 10.1016/j.ecoenv.2022.114209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/11/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Metal exposure were assumed to be closely related with declined renal function, but the conclusions were controversial. We employed diverse statistical models and assessed the association between metal mixture exposure and mild renal impairment. METHODS A total of 13 plasma metals were measured in 896 general population from Southern China. Subjects with estimated glomerular filtration rate within 60-89 ml/min/1.73 m2 and urinary albumin-creatinine ratio <30 mg/g creatinine were defined as mild renal impairment (MRI). RESULTS About 31.47 % participants showed MRI. In the multivariate logistic regression models, compared with the first quartile, high levels of arsenic and molybdenum (the fourth quartile) were both associated with MRI, and the ORs (95 % CI) were 1.68 (1.05, 2.68) and 2.21 (1.40, 3.48), respectively. Their predominant roles were identified by the weighted quantile regression (WQS). Besides, restricted cubic spline analysis verified the relationship between molybdenum level and increased MRI risk in a linear and dose-response manner. CONCLUSION High levels of arsenic and molybdenum might be independent risk factors of MRI, and they showed combined effect. Our findings might provide vigorous evidence in preventing mild decline in renal function.
Collapse
Affiliation(s)
- Tian Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Ziquan Lv
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xuejun Fu
- Department of Neurology, People's Hospital of Shenzhen, Shenzhen 518020, China
| | - Sijia Zheng
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Zijie Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xuan Zou
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yanwei Zhang
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Ying Wen
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Qi Lu
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Hui Huang
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Suli Huang
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
41
|
Nan Y, Yang J, Ma L, Jin L, Bai Y. Associations of nickel exposure and kidney function in U.S. adults, NHANES 2017-2018. J Trace Elem Med Biol 2022; 74:127065. [PMID: 36108461 DOI: 10.1016/j.jtemb.2022.127065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/26/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUNDS Nickel (Ni) is a ubiquitous heavy metal, but epidemiological studies on the association between Ni and kidney function are limited and controversial. AIM We aimed to explore the relationship between urinary Ni concentrations and kidney function in U.S. adults. METHODS This was a cross-sectional study based on the 2017-2018 National Health and Nutrition Examination Survey (NHANES) (n = 1588). Multiple linear regression models, logistic regression models, and restricted cubic spline models (RCS) were fitted to explore the associations between urinary Ni and estimated glomerular filtration rate (eGFR), urinary albumin-creatinine ratio (UACR), and the odds of impaired kidney function, which was defined as an eGFR ≤ 60 mL/min per 1.73 m2, or UACR ≥ 30.0 mg/g. Bayesian kernel machine regression (BKMR) was used to account for joint-metal effects. RESULTS Compared with the lowest quartile, urinary Ni at the third quartile was associated with increased eGFR (β = 2.42, 95 % CI: 0.23-4.19); the highest quartile of urinary Ni was correlated with increased UACR (β = 0.10, 95 % CI: 0.02-0.18), as well as higher odds of impaired kidney function (OR=1.65, 95 % CI:1.08-2.54). Urinary Ni had a nonlinear inverted U-shape relationship with eGFR (Pnonlinear = 0.007), and linear J-shape associations with UACR (Pnonlinear = 0.063) and impaired kidney function (Pnonlinear= 0.215). Metal interaction of urinary Ni with cadmium (Cd) on eGFR was observed. CONCLUSIONS Our findings provided evidence that Ni exposure linked with declined kidney function and might interact with Cd exposure. Considering the cross-sectional design of the NHANES study, further prospective studies are necessary.
