1
|
Leelakajornkit S, Boonthum C, Borikkappakul P, Yata T, Yostawonkul J, Ponglowhapan S. Clinical trials of intratesticular administration of nanostructured lipid carriers encapsulated alpha-mangostin: Safety and efficacy on feline reproductive health. Theriogenology 2025; 231:240-249. [PMID: 39488949 DOI: 10.1016/j.theriogenology.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/25/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Surgical castration is a primary method for controlling male fertility, but it is impractical for large-scale population control of stray animals. Developing nanoparticle-mediated sterilants that induce cell apoptosis rather than necrosis is a complex and promising area of research. This study aimed to investigate the impact of intratesticular administration of alpha-mangostin encapsulated in nanostructured lipid carriers (AM-NLC) on testicular changes and any associated adverse effects over a 168-day observation period. Thirty-two healthy mature tomcats were enrolled. None of the cats treated with either AM-NLC (n = 28) or blank NLC (n = 4) exhibited noticeable complications related to pain or stress throughout the study, as assessed by clinical examination, blood profiles, and serum amyloid A levels. Histopathological analysis of AM-NLC treated cats revealed seminiferous epithelium degeneration, leading to defective tubules. Key findings included germ cell depletion, disorganized spermatogenic cells without spermatids in certain areas, apoptotic bodies, and intracytoplasmic vacuolization. The intertubular compartment showed no signs of inflammation, hyalinization, fibrosis, or necrosis. Despite widespread degeneration, some normal tubules were present in focal areas. The severity score of seminiferous tubule degeneration significantly increased from day 56 onwards (P < 0.05), suggesting a gradual and progressive compromise of the seminiferous epithelium. In contrast, testes from the blank-NLC group exhibited normal spermatogenesis. Overall, there were no significant changes in the volume of dissected testes, serum testosterone levels, or apoptotic index in AM-NLC-treated cats (P > 0.05). In conclusion, this study represents the first in vivo investigation of apoptotic-inducing agents as a novel nanomedicine-based antifertility compound for non-surgical castration in male animals. While the AM-NLC formulation proved safe for intratesticular administration, it failed to induce infertility in cats, as epididymal spermatozoa persisted throughout the study. Further research into alternative apoptosis-inducing nanomedicine sterilants remains both essential and challenging.
Collapse
Affiliation(s)
- Shanaporn Leelakajornkit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Rd., Pathumwan, Bangkok, 10330 Thailand
| | - Chatwalee Boonthum
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Rd., Pathumwan, Bangkok, 10330 Thailand
| | - Panthipa Borikkappakul
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Rd., Pathumwan, Bangkok, 10330 Thailand
| | - Teerapong Yata
- Unit of Biochemistry, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330 Thailand
| | - Jakarwan Yostawonkul
- National Nanotechnology Centre, National Science and Technology Development Agency, Phahonyothin Rd., Klong Luang, Pathumthani 12120 Thailand
| | - Suppawiwat Ponglowhapan
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Rd., Pathumwan, Bangkok, 10330 Thailand.
| |
Collapse
|
2
|
Kim CW, Alam MB, Song BR, Lee CH, Kim SL, Lee SH. γ-Mangosteen, an autophagy enhancer, prevents skin-aging via activating KEAP1/NRF2 signaling and downregulating MAPKs/AP-1/NF-κB-mediated MMPs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155815. [PMID: 38878525 DOI: 10.1016/j.phymed.2024.155815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/10/2024] [Accepted: 06/08/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Mangosteens, a naturally occurring xanthones, found abundantly in mangosteen fruits. The anti-skin aging potential of γ-mangosteen (GM) remains unexplored; therefore, we investigated the UVB-induced anti-skin aging of GM via activation of autophagy. HYPOTHESIS We hypothesized that GM exerts antioxidant and anti-aging capabilities both in vitro and in vivo through activation of autophagy as well as control of KEAP1/NRF2 signaling and MAPKs/AP-1/NF-κB-mediated MMPs pathways. METHODS The anti-skin aging effects of GM were studied using HDF cells and a mice model. Various assays, such as DPPH, ABTS, CUPRAC, FRAP, and ROS generation, assessed antioxidant activities. Kits measured antioxidant enzymes, SA-β-gal staining, collagen, MDA content, si-RNA experiments, and promoter assays. Western blotting evaluated protein levels of c-Jun, c-Fos, p-IκBα/β, p-NF-κB, MAPK, MMPs, collagenase, elastin, KEAP1, NRF2, HO-1, and autophagy-related proteins. RESULTS GM exhibited strong antioxidant, collagenase and elastase enzyme inhibition activity surpassing α- and β-mangosteen. GM competitively inhibited elastase with a Ki value of 29.04 µM. GM orchestrated the KEAP1-NRF2 pathway, enhancing HO-1 expression, and suppressed UVB-induced ROS in HDF cells. NRF2 knockdown compromised GM's antioxidant efficacy, leading to uncontrolled ROS post-UVB. GM bolstered endogenous antioxidants, curbing lipid peroxidation in UVB-exposed HDF cells and BALB/c mice. GM effectively halted UVB-induced cell senescence, and reduced MMP-1/-9, while elevated TIMP-1 levels, augmented COL1A1, ELN, and HAS-2 expression in vitro and in vivo. Additionally, it suppressed UVB-induced MAPKs, AP-1, NF-κB phosphorylation. Pharmacological inhibitors synergistically enhanced GM's anti-skin aging potential. Moreover, GM inhibited UVB-induced mTOR activation, upregulated LC3-II, Atg5, Beclin 1, and reduced p62 in both UVB induced HDF cells and BALB/c mice, while blocking of autophagy successfully halt the GM effects against the UVB-induced increase of cell senescence, degradation of collagen through upregulation of MMP-1, underscoring GM's substantial anti-skin aging impact via autophagy induction in vitro and in vivo. CONCLUSION Together, GM has potent antioxidant and anti-skin aging ingredients that can be used to formulate skin care products for both the nutraceutical and cosmeceutical industries.
Collapse
Affiliation(s)
- Chang-Woo Kim
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea; Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Korea
| | - Bo-Rim Song
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea
| | - Chang Hyung Lee
- Bio-MAX Institute, Seoul National University, Seoul 08826, Korea
| | - Solomon L Kim
- California Northstate University College of Medicine, Elk Grove, CA 95757, USA
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea; Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
3
|
Blanco Carcache PJ, Clinton SK, Kinghorn AD. Discovery of Natural Products for Cancer Prevention. Cancer J 2024; 30:313-319. [PMID: 39312451 PMCID: PMC11424022 DOI: 10.1097/ppo.0000000000000745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
ABSTRACT "Cancer chemoprevention" is a term referring to the slowing or reversal of this disease, using nontoxic natural or synthetic compounds. For about 50 years, there has been a strong scientific interest in discovering plant-derived compounds to prevent cancer, and strategies for this purpose using a concerted series of in vitro, ex vivo, and in vivo laboratory bioassays have been developed. Five examples of the more thoroughly investigated agents of this type are described herein, which are each supported by detailed literature reports, inclusive of ellagic acid, isoliquiritigenin, lycopene, trans-resveratrol, and sulforaphane. In addition, extracts of the plants avocado (Persea americana), noni (Morinda citrifolia), açai (Euterpe oleracea), and mangosteen (Garcinia mangostana) have all shown inhibitory activity in an in vivo or ex vivo bioassay using a carcinogen and germane to cancer chemoprevention, and selected in vitro-active constituents are described for each of these 4 species.
Collapse
Affiliation(s)
- Peter J Blanco Carcache
- From the College of Pharmacy and the College of Medicine, The Ohio State University, Columbus, OH
| | | | | |
Collapse
|
4
|
Li J, Nie X, Panthakarn Rangsinth, Wu X, Zheng C, Cheng Y, Shiu PHT, Li R, Lee SMY, Fu C, Zhang J, Leung GPH. Structure and activity relationship analysis of xanthones from mangosteen: Identifying garcinone E as a potent dual EGFR and VEGFR2 inhibitor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155140. [PMID: 37939410 DOI: 10.1016/j.phymed.2023.155140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Xanthones are among the most fundamental phytochemicals in nature. The anti-cancer activities of xanthones and their derivatives have been extensively studied. Recently, we found that garcinone E (GE), an effective anti-cancer phytochemical isolated from mangosteen (Garcinia mangostanal.), showed promising anti-cancer effects in vitro and in vivo. However, little is known about its effects on epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor 2 (VEGFR2) activity. PURPOSE This study aimed to identify potent dual EGFR and VEGFR2 inhibitors from mangosteen-derived xanthones using structure-activity relationship analyses. STUDY DESIGN The interaction of xanthones with EGFR and VEGFR2 was analyzed using molecular docking experiments. The kinase activities of EGFR and VEGFR2 were determined using bioluminescence assays. The rat aortic ring and Matrigel plug angiogenesis assays were used to evaluate blood vessel formation ex vivo and in vivo. A breast tumor-bearing nude mouse model was established to examine the anti-tumor effects of different xanthones. RESULTS Molecular docking analysis showed that GE bound tightly to EGFR and VEGFR2, with binding energies of -9.73 and -9.56 kcal/mol, respectively. Kinase activity assessment showed that GE strongly inhibited both EGFR and VEGFR2 kinase activity, with IC50 values of 315.4 and 158.2 nM, respectively. Moreover, GE significantly abolished the EGF- and VEGF-induced phosphorylation of EGFR and VEGFR2, respectively. GE also showed strong inhibitory effects on cancer cell growth, endothelial cell migration, invasion, and tube formation. Ex vivo and in vivo angiogenesis assays showed that GE dose-dependently suppressed blood vessel formation in the rat aorta, Matrigel plugs, and transgenic zebrafish embryos, with the lowest effective concentration of 0.25 μM. Furthermore, GE (2 mg/kg) strongly inhibited tumor growth and reduced tumor weight in MDA-MB-231 breast tumor-xenografted mice. GE significantly reduced microvessel density and downregulated the expression of VEGFR2, EGFR, and Ki67 in tumor tissues. CONCLUSION The present study demonstrated that GE was the most potent dual inhibitor of EGFR and VEGFR2 among all xanthones tested. These findings may provide valuable information for the future development of novel and effective dual inhibitors of EGFR and VEGFR2.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Xin Nie
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Chengwen Zheng
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Yanfen Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Polly Ho-Ting Shiu
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Renkai Li
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Simon Ming-Yuen Lee
- Department of Food Science and Nutrient, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Omidkhoda N, Mahdiani S, Hayes AW, Karimi G. Natural compounds against nonalcoholic fatty liver disease: A review on the involvement of the LKB1/AMPK signaling pathway. Phytother Res 2023; 37:5769-5786. [PMID: 37748097 DOI: 10.1002/ptr.8020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/18/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Although various therapeutic approaches are used to manage nonalcoholic fatty liver disease (NAFLD), the best approach to NAFLD management is unclear. NAFLD is a liver disorder associated with obesity, metabolic syndrome, and diabetes mellitus. NAFLD progression can lead to cirrhosis and end-stage liver disease. Hepatic kinase B1 (LKB1) is an upstream kinase of 5'-adenosine monophosphate-activated protein kinase (AMPK), a crucial regulator in hepatic lipid metabolism. Activation of LKB1/AMPK inhibits fatty acid synthesis, increases mitochondrial β-oxidation, decreases the expression of genes encoding lipogenic enzymes, improves nonalcoholic steatohepatitis, and suppresses NAFLD progression. One potential opening for new and safe chemicals that can tackle the NAFLD pathogenesis through the LKB1-AMPK pathway includes natural bioactive compounds. Accordingly, we summarized in vitro and in vivo studies regarding the effect of natural bioactive compounds such as a few members of the polyphenols, terpenoids, alkaloids, and some natural extracts on NAFLD through the LKB1/AMPK signaling pathway. This manuscript may shed light on the way to finding a new therapeutic agent for NAFLD management.
