1
|
Chen P, Lai P, Lu Y, Pan B, Huang W, Kung C, Chiang J, Cheng F, Wang L, Li S, Lee W, Ou Y, Wang C. Association between exposure to organophosphate flame retardants and epidermal growth factor receptor expression in lung cancer patients. Thorac Cancer 2024; 15:1805-1814. [PMID: 39045786 PMCID: PMC11333296 DOI: 10.1111/1759-7714.15411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Organophosphate flame retardants (OPFRs) are extensively distributed in our environment, prompting concerns about potential health hazards, including lung injuries resulting from OPFR exposure. METHODS The present study recruited 125 lung cancer patients, assessing their exposure to 10 OPFR compounds through urine samples. The final analysis comprised 108 participants after excluding those lacking epidermal growth factor receptor (EGFR) status and those with chronic kidney disease. Demographic and clinical characteristics, as well as urinary OPFR concentrations, were compared based on OPFR detection. Spearman correlation was conducted to explore the relationship between OPFR compounds, while logistic regression was used to identify OPFR compounds associated with EGFR mutation. RESULTS The study revealed widespread OPFR exposure among lung cancer patients, with an overall detection frequency of 99.07%. Tris(2-butoxyethyl) phosphate (TBEP) exhibited a strong correlation to its metabolite bis(2-butoxyethyl) phosphate (r = 0.88, p < 0.01). Patients with TBEP in their urine had higher percentage of wild-type EGFR and the detection of TBEP was associated with a reduced likelihood of mutant EGFR expression. CONCLUSIONS OPFR exposure was prevalent in lung cancer patients, with TBEP detection identified as a factor with lower EGFR mutation expression. This study contributes to the understanding of OPFR exposure in lung cancer patients and underscores the significance of TBEP in evaluating EGFR mutation in this population.
Collapse
Affiliation(s)
- Po‐Ju Chen
- Department of Occupational MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
- Department of Family MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Po‐Chen Lai
- Medical Education DepartmentKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
| | - Yueh‐Chien Lu
- Department of Occupational MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
- Department of Family MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Bo‐Lin Pan
- Department of Occupational MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
- Department of Family MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Wan‐Ting Huang
- Department of Laboratory MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Chia‐Te Kung
- Department of Emergency MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Jui‐Chin Chiang
- Department of Occupational MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
- Department of Family MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Fu‐Jen Cheng
- Department of Emergency MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Liang‐Jen Wang
- Department of Child and Adolescent PsychiatryKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Shau‐Hsuan Li
- Division of Hematology‐Oncology, Department of Internal MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Wen‐Chin Lee
- Division of Nephrology, Department of Internal MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Yu‐Che Ou
- Department of Obstetrics and GynecologyKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Chin‐Chou Wang
- Department of Occupational MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
- Divisions of Pulmonary & Critical Care Medicine, Department of Internal MedicineKaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiungTaiwan
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial HospitalChang Gung University College of MedicineKaohsiungTaiwan
- School of Medicine, College of Medicine, National Sun Yat‐sen UniversityKaohsiungTaiwan
- Department of Respiratory CareChang Gung University of Science and TechnologyChiayiTaiwan
| |
Collapse
|
2
|
Xu T, Liu K, Zhang Y, Chen Y, Yin D. EGFR and Hippo signaling pathways are involved in organophosphate esters-induced proliferation and migration of triple-negative breast cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41939-41952. [PMID: 38856849 DOI: 10.1007/s11356-024-33872-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The widespread application of organophosphate flame retardants has led to pervasive exposure to organophosphate esters (OPEs), prompting considerable concerns regarding their potential health risk to humans. Despite hints from previous research about OPEs' association with breast cancer, their specific effects and underlying mechanisms of triple-negative breast cancer (TNBC) remain unclear. In this study, we investigated the effects of four representative OPEs on cell proliferation, cell cycle regulation, migration, and the expression of genes and proteins associated with the epidermal growth factor receptor (EGFR) and Hippo signaling pathways in TNBC (MDA-MB-231) cells. Our findings revealed that treatment with 1-25 μM triphenyl phosphate (TPHP) and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) induced TNBC cell proliferation and accelerated cell cycle progression, with upregulation in MYC, CCND1, and BRCA1 mRNA. Moreover, exposure to 1-25 μM TPHP, 10-25 μM TDCIPP, and 1-10 μM tris (2-chloroethyl) phosphate (TCEP) induced MMP2/9 mRNA expression and enhanced migratory capacity, except for 2-ethylhexyl diphenyl phosphate (EHDPP). Mechanistically, four OPEs treatments activated the EGFR-ERK1/2 and EGFR-PI3K/AKT signaling pathways by increasing the transcript of EGFR, ERK1/2, PI3K, and AKT mRNA. OPEs treatment also suppressed the Hippo signaling pathway by inhibiting the expression of MST1 mRNA and phosphorylation of LATS1, leading to the overactivation of YAP1 protein, thereby promoting TNBC cell proliferation and migration. In summary, our study elucidated that activation of the EGFR signaling pathway and suppression of the Hippo signaling pathway contributed to the proliferation, cell cycle dysregulation, and migration of TNBC cells following exposure to OPEs.
Collapse
Affiliation(s)
- Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Kaiyue Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yajie Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yawen Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Post-doctoral Research Station of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
3
|
Yu D, Hales BF, Robaire B. Organophosphate ester flame retardants and plasticizers affect the phenotype and function of HepG2 liver cells. Toxicol Sci 2024; 199:261-275. [PMID: 38518089 PMCID: PMC11131028 DOI: 10.1093/toxsci/kfae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Exposure to the organophosphate esters (OPEs), used as flame retardants and plasticizers, is associated with a variety of adverse health effects including an increase in the incidence of fatty liver diseases. The goal of this study was to investigate the effects of six OPEs, all detected in Canadian house dust, on the phenotype and function of HepG2 liver cells. We used high-content imaging to investigate the effects of these OPEs on cell survival, mitochondria, oxidative stress, lipid droplets, and lysosomes. Effects on the autophagy/lipophagy pathway were evaluated using confocal microscopy. The triaryl OPEs (isopropylated triphenylphosphate [IPPP], tris(methylphenyl) phosphate [TMPP], and triphenyl phosphate [TPHP]) were more cytotoxic than non-triaryl OPEs (tris(2-butoxyethyl) phosphate [TBOEP], tris(1-chloro-2-propyl) phosphate [TCIPP], and tris(1,3-dichloro-2-propyl) phosphate [TDCIPP]). Exposure to most OPEs increased total mitochondria, reduced reactive oxygen species, and increased total lipid droplet areas and lysosomal intensity. Potency ranking was done using the lowest benchmark concentration/administered equivalent dose method and toxicological prioritization index analyses to integrate all phenotypic endpoints. IPPP, TBOEP, and TPHP ranked as the most potent OPEs, whereas TMPP, TCIPP, and TDCIPP were relatively less bioactive. Confocal microscopic analysis demonstrated that IPPP reduced the colocalization of lipid droplets (PLIN2), lysosomes (LAMP1), and autophagosomes (p62), disrupting autophagy. In contrast, TBOEP rescued cells from bafilomycin A1-induced inhibition of autophagy and/or increased autophagic flux. Together, these data demonstrate that OPEs have adverse effects on HepG2 cells. Further, OPE-induced dysregulation of autophagy may contribute to the association between OPE exposure and adverse effects on liver lipid homeostasis.
Collapse
Affiliation(s)
- Dongwei Yu
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
4
|
Huang W, Yang Y, Tang S, Yin H, Yu X, Yu Y, Wei K. The combined toxicity of polystyrene nano/micro-plastics and triphenyl phosphate (TPHP) on HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116489. [PMID: 38776781 DOI: 10.1016/j.ecoenv.2024.116489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Combined toxicity is a critical concern during the risk assessment of environmental pollutants. Due to the characteristics of strong hydrophobicity and large specific surface area, microplastics (MPs) and nanoplastics (NPs) have become potential carriers of organic pollutants that may pose a health risk to humans. The co-occurrence of organic pollutants and MPs would cause adverse effects on aquatic organism, while the information about combined toxicity induced by organophosphorus flame retardants and MPs on human cells was limited. This study aimed to reveal the toxicity effects of co-exposure to triphenyl phosphate (TPHP) and polystyrene (PS) particles with micron-size/nano-size on HepG2 cell line. The adsorption behaviors of TPHP on PS particles was observed, with the PS-NP exhibiting a higher adsorption capacity. The reactive oxygen species generation, mitochondrial membrane potential depolarization, lactate dehydrogenase release and cell apoptosis proved that PS-NPs/MPs exacerbated TPHP-induced cytotoxicity. The particle size of PS would affect the toxicity to HepG2 cells that PS-NP (0.07 μm) exhibited more pronounced combined toxicity than PS-MP (1 μm) with equivalent concentrations of TPHP. This study provides fundamental insights into the co-toxicity of TPHP and PS micro/nanoplastics in HepG2 cells, which is crucial for validating the potential risk of combined toxicity in humans.
Collapse
Affiliation(s)
- Wantang Huang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China
| | - Yuanyu Yang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Shaoyu Tang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Yuanyuan Yu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Kun Wei
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China
| |
Collapse
|
5
|
Estill CF, Mayer AC, Chen IC, Slone J, LaGuardia MJ, Jayatilaka N, Ospina M, Sjodin A, Calafat AM. Biomarkers of Organophosphate and Polybrominated Diphenyl Ether (PBDE) Flame Retardants of American Workers and Associations with Inhalation and Dermal Exposures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8417-8431. [PMID: 38701378 PMCID: PMC11093711 DOI: 10.1021/acs.est.3c09342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
This study evaluated workers' exposures to flame retardants, including polybrominated diphenyl ethers (PBDEs), organophosphate esters (OPEs), and other brominated flame retardants (BFRs), in various industries. The study aimed to characterize OPE metabolite urinary concentrations and PBDE serum concentrations among workers from different industries, compare these concentrations between industries and the general population, and evaluate the likely route of exposure (dermal or inhalation). The results showed that workers from chemical manufacturing had significantly higher (p <0.05) urinary concentrations of OPE metabolites compared to other industries. Spray polyurethane foam workers had significantly higher (p <0.05) urinary concentrations of bis(1-chloro-2-propyl) phosphate (BCPP) compared to other industries. Electronic scrap workers had higher serum concentrations of certain PBDE congeners compared to the general population. Correlations were observed between hand wipe samples and air samples containing specific flame-retardant parent chemicals and urinary metabolite concentrations for some industries, suggesting both dermal absorption and inhalation as primary routes of exposure for OPEs. Overall, this study provides insights into occupational exposure to flame retardants in different industries and highlights the need for further research on emerging flame retardants and exposure reduction interventions.
Collapse
Affiliation(s)
| | - Alexander C. Mayer
- National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OH, 45226, USA
| | - I-Chen Chen
- National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OH, 45226, USA
| | | | - Mark J. LaGuardia
- Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA,23062, USA
| | - Nayana Jayatilaka
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA
| | - Maria Ospina
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA
| | - Andreas Sjodin
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA
| | - Antonia M. Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA
| |
Collapse
|
6
|
Yun J, Zhang Q, Dou M, Wang L. Characteristics, sources, bio-accessibility, and health risks of organophosphate esters in urban surface dust, soil, and dustfall in the arid city of Urumqi in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169125. [PMID: 38070564 DOI: 10.1016/j.scitotenv.2023.169125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/15/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
Sixty-eight paired samples of urban surface dust and soil as well as four samples of atmospheric dustfall were collected from the arid city of Urumqi in Northwest China. Thirteen organophosphate esters (OPEs) in these samples were analyzed for the characteristics, sources, bio-accessibility, and health risks of OPEs. The studied OPEs were widely detected in the urban surface dust, soil, and dustfall, with Σ13OPEs (total concentration of 13 OPEs) of 1362, 164.0, and 1367 ng/g, respectively, dominated by tris(2-chloroethyle) phosphate (TCEP), tri(2-chloroisopropyl) phosphate (TCiPP), tri(1, 3-dichloroisopropyl) phosphate (TDCiPP) and tris(2-butoxyethyl) phosphate (TBOEP), TBOEP and tri(2-ethylhexyl) phosphate (TEHP), and TCEP, TCiPP, TBOEP, triphenyl phosphate and TEHP, respectively. The low and high frequency magnetic susceptibility of surface dust and urban soil might indicate the pollution of OPEs in them. Elevated levels of the Σ13OPEs in the surface dust and urban soil were found in the west, south, and northeast of Urumqi city. The total deposition flux of dustfall-bound 13 OPEs ranged from 86.5 to 143 ng/m2/day, with a mean of 105 ng/m2/day. OPEs in the surface dust and urban soil were associated with the emissions of indoor and outdoor products containing OPEs, the dry and wet deposition of atmosphere, and the emissions of traffic. Trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tri-isobutyl phosphate, TCEP, TCiPP, TDCiPP, and TBOEP in surface dust and urban soil had relatively high bio-accessibility. The bio-accessibility of OPEs was mainly affected by the physio-chemical properties of OPEs. The non-cancer and cancer risks of human exposure to OPEs in surface dust and urban soil were relatively low or negligible. The current research results may provide scientific supports for prevention and control of pollution and risks of OPEs.