Collapse
Affiliation(s)
- Yaxing Nan
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jingli Yang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Li Ma
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Limei Jin
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yana Bai
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
42
|
Satarug S, Vesey DA, Gobe GC, Đorđević AB. The Validity of Benchmark Dose Limit Analysis for Estimating Permissible Accumulation of Cadmium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15697. [PMID: 36497771 PMCID: PMC9736539 DOI: 10.3390/ijerph192315697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/01/2023]
Abstract
Cadmium (Cd) is a toxic metal pollutant that accumulates, especially in the proximal tubular epithelial cells of kidneys, where it causes tubular cell injury, cell death and a reduction in glomerular filtration rate (GFR). Diet is the main Cd exposure source in non-occupationally exposed and non-smoking populations. The present study aimed to evaluate the reliability of a tolerable Cd intake of 0.83 μg/kg body weight/day, and its corresponding toxicity threshold level of 5.24 μg/g creatinine. The PROAST software was used to calculate the lower 95% confidence bound of the benchmark dose (BMDL) values of Cd excretion (ECd) associated with injury to kidney tubular cells, a defective tubular reabsorption of filtered proteins, and a reduction in the estimated GFR (eGFR). Data were from 289 males and 445 females, mean age of 48.1 years of which 42.8% were smokers, while 31.7% had hypertension, and 9% had chronic kidney disease (CKD). The BMDL value of ECd associated with kidney tubular cell injury was 0.67 ng/L of filtrate in both men and women. Therefore, an environmental Cd exposure producing ECd of 0.67 ng/L filtrate could be considered as Cd accumulation levels below which renal effects are likely to be negligible. A reduction in eGFR and CKD may follow when ECd rises from 0.67 to 1 ng/L of filtrate. These adverse health effects occur at the body burdens lower than those associated with ECd of 5.24 µg/g creatinine, thereby arguing that current health-guiding values do not provide a sufficient health protection.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
| | - David A. Vesey
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane 4102, Australia
| | - Glenda C. Gobe
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women’s Hospital, Brisbane 4029, Australia
| | - Aleksandra Buha Đorđević
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
43
|
Nan Y, Bai Y. Sex-Based Differences in the Association between Serum Copper and Kidney Function: Evidence from NHANES 2011-2016. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14086. [PMID: 36360964 PMCID: PMC9655743 DOI: 10.3390/ijerph192114086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Epidemiological evidence on the relationship between copper (Cu) and kidney function is rare, and few studies examine the sex differences in this association. We aimed to explore the overall and sex-based relationship between exposure to Cu and biomarkers of kidney function among 4331 participants of the 2011-2016 National Health and Nutrition Examination Survey. Multiple linear regression models were fitted to examine the overall and sex-specific associations between serum Cu and the kidney function indicator-estimated glomerular filtration rate (eGFR) and urinary albumin-creatinine ratio (UACR). Restricted cubic spline models (RCS) stratified by sex were performed to explore the sex-based dose-response associations. Serum Cu in the highest quartile was associated with higher levels of UACR (β = 0.203, 95% CI: 0.100 to 0.306) among overall participants. In males, there was an association of the highest Cu quartile with decreased eGFR (β = -0.023, 95% CI: -0.042 to -0.003) and increased UACR (β = 0.349, 95% CI: 0.171 to 0.527); serum Cu levels also demonstrated a negative nonlinear dose-response association with eGFR and a positive linear dose-response association with UACR in males, whereas females showed a marginally significant nonlinear positive association of eGFR with serum Cu levels. In conclusion, there were sex-specific and dose-response relationships between serum Cu and kidney function indicators. Further prospective and mechanistic studies are warranted.