Collapse
Affiliation(s)
- Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Mahdiani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- College of Public Health, University of South Florida, Tampa, Florida, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Carmona-Orozco ML, Quiñones W, Robledo SM, Torres F, Echeverri F. Reversing the biofilm-inducing effect of two xanthones from Garcinia mangostana by 3-methyl-2(5H)-furanone and N-butyryl-D-L homoserine lactone. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155069. [PMID: 37722186 DOI: 10.1016/j.phymed.2023.155069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND According to the WHO, 12 bacteria cause numerous human infections, including Enterobacteriaceae Klebsiella pneumoniae, and thus represent a public health problem. Microbial resistance is associated with biofilm formation; therefore, it is critical to know the biofilm-inducing potential of various compounds of everyday life. Likewise, the reversibility of biofilms and the modulation of persister cells are important for controlling microbial pathogens. In this work, we investigated the biofilm-inducing effects of xanthones from Garcinia mangostana on Klebsiella pneumoniae. Furthermore, we investigated the reversal effect of 3-methyl-2(5H)-furanone and the formation of persister cells induced by xanthones and their role in modulating the biofilm to the antibiotic gentamicin. METHODS To analyze the biofilm-inducing role of xanthones from Garcinia mangostana, cultures of K. pneumoniae containing duodenal probe pieces were treated with 0.1-0.001 μM α- and γ-mangostin, and the biofilm levels were measured using spectrophotometry. To determine biofilm reversion, cultures treated with xanthones, or gentamicin were mixed with 3-methyl-2(5H)-furanone or N-butyryl-DL-homoserine lactone. The presence of K. pneumoniae persister cells was determined by applying the compounds to the mature biofilm, and the number of colony-forming units was counted. RESULTS The xanthones α- and γ-mangostin increased K. pneumoniae biofilm production by 40% with duodenal probes. However, 3-methyl-2(5H)-furanone at 0.001 μΜ reversed biofilm formation by up to 60%. Moreover, adding the same to a culture treated with gentamicin reduced the biofilm by 80.5%. This effect was highlighted when 3-methyl-2(5H)-furanone was administered 6 h later than xanthones. At high concentrations of α-mangostin, persister K. pneumoniae cells in the biofilm were about 5 - 10 times more abundant than cells, whereas, with γ-mangostin, they were about 100 times more. CONCLUSION Two xanthones, α- and γ-mangostin from G. mangostana, induced biofilm formation in K. pneumoniae and promoted persister cells. However, the biofilm formation was reversed by adding 3-methyl-2(5H)-furanone, and even this effect was achieved with gentamicin. In addition, this compound controlled the persister K. pneumoniae cells promoted by α-mangostin. Thus, synthetic, and natural biofilm-inducing compounds could harm human health. Therefore, avoiding these substances and looking for biofilm inhibitors would be a strategy to overcome microbial resistance and recover antibiotics that are no longer used.
Collapse
Affiliation(s)
- Maria L Carmona-Orozco
- Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia
| | - Wiston Quiñones
- Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia
| | - Sara M Robledo
- PECET-Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Fernando Torres
- Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia
| | - Fernando Echeverri
- Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
7
|
Liu M, Wang Q, Xu W, Wu J, Xu X, Yang H, Li X. Natural products for treating cytokine storm-related diseases: Therapeutic effects and mechanisms. Biomed Pharmacother 2023; 167:115555. [PMID: 37776639 DOI: 10.1016/j.biopha.2023.115555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND A cytokine storm (CS) is a rapidly occurring, complex, and highly lethal systemic acute inflammatory response induced by pathogens and other factors. Currently, no clinical therapeutic drugs are available with a significant effect and minimal side effects. Given the pathogenesis of CS, natural products have become important resources for bioactive agents in the discovery of anti-CS drugs. PURPOSE This study aimed to provide guidance for preventing and treating CS-related diseases by reviewing the natural products identified to inhibit CS in recent years. METHODS A comprehensive literature review was conducted on CS and natural products, utilizing databases such as PubMed and Web of Science. The quality of the studies was evaluated and summarized for further analysis. RESULTS This study summarized more than 30 types of natural products, including 9 classes of flavonoids, phenols, and terpenoids, among others. In vivo and in vitro experiments demonstrated that these natural products could effectively inhibit CS via nuclear factor kappa-B, mitogen-activated protein kinase, and Mammalian target of rapamycin (mTOR) signaling pathways. Moreover, the enzyme inhibition assays revealed that more than 20 chemical components had the potential to inhibit ACE2, 3CL-protease, and papain-like protease activity. The experimental results were obtained using advanced technologies such as biochips and omics. CONCLUSIONS Various natural compounds in traditional Chinese medicine (TCM) extracts could directly or indirectly inhibit CS occurrence, potentially serving as effective drugs for treating CS-related diseases. This study may guide further exploration of the therapeutic effects and biochemical mechanisms of natural products on CS.
Collapse
Affiliation(s)
- Mei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wanai Xu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, China
| | - Jingyu Wu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, China
| | - Xingyue Xu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
8
|
Sang SH, Akowuah GA, Liew KB, Lee SK, Keng JW, Lee SK, Yon JAL, Tan CS, Chew YL. Natural alternatives from your garden for hair care: Revisiting the benefits of tropical herbs. Heliyon 2023; 9:e21876. [PMID: 38034771 PMCID: PMC10685248 DOI: 10.1016/j.heliyon.2023.e21876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/30/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Hair shampoos containing botanical ingredients without synthetic additives, such as parabens, petrochemicals, sulfates and silicones are more skin- and environmentally friendly. In recent years, there is a growing demand for shampoo products with botanical extracts. Shampoos with botanical extracts are well-known for their perceived health benefits. They are also generally milder, non-toxic, natural, and less likely to disrupt the hair and scalp's natural pH and oil balance. Many also believe that shampoos with botanical origins have higher standards of quality. Numerous botanical extracts had been used as natural active ingredients in cosmetic formulations to meet consumer demands. In this review, we have revisited six tropical plants commonly added as natural active ingredients in shampoo formulations: Acacia concinna, Camellia oleifera, Azadirachta indica, Emblica officinalis, Sapindus mukorossi, and Garcinia mangostana. These plants have been traditionally used for hair care, and scientific research has shown that they exhibit relevant physicochemical properties and biological activities that are beneficial for hair care and scalp maintenance.
Collapse
Affiliation(s)
- Sze-Huey Sang
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| | | | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia
| | - Siew-Keah Lee
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia
| | - Jing-Wen Keng
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Sue-Kei Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Jessica-Ai-Lyn Yon
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University College, Nilai, 71800, Malaysia
| | - Yik-Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Alghareeb SA, Alsughayyir J, Alfhili MA. Stimulation of Hemolysis and Eryptosis by α-Mangostin through Rac1 GTPase and Oxidative Injury in Human Red Blood Cells. Molecules 2023; 28:6495. [PMID: 37764276 PMCID: PMC10535552 DOI: 10.3390/molecules28186495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Chemotherapy-related anemia is prevalent in up to 75% of patients, which may arise due to hemolysis and eryptosis. Alpha-mangostin (α-MG) is a polyphenolic xanthonoid found in the mangosteen tree (Garcinia mangostana) whose antitumor medicinal properties are well-established. Nevertheless, the potential toxic effects of α-MG on red blood cells (RBCs) have, as of yet, not been as well studied. METHODS RBCs were exposed to 1-40 μM of α-MG for 24 h at 37 °C. Hemolysis and related markers were measured using colorimetric assays, eryptotic cells were identified through Annexin-V-FITC, Ca2+ was detected with Fluo4/AM, and oxidative stress was assessed through H2DCFDA using flow cytometry. The toxicity of α-MG was also examined in the presence of specific signal transduction inhibitors and in whole blood. RESULTS α-MG at 10-40 μM caused dose-dependent hemolysis with concurrent significant elevation in K+, Mg2+, and LDH leakage, but at 2.5 μM it significantly increased the osmotic resistance of cells. A significant increase was also noted in Annexin-V-binding cells, along with intracellular Ca2+, oxidative stress, and cell shrinkage. Moreover, acetylcholinesterase activity was significantly inhibited by α-MG, whose hemolytic potential was significantly ameliorated by the presence of BAPTA-AM, vitamin C, NSC23766, and isosmotic sucrose but not urea. In whole blood, α-MG significantly depleted intracellular hemoglobin stores and was selectively toxic to platelets and monocytes. CONCLUSIONS α-MG possesses hemolytic and eryptotic activities mediated through Ca2+ signaling, Rac1 GTPase activity, and oxidative injury. Also, α-MG leads to accelerated cellular aging and specifically targets platelet and monocyte populations in a whole blood milieu.