Collapse
Affiliation(s)
- Jiang Yun
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Qian Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Mingshan Dou
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Lijun Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
7
|
Kim S, Kang K, Kim H, Seo M. In Vitro Toxicity Screening of Fifty Complex Mixtures in HepG2 Cells. TOXICS 2024; 12:126. [PMID: 38393221 PMCID: PMC10892977 DOI: 10.3390/toxics12020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
To develop the risk prediction technology for mixture toxicity, a reliable and extensive dataset of experimental results is required. However, most published literature only provides data on combinations containing two or three substances, resulting in a limited dataset for predicting the toxicity of complex mixtures. Complex mixtures may have different mode of actions (MoAs) due to their varied composition, posing difficulty in the prediction using conventional toxicity prediction models, such as the concentration addition (CA) and independent action (IA) models. The aim of this study was to generate an experimental dataset comprising complex mixtures. To identify the target complex mixtures, we referred to the findings of the HBM4EU project. We identified three groups of seven to ten components that were commonly detected together in human bodies, namely environmental phenols, perfluorinated compounds, and heavy metal compounds, assuming these chemicals to have different MoAs. In addition, a separate mixture was added consisting of seven organophosphate flame retardants (OPFRs), which may have similar chemical structures. All target substances were tested for cytotoxicity using HepG2 cell lines, and subsequently 50 different complex mixtures were randomly generated with equitoxic mixtures of EC10 levels. To determine the interaction effect, we calculated the model deviation ratio (MDR) by comparing the observed EC10 with the predicted EC10 from the CA model, then categorized three types of interactions: antagonism, additivity, and synergism. Dose-response curves and EC values were calculated for all complex mixtures. Out of 50 mixtures, none demonstrated synergism, while six mixtures exhibited an antagonistic effect. The remaining mixtures exhibited additivity with MDRs ranging from 0.50 to 1.34. Our experimental data have been formatted to and constructed for the database. They will be utilized for further research aimed at developing the combined CA/IA approaches to support mixture risk assessment.
Collapse
Affiliation(s)
- Sunmi Kim
- Chemical Analysis Center, Korea Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea; (K.K.); (H.K.); (M.S.)
| | - Kyounghee Kang
- Chemical Analysis Center, Korea Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea; (K.K.); (H.K.); (M.S.)
| | - Haena Kim
- Chemical Analysis Center, Korea Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea; (K.K.); (H.K.); (M.S.)
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Myungwon Seo
- Chemical Analysis Center, Korea Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea; (K.K.); (H.K.); (M.S.)
| |
Collapse
|
8
|
Ye C, Chen Z, Lin W, Dong Z, Han J, Zhang J, Ma X, Yu J, Sun X, Li Y, Zheng J. Triphenyl phosphate exposure impairs colorectal health by altering host immunity and colorectal microbiota. CHEMOSPHERE 2024; 349:140905. [PMID: 38065263 DOI: 10.1016/j.chemosphere.2023.140905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/24/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Colorectal diseases such as colorectal cancer (CRC) and inflammatory bowel disease (IBD) have become one of the most common public health concerns worldwide due to the increasing incidence. Environmental factors are one of the important causes of colorectal diseases, as they can affect the intestinal barrier function, immune response and microbiota, causing intestinal inflammation and tumorigenesis. Triphenyl phosphate (TPHP), a widely used organophosphorus flame retardant that can leach and accumulate in various environmental media and biota, can enter the human intestine through drinking water and food. However, the effects of TPHP on colorectal health have not been well understood. In this study, we investigated the adverse influence of TPHP exposure on colorectal cells (in vitro assay) and C57BL/6 mice (in vivo assay), and further explored the potential mechanism underlying the association between TPHP and colorectal disease. We found that TPHP exposure inhibited cell viability, increased apoptosis and caused G1/S cycle arrest of colorectal cells. Moreover, TPHP exposure damaged colorectal tissue structure, changed immune-related gene expression in the colorectal transcriptome, and disrupted the composition of colorectal microbiota. Importantly, we found that TPHP exposure upregulated chemokine CXCL10, which was involved in colorectal diseases. Our study revealed that exposure to TPHP had significant impacts on colorectal health, which may possibly stem from alterations in host immunity and the structure of the colorectal microbial community.
Collapse
Affiliation(s)
- Changchun Ye
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zilu Chen
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenhao Lin
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zepeng Dong
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jie Han
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingyi Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China
| | - Xueqian Ma
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Junhui Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Ying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China.
| | - Jianbao Zheng
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
9
|
Khani L, Martin L, Pułaski Ł. Cellular and physiological mechanisms of halogenated and organophosphorus flame retardant toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165272. [PMID: 37406685 DOI: 10.1016/j.scitotenv.2023.165272] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Flame retardants (FRs) are chemical substances used to inhibit the spread of fire in numerous industrial applications, and their abundance in modern manufactured products in the indoor and outdoor environment leads to extensive direct and food chain exposure of humans. Although once considered relatively non-toxic, FRs are demonstrated by recent literature to have disruptive effects on many biological processes, including signaling pathways, genome stability, reproduction, and immune system function. This review provides a summary of research investigating the impact of major groups of FRs, including halogenated and organophosphorus FRs, on animals and humans in vitro and/or in vivo. We put in focus those studies that explained or referenced the modes of FR action at the level of cells, tissues and organs. Since FRs are highly hydrophobic chemicals, their biophysical and biochemical modes of action usually involve lipophilic interactions, e.g. with biological membranes or elements of signaling pathways. We present selected toxicological information about these molecular actions to show how they can lead to damaging membrane integrity, damaging DNA and compromising its repair, changing gene expression, and cell cycle as well as accelerating cell death. Moreover, we indicate how this translates to deleterious bioactivity of FRs at the physiological level, with disruption of hormonal action, dysregulation of metabolism, adverse effects on male and female reproduction as well as alteration of normal pattern of immunity. Concentrating on these subjects, we make clear both the advances in knowledge in recent years and the remaining gaps in our understanding, especially at the mechanistic level.
Collapse
Affiliation(s)
- Leila Khani
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Leonardo Martin
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland; Department of Biochemistry and Molecular Biology, Federal University of São Paulo, São Paulo, Brazil
| | - Łukasz Pułaski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland.
| |
Collapse
|
10
|
Mendy A, Percy Z, Braun JM, Lanphear B, La Guardia MJ, Hale R, Yolton K, Chen A. Exposure to dust organophosphate and replacement brominated flame retardants during infancy and risk of subsequent adverse respiratory outcomes. ENVIRONMENTAL RESEARCH 2023; 235:116560. [PMID: 37419195 PMCID: PMC10528780 DOI: 10.1016/j.envres.2023.116560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Children are highly exposed to flame retardants in indoor environments, partly through inhalation. However, the associations of early life exposure to novel organophosphate (OPFRs) and replacement brominated flame retardants (RBFRs) with adverse respiratory outcomes during childhood are unclear. METHODS We used a prospective birth cohort of 234 children recruited from the greater Cincinnati, Ohio metropolitan area between 2003 and 2006. OPFRs and RBFRs were analyzed in dust sampled from the homes' main activity room and the children's bedroom floor at child age 1 year. Caregivers reported subsequent respiratory symptoms every six months until child age 5 years and we measured forced expiratory volume in 1 s as well as peak expiratory flow (PEF) at child age 5 years. We performed generalized estimating equations and linear regression modeling adjusted for covariates to examine the exposure-outcome associations. RESULTS Geometric means (GMs) (standard error [SE]) for dust concentrations were 10.27 (0.63) μg/g for total OPFRs (ΣOPFRs) and 0.48 (0.04) μg/g for total RBFRs (ΣRBFRs); GMs (SE) for dust loadings were 2.82 (0.26) μg/m2 for ΣOPFRs and 0.13 (0.01) μg/m2 for ΣRBFRs. Dust ∑OPFRs concentrations at age 1 year were associated with higher subsequent risks of wheezing (relative risk [RR]: 1.68, 95% confidence interval [CI]: 1.20-2.34), respiratory infections (RR: 4.01, 95% CI: 1.95-8.24), and hay fever/allergies (RR: 1.33, 95% CI: 1.10-1.60), whereas ∑OPFRs dust loadings at age 1 year were associated with higher risks of subsequent respiratory infections (RR: 1.87, 95% CI: 1.05-3.34) and hay fever/allergies (RR: 1.34, 95% CI: 1.19-1.51). PEF (mL/min) was lower with higher ∑OPFRs dust loadings (β: -12.10, 95% CI: -21.10, -3.10) and with the RBFR bis(2-ethylhexyl) tetrabromophthalate (β: -9.05, 95% CI: -17.67, -0.43). CONCLUSIONS Exposure to OPFRs and RBFRs during infancy may be a risk factor for adverse respiratory outcomes during childhood.
Collapse
Affiliation(s)
- Angelico Mendy
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Zana Percy
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Bruce Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Mark J La Guardia
- Virginia Institute of Marine Science, William and Mary, Gloucester Point, VA, USA
| | - Robert Hale
- Virginia Institute of Marine Science, William and Mary, Gloucester Point, VA, USA
| | - Kimberly Yolton
- Department of General Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
11
|
Zeng Y, Ma HM, Zhang QY, Tao L, Wang T, Wan C, Chen SJ, Mai BX. Complex polycyclic aromatic compound mixtures in PM 2.5 in a Chinese megacity: Spatio-temporal variations, toxicity, and source apportionment. ENVIRONMENT INTERNATIONAL 2023; 179:108159. [PMID: 37607426 DOI: 10.1016/j.envint.2023.108159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
Polycyclic aromatic compounds (PACs) are important toxic organic components in fine particulate matter (PM2.5), whereas the links between PM2.5 toxicity and associated PACs in ambient air are poorly understood. This study investigated the spatial-temporal variations of PACs in PM2.5 collected from 11 sampling sites across a Chinese megacity and characterized the reactive oxygen species (ROS) generation and cytotoxicity induced by organic extracts of PM2.5 based on cellular assays. The extra trees regression model based on machine learning and ridge regression were used to identify the key toxicants among complex PAC mixtures. The total concentrations of these PACs varied from 2.12 to 71.7 ng/m3 across the study city, and polycyclic aromatic hydrocarbons (PAHs) are the main PACs. The spatial variations of the toxicological indicators generally resembled those of the PAC concentrations, and the PM2.5 related to waste treatment facilities exhibited the strongest toxic potencies. The ROS generation was highly correlated with high molecular weight PAHs (MW302 PAHs), followed by PAHs with MW<302 amu and oxygenated PAHs, but not with nitrated PAHs and the plastics additives. The cell mortality showed weak correlations with these organic constituents. The associations between the biological endpoints and these PM2.5-bound contaminants were further confirmed by exposure to authentic chemicals. Four primary sources of PACs were identified, among which coal and biomass combustion sources (30.2% of the total PACs) and industrial sources (31.0%) were predominant. PACs emitted from industrial sources were highly associated with ROS generation in this city. Our findings highlight the potent ROS-generating potential of MW302 PAHs and the importance of industrial sources contributing to PM2.5 toxicity in this megacity, raising public concerns and further administration.
Collapse
Affiliation(s)
- Yuan Zeng
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Hui-Min Ma
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qian-Yu Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Tao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Tao Wang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Cong Wan
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - She-Jun Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
12
|
Scaramboni C, Campos MLAM, Dorta DJ, de Oliveira DP, de Medeiros SRB, de Oliveira Galvão MF, Dreij K. Reactive oxygen species-dependent transient induction of genotoxicity by retene in human liver HepG2 cells. Toxicol In Vitro 2023:105628. [PMID: 37302535 DOI: 10.1016/j.tiv.2023.105628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Retene is a polycyclic aromatic hydrocarbon (PAH) emitted mainly by biomass combustion, and despite its ubiquity in atmospheric particulate matter (PM), studies concerning its potential hazard to human health are still incipient. In this study, the cytotoxicity and genotoxicity of retene were investigated in human HepG2 liver cells. Our data showed that retene had minimal effect on cell viability, but induced DNA strand breaks, micronuclei formation, and reactive oxygen species (ROS) formation in a dose- and time-dependent manner. Stronger effects were observed at earlier time points than at longer, indicating transient genotoxicity. Retene activated phosphorylation of Checkpoint kinase 1 (Chk1), an indicator of replication stress and chromosomal instability, which was in accordance with increased formation of micronuclei. A protective effect of the antioxidant N-acetylcysteine (NAC) towards ROS generation and DNA damage signaling was observed, suggesting oxidative stress as a key mechanism of the observed genotoxic effects of retene in HepG2 cells. Altogether our results suggest that retene may contribute to the harmful effects caused by biomass burning PM and represent a potential hazard to human health.
