1
|
Díaz-González BV, Ramos-Luzardo Á, Henríquez-Hernández LA, Serra-Majem L, Bautista-Castaño I, Acosta-Dacal A, Luzardo OP, Hernández-García E, Cornejo-Torre J, Hernández-Hernández JR, Fernández-Valerón P. Effect of bariatric surgery in the body burden of persistent and non-persistent pollutants: longitudinal study in a cohort of morbidly obese patients. Front Endocrinol (Lausanne) 2024; 15:1412261. [PMID: 39104810 PMCID: PMC11298429 DOI: 10.3389/fendo.2024.1412261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Obesity is a pathological state that involves the dysregulation of different metabolic pathways and adipose tissue cells, constituting a risk factor for the development of other diseases. Bariatric surgery is the most effective treatment. The study of the behavior of pollutants in situations of extreme weight loss can provide biomonitoring information and tools to manage diseases of environmental etiology. Aim To determine the prevalence of serum persistent and non-persistent pollutants in obese patients subjected to bariatric surgery and analyze the impact of sociodemographic variables on these changes. Methods GC-MS/MS and UHPLC-MS/MS were utilized to determine the detection rates and concentrations of 353 compounds, including persistent organic pollutants (POPs), pesticides, pharmaceuticals, and rodenticide, in serum samples of 59 obese patients before and after undergoing bariatric surgery. Results Detection rates of p,p'-DDE, HCB, β-HCH, naphthalene, phenanthrene and PCB congeners 138, 153 and 180 significantly increased due to surgery-induced weight loss. Serum levels of p,p'-DDE, PCB-138, PCB-153 and PCB-180 also increased after surgery. Correlations between naphthalene levels, weight loss, variation of total lipids and time after surgery were found. Additionally, correlations were observed between concentrations of PCB-138 and weight loss, and between phenanthrene levels and reduction of total lipids. No statistically significant differences were observed for other groups of contaminants, pharmaceuticals and other chemicals included in the quantification methods. Conclusions Increment of POPs was observed after bariatric surgery. Serum concentrations of POPs after surgery were influenced by adiposity-related variables. Although biomonitoring studies show a decreasing tendency of exposure, rapid weight loss leads to an increase of circulating POPs. Further research on the interplay between adipose tissue, POPs and peripheral organs is required.
Collapse
Affiliation(s)
- B. Vanessa Díaz-González
- Triana Primary Health Care Center, Servicio Canario de la Salud, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Álvaro Ramos-Luzardo
- Department of Biochemistry and Molecular Biology, Physiology, Genetics, and Immunology, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Luis Alberto Henríquez-Hernández
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Toxicology Unit, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Lluis Serra-Majem
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Servicio Canario de la Salud, Las Palmas de Gran Canaria, Spain
| | - Inmaculada Bautista-Castaño
- Triana Primary Health Care Center, Servicio Canario de la Salud, Las Palmas de Gran Canaria, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrea Acosta-Dacal
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Toxicology Unit, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Octavio P. Luzardo
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Toxicology Unit, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Elisabeth Hernández-García
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Judith Cornejo-Torre
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan Ramón Hernández-Hernández
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Servicio Canario de la Salud, Las Palmas de Gran Canaria, Spain
| | - Pilar Fernández-Valerón
- Department of Biochemistry and Molecular Biology, Physiology, Genetics, and Immunology, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
2
|
Frenoy P, Cano-Sancho G, Antignac JP, Marchand P, Marques C, Ren X, Severi G, Perduca V, Mancini FR. Blood levels of persistent organic pollutants among women in France in the 90's: Main profiles and individual determinants. ENVIRONMENTAL RESEARCH 2024; 258:119468. [PMID: 38908663 DOI: 10.1016/j.envres.2024.119468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
CONTEXT AND OBJECTIVES Persistent organic pollutants (POPs) are a group of organic chemical compounds potentially toxic to human health. The objectives of this study were 1) to describe the levels of POPs biomarkers in blood samples from French women collected during the 1990s and to compare them with levels measured in two more recent French studies, 2) to identify POPs exposure profiles, and 3) to explore their main determinants. METHODS 73 POPs biomarkers were measured in the blood of 468 women from the French E3N cohort (aged 45-73 years), collected between 1994 and 1999: 28 per- and polyfluoroalkyl substances, 27 organochlorine pesticides, 14 polychlorinated biphenyls and 4 polybrominated diphenyl ethers. POPs biomarker levels were described and compared with levels measured in two more recent French studies conducted by the French National Public Health Agency, the ENNS and Esteban studies. Principal component analysis was performed on POPs quantified in at least 75% of samples to identify the main exposure profiles. Linear regression models were used to estimate the associations between anthropometric, socio-demographic and lifestyle characteristics and exposure to these profiles. RESULTS Among the 73 biomarkers measured, 41 were quantified in more than 75% of samples. Levels of most pollutants that were also measured in the Esteban of ENNS studies have decreased over time. Six POPs exposure profiles were revealed, explaining 62.1% of the total variance. Most of the characteristics studied were associated with adherence to at least one of these profiles. CONCLUSION This study highlighted that most of the pollutants for which a comparison was possible decreased over the 10 or 20 years following the E3N blood collection, and identified those which, on the contrary, tended to increase. The health effects of the profiles identified could be assessed in future studies. The determinants identified should be confirmed in larger populations.
Collapse
Affiliation(s)
- Pauline Frenoy
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
| | | | | | | | - Chloé Marques
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
| | - Xuan Ren
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France; Department of Statistics, Computer Science, Applications "G. Parenti", University of Florence, Italy
| | - Vittorio Perduca
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France; Université Paris Cité, CNRS, MAP5, F-75006, Paris, France
| | | |
Collapse
|
3
|
Baumert BO, Eckel SP, Goodrich JA, Li Z, Stratakis N, Walker DI, Zhao Y, Fischer FC, Bartell S, Valvi D, Lin X, Fuentes ZC, Inge T, Ryder J, Jenkins T, Kohli R, Sisley S, Xanthakos S, Rock S, La Merrill MA, McConnell R, Conti DV, Chatzi L. Changes in plasma concentrations of per- and Polyfluoroalkyl substances after bariatric surgery in adolescents from the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172840. [PMID: 38685432 PMCID: PMC11103488 DOI: 10.1016/j.scitotenv.2024.172840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Exposure to per- and poly-fluoroalkyl substances (PFAS) is ubiquitous due to their persistence in the environment and in humans. Extreme weight loss has been shown to influence concentrations of circulating persistent organic pollutants (POPs). Using data from the multi-center perspective Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) cohort, we investigated changes in plasma-PFAS in adolescents after bariatric surgery. Adolescents (Mean age = 17.1 years, SD = 1.5 years) undergoing bariatric surgery were enrolled in the Teen-LABS study. Plasma-PFAS were measured at the time of surgery and then 6-, 12-, and 36 months post-surgery. Linear mixed effect models were used to evaluate longitudinal changes in plasma-PFAS after the time of bariatric surgery. This study included 214 adolescents with severe obesity who had available longitudinal measures of plasma-PFAS and underwent bariatric surgery between 2007 and 2012. Underlying effects related to undergoing bariatric surgery were found to be associated with an initial increase or plateau in concentrations of circulating PFAS up to 6 months after surgery followed by a persistent decline in concentrations of 36 months (p < 0.001 for all plasma-PFAS). Bariatric surgery in adolescents was associated with a decline in circulating PFAS concentrations. Initially following bariatric surgery (0-6 months) concentrations were static followed by decline from 6 to 36 months following surgery. This may have large public health implications as PFAS are known to be associated with numerous metabolic related diseases and the significant reduction in circulating PFAS in individuals who have undergone bariatric surgery may be related to the improvement of such metabolic related diseases following bariatric surgery.
Collapse
Affiliation(s)
- Brittney O Baumert
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jesse A Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhenjiang Li
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nikos Stratakis
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Douglas I Walker
- Barcelona Institute for Global Health, ISGlobal, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Yinqi Zhao
- Gangarosa Department of Environmental Health, Rollins School of Public Health, 1518 Clifton Road, NE, Atlanta, GA 30322, United States of America
| | - Fabian Christoph Fischer
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Scott Bartell
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States
| | - Damaskini Valvi
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, USA
| | - Xiangping Lin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zoe Coates Fuentes
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Inge
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Justin Ryder
- Department of Surgery, Northwestern University Feinberg School of Medicine; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Todd Jenkins
- Department of Surgery, Northwestern University Feinberg School of Medicine; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology, Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stephanie Sisley
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Stavra Xanthakos
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Sarah Rock
- Division of Gastroenterology, Hepatology, Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michele A La Merrill
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rob McConnell
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - David V Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Rubbo B, Li Z, Tachachartvanich P, Baumert BO, Wang H, Pan S, Rock S, Ryder J, Jenkins T, Sisley S, Lin X, Bartell S, Inge T, Xanthakos S, McNeil B, Robuck AR, La Merrill MA, Walker DI, Conti DV, McConnnell R, Eckel SP, Chatzi L. Exposure to 4,4'-DDE in visceral adipose tissue and weight loss in adolescents from the Teen-LABS cohort. Obesity (Silver Spring) 2024; 32:1023-1032. [PMID: 38515392 PMCID: PMC11039378 DOI: 10.1002/oby.24009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVE Dichlorodiphenyldichloroethylene (DDE), an obesogen accumulating in adipose tissue, is released into circulation with weight loss, although its impact is underexplored among adolescents. We tested the association using an integrative translational approach of epidemiological analysis among adolescents with obesity and in vitro measures exploring the impact of DDE on adipogenesis via preadipocytes. METHODS We included 63 participants from the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) cohort. We assessed 4,4'-DDE in visceral adipose tissue at surgery and BMI and waist circumference at surgery and 0.5, 1, 3, and 5 years after. We conducted longitudinal analysis to estimate the interaction on weight loss between DDE and time since surgery. In vitro analysis quantified adipogenic differentiation in commercial human preadipocytes exposed to 4,4'-DDE via fluorescent staining and imaging. RESULTS A dose-response relationship was observed, with the low-exposure group having a greater reduction in BMI during the first year compared to higher-exposure groups and showing smaller regains compared to higher-exposure groups after the first year. In vitro analysis of preadipocytes treated with 4,4'-DDE during adipogenic differentiation for 12 days showed a concentration-dependent increase in lipid accumulation. CONCLUSIONS DDE could contribute to weight trajectory among adolescents undergoing bariatric surgery, potentially mediated via promoted adipogenesis in preadipocytes.
Collapse
Affiliation(s)
- Bruna Rubbo
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhenjiang Li
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Phum Tachachartvanich
- Department of Environmental Toxicology, University of California, Davis, CA, USA
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Brittney O. Baumert
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hongxu Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shudi Pan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah Rock
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Justin Ryder
- Department of Surgery, Northwestern University Feinberg School of Medicine and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Todd Jenkins
- Division of Biostatistics & Epidemiology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stephanie Sisley
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Xiangping Lin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott Bartell
- Department of Environmental and Occupational Health and Department of Statistics, University of California, Irvine, CA, USA
| | - Thomas Inge
- Department of Surgery, Northwestern University Feinberg School of Medicine and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Stavra Xanthakos
- Division of Gastroenterology, Hepatology, Nutrition, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brooklynn McNeil
- Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA
| | - Anna R. Robuck
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Now at: US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Narragansett, RI, USA
| | | | - Douglas I. Walker
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA, USA
| | - David V. Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rob McConnnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P. Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Yu T, Zhang Y, Yuan J, Zhang Y, Li J, Huang Z. Cholesterol mediates the effects of single and multiple environmental phenols in urine on obesity. Lipids Health Dis 2024; 23:126. [PMID: 38685082 PMCID: PMC11057097 DOI: 10.1186/s12944-024-02113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Overweight and obesity are among the leading chronic diseases worldwide. Environmental phenols have been renowned as endocrine disruptors that contribute to weight changes; however, the effects of exposure to mixed phenols on obesity are not well established. METHODS Using data from adults in National Health and Nutrition Examination Survey, this study examined the individual and combined effects of four phenols on obesity. A combination of traditional logistic regression and two mixed models (weighted quantile sum (WQS) regression and Bayesian kernel-machine regression (BKMR)) were used together to assess the role of phenols in the development of obesity. The potential mediation of cholesterol on these effects was analyzed through a parallel mediation model. RESULTS The results demonstrated that solitary phenols except triclosan were inversely associated with obesity (P-value < 0.05). The WQS index was also negatively correlated with general obesity (β: 0.770, 95% CI: 0.644-0.919, P-value = 0.004) and abdominal obesity (β: 0.781, 95% CI: 0.658-0.928, P-value = 0.004). Consistently, the BKMR model demonstrated the significant joint negative effects of phenols on obesity. The parallel mediation analysis revealed that high-density lipoprotein mediated the effects of all four single phenols on obesity, whereas low-density lipoprotein only mediated the association between benzophenol-3 and obesity. Moreover, Cholesterol acts as a mediator of the association between mixed phenols and obesity. Exposure to single and mixed phenols significantly and negatively correlated with obesity. Cholesterol mediated the association of single and mixed environmental phenols with obesity. CONCLUSIONS Assessing the potential public health risks of mixed phenols helps to incorporate this information into practical health advice and guidance.
Collapse
Affiliation(s)
- Ting Yu
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yuqing Zhang
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Women' s Hospital of Nanjing Medical University, Nanjing, China
| | - Jiali Yuan
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yue Zhang
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jing Li
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhenyao Huang
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China.