Collapse
Affiliation(s)
| | | | - Mohammad A. Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia (J.A.)
| |
Collapse
|
10
|
Suhandi C, Wilar G, Lesmana R, Zulhendri F, Suharyani I, Hasan N, Wathoni N. Propolis-Based Nanostructured Lipid Carriers for α-Mangostin Delivery: Formulation, Characterization, and In Vitro Antioxidant Activity Evaluation. Molecules 2023; 28:6057. [PMID: 37630309 PMCID: PMC10458397 DOI: 10.3390/molecules28166057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
α-Mangostin (a xanthone derivative found in the pericarp of Garcinia mangostana L.) and propolis extract (which is rich in flavonoids and phenols) are known for their antioxidant properties, making them potential supplements for the treatment of oxidative stress-related conditions. However, these two potential substances have the same primary drawback, which is low solubility in water. The low water solubility of α-mangostin and propolis can be overcome by utilizing nanotechnology approaches. In this study, a propolis-based nanostructured lipid carrier (NLC) system was formulated to enhance the delivery of α-mangostin. The aim of this study was to characterize the formulation and investigate its influence on the antioxidant activity of α-mangostin. The results showed that both unloaded propolis-based NLC (NLC-P) and α-mangostin-loaded propolis-based NLC (NLC-P-α-M) had nanoscale particle sizes (72.7 ± 1.082 nm and 80.3 ± 1.015 nm, respectively), neutral surface zeta potential (ranging between +10 mV and -10 mV), and good particle size distribution (indicated by a polydispersity index of <0.3). The NLC-P-α-M exhibited good entrapment efficiency of 87.972 ± 0.246%. Dissolution testing indicated a ~13-fold increase in the solubility of α-mangostin compared to α-mangostin powder alone. The incorporation into the propolis-based NLC system correlated well with the enhanced antioxidant activity of α-mangostin (p < 0.01) compared to NLC-P and α-mangostin alone. Therefore, the modification of the delivery system by incorporating α-mangostin into the propolis-based NLC overcomes the physicochemical challenges of α-mangostin while enhancing its antioxidant effectiveness.
Collapse
Affiliation(s)
- Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (C.S.); (I.S.)
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | | | - Ine Suharyani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (C.S.); (I.S.)
- Department of Pharmacy, Sekolah Tinggi Farmasi Muhammadiyah Cirebon, Cirebon 45153, Indonesia
| | - Nurhasni Hasan
- Department of Pharmacy Science and Technology, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia;
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (C.S.); (I.S.)
| |
Collapse
|
11
|
Tran TTT, Le PM, Nguyen TKA, Hoang TMN, Do TQA, Martel AL, Lewicky JD, Klem A, Le HT. Novel human STING activation by hydrated-prenylated xanthones from Garcinia cowa. J Pharm Pharmacol 2023:7194606. [PMID: 37307431 DOI: 10.1093/jpp/rgad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/11/2023] [Indexed: 06/14/2023]
Abstract
OBJECTIVES We investigate the anticancer activity and human stimulator of interferon genes pathway activation by a new hydrated-prenylated tetraoxygenated xanthone, garcicowanone I (1) and two known xanthones (2 and 3) that were isolated from the root bark of Garcinia cowa Roxb. ex Choisy. METHODS The anticancer activity of each compound was evaluated by sulforhodamine B assay in immortalized cancer cell lines. Stimulator of interferon genes pathway activation was assessed by western blot analysis using human THP-1-derived macrophages. The production of pro-inflammatory cytokines from these macrophages was also evaluated via enzyme-linked immunosorbent assay. KEY FINDINGS Both compounds 1 and 3 displayed moderate inhibitory effects on the cancer cells, including a cisplatin-resistant cell line, with IC50 values in the range of 10-20 µM. All three xanthones activated the stimulator of interferon genes, as evidenced by phosphorylation of tank-binding kinase 1, the stimulator of interferon genes protein and interferon regulatory factor 3. Furthermore, treatment of these macrophages with compounds 1-3 led to the production of pro-inflammatory cytokines, including interleukin 6, tumour necrosis factor α and interleukin 1β. CONCLUSIONS In conclusion, the isolated xanthones, including the novel garcicowanone I, displayed promising anticancer and immunomodulatory activity that warrants further research.
Collapse
Affiliation(s)
- Thi Thu Thuy Tran
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Phuong Mai Le
- Metrology, National Research Council Canada, Ottawa, ON, Canada
| | | | - Thi Minh Nguyet Hoang
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thi Quynh An Do
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi, Hanoi, Vietnam
| | | | | | - Alexandra Klem
- Northern Ontario School of Medicine University, Sudbury, ON, Canada
| | - Hoang-Thanh Le
- Health Sciences North Research Institute, Sudbury, ON, Canada
- Northern Ontario School of Medicine University, Sudbury, ON, Canada
| |
Collapse
|
12
|
Deng X, Xu H, Li D, Chen J, Yu Z, Deng Q, Li P, Zheng J, Zhang H. Mechanisms of Rapid Bactericidal and Anti-Biofilm Alpha-Mangostin In Vitro Activity against Staphylococcus aureus. Pol J Microbiol 2023; 72:199-208. [PMID: 37314356 DOI: 10.33073/pjm-2023-021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/16/2023] [Indexed: 06/15/2023] Open
Abstract
Alpha-mangostin (α-mangostin) was discovered as a potent natural product against Gram-positive bacteria, whereas the underlying molecular mechanisms are still unclear. This study indicated that α-mangostin (at 4 × MIC) rapidly killed Staphylococcus aureus planktonic cells more effectively (at least 2-log10 CFU/ml) than daptomycin, vancomycin and linezolid at 1 and 3 h in the time-killing test. Interestingly, this study also found that a high concentration of α-mangostin (≥4×MIC) significantly reduced established biofilms of S. aureus. There were 58 single nucleotide polymorphisms (SNPs) in α-mangostin nonsensitive S. aureus isolates by whole-genome sequencing, of which 35 SNPs were located on both sides of the sarT gene and 10 SNPs in the sarT gene. A total of 147 proteins with a different abundance were determined by proteomics analysis, of which 91 proteins increased, whereas 56 proteins decreased. The abundance of regulatory proteins SarX and SarZ increased. In contrast, the abundance of SarT and IcaB was significantly reduced (they belonged to SarA family and ica system, associated with the biofilm formation of S. aureus). The abundance of cell membrane proteins VraF and DltC was augmented, but the abundance of cell membrane protein UgtP remarkably decreased. Propidium iodide and DiBaC4(3) staining assay revealed that the fluorescence intensities of DNA and the cell membrane were elevated in the α-mangostin treated S. aureus isolates. In conclusion, this study reveals that α-mangostin was effective against S. aureus planktonic cells by targeting cell membranes. The anti-biofilm effect of α-mangostin may be through inhibiting the function of SarT and IcaB.
Collapse
Affiliation(s)
- Xiangbin Deng
- 1Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Hongbo Xu
- 2Department of Critical Care Medicine and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Duoyun Li
- 1Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Jinlian Chen
- 1Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Zhijian Yu
- 1Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Qiwen Deng
- 1Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Peiyu Li
- 1Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Jinxin Zheng
- 1Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Haigang Zhang
- 2Department of Critical Care Medicine and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
13
|
Alam M, Rashid S, Fatima K, Adnan M, Shafie A, Akhtar MS, Ganie AH, Eldin SM, Islam A, Khan I, Hassan MI. Biochemical features and therapeutic potential of α-Mangostin: Mechanism of action, medicinal values, and health benefits. Biomed Pharmacother 2023; 163:114710. [PMID: 37141737 DOI: 10.1016/j.biopha.2023.114710] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
α-Mangostin (α-MG) is a natural xanthone obtained from the pericarps of mangosteen. It exhibits excellent potential, including anti-cancer, neuroprotective, antimicrobial, antioxidant, and anti-inflammatory properties, and induces apoptosis. α-MG controls cell proliferation by modulating signaling molecules, thus implicated in cancer therapy. It possesses incredible pharmacological features and modulates crucial cellular and molecular factors. Due to its lesser water solubility and pitiable target selectivity, α-MG has limited clinical application. As a known antioxidant, α-MG has gained significant attention from the scientific community, increasing interest in extensive technical and biomedical applications. Nanoparticle-based drug delivery systems were designed to improve the pharmacological features and efficiency of α-MG. This review is focused on recent developments on the therapeutic potential of α-MG in managing cancer and neurological diseases, with a special focus on its mechanism of action. In addition, we highlighted biochemical and pharmacological features, metabolism, functions, anti-inflammatory, antioxidant effects and pre-clinical applications of α-MG.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-kharj 11942, Saudi Arabia
| | - Kisa Fatima
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, PO Box 2440, Hail 2440, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mohammad Salman Akhtar
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - A H Ganie
- Basic Sciences Department, College of Science and Theoretical Studies, Saudi Electronic University, Abha Male 61421, Saudi Arabia
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
14
|
Setyawati LU, Nurhidayah W, Khairul Ikram NK, Mohd Fuad WE, Muchtaridi M. General toxicity studies of alpha mangostin from Garcinia mangostana: A systematic review. Heliyon 2023; 9:e16045. [PMID: 37215800 PMCID: PMC10196863 DOI: 10.1016/j.heliyon.2023.e16045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Alpha mangostin (AM), the main xanthone derivative contained in mangosteen pericarp (Garcinia mangostana/GM), has many pharmacological activities such as antioxidant, antiproliferation, antiinflammatory, and anticancer. Several general toxicity studies of AM have been previously reported to assess the safety profile of AM. Toxicity studies were carried out by various methods such as on test animals, interventions, and various routes of administration, but the test results have not been well documented. Our study aimed to systematically summarizes research on the safety profile of GM containing AM through general toxicity tests to get the LD50 and NOAEL values, and so, can be used as a database related to AM toxicity profiles. This could facilitate other researchers in determining further development of GM-or-AM-based products. Pubmed, Google scholar, ScienceDirect, and EBSCO were chosen to collect the articles while ARRIVE 2.0 was used to evaluate the quality and risk-of-bias of the in vivo toxicity studies included in this systematic review. A total of 20 articles met the eligibility criteria and were reviewed to predict the LD50 and NOAEL of AM. The results showed that the LD50 of AM is between >15.480 mg/kgBW to ≤6000 mg/kgBW while the NOAEL value is between <100 and ≤2000 mg/kgBW.