Collapse
Affiliation(s)
- Caroline Scaramboni
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil; Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| | - Maria Lucia Arruda Moura Campos
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Daniel Junqueira Dorta
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP, Brazil
| | - Danielle Palma de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP, Brazil
| | | | | | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
13
|
Zhong Z, Liu X, Ruan Y, Li Z, Li J, Sun L, Hou S. Enhanced toxicity of 2,2-bis(chloromethyl) trimethylene bis[bis(2-chloroethyl) phosphate] (V6) by nanopolystyrene particles towards HeLa cells. Nanotoxicology 2023; 17:203-217. [PMID: 37115599 DOI: 10.1080/17435390.2023.2203238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
2,2-bis(chloromethyl) trimethylene bis[bis(2-chloroethyl) phosphate] (V6) has been widely used as an additive in a variety of plastics due to its extremely low toxicity. However, we showed in the study that once mixed with nanopolystyrene particles (NPs), the nontoxic V6 could exhibit significant toxicity to HeLa cells. The enhanced toxicity was much higher than the toxicity of NPs alone and was related to the size of NPs. The mixture of V6 and small polystyrene NPs (10 nm and 15 nm in radius) showed obvious toxicity to HeLa cells. The toxicity increased with the concentrations of both V6 and NPs. On the contrary, the mixture of V6 and larger NPs (25 nm, 50 nm, 100 nm, and 500 nm in radius) showed almost no toxicity even at extremely high concentrations (NPs: 100 mg/L; V6: 50 mg/L). The small NPs could enter the cells and accumulated in cytoplasm. However, the larger NPs did not distribute inside the cells. NPs efficiently adsorbed V6 on the surface. The mechanism of the enhanced toxicity was attributed to the increased intracellular reactive oxygen species (ROS) production and the regulation of gene expression concerning apoptosis and ROS scavenging. Our study not only showed that a safe chemical V6 could be turned to be toxic by NPs, but also pointed out a potential risk caused by the joint toxicity of 'safe' chemicals and plastic particles with small size.
Collapse
Affiliation(s)
- Zheng Zhong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou, China
| | - Xin Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou, China
| | - Yiming Ruan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou, China
| | - Ziwei Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou, China
| | - Junxian Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou, China
| | - Lili Sun
- Guangzhou Inspection Testing and Certification Group Co., Ltd, Guangzhou, China
| | - Sen Hou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou, China
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- Shandong Huapu Testing Technology Co., Ltd, Yantai, China
| |
Collapse
|
14
|
Ding E, Deng F, Fang J, Li T, Hou M, Liu J, Miao K, Yan W, Fang K, Shi W, Fu Y, Liu Y, Dong H, Dong L, Ding C, Liu X, Pollitt KJG, Ji JS, Shi Y, Cai Y, Tang S, Shi X. Association between Organophosphate Ester Exposure and Insulin Resistance with Glycometabolic Disorders among Older Chinese Adults 60-69 Years of Age: Evidence from the China BAPE Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:47009. [PMID: 37042841 PMCID: PMC10094192 DOI: 10.1289/ehp11896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/10/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Organophosphate esters (OPEs) are common endocrine-disrupting chemicals, and OPE exposure may be associated with type 2 diabetes (T2D). However, greater knowledge regarding the biomolecular intermediators underlying the impact of OPEs on T2D in humans are needed to understand biological etiology. OBJECTIVES We explored the associations between OPE exposure and glycometabolic markers among older Chinese adults 60-69 years of age to elucidate the underlying mechanisms using a multi-omics approach. METHODS This was a longitudinal panel study comprising 76 healthy participants 60-69 years of age who lived in Jinan city of northern China. The study was conducted once every month for 5 months, from September 2018 to January 2019. We measured a total of 17 OPEs in the blood, 11 OPE metabolites in urine, and 4 glycometabolic markers (fasting plasma glucose, glycated serum protein, fasting insulin, and homeostatic model assessment for insulin resistance). The blood transcriptome and serum/urine metabolome were also evaluated. The associations between individual OPEs and glycometabolic markers were explored. An adverse outcome pathway (AOP) was established to determine the biomolecules mediating the associations. RESULTS Exposure to five OPEs and OPE metabolites (trimethylolpropane phosphate, triphenyl phosphate, tri-iso-butyl phosphate, dibutyl phosphate, and diphenyl phosphate) was associated with increased levels of glycometabolic markers. The mixture effect analysis further indicated the adverse effect of OPE mixtures. Multi-omics analyses revealed that the endogenous changes in the transcriptional and metabolic levels were associated with OPE exposure. The putative AOPs model suggested that triggers of molecular initiation events (e.g., insulin receptor and glucose transporter type 4) with subsequent key events, including disruptions in signal transduction pathways (e.g., phosphatidylinositol 3-kinase/protein kinase B and insulin secretion signaling) and biological functions (glucose uptake and insulin secretion), may constitute the diabetogenic effects of OPEs. DISCUSSION OPEs are associated with the elevated risk of T2D among older Chinese adults 60-69 years of age. Implementing OPE exposure reduction strategies may help reduce the T2D burden among these individuals, if the relationship is causal. https://doi.org/10.1289/EHP11896.
Collapse
Affiliation(s)
- Enmin Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Minmin Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Juan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ke Miao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenyan Yan
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ke Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wanying Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanzheng Fu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanyuan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haoran Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changming Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaohui Liu
- National Protein Science Technology Center and School of Life Sciences, Tsinghua University, Beijing, China
| | - Krystal J. Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - John S. Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Lin Z, Zhang W, Li X, Du B, Li T, He H, Lu X, Zhang C, Liu Y, Ni J, Li L, Shi M. Triphenyl phosphate-induced macrophages dysfunction by activation TLR4-mediated ERK/NF-κB pathway. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36929861 DOI: 10.1002/tox.23778] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Triphenyl phosphate (TPHP) is one of the most widely used organic phosphorus flame retardants and is ubiquitous in the environment. Studies have been reported that TPHP may lead to obesity, neurotoxicity and reproductive toxicity, but its impact on the immune system is almost blank. The present study was aimed to investigate the potential immunotoxicity of TPHP on macrophages and its underlying mechanism. The results demonstrated for the first time that TPHP (12.5, 25, and 50 μM)-induced F4/80+ CD11c+ phenotype of RAW 264.7 macrophages, accompanied by increased mRNA levels of inflammatory mediators, antigen-presenting genes (Cd80, Cd86, and H2-Aa), and significantly enhanced the phagocytosis of macrophage. Meanwhile, TPHP increased the expression of Toll-like receptor 4 (TLR4), and its co-receptor CD14, leading to significant activation of the downstream ERK/NF-κB pathway. However, co-exposure of cells to TAK-242, a TLR4 inhibitor, suppressed TPHP-induced F4/80+ CD11c+ phenotype, and down-regulated inflammatory mediators and antigen-presentation related genes, via blocked the TLR4/ERK/NF-κB pathway. Taken together, our results suggested that TPHP could induce macrophage dysfunction through activating TLR4-mediated ERK/NF-κB signaling pathway, and it may be the potential reason for health-threatening consequences.
Collapse
Affiliation(s)
- Zeheng Lin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Wei Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Xing Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Bohai Du
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Tianlan Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Haoqi He
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Xianzhu Lu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Chunmei Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Yiwa Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Jindong Ni
- Precision Key Laboratory of Public Health, School of Public Health and Institute of Public Health and Wellness, Guangdong Medical University, Dongguan, China
| | - Li Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| |
Collapse
|
16
|
Xie J, Tu H, Chen Y, Chen Z, Yang Z, Liu Y. Triphenyl phosphate induces clastogenic effects potently in mammalian cells, human CYP1A2 and 2E1 being major activating enzymes. Chem Biol Interact 2023; 369:110259. [PMID: 36372259 DOI: 10.1016/j.cbi.2022.110259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
As a new-type flame retardant and toxic substance, triphenyl phosphate (TPP) is a ubiquitous pollutant present even in human blood. TPP is transformed by human CYP enzymes to oxidized/dealkylated metabolites. The impact of TPP metabolism on its toxicity, however, remains unclear. In this study, the genotoxicity of TPP in several mammalian cell lines and its relevance to CYP/sulfortransferase (SULT) activities were investigated. The results indicated that TPP induced micronucleus formation at ≥1 μM concentrations in a human hepatoma (C3A, endogenous CYPs being substantial) cell line, which was abolished by 1-aminobenzotriazole (CYPs inhibitor). In cell line HepG2 (parental to C3A with lower CYP expression) TPP was inactive up to 10 μM, while pretreatment with ethanol (CYP2E1 inducer), PCB 126 (CYP1A inducer), or rifampicin (CYP3A inducer) led to micronucleus formation by TPP. In V79-Mz and V79-derived cells expressing human CYP1A1 TPP was inactive (up to 32 μM), and in cells expressing human CYP1B1, 2B6 and 3A4 it induced micronucleus weakly (positive only at 32 μM). However, TPP induced micronucleus potently in V79-derived cells expressing human CYP1A2, while this effect was drastically reduced by human SULT1A1 co-expression; likewise, TPP was inactive in cells expressing both human CYP2E1 and SULT1A1, but became positive with pentachlorophenol (inhibitor of SULT1) co-exposure. Moreover, in C3A cells TPP selectively induced centromere-free micronucleus (immunofluorescent assay), and TPP increased γ-H2AX (by Western blot, indicating double-strand DNA breaks). In conclusion, this study suggests that TPP is potently clastogenic, human CYP1A2 and 2E1 being major activating enzymes while SULT1A1 involved in detoxification.
Collapse
Affiliation(s)
- Jiayi Xie
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Hongwei Tu
- Guangdong Provincial Center for Disease Control and Prevention, Qunxian Road, Panyu District, Guangzhou, 511430, China
| | - Yijing Chen
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Zhihong Chen
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Zongying Yang
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|
17
|
Zhou Y, Liao H, Yin S, Wang P, Ye X, Zhang J. Aryl-, halogenated- and alkyl- organophosphate esters induced oxidative stress, endoplasmic reticulum stress and NLRP3 inflammasome activation in HepG2 cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120559. [PMID: 36328282 DOI: 10.1016/j.envpol.2022.120559] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Organophosphate esters (OPEs) are a group of extensively used man-made chemicals with diverse substituents that are ubiquitously detected in human-related samples including serum, breastmilk, food and house dust. The understanding of their toxicological effects and potential mechanisms on hepatocytes is still limited. In this study, nine most frequently detected OPEs were selected and divided into three subgroups (aryl-, halogenated- and alkyl-OPEs) based on their substituents. The cytotoxicity, apoptosis, oxidative stress, endoplasmic reticulum (ER) stress and NLRP3 inflammasome activation induced by OPEs were evaluated in human hepatocellular carcinomas HepG2 cells. All OPEs induced apoptosis likely through a caspase-dependent apoptotic pathway. The activities of anti-oxidative enzyme SOD and CAT exhibited sensitive responses after OPEs treatment for 6 h. The OPEs induced ROS overproduction, DNA damage, endoplasmic reticulum (ER) stress and NLRP3 inflammasome activation varied among aryl-, halogenated- and alkyl-OPEs. Halogenated- and alkyl- OPEs induced overproduction of ROS and DNA damage, and elevated ER stress and NLRP3 inflammasome activation are observed aryl-OPEs induced cytotoxicity.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Hanyu Liao
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Shanshan Yin
- Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Pengqiao Wang
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jianyun Zhang
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
18
|
Wang H, Jing C, Peng H, Liu S, Zhao H, Zhang W, Chen X, Hu F. Parental whole life-cycle exposure to tris (2-chloroethyl) phosphate (TCEP) disrupts embryonic development and thyroid system in zebrafish offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114313. [PMID: 36410141 DOI: 10.1016/j.ecoenv.2022.114313] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Tris (2-chloroethyl) phosphate (TCEP), an emerging environmental pollutant, has been frequently detected in natural waters. The objective of this study was to investigate possible parental transfer of TCEP and transgenerational effects on the early development and thyroid hormone homeostasis in F1 larvae following parental whole life-cycle exposure to TCEP. To this end, zebrafish (Danio rerio) embryos were exposed to environmentally relevant concentrations (0.8, 4, 20 and 100 μg/L) of TCEP for 120 days until sexual maturation. Parental exposure to TCEP resulted in significant levels of TCEP, developmental toxicity including decreased survival and final hatching rates, accelerated heart rate and elevated malformation rate, as well as induction of oxidative stress and cell apoptosis in F1 offspring. In F1 eggs, declined thyroxin (T4) levels were observed, consistent with those in plasma of F0 adult females, indicating the maternal transfer of thyroid endocrine disruption to the offspring. In addition, mRNA levels of several genes along the hypothalamic-pituitary-thyroid (HPT) axis were significantly modified in F1 larvae, which could be linked to transgenerational developmental toxicity and thyroid hormone disruption. For the first time, we revealed that the parental exposure to environmentally relevant levels of TCEP could cause developmental toxicity and thyroid endocrine disruption in subsequent unexposed generation.