Collapse
Affiliation(s)
- Yaxing Nan
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
- School of Economics and Management, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yana Bai
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
44
|
Satarug S, Đorđević AB, Yimthiang S, Vesey DA, Gobe GC. The NOAEL Equivalent of Environmental Cadmium Exposure Associated with GFR Reduction and Chronic Kidney Disease. TOXICS 2022; 10:614. [PMID: 36287894 PMCID: PMC9607051 DOI: 10.3390/toxics10100614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is a highly toxic metal pollutant present in virtually all food types. Health guidance values were established to safeguard against excessive dietary Cd exposure. The derivation of such health guidance figures has been shifted from the no-observed-adverse-effect level (NOAEL) to the lower 95% confidence bound of the benchmark dose (BMD), termed BMDL. Here, we used the PROAST software to calculate the BMDL figures for Cd excretion (ECd) associated with a reduction in the estimated glomerular filtration rate (eGFR), and an increased prevalence of chronic kidney disease (CKD), defined as eGFR ≤ 60 mL/min/1.73 m2. Data were from 1189 Thai subjects (493 males and 696 females) mean age of 43.2 years. The overall percentages of smokers, hypertension and CKD were 33.6%, 29.4% and 6.2%, respectively. The overall mean ECd normalized to the excretion of creatinine (Ecr) as ECd/Ecr was 0.64 µg/g creatinine. ECd/Ecr, age and body mass index (BMI) were independently associated with increased prevalence odds ratios (POR) for CKD. BMI figures ≥24 kg/m2 were associated with an increase in POR for CKD by 2.81-fold (p = 0.028). ECd/Ecr values of 0.38-2.49 µg/g creatinine were associated with an increase in POR for CKD risk by 6.2-fold (p = 0.001). The NOAEL equivalent figures of ECd/Ecr based on eGFR reduction in males, females and all subjects were 0.839, 0.849 and 0.828 µg/g creatinine, respectively. The BMDL/BMDU values of ECd/Ecr associated with a 10% increase in CKD prevalence were 2.77/5.06 µg/g creatinine. These data indicate that Cd-induced eGFR reduction occurs at relatively low body burdens and that the population health risk associated with ECd/Ecr of 2.77-5.06 µg/g creatinine was not negligible.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
| | - Aleksandra Buha Đorđević
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| | - Supabhorn Yimthiang
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - David A. Vesey
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane 4102, Australia
| | - Glenda C. Gobe
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women’s Hospital, Brisbane 4029, Australia
| |
Collapse
|
45
|
Wang R, Long T, He J, Xu Y, Wei Y, Zhang Y, He X, He M. Associations of multiple plasma metals with chronic kidney disease in patients with diabetes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114048. [PMID: 36063616 DOI: 10.1016/j.ecoenv.2022.114048] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/14/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
As common contaminants, metals are non-negligible risk factors for diabetes and chronic kidney disease. However, whether there is an association between multiple metals exposure and incident chronic kidney disease (CKD) risk in patients with diabetes is unclear. We conducted a prospective study to evaluate these associations. In total, 3071 diabetics with baseline estimated glomerular filtration rate (eGFR) ≥ 60 mL/min/1.73 m2 from the Dongfeng-Tongji cohort were included. We measured baseline plasma concentrations of 23 metals and investigated the associations between plasma metal concentrations and CKD in diabetics using logistic regression, the least absolute shrinkage and selection operator (LASSO), and the Bayesian Kernel Machine Regression (BKMR) models. During average 4.6 years of follow-up, 457 diabetics developed CKD (14.9 %). The three models consistently found plasma levels of zinc, arsenic, and rubidium had a positive association with incident CKD risk in patients with diabetes, while titanium, cadmium, and lead had an inverse correlation. The results of BKMR showed a significant and positive overall effect of 23 metals on the risk of CKD, when all of the metals were above the 50th percentile as compared to the median value. In addition, potential interactions of zinc and arsenic, zinc and cadmium, zinc and lead, titanium and arsenic, and cadmium and lead on CKD risk were observed. In summary, we found significant associations of plasma titanium, zinc, arsenic, rubidium, cadmium, and lead with CKD in diabetes and interactions between these metals except for rubidium. Co-exposure to multiple metals was associated with increased CKD risk in diabetics.