Collapse
Affiliation(s)
- Luthfi Utami Setyawati
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, 45363 Sumedang, Indonesia
- Research Collaboration Centre for Theranostic Radiopharmaceuticals, National Research and Innovation Agency (BRIN), Indonesia
| | - Wiwit Nurhidayah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
- Research Collaboration Centre for Theranostic Radiopharmaceuticals, National Research and Innovation Agency (BRIN), Indonesia
| | - Nur Kusaira Khairul Ikram
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wan Ezumi Mohd Fuad
- Programme of Biomedicine, School of Health Sciences, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, 45363 Sumedang, Indonesia
- Research Collaboration Centre for Theranostic Radiopharmaceuticals, National Research and Innovation Agency (BRIN), Indonesia
| |
Collapse
|
15
|
Kim SE, Yin MZ, Roh JW, Kim HJ, Choi SW, Wainger BJ, Kim WK, Kim SJ, Nam JH. Multi-target modulation of ion channels underlying the analgesic effects of α-mangostin in dorsal root ganglion neurons. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154791. [PMID: 37094425 DOI: 10.1016/j.phymed.2023.154791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND α-Mangostin is a xanthone isolated from the pericarps of mangosteen fruit with, and has analgesic properties. Although the effects suggest an interaction of α-mangostin with ion channels in the nociceptive neurons, electrophysiological investigation of the underlying mechanism has not been performed. HYPOTHESIS We hypothesized that α-Mangostin exerts its analgesic effects by modulating the activity of various ion channels in dorsal root ganglion (DRG) neurons. METHODS We performed a whole-cell patch clamp study using mouse DRG neurons, HEK293T cells overexpressing targeted ion channels, and ND7/23 cells. Molecular docking (MD) and in silico absorption, distribution, metabolism, and excretion (ADME) analyses were conducted to obtain further insights into the binding sites and pharmacokinetics, respectively. RESULTS Application of α-mangostin (1-3 µM) hyperpolarized the resting membrane potential (RMP) of small-sized DRG neurons by increasing background K+ conductance and thereby inhibited action potential generation. At micromolar levels, α-mangostin activates TREK-1, TREK-2, or TRAAK, members of the two-pore domain K+ channel (K2P) family known to be involved in RMP formation in DRG neurons. Furthermore, capsaicin-induced TRPV1 currents were potently inhibited by α-mangostin (0.43 ± 0.27 µM), and partly suppressed tetrodotoxin-sensitive voltage-gated Na+ channel (NaV) currents. MD simulation revealed that multiple oxygen atoms in α-mangostin may form stable hydrogen bonds with TREKs, TRAAK, TRPV1, and NaV channels. In silico ADME tests suggested that α-mangostin may satisfy the drug-likeness properties without penetrating the blood-brain barrier. CONCLUSION The analgesic properties of α-mangostin might be mediated by the multi-target modulation of ion channels, including TREK/TRAAK activation, TRPV1 inhibition, and reduction of the tetrodotoxin-sensitive NaV current. The findings suggest that the phytochemical can be a multi-ion channel-targeting drug and an alternative drug for effective pain management.
Collapse
Affiliation(s)
- Sung Eun Kim
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ming Zhe Yin
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jae Won Roh
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyun Jong Kim
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, Gyeonggi-do 10326, Republic of Korea
| | - Seong Woo Choi
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Brian J Wainger
- Departments Anesthesia, Critical Care & Pain Medicine and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston 02114, ts, USA
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Gyeonggi-do 10326, Republic of Korea; Department of Internal Medicine Graduate School of Medicine, Dongguk University, Gyeonggi-do 10326, Republic of Korea.
| | - Sung Joon Kim
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Departments Anesthesia, Critical Care & Pain Medicine and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston 02114, ts, USA; Channelopathy Research Center (CRC), Dongguk University College of Medicine, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
16
|
Li R, Inbaraj BS, Chen BH. Quantification of Xanthone and Anthocyanin in Mangosteen Peel by UPLC-MS/MS and Preparation of Nanoemulsions for Studying Their Inhibition Effects on Liver Cancer Cells. Int J Mol Sci 2023; 24:ijms24043934. [PMID: 36835343 PMCID: PMC9965517 DOI: 10.3390/ijms24043934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Mangosteen peel, a waste produced during mangosteen processing, has been reported to be rich in xanthone and anthocyanin, both of which possess vital biological activities such as anti-cancer properties. The objectives of this study were to analyze various xanthones and anthocyanins in mangosteen peel by UPLC-MS/MS for the subsequent preparation of both xanthone and anthocyanin nanoemulsions to study their inhibition effects on liver cancer cells HepG2. Results showed that methanol was the optimal solvent for the extraction of xanthones and anthocyanins, with a total amount of 68,543.39 and 2909.57 μg/g, respectively. A total of seven xanthones, including garcinone C (513.06 μg/g), garcinone D (469.82 μg/g), γ-mangostin (11,100.72 μg/g), 8-desoxygartanin (1490.61 μg/g), gartanin (2398.96 μg/g), α-mangostin (51,062.21 μg/g) and β-mangostin (1508.01 μg/g), as well as two anthocyanins including cyanidin-3-sophoroside (2889.95 μg/g) and cyanidin-3-glucoside (19.72 μg/g), were present in mangosteen peel. The xanthone nanoemulsion was prepared by mixing an appropriate portion of soybean oil, CITREM, Tween 80 and deionized water, while the anthocyanin nanoemulsion composed of soybean oil, ethanol, PEG400, lecithin, Tween 80, glycerol and deionized water was prepared as well. The mean particle size of the xanthone extract and nanoemulsion were, respectively, 22.1 and 14.0 nm as determined by DLS, while the zeta potential was -87.7 and -61.5 mV. Comparatively, xanthone nanoemulsion was more effective than xanthone extract in inhibiting the growth of HepG2 cells, with the IC50 being 5.78 μg/mL for the former and 6.23 μg/mL for the latter. However, the anthocyanin nanoemulsion failed to inhibit growth of HepG2 cells. Cell cycle analysis revealed that the proportion of the sub-G1 phase followed a dose-dependent increase, while that of the G0/G1 phase showed a dose-dependent decline for both xanthone extracts and nanoemulsions, with the cell cycle being possibly arrested at the S phase. The proportion of late apoptosis cells also followed a dose-dependent rise for both xanthone extracts and nanoemulsions, with the latter resulting in a much higher proportion at the same dose. Similarly, the activities of caspase-3, caspase-8 and caspase-9 followed a dose-dependent increase for both xanthone extracts and nanoemulsions, with the latter exhibiting a higher activity at the same dose. Collectively, xanthone nanoemulsion was more effective than xanthone extract in inhibiting the growth of HepG2 cells. Further research is needed to study the anti-tumor effect in vivo.
Collapse
|
17
|
Díaz L, Bernadez-Vallejo SV, Vargas-Castro R, Avila E, Gómez-Ceja KA, García-Becerra R, Segovia-Mendoza M, Prado-Garcia H, Lara-Sotelo G, Camacho J, Larrea F, García-Quiroz J. The Phytochemical α-Mangostin Inhibits Cervical Cancer Cell Proliferation and Tumor Growth by Downregulating E6/E7-HPV Oncogenes and KCNH1 Gene Expression. Int J Mol Sci 2023; 24:ijms24033055. [PMID: 36769377 PMCID: PMC9917835 DOI: 10.3390/ijms24033055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Cervical cancer is the fourth most common cancer among women worldwide. The main factor associated with the onset and progression of this neoplasia is the human papillomavirus (HPV) infection. The HPV-oncogenes E6 and E7 are critical drivers of cellular transformation, promoting the expression of oncogenes such as KCNH1. The phytochemical α-mangostin (AM) is a potent antineoplastic and antiviral compound. However, its effects on HPV oncogenes and KCNH1 gene expression remain unknown. This study evaluated the effects of AM on cell proliferation, cell cycle distribution and gene expression, including its effects on tumor growth in xenografted mice. AM inhibited cell proliferation in a concentration-dependent manner, being the most sensitive cell lines those with the highest number of HPV16 copies. In addition, AM promoted G1-cell cycle arrest in CaSki cells, while led to cell death in SiHa and HeLa cells. Of interest was the finding of an AM-dependent decreased gene expression of E6, E7 and KCNH1 both in vitro and in vivo, as well as the modulation of cytokine expression, Ki-67, and tumor growth inhibition. On these bases, we suggest that AM represents a good option as an adjuvant for the treatment and prevention of cervical cancer.
Collapse
Affiliation(s)
- Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Samantha V. Bernadez-Vallejo
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Rafael Vargas-Castro
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Euclides Avila
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Karla A. Gómez-Ceja
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Rocío García-Becerra
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Heriberto Prado-Garcia
- Laboratorio de Onco-Inmunobiología, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Galia Lara-Sotelo
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del I.P.N., Mexico City 07360, Mexico
| | - Fernando Larrea
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- Correspondence: ; Tel.: +52-(55)-5487-0900 (ext. 2418)
| |
Collapse
|
18
|
Abstract
Liver fibrosis has a high incidence worldwide and is the common pathological basis of many chronic liver diseases. Liver fibrosis is caused by the excessive deposition of extracellular matrix and concomitant collagen accumulation in livers and can lead to the development of liver cirrhosis and even liver cancer. A large number of studies have provided evidence that liver fibrosis can be blocked or even reversed by appropriate medical interventions. However, the antifibrosis drugs with ideal clinical efficacy are still insufficient. The edible plant-derived natural compounds have been reported to exert effective antifibrotic effects with few side-effects, representing a kind of promising source for the treatment of liver fibrosis. In this article, we reviewed the current progress of the natural compounds derived from dietary plants in the treatment of liver fibrosis, including phenolic compounds (capsaicin, chlorogenic acid, curcumin, ellagic acid, epigallocatechin-3-gallate, resveratrol, sinapic acid, syringic acid, vanillic acid and vitamin E), flavonoid compounds (genistein, hesperidin, hesperetin, naringenin, naringin and quercetin), sulfur-containing compounds (S-allylcysteine, ergothioneine, lipoic acid and sulforaphane) and other compounds (betaine, caffeine, cucurbitacin B, lycopene, α-mangostin, γ-mangostin, ursolic acid, vitamin C and yangonin). The pharmacological effects and related mechanisms of these compounds in in-vivo and in-vitro models of liver fibrosis are focused.