Collapse
Affiliation(s)
- Hongkai Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Jing
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hangke Peng
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shangshu Liu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haocheng Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| | - Fengxiao Hu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
19
|
Wang X, Li F, Teng Y, Ji C, Wu H. Potential adverse outcome pathways with hazard identification of organophosphate esters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158093. [PMID: 35985583 DOI: 10.1016/j.scitotenv.2022.158093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Data-driven analysis and pathway-based approaches contribute to reasonable arrangements of limited resources and laboratory tests for continuously emerging commercial chemicals, which provides opportunities to save time and effort for toxicity research. With the widespread usage of organophosphate esters (OPEs) on a global scale, the concentrations generally reached up to micromolar range in environmental media and even in organisms. However, potential adverse effects and toxicity pathways of OPEs have not been systematically assessed. Therefore, it is necessary to review the current situation, formulate the future research priorities, and characterize toxicity mechanisms via data-driven analysis. Results showed that the early toxicity studies focused on neurotoxicity, cytotoxicity, and metabolic disorders. Then the main focus shifted to the mechanisms of cardiotoxicity, endocrine disruption, hepatocytes, reproductive and developmental toxicity to vulnerable sub-populations, such as infants and embryos, affected by OPEs. In addition, several novel OPEs have been emerging, such as bis(2-ethylhexyl)-phenyl phosphate (HDEHP) and oxidation derivatives (OPAsO) generated from organophosphite antioxidants (OPAs), leading to multiple potential ecological and human health risks (neurotoxicity, hepatotoxicity, developmental toxicity, etc.). Notably, in-depth statistical analysis was promising in encapsulating toxicological information to develop adverse outcome pathways (AOPs) frameworks. Subsequently, network-centric analysis and quantitative weight-of-evidence (QWOE) approaches were utilized to construct and evaluate the putative AOPs frameworks of OPEs, showing the moderate confidences of the developed AOPs. In addition, frameworks demonstrated that several events, such as nuclear receptor activation, reactive oxygen species (ROS) production, oxidative stress, and DNA damage, were involved in multiple different adverse outcome (AO), and these AOs had certain degree of connectivity. This study brought new insights into facilitating the complement of AOP efficiently, as well as establishing toxicity pathways framework to inform risk assessment of emerging OPEs.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Yuefa Teng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
20
|
Jannuzzi AT, Yilmaz Goler AM, Alpertunga B. Ubiquitin proteasomal system is a potential target of the toxic effects of organophosphorus flame retardant triphenyl phosphate. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104005. [PMID: 36367495 DOI: 10.1016/j.etap.2022.104005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The consumption of the widely used flame retardant Triphenyl phosphate (TPP) is increasing. It is now frequently detected in the environment and also domestically. Although the possibility of dermal exposure to TPP is quite high, little is known about its potential molecular toxicity mechanisms. In this study, we found that TPP caused cytotoxicity on human skin keratinocytes (HaCaT) and significantly inhibited the proliferation and cell migration in a concentration-dependent manner. Additionally, HaCaT cells were sensitive to TPP-induced apoptosis. Reactive oxygen species production was induced with TPP, which increased the protein carbonylation and lipid peroxidation levels. Moreover, TPP inhibited proteasome activity and increased the accumulation of ubiquitinated proteins. Exposure to TPP significantly increased the HSP90, HSP70, GRP94 and GRP78 protein levels. Overall, our findings indicate that TPP may pose a risk to human health and contribute to the current understanding of the risks of TPP at the molecular level.
Collapse
Affiliation(s)
- Ayse Tarbin Jannuzzi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| | - Ayse Mine Yilmaz Goler
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Buket Alpertunga
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey; Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Turkey.
| |
Collapse
|
21
|
Yan M, Zhu H, Shi Y, Xu K, Chen S, Zou Q, Sun H, Kannan K. Profiling of multiple classes of flame retardants in house dust in China: Pattern analysis and human exposure assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:120012. [PMID: 36007786 DOI: 10.1016/j.envpol.2022.120012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Legacy [e.g., brominated- (BFRs)] and alternative [e.g., organophosphate- (OPFRs) and nitrogenous- (NFRs)] flame retardants have a propensity to migrate out of consumer products, and thus are dispersed in indoor microenvironments. In this study, simultaneous presence of 11 BFRs, 18 OPFRs and 11 NFRs were measured in house dust collected from Tianjin, China. OPFRs were found at the highest concentrations, with a median value of 3200 ng/g, followed by NFRs (2600) and BFRs (1600). Tris(2-butoxyethyl) phosphate (median: 1800 ng/g), melamine (1100), and BDE-209 (870) were the top three most abundant chemicals in the respective groups. Location-specific patterns of flame retardant concentrations were found with 30%, 20% and 10% of samples were predominated by OPFRs, NFRs and BFRs, respectively, and the remaining samples contained by two or more of the chemical groups occurring concurrently. Network and cluster analysis results indicated the existence of multiple sources of flame retardants in the indoor microenvironment. Estimated human daily intakes via indoor dust ingestion were approximately several tens of ng/kg bw/day and were below their respective reference dose values. Our results indicate widespread occurrence of multiple flame retardant families in indoor dust and suggest need for continued monitoring and efforts to reduce exposures through dust ingestion.
Collapse
Affiliation(s)
- Mengqi Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ke Xu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shucong Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qiang Zou
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
22
|
Yan Z, Feng C, Jin X, Wang F, Liu C, Li N, Qiao Y, Bai Y, Wu F, Giesy JP. Organophosphate esters cause thyroid dysfunction via multiple signaling pathways in zebrafish brain. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 12:100198. [PMID: 36157343 PMCID: PMC9500371 DOI: 10.1016/j.ese.2022.100198] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 05/04/2023]
Abstract
Organophosphate esters (OPEs) are widespread in various environmental media, and can disrupt thyroid endocrine signaling pathways. Mechanisms by which OPEs disrupt thyroid hormone (TH) signal transduction are not fully understood. Here, we present in vivo-in vitro-in silico evidence establishing OPEs as environmental THs competitively entering the brain to inhibit growth of zebrafish via multiple signaling pathways. OPEs can bind to transthyretin (TTR) and thyroxine-binding globulin, thereby affecting the transport of TH in the blood, and to the brain by TTR through the blood-brain barrier. When GH3 cells were exposed to OPEs, cell proliferation was significantly inhibited given that OPEs are competitive inhibitors of TH. Cresyl diphenyl phosphate was shown to be an effective antagonist of TH. Chronic exposure to OPEs significantly inhibited the growth of zebrafish by interfering with thyroperoxidase and thyroglobulin to inhibit TH synthesis. Based on comparisons of modulations of gene expression with the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, signaling pathways related to thyroid endocrine functions, such as receptor-ligand binding and regulation of hormone levels, were identified as being affected by exposure to OPEs. Effects were also associated with the biosynthesis and metabolism of lipids, and neuroactive ligand-receptor interactions. These findings provide a comprehensive understanding of the mechanisms by which OPEs disrupt thyroid pathways in zebrafish.
Collapse
Key Words
- AChE, acetylcholinesterase
- ANOVA, analysis of variance
- BCF, bioconcentration factor
- BFR, brominated flame retardant
- CD-FBS, charcoal-dextran-treated fetal bovine serum
- CDP, cresyl diphenyl phosphate
- Competitive inhibition assay
- DEG, differentially expressed gene
- DKA, β-diketone antibiotic
- DMSO, dimethyl sulfoxide
- EAS, estrogen
- FBS, fetal bovine serum
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GO, Gene Ontology
- HPLC-MS/MS, high-performance liquid chromatograph interfaced with a mass spectrometer
- HPT, hypothalamic–pituitary–thyroid
- HS, horse serum
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- MAPK, mitogen-activated protein kinase
- Molecular docking simulation
- NIS, Na+/I− symporter
- OD490, optical density
- OPE, organophosphate ester
- OPFR, organophosphate flame retardant
- Organophosphate ester
- P/S, penicillin–streptomycin
- PBDE, polybrominated diphenyl ether
- PBS, phosphate-buffered saline
- RIC20/50, concentration inhibiting 20%/50%
- T4, thyroxin
- TBG, thyroxine-binding globulin
- TCIPP, tris(2-chloroisopropyl) phosphate
- TDCIPP, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP)
- TDCIPP-d15, tris(1,3-dichloroisopropyl) phosphate-D15
- TG, thyroglobulin
- TH, thyroid hormone
- THR, thyroid hormone receptor
- TIPP, tris(isopropyl) phosphate
- TPHP, triphenyl phosphate
- TPO, thyroperoxidase
- TRβ, thyroid hormone receptor β
- TTR, transthyretin
- Thyroid endocrine function
- Transcriptome sequencing
- androgen, and steroidogenesis
- cga, glycoprotein hormone
- qRT-PCR, quantitative real-time PCR
- tshβa, thyroid-stimulating hormone beta subunit a
Collapse
Affiliation(s)
- Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Corresponding author.
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China
- Corresponding author.
| | - Fangkun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Cong Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yu Qiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - John P. Giesy
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Environmental Sciences, Baylor University, Waco, TX, USA
| |
Collapse
|
23
|
Ye L, Zhang X, Wang P, Zhang Y, He S, Li Y, Li S, Liang K, Liao S, Gao Y, Zhou S, Peng Q. Low concentration triphenyl phosphate fuels proliferation and migration of hepatocellular carcinoma cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:2445-2459. [PMID: 35776891 DOI: 10.1002/tox.23609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Organophosphate flame retardants (OPFRs) have been widely used due to their unique properties. The OPFRs are mainly metabolized in the liver. However, whether the plasma level of OPFRs was involved in the progression of liver cancer remains unclear. Triphenyl phosphate (TPP) is one of the OPFRs that are mostly detected in environment. In this study, we performed CCK8, ATP, and EdU analyses to evaluate the effect of TPP at the concentrations at 0.025-12.8 μM on the proliferation, invasion, and migration of Hep3B, a hepatocellular carcinoma (HCC) cell line. Tumor-bearing mouse model was used for in vivo validation. The results showed that low concentrations of TPP at (0.025-0.1 μM), which are obtained in the plasma of patients with cancers, remarkably promoted cell invasion and migration of Hep3B cells. Animal experiments confirmed that TPP treatment significantly enhanced tumor growth in the xenograft HCC model. To explore the possible molecular mechanisms that might mediate the actions of TPP on Hep3B cells, we profiled gene expression in groups treated with or without TPP at the concentrations of 0.05 and 0.1 μM using transcriptional sequencing. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and Protein-protein interaction (PPI) analyses demonstrated that pathways affected by differentially expressed genes (DEGs) were mainly in nuclear-transcribed mRNA catabolic processes, cytosolic ribosome, and ATPase activity. A 0.05 and 0.1 μM TPP led to up-regulation of a series of genes including EREG, DNPH1, SAMD9, DUSP5, PFN1, CKB, MICAL2, SCUBE3, and CXCL8, but suppressed the expression of MCC. These genes have been shown to be associated with proliferation and movement of cells. Taken together, our findings suggest that low concentration of TPP could fuel the proliferation, invasion, and migration of HCC cells. Thus, TPP is a risk factor in the progression of HCC in human beings.
Collapse
Affiliation(s)
- Liang Ye
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xu Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Wang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Zhang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shujiao He
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shao Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kangyan Liang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuguang Liao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Shuqing Zhou
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qing Peng
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Salambanga FRD, Wingert L, Valois I, Lacombe N, Gouin F, Trépanier J, Debia M, Soszczyńska E, Twarużek M, Kosicki R, Dias M, Viegas S, Caetano L, Viegas C, Marchand G. Microbial contamination and metabolite exposure assessment during waste and recyclable material collection. ENVIRONMENTAL RESEARCH 2022; 212:113597. [PMID: 35660405 DOI: 10.1016/j.envres.2022.113597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Waste workers are exposed to bioaerosols when handling, lifting and dumping garbage. Bioaerosol exposure has been linked to health problems such as asthma, airway irritant symptoms, infectious, gastrointestinal and skin diseases, and cancer. Our objective was to characterize the exposure of urban collectors and drivers to inhalable bioaerosols and to measured the cytotoxic effect of air samples in order to evaluate their health risk. Personal and ambient air sampling were conducted during the summer of 2019. Workers from 12 waste trucks collecting recyclables, organic waste or compost were evaluated. Bacteria and fungi were cultured, molecular biology methods were used to detect microbial indicators, cytotoxic assays were performed and endotoxins and mycotoxins were quantified. Domestic waste collectors were exposed to concentrations of bacteria and endotoxins above the recommended limits, and Aspergillus section Fumigati was detected at critical concentrations in their breathing zones. Cytotoxic effects were observed in many samples, demonstrating the potential health risk for these workers. This study establishes evidence that waste workers are exposed to microbial health risks during collection. It also demonstrates the relevance of cytotoxic assays in documenting the general toxic risk found in air samples. Our results also suggest that exposures differ depending on the type of waste, job title and discharge/unloading locations.