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
6
|
Snoek KM, van de Woestijne N, Ritfeld VEEG, Klaassen RA, Versendaal H, Galjaard S, Willemsen SP, Laven JSE, Steegers-Theunissen RPM, Schoenmakers S. Preconception maternal gastric bypass surgery and the impact on fetal growth parameters. Surg Obes Relat Dis 2024; 20:128-137. [PMID: 37805294 DOI: 10.1016/j.soard.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/27/2023] [Accepted: 08/28/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Bariatric surgery is increasingly performed in women of reproductive age. As bariatric surgery will result in postoperative rapid catabolic weight loss which potentially leads to fetal malnutrition and directly related impaired intra-uterine growth, it is advised to postpone pregnancy for at least 12-18 months after surgery. OBJECTIVES To investigate the consequences of preconception gastric bypass surgery (pGB) on fetal growth parameters and maternal pregnancy outcome. SETTING Maasstad Hospital, The Netherlands, general hospital and Erasmus Medical Center, The Netherlands, university hospital. METHODS We included 97 pGB pregnancies (Maasstad hospital) and 440 non-bariatric pregnancies (Rotterdam Periconception cohort, Erasmus Medical Center). Longitudinal second and third trimester fetal growth parameters (head circumference, biparietal diameter, femur length, abdominal circumference, estimated fetal weight) were analyzed using linear mixed models, adjusting for covariates and possible confounders. Fetal growth and birthweight in pGB pregnancies were compared to non-bariatric pregnancies and Dutch reference curves. Maternal pregnancy outcome in the pGB group was compared to non-bariatric pregnancies. RESULTS All fetal growth parameters of pGB pregnancies were significantly decreased at 20 weeks' gestation (P < .001) and throughout the remaining part of pregnancy (P < .05) compared with non-bariatric pregnancies (crude and adjusted models). In our cohort, gestational weight gain was not significantly associated with birthweight corrected for gestational age. Birthweight was significantly lower in pGB pregnancies (estimate -241 grams [95% CI, -342.7 to -140.0]) with a 2-fold increased risk of small-for-gestational-age (SGA) (adjusted odds ratio 2.053 [95% CI, 1.058 to 3.872]). Compared to the non-bariatric pregnancies, we found no significant differences in maternal pregnancy outcome. CONCLUSIONS PGB is associated with overall reduced fetal growth trajectories and a 2-fold increased risk of SGA, without significant adverse consequences for maternal pregnancy outcome. We recommend close monitoring of fetal growth after pGB.
Collapse
Affiliation(s)
- Katinka M Snoek
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Nadia van de Woestijne
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - René A Klaassen
- Department of Surgery, Maasstad Hospital, Rotterdam, The Netherlands
| | - Hans Versendaal
- Department of Obstetrics and Gynecology, Maasstad Hospital, Rotterdam, The Netherlands
| | - Sander Galjaard
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Sten P Willemsen
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Biostatistics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Joop S E Laven
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Sam Schoenmakers
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Yang D, Ko E, Lim H, Lee H, Kim K, Choi M, Shin S. Persistent Organic Pollutants released from decomposed adipose tissue affect mitochondrial enzyme function in the brain and eyes other than the liver. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10648-10660. [PMID: 38198094 DOI: 10.1007/s11356-024-31904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
Persistent organic pollutants (POPs) are toxic chemicals that can accumulate in the human body, and particularly in adipose tissue. POPs can induce metabolic diseases via mitochondrial dysfunction and can also cause cancer, obesity, and cardiovascular and neurodegenerative diseases. Although the effects of POPs were studied by evaluating mitochondrial function, which is fundamental in investigating the etiologies of various metabolic diseases, the physiological impact of POPs released by the decomposition of fat in adipose tissue is barely understood. Therefore, to investigate the mitochondrial dysfunction caused by POPs released from adipose tissue to other organs, zebrafish were exposed to POPs and placed into four groups: control (C), obesity control (OC), obesity control with POPs (OP), and POP exposure with obesity and caloric restriction (OPR). Next, the activities of the mitochondrial respiratory complexes and the levels of ATP production, reactive oxygen species/reactive nitrogen species (ROS/RNS), and antioxidants, such as glutathione and superoxide dismutase, were measured in the brain, eyes, and liver, as these are the major organs most susceptible to metabolic diseases. POPs released from adipose tissue showed a stronger effect than the direct effects of obesity and POPs on mitochondrial enzyme activity in the brain and eye. Released POPs increased mitochondrial complex I activity and decreased mitochondrial complex II activity compared with normal, obesity, and POP-treated conditions in the brain and eyes. However, the mitochondrial complexes' activities in the liver were affected more by obesity and POPs. In the liver, the mitochondrial enzyme activities of the OPR group seemed to recover to the control level, but it was slightly lowered in the OC and OP groups. Independently, the ROS/RNS and antioxidant levels were not affected by obesity, POPs, or the released POPs in the brain, eye, and liver. The results indicate that POPs stored in adipose tissue and released during fat decomposition did not affect oxidative stress but could affect mitochondrial respiratory enzymes in organ dependent manner. This study is meaningful in that it provides experimental evidence that stored POPs affect specific organs for prolonged periods and can be linked to various diseases in advance.
Collapse
Affiliation(s)
- Dongshin Yang
- Department of Biotechnology and Bioengineering, College of Engineering, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Eun Ko
- Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, College of Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Hwayeon Lim
- Department of Biotechnology and Bioengineering, College of Engineering, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Hyojin Lee
- Department of Environmental Energy Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Kitae Kim
- Department of Environmental Energy Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Moonsung Choi
- Department of Optometry, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Sooim Shin
- Department of Biotechnology and Bioengineering, College of Engineering, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea.
- Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, College of Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
8
|
Mahfouz Y, Harmouche-Karaki M, Matta J, Mahfouz M, Salameh P, Younes H, Helou K, Finan R, Abi-Tayeh G, Meslimani M, Moussa G, Chahrour N, Osseiran C, Skaiki F, Narbonne JF. Dioxins and furans maternal transfer: A study of breast milk and cord serum levels among Lebanese mothers and associations with newborn anthropometric measurements. MARINE POLLUTION BULLETIN 2024; 199:116032. [PMID: 38237247 DOI: 10.1016/j.marpolbul.2024.116032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 02/08/2024]
Abstract
Dioxins and furans (PCDD/Fs) are anthropogenic pollutants that persist in the environment for long years, bioaccumulating in food & contaminating humans. In pregnancy, they can transfer through the placenta and reach the fetus, which negatively affects fetal growth. They can also reach newborns through breastfeeding. In this study, we focused on this critical subpopulation and identified the presence of PCDD/Fs among pregnant women in breast milk (n = 41) and cord serum (n = 49); we assessed the correlation between different matrices, evaluated the predictors and associations with newborn anthropometric measurements. Over 70.7 % of PCDD/Fs were detected in breast milk and 46.9-55.1 % in cord serum. Cord/maternal serum and breast milk to maternal serum ratios were > 1 with a significant positive Spearman correlation (0.669-0.729). Breast milk & maternal serum PCDD/Fs were associated inversely with age and positively with red meat intake. Cord serum PCDD/Fs were inversely associated with pre-pregnancy weight loss and passive smoking. Parity and gestational weight gain showed positive associations with Z-scores at birth. Z-score differences showed negative and positive associations with passive smoking and pre-pregnancy BMI respectively.
Collapse
Affiliation(s)
- Yara Mahfouz
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut 1107 2180, Lebanon.
| | - Mireille Harmouche-Karaki
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut 1107 2180, Lebanon.
| | - Joseph Matta
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut 1107 2180, Lebanon; Industrial Research Institute, Lebanese University Campus, Hadath Baabda, Lebanon.
| | - Maya Mahfouz
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut 1107 2180, Lebanon.
| | - Pascale Salameh
- Clinical and Epidemiological Research Laboratory, Faculty of Pharmacy, Lebanese University, Hadath, Lebanon; School of Medicine, Lebanese American University, Byblos, Lebanon; Institut National de Santé Publique d'Épidémiologie Clinique et de Toxicologie-Liban (INSPECT-LB), Dekwaneh, Mar Roukoz, Main Street, Building 111, 5th Floor, Metn, Lebanon; Department of Primary Care and Population Health, University of Nicosia Medical School, 2417, Nicosia, Cyprus.
| | - Hassan Younes
- UniLaSalle University, 19 Pierre Waguet Street, 60026 Beauvais, France.
| | - Khalil Helou
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut 1107 2180, Lebanon.
| | - Ramzi Finan
- Lebanese Society of Obstetrics and Gynecology, Adliye, Beit El- Tabib - 3rd Floor, Beirut, Lebanon; Faculty of Medicine, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, Beirut, Lebanon; Hotel-Dieu de France, Saint Joseph University of Beirut Hospital, Blvd Alfred Naccache, P.O.B.: 166830, Beirut, Lebanon.
| | - Georges Abi-Tayeh
- Faculty of Medicine, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, Beirut, Lebanon; Hotel-Dieu de France, Saint Joseph University of Beirut Hospital, Blvd Alfred Naccache, P.O.B.: 166830, Beirut, Lebanon; Lebanese Fertility Society, Adliye, Beit El- Tabib, Beirut, Lebanon.
| | | | - Ghada Moussa
- Department of Obstetrics and Gynecology, Chtoura Hospital, Zahle, Beqaa, Lebanon.
| | - Nada Chahrour
- Department of Obstetrics and Gynecology, SRH University Hospital, Nabatieh, Lebanon.
| | - Camille Osseiran
- Department of Obstetrics and Gynecology, Kassab Hospital, Saida, Lebanon.
| | - Farouk Skaiki
- Department of Molecular Biology, General Management, Al Karim Medical Laboratories, Saida, Lebanon; Faculty of Public Health, Lebanese University, Saida, Lebanon.
| | | |
Collapse
|
9
|
Serrano QA, Le Garf S, Martin V, Colson SS, Chevalier N. Is Physical Activity an Efficient Strategy to Control the Adverse Effects of Persistent Organic Pollutants in the Context of Obesity? A Narrative Review. Int J Mol Sci 2024; 25:883. [PMID: 38255955 PMCID: PMC10815489 DOI: 10.3390/ijms25020883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Obesity affects nearly 660 million adults worldwide and is known for its many comorbidities. Although the phenomenon of obesity is not fully understood, science regularly reveals new determinants of this pathology. Among them, persistent organic pollutants (POPs) have been recently highlighted. Mainly lipophilic, POPs are normally stored in adipose tissue and can lead to adverse metabolic effects when released into the bloodstream. The main objective of this narrative review is to discuss the different pathways by which physical activity may counteract POPs' adverse effects. The research that we carried out seems to indicate that physical activity could positively influence several pathways negatively influenced by POPs, such as insulin resistance, inflammation, lipid accumulation, adipogenesis, and gut microbiota dysbiosis, that are associated with the development of obesity. This review also indicates how, through the controlled mobilization of POPs, physical activity could be a valuable approach to reduce the concentration of POPs in the bloodstream. These findings suggest that physical activity should be used to counteract the adverse effects of POPs. However, future studies should accurately assess its impact in specific situations such as bariatric surgery, where weight loss promotes POPs' blood release.
Collapse
Affiliation(s)
| | | | - Vincent Martin
- Université Clermont Auvergne, AME2P, F-63000 Clermont-Ferrand, France;
- Institut Universitaire de France (IUF), 75005 Paris, France
| | | | | |
Collapse
|
10
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
11
|
Achour A, Derouiche A, Driss MR, Tebourbi O. Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in adipose tissue of women from Grand Tunis and their association with demographic factors and dietary habits. CHEMOSPHERE 2023; 338:139600. [PMID: 37480958 DOI: 10.1016/j.chemosphere.2023.139600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Dichlorodiphenyl trichloroethane and its metabolites (DDTs), hexachlorocyclohexane isomers (HCHs), hexachlorobenzene (HCB) and polychloronated biphenyls (PCBs) were measured in 25 woman adipose tissues collected in 2016 from Grand Tunis, Tunisia. p,p'-DDE, p,p'-DDT, HCB and β-HCH were the dominant organochlorine pesticides (OCPs) in decreasing order in all samples. The total OCP levels varied from 79 to 343 ng g-1 lipid with a median value of 189 ng g-1 lipid and DDTs contributed approximately 88% to sum OCP. The ratio of p,p'-DDT/p,p'-DDE across all samples is below one, which suggests mainly historic exposure but may indicate some recent exposure to the banned pesticide. The median concentration of PCBs was 109 ng g-1 lipid and ranged between 27 and 204 ng g-1 lipid. PCB-153, PCB-180, PCB-138 and PCB-170 were the most abundant congeners, which contributed about 78% of the total PCBs. Spearman analysis showed that dominant organochlorine compounds (OCs) are highly positive correlated except for PCB-28/31, indicating that women from Tunis are exposed via similar routes. Inhalation exposure could be a possible pathway for the uptake of the less chlorinated congeners. We found positive and statistically significant association with subjects age for HCB (r = 0.517; p = 0.009) and PCBs (r = 0.65; p = 0.001) levels and a weak age-dependent accumulation was found for HCHs (r = 0.375; p = 0.065) and DDTs (r = 0.388; p = 0.056). The concentrations of OC subgroups were not associated with BMI, parity and residence. No association was observed between fish, red/white meat, milk and dairy products consumption and levels of HCB, HCHs and PCBs. DDTs levels were significantly correlated only with milk (p = 0.048) and milk products (p = 0.047) intake.