Collapse
|
19
|
Pyae NYL, Maiuthed A, Phongsopitanun W, Ouengwanarat B, Sukma W, Srimongkolpithak N, Pengon J, Rattanajak R, Kamchonwongpaisan S, Ei ZZ, Chunhacha P, Wilasluck P, Deetanya P, Wangkanont K, Hengphasatporn K, Shigeta Y, Rungrotmongkol T, Chamni S. N-Containing α-Mangostin Analogs via Smiles Rearrangement as the Promising Cytotoxic, Antitrypanosomal, and SARS-CoV-2 Main Protease Inhibitory Agents. Molecules 2023; 28:molecules28031104. [PMID: 36770770 PMCID: PMC9919084 DOI: 10.3390/molecules28031104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
New N-containing xanthone analogs of α-mangostin were synthesized via one-pot Smiles rearrangement. Using cesium carbonate in the presence of 2-chloroacetamide and catalytic potassium iodide, α-mangostin (1) was subsequently transformed in three steps to provide ether 2, amide 3, and amine 4 in good yields at an optimum ratio of 1:3:3, respectively. The evaluation of the biological activities of α-mangostin and analogs 2-4 was described. Amine 4 showed promising cytotoxicity against the non-small-cell lung cancer H460 cell line fourfold more potent than that of cisplatin. Both compounds 3 and 4 possessed antitrypanosomal properties against Trypanosoma brucei rhodesiense at a potency threefold stronger than that of α-mangostin. Furthermore, ether 2 gave potent SARS-CoV-2 main protease inhibition by suppressing 3-chymotrypsinlike protease (3CLpro) activity approximately threefold better than that of 1. Fragment molecular orbital method (FMO-RIMP2/PCM) indicated the improved binding interaction of 2 in the 3CLpro active site regarding an additional ether moiety. Thus, the series of N-containing α-mangostin analogs prospectively enhance druglike properties based on isosteric replacement and would be further studied as potential biotically active chemical entries, particularly for anti-lung-cancer, antitrypanosomal, and anti-SARS-CoV-2 main protease applications.
Collapse
Affiliation(s)
- Nan Yadanar Lin Pyae
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok 10330, Thailand
| | - Arnatchai Maiuthed
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bongkot Ouengwanarat
- Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok 10330, Thailand
| | - Warongrit Sukma
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok 10330, Thailand
| | - Nitipol Srimongkolpithak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Jutharat Pengon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Roonglawan Rattanajak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Zin Zin Ei
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Preedakorn Chunhacha
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Patcharin Wilasluck
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peerapon Deetanya
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supakarn Chamni
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +662-218-8357
| |
Collapse
|
20
|
Agboyibor C, Dong J, Effah CY, Drokow EK, Ampomah-Wireko M, Pervaiz W, Sangmor A, Ma X, Li J, Liu HM, Zhang P. Epigenetic compounds targeting pharmacological target lysine specific demethylase 1 and its impact on immunotherapy, chemotherapy and radiotherapy for treatment of tumor recurrence and resistance. Biomed Pharmacother 2023; 157:113934. [PMID: 36395607 DOI: 10.1016/j.biopha.2022.113934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022] Open
Abstract
It has been proven that metastatic recurrence and therapeutic resistance are linked. Due to the variability of individuals and tumors, as well as the tumor's versatility in avoiding therapies, therapy resistance is more difficult to treat. Therapy resistance has significantly restricted the clinical feasibility and efficacy of tumor therapy, despite the discovery of novel compounds and therapy combinations with increasing efficacy. In several tumors, lysine specific demethylase 1 (LSD1) has been associated to metastatic recurrence and therapeutic resistance. For researchers to better comprehend how LSD1-mediated tumor therapy resistance occurs and how to overcome it in various tumors, this study focused on the role of LSD1 in tumor recurrence and therapeutic resistance. The importance of therapeutically targeted LSD1 was also discussed. Most gene pathway signatures are related to LSD1 inhibitor sensitivity. However, some gene pathway signatures, especially in AML, negatively correlate with LSD1 inhibitor sensitivity, but targeting LSD1 makes the therapy-resistant tumor sensitive to physiological doses of conventional therapy. We propose that combining LSD1 inhibitor with traditional tumor therapy can help patients attain a complete response and prevent cancer relapse.
Collapse
Affiliation(s)
- Clement Agboyibor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China; Institute of Drug Discovery and Development; Zhengzhou University, Zhengzhou 450001, PR China
| | - Jianshu Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China
| | - Clement Yaw Effah
- College of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Emmanuel Kwateng Drokow
- Department of Oncology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital Henan, 450003, Zhengzhou, PR China
| | | | - Waqar Pervaiz
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China; Institute of Drug Discovery and Development; Zhengzhou University, Zhengzhou 450001, PR China
| | - Augustina Sangmor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xinli Ma
- China-US(Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, PR China
| | - Jian Li
- China-US(Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, PR China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China; Institute of Drug Discovery and Development; Zhengzhou University, Zhengzhou 450001, PR China.
| | - Peng Zhang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan province, PR China 450008.
| |
Collapse
|
21
|
Ahmadian R, Heidari MR, Razavi BM, Hosseinzadeh H. Alpha-mangostin Protects PC12 Cells Against Neurotoxicity Induced by Cadmium and Arsenic. Biol Trace Elem Res 2022:10.1007/s12011-022-03498-8. [PMID: 36445559 DOI: 10.1007/s12011-022-03498-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022]
Abstract
Arsenic and cadmium are nonessential elements that are of importance in public health due to their high toxicity. Contact with these toxic elements, even in very small amounts, can induce various side effects, including neurotoxicity. Oxidative stress and apoptosis are part of the main mechanisms of arsenic- and cadmium-induced toxicity. Alpha-mangostin is the main xanthone derived from mangosteen, Garcinia mangostana, with anti-oxidative properties.In this study, PC12 cells were selected as a nerve cell model, and the protective effects of alpha-mangostin against neurotoxicity induced by arsenic and cadmium were investigated. PC12 cells were exposed to cadmium (5-80 µM) and arsenic (2.5-180 µM) for 24 h. Cytotoxicity, reactive oxygen species (ROS) production, and the protein expression of Bax, Bcl2, and cleaved caspase 3 were determined using MTT assay, fluorimetry, and western blot, respectively.Arsenic (10-180 µM) and cadmium (50-80 µM) significantly reduced cell viability. IC50 values were 10.3 ± 1.09 and 45 ± 4.63 µM, respectively. Significant increases in ROS, Bax/Bcl-2 ratio, and cleaved caspase-3 were observed after arsenic and cadmium exposures. Cell viability increased and ROS production decreased when cells were pretreated with alpha-mangostin for 2 h. Alpha-mangostin reduced the increased level of cleaved caspase-3 induced by cadmium and decreased the elevated level of the Bax/Bcl-2 ratio after arsenic exposure.Alpha-mangostin significantly increased cell viability and reduced oxidative stress caused by cadmium and arsenic in PC12 cells. Moreover, alpha-mangostin reduced cadmium-induced apoptosis through the reduction in the level of cleaved caspase 3. Further studies are required to determine the different mechanisms of alpha-mangostin against neurotoxicity induced by these elements.
Collapse
Affiliation(s)
- Reyhaneh Ahmadian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Heidari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman Univercity of Medical Sciences, Kerman, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Natural and Synthetic Xanthone Derivatives Counteract Oxidative Stress via Nrf2 Modulation in Inflamed Human Macrophages. Int J Mol Sci 2022; 23:ijms232113319. [PMID: 36362104 PMCID: PMC9659273 DOI: 10.3390/ijms232113319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Natural products have attracted attention due to their safety and potential effectiveness as anti-inflammatory drugs. Particularly, xanthones owning a unique 9H-xanthen-9-one scaffold, are endowed with a large diversity of medical applications, including antioxidant and anti-inflammatory activities, because their core accommodates a vast variety of substituents at different positions. Among others, α- and γ-mangostin are the major known xanthones purified from Garcinia mangostana with demonstrated anti-inflammatory and antioxidant effects by in vitro and in vivo modulation of the Nrf2 (nuclear factor erythroid-derived 2-like 2) pathway. However, the main mechanism of action of xanthones and their derivatives is still only partially disclosed, and further investigations are needed to improve their potential clinical outcomes. In this light, a library of xanthone derivatives was synthesized and biologically evaluated in vitro on human macrophages under pro-inflammatory conditions. Furthermore, structure-activity relationship (SAR) studies were performed by means of matched molecular pairs (MMPs). The data obtained revealed that the most promising compounds in terms of biocompatibility and counteraction of cytotoxicity are the ones that enhance the Nrf2 translocation, confirming a tight relationship between the xanthone scaffold and the Nrf2 activation as a sign of intracellular cell response towards oxidative stress and inflammation.
Collapse
|
23
|
El Habbash AI, Aljoundi A, Elamin G, Soliman MES. Probing Alterations in MDM2 Catalytic Core Structure Effect of Garcinia Mangostana Derivatives: Insight from Molecular Dynamics Simulations. Cell Biochem Biophys 2022; 80:633-645. [PMID: 36184717 DOI: 10.1007/s12013-022-01101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/17/2022] [Indexed: 01/10/2023]
Abstract
The MDM2-p53 protein-protein interaction is a promising model for researchers to design, study, and discover new anticancer drugs. The design of therapeutically active compounds that can maintain or restore the binding of MDM2 to p53 has been found to limit the oncogenic activities of both. This led to the current development of a group of xanthone-core and cis-imidazoline analogs compounds, among which γ-Mangostin (GM), α-Mangostin (AM), and Nutlin exhibited their MDM2-p53 interaction inhibitory effects. Therefore, in this study, we seek to determine the mechanisms by which these compounds elicit MDM2-p53 interaction targeting. Unique to the binding of GM, AM, and Nutlin, from our findings, they share the same three active site residues Val76, Tyr50, and Gly41, which represent the top active side residues that contribute to high electrostatic energy. Consequently, the free binding energy contributed enormously to the binding of these compounds, which culminated in the high binding affinities of GM, AM, and Nutlin with high values. Furthermore, GM, AM, and Nutlin commonly interrupted the stable and compact conformation of MDM2 coupled with its active site, where Cα deviations were relatively high. We believe that our findings would assist in the design of more potent active anticancer drugs.