Collapse
Affiliation(s)
- Fabiola R D Salambanga
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada; Institut de Recherche Robert-Sauvé en Santé et Sécurité Du Travail, Canada
| | - Loïc Wingert
- Institut de Recherche Robert-Sauvé en Santé et Sécurité Du Travail, Canada
| | - Isabelle Valois
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada
| | - Nancy Lacombe
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada
| | - François Gouin
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada
| | - Julien Trépanier
- Institut de Recherche Robert-Sauvé en Santé et Sécurité Du Travail, Canada
| | - Maximilien Debia
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada
| | - Ewelina Soszczyńska
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Magdalena Twarużek
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Robert Kosicki
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Marta Dias
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Canada
| | - Susana Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Canada; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal
| | - Liliana Caetano
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Carla Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Canada; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal
| | - Geneviève Marchand
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada; Institut de Recherche Robert-Sauvé en Santé et Sécurité Du Travail, Canada.
| |
Collapse
|
25
|
Yu Y, Mo W, Zhu X, Yu X, Sun J, Deng F, Jin L, Yin H, Zhu L. Biodegradation of tricresyl phosphates isomers by a novel microbial consortium and the toxicity evaluation of its major products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154415. [PMID: 35276152 DOI: 10.1016/j.scitotenv.2022.154415] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/05/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
A novel microbial consortium ZY1 capable of degrading tricresyl phosphates (TCPs) was isolated, it could quickly degrade 100% of 1 mg/L tri-o-cresyl phosphate (ToCP), tri-p-cresyl phosphate (TpCP) and tri-m-cresyl phosphate (TmCP) within 36, 24 and 12 h separately and intracellular enzymes occupied the dominated role in TCPs biodegradation. Additionally, triphenyl phosphate (TPHP), 2-ethylhexyl diphenyl phosphate (EHDPP), bisphenol-A bis (diphenyl phosphate) (BDP), tris (2-chloroethyl) phosphate (TCEP) and tris (1-chloro-2-propyl) phosphate (TCPP) could also be degraded by ZY1 and the aryl-phosphates was easier to be degraded. The TCPs reduction observed in freshwater and seawater indicated that high salinity might weak the degradability of ZY1. The detected degradation products suggested that TCPs was mainly metabolized though the hydrolysis and hydroxylation. Sequencing analysis presented that the degradation of TCPs relied on the cooperation between sphingobacterium, variovorax and flavobacterium. The cytochrome P450/NADPH-cytochrome P450 reductase and phosphatase were speculated might involve in TCPs degradation. Finally, toxicity evaluation study found that the toxicity of the diesters products was lower than their parent compound based on the generation of the intracellular reactive oxygen (ROS) and the apoptosis rate of A549 cell. Taken together, this research provided a new insight for the bioremediation of TCPs in actual environment.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Wentao Mo
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xifen Zhu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Fucai Deng
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
26
|
Wang Y, Sha W, Zhang C, Li J, Wang C, Liu C, Chen J, Zhang W, Song Y, Wang R, Gao P. Toxic effect of triphenyl phosphate (TPHP) on Cyprinus carpio and the intestinal microbial community response. CHEMOSPHERE 2022; 299:134463. [PMID: 35367484 DOI: 10.1016/j.chemosphere.2022.134463] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Triphenyl phosphate (TPHP) is a kind of organophosphorus flame retardants, and its use is increasing annually. However, the toxic effect associated with exposure to it has not been adequately investigated. Therefore, in this study, we determined the toxic dose of TPHP in the economic fish species, Cyprinus carpio. Acute and subacute toxicity tests were conducted, and the enrichment of TPHP in the gills, brain, intestines, and liver were determined by Liquid Chromatography-Mass Spectrometry, and the response of carp gut microbial community to TPHP stress was determined using 16 S rRNA gene high-throughput sequencing. Results showed that the 96-h LC50 of TPHP in carp was 7 mg/L. At the 7 d, the order of TPHP absorption was as follows (from highest to lowest): gills > intestine > liver > brain, but at the 28 d and the purification period, the order of TPHP absorption was brain > gills > intestine > liver. TPHP exposure at 3.5 mg/L decreased α-diversity of the intestinal microbial community (p < 0.05), and altered community composition, in particular the relative abundance of dominant microbial populations. Functional profiles of the microbial communities predicted based on 16 S rRNA gene data showed upregulation in the degradation of exogenous substances and energy metabolism of the TPHP-treated groups (p < 0.05), suggesting that intestinal microbial taxa play a role in reducing TPHP toxicity. The results provide insights that could facilitate risk assessments of TPHP pollutants in aquatic environments and the management of associated water pollution.
Collapse
Affiliation(s)
- Ying Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Weilai Sha
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Chen Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Jiayu Li
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Chao Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Chunchen Liu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Junfeng Chen
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Wanglong Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Yuhao Song
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Renjun Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, PR China.
| | - Peike Gao
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, PR China.
| |
Collapse
|
27
|
Saquib Q, Al-Salem AM, Siddiqui MA, Ansari SM, Zhang X, Al-Khedhairy AA. Tris(2-butoxyethyl) phosphate (TBEP): A flame retardant in solid waste display hepatotoxic and carcinogenic risks for humans. CHEMOSPHERE 2022; 296:133977. [PMID: 35216979 DOI: 10.1016/j.chemosphere.2022.133977] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/14/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Recent reports have confirmed that tris(2-butoxyethyl) phosphate (TBEP), an organophosphorous flame retardants (OPFRs), profoundly detected in the dust from solid waste (SW), e-waste dumping sites, landfills, and wastewater treatment facilities. Herein, we evaluated the hepatotoxic and carcinogenic potential of TBEP in human liver cells (HepG2). HepG2 cells exhibited cytotoxicity after 3 days of exposure, especially at greater concentrations (100-400 μM). TBEP induced severe DNA damage and cell cycle disturbances that trigger apoptosis in HepG2. TBEP treated cells showed an elevated level of esterase, nitric oxide (NO), reactive oxygen species (ROS), and influx of Ca2+ in exposed cells. Thereby, causing oxidative stress and proliferation inhibition. TBEP exposed HepG2 cells exhibited dysfunction in mitochondrial membrane potential (ΔΨm). Immunofluorescence analysis demonstrated cytoplasmic and nucleolar localization of DNA damage (P53) and apoptotic (caspase 3 and 9) proteins in HepG2 grown in the presence of TBEP for 3 days. Within the cohort of 84 genes of cancer pathway, 10 genes were upregulated and 3 genes were downregulated. The transcriptomic and toxicological data categorically emphasize that TBEP is hepatotoxic, and act as a putative carcinogenic agent. Thereby, direct or indirect ingestion of TBEP containing dusts by workers involved in handling and disposal of SW, as well as residents living nearby the disposal areas are prone to its adverse health risks.
Collapse
Affiliation(s)
- Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Abdullah M Al-Salem
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Maqsood A Siddiqui
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sabiha M Ansari
- Botany & Microbiology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Abdulaziz A Al-Khedhairy
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
28
|
Meng Y, Xu X, Niu D, Xu Y, Qiu Y, Zhu Z, Zhang H, Yin D. Organophosphate flame retardants induce oxidative stress and Chop/Caspase 3-related apoptosis via Sod1/p53/Map3k6/Fkbp5 in NCI-1975 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153160. [PMID: 35051466 DOI: 10.1016/j.scitotenv.2022.153160] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Organophosphate flame retardants (OPFRs) have been ubiquitously detected in dust and air which could cause damage to human health through inhalation. Currently the understanding of their adverse effects and potential mechanisms on the lung are still limited. In this study, human non-small cell lung cancer cell line NCI-H1975 was used to investigate the cytotoxicity, oxidative stress, cellular apoptosis of 9 typical OPFRs with concentrations varied from 0 to 200 μM, and their toxic mechanism associated with molecular structure was compared. After 72 h, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) displayed the highest cytotoxicity, followed by 2-ethylhexyl diphenyl phosphate (EHDPP), tris(2-butoxyethyl) phosphate (TBOEP) and tris(2-chloroisopropyl) phosphate (TCIPP), while tris(2-chloroethyl) phosphate (TCEP) and tris(2-ethylhexyl) phosphate (TEHP) exhibited the least suppression on cell viability. These results indicated that the variation of cytotoxicity on OPFRs could only be partially explained by their ester linkage. Moreover, the overexpression of intracellular reactive oxygen species (ROS), free Ca2+ and cellular apoptosis suggested that exposure to OPFRs can lead to apoptosis related to oxidative stress. Six genes associated with oxidative stress and apoptosis were upregulated dramatically compared with the control, demonstrating OPFRs induced Chop/Caspase 3-related apoptosis by activating Sod1/p53/Map3k6/Fkbp5 expression in NCI-H1975 cells. This is the first study to investigate cytotoxicity and related mechanism on commonly-used OPFRs in NCI-H1975 cells.
Collapse
Affiliation(s)
- Yuan Meng
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Xiaojuan Xu
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Dong Niu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Yangjie Xu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Hua Zhang
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
29
|
Saquib Q, Al-Salem AM, Siddiqui MA, Ansari SM, Zhang X, Al-Khedhairy AA. Cyto-Genotoxic and Transcriptomic Alterations in Human Liver Cells by Tris (2-Ethylhexyl) Phosphate (TEHP): A Putative Hepatocarcinogen. Int J Mol Sci 2022; 23:ijms23073998. [PMID: 35409358 PMCID: PMC8999606 DOI: 10.3390/ijms23073998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
Tris (2-ethylhexyl) phosphate (TEHP) is an organophosphate flame retardant (OPFRs) which is extensively used as a plasticizer and has been detected in human body fluids. Contemporarily, toxicological studies on TEHP in human cells are very limited and there are few studies on its genotoxicity and cell death mechanism in human liver cells (HepG2). Herein, we find that HepG2 cells exposed to TEHP (100, 200, 400 µM) for 72 h reduced cell survival to 19.68%, 49.83%, 58.91% and 29.08%, 47.7% and 57.90%, measured by MTT and NRU assays. TEHP did not induce cytotoxicity at lower concentrations (5, 10, 25, 50 µM) after 24 h and 48 h of exposure. Flow cytometric analysis of TEHP-treated cells elevated intracellular reactive oxygen species (ROS), nitric oxide (NO), Ca++ influx and esterase levels, leading to mitochondrial dysfunction (ΔΨm). DNA damage analysis by comet assay showed 4.67, 9.35, 13.78-fold greater OTM values in TEHP (100, 200, 400 µM)-treated cells. Cell cycle analysis exhibited 23.1%, 29.6%, and 50.8% of cells in SubG1 apoptotic phase after TEHP (100, 200 and 400 μM) treatment. Immunofluorescence data affirmed the activation of P53, caspase 3 and 9 proteins in TEHP-treated cells. In qPCR array of 84 genes, HepG2 cells treated with TEHP (100 µM, 72 h) upregulated 10 genes and downregulated 4 genes belonging to a human cancer pathway. Our novel data categorically indicate that TEHP is an oxidative stressor and carcinogenic entity, which exaggerates mitochondrial functions to induce cyto- and genotoxicity and cell death, implying its hepatotoxic features.
Collapse
Affiliation(s)
- Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (M.A.S.); (A.A.A.-K.)
- Correspondence: or ; Tel.: +966-114-675-768
| | - Abdullah M. Al-Salem
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (M.A.S.); (A.A.A.-K.)
| | - Maqsood A. Siddiqui
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (M.A.S.); (A.A.A.-K.)
| | - Sabiha M. Ansari
- Botany and Microbiology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China;
| | - Abdulaziz A. Al-Khedhairy
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (M.A.S.); (A.A.A.-K.)
| |
Collapse
|
30
|
Yu X, Jin X, Tang J, Wang N, Yu Y, Sun R, Deng F, Huang C, Sun J, Zhu L. Metabolomic analysis and oxidative stress response reveals the toxicity in Escherichia coli induced by organophosphate flame retardants tris(2-chloroethyl) phosphate and triphenyl phosphate. CHEMOSPHERE 2022; 291:133125. [PMID: 34861260 DOI: 10.1016/j.chemosphere.2021.133125] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Organophosphate flame retardants (OPFRs) are emerging environmental pollutants that are increasingly being used in consumer commodities. The adverse effects on biota induced by tris(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPHP) have become a growing concern. Unfortunately, toxic mechanisms at the molecular level for OPFRs in organisms are still lacking. Herein, Escherichia coli (E.coli) was exposed to TCEP and TPHP for 24 and 48 h to reveal oxidative stress response and molecular toxicity mechanisms. The results indicated that promotion of ROS overload occurred at higher dosages groups. The levels of SOD and CAT were significantly elevated along with the increase of MDA attributed to lipid peroxidation. Additionally, apoptosis rates increased, accompanied by a decline in membrane potential and Na+/K+-ATPase and Ca2+/Mg2+-ATPase contents, signifying that E. coli cytotoxicity induced by TCEP and TPHP was mediated by oxidative stress. Based on metabolomic analysis, different metabolic pathways were disrupted, including glycolysis/gluconeogenesis, pentose phosphate metabolism, purine metabolism, glutathione metabolism, amino acid biosynthesis, butanoate metabolism, alanine and aspartate metabolism. Most differentially expressed metabolites were downregulated, indicating an inhibitory effect on metabolic functions and key metabolic pathways. These findings generated new insights into the potential environmental risks of OPFRs in aquatic organisms.