Collapse
Affiliation(s)
- Ruixin Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Tengfei Long
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jia He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China
| | - Yali Xu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yue Wei
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Ying Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiangjing He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
46
|
Mishra M, Nichols L, Dave AA, Pittman EH, Cheek JP, Caroland AJV, Lotwala P, Drummond J, Bridges CC. Molecular Mechanisms of Cellular Injury and Role of Toxic Heavy Metals in Chronic Kidney Disease. Int J Mol Sci 2022; 23:11105. [PMID: 36232403 PMCID: PMC9569673 DOI: 10.3390/ijms231911105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/10/2023] Open
Abstract
Chronic kidney disease (CKD) is a progressive disease that affects millions of adults every year. Major risk factors include diabetes, hypertension, and obesity, which affect millions of adults worldwide. CKD is characterized by cellular injury followed by permanent loss of functional nephrons. As injured cells die and nephrons become sclerotic, remaining healthy nephrons attempt to compensate by undergoing various structural, molecular, and functional changes. While these changes are designed to maintain appropriate renal function, they may lead to additional cellular injury and progression of disease. As CKD progresses and filtration decreases, the ability to eliminate metabolic wastes and environmental toxicants declines. The inability to eliminate environmental toxicants such as arsenic, cadmium, and mercury may contribute to cellular injury and enhance the progression of CKD. The present review describes major molecular alterations that contribute to the pathogenesis of CKD and the effects of arsenic, cadmium, and mercury on the progression of CKD.
Collapse
Affiliation(s)
- Manish Mishra
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Larry Nichols
- Department of Pathology and Clinical Sciences Education, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Aditi A. Dave
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Elizabeth H Pittman
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - John P. Cheek
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Anasalea J. V. Caroland
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Purva Lotwala
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - James Drummond
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Christy C. Bridges
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| |
Collapse
|
47
|
Su F, Zeeshan M, Xiong LH, Lv JY, Wu Y, Tang XJ, Zhou Y, Ou YQ, Huang WZ, Feng WR, Zeng XW, Dong GH. Co-exposure to perfluoroalkyl acids and heavy metals mixtures associated with impaired kidney function in adults: A community-based population study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156299. [PMID: 35643130 DOI: 10.1016/j.scitotenv.2022.156299] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Previous studies have separately linked either perfluoroalkyl acid (PFAA) or heavy metal exposure with kidney dysfunction. However, the relationships of co-exposure to PFAAs and heavy metals with kidney function are still unclear. OBJECTIVES To explore the associations between exposure to PFAAs and heavy metals mixtures and kidney function in adults. METHODS We conducted a cross-sectional community-based population study in Guangzhou, China, enrolling 1312 adults from November 2018 to August 2019. We quantified 13 PFAAs in serum and 14 heavy metals in plasma. We chose estimated glomerular filtration rate (eGFR) and chronic kidney disease (CKD) as outcomes of interest. Distributed lag non-linear models (DLNMs) were used to check nonlinearity of individual pollutant with kidney function. Joint associations of pollutant mixtures on kidney function were assessed by Bayesian Kernel Machine Regression (BKMR) models. We further explored modification effects of gender. RESULTS Most individual PFAA and heavy metal were associated with declined kidney function in single-pollutant models. We also observed significant dose-response relationships of pollutant mixtures with reduced eGFR levels and increased odds of CKD in BKMR models. Perfluoroheptanesulfonic acid (PFHpS), arsenic (As) and strontium (Sr) were the predominant contributors among pollutant mixtures. A change in log PFHpS, As and Sr concentrations from the 25th to the 75th percentile were associated with a decrease in eGFR of -5.42 (95% confidence interval (CI): -6.86, -3.98), -2.14 (95% CI: -3.70, -0.58) and -1.87 (95% CI: -3.03, -0.72) mL/min/1.73 m2, respectively, when other pollutants were at their median values. In addition, the observed associations were more obvious in females. CONCLUSIONS We provided new evidence that co-exposure to PFAAs and heavy metals mixtures was associated with reduced kidney function in adults and PFHpS, As and Sr appeared to be the major contributors. Further studies are warranted to confirm our findings and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Fan Su