Collapse
Affiliation(s)
- Aisha I El Habbash
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Aimen Aljoundi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Ghazi Elamin
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa.
| |
Collapse
|
24
|
Shehata AM, Elbadawy HM, Ibrahim SRM, Mohamed GA, Elsaed WM, Alhaddad AA, Ahmed N, Abo-Haded H, El-Agamy DS. Alpha-Mangostin as a New Therapeutic Candidate for Concanavalin A-Induced Autoimmune Hepatitis: Impact on the SIRT1/Nrf2 and NF-κB Crosstalk. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11182441. [PMID: 36145841 PMCID: PMC9502360 DOI: 10.3390/plants11182441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 05/04/2023]
Abstract
Alpha-mangostin (α-MN) is a xanthone obtained from Garcinia mangostana that has diverse anti-oxidative and anti-inflammatory potentials. However, its pharmacological activity against autoimmune hepatitis (AIH) has not been investigated before. Concanavalin A (Con A) was injected into mice to induce AIH and two doses of α-MN were tested for their protective effects against Con A-induced AIH. The results demonstrated the potent hepatoprotective activity of α-MN evidenced by a remarkable decrease of serum indices of the hepatic injury and amendment of the histological lesions. α-MN significantly attenuated the level and immuno-expression of myeloperoxidase (MPO) indicating a decrease in the neutrophil infiltration into the liver. Additionally, the recruitment of the CD4+ T cell was suppressed in the α-MN pre-treated animals. α-MN showed a potent ability to repress the Con A-induced oxidative stress evident by the reduced levels of malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), and protein carbonyl (PC), as well as the enhanced levels of antioxidants as the reduced glutathione (GSH), superoxide dismutase (SOD), and total antioxidant capacity (TAC). The ELISA, RT-PCR, and IHC analyses revealed that α-MN enhanced the sirtuin1/nuclear factor erythroid 2 related factor-2 (SIRT1/Nrf2) signaling and its downstream cascade genes concurrently with the inhibition of the nuclear factor kappa B (NF-κB) and the inflammatory cytokines (tumor necrosis factor-alpha and interleukine-6) signaling. Taken together, these results inferred that the hepatoprotective activity of α-MN could prevent Con A-induced AIH through the modulation of the SIRT1/Nrf2/NF-κB signaling. Hence, α-MN may be considered as a promising candidate for AIH therapy.
Collapse
Affiliation(s)
- Ahmed M Shehata
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30078, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Hossein M Elbadawy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30078, Saudi Arabia
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wael M Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Aisha A Alhaddad
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30078, Saudi Arabia
| | - Nishat Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30078, Saudi Arabia
| | - Hany Abo-Haded
- College of Medicine, Taibah University, Al-Madinah Al-Munawwarah 30078, Saudi Arabia
- Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30078, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
25
|
John OD, Mushunje AT, Surugau N, Mac Guad R. The metabolic and molecular mechanisms of α‑mangostin in cardiometabolic disorders (Review). Int J Mol Med 2022; 50:120. [PMID: 35904170 PMCID: PMC9354700 DOI: 10.3892/ijmm.2022.5176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/08/2022] [Indexed: 12/03/2022] Open
Abstract
α‑mangostin is a xanthone predominantly encountered in Garcinia mangostana. Extensive research has been carried out concerning the effects of this compound on various diseases, including obesity, cancer and metabolic disorders. The present review suggests that α‑mangostin exerts promising anti‑obesity, hepatoprotective, antidiabetic, cardioprotective, antioxidant and anti‑inflammatory effects on various pathways in cardiometabolic diseases. The anti‑obesity effects of α‑mangostin include the reduction of body weight and adipose tissue size, the increase in fatty acid oxidation, the activation of hepatic AMP‑activated protein kinase and Sirtuin‑1, and the reduction of peroxisome proliferator‑activated receptor γ expression. Hepatoprotective effects have been revealed, due to reduced fibrosis through transforming growth factor‑β 1 pathways, reduced apoptosis and steatosis through reduced sterol regulatory‑element binding proteins expression. The antidiabetic effects include decreased fasting blood glucose levels, improved insulin sensitivity and the increased expression of GLUT transporters in various tissues. Cardioprotection is exhibited through the restoration of cardiac functions and structure, improved mitochondrial functions, the promotion of M2 macrophage populations, reduced endothelial and cardiomyocyte apoptosis and fibrosis, and reduced acid sphingomyelinase activity and ceramide depositions. The antioxidant effects of α‑mangostin are mainly related to the modulation of antioxidant enzymes, the reduction of oxidative stress markers, the reduction of oxidative damage through a reduction in Sirtuin 3 expression mediated by phosphoinositide 3‑kinase/protein kinase B/peroxisome proliferator‑activated receptor‑γ coactivator‑1α signaling pathways, and to the increase in Nuclear factor‑erythroid factor 2‑related factor 2 and heme oxygenase‑1 expression levels. The anti‑inflammatory effects of α‑mangostin include its modulation of nuclear factor‑κB related pathways, the suppression of mitogen‑activated protein kinase activation, increased macrophage polarization to M2, reduced inflammasome occurrence, increased Sirtuin 1 and 3 expression, the reduced expression of inducible nitric oxide synthase, the production of nitric oxide and prostaglandin E2, the reduced expression of Toll‑like receptors and reduced proinflammatory cytokine levels. These effects demonstrate that α‑mangostin may possess the properties required for a suitable candidate compound for the management of cardiometabolic diseases.
Collapse
Affiliation(s)
- Oliver Dean John
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
- Faculty of Science, Asia-Pacific International University, Muak Lek, Saraburi 18180, Thailand
| | - Annals Tatenda Mushunje
- Faculty of Science, Asia-Pacific International University, Muak Lek, Saraburi 18180, Thailand
| | - Noumie Surugau
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Rhanye Mac Guad
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
26
|
Fan H, Guo Y, Zhang Y, Ding N, Liu M, Ma X, Yang J. α-Mangostin suppresses proliferation and invasion in osteosarcoma cells via inhibiting fatty acid synthase. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
27
|
A Randomized Controlled Trial of Thai Medicinal Plant-4 Cream versus Diclofenac Gel in the Management of Symptomatic Osteoarthritis of the Knee. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8657000. [PMID: 35733624 PMCID: PMC9208949 DOI: 10.1155/2022/8657000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022]
Abstract
Background Osteoarthritis of the knee is a common degenerative musculoskeletal condition. Thai Medicinal Plant-4 (TMP-4) cream is made up of Garcinia mangostana peel, Sesamum indicum seeds, Glycine max (L.) Merr. seeds, and Centella asiatica leaves, all of which have anti-inflammatory and analgesic properties. The present study aimed at determining the efficacy and safety of TMP-4 cream versus diclofenac gel in the treatment of symptomatic osteoarthritis of the knee. Methods A randomized-controlled trial was conducted to assess knee pain on a scale of 100 mm Visual Analog Scale (VAS) and other key metrics, including VAS knee stiffness, a modified 10-step stair climb test, a timed up and go test, the Knee Injury and Osteoarthritis Outcome Score, and safety outcomes, following administration of either TMP-4 cream or diclofenac gel for 4 weeks. Results A total of 199 patients with moderate knee pain intensity were randomly assigned to either TMP-4 cream or diclofenac gel (allocation ratio 1 : 1). The mean changes of VAS knee pain in the TMP-4 cream and diclofenac gel groups were −31.68 ± 14.18 mm and −31.09 ± 12.41 mm, respectively, (mean difference = −0.58, 95% confidence interval = −4.37–3.20, P=0.761). The upper limit of 95% confidence interval for the comparison between TMP-4 cream and diclofenac gel was within the predefined margin of 7 mm for noninferiority. The safety was comparable between the two interventions. Conclusions TMP-4 cream was noninferior to diclofenac gel in relieving osteoarthritic knee pain and may be considered as an alternative therapeutic option in the treatment of symptomatic osteoarthritis of the knee.
Collapse
|
28
|
The Potential of α-Mangostin from Garcinia mangostana as an Effective Antimicrobial Agent-A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2022; 11:antibiotics11060717. [PMID: 35740124 PMCID: PMC9219858 DOI: 10.3390/antibiotics11060717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
This systematic review aims to evaluate the antimicrobial activity of α-mangostin derived from Garcinia mangostana against different microbes. A literature search was performed using PubMed and Science Direct until March 2022. The research question was developed based on a PICO (Population, Intervention, Control and Outcomes) model. In this study, the population of interest was microbes, α-mangostin extracted from Garcinia mangostana was used as exposure while antibiotics were used as control, followed by the outcome which is determined by the antimicrobial activity of α-mangostin against studied microbes. Two reviewers independently performed the comprehensive literature search following the predetermined inclusion and exclusion criteria. A methodological quality assessment was carried out using a scoring protocol and the risk of bias in the studies was analyzed. Reward screening was performed among the selected articles to perform a meta-analysis based on the pre-determined criteria. Case groups where α-mangostin extracted from Garcinia mangostana was incorporated were compared to groups using different antibiotics or antiseptic agents (control) to evaluate their effectiveness. A total of 30 studies were included; they were heterogeneous in their study design and the risk of bias was moderate. The results showed a reduction in microbial counts after the incorporation of α-mangostin, which resulted in better disinfection and effectiveness against multiple microbes. Additionally, the meta-analysis result revealed no significant difference (p > 0.05) in their effectiveness when α-mangostin was compared to commercially available antibiotics. α-mangostin worked effectively against the tested microbes and was shown to have inhibitory effects on microbes with antibiotic resistance.
Collapse
|
29
|
Borzdziłowska P, Bednarek I. The Effect of α-Mangostin and Cisplatin on Ovarian Cancer Cells and the Microenvironment. Biomedicines 2022; 10:biomedicines10051116. [PMID: 35625852 PMCID: PMC9138353 DOI: 10.3390/biomedicines10051116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
Ovarian cancer is one of the cancers that, unfortunately, is detected at a late stage of development. The current use of treatment has many side effects. Notably, up to 20% of patients show cisplatin resistance. We assess the effects of cisplatin and/or α-mangostin, a natural plant derivative, on ovarian cancer cells and on the cancer cell microenvironment. The effect of cisplatin and/or α-mangostin on the following cells of ovarian cancer lines: A2780, TOV-21G, and SKOV-3 was verified using the XTT cytotoxicity assay. The separate and combined effects of tested drugs on ovarian cancer cell viability were assessed. We assessed the influence of chemotherapeutic agents on the possibility of modulating the microenvironment. For this purpose, we isolated exosomes from drug-treated and untreated ovarian cancer cells. We estimated the differences in the amounts of exosomes released from cancer cells (NTA technique). We also examined the effects of isolated exosome fractions on normal human cells (NHDF human fibroblast line). In the present study, we demonstrate that treatment of A2780, SKOV-3, and TOV-21G cells with α-mangostin in combination with cisplatin can allow a reduction in cisplatin concentration while maintaining the same cytotoxic effect. Ovarian cancer cells release a variable number of exosomes into the microenvironment when exposed to α-mangostin and/or cisplatin. However, it is important to note that the cargo carried by exosomes released from drug-treated cells may be significantly different.