Collapse
Affiliation(s)
- Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Xu Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jin Tang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Nan Wang
- Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Rongrong Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Fucai Deng
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Chudan Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
31
|
Okrasa M, Leszczyńska M, Sałasińska K, Szczepkowski L, Kozikowski P, Nowak A, Szulc J, Adamus-Włodarczyk A, Gloc M, Majchrzycka K, Ryszkowska J. Viscoelastic Polyurethane Foams with Reduced Flammability and Cytotoxicity. MATERIALS (BASEL, SWITZERLAND) 2021; 15:151. [PMID: 35009298 PMCID: PMC8746040 DOI: 10.3390/ma15010151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Consistent and proper use of respiratory protective devices (RPD) is one of the essential actions that can be taken to reduce the risk of exposure to airborne hazards, i.e., biological and nonbiological aerosols, vapours, and gases. Proper fit of the facepiece and comfort properties of RPDs play a crucial role in effective protection and acceptance of RPDs by workers. The objective of the present paper was to develop viscoelastic polyurethane foams for use in RPD seals characterised by proper elasticity, allowing for the enhancement of the device fit to the face and the capability of removing moisture from the skin in order to improve the comfort of RPD use. Moreover, it was pivotal to ensure the non-flammability of the foams, as well as a simultaneous reduction in their cytotoxicity. The obtained foams were characterised using scanning electron microscopy, infrared spectroscopy, thermogravimetry, and differential scanning calorimetry. Measurements also involved gel fraction, apparent density, compression set, rebound resilience, wettability, flammability, and cytotoxicity. The results are discussed in the context of the impact of modifications to the foam formulation (i.e., flame-retardant type and content) on the desired foam properties. The test results set directions for future works aimed to develop viscoelastic polyurethane foams that could be applied in the design of respiratory protective devices.
Collapse
Affiliation(s)
- Małgorzata Okrasa
- Department of Personal Protective Equipment, Central Institute for Labour Protection—National Research Institute, Wierzbowa 48, 90-133 Lodz, Poland; (A.A.-W.); (K.M.)
| | - Milena Leszczyńska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warszawa, Poland; (M.L.); (K.S.); (M.G.); (J.R.)
| | - Kamila Sałasińska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warszawa, Poland; (M.L.); (K.S.); (M.G.); (J.R.)
- Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection—National Research Institute, Czerniakowska 16, 00-701 Warszawa, Poland;
| | | | - Paweł Kozikowski
- Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection—National Research Institute, Czerniakowska 16, 00-701 Warszawa, Poland;
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, 90-530 Lodz, Poland; (A.N.); (J.S.)
| | - Justyna Szulc
- Department of Environmental Biotechnology, Lodz University of Technology, 90-530 Lodz, Poland; (A.N.); (J.S.)
| | - Agnieszka Adamus-Włodarczyk
- Department of Personal Protective Equipment, Central Institute for Labour Protection—National Research Institute, Wierzbowa 48, 90-133 Lodz, Poland; (A.A.-W.); (K.M.)
| | - Michał Gloc
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warszawa, Poland; (M.L.); (K.S.); (M.G.); (J.R.)
| | - Katarzyna Majchrzycka
- Department of Personal Protective Equipment, Central Institute for Labour Protection—National Research Institute, Wierzbowa 48, 90-133 Lodz, Poland; (A.A.-W.); (K.M.)
| | - Joanna Ryszkowska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warszawa, Poland; (M.L.); (K.S.); (M.G.); (J.R.)
| |
Collapse
|
32
|
He RW, Houtzager MMG, Jongeneel WP, Westerink RHS, Cassee FR. In vitro hazard characterization of simulated aircraft cabin bleed-air contamination in lung models using an air-liquid interface (ALI) exposure system. ENVIRONMENT INTERNATIONAL 2021; 156:106718. [PMID: 34166876 DOI: 10.1016/j.envint.2021.106718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Contamination of aircraft cabin air can result from leakage of engine oils and hydraulic fluids into bleed air. This may cause adverse health effects in cabin crews and passengers. To realistically mimic inhalation exposure to aircraft cabin bleed-air contaminants, a mini bleed-air contaminants simulator (Mini-BACS) was constructed and connected to an air-liquid interface (ALI) aerosol exposure system (AES). This unique "Mini-BACS + AES" setup provides steady conditions to perform ALI exposure of the mono- and co-culture lung models to fumes from pyrolysis of aircraft engine oils and hydraulic fluids at respectively 200 °C and 350 °C. Meanwhile, physicochemical characteristics of test atmospheres were continuously monitored during the entire ALI exposure, including chemical composition, particle number concentration (PNC) and particles size distribution (PSD). Additional off-line chemical characterization was also performed for the generated fume. We started with submerged exposure to fumes generated from 4 types of engine oil (Fume A, B, C, and D) and 2 types of hydraulic fluid (Fume E and F). Following submerged exposures, Fume E and F as well as Fume A and B exerted the highest toxicity, which were therefore further tested under ALI exposure conditions. ALI exposures reveal that these selected engine oil (0-100 mg/m3) and hydraulic fluid (0-90 mg/m3) fumes at tested dose-ranges can impair epithelial barrier functions, induce cytotoxicity, produce pro-inflammatory responses, and reduce cell viability. Hydraulic fluid fumes are more toxic than engine oil fumes on the mass concentration basis. This may be related to higher abundance of organophosphates (OPs, ≈2800 µg/m3) and smaller particle size (≈50 nm) of hydraulic fluid fumes. Our results suggest that exposure to engine oil and hydraulic fluid fumes can induce considerable lung toxicity, clearly reflecting the potential health risks of contaminated aircraft cabin air.
Collapse
Affiliation(s)
- Rui-Wen He
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Toxicology Division, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80177, 3508 TD Utrecht, the Netherlands
| | - Marc M G Houtzager
- The Netherlands Organisation for Applied Scientific Research, TNO, P.O. Box 80015, 3508 TA Utrecht, the Netherlands
| | - W P Jongeneel
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, the Netherlands
| | - Remco H S Westerink
- Institute for Risk Assessment Sciences (IRAS), Toxicology Division, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80177, 3508 TD Utrecht, the Netherlands
| | - Flemming R Cassee
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Toxicology Division, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80177, 3508 TD Utrecht, the Netherlands.
| |
Collapse
|
33
|
Zhao Y, Yin L, Dong F, Zhang W, Hu F. Effects of tris (2-chloroethyl) phosphate (TCEP) on survival, growth, histological changes and gene expressions in juvenile yellow catfish Pelteobagrus fulvidraco. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103699. [PMID: 34237467 DOI: 10.1016/j.etap.2021.103699] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/18/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Tris (2-chloroethyl) phosphate (TCEP) is an emerging aquatic environmental pollutant. In the present study, juvenile yellow catfish (Pelteobagrus fulvidraco) were exposed to environmentally relevant concentrations of TCEP for 30 days. The results showed that TCEP exposure decreased the survival rate (100 μg/L), body weight (10 and 100 μg/L) and specific growth rate (10 and 100 μg/L) of juvenile yellow catfish. Exposure to TCEP resulted in pronounced damages of gill structures. Gene transcription analysis showed that the antioxidant capacity of the liver and gills was affected; CYP1A1 might contribute to phase I metabolism of TCEP in the liver rather than CYP1B1; TCEP stress might increase the demand of ion transport in fish gill; TCEP could stimulate the immune response and might induce apoptosis via a p53-Bax pathway and caspase-dependent pathway in gills. Collectively, these findings provide new insights into the toxic effects of TCEP on fish.
Collapse
Affiliation(s)
- Yixin Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Yin
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feilong Dong
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengxiao Hu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
34
|
Xiao K, Lu Z, Yang C, Zhao S, Zheng H, Gao Y, Kaluwin C, Liu Y, Cai M. Occurrence, distribution and risk assessment of organophosphate ester flame retardants and plasticizers in surface seawater of the West Pacific. MARINE POLLUTION BULLETIN 2021; 170:112691. [PMID: 34225195 DOI: 10.1016/j.marpolbul.2021.112691] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Twenty-eight samples of surface seawater were collected from the West Pacific Ocean during 2019 using a high-volume solid-phase extraction with high-throughput organic analysis (Hi-throat/Hi-volume SPE) method, and concentrations of 10 organophosphate ester flame retardants and plasticizers (OPEs) were determined. The total OPE concentration in the samples was 3.02-48.4 ng L-1 (mean 25.0 ± 10.5 ng L-1), with tris(2-chloroethyl) phosphate (TCEP) being the largest contributor. Cluster analysis results showed off-shore input from the coast of East and Southeast Asia was an important source of these chemicals. Tri-p-tolyl phosphate (TpTP) should also be considered for long-term monitoring, because of its high detection frequency. Results of a risk assessment indicated low ecological risk to species in the West Pacific Ocean for TPhP and ΣOPEs. Hazard quotients (HQs) were all <1, indicating that the health risk to humans from these chemicals was at acceptable levels.
Collapse
Affiliation(s)
- Kaiyan Xiao
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhibo Lu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chao Yang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Song Zhao
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China
| | - Hongyuan Zheng
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yuan Gao
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China
| | - Chalapan Kaluwin
- University of Papua New Guinea, Waigani, Port Moresby, National Capital District, NCD 134, Papua New Guinea
| | - Yanguang Liu
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China.
| | - Minghong Cai
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China.
| |
Collapse
|
35
|
Silva EZM, Dorta DJ, de Oliveira DP, Leme DM. A review of the success and challenges in characterizing human dermal exposure to flame retardants. Arch Toxicol 2021; 95:3459-3473. [PMID: 34436642 DOI: 10.1007/s00204-021-03130-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/03/2021] [Indexed: 12/01/2022]
Abstract
Since organic flame retardants (FRs) have several industrial applications, they have been largely detected in environmental and biological samples, and humans have been highly exposed to them. Although the effects of oral and inhaled FRs have been well studied, dermal exposure to them has only recently been pointed out as a potential route of human exposure. Consequently, the effects of FRs on the skin and secondary target organs have been poorly investigated. This review article summarizes the main findings regarding dermal exposure to FRs, points the limitation of the published studies, and suggests future perspectives for better understanding of how dermal exposure to FRs impacts the human health. This review lists some gaps that must be filled in future studies, including characterization of the bioavailable fraction and assessment of exposure for new FRs, to establish their physiological significance and to improve the development of 3D dermal tissue for more reliable results to be obtained.
Collapse
Affiliation(s)
- Enzo Zini Moreira Silva
- Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Rua Cel. Francisco H. dos Santos, s/n. Jardim das Américas, Curitiba, PR, 81531-990, Brazil
| | - Daniel Junqueira Dorta
- Departament of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil
| | - Danielle Palma de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil
| | - Daniela Morais Leme
- Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Rua Cel. Francisco H. dos Santos, s/n. Jardim das Américas, Curitiba, PR, 81531-990, Brazil. .,National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil.
| |
Collapse
|
36
|
Bukowska B. Changes in Human Erythrocyte Exposed to Organophosphate Flame Retardants: Tris(2-chloroethyl) Phosphate and Tris(1-chloro-2-propyl) Phosphate. MATERIALS 2021; 14:ma14133675. [PMID: 34279245 PMCID: PMC8269848 DOI: 10.3390/ma14133675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022]
Abstract
Tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) phosphate (TCPP) are the main representatives of organophosphate flame retardants (OPFRs). The exposure of humans to OPFRs present in air, water, and food leads to their occurrence in the circulation. Thus far, no report has been published about the influence of these retardants on non-nucleated cells like mature erythrocytes. Therefore, the impact of TCEP and TCPP (in concentrations determined in human blood as well as potentially present in the human body after intoxication) on human erythrocytes was evaluated. In this study, the effect of TCEP and TCPP on the levels of methemoglobin, reduced glutathione (GHS), and reactive oxygen species (ROS), as well as the activity of antioxidative enzymes, was assessed. Moreover, morphological, hemolytic, and apoptotic alterations in red blood cells were examined. Erythrocytes were incubated for 24 h with retardants in concentrations ranging from 0.001 to 1000 μg/mL. This study has revealed that the tested flame retardants only in very high concentrations disturbed redox balance; increased ROS and methemoglobin levels; and induced morphological changes, hemolysis, and eryptosis in the studied cells. The tested compounds have not changed the activity of the antioxidative system in erythrocytes. TCPP exhibited a stronger oxidative, eryptotic, and hemolytic potential than TCEP in human red blood cells. Comparison of these findings with hitherto published data confirms a much lower toxicity of OPFRs in comparison with brominated flame retardants.