Collapse
Affiliation(s)
- Amani Achour
- Laboratory of Integrated Physiology, Faculty of Science of Bizerte, University of Carthage Tunisia, 7021, Jarzouna, Bizerte, Tunisia.
| | - Abdelkader Derouiche
- Laboratory of Hetero-organic Compounds and Nanostructural Materials (LR18ES11), Faculty of Science of Bizerte, University of Carthage Tunisia, 7021, Jarzouna, Bizerte, Tunisia.
| | - Mohamed Ridha Driss
- Laboratory of Hetero-organic Compounds and Nanostructural Materials (LR18ES11), Faculty of Science of Bizerte, University of Carthage Tunisia, 7021, Jarzouna, Bizerte, Tunisia.
| | - Olfa Tebourbi
- Laboratory of Integrated Physiology, Faculty of Science of Bizerte, University of Carthage Tunisia, 7021, Jarzouna, Bizerte, Tunisia.
| |
Collapse
|
12
|
Li P, Xu Y, Li Z, Cheng X, Jia C, Zhang S, An J, Zhang X, Yan Y, He M. Association between polychlorinated biphenyls exposure and incident type 2 diabetes mellitus: A nested case-control study. ENVIRONMENTAL RESEARCH 2023; 228:115743. [PMID: 37001846 DOI: 10.1016/j.envres.2023.115743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Previous epidemiological studies indicated that the association between polychlorinated biphenyls (PCB) and type 2 diabetes mellitus (T2DM) was inconclusive. OBJECTIVE We investigated the association between PCBs exposure and incident T2DM in a nested case-control study, and further explored the relationship between PCBs and 5-year fasting blood glucose (FBG) changes. METHODS Baseline concentrations of seven indicator-PCB (PCB-28, 52, 101, 118, 138, 153, 180) were measured in 1006 pairs of incident T2DM cases and matched controls nested within the Dongfeng-Tongji cohort. Conditional logistic regression models and pre-adjusted residuals method were used to assess the associations between PCBs and incident T2DM. We further computed beta coefficients (βs) of 5-year FBG changes using multivariable generalized linear regression. RESULTS Non-dioxin-like PCBs (NDL-PCBs) were significantly associated with higher T2DM incidence after adjustment for all covariates. Significant differences were observed for extreme quartiles comparisons (Q4 vs. Q1) of PCBs except PCB-138, and the incidence of T2DM were 1- to 3-fold higher among those in the highest versus lowest PCBs quartiles. Serum NDL-PCBs were positively associated with changes in FBG (P for overall association ≤0.01). Additionally, triglycerides mediated the associations between PCBs and T2DM incidence. CONCLUSION Our findings showed positive associations of NDL-PCBs with incident T2DM and 5-year FBG changes. PCBs increased incident T2DM via lipid metabolic pathways.
Collapse
Affiliation(s)
- Peiwen Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yali Xu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Cheng
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chengyong Jia
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiyang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun An
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Yan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
13
|
Martínez-Pinna J, Sempere-Navarro R, Medina-Gali RM, Fuentes E, Quesada I, Sargis RM, Trasande L, Nadal A. Endocrine disruptors in plastics alter β-cell physiology and increase the risk of diabetes mellitus. Am J Physiol Endocrinol Metab 2023; 324:E488-E505. [PMID: 37134142 PMCID: PMC10228669 DOI: 10.1152/ajpendo.00068.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
Plastic pollution breaks a planetary boundary threatening wildlife and humans through its physical and chemical effects. Of the latter, the release of endocrine disrupting chemicals (EDCs) has consequences on the prevalence of human diseases related to the endocrine system. Bisphenols (BPs) and phthalates are two groups of EDCs commonly found in plastics that migrate into the environment and make low-dose human exposure ubiquitous. Here we review epidemiological, animal, and cellular studies linking exposure to BPs and phthalates to altered glucose regulation, with emphasis on the role of pancreatic β-cells. Epidemiological studies indicate that exposure to BPs and phthalates is associated with diabetes mellitus. Studies in animal models indicate that treatment with doses within the range of human exposure decreases insulin sensitivity and glucose tolerance, induces dyslipidemia, and modifies functional β-cell mass and serum levels of insulin, leptin, and adiponectin. These studies reveal that disruption of β-cell physiology by EDCs plays a key role in impairing glucose homeostasis by altering the mechanisms used by β-cells to adapt to metabolic stress such as chronic nutrient excess. Studies at the cellular level demonstrate that BPs and phthalates modify the same biochemical pathways involved in adaptation to chronic excess fuel. These include changes in insulin biosynthesis and secretion, electrical activity, expression of key genes, and mitochondrial function. The data summarized here indicate that BPs and phthalates are important risk factors for diabetes mellitus and support a global effort to decrease plastic pollution and human exposure to EDCs.
Collapse
Affiliation(s)
- Juan Martínez-Pinna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Roberto Sempere-Navarro
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Regla M Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Fuentes
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ivan Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, United States
- Department of Population Health, New York University Grossman School of Medicine, New York, New York, United States
- Wagner School of Public Service, New York University, New York, New York, United States
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Morgan S, Mottaleb MA, Kraemer MP, Moser DK, Worley J, Morris AJ, Petriello MC. Effect of lifestyle-based lipid lowering interventions on the relationship between circulating levels of per-and polyfluoroalkyl substances and serum cholesterol. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104062. [PMID: 36621559 PMCID: PMC9992109 DOI: 10.1016/j.etap.2023.104062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Exposure to certain per-and polyfluoroalkyl substances (PFAS) has been shown to be positively associated with total and/or low-density lipoprotein cholesterol. Examining this association in lipid lowering interventions may provide additional evidence linking PFAS to cardiovascular risk. We examined the relationship of 6 PFAS with cholesterol in a 6-month lifestyle-based intervention. We quantitated PFAS in 350 individuals at baseline and post intervention and examined associations of PFAS with cholesterol before and after intervention. Food frequency questionnaires and GIS analyses were used to investigate PFAS hotspots and possible exposure routes. Cholesterol significantly decreased following intervention and in parallel, PFOS, PFOA, PFHxS, and PFHpA significantly decreased. PFOS was positively correlated with total cholesterol only post-intervention. We observed that PFOS was distributed among both non-albumin and albumin lipoprotein fractions pre-intervention, but entirely in albumin fraction post-intervention. Our results indicate that lipid-lowering via lifestyle modification may impact on circulating levels or distribution of PFAS.
Collapse
Affiliation(s)
- Stephanie Morgan
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - M Abdul Mottaleb
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Lexington Veterans Affairs Medical Center, Lexington, KY, USA
| | - Maria P Kraemer
- Lexington Veterans Affairs Medical Center, Lexington, KY, USA
| | - Debra K Moser
- College of Nursing, University of Kentucky, Lexington, KY 40536, USA
| | - Jessica Worley
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Andrew J Morris
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Lexington Veterans Affairs Medical Center, Lexington, KY, USA
| | - Michael C Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; Lexington Veterans Affairs Medical Center, Lexington, KY, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
15
|
Mahfouz Y, Harmouche-Karaki M, Matta J, Mahfouz M, Salameh P, Younes H, Helou K, Finan R, Abi-Tayeh G, Meslimani M, Moussa G, Chahrour N, Osseiran C, Skaiky F, Narbonne JF. Serum levels of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in a sample of Lebanese pregnant women: The role of dietary, anthropometric, and environmental factors. ENVIRONMENTAL RESEARCH 2023; 216:114647. [PMID: 36367504 DOI: 10.1016/j.envres.2022.114647] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are unintentionally produced, toxic environmental chemicals that persist for long years and bioaccumulate along the food chain, contaminating humans through diet. A particularly critical population subgroup is pregnant women given the adverse health effects on fetuses and newborns. Several anthropogenic sources of exposure to PCDD/Fs exist in Lebanon. Therefore, the aim of the present cross-sectional study is to measure the levels of PCDD/Fs in a sample of pregnant women in Lebanon and to explore potential associated factors. In this study, we measured serum concentrations of seven dioxins and ten furans, among 423 pregnant women recruited at delivery, using gas chromatography MS/MS. Among 269 participants, maternal sociodemographic information was collected including vicinity to landfills, incineration, pesticide use, industrial activity, and smoking. Anthropometric data were registered regarding pre-pregnancy body mass index (BMI), pre-pregnancy weight loss from restrictive diet, and gestational weight gain. Intake of major food groups generally related to PCDD/Fs was reported (fish, red meat, poultry, and dairy). Bivariate and multivariate analyses were performed to identify associations. PCDD/Fs were detected in 0 to 56.1% of the sample. Geometric mean concentrations were 75.5 (2.35) pg/g lipid and 2.25 (1.39) TEQ2005 pg/g lipid for total dioxins, and 2.66 (1.76) pg/g lipid and 0.34 (1.78) TEQ2005 pg/g lipid for total furans. Levels were relatively lower than levels previously observed in France, Germany, Mexico, Ghana, and Japan. Red meat consumption was the most consistently associated factor with a 2.38-2.57 fold increase in PCDD/F levels. Pre-pregnancy weight loss showed inverse associations with PCDD/F congeners. Vicinity to illegal incineration was also associated with a 2.32-2.43 fold increase in PCDD/F levels. In conclusion, results showed the importance of dietary, anthropometric, and environmental factors in the present sample's exposure to PCDD/Fs, in a region that contains anthropogenic sources of contamination.
Collapse
Affiliation(s)
- Yara Mahfouz
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut 1107 2180, Lebanon.
| | - Mireille Harmouche-Karaki
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut 1107 2180, Lebanon.
| | - Joseph Matta
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut 1107 2180, Lebanon; Industrial Research Institute, Lebanese University Campus, Hadath Baabda, Lebanon.
| | - Maya Mahfouz
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut 1107 2180, Lebanon.
| | - Pascale Salameh
- Clinical and Epidemiological Research Laboratory, Faculty of Pharmacy, Lebanese University, Hadath, Lebanon; School of Medicine, Lebanese American University, Byblos, Lebanon; Institut National de Santé Publique d'Épidémiologie Clinique et de Toxicologie-Liban (INSPECT-LB), Lebanon; Department of Primary Care and Population Health, University of Nicosia Medical School, 2417, Nicosia, Cyprus.
| | - Hassan Younes
- UniLaSalle University, 19 Pierre Waguet Street, 60026 Beauvais, France.
| | - Khalil Helou
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut 1107 2180, Lebanon.
| | - Ramzi Finan
- Lebanese Society of Obstetrics and Gynecology, Adliye, Beit El- Tabib - 3rd Floor, Beirut, Lebanon; Faculty of Medicine, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, Beirut, Lebanon; Hotel-Dieu de France, Saint Joseph University of Beirut Hospital, Blvd Alfred Naccache, P.O.B. 166830, Beirut, Lebanon.
| | - Georges Abi-Tayeh
- Faculty of Medicine, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, Beirut, Lebanon; Hotel-Dieu de France, Saint Joseph University of Beirut Hospital, Blvd Alfred Naccache, P.O.B. 166830, Beirut, Lebanon; Lebanese Fertility Society, Adliye, Beit El- Tabib, Beirut, Lebanon.
| | | | - Ghada Moussa
- Department of Obstetrics and Gynecology, Chtoura Hospital, Zahle, Beqaa, Lebanon.
| | - Nada Chahrour
- Department of Obstetrics and Gynecology, SRH University Hospital, Nabatieh, Lebanon.
| | - Camille Osseiran
- Department of Obstetrics and Gynecology, Kassab Hospital, Saida, Lebanon.
| | - Farouk Skaiky
- Department of Molecular Biology, General Management, Al Karim Medical Laboratories, Saida, Lebanon; Faculty of Public Health, Lebanese University, Saida, Lebanon.
| | | |
Collapse
|
16
|
Bliznashka L, Roy A, Jaacks LM. Pesticide exposure and child growth in low- and middle-income countries: A systematic review. ENVIRONMENTAL RESEARCH 2022; 215:114230. [PMID: 36087771 PMCID: PMC7614514 DOI: 10.1016/j.envres.2022.114230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/11/2022] [Accepted: 08/26/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND In low- and middle-income countries (LMICs), pesticides are widely used in agricultural and residential settings. Little is known about how pesticides affect child growth. OBJECTIVES To systematically review and synthesise the evidence on the associations between pesticide exposure and adverse birth outcomes and/or impaired postnatal growth in children up to 5 years of age in LMICs. METHODS We searched 10 databases from inception through November 2021. We included cohort and cross-sectional studies investigating associations between self-reported or measured prenatal or postnatal pesticide exposure and child growth (postnatal child linear/ponderal growth, and/or birth outcomes). Two researchers screened studies, extracted data, and assessed certainty using GRADE. The protocol was preregistered with PROSPERO (CRD42021292919). RESULTS Of 939 records retrieved, 31 studies met inclusion criteria (11 cohort, 20 cross-sectional). All studies assessed prenatal exposure. Twenty-four studies reported on birth weight. Four found positive associations with organochlorines (0.01-0.25 standardised mean difference (SMD)) and two found negative associations (-0.009 SMD to -55 g). Negative associations with organophosphates (-170 g, n = 1) and pyrethroids (-97 to -233 g, n = 2) were also documented. Two (out of 15) studies reporting on birth length found positive associations with organochlorines (0.21-0.25 SMD) and one found negative associations (-0.25 to -0.32 SMD). Organophosphate exposure was negatively associated with birth length (-0.37 cm, n = 1). Organophosphate exposure was also associated with higher risk/prevalence of low birth weight (2 out of nine studies) and preterm birth (2 out of six studies). Certainty of the evidence was "very low" for all outcomes. CONCLUSION The limited literature from LMICs shows inconclusive associations between prenatal pesticide exposure, child growth, and birth outcomes. Studies with accurate quantitative data on exposure to commonly used pesticides in LMICs using consistent methodologies in comparable populations are needed to better understand how pesticides influence child growth.
Collapse
Affiliation(s)
- Lilia Bliznashka
- Global Academy of Agriculture and Food Systems, University of Edinburgh, Alexander Robertson Building, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | - Aditi Roy
- Centre for Environmental Health, Public Health Foundation of India, Plot No. 47, Sector 44, Institutional Area Gurugram, 122002, India
| | - Lindsay M Jaacks
- Global Academy of Agriculture and Food Systems, University of Edinburgh, Alexander Robertson Building, Easter Bush Campus, Midlothian, EH25 9RG, UK
| |
Collapse
|
17
|
Tyack PL, Thomas L, Costa DP, Hall AJ, Harris CM, Harwood J, Kraus SD, Miller PJO, Moore M, Photopoulou T, Pirotta E, Rolland RM, Schwacke LH, Simmons SE, Southall BL. Managing the effects of multiple stressors on wildlife populations in their ecosystems: developing a cumulative risk approach. Proc Biol Sci 2022; 289:20222058. [PMID: 36448280 PMCID: PMC9709579 DOI: 10.1098/rspb.2022.2058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Assessing cumulative effects of human activities on ecosystems is required by many jurisdictions, but current science cannot meet regulatory demands. Regulations define them as effect(s) of one human action combined with other actions. Here we argue for an approach that evaluates the cumulative risk of multiple stressors for protected wildlife populations within their ecosystems. Monitoring effects of each stressor is necessary but not sufficient to estimate how multiple stressors interact to affect wildlife populations. Examining the mechanistic pathways, from cellular to ecological, by which stressors affect individuals can help prioritize stressors and interpret how they interact. Our approach uses health indicators to accumulate the effects of stressors on individuals and to estimate changes in vital rates, driving population status. We advocate using methods well-established in human health and integrating them into ecosystem-based management to protect the health of commercially and culturally important wildlife populations and to protect against risk of extinction for threatened species. Our approach will improve abilities to conserve and manage ecosystems but will also demand significant increases in research and monitoring effort. We advocate for increased investment proportional to the economic scale of human activities in the Anthropocene and their pervasive effects on ecology and biodiversity.