Collapse
|
30
|
LI ZR, GU MZ, XU X, ZHANG JH, ZHANG HL, HAN C. Promising natural lysine specific demethylase 1 inhibitors for cancer treatment: advances and outlooks. Chin J Nat Med 2022; 20:241-257. [DOI: 10.1016/s1875-5364(22)60141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 12/24/2022]
|
31
|
Zhang W, Jiang G, Zhou X, Huang L, Meng J, He B, Qi Y. α-Mangostin inhibits LPS-induced bone resorption by restricting osteoclastogenesis via NF-κB and MAPK signaling. Chin Med 2022; 17:34. [PMID: 35248101 PMCID: PMC8898470 DOI: 10.1186/s13020-022-00589-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/26/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Excessive osteoclast activation is an important cause of imbalanced bone remodeling that leads to pathological bone destruction. This is a clear feature of many osteolytic diseases such as rheumatoid arthritis, osteoporosis, and osteolysis around prostheses. Because many natural compounds have therapeutic potential for treating these diseases by suppressing osteoclast formation and function, we hypothesized that α-mangostin, a natural compound isolated from mangosteen, might be a promising treatment as it exhibits anti‐inflammatory, anticancer, and cardioprotective effects.
Methods
We evaluated the therapeutic effect of α-mangostin on the processes of osteoclast formation and bone resorption. The receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) induces osteoclast formation in vitro, and potential pathways of α-mangostin to inhibit osteoclast differentiation and function were explored. A mouse model of lipopolysaccharide‐induced calvarial osteolysis was established. Subsequently, micro-computed tomography and histological assays were used to evaluate the effect of α-mangostin in preventing inflammatory osteolysis.
Results
We found that α-mangostin could inhibit RANKL-induced osteoclastogenesis and reduced osteoclast‐related gene expression in vitro. F-actin ring immunofluorescence and resorption pit assays indicated that α-mangostin also inhibited osteoclast functions. It achieved these effects by disrupting the activation of NF-κB/mitogen-activated protein kinase signaling pathways. Our in vivo data revealed that α-mangostin could protect mouse calvarial bone from osteolysis.
Conclusions
Our findings demonstrate that α-mangostin can inhibit osteoclastogenesis both in vitro and in vivo and may be a potential option for treating osteoclast-related diseases.
Collapse
|
32
|
Nauman MC, Johnson JJ. The purple mangosteen (Garcinia mangostana): Defining the anticancer potential of selected xanthones. Pharmacol Res 2022; 175:106032. [PMID: 34896543 PMCID: PMC9597473 DOI: 10.1016/j.phrs.2021.106032] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023]
Abstract
The purple mangosteen (Garcinia mangostana) is a popular Southeast Asian fruit that has been used traditionally for its health promoting benefits for years. Unique to the mangosteen are a class of phytochemicals known as xanthones that have been reported to display significant anti-cancer and anti-tumor activities, specifically through the promotion of apoptosis, targeting of specific cancer-related proteins, or modulation of cell signaling pathways. α-Mangostin, the most abundant xanthone isolated from the mangosteen, has received substantial attention as it has proven to be a potent phytochemical, specifically as an anticancer agent, in numerous different cancer cell studies and cancer animal models. While the mechanisms for these anticancer effects have been reported in many studies, lesser xanthones, including gartanin, β-mangostin, γ-mangostin, garcinone C, and garcinone E, and mangosteen extracts from the pericarp, roots, rind, and stem show promise for their anticancer activity but their mechanisms of action are not as well developed and remain to be determined. Mangosteen products appear safe and have been well tolerated in human clinical trials where they show antioxidant activity, though their clinical anticancer activity has not yet been evaluated. This review summarizes the work that has been done to explore and explain the anticancer and antitumor activities of α-mangostin, lesser xanthones, and mangosteen extracts in vitro, in vivo, and in humans in various cancers.
Collapse
Affiliation(s)
- Mirielle C Nauman
- University of Illinois at Chicago, College of Pharmacy, Department of Pharmacy Practice, USA
| | - Jeremy J Johnson
- University of Illinois at Chicago, College of Pharmacy, Department of Pharmacy Practice, USA.
| |
Collapse
|
33
|
Jiang TT, Ji CF, Cheng XP, Gu SF, Wang R, Li Y, Zuo J, Han J. α-Mangostin Alleviated HIF-1α-Mediated Angiogenesis in Rats With Adjuvant-Induced Arthritis by Suppressing Aerobic Glycolysis. Front Pharmacol 2021; 12:785586. [PMID: 34987400 PMCID: PMC8721667 DOI: 10.3389/fphar.2021.785586] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
A previously validated anti-rheumatic compound α-mangostin (MAN) shows significant metabolism regulatory effects. The current study aimed to clarify whether this property contributed to its inhibition on synovial angiogenesis. Male wistar rats with adjuvant-induced arthritis (AIA) were orally treated by MAN for 32 days. Afterwards, biochemical parameters and cytokines in plasma were determined by corresponding kits, and glycometabolism-related metabolites were further accurately quantified by LC-MS method. Anti-angiogenic effects of MAN were preliminarily assessed by joints based-immunohistochemical examination and matrigel plug assay. Obtained results were then validated by experiments in vitro. AIA-caused increase in circulating transforming growth factor beta, interleukin 6, hypoxia inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) in blood and local HIF-1α/VEGF expression in joints was abrogated by MAN treatment, and pannus formation within matrigel plugs implanted in AIA rats was inhibited too. Scratch and transwell assays revealed the inhibitory effects of MAN on human umbilical vein endothelial cells (HUVECs) migration. Furthermore, MAN inhibited tubule formation capability of HUVECs and growth potential of rat arterial ring-derived endothelial cells in vitro. Meanwhile, MAN eased oxidative stress, and altered glucose metabolism in vivo. Glycolysis-related metabolites including glucose 6-phosphate, fructose 6-phosphate, 3-phosphoglyceric acid and phosphoenolpyruvic acid in AIA rats were decreased by MAN, while the impaired pyruvate-synthesizing capability of lactate dehydrogenase (LDH) was recovered. Consistently, MAN restored lipopolysaccharide-elicited changes on levels of glucose and LDH in HUVECs culture system, and exerted similar effects with LDH inhibitor stiripentol on glycometabolism and VEGF production as well as tubule formation capability of HUVECs. These evidences show that MAN treatment inhibited aerobic glycolysis in AIA rats, which consequently eased inflammation-related hypoxia, and hampered pathological neovascularization.
Collapse
Affiliation(s)
- Tian-Tian Jiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wuhu, China
| | - Chao-Fan Ji
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Xiu-Ping Cheng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Shao-Fei Gu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Rui Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Yan Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Jian Zuo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Jun Han
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wuhu, China
| |
Collapse
|
34
|
Riccardi C, Napolitano F, Montesarchio D, Sampaolo S, Melone MAB. Nanoparticle-Guided Brain Drug Delivery: Expanding the Therapeutic Approach to Neurodegenerative Diseases. Pharmaceutics 2021; 13:1897. [PMID: 34834311 PMCID: PMC8623286 DOI: 10.3390/pharmaceutics13111897] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDs) represent a heterogeneous group of aging-related disorders featured by progressive impairment of motor and/or cognitive functions, often accompanied by psychiatric disorders. NDs are denoted as 'protein misfolding' diseases or proteinopathies, and are classified according to their known genetic mechanisms and/or the main protein involved in disease onset and progression. Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD) are included under this nosographic umbrella, sharing histopathologically salient features, including deposition of insoluble proteins, activation of glial cells, loss of neuronal cells and synaptic connectivity. To date, there are no effective cures or disease-modifying therapies for these NDs. Several compounds have not shown efficacy in clinical trials, since they generally fail to cross the blood-brain barrier (BBB), a tightly packed layer of endothelial cells that greatly limits the brain internalization of endogenous substances. By engineering materials of a size usually within 1-100 nm, nanotechnology offers an alternative approach for promising and innovative therapeutic solutions in NDs. Nanoparticles can cross the BBB and release active molecules at target sites in the brain, minimizing side effects. This review focuses on the state-of-the-art of nanoengineered delivery systems for brain targeting in the treatment of AD, PD and HD.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (D.M.)
| | - Filomena Napolitano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (D.M.)
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122-6078, USA
| |
Collapse
|
35
|
Wang X, Yi W, He L, Luo S, Wang J, Jiang L, Long H, Zhao M, Lu Q. Abnormalities in Gut Microbiota and Metabolism in Patients With Chronic Spontaneous Urticaria. Front Immunol 2021; 12:691304. [PMID: 34721374 PMCID: PMC8554312 DOI: 10.3389/fimmu.2021.691304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/29/2021] [Indexed: 01/09/2023] Open
Abstract
Background Increasing evidence suggests that the gut microbiome plays a role in the pathogenesis of allergy and autoimmunity. The association between abnormalities in the gut microbiota and chronic spontaneous urticaria (CSU) remains largely undefined. Methods Fecal samples were obtained from 39 patients with CSU and 40 healthy controls (HCs). 16S ribosomal RNA (rRNA) gene sequencing (39 patients with CSU and 40 HCs) and untargeted metabolomics (12 patients with CSU and 12 HCs) were performed to analyze the compositional and metabolic alterations of the gut microbiome in CSU patients and HCs. Results The 16S rRNA gene sequencing results showed a significant difference in the β-diversity of the gut microbiota, presented as the Jaccard distance, between CSU patients and HCs. No significant differences were found in the α-diversity of the gut microbiota between patients and HCs. At the phylum level, the major bacteria in the gut microbiome of patients with CSU were Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. At the genus level, Lactobacillus, Turicibacter, and Lachnobacterium were significantly increased and Phascolarctobacterium was decreased in patients with CSU. PICRUSt and correlation analysis indicated that Lactobacillus, Turicibacter, and Phascolarctobacterium were positively related to G protein-coupled receptors. Metabolomic analysis showed that α-mangostin and glycyrrhizic acid were upregulated and that 3-indolepropionic acid, xanthine, and isobutyric acid were downregulated in patients with CSU. Correlation analysis between the intestinal microbiota and metabolites suggested that there was a positive correlation between Lachnobacterium and α-mangostin. Conclusions This study suggests that disturbances in the gut microbiome composition and metabolites and their crosstalk or interaction may participate in the pathogenesis of CSU.