Collapse
Affiliation(s)
- Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland
| |
Collapse
|
37
|
Mayer AC, Fent KW, Chen IC, Sammons D, Toennis C, Robertson S, Kerber S, Horn GP, Smith DL, Calafat AM, Ospina M, Sjodin A. Characterizing exposures to flame retardants, dioxins, and furans among firefighters responding to controlled residential fires. Int J Hyg Environ Health 2021; 236:113782. [PMID: 34119852 PMCID: PMC8325627 DOI: 10.1016/j.ijheh.2021.113782] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/10/2021] [Accepted: 05/31/2021] [Indexed: 01/14/2023]
Abstract
Firefighters may encounter items containing flame retardants (FRs), including organophosphate flame retardants (OPFRs) and polybrominated diphenyl ethers (PBDEs), during structure fires. This study utilized biological monitoring to characterize FR exposures in 36 firefighters assigned to interior, exterior, and overhaul job assignments, before and after responding to controlled residential fire scenarios. Firefighters provided four urine samples (pre-fire and 3-h, 6-h, and 12-h post-fire) and two serum samples (pre-fire and approximately 23-h post-fire). Urine samples were analyzed for OPFR metabolites, while serum samples were analyzed for PBDEs, brominated and chlorinated furans, and chlorinated dioxins. Urinary concentrations of diphenyl phosphate (DPhP), a metabolite of triphenyl phosphate (TPhP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP), a metabolite of tris(1,3-dichloro-2-propyl) phosphate (TDCPP), and bis(2-chloroethyl) phosphate (BCEtP), a metabolite of tris(2-chloroethyl) phosphate (TCEP), increased from pre-fire to 3-hr and 6-hr post-fire collection, but only the DPhP increase was statistically significant at a 0.05 level. The 3-hr and 6-hr post-fire concentrations of DPhP and BDCPP, as well as the pre-fire concentration of BDCPP, were statistically significantly higher than general population levels. BDCPP pre-fire concentrations were statistically significantly higher in firefighters who previously participated in a scenario (within the past 12 days) than those who were responding to their first scenario as part of the study. Similarly, firefighters previously assigned to interior job assignments had higher pre-fire concentrations of BDCPP than those previously assigned to exterior job assignments. Pre-fire serum concentrations of 2,3,4,7,8-pentachlorodibenzofuran (23478-PeCDF), a known human carcinogen, were also statistically significantly above the general population levels. Of the PBDEs quantified, only decabromodiphenyl ether (BDE-209) pre- and post-fire serum concentrations were statistically significantly higher than the general population. These results suggest firefighters absorbed certain FRs while responding to fire scenarios.
Collapse
Affiliation(s)
- Alexander C Mayer
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, OH, USA.
| | - Kenneth W Fent
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, OH, USA
| | - I-Chen Chen
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, OH, USA
| | - Deborah Sammons
- Health Effects Laboratory Division, NIOSH, CDC, Cincinnati, OH, USA
| | | | | | - Steve Kerber
- Firefighter Safety Research Institute, Underwriters Laboratories, Columbia, MD, USA
| | - Gavin P Horn
- Firefighter Safety Research Institute, Underwriters Laboratories, Columbia, MD, USA; Illinois Fire Service Institute, University of Illinois at Urbana-Champaign, IL, USA
| | - Denise L Smith
- Skidmore College, Saratoga Springs, NY, USA; Illinois Fire Service Institute, University of Illinois at Urbana-Champaign, IL, USA
| | - Antonia M Calafat
- Division of Laboratory Services, National Center for Environmental Health, CDC, Atlanta, GA, USA
| | - Maria Ospina
- Division of Laboratory Services, National Center for Environmental Health, CDC, Atlanta, GA, USA
| | - Andreas Sjodin
- Division of Laboratory Services, National Center for Environmental Health, CDC, Atlanta, GA, USA
| |
Collapse
|
38
|
Aluru N, G Hallanger I, McMonagle H, Harju M. Hepatic Gene Expression Profiling of Atlantic Cod (Gadus morhua) Liver after Exposure to Organophosphate Flame Retardants Revealed Altered Cholesterol Biosynthesis and Lipid Metabolism. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1639-1648. [PMID: 33590914 DOI: 10.1002/etc.5014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/17/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Since the phasing out and eventual ban on the production of organohalogen flame retardants, the use of organophosphate flame retardants (OPFRs) has increased rapidly. This has led to the detection of OPFRs in various environments including the Arctic. Two of the most prevalent OPFRs found in the Arctic are tris(2-chloroisopropyl) phosphate (TCPP), and 2-ethylhexyl diphenyl phosphate (EHDPP). The impacts of exposure to OPFRs on Arctic organisms is poorly understood. The objective of the present study was to determine the effects of exposure to TCPP, EHDPP, and a mixture of OPFRs on gene expression patterns in Atlantic cod, Gadus morhua. Precision-cut liver slices from Atlantic cod in vitro were exposed to either TCPP or EHDPP alone or in a mixture and sampled at 2 different time points to quantify gene expression patterns using RNA sequencing. We exposed the liver slices to 2 concentrations of TCPP and EHDPP, one of which was chosen based on the levels found in the Arctic environment. The RNA sequencing results demonstrated differential expression of hundreds of genes in response to exposure. The genes representing cholesterol biosynthesis and lipid metabolism pathway were significantly enriched in all the treatment groups. Almost all the cholesterol biosynthesis genes were significantly down-regulated in response to OPFR exposure. The effects on these pathways could involve various physiological processes including reproduction, growth, and behavior as well as adaptation to changing temperatures. Membrane fluidity is an important adaptive mechanism among aquatic organisms. Altered cholesterol homeostasis could have long-term consequences by altering the adaptive potential of aquatic organisms to changing water temperatures, particularly those living in polar environments. These results suggest that OPFRs could have unique effects on the organisms living in the Arctic compared with other environments. Further studies are needed to understand the long-term impacts of exposure to environmentally realistic concentrations using laboratory and field-based studies. Environ Toxicol Chem 2021;40:1639-1648. © 2021 SETAC.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Ingeborg G Hallanger
- Norwegian Polar Institute, Fram Center, Tromsø, Norway
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø, Norway
| | - Helena McMonagle
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Mikael Harju
- Norwegian Institute for Air Research, Fram Center, Tromsø, Norway
| |
Collapse
|
39
|
Yan Z, Feng C, Jin X, Liu D, Hong Y, Qiao Y, Bai Y, Moon HB, Qadeer A, Wu F. In vitro metabolic kinetics of cresyl diphenyl phosphate (CDP) in liver microsomes of crucian carp (Carassius carassius). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116586. [PMID: 33529897 DOI: 10.1016/j.envpol.2021.116586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 05/03/2023]
Abstract
Cresyl diphenyl phosphate (CDP), as a kind of aryl substituted organophosphate esters (OPEs), is commonly used as emerging flame retardants and plasticizers detected in environmental media. Due to the accumulation of CDP in organisms, it is very important to discover the toxicological mechanism and metabolic process of CDP. Hence, liver microsomes of crucian carps (Carassius carassius) were prepared for in vitro metabolism kinetics assay to estimate metabolism rates of CDP. After 140 min incubation, the depletion of CDP accounted for 58.1%-77.1% (expect 0.5 and 2 μM) of the administrated concentrations. The depletion rates were best fitted to the Michaelis-Menten model (R2 = 0.995), where maximum velocity (Vmax) and Michaelis-Menten constant (Km) were 12,700 ± 2120 pmol min-1·mg-1 protein and 1030 ± 212 μM, respectively. Moreover, the in vitro hepatic clearance (CLint) of CDP was 12.3 μL min-1·mg-1 protein. Log Kow and bioconcentration factor (BCF) of aryl-OPEs were both higher than those of alkyl- and chlorinated-OPEs, indicating that CDP may easily accumulate in aquatic organisms. The results made clear that the metabolism rate of CDP was greater than those of other OPEs detected in liver microsomes in previous research. This paper was first of its kind to comprehensively investigate the in vitro metabolic kinetics of CDP in fish liver microsomes. The present study might provide useful information to understand the environmental fate and metabolic processes of these kinds of substances, and also provide a theoretical basis for the ecological risk assessment of emerging contaminants.
Collapse
Affiliation(s)
- Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Daqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yajun Hong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yu Qiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Abdul Qadeer
- Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan, 426-791, Republic of Korea; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
40
|
Yan Z, Jin X, Liu D, Hong Y, Liao W, Feng C, Bai Y. The potential connections of adverse outcome pathways with the hazard identifications of typical organophosphate esters based on toxicity mechanisms. CHEMOSPHERE 2021; 266:128989. [PMID: 33228983 DOI: 10.1016/j.chemosphere.2020.128989] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 05/03/2023]
Abstract
Following the world-wide ban of brominated flame retardants (BFRs), organophosphate esters (OPEs), which could potentially affect human health and ecosystem safety, have been frequently detected in various environmental media. However, the knowledge regarding the underlying toxicity effects of OPEs remains limited. In order to address these issues, this study reviewed the related reports which have been published in recent years. This analysis process included 12 OPEs, 10 model organisms, and 15 cell lines, which were used to systematically examine the mechanisms of endocrine disruption, neurotoxicity, hepatotoxicity, and cardiotoxicity, as well as reproductive and developmental toxicity. Subsequently, an adverse outcome pathway (AOP) framework of the toxicological effects of OPEs was built. The results demonstrated that multiple different pathways may lead to a single same adverse outcome (AO), and there was a certain degree of correlation among the different AOs. It was found that among all the 12 OPEs, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) may potentially be the most toxic. In addition, rather than the parent chemicals, the metabolites of OPEs may also have different degrees of toxicity effects on aquatic organisms and humans. Overall, the results of the present study also suggested that an AOP framework should be built via fully utilizing the existing toxicity data of OPEs based on in vivo-in vitro-in silico to completely and deeply understand the toxic mechanisms of OPEs. This improved knowledge could then provide a theoretical basis for ecological risk assessments and water quality criteria research in the near future.
Collapse
Affiliation(s)
- Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Daqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yajun Hong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wei Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Jiangxi Irrigation Experiment Central Station, Nanchang, 330201, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
41
|
Saquib Q, Siddiqui M, Al-Khedhairy A. Organophosphorus flame-retardant tris(1-chloro-2-propyl)phosphate is genotoxic and apoptotic inducer in human umbilical vein endothelial cells. J Appl Toxicol 2021; 41:861-873. [PMID: 33641188 DOI: 10.1002/jat.4158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/07/2021] [Accepted: 02/17/2021] [Indexed: 11/08/2022]
Abstract
Tris(1-chloro-2-propyl)phosphate (TCPP) is a chlorinated organophosphorus flame retardant (OPFR) widely used in consumer goods after the phaseout of brominated flame retardants (BFRs). TCPP can percolate into the indoor and outdoor dusts, leading to its detection in the human body fluids (urine, breast milk) and placenta. However, TCPP has not been studied so far for its toxicity in the human vascular system. Hence, we have used human umbilical vein endothelial cells (HUVECs) and exposed them to TCPP ranging from low to high (5-400 μM) concentrations for 24 h. Cytotoxicity analysis by MTT and NRU assays exhibited 15.27% and 20.56%, 21.67%, and 48.67% survival decline of cells only at 200 and 400 μM. Comet assay data showed DNA damage from 50 to 400 μM with Olive tail moment (OTM) values between 1.03 and 35.59, respectively. TCPP-exposed HUVECs exhibited 1.09 and 1.39-fold greater intracellular reactive oxygen species (ROS) at 25 and 400 μM, indicating oxidative stress. HUVEC mitochondrial membrane potential (ΔΨm) measurements showed 1.16 and 1.48-fold higher fluorescence of Rh123 dye at 25 and 400 μM, confirming mitochondrial dysfunction. Flow cytometric data demonstrated 5.1%-58.8% cells in SubG1 apoptotic phase at 5 and 400 μM TCPP. Our novel data revealed that TCPP is a genotoxic and apoptotic inducer, which may trigger alike responses in human vascular system. Overall, detailed in vivo studies are warranted on the transcriptional and translations effects of TCPP.