Collapse
Affiliation(s)
- Peter L Tyack
- Sea Mammal Research Unit, School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Len Thomas
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA.,Institute of Marine Sciences, University of California, Santa Cruz, CA, USA
| | - Ailsa J Hall
- Sea Mammal Research Unit, School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Catriona M Harris
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | - John Harwood
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | - Scott D Kraus
- Anderson-Cabot Center for Ocean Life, New England Aquarium, Boston, MA, USA
| | - Patrick J O Miller
- Sea Mammal Research Unit, School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Michael Moore
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Theoni Photopoulou
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | - Enrico Pirotta
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | - Rosalind M Rolland
- Anderson-Cabot Center for Ocean Life, New England Aquarium, Boston, MA, USA
| | | | - Samantha E Simmons
- SMRU Consulting, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Brandon L Southall
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA.,Southall Environmental Associates, Inc., Aptos, CA, USA
| |
Collapse
|
18
|
Im S, Kang S, Kim JH, Oh SJ, Pak YK. Low-Dose Dioxin Reduced Glucose Uptake in C2C12 Myocytes: The Role of Mitochondrial Oxidative Stress and Insulin-Dependent Calcium Mobilization. Antioxidants (Basel) 2022; 11:2109. [PMID: 36358481 PMCID: PMC9686767 DOI: 10.3390/antiox11112109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 01/14/2024] Open
Abstract
Chronic exposure to some environmental polluting chemicals (EPCs) is strongly associated with metabolic syndrome, and insulin resistance is a major biochemical abnormality in the skeletal muscle in patients with metabolic syndrome. However, the causal relationship is inconsistent and little is known about how EPCs affect the insulin signaling cascade in skeletal muscle. Here, we investigated whether exposure to 100 pM of 2,3,7,8-tetrachlorodibenzodioxin (TCDD) as a low dose of dioxin induces insulin resistance in C2C12 myocytes. The treatment with TCDD inhibited the insulin-stimulated glucose uptake and translocation of glucose transporter 4 (GLUT4). The low-dose TCDD reduced the expression of insulin receptor β (IRβ) and insulin receptor substrate (IRS)-1 without affecting the phosphorylation of Akt. The TCDD impaired mitochondrial activities, leading to reactive oxygen species (ROS) production and the blockage of insulin-induced Ca2+ release. All TCDD-mediated effects related to insulin resistance were still observed in aryl hydrocarbon receptor (AhR)-deficient myocytes and prevented by MitoTEMPO, a mitochondria-targeting ROS scavenger. These results suggest that low-dose TCDD stress may induce muscle insulin resistance AhR-independently and that mitochondrial oxidative stress is a novel therapeutic target for dioxin-induced insulin resistance.
Collapse
Affiliation(s)
- Suyeol Im
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Sora Kang
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Ji Hwan Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Seung Jun Oh
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Youngmi Kim Pak
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Physiology, School of Medicine, Biomedical Science Institute CRI, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
19
|
Lee D. Comment on: Obesity is Associated with Improved Postoperative Overall Survival, Independent of Skeletal Muscle Mass in Lung Adenocarcinoma by Lee et al. J Cachexia Sarcopenia Muscle 2022; 13:2576-2578. [PMID: 35965371 PMCID: PMC9530545 DOI: 10.1002/jcsm.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Duk‐Hee Lee
- Department of Preventive Medicine, School of MedicineKyungpook National UniversityDaeguSouth Korea
| |
Collapse
|
20
|
Lamat H, Sauvant-Rochat MP, Tauveron I, Bagheri R, Ugbolue UC, Maqdasi S, Navel V, Dutheil F. Metabolic syndrome and pesticides: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119288. [PMID: 35439599 DOI: 10.1016/j.envpol.2022.119288] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The relation between pesticides exposure and metabolic syndrome (MetS) has not been clearly identified. Performing a systematic review and meta-analysis, PubMed, Cochrane Library, Embase, and ScienceDirect were searched for studies reporting the risk of MetS following pesticides exposure and their contaminants. We included 12 studies for a total of 6789 participants, in which 1981 (29.1%) had a MetS. Overall exposure to pesticides and their contaminants increased the risk of MetS by 30% (95CI 22%-37%). Overall organochlorine increased the risk of MetS by 23% (14-32%), as well as for most types of organochlorines: hexachlorocyclohexane increased the risk by 53% (28-78%), hexachlorobenzene by 40% (0.01-80%), dichlorodiphenyldichloroethylene by 22% (9-34%), dichlorodiphenyltrichloroethane by 28% (5-50%), oxychlordane by 24% (1-47%), and transnonchlor by 35% (19-52%). Sensitivity analyses confirmed that overall exposure to pesticides and their contaminants increased the risk by 46% (35-56%) using crude data or by 19% (10-29%) using fully-adjusted model. The risk for overall pesticides and types of pesticides was also significant with crude data but only for hexachlorocyclohexane (36% risk increase, 17-55%) and transnonchlor (25% risk increase, 3-48%) with fully-adjusted models. Metaregressions demonstrated that hexachlorocyclohexane increased the risk of MetS in comparison to most other pesticides. The risk increased for more recent periods (Coefficient = 0.28, 95CI 0.20 to 0.37, by year). We demonstrated an inverse relationship with body mass index and male gender. In conclusion, pesticides exposure is a major risk factor for MetS. Besides organochlorine exposure, data are lacking for other types of pesticides. The risk increased with time, reflecting a probable increase of the use of pesticides worldwide. The inverse relationship with body mass index may signify a stockage of pesticides and contaminants in fat tissue.
Collapse
Affiliation(s)
- Hugo Lamat
- Université Clermont Auvergne, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Endocrinology-diabetology-nutrition, 63000, Clermont-Ferrand, France
| | - Marie-Pierre Sauvant-Rochat
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Igor Tauveron
- Université Clermont Auvergne, CNRS, GReD, Inserm, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Endocrinology, Clermont-Ferrand, France
| | - Reza Bagheri
- University of Isfahan, Exercise Physiology, Isfahan, Iran
| | - Ukadike C Ugbolue
- University of the West of Scotland, Health and Life Sciences, South Lanarkshire, Scotland, UK
| | - Salwan Maqdasi
- Université Clermont Auvergne, CNRS, GReD, Inserm, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Endocrinology, Clermont-Ferrand, France
| | - Valentin Navel
- Université Clermont Auvergne, CNRS, INSERM, GReD, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Ophthalmology, Clermont-Ferrand, France
| | - Frédéric Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Occupational and Environmental Medicine, WittyFit, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
21
|
Hoyeck MP, Matteo G, MacFarlane EM, Perera I, Bruin JE. Persistent organic pollutants and β-cell toxicity: a comprehensive review. Am J Physiol Endocrinol Metab 2022; 322:E383-E413. [PMID: 35156417 PMCID: PMC9394781 DOI: 10.1152/ajpendo.00358.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 01/09/2023]
Abstract
Persistent organic pollutants (POPs) are a diverse family of contaminants that show widespread global dispersion and bioaccumulation. Humans are continuously exposed to POPs through diet, air particles, and household and commercial products; POPs are consistently detected in human tissues, including the pancreas. Epidemiological studies show a modest but consistent correlation between exposure to POPs and increased diabetes risk. The goal of this review is to provide an overview of epidemiological evidence and an in-depth evaluation of the in vivo and in vitro evidence that POPs cause β-cell toxicity. We review evidence for six classes of POPs: dioxins, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), flame retardants, and per- and polyfluoroalkyl substances (PFAS). The available data provide convincing evidence implicating POPs as a contributing factor driving impaired glucose homeostasis, β-cell dysfunction, and altered metabolic and oxidative stress pathways in islets. These findings support epidemiological data showing that POPs increase diabetes risk and emphasize the need to consider the endocrine pancreas in toxicity assessments. Our review also highlights significant gaps in the literature assessing islet-specific endpoints after both in vivo and in vitro POP exposure. In addition, most rodent studies do not consider the impact of biological sex or secondary metabolic stressors in mediating the effects of POPs on glucose homeostasis and β-cell function. We discuss key gaps and limitations that should be assessed in future studies.
Collapse
Affiliation(s)
- Myriam P Hoyeck
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Geronimo Matteo
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Erin M MacFarlane
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ineli Perera
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Jennifer E Bruin
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
22
|
González-Alzaga B, Hernández AF, Kim Pack L, Iavicoli I, Tolonen H, Santonen T, Vinceti M, Filippini T, Moshammer H, Probst-Hensch N, Kolossa-Gehring M, Lacasaña M. The questionnaire design process in the European Human Biomonitoring Initiative (HBM4EU). ENVIRONMENT INTERNATIONAL 2022; 160:107071. [PMID: 34979351 DOI: 10.1016/j.envint.2021.107071] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/17/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Designing questionnaires is a key point of epidemiological studies assessing human exposure to chemicals. The lack of validated questionnaires can lead to the use of previously developed and sub-optimally adapted questionnaires, which may result in information biases that affect the study's validity. On this ground, a multidisciplinary group of researchers developed a series of tools to support data collection within the HBM4EU initiative. The objective of this paper is to share the process of developing HBM4EU questionnaires, as well as to provide researchers with harmonized procedures that could help them to design future questionnaires to assess environmental exposures. METHODS In the frame of the work package on survey design and fieldwork of the HBM4EU, researchers carried out procedures necessary for the development of quality questionnaires and related data collection tools. These procedures consisted of a systematic search to identify questionnaires used in previous human biomonitoring (HBM) studies, as well as the development of a checklist and evaluation sheet to assess the questionnaires identified. The results of these evaluations were taken into consideration for the development of the final questionnaires. RESULTS The main points covered by each of the sections included in HBM4EU questionnaires are described and discussed in detail. Additional tools developed for data collection in the HBM4EU (e.g. non-responder questionnaire, satisfaction questionnaire, matrix-specific questionnaire) are also addressed. Special attention is paid to the limitations faced and hurdles overcome during the process of questionnaire development. CONCLUSIONS Designing questionnaires for use in HBM studies requires substantial effort by a multidisciplinary team to guarantee that the quality of the information collected meets the study's objectives. The process of questionnaire development described herein will contribute to improve the harmonization of HBM studies within the social and environmental context of the EU countries.
Collapse
Affiliation(s)
- Beatriz González-Alzaga
- Andalusian School of Public Health (EASP), Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA. Granada, Spain
| | - Antonio F Hernández
- Andalusian School of Public Health (EASP), Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA. Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Spain; Department of Legal Medicine and Toxicology, University of Granada (UGR) School of Medicine, Spain
| | - L Kim Pack
- German Environment Agency (UBA), Germany
| | - Ivo Iavicoli
- Section of Occupational Medicine, Department of Public Health (DPH), University of Naples Federico II, Italy
| | - Hanna Tolonen
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Tiina Santonen
- Finnish Institute of Occupational Health (FIOH), Helsinki, Finland
| | - Marco Vinceti
- Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Tommaso Filippini
- Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Hanns Moshammer
- Department of Environmental Health, Centre for Public Health, Medical University Vienna (MUW), Vienna, Austria
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute (Swiss TPH), Basel, Switzerland; University of Basel, Switzerland
| | | | - Marina Lacasaña
- Andalusian School of Public Health (EASP), Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA. Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Spain; Andalusian Health and Environment Observatory (OSMAN), Granada, Spain.
| |
Collapse
|
23
|
Amin HA, Kaewsri P, Yiorkas AM, Cooke H, Blakemore AI, Drenos F. Mendelian randomisation analyses of UK Biobank and published data suggest that increased adiposity lowers risk of breast and prostate cancer. Sci Rep 2022; 12:909. [PMID: 35042869 PMCID: PMC8766553 DOI: 10.1038/s41598-021-04401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
Breast (BCa) and prostate (PrCa) cancer are the first and second most common types of cancer in women and men, respectively. We aimed to explore the causal effect of adiposity on BCa and PrCa risk in the UK Biobank and published data. We used Mendelian randomisation (MR) to assess the causal effect of body mass index (BMI), body fat percentage (BFP), waist circumference (WC), hip circumference (HC), and waist-to-hip ratio (WHR) on BCa and PrCa risk. We found that increased BMI, WC and HC decreased the risk of breast cancer (OR 0.70 per 5.14 kg/m2 [0.59-0.85, p = 2.1 × 10-4], 0.76 per 12.49 cm [60-0.97, p = 0.028] and 0.73 per 10.31 cm [0.59-0.90, p = 3.7 × 10-3], respectively) and increased WC and BMI decreased the risk of prostate cancer (0.68 per 11.32 cm [0.50-0.91, p = 0.01] and 0.76 per 10.23 kg/m2 [0.61-0.95, p = 0.015], respectively) in UK Biobank participants. We confirmed our results with a two-sample-MR of published data. In conclusion, our results suggest a protective effect of adiposity on the risk of BCa and PrCa highlighting the need to re-evaluate the role of adiposity as cancer risk factor.