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Hua Xiong
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Jia-Yun Lv
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Yan Wu
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Xiao-Jiang Tang
- Guangzhou JES+US Pharmaceutical Technology Co., Ltd., Guangzhou 510530, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Yan-Qiu Ou
- Department of Epidemiology, Guangdong Cardiovascular Institute, WHO Collaborating Center for Research and Training in Cardiovascular Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Wen-Zhong Huang
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Wen-Ru Feng
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
48
|
Satarug S, Vesey DA, Gobe GC. Dose-Response Analysis of the Tubular and Glomerular Effects of Chronic Exposure to Environmental Cadmium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191710572. [PMID: 36078287 PMCID: PMC9517930 DOI: 10.3390/ijerph191710572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/01/2023]
Abstract
We retrospectively analyzed data on the excretion of cadmium (ECd), β2-microglobulin (Eβ2M) and N-acetyl-β-D-glucosaminidase (ENAG), which were recorded for 734 participants in a study conducted in low- and high-exposure areas of Thailand. Increased Eβ2M and ENAG were used to assess tubular integrity, while a reduction in the estimated glomerular filtration rate (eGFR) was a criterion for glomerular dysfunction. ECd, Eβ2M and ENAG were normalized to creatinine clearance (Ccr) as ECd/Ccr, Eβ2M/Ccr and ENAG/Ccr to correct for interindividual variation in the number of surviving nephrons and to eliminate the variation in the excretion of creatinine (Ecr). For a comparison, these parameters were also normalized to Ecr as ECd/Ecr, Eβ2M/Ecr and ENAG/Ecr. According to the covariance analysis, a Cd-dose-dependent reduction in eGFR was statistically significant only when Ecd was normalized to Ccr as ECd/Ccr (F = 11.2, p < 0.001). There was a 23-fold increase in the risk of eGFR ≤ 60 mL/min/1.73 m2 in those with the highest ECd/Ccr range (p = 0.002). In addition, doubling of ECd/Ccr was associated with lower eGFR (β = -0.300, p < 0.001), and higher ENAG/Ccr (β = 0.455, p < 0.001) and Eβ2M/Ccr (β = 0.540, p < 0.001). In contrast, a covariance analysis showed a non-statistically significant relationship between ECd/Ecr and eGFR (F = 1.08, p = 0.165), while the risk of low eGFR was increased by 6.9-fold only among those with the highest ECd/Ecr range. Doubling of ECd/Ecr was associated with lower eGFR and higher ENAG/Ecr and Eβ2M/Ecr, with the β coefficients being smaller than in the Ccr-normalized dataset. Thus, normalization of Cd excretion to Ccr unravels the adverse effect of Cd on GFR and provides a more accurate evaluation of the severity of the tubulo-glomerular effect of Cd.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
| | - David A. Vesey
- Department of Nephrology, Princess Alexandra Hospital, Brisbane 4075, Australia
| | - Glenda C. Gobe
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women’s Hospital, Brisbane 4029, Australia
| |
Collapse
|
49
|
Zhang T, Yin X, Chen H, Li Y, Chen J, Yang X. Global magnitude and temporal trends of idiopathic developmental intellectual disability attributable to lead exposure from 1990 to 2019: Results from Global Burden of Disease Study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155366. [PMID: 35460796 DOI: 10.1016/j.scitotenv.2022.155366] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
As an important environmental pollutant, lead exposure can result in idiopathic developmental intellectual disability (IDII). However, the latest spatiotemporal patterns across the world are unclear. Therefore, in this study, the global burden of lead exposure-related IDII was assessed using the Global Burden of Disease (GBD) study (2019). The data were downloaded from the Institute for Health Metrics and Evaluation (IHME), and the estimated annual percentage change (EAPC) was calculated to assess the changing trend of the age-standardized disability-adjusted life-years (DALYs) rates (ASDR) of global IDII attributed to lead exposure. In 2019, the number of global DALYs of IDII attributed to lead exposure was 2.72 million, the corresponding ASDR was 35.70 per 100,000. The ASDR was highest in children and adolescents, and low- and middle-income countries. From 1990 to 2019, the global number of DALYs of IDII attributable to lead exposure increased by 7.89%, while the ASDR of IDII decreased by 19.19% [EAPC = -0.78, 95% confidence interval (CI): (-0.90, -0.66)]. The downward trends were seen in most GBD regions and countries, especially in high-income countries, but 11 countries presented an upward trend. Therefore, it is important to continue to improve primary mental healthcare globally, especially in low- and middle-income countries. Meanwhile, the implementation of effective strategies to reduce lead exposure should be continually strengthened.