Collapse
Affiliation(s)
- Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia.,Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Maqsood Siddiqui
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Al-Khedhairy
- Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia.,Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
42
|
Zhang X, Tang X, Yang Y, Sun Z, Ma W, Tong X, Wang C, Zhang X. Responses of the reproduction, population growth and metabolome of the marine rotifer Brachionus plicatilis to tributyl phosphate (TnBP). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116462. [PMID: 33497947 DOI: 10.1016/j.envpol.2021.116462] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/08/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
The typical alkyl organophosphorus flame retardant tributyl phosphate (TnBP) can leak from common products into the marine environment, with potential negative effects on marine organisms. However, risk assessments for TnBP regarding zooplankton are lacking. In this study, a marine rotifer, Brachionus plicatilis, was used to analyze the effect of TnBP (0.1 μg/L, environmental concentration; 1 and 6 mg/L) on reproduction, population growth, oxidative stress, mitochondrial function and metabolomics. Mortality increased as the TnBP concentration rose; the 24-h LC50 value was 12.45 mg/L. All tested TnBP concentrations inhibited B. plicatilis population growth, with reproductive toxicity at the higher levels. Microstructural imaging showed ovary injury, the direct cause of reproductive toxicity. Despite elevated glutathione reductase activities, levels of reactive oxygen species and malonyldialdehyde increased under TnBP stress, indicating oxidative imbalance. TnBP induced mitochondrial malformation and activity suppression; the ROS scavenger N-acetylcysteine alleviated this inhibition, suggesting an internal connection. Nontargeted metabolomics revealed 398 and 583 differentially expressed metabolites in the 0.1 μg/L and 6 mg/L treatments relative to control, respectively, which were enriched in the pathways such as biosynthesis of amino acids, purine metabolism, aminoacyl-tRNA biosynthesis. According to metabolic pathway analysis, oxidative stress from purine degradation, mitochondrial dysfunction, disturbed lipid metabolism and elevated protein synthesis were jointly responsible for reproduction and population growth changes. This study echoes the results previously found in rotifer on trade-off among different life processes in response to environmental stress. Our systematic study uncovers the TnBP toxic mode of action.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yingying Yang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Zijie Sun
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Wenqian Ma
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Xin Tong
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Chengmin Wang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Xinxin Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
43
|
Wei W, Zhang K, Wang XT, Du SW. Construction of a highly stable lanthanide metal-organic framework for effective detection of aryl-organophosphorus flame retardants in simulated wastewater and fruit juices. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
Maddela NR, Venkateswarlu K, Megharaj M. Tris(2-chloroethyl) phosphate, a pervasive flame retardant: critical perspective on its emissions into the environment and human toxicity. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1809-1827. [PMID: 32760963 DOI: 10.1039/d0em00222d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Regulations and the voluntary activities of manufacturers have led to a market shift in the use of flame retardants (FRs). Accordingly, organophosphate ester flame retardants (OPFRs) have emerged as a replacement for polybrominated diphenyl ethers (PBDEs). One of the widely used OPFRs is tris(2-chloroethyl) phosphate (TCEP), the considerable usage of which has reached 1.0 Mt globally. High concentrations of TCEP in indoor dust (∼2.0 × 105 ng g-1), its detection in nearly all foodstuffs (max. concentration of ∼30-300 ng g-1 or ng L-1), human body burden, and toxicological properties as revealed by meta-analysis make TCEP hard to distinguish from traditional FRs, and this situation requires researchers to rethink whether or not TCEP is an appropriate choice as a new FR. However, there are many unresolved issues, which may impede global health agencies in framing stringent regulations and manufacturers considering the meticulous use of TCEP. Therefore, the aim of the present review is to highlight the factors that influence TCEP emissions from its sources, its bioaccessibility, threat of trophic transfer, and toxicogenomics in order to provide better insight into its emergence as an FR. Finally, remediation strategies for dealing with TCEP emissions, and future research directions are addressed.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador and Facultad la Ciencias la Salud, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Faculty of Science, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
45
|
Li Z, Tang X, Zhu L, Qi X, Cao G, Lu G. Cytotoxic Screening and Transcriptomics Reveal Insights into the Molecular Mechanisms of Trihexyl Phosphate-Triggered Hepatotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11464-11475. [PMID: 32841022 DOI: 10.1021/acs.est.0c03824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mounting evidence shows that organophosphate flame retardants (OPFRs), especially aryl- and halogenated-OPFRs, exert various adverse health effects on living organisms. This study evaluated the hepatotoxic effect of trihexyl phosphate (THP) as a long-chain alkyl-OPFR on human hepatocyte cells (LO2) and mouse hepatocyte cells (AML12) by performing screening of cytotoxicity in vitro. In combination with transcriptomic analysis, toxicological mechanisms in vitro were further investigated. Results showed that THP triggered hepatotoxicity in vitro by altering four signaling pathways: endoplasmic reticulum (ER) stress, apoptosis, cell cycle, and the glycolysis signaling pathway. Exposure of LO2 and AML12 liver cells to THP (25 μg/mL) significantly induced ER stress-mediated apoptosis and cell cycle arrest. Meanwhile, downregulation of glycolysis caused the blockage of energy metabolism. Furthermore, the high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS/MS) revealed that much of THP was absorbed into the cells and displayed stability in the two liver cell lines. In vivo assays using a mouse model demonstrated that exposure to THP at 400 mg/kg induced the ballooning degeneration of hepatocytes in liver tissue, whereas exposure to THP at 800 mg/kg caused acute liver injury with high alanine aminotransferase levels. This study provides novel insights into the impact of THP on hepatotoxicity in vitro and in vivo and uncovers the underlying toxicological mechanisms, which may serve as a guide for further ecological risk assessment and reasonable application of alkyl-OPFRs.
Collapse
Affiliation(s)
- Zhenhua Li
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin Tang
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lingfei Zhu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaojie Qi
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Gang Cao
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Gang Lu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
46
|
Zhang Y, Liu M, Peng B, Jia S, Koh D, Wang Y, Cheng HS, Tan NS, Warth B, Chen D, Fang M. Impact of Mixture Effects between Emerging Organic Contaminants on Cytotoxicity: A Systems Biological Understanding of Synergism between Tris(1,3-dichloro-2-propyl)phosphate and Triphenyl Phosphate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10722-10734. [PMID: 32786581 DOI: 10.1021/acs.est.0c02188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Humans are exposed to many xenobiotics simultaneously, but little is known about the toxic effects based on chemical-chemical interactions. This study aims at evaluating the binary interactions between 13 common environmental organic compounds (resulting in 78 pairs) by observing their cytotoxicity on HepG2 cells. Among all of the tested pairs, the combination of flame-retardant triphenyl phosphate (TPP) and tris(1,3-dichloro-2-propyl)phosphate (TDCPP) exhibited one of the most significant synergistic effects. We further characterized the transcriptome and metabolome after combined exposure to TPP and TDCPP and individual exposure. The results suggested that the coexposure caused many more changes in gene expressions and cellular activities. The transcriptome data showed that the coexposure triggered significant pathway changes including "cholesterol biosynthesis" and "ATF6-Alpha activated chaperone genes", together with distinct gene ontology (GO) terms such as the "negative regulation of the ERK1 and ERK2 cascade". Additionally, coexposure enhanced the biological activity of liver X receptors and nuclear factor erythroid 2-related factor 2 (Nrf2). The metabolome data showed that coexposure significantly elevated oxidative stress and affected the purine and pyrimidine metabolism. Overall, this study showed that interactions, which may enhance or suppress the biological processes, are common among environmental chemicals, although their environmental relevance should be studied in the future.
Collapse
Affiliation(s)
- Yingdan Zhang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 63714
| | - Min Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 63714
| | - Bo Peng
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 63714
| | - Shenglan Jia
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 63714
| | - Danyu Koh
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 63714
| | - Yujue Wang
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 63714
| | - Hong Sheng Cheng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232
| | - Benedikt Warth
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria
| | - Da Chen
- School of Environment, Jinan University, Guangzhou, Guangdong 51144, P. R. China
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 63714
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232
| |
Collapse
|
47
|
Garcia-Garin O, Vighi M, Sala B, Aguilar A, Tsangaris C, Digka N, Kaberi H, Eljarrat E, Borrell A. Assessment of organophosphate flame retardants in Mediterranean Boops boops and their relationship to anthropization levels and microplastic ingestion. CHEMOSPHERE 2020; 252:126569. [PMID: 32220724 DOI: 10.1016/j.chemosphere.2020.126569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
Plastic litter pollution is increasing in the seas and oceans worldwide, raising concern on the potential effects of plasticizer additives on marine fauna. In this study, muscle samples of 30 bogues (Boops boops; Linneaus, 1758) from the North Western Mediterranean Sea were analysed to assess the concentrations of 19 organophosphate flame retardant (OPFR) compounds and to inspect any relationship with microplastic ingestion and relative levels of anthropization. Out of the 19 OPFRs analysed, 6 compounds were detected, being tri-n-butyl phosphate (TNBP), 2-ethylhexyldiphenyl phosphate (EHDPP) and triphenylphosphine oxide (TPPO) the most abundant. As expected, OPFR concentrations were higher in samples collected off the most anthropized area of the city of Barcelona than in those from the Cap de Creus Marine Protected Area, while no significant correlation was detected between OPFR concentrations and microplastic ingestion. The results of this manuscript provide a first evidence of OPFR presence in the muscle of the bogue and identify the coastal area off Barcelona as a possible concentration area for contaminants, further supporting the use of the bogue as an indicator species of plastic pollution in the Mediterranean Sea.
Collapse
Affiliation(s)
- Odei Garcia-Garin
- Institute of Biodiversity Research (IRBio) and Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Barcelona, Spain.
| | - Morgana Vighi
- Institute of Biodiversity Research (IRBio) and Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Berta Sala
- Water, Environment and Food Chemistry, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Alex Aguilar
- Institute of Biodiversity Research (IRBio) and Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Catherine Tsangaris
- Institute of Oceanography, Hellenic Centre for Marine Research, Athens, Greece
| | - Nikoletta Digka
- Institute of Oceanography, Hellenic Centre for Marine Research, Athens, Greece
| | - Helen Kaberi
- Institute of Oceanography, Hellenic Centre for Marine Research, Athens, Greece
| | - Ethel Eljarrat
- Water, Environment and Food Chemistry, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Asunción Borrell
- Institute of Biodiversity Research (IRBio) and Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
48
|
Yuan S, Zhu K, Ma M, Zhu X, Rao K, Wang Z. In vitro oxidative stress, mitochondrial impairment and G1 phase cell cycle arrest induced by alkyl-phosphorus-containing flame retardants. CHEMOSPHERE 2020; 248:126026. [PMID: 32006839 DOI: 10.1016/j.chemosphere.2020.126026] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Phosphorus-containing flame retardants (PFRs) have been frequently detected in various environmental samples at relatively high concentrations and are considered emerging environmental pollutants. However, their biological effects and the underlying mechanism remain unclear, especially alkyl-PFRs. In this study, a battery of in vitro bioassays was conducted to analyze the cytotoxicity, oxidative stress, mitochondrial impairment, DNA damage and the involved molecular mechanisms of several selected alkyl-PFRs. Results showed that alkyl-PFRs induced structural related toxicity, where alkyl-PFRs with higher logKow values induced higher cytotoxicity. Long-chain alkyl-PFRs caused mitochondrial and DNA damage, resulting from intracellular reactive oxygen species (ROS) and mitochondrial superoxide overproduction; while short-chain alkyl-PFRs displayed adverse outcomes by significantly impairing mitochondria without obvious ROS generation. In addition, alkyl-PFRs caused DNA damage-induced cell cycle arrest, as determined by flow cytometry, and transcriptionally upregulated key transcription factors in p53/p21-mediated cell cycle pathways. Moreover, compared to the control condition, triisobutyl phosphate and trimethyl phosphate exposure increased the sub-G1 apoptotic peak and upregulated the p53/bax apoptosis pathway, indicating potential cell apoptosis at the cellular and molecular levels. These results provide insight into PFR toxicity and the involved mode of action and indicate the mitochondria is an important target for some alkyl-PFRs.
Collapse
Affiliation(s)
- Shengwu Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China
| | - Kongrui Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaoshan Zhu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
49
|
Wang C, Chen Z, Lu Y, Wang L, Zhang Y, Zhu X, Song J. Neurotoxicity and related mechanisms of flame retardant TCEP exposure in mice. Toxicol Mech Methods 2020; 30:490-496. [PMID: 32397869 DOI: 10.1080/15376516.2020.1765060] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: To explore the neurotoxicity and mechanism of tris(2-chloroethyl) phosphate (TCEP) exposure in mice.Methods: Total 30 adult Kunming mice were randomly divided into normal control group (0 mg/kg·d), low-dose TCEP group (10 mg/kg·d), and high-dose TCEP group (100 mg/kg·d), and administered continuously by gavage for 30 days.Results: Compared with the control group, the water intake of high-dose TCEP group was declined significantly (p < 0.05), and the organ index of liver and spleen were increased significantly (p < 0.05). In addition, the escape latency of TCEP exposed mice were longer than that in the control group in water maze test (p < 0.05), while the total swimming course of high-dose TCEP group was elevated and the swimming time in target quadrant was obviously shortened compared with the control group (p < 0.05). The serum levels of total-triiodothyronine (TT3) and free triiodothyronine (FT3) were significantly higher in the high-dose TCEP group than in the control group (p<0.05). Compared with the control group, the activities of glutathione transferase (GST) and super oxide dismutase (SOD) in the high-dose TCEP group were increased, and GST in the low-dose TCEP group were decreased, while the content of malonaldehyde (MDA) in both groups was increased (p<0.05). In the CCK8 assay, the viability of PC12 cells decreased with an increase of TCEP concentration, indicating a concentration dependent neurotoxicity.Conclusion: TCEP exposure can cause neurotoxicity by increasing thyroid hormones and inducing oxidative damage in mice.
Collapse
Affiliation(s)
- Chengqiang Wang
- Department of Occupational and Environmental Medicine, School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Zihan Chen
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Yanmei Lu
- Department of Occupational and Environmental Medicine, School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Lu Wang
- Department of Occupational and Environmental Medicine, School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Yabin Zhang
- Department of Occupational and Environmental Medicine, School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Xiaonian Zhu
- Department of Occupational and Environmental Medicine, School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Jiale Song
- Department of Occupational and Environmental Medicine, School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
50
|
Hales BF, Robaire B. Effects of brominated and organophosphate ester flame retardants on male reproduction. Andrology 2020; 8:915-923. [DOI: 10.1111/andr.12789] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/11/2020] [Accepted: 03/16/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Barbara F. Hales
- Department of Pharmacology and Therapeutics McGill University Montreal QC Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics McGill University Montreal QC Canada
- Department of Obstetrics and Gynecology McGill University Montreal QC Canada
| |
Collapse
|