Collapse
Affiliation(s)
- Hasnat A Amin
- Department of Life Sciences, College of Health, Medical and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, Middlesex, UK
| | - Pimpika Kaewsri
- Department of Life Sciences, College of Health, Medical and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, Middlesex, UK
| | - Andrianos M Yiorkas
- Department of Life Sciences, College of Health, Medical and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, Middlesex, UK
| | - Heather Cooke
- Department of Life Sciences, College of Health, Medical and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, Middlesex, UK
| | - Alexandra I Blakemore
- Department of Life Sciences, College of Health, Medical and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, Middlesex, UK
| | - Fotios Drenos
- Department of Life Sciences, College of Health, Medical and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, Middlesex, UK.
| |
Collapse
|
24
|
Lee DH. Can Environmental Pollutants Be a Factor Linking Obesity and COVID-19? J Korean Med Sci 2021; 36:e305. [PMID: 34751012 PMCID: PMC8575764 DOI: 10.3346/jkms.2021.36.e305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/12/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
- Duk-Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
25
|
Grundler F, Séralini GE, Mesnage R, Peynet V, Wilhelmi de Toledo F. Excretion of Heavy Metals and Glyphosate in Urine and Hair Before and After Long-Term Fasting in Humans. Front Nutr 2021; 8:708069. [PMID: 34651007 PMCID: PMC8505741 DOI: 10.3389/fnut.2021.708069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/02/2021] [Indexed: 12/05/2022] Open
Abstract
Background: Dietary exposure to environmental pollutants in humans is an important public health concern. While long-term fasting interrupts the dietary exposure to these substances, fat mobilization as an energy source may also release bioaccumulated substances. This was, to our knowledge, only investigated in obese people decades ago. This study explored the effects of 10-days fasting on the excretion of heavy metals and glyphosate. Methods: Urinary levels of arsenic, chromium, cobalt, lead, nickel, mercury and glyphosate were measured before and after 10 fasting days in 109 healthy subjects. Additionally, hair analysis was done before and ten weeks after fasting in 22 subjects. Results: Fasting caused a decrease in body weight, and in urinary arsenic (by 72%) and nickel (by 15%) concentrations. A decrease in lead hair concentrations (by 30%) was documented. Urinary mercury levels were unchanged for chromium, cobalt and glyphosate, which were undetectable in most of the subjects. Additionally, fatigue, sleep disorders, headache and hunger were reduced. Body discomfort symptoms diminished four weeks after food reintroduction. Conclusions: The results of this study provide the first insights into the changes in heavy metal excretion caused by long-term fasting. Further studies focusing on the kinetics of efflux between different compartments of the body are needed. Clinical Trial Registration:https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00016657, identifier: DRKS00016657.
Collapse
Affiliation(s)
- Franziska Grundler
- Buchinger Wilhelmi Clinic, Überlingen, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Gilles-Eric Séralini
- Department of Biology and Network on Risks, Quality and Sustainable Environment MRSH, University of Caen Normandy, Caen, France
| | - Robin Mesnage
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Vincent Peynet
- Institut de Recherche et d'Expertise Scientifique, Europarc, Strasbourg, France
| | | |
Collapse
|
26
|
Fénichel P, Coquillard P, Brucker-Davis F, Marchand P, Cano-Sancho G, Boda M, Antignac JP, Iannelli A, Gugenheim J, Le Bizec B, Chevalier N. Sustained bloodstream release of persistent organic pollutants induced by extensive weight loss after bariatric surgery: Implications for women of childbearing age. ENVIRONMENT INTERNATIONAL 2021; 151:106400. [PMID: 33611106 DOI: 10.1016/j.envint.2021.106400] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Lipophilic persistent organic pollutants (POPs) are stored in adipose tissues and released in case of weight loss. OBJECTIVES To analyze the kinetics and characteristics of this release during drastic weight loss after bariatric surgery and compare the results in case of women of childbearing age (WCBA) with critical blood concentration thresholds. METHODS 100 morbidly obese patients (73 women including 53 of childbearing age and 27 men) were screened before and 3, 6 and 12 months after bariatric surgery for serum concentrations of 67 congeners or metabolites of banned or not yet banned organohalogenated persistent pollutants, including highly lipophilic polychlorobiphenyls (PCBs), organochlorine pesticides (OCPs), brominated flame retardants (BFRs), and less lipophilic perfluorinated alkylated substances (PFASs). RESULTS Circulating levels of all chemicals, except PFASs, increased progressively after surgery, reaching after one year an increase between 30 and 139% compared to initial pre-surgical levels; median levels increased for PCB153 from 36.8 to 86.4 ng/g lw (+130%), for dichlorodiphenyldichloroethylene (p,p'-DDE) from 59.8 to 136.1 ng/g lw (+120%), and for hexachlorobenzene (HCB) from 9.8 to 20.3 ng/g lw (+110%). Weight loss averaging 30% of initial body weight at 12 months in both sexes (mean: 40.0 kg for men, 36.1 kg for women), was the main parameter related to the concentration increases (3.1 to 3.6% per kilogram weight loss). They were not dependent on initial BMI, presence of metabolic syndrome or type of surgical procedure but influenced by gender and biochemical properties such as degree of chlorination for PCBs and/or lipophilicity since PFASs did not increase at all. ∑PCB6 in blood after one year exceeded the critical concentration threshold for 24.5% women of childbearing age (13/53) versus 3.6% (2/53) before surgery. DISCUSSION Massive weight loss within the first year following bariatric surgery is associated with a sustained increase of circulating lipophilic POPs. Short- and long-term consequences should be considered, mostly for childbearing age obese women, because of potential health risks for the future fetus and breastfeeding infant.
Collapse
Affiliation(s)
- Patrick Fénichel
- Université Côte d'Azur, University Hospital of Nice, Department of Endocrinology, Diabetology and Reproduction, Nice, France; Université Côte d'Azur, INSERM U1065, C3M, Nice, France.
| | | | - Françoise Brucker-Davis
- Université Côte d'Azur, University Hospital of Nice, Department of Endocrinology, Diabetology and Reproduction, Nice, France.
| | | | | | - Mireille Boda
- Université Côte d'Azur, University Hospital of Nice, Department of Endocrinology, Diabetology and Reproduction, Nice, France.
| | | | - Antonio Iannelli
- Department of DigestiveSurgery, Archet II Hospital, Université Côte d'Azur, Nice, France.
| | - Jean Gugenheim
- Department of DigestiveSurgery, Archet II Hospital, Université Côte d'Azur, Nice, France.
| | | | - Nicolas Chevalier
- Université Côte d'Azur, University Hospital of Nice, Department of Endocrinology, Diabetology and Reproduction, Nice, France; Université Côte d'Azur, INSERM U1065, C3M, Nice, France.
| |
Collapse
|
27
|
Berg V, Charles D, Bergdahl IA, Nøst TH, Sandanger TM, Tornevi A, Huber S, Fuskevåg OM, Rylander C. Pre- and post-diagnostic blood profiles of chlorinated persistent organic pollutants and metabolic markers in type 2 diabetes mellitus cases and controls; a pilot study. ENVIRONMENTAL RESEARCH 2021; 195:110846. [PMID: 33577772 DOI: 10.1016/j.envres.2021.110846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Several risk factors for type 2 diabetes mellitus (T2DM) are also associated with blood concentrations of persistent organic pollutants (POPs), and factors related to the disease may affect POP concentrations, and subsequent associations between POPs and T2DM. The purpose of this pilot study was to investigate the change in concentrations of lipids, hormones and POPs pre- and post-diagnosis in T2DM cases compared to healthy controls and their associations with T2DM. METHODS We measured POPs, lipids, and thyroid and steroid hormones in plasma from 44 female cases collected prior to (pre-diagnostic) and following (post-diagnostic) T2DM diagnosis, and in 44 healthy female age-matched controls. We compared cross-sectional differences and longitudinal changes within and between matched cases and controls with t-tests and multivariable linear regression models. Associations between POP concentrations and T2DM were investigated using conditional logistic regression. RESULTS Between the pre- and post-diagnostic measurement, cases developed more favorable lipid profiles and the longitudinal changes in lipid-normalized concentrations of non-dioxin-like polychlorinated biphenyls (PCBs), dioxin-like PCBs, beta-hexachlorocyclohexane (HCH), HCB, and 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (p,p'-DDE) differed significantly between cases and controls. The longitudinal changes in POPs were mainly driven by changes in bodyweight, total lipids and T2DM status. Cases had significantly higher pre-diagnostic concentrations of POPs and triglycerides, and lower concentrations of high-density lipoprotein cholesterol and free thyroxin than controls. Pre-diagnostic POP concentrations were not significantly associated with incident T2DM, whereas several post-diagnostic POP concentrations were significantly positively associated with prevalent T2DM. CONCLUSIONS This pilot study suggests that factors related to T2DM affect blood concentrations of POPs and may partly explain the positive associations between POPs and T2DM.
Collapse
Affiliation(s)
- Vivian Berg
- Department of Medical Biology, Faculty of Health Sciences, UIT-The Arctic University of Norway, NO-9037, Tromsø, Norway; Department of Laboratory Medicine, Division of Diagnostic Services, University Hospital of North-Norway, NO-9038, Tromsø, Norway.
| | - Dolley Charles
- Department of Community Medicine, Faculty of Health Sciences, UIT-The Arctic University of Norway, NO-9037, Tromsø, Norway
| | - Ingvar A Bergdahl
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Therese H Nøst
- Department of Community Medicine, Faculty of Health Sciences, UIT-The Arctic University of Norway, NO-9037, Tromsø, Norway
| | - Torkjel M Sandanger
- Department of Community Medicine, Faculty of Health Sciences, UIT-The Arctic University of Norway, NO-9037, Tromsø, Norway
| | - Andreas Tornevi
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Sandra Huber
- Department of Laboratory Medicine, Division of Diagnostic Services, University Hospital of North-Norway, NO-9038, Tromsø, Norway
| | - Ole-Martin Fuskevåg
- Department of Laboratory Medicine, Division of Diagnostic Services, University Hospital of North-Norway, NO-9038, Tromsø, Norway
| | - Charlotta Rylander
- Department of Community Medicine, Faculty of Health Sciences, UIT-The Arctic University of Norway, NO-9037, Tromsø, Norway
| |
Collapse
|
28
|
Lorenzetti S, Plösch T, Teller IC. Antioxidative Molecules in Human Milk and Environmental Contaminants. Antioxidants (Basel) 2021; 10:550. [PMID: 33916168 PMCID: PMC8065843 DOI: 10.3390/antiox10040550] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
Breastfeeding provides overall beneficial health to the mother-child dyad and is universally recognized as the preferred feeding mode for infants up to 6-months and beyond. Human milk provides immuno-protection and supplies nutrients and bioactive compounds whose concentrations vary with lactation stage. Environmental and dietary factors potentially lead to excessive chemical exposure in critical windows of development such as neonatal life, including lactation. This review discusses current knowledge on these environmental and dietary contaminants and summarizes the known effects of these chemicals in human milk, taking into account the protective presence of antioxidative molecules. Particular attention is given to short- and long-term effects of these contaminants, considering their role as endocrine disruptors and potential epigenetic modulators. Finally, we identify knowledge gaps and indicate potential future research directions.
Collapse
Affiliation(s)
- Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy;
| | - Torsten Plösch
- Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany;
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | | |
Collapse
|
29
|
Henríquez-Hernández LA, Ortiz-Andrelluchi A, Álvarez-Pérez J, Acosta-Dacal A, Zumbado M, Martínez-González MA, Boada LD, Salas-Salvadó J, Luzardo OP, Serra-Majem L. Human biomonitoring of persistent organic pollutants in elderly people from the Canary Islands (Spain): A temporal trend analysis from the PREDIMED and PREDIMED-Plus cohorts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 758:143637. [PMID: 33248780 DOI: 10.1016/j.scitotenv.2020.143637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 12/18/2022]
Abstract
The population of the Canary Islands has been exposed to high levels of persistent organic pollutants (POPs). Biomonitoring studies are essential to know the temporal trend in residue levels, particularly of substances banned decades ago. The purpose of this study was to analyze the distribution of plasma concentrations of 59 POPs in 175 participants from the PREDIMED-Plus trial (2014-2016), and to compare them with the distribution of these POPs in 343 participants in the PREDIMED trial (2006-2009). All participants had metabolic syndrome. No difference in the distribution of age, gender or BMI was observed between trials. POPs were determined by gas chromatography-mass spectrometry. Density plots -POP Geoffrey Rose curves- were used to represent the full population distribution of each compound. Three out of 59 POPs were detected and quantified in ≥95% of the samples (p,p'-DDE, median = 694.7 ng/g lipid; HCB, median = 57.0 ng/g lipid; and β-HCH, median = 75.7 ng/g lipid). PCB congeners 138, 153 and 180 were detected in 64.6, 40.0 and 88.0% of the samples. Females showed highest concentrations of organochlorine pesticides and those subjects who lost ˃ 5 kg showed significant higher plasma concentrations of POPs. In a range of 6-14 years, plasma concentrations of POPs decreased 3.3-21.6 fold, being notable the decrease of 28.7-fold observed for HCB among women. Despite this sharp decline, levels of POPs are still higher than those reported in other regions, since one third of the subjects included in the present report had high concentration of more than three pollutants. Continuous biomonitoring studies are required to know the evolution of the levels of residues and to evaluate the effectiveness of environmental policies.