Collapse
Affiliation(s)
- Tongchao Zhang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center of Shandong University, Jinan, China
| | - Xiaolin Yin
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center of Shandong University, Jinan, China; Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui Chen
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center of Shandong University, Jinan, China
| | - Yufei Li
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center of Shandong University, Jinan, China; Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiaqi Chen
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center of Shandong University, Jinan, China; Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center of Shandong University, Jinan, China.
| |
Collapse
|
50
|
Zhang Y, Hu B, Qian X, Xu G, Jin X, Chen D, Tang J, Xu L. Transcriptomics-based analysis of co-exposure of cadmium (Cd) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) indicates mitochondrial dysfunction induces NLRP3 inflammasome and inflammatory cell death in renal tubular epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113790. [PMID: 35753275 DOI: 10.1016/j.ecoenv.2022.113790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution often releases multiple contaminants resulting in as yet largely uncharacterized additive toxicities. Cadmium (Cd) is a widespread pollutant that induces nephrotoxicity in animal models and humans. However, the combined effect of Cd in causing nephrotoxicity with 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a typical congener of polybrominated diphenyl ethers (PBDEs), has not been evaluated and mechanisms are not completely clear. Here, we applied transcriptome sequencing analysis to investigate the combined toxicity of Cd and BDE-47 in the renal tubular epithelial cell lines HKCs. Cd or BDE-47 exposure decreased cell viability in a dose-dependent manner, and exhibited cell swelling and rounding similar to necrosis, which was exacerbated by co-exposure. Transcriptomic analysis revealed 2191, 1331 and 3787 differentially-expressed genes following treatment with Cd, BDE-47 and co-exposure, respectively. Interestingly, functional annotation and enrichment analyses showed involvement of pathways for oxidative stress, NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and inflammatory cell death for all three treatments. Examination of indices of mitochondrial function and oxidative stress in HKC cells showed that the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and intracellular calcium ion concentration [Ca2+]i were elevated, while superoxide dismutase (SOD) and mitochondrial membrane potential (MMP) were decreased. The ratio of apoptotic and necrotic cells and intracellular lactate dehydrogenase (LDH) release were increased by Cd or BDE-47 exposure, and was aggravated by co-exposure, and was attenuated by ROS scavenger N-Acetyl-L-cysteine (NAC). NLRP3 inflammasome and pyroptosis pathway-related genes of NLRP3, adaptor molecule apoptosis-associated speck-like protein (ASC), caspase-1, interleukin-18 (IL-18) and IL-1β were elevated, while gasdermin D (GSDMD) was down-regulated, and protein levels of NLRP3, cleaved caspase-1 and cleaved GSDMD were increased, most of which were relieved by NAC. Our data demonstrate that exposure to Cd and BDE-47 induces mitochondrial dysfunction and triggers NLRP3 inflammasome and GSDMD-dependent pyroptosis leading to nephrotoxicity, and co-exposure exacerbates this effect, which could be attenuated by inhibiting ROS. This study provides a further mechanistic understanding of kidney damage, and co-exposure impact is worthy of concern and should be considered to improve the accuracy of environmental health assessment.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pathology and Key-Innovative Discipline Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Bo Hu
- Department of Pathology and Key-Innovative Discipline Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Xiaolan Qian
- Department of Pathology and Key-Innovative Discipline Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Guangtao Xu
- Forensic and Pathology Laboratory, Department of Public Health, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Xin Jin
- Forensic and Pathology Laboratory, Department of Public Health, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Deqing Chen
- Forensic and Pathology Laboratory, Department of Public Health, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Jie Tang
- Department of Pathology and Key-Innovative Discipline Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Long Xu
- Forensic and Pathology Laboratory, Department of Public Health, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| |
Collapse
|