Collapse
Affiliation(s)
- L A Henríquez-Hernández
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain.
| | - A Ortiz-Andrelluchi
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - J Álvarez-Pérez
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - A Acosta-Dacal
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - M Zumbado
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - M A Martínez-González
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; University of Navarra, Department of Preventive Medicine and Public Health, IDISNA, 31008 Pamplona, Spain; Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, USA
| | - L D Boada
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - J Salas-Salvadó
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Human Nutrition Unit, Biochemistry and Biotechnology Department, IISPV, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - O P Luzardo
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - L Serra-Majem
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Preventive Medicine Service, Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canarian Health Service, Las Palmas, Spain; Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
30
|
Choi BSY, Varin TV, St-Pierre P, Pilon G, Tremblay A, Marette A. A polyphenol-rich cranberry extract protects against endogenous exposure to persistent organic pollutants during weight loss in mice. Food Chem Toxicol 2020; 146:111832. [PMID: 33129933 DOI: 10.1016/j.fct.2020.111832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/07/2020] [Accepted: 10/25/2020] [Indexed: 01/08/2023]
Abstract
The dramatic rise in the global occurrence of obesity and associated diseases calls for new strategies to promote weight loss. However, while the beneficial effects of weight loss are well known, rapid loss of fat mass can also lead to the endogenous release of liposoluble molecules with potential harmful effects, such as persistent organic pollutants (POP). The aim of this study was to evaluate the impact of a polyphenol-rich cranberry extract (CE) on POP release and their potential deleterious effects during weight loss of obese mice. C57BL/6 J mice were fed an obesogenic diet with or without a mixture of POP for 12 weeks and then changed to a low-fat diet to induce weight loss and endogenous POP release. The POP-exposed mice were then separated in two groups during weight loss, receiving either CE or the vehicle. Unexpectedly, despite the higher fat loss in the CE-treated group, the circulating levels of POP were not enhanced in these mice. Moreover, glucose homeostasis was further improved during CE-induced weight loss, as revealed by lower fasting glycemia and improved glucose tolerance as compared to vehicle-treated mice. Interestingly, the CE extract also induced changes in the gut microbiota after weight loss in POP-exposed mice, including blooming of Parvibacter, a member of the Coriobacteriaceae family which has been predicted to play a role in xenobiotic metabolism. Our data thus suggests that the gut microbiota can be targeted by polyphenol-rich extracts to protect from increased POP exposure and their detrimental metabolic effects during rapid weight loss.
Collapse
Affiliation(s)
- Béatrice So-Yun Choi
- Quebec Heart & Lung Institute, Université Laval, 2725 Ch Ste-Foy, Québec, QC, G1V 4G5, Canada; Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga Suite 1710, Québec, QC, G1V 0A6, Canada.
| | - Thibault Vincent Varin
- Quebec Heart & Lung Institute, Université Laval, 2725 Ch Ste-Foy, Québec, QC, G1V 4G5, Canada; Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga Suite 1710, Québec, QC, G1V 0A6, Canada.
| | - Philippe St-Pierre
- Quebec Heart & Lung Institute, Université Laval, 2725 Ch Ste-Foy, Québec, QC, G1V 4G5, Canada; Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga Suite 1710, Québec, QC, G1V 0A6, Canada.
| | - Geneviève Pilon
- Quebec Heart & Lung Institute, Université Laval, 2725 Ch Ste-Foy, Québec, QC, G1V 4G5, Canada; Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga Suite 1710, Québec, QC, G1V 0A6, Canada.
| | - Angelo Tremblay
- Quebec Heart & Lung Institute, Université Laval, 2725 Ch Ste-Foy, Québec, QC, G1V 4G5, Canada; Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga Suite 1710, Québec, QC, G1V 0A6, Canada; Department of Kinesiology, Faculty of Medicine, Université Laval, 2300 Rue de la Terrasse, Québec, QC, G1V 0A6, Canada.
| | - André Marette
- Quebec Heart & Lung Institute, Université Laval, 2725 Ch Ste-Foy, Québec, QC, G1V 4G5, Canada; Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga Suite 1710, Québec, QC, G1V 0A6, Canada; Department of Medicine, Faculty of Medicine, Université Laval, 1050 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
31
|
Lee YM, Shin JY, Kim SA, Jacobs DR, Lee DH. Can Habitual Exercise Help Reduce Serum Concentrations of Lipophilic Chemical Mixtures? Association between Physical Activity and Persistent Organic Pollutants. Diabetes Metab J 2020; 44:764-774. [PMID: 32174058 PMCID: PMC7643589 DOI: 10.4093/dmj.2019.0158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/20/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Low-dose persistent organic pollutants (POPs), especially organochlorine pesticides (OCPs), have emerged as a new risk factor of many chronic diseases. As serum concentrations of POPs in humans are mainly determined by both their release from adipose tissue to circulation and their elimination from circulation, management of these internal pathways may be important in controlling the serum concentrations of POPs. As habitual physical activity can increase the elimination of POPs from circulation, we evaluated whether chronic physical activity is related to low serum POP concentrations. METHODS A cross-sectional study of 1,850 healthy adults (age ≥20 years) without cardio-metabolic diseases who participated in the U.S. National Health and Nutrition Examination Survey 1999 to 2004 was conducted. Information on moderate or vigorous leisure-time physical activity was obtained based on questionnaires. Serum concentrations of OCPs and polychlorinated biphenyls were investigated as typical POPs. RESULTS Serum concentrations of OCPs among physically active subjects were significantly lower than those among physically inactive subjects (312.8 ng/g lipid vs. 538.0 ng/g lipid, P<0.001). This difference was maintained after adjustment for potential confounders. When analyses were restricted to physically active subjects, there were small decreases in the serum concentrations of OCPs with increasing duration of physical activity, showing a curvilinear relationship over the whole range of physical activity (Pquadratic <0.001). In analyses stratified by age, sex, body mass index, and smoking status, a strong inverse association was similarly observed among all subgroups. CONCLUSION Physical activity may assist in decreasing serum concentrations of lipophilic chemical mixtures such as OCPs.
Collapse
Affiliation(s)
- Yu-Mi Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Ji-Yeon Shin
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Se-A Kim
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Korea
| | - David R. Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Duk-Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Korea
| |
Collapse
|
32
|
Koureas M, Kirgou P, Amoutzias G, Hadjichristodoulou C, Gourgoulianis K, Tsakalof A. Target Analysis of Volatile Organic Compounds in Exhaled Breath for Lung Cancer Discrimination from Other Pulmonary Diseases and Healthy Persons. Metabolites 2020; 10:metabo10080317. [PMID: 32756521 PMCID: PMC7464039 DOI: 10.3390/metabo10080317] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to investigate the ability of breath analysis to distinguish lung cancer (LC) patients from patients with other respiratory diseases and healthy people. The population sample consisted of 51 patients with confirmed LC, 38 patients with pathological computed tomography (CT) findings not diagnosed with LC, and 53 healthy controls. The concentrations of 19 volatile organic compounds (VOCs) were quantified in the exhaled breath of study participants by solid phase microextraction (SPME) of the VOCs and subsequent gas chromatography-mass spectrometry (GC-MS) analysis. Kruskal-Wallis and Mann-Whitney tests were used to identify significant differences between subgroups. Machine learning methods were used to determine the discriminant power of the method. Several compounds were found to differ significantly between LC patients and healthy controls. Strong associations were identified for 2-propanol, 1-propanol, toluene, ethylbenzene, and styrene (p-values < 0.001-0.006). These associations remained significant when ambient air concentrations were subtracted from breath concentrations. VOC levels were found to be affected by ambient air concentrations and a few by smoking status. The random forest machine learning algorithm achieved a correct classification of patients of 88.5% (area under the curve-AUC 0.94). However, none of the methods used achieved adequate discrimination between LC patients and patients with abnormal computed tomography (CT) findings. Biomarker sets, consisting mainly of the exogenous monoaromatic compounds and 1- and 2- propanol, adequately discriminated LC patients from healthy controls. The breath concentrations of these compounds may reflect the alterations in patient's physiological and biochemical status and perhaps can be used as probes for the investigation of these statuses or normalization of patient-related factors in breath analysis.
Collapse
Affiliation(s)
- Michalis Koureas
- Department of Hygiene and Epidemiology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, 41222 Larissa, Greece; (M.K.); (C.H.)
| | - Paraskevi Kirgou
- Respiratory Medicine Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (P.K.); (K.G.)
| | - Grigoris Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Christos Hadjichristodoulou
- Department of Hygiene and Epidemiology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, 41222 Larissa, Greece; (M.K.); (C.H.)
| | - Konstantinos Gourgoulianis
- Respiratory Medicine Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (P.K.); (K.G.)
| | - Andreas Tsakalof
- Department of Hygiene and Epidemiology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, 41222 Larissa, Greece; (M.K.); (C.H.)
- Department of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
- Correspondence: ; Tel.: +30-2410685580
| |
Collapse
|
33
|
Lee YM, Lee DH. Can habitual exercise really increase serum concentrations of persistent organic pollutants? ENVIRONMENT INTERNATIONAL 2020; 140:105615. [PMID: 32183987 DOI: 10.1016/j.envint.2020.105615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Affiliation(s)
- Yu-Mi Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Duk-Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Republic of Korea.
| |
Collapse
|
34
|
Vail GM, Walley SN, Yasrebi A, Maeng A, Conde KN, Roepke TA. The interactions of diet-induced obesity and organophosphate flame retardant exposure on energy homeostasis in adult male and female mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:438-455. [PMID: 32546061 PMCID: PMC7337410 DOI: 10.1080/15287394.2020.1777235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Previously, sex-dependent alterations in energy homeostasis were reported in adult mice fed a standard chow attributed to exposure to a mixture of organophosphate flame retardants (OPFRs) via estrogen receptors (ERα). In this study, adult male and female mice (C57BL/6J; Taconic) were treated with the same mixture of OPFRs (1 mg/kg each of tricresyl phosphate (TCP), triphenyl phosphate (TPP), and tris(1-3-dichloro-2propyl)phosphate (TDCPP)) for 7 weeks on a low-fat diet (LFD, 10% kcal fat) or a high fat (HFD, 45% kcal fat) in a diet-induced obesity model. Consistent with our previous observations, OPFRs altered weight gain in males, differentially with diet, while females remained unaffected. OPFR treatment also revealed sex-dependent perturbations in metabolic activity. During the night (approximately 0100-0400 hr), males exhibited elevated activity and oxygen consumption, while in females these parameters were decreased, irrespective of diet. OPFR disrupted feeding behavior and abolished diurnal water intake patterns in females while increasing nighttime fluid consumption in males. Despite no marked effect of OPFRs on glucose or insulin tolerance, OPFR treatment altered circulating insulin and leptin in females and ghrelin in males. Data indicate that adult OPFR exposure might influence, and perhaps exacerbate, the effects of diet-induced obesity in adult mice by altering activity, ingestive behavior, and metabolism.
Collapse
Affiliation(s)
- Gwyndolin M. Vail
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Sabrina N. Walley
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Angela Maeng
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Kristie N. Conde
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Troy A. Roepke
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| |
Collapse
|
35
|
Lee D, Jacobs DR, Lind L, Lind PM. Lipophilic Environmental Chemical Mixtures Released During Weight‐Loss: The Need to Consider Dynamics. Bioessays 2020; 42:e1900237. [DOI: 10.1002/bies.201900237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/06/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Duk‐Hee Lee
- Department of Preventive MedicineSchool of MedicineKyungpook National University Daegu 41944 Korea
| | - David R Jacobs
- Division of Epidemiology and Community HealthSchool of Public HealthUniversity of Minnesota Minneapolis Minnesota 55454 USA
| | - Lars Lind
- Department of Medical SciencesCardiovascular EpidemiologyUppsala University Uppsala 75237 Sweden
| | - P. Monica Lind
- Department of Medical SciencesOccupational and Environmental MedicineUppsala University Uppsala 75185 Sweden
| |
Collapse
|
36
|
Lee YM, Park SH, Lee DH. Intensive weight loss and cognition: The dynamics of persistent organic pollutants in adipose tissue can explain the unexpected results from the Action for Health in Diabetes (Look AHEAD) study. Alzheimers Dement 2020; 16:696-703. [PMID: 32096335 DOI: 10.1002/alz.12065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/03/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this paper is to propose a new hypothesis for the role of lipophilic chemical mixtures stored in adipose tissue in the development of dementia. Specifically, we present how the dynamics of these chemicals can explain the unexpected findings from the Action for Health in Diabetes (Look AHEAD) study, which failed to show long-term benefits of intentional weight loss on cognition, despite substantial improvements in many known risk factors for dementia. Moreover, we discuss how the role of obesity in the risk of dementia can change depending on the dynamics of these chemicals in adipose tissue. NEW HYPOTHESIS Human adipose tissue is widely contaminated with various neurotoxic chemicals. Typical examples are persistent organic pollutants (POPs), strong lipophilic chemicals with long half-lives. Both unintentional and intentional weight loss increases the release of POPs from adipocytes into the circulation. As POPs in the blood can easily reach the brain, the intentional weight-loss group of the Look AHEAD study may have experienced an unappreciated and long-term disadvantage on their cognition. Additionally, POPs may be involved in the link between obesity and dementia, as dysfunctional hypertrophic adipocytes enhance the release of POPs from adipocytes to the circulation through uncontrolled lipolysis. In contrast, metabolically healthy obese people may have a low risk of dementia because the safe storage of POPs in adipose tissue would decrease the amount of POPs reaching the brain. MAJOR CHALLENGES FOR THE HYPOTHESIS In human studies, there are practical difficulties involved with measuring POPs in the blood, including high costs and complex assays. As the serum concentrations of POPs are continuously affected by weight loss and gain, prospective studies may require serial measurements of POPs. In in-vitro and in-vivo experimental studies, how to simulate the exposure dose, duration, and mixture patterns in humans would be critical. LINKAGE TO OTHER MAJOR THEORIES Even though POPs are direct neurotoxins at a high dosage, low-dose POPs are mitochondrial toxins. Therefore, chronic exposure to low-dose POPs is linked to known key interrelated mechanisms in the pathogenesis of dementia, such as mitochondrial dysfunction and neuroinflammation.
Collapse
Affiliation(s)
- Yu-Mi Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sun-Hee Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Duk-Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
37
|
Young D, Worrell A, McDevitt E, Henein L, Howell GE. Alterations in macrophage phagocytosis and inflammatory tone following exposure to the organochlorine compounds oxychlordane and trans-nonachlor. Toxicol In Vitro 2020; 65:104791. [PMID: 32057836 DOI: 10.1016/j.tiv.2020.104791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/10/2020] [Accepted: 02/08/2020] [Indexed: 12/15/2022]
Abstract
The role of macrophages in the innate immune response cannot be underscored however recent studies have demonstrated that both resident and recruited macrophages have critical roles in the pathogenesis of metabolic dysfunction. Given the recent data implicating exposure to persistent organic pollutants (POPs) in the pathogenesis of metabolic diseases, the current study was designed to examine the effects of the highly implicated organochlorine (OC) compounds oxychlordane and trans-nonachlor on overall macrophage function. Murine J774A.1 macrophages were exposed to trans-nonachlor or oxychlordane (0 - 20 µM) for 24 hours then phagocytosis, reactive oxygen species (ROS) generation, mitochondrial membrane potential, caspase activities, pro-inflammatory cytokine production, and macrophage plasticity were assessed. Overall, exposure to oxychlordane significantly decreased macrophage phagocytosis while both OC compounds significantly increased ROS generation. Exposure to trans-nonachlor significantly increased secretion of tumor necrosis factor alpha (TNFα) and interleukin-6 whereas oxychlordane had a biphasic effect on TNFα secretion. However, both oxychlordane and trans-nonachlor decreased basal expression of the M1 pro-inflammatory marker cyclooxygenase 2. Taken together, these data indicate that exposure to these two OC compounds have both compound and concentration dependent effects on macrophage function which may alter both the innate immune response and impact metabolic function of key organs involved in metabolic diseases.
Collapse
Affiliation(s)
- Darian Young
- Mississippi State University College of Veterinary Medicine, 240 Wise Center Drive, P.O. Box 6100, Mississippi State, MS 39762, USA
| | - Aren Worrell
- Mississippi State University College of Veterinary Medicine, 240 Wise Center Drive, P.O. Box 6100, Mississippi State, MS 39762, USA
| | - Erin McDevitt
- Mississippi State University College of Veterinary Medicine, 240 Wise Center Drive, P.O. Box 6100, Mississippi State, MS 39762, USA
| | - Lucie Henein
- Mississippi State University College of Veterinary Medicine, 240 Wise Center Drive, P.O. Box 6100, Mississippi State, MS 39762, USA
| | - George E Howell
- Mississippi State University College of Veterinary Medicine, 240 Wise Center Drive, P.O. Box 6100, Mississippi State, MS 39762, USA..
| |
Collapse
|
38
|
Renck AC, Trarbach EB, Frade Costa EM. Does the normalization of body weight improve male fertility? INT J VITAM NUTR RES 2020; 91:1-2. [PMID: 31976827 DOI: 10.1024/0300-9831/a000638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | - Ericka Barbosa Trarbach
- Laboratory of Cellular and Molecular Endocrinology LIM-25, University of São Paulo Medical School, São Paulo, Brazil
| | - Elaine Maria Frade Costa
- Department of Endocrinology, Hospital das Clínicas, School of Medicine, University of São Paulo, Brazil
| |
Collapse
|
39
|
Cano-Sancho G, Marchand P, Le Bizec B, Antignac JP. The challenging use and interpretation of blood biomarkers of exposure related to lipophilic endocrine disrupting chemicals in environmental health studies. Mol Cell Endocrinol 2020; 499:110606. [PMID: 31585155 DOI: 10.1016/j.mce.2019.110606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/05/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
The use of exposure biomarkers has been growing during the last decades, being considered the 'gold-standard' approach for individual exposure assessment to environmental chemicals. However, lipophilic endocrine disrupting chemicals (LEDC) have specific physicochemical and biological properties implying particular analytical challenges and interpretative caveats. The epidemiological literature is therefore afflicted by methodological inconsistencies and results divergences, in part due to recognised sources of exposure measurement error and misinterpretation of results. The aim of the present review is to identify external and endogenous sources of variability and uncertainty associated with the LEDC blood biomarkers in epidemiological studies. The dynamic nature of blood and an overview of the known mechanisms of transport, storage and partition of LEDCs in the organism are first described. The external sources of variability and uncertainty introduced at pre-analytical and analytical level are subsequently presented. Subsequently, we present some specific cases where the dynamics of lipids and LEDCs may be substantially modified and thus, the interpretation of biomarkers can be particularly challenging. The environmental obesogens as source of biomarkers variability is also discussed in the light of the most recent findings. Finally, different modelling approaches (statistical and pharmacokinetic models) proposed to improve the use and interpretation of biomarkers are appraised.
Collapse
|
40
|
Upregulation of vitamin D-binding protein is associated with changes in insulin production in pancreatic beta-cells exposed to p,p'-DDT and p,p'-DDE. Sci Rep 2019; 9:18026. [PMID: 31792309 PMCID: PMC6889289 DOI: 10.1038/s41598-019-54579-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/12/2019] [Indexed: 12/23/2022] Open
Abstract
Persistent organochlorine pollutants (POPs) gradually accumulate in the human organism due to their presence in the environment. Some studies have described a correlation between the level of POPs in the human body and the incidence of diabetes, but we know little about the direct effect of POPs on pancreatic beta-cells. We exposed pancreatic beta-cells INS1E to non-lethal concentrations of p,p′-DDT (1,1′-(2,2,2-Trichloroethane-1,1-diyl)bis(4-chlorobenzene)) and p,p′-DDE (1,1′-(2,2-dichloroethene-1,1-diyl)bis(4-chlorobenzene)) for 1 month, and assessed changes in protein expression and the intracellular insulin level. 2-D electrophoresis revealed 6 proteins with changed expression in cells exposed to p,p′-DDT or p,p′-DDE. One of the detected proteins – vitamin D-binding protein (VDBP) – was upregulated in both cells exposed to p,p′-DDT, and cells exposed to p,p′-DDE. Both exposures to pollutants reduced the intracellular level of insulin mRNA, proinsulin, and insulin monomer; p,p′-DDT also slightly reduced the level of hexameric insulin. Overexpression of VDBP caused by the stable transfection of beta-cells with the gene for VDBP decreased both the proinsulin and hexameric insulin level in beta-cells similarly to the reduction detected in cells exposed to p,p′-DDT. Our data suggest that in the cells exposed to p,p′-DDT and p,p′-DDE, the increased VDBP protein level decreased the proinsulin expression in an unknown mechanism.
Collapse
|
41
|
Tinkov AA, Skalnaya MG, Aaseth J, Ajsuvakova OP, Aschner M, Skalny AV. Aluminium levels in hair and urine are associated with overweight and obesity in a non-occupationally exposed population. J Trace Elem Med Biol 2019; 56:139-145. [PMID: 31470247 DOI: 10.1016/j.jtemb.2019.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/12/2019] [Accepted: 08/16/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Data on the association between aluminium (Al) exposure and obesity and/or metabolic syndrome are insufficient. The objective of the present study was to investigate the association between hair and urine Al levels and obesity. METHODS A total of 206 lean and 205 obese non-occupationally exposed subjects (30-50 y.o.) were enrolled in the study. Hair and urine Al levels were assessed with ICP-MS. Laboratory quality control was performed using the certified reference materials of human hair, plasma, and urine. RESULTS Hair and urinary Al levels in obese subjects were significantly higher by 31% and 46% compared to the control levels, respectively. The presence of hypertension (41% cases), atherosclerosis (8%), type 2 diabetes mellitus (10%), and non-alcoholic fatty liver disease (NAFLD) (53%) in obese patients were not associated with Al levels in the studied subjects. An overall multiple regression model established urinary Al levels (β = 0.395; p < 0.001), hypertension (β = 0.331; p < 0.001) and NAFLD (β = 0.257; p = 0.003) were significantly and directly associated with BMI. Hair Al levels were found to be border-line significantly related to BMI after adjustment for several confounders (β = -0.205; p = 0.054). CONCLUSIONS Aluminium body burden is associated with increased body weight, although the causal relationship between Al exposure and obesity is not clear. Both clinical and experimental studies are required to further investigate the impact of Al exposure on metabolic parameters in obesity and especially direct effects of Al in adipose tissue.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Yaroslavl State University, Sovetskaya St., 14, 150003, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya st., 19c1, 119146, Moscow, Russia; Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 9 Yanvarya St., 29, 460000, Orenburg, Russia; Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St., 10/2, Moscow 117198, Russia.
| | - Margarita G Skalnaya
- IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya st., 19c1, 119146, Moscow, Russia; Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St., 10/2, Moscow 117198, Russia
| | - Jan Aaseth
- IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya st., 19c1, 119146, Moscow, Russia; Innlandet Hospital Trust, Kongsvinger, Postboks 104, 2381 Brumunddal, Norway; Inland Norway University of Applied Sciences, Elverum, Postboks 400, 2418, Norway
| | - Olga P Ajsuvakova
- Yaroslavl State University, Sovetskaya St., 14, 150003, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya st., 19c1, 119146, Moscow, Russia; Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 9 Yanvarya St., 29, 460000, Orenburg, Russia; Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St., 10/2, Moscow 117198, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya st., 19c1, 119146, Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, 1300 Morris Park Avenue Bronx, 10461, USA
| | - Anatoly V Skalny
- Yaroslavl State University, Sovetskaya St., 14, 150003, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya st., 19c1, 119146, Moscow, Russia; Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 9 Yanvarya St., 29, 460000, Orenburg, Russia; Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St., 10/2, Moscow 117198, Russia
| |
Collapse
|
42
|
Bocato MZ, Bianchi Ximenez JP, Hoffmann C, Barbosa F. An overview of the current progress, challenges, and prospects of human biomonitoring and exposome studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:131-156. [PMID: 31543064 DOI: 10.1080/10937404.2019.1661588] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Human Biomonitoring (HB), the process for determining whether and to what extent chemical substances penetrated our bodies, serves as a useful tool to quantify human exposure to pollutants. In cases of nutrition and physiologic status, HB plays a critical role in the identification of excess or deficiency of essential nutrients. In pollutant HB studies, levels of substances measured in body fluids (blood, urine, and breast milk) or tissues (hair, nails or teeth) aid in the identification of potential health risks or associated adverse effects. However, even as a widespread practice in several countries, most HB studies reflect exposure to a single compound or mixtures which are measured at a single time point in lifecycle. On the other hand, throughout an individual's lifespan, the contact with different physical, chemical, and social stressors occurs at varying intensities, differing times and durations. Further, the interaction between stressors and body receptors leads to dynamic responses of the entire biological system including proteome, metabolome, transcriptome, and adductome. Bearing this in mind, a relatively new vision in exposure science, defined as the exposome, is postulated to expand the traditional practice of measuring a single exposure to one or few chemicals at one-time point to an approach that addresses measures of exposure to multiple stressors throughout the lifespan. With the exposome concept, the science of exposure advances to an Environment-Wide Association Perspective, which might exhibit a stronger relationship with good health or disease conditions for an individual (phenotype). Thus, this critical review focused on the current progress of HB and exposome investigations, anticipating some challenges, strategies, and future needs to be taken into account for designing future surveys.
Collapse
Affiliation(s)
- Mariana Zuccherato Bocato
- Laboratório de Toxicologia Analítica e de Sistemas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , Brazil
| | - João Paulo Bianchi Ximenez
- Laboratório de Toxicologia Analítica e de Sistemas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Christian Hoffmann
- Departmento de Alimentos e Nutrição Experimental Faculdade de Ciências Farmacêuticas, Universidade de São Paulo , São Paulo , Brazil
| | - Fernando Barbosa
- Laboratório de Toxicologia Analítica e de Sistemas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , Brazil
| |
Collapse
|
43
|
Lee DH, Porta M, Lind L, Lind PM, Jacobs DR. Neurotoxic chemicals in adipose tissue: A role in puzzling findings on obesity and dementia. Neurology 2019; 90:176-182. [PMID: 29358509 DOI: 10.1212/wnl.0000000000004851] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 10/26/2017] [Indexed: 12/28/2022] Open
Abstract
Midlife obesity is associated with increased risk of dementia, whereas late-life obesity is commonly associated with a lower risk of dementia. Although methodologic issues are often discussed in this apparent risk reversal, chronic exposure to low-dose organochlorine pesticides (OCPs), an emerging risk factor for dementia in general populations, may contribute to a direct explanation for these differences. OCPs are strong lipophilic chemicals with very long half-lives (several years), primarily stored in adipose tissue and very slowly released and metabolized over years. As serum concentrations of neurotoxic OCPs strongly correlate with brain OCPs (r = 0.95), any condition enhancing the release of OCPs from the adipose tissue into circulation would increase the risk of dementia. Increased release of OCPs from adipose tissue typically occurs in (1) dysfunctional adipocytes accompanied by uncontrolled lipolysis and (2) weight loss. Weight gain may help sequester circulating OCPs in adipose tissue. As obesity is the most common reason that adipocytes become dysfunctional, midlife obesity can increase dementia risk through the chronic release of OCPs into circulation. However, late-life obesity potentially decreases dementia risk because weight loss after midlife will increase the release of OCPs while weight gain may actually decrease the release. These countervailing forces may underlie paradoxical associations with dementia of obesity in midlife vs late life which is influenced by weight change after midlife. This hypothesis should be tested in future experimental and human studies on obesity and dementia.
Collapse
Affiliation(s)
- Duk-Hee Lee
- From the Department of Preventive Medicine (D.-H.L.), School of Medicine, Kyungpook National University, Daegu; BK21 Plus KNU Biomedical Convergence Program (D.-H.L.), Department of Biomedical Science, Kyungpook National University, Korea; Hospital del Mar Institute of Medical Research (IMIM) (M.P.), School of Medicine, Universitat Autonoma de Barcelona, and CIBERESP, Spain; Department of Medical Sciences, Cardiovascular Epidemiology (L.L.), and Department of Medical Sciences, Occupational and Environmental Medicine (P.M.L.), Uppsala University, Sweden; and Division of Epidemiology and Community Health (D.R.J.), School of Public Health, University of Minnesota, Minneapolis.
| | - Miquel Porta
- From the Department of Preventive Medicine (D.-H.L.), School of Medicine, Kyungpook National University, Daegu; BK21 Plus KNU Biomedical Convergence Program (D.-H.L.), Department of Biomedical Science, Kyungpook National University, Korea; Hospital del Mar Institute of Medical Research (IMIM) (M.P.), School of Medicine, Universitat Autonoma de Barcelona, and CIBERESP, Spain; Department of Medical Sciences, Cardiovascular Epidemiology (L.L.), and Department of Medical Sciences, Occupational and Environmental Medicine (P.M.L.), Uppsala University, Sweden; and Division of Epidemiology and Community Health (D.R.J.), School of Public Health, University of Minnesota, Minneapolis
| | - Lars Lind
- From the Department of Preventive Medicine (D.-H.L.), School of Medicine, Kyungpook National University, Daegu; BK21 Plus KNU Biomedical Convergence Program (D.-H.L.), Department of Biomedical Science, Kyungpook National University, Korea; Hospital del Mar Institute of Medical Research (IMIM) (M.P.), School of Medicine, Universitat Autonoma de Barcelona, and CIBERESP, Spain; Department of Medical Sciences, Cardiovascular Epidemiology (L.L.), and Department of Medical Sciences, Occupational and Environmental Medicine (P.M.L.), Uppsala University, Sweden; and Division of Epidemiology and Community Health (D.R.J.), School of Public Health, University of Minnesota, Minneapolis
| | - P Monica Lind
- From the Department of Preventive Medicine (D.-H.L.), School of Medicine, Kyungpook National University, Daegu; BK21 Plus KNU Biomedical Convergence Program (D.-H.L.), Department of Biomedical Science, Kyungpook National University, Korea; Hospital del Mar Institute of Medical Research (IMIM) (M.P.), School of Medicine, Universitat Autonoma de Barcelona, and CIBERESP, Spain; Department of Medical Sciences, Cardiovascular Epidemiology (L.L.), and Department of Medical Sciences, Occupational and Environmental Medicine (P.M.L.), Uppsala University, Sweden; and Division of Epidemiology and Community Health (D.R.J.), School of Public Health, University of Minnesota, Minneapolis
| | - David R Jacobs
- From the Department of Preventive Medicine (D.-H.L.), School of Medicine, Kyungpook National University, Daegu; BK21 Plus KNU Biomedical Convergence Program (D.-H.L.), Department of Biomedical Science, Kyungpook National University, Korea; Hospital del Mar Institute of Medical Research (IMIM) (M.P.), School of Medicine, Universitat Autonoma de Barcelona, and CIBERESP, Spain; Department of Medical Sciences, Cardiovascular Epidemiology (L.L.), and Department of Medical Sciences, Occupational and Environmental Medicine (P.M.L.), Uppsala University, Sweden; and Division of Epidemiology and Community Health (D.R.J.), School of Public Health, University of Minnesota, Minneapolis
| |
Collapse
|
44
|
Meek EC, Jones DD, Crow JA, Wills RW, Cooke WH, Chambers JE. Association of serum levels of p,p'- Dichlorodiphenyldichloroethylene (DDE) with type 2 diabetes in African American and Caucasian adult men from agricultural (Delta) and non-agricultural (non-Delta) regions of Mississippi. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:387-400. [PMID: 31064277 DOI: 10.1080/15287394.2019.1610678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Epidemiological associations were reported in several studies between persistent organochlorine organic pollutants and type 2 diabetes mellitus (T2D). Mississippi is a highly agricultural state in the USA, particularly the Delta region, with previous high usage of organochlorine (OC) insecticides such as p,p'- dichlorodiphenyltrichloroethane (DDT). In addition, there is a high proportion of African Americans who display elevated prevalence of T2D. Therefore, this State provides an important dataset for further investigating any relationship between OC compounds and metabolic diseases. The aim of this study was to assess whether soil and serum levels of OC compounds, such as p,p'- dichlorodiphenyldichloroethylene (DDE), arising from the heavy historical use of legacy OC insecticides, might serve as an environmental public health indicator for T2D occurrence. Soil samples from 60 Delta and 60 non-Delta sites randomly selected were analyzed for the presence of OC compounds. A retrospective cohort study of adult men (150 from each region) was recruited to provide a blood sample for OC compound quantitation and select demographic and clinical information including T2D. Using multivariable logistic regression, an association was found between increasing serum DDE levels and T2D occurrence in non-Delta participants (those subjects with lower serum DDE levels), as opposed to Delta participants (individuals with higher serum DDE levels). Thus, while there was a relationship between serum DDE levels and T2D in those with lower burdens of DDE, the lack of association in those with higher levels of DDE indicates a complex non-monotonic correlation between serum DDE levels and T2D occurrence complicating the goal of finding a public health marker for T2D. Abbreviations: BMI, body mass index; CVD, cardiovascular disease; CDC, Center for Disease Control, United States of America; DDE, p,p'- dichlorodiphenyldichloroethylene; DDT, p,p'- dichlorodiphenyltrichloroethane; GC/MS, gas chromatography/mass spectrometry; GIS, geographic information system; GPS, global positioning system; HDL, high-density lipoprotein; HTN, hypertension; IDW, inverse distance weighting; IRB, Institutional Review Board; LDL, low-density lipoprotein; LOQ, limit of quantitation; NHANES, National Health and Nutrition Examination Surveys; POPs, persistent organic pollutants; OC, organochlorine; PCB, polychlorinated biphenyl; SIM, single-ion monitoring; T2D, type 2 diabetes mellitus; USA, United States of America.
Collapse
Affiliation(s)
- Edward C Meek
- a Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine , Mississippi State University , Mississippi State , MS , USA
| | - Dana Dale Jones
- b Department of Medicine, Division of Endocrinology , GV Sonny Montgomery VA Medical Center , Jackson , MS , USA
| | - J Allen Crow
- a Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine , Mississippi State University , Mississippi State , MS , USA
| | - Robert W Wills
- c Department of Pathobiology and Population Medicine, College of Veterinary Medicine , Mississippi State University , Mississippi State , MS , USA
| | - William H Cooke
- d Department of Geosciences , Mississippi State University , Mississippi State , MS , USA
| | - Janice E Chambers
- a Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine , Mississippi State University , Mississippi State , MS , USA
| |
Collapse
|
45
|
Firm human evidence on harms of endocrine-disrupting chemicals was unlikely to be obtainable for methodological reasons. J Clin Epidemiol 2019; 107:107-115. [DOI: 10.1016/j.jclinepi.2018.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/27/2018] [Accepted: 12/05/2018] [Indexed: 01/05/2023]
|
46
|
de Lacerda JPA. The History of the Dioxin issue in Brazil: From citrus pulp crisis to food monitoring (REVIEW). ENVIRONMENT INTERNATIONAL 2019; 122:11-20. [PMID: 30448362 DOI: 10.1016/j.envint.2018.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 05/20/2023]
Abstract
Dioxins and furans are ubiquitous, anthropogenic environmental contaminants which can be found even in isolated places. Exposition to these chemicals poses several risks to humans such as thyroid dysfunction, cardiovascular diseases, and even cancer. In this review, the dioxin issue is analyzed in the light of the events that brought the World's attention to these pollutants, and the evolution of Brazilian scientific data on this matter since the citrus pulp crisis in 1998. Soil and air have been the main environmental matrices studied in Brazil. However, most of the research focuses on contaminated areas, with few or no data available on background levels. With the ratification of the Stockholm Convention in 2010, Brazil started to implement some measures to monitor the release of dioxins to the environment, such as the national inventory of sources. Still, the country lacks specific legislation stating acceptable limits for some industrial processes known to be source of dioxins emissions. Likewise, food monitoring has grown in recent years with the expansion of food groups monitored in the National Control Plan for Residues and Contaminants, but the available data do not allow affirming whether Brazilian residents are safe, as regard to exposure via food consumption. The implementation of a systemic survey such as a Total Diet Study would be a good strategy for a long-term monitoring not only for dioxins but also for other contaminants. Unfortunately, progressive cuts in science funds are holding back the scientific production in Brazil, whereas worldwide new emerging contaminants are being monitored and included in National Monitoring Plans both on food and environment matrices.
Collapse
|
47
|
Association of colorectal polyps and cancer with low-dose persistent organic pollutants: A case-control study. PLoS One 2018; 13:e0208546. [PMID: 30521631 PMCID: PMC6283632 DOI: 10.1371/journal.pone.0208546] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Low-dose persistent organic pollutants (POPs) have recently been linked to immunosenescence, a key mechanism in carcinogenesis, as well as many aging-related chronic diseases. Since feces are the main excretion route of POPs, the large intestine is a potential target organ for these pollutants. We performed a case-control study to evaluate whether exposure to low-dose POPs is related to the risk of colorectal polyps and cancer. METHODS A total of 277 participants were recruited from one hospital: 99 cancer patients, 102 polyp patients, and 76 control subjects. As typical examples of POPs, we measured the serum concentrations of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). RESULTS Across the tertiles of the summary measure of POPs, the adjusted odds ratios (ORs) of colorectal polyps and cancer were 2.8 (1.2-6.8) (Ptrend = 0.01) and 3.0 (1.0-8.8) (Ptrend = 0.02), respectively, for subjects in the highest tertile. When OCPs and PCBs were analyzed separately, OCPs were linked to an increased risk of both polyps and cancer; the adjusted ORs were 2.3 (0.9-5.7) (Ptrend = 0.05) for polyps and 3.6 (1.1-11.8) (Ptrend< 0.01) for cancer. However, PCBs were only significantly associated with a high risk of polyps but not cancer; the adjusted OR was 2.8 (1.2-6.6) (Ptrend = 0.01). CONCLUSION Chronic exposure to low-dose POPs may be associated with an increased risk of colorectal polyps and cancer. Our findings suggest the carcinogenic potential of strong lipophilic chemical mixtures such as POPs which are accumulated in adipose tissue, released to circulation, and eliminated through feces.
Collapse
|
48
|
Tinkov AA, Ajsuvakova OP, Skalnaya MG, Skalny AV, Aschner M, Suliburska J, Aaseth J. Organotins in obesity and associated metabolic disturbances. J Inorg Biochem 2018; 191:49-59. [PMID: 30458368 DOI: 10.1016/j.jinorgbio.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/30/2018] [Accepted: 11/04/2018] [Indexed: 01/01/2023]
Abstract
The objective of the present study was to review the mechanisms of organotin-induced adipogenesis, obesity, and associated metabolic disturbances. Peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor α (RXRα) activation is considered as the key mechanism of organotin-induced adipogenesis. Particularly, organotin exposure results in increased adipogenesis both in cell and animal models. Moreover, transgenerational inheritance of organotin-induced obese phenotype was demonstrated in vivo. At the same time, the existing data demonstrate that organotin compounds (OTCs) induces aberrant expression of PPARγ-targeted genes, resulting in altered of adipokine, glucose transporter, proinflammatory cytokines levels, and lipid and carbohydrate metabolism. The latter is generally characterized by hyperglycemia and insulin resistance. Other mechanisms involved in organotin-induced obesity may include estrogen receptor and corticosteroid signaling, altered DNA methylation, and gut dysfunction. In addition to cellular effects, organotin exposure may also affect neural circuits of appetite regulation, being characterized by neuropeptide Y (NPY) up-regulation in parallel with of pro-opiomelanocortin (POMC), Agouti-related protein (AgRP), and cocaine and amphetamine regulated transcript (CART) down-regulation in the arcuate nucleus. These changes result in increased orexigenic and reduced anorexigenic signaling, leading to increased food intake. The existing data demonstrate that organotins are potent adipogenic agents, however, no epidemiologic studies have been performed to reveal the association between organotin exposure and obesity and the existing indirect human data are contradictory.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia.
| | - Olga P Ajsuvakova
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| | | | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; Trace Element Institute for UNESCO, Lyon, France
| | | | | | - Jan Aaseth
- Innlandet Hospital Trust, Kongsvinger, Norway; Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
49
|
Bornemann V, Werness SC, Buslinger L, Schiffman SS. Intestinal Metabolism and Bioaccumulation of Sucralose In Adipose Tissue In The Rat. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:913-923. [PMID: 30130461 DOI: 10.1080/15287394.2018.1502560] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to (1) determine if the organochlorine artificial sweetener sucralose is metabolized in rat intestine with repeated dosing and (2) examine whether sucralose might bioaccumulate in rat adipose tissue. Sucralose was administered to 10 rats by gavage daily for 40 days at an average dosage of 80.4 mg/kg/day. The dosages were within the range utilized in historical toxicology studies submitted for regulatory approval in North America, Europe, and Asia. Feces and urine were collected individually from each animal for every 24-hr period during the 40-day dosing period. Analysis of the urine and fecal extracts by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) revealed two new biotransformation products that have not previously been reported. These two metabolites are both acetylated forms of sucralose that are less polar and hence more lipophilic than sucralose itself. These metabolites were present in urine and feces throughout the sucralose dosing period and still detected at low levels in the urine 11 days after discontinuation of sucralose administration and 6 days after sucralose was no longer detected in the urine or feces. The finding of acetylated sucralose metabolites in urine and feces do not support early metabolism studies, on which regulatory approval was based, that claimed ingested sucralose is excreted unchanged (i.e. not metabolized). The historical metabolic studies apparently failed to detect these metabolites in part because investigators used a methanol fraction from feces for analysis along with thin layer chromatography and a low-resolution linear radioactivity analyzer. Further, sucralose was found in adipose tissue in rats two weeks after cessation of the 40-day feeding period even though this compound had disappeared from the urine and feces. Thus, depuration of sucralose which accumulated in fatty tissue requires an extended period of time after discontinuation of chemical ingestion. These new findings of metabolism of sucralose in the gastrointestinal tract (GIT) and its accumulation in adipose tissue were not part of the original regulatory decision process for this agent and indicate that it now may be time to revisit the safety and regulatory status of this organochlorine artificial sweetener.
Collapse
Affiliation(s)
| | | | - Lauren Buslinger
- b College of Veterinary Medicine , North Carolina State University , Raleigh , North Carolina , USA
| | - Susan S Schiffman
- c Department of Electrical and Computer Engineering , College of Engineering, North Carolina State University , Raleigh , North Carolina , USA
| |
Collapse
|
50
|
Influence of Time Interval from Bariatric Surgery to Conception on Pregnancy and Perinatal Outcomes. Obes Surg 2018; 28:3559-3566. [DOI: 10.1007/s11695-018-3395-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|