Collapse
Affiliation(s)
- Xin Wang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wanyu Yi
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liting He
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuaihantian Luo
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiaqi Wang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Jiang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hai Long
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
36
|
Chen SP, Lin SR, Chen TH, Ng HS, Yim HS, Leong MK, Weng CF. Mangosteen xanthone γ-mangostin exerts lowering blood glucose effect with potentiating insulin sensitivity through the mediation of AMPK/PPARγ. Biomed Pharmacother 2021; 144:112333. [PMID: 34678724 DOI: 10.1016/j.biopha.2021.112333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 01/03/2023] Open
Abstract
Diabetes mellitus (DM) is concomitant with significant morbidity and mortality and its prevalence is accumulative in worldwide. The conventional antidiabetic agents are known to mitigate the symptoms of diabetes; however, they may also cause side and adverse effects. There is an imperative necessity to conduct preclinical and clinical trials for the discovery of alternative therapeutic agents that can overcome the drawbacks of current synthetic antidiabetic drugs. This study aimed to investigate the efficacy of lowering blood glucose and underlined mechanism of γ-mangostin, mangosteen (Garcinia mangostana) xanthones. The results showed γ-Mangostin had a antihyperglycemic ability in short (2 h)- and long-term (28 days) administrations to diet-induced diabetic mice. The long-term administration of γ-mangostin attenuated fasting blood glucose of diabetic mice and exhibited no hepatotoxicity and nephrotoxicity. Moreover, AMPK, PPARγ, α-amylase, and α-glucosidase were found to be the potential targets for simulating binds with γ-mangostin after molecular docking. To validate the docking results, the inhibitory potency of γ-mangostin againstα-amylase/α-glucosidase was higher than Acarbose via enzymatic assay. Interestingly, an allosteric relationship between γ-mangostin and insulin was also found in the glucose uptake of VSMC, FL83B, C2C12, and 3T3-L1 cells. Taken together, the results showed that γ-mangostin exerts anti-hyperglycemic activity through promoting glucose uptake and reducing saccharide digestion by inhibition of α-amylase/α-glucosidase with insulin sensitization, suggesting that γ-mangostin could be a new clue for drug discovery and development to treat diabetes.
Collapse
Affiliation(s)
- Sih-Pei Chen
- Institute of Respiratory Disease, Department of Physiology, School of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China; Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974301, Taiwan
| | - Shian-Ren Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974301, Taiwan
| | - Ting-Hsu Chen
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974301, Taiwan
| | - Hui-Suan Ng
- Faculty of Applied Science, UCSI University, UCSI Height, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Hip-Seng Yim
- Faculty of Applied Science, UCSI University, UCSI Height, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Max K Leong
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan.
| | - Ching-Feng Weng
- Institute of Respiratory Disease, Department of Physiology, School of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China; Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974301, Taiwan; Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan.
| |
Collapse
|
37
|
Novel α-Mangostin Derivatives from Mangosteen (Garcinia mangostana L.) Peel Extract with Antioxidant and Anticancer Potential. J CHEM-NY 2021. [DOI: 10.1155/2021/9985604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mangosteen peels contain biologically active compounds, with antioxidant and anticancer properties. Among these isolated phytochemicals, α-mangostin is one of the most powerful natural antioxidants and anticancer compounds. This study focused on synthesizing novel α-mangostin (α-MG) derivatives at positions of C-3 and C-6 from extracted α-MG of mangosteen peels and investigating antioxidant and anticancer activities. The structures of the synthesized compounds were determined by using MS, 1H-NMR, 13C-NMR, and HPLC. The analysis of the interaction between structure and bioactivity showed that phenol groups on C-3 and C-6 positions play a crucial role in antiproliferative activity to boost both anticancer efficacy and drug-like properties. The antioxidant activity of α-MG and its derivatives were investigated by the DPPH method. Among α-MG derivatives, 1-hydroxy-7-methoxy-2,8-bis(3-methylbut-2-en-1-yl)-9-oxo-9H-xanthene-3,6-diyl bis(2-bromobenzoate) (compound 4) exhibited significant antioxidant property. The in vitro cytotoxicity against various cancer cell lines (HeLa, MCF-7, NCI–H460, and HepG2) was evaluated by the standard sulforhodamine B assay. The anticancer activities (HeLa, MCF-7, NCI–H460, and HepG2) of compound 4 are five to six times higher than those of α-MG and other derivatives. The acetylation at C-3 and C-6 of α-MG by halogen of benzoyl greatly improved cancer cell toxicity. Our results provide new opportunities for further explorations of α-MG derivatives for antioxidant property and promise as drugs in cancer therapy.
Collapse
|
38
|
Sari N, Katanasaka Y, Sugiyama Y, Miyazaki Y, Sunagawa Y, Funamoto M, Shimizu K, Shimizu S, Hasegawa K, Morimoto T. Alpha Mangostin Derived from Garcinia magostana Linn Ameliorates Cardiomyocyte Hypertrophy and Fibroblast Phenotypes in Vitro. Biol Pharm Bull 2021; 44:1465-1472. [PMID: 34602555 DOI: 10.1248/bpb.b21-00294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac hypertrophy and fibrosis are significant risk factors for chronic heart failure (HF). Since pharmacotherapy agents targeting these processes have not been established, we investigated the effect of alpha-magostin (α-man) on cardiomyocyte hypertrophy and fibrosis in vitro. Primary cultured cardiomyocytes and cardiac fibroblasts were prepared from neonatal rats. After α-man treatment, phenylephrine (PE) and transforming growth factor-beta (TGF-β) were added to the cardiomyocytes and cardiac fibroblasts to induce hypertrophic and fibrotic responses, respectively. Hypertrophic responses were assessed by measuring the cardiomyocyte surface area and hypertrophic gene expression levels. PE-induced phosphorylation of Akt, extracellular signal-regulated kinase (ERK)1/2, and p38 was examined by Western blotting. Fibrotic responses were assessed by measuring collagen synthesis, fibrotic gene expression levels, and myofibroblast differentiation. In addition, TGF-β-induced reactive oxygen species (ROS) production was investigated. In cultured cardiomyocytes, α-man significantly suppressed PE-induced increases in the cardiomyocyte surface area, and the mRNA levels (atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP)). Treatment with α-man significantly suppressed PE-induced Akt phosphorylation, but not ERK and p38 phosphorylation. In cultured cardiac fibroblasts, α-man significantly suppressed TGF-β-induced increases in L-proline incorporation, mRNA levels (POSTN and alpha-smooth muscle actin (α-SMA)), and myofibroblast differentiation. Additionally, it significantly inhibited TGF-β-induced reduced nicotinamide adenine dinucleotide phosphate oxidase4 (NOX4) expression and ROS production in cardiac fibroblasts. Treatment with α-man significantly ameliorates hypertrophy by inhibiting Akt phosphorylation in cardiomyocytes and fibrosis by inhibiting NOX4-generating ROS in fibroblasts. These findings suggest that α-man is a possible natural product for the prevention of cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Nurmila Sari
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka.,Clinical Research Institute, Division of Translational Research, National Hospital Organization Kyoto Medical Center.,Shizuoka General Hospital
| | - Yuga Sugiyama
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka
| | - Yusuke Miyazaki
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka.,Clinical Research Institute, Division of Translational Research, National Hospital Organization Kyoto Medical Center.,Shizuoka General Hospital
| | - Yoichi Sunagawa
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka.,Clinical Research Institute, Division of Translational Research, National Hospital Organization Kyoto Medical Center.,Shizuoka General Hospital
| | - Masafumi Funamoto
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka.,Clinical Research Institute, Division of Translational Research, National Hospital Organization Kyoto Medical Center
| | - Kana Shimizu
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka.,Clinical Research Institute, Division of Translational Research, National Hospital Organization Kyoto Medical Center
| | - Satoshi Shimizu
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka.,Clinical Research Institute, Division of Translational Research, National Hospital Organization Kyoto Medical Center
| | - Koji Hasegawa
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka.,Clinical Research Institute, Division of Translational Research, National Hospital Organization Kyoto Medical Center
| | - Tatsuya Morimoto
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka.,Clinical Research Institute, Division of Translational Research, National Hospital Organization Kyoto Medical Center.,Shizuoka General Hospital
| |
Collapse
|
39
|
Zhu X, Li J, Ning H, Yuan Z, Zhong Y, Wu S, Zeng JZ. α-Mangostin Induces Apoptosis and Inhibits Metastasis of Breast Cancer Cells via Regulating RXRα-AKT Signaling Pathway. Front Pharmacol 2021; 12:739658. [PMID: 34539418 PMCID: PMC8444262 DOI: 10.3389/fphar.2021.739658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022] Open
Abstract
Mangostin, which has the function of anti-inflammatory, antioxidant, and anticancer, etc, is one of the main active ingredients of the hull of the mangosteen. The main objective of the study was to elucidate its anti-cancer function and possible mechanism. α-Mangostin was separated and structurally confirmed. MTT method was used to check the effect of mangostin on breast cancer cell proliferation. Then the effect of α-Mangostin on the transcriptional activity of RXRα was tested by dual-luciferase reporter gene assay. And Western blot (WB) was used to detect the expression of apoptosis-related proteins or cell cycle-associated proteins after treatment. Also, this study was to observe the effects of α-Mangostin on the invasion of breast cancer cell line MDA-MB-231. α-Mangostin regulates the downstream effectors of the PI3K/AKT signaling pathway by degrading RXRα/tRXRα. α-Mangostin can trigger PARP cleavage and induce apoptosis, which may be related to the induction of upregulated BAX expression and downregulation of BAD and cleaved caspase-3 expression in MDA-MB-231 cells through blockade of AKT signaling. The experiments verify that α-Mangostin have evident inhibition effects of invasion and metastasis of MDA-MB-231 cells. Cyclin D1 was involved in the anticancer effects of α-Mangostin on the cell cycle in MDA-MB-231 cells. α-Mangostin induces apoptosis, suppresses the migration and invasion of breast cancer cells through the PI3K/AKT signaling pathway by targeting RXRα, and cyclin D1 has involved in this process.
Collapse
Affiliation(s)
- Xiuzhi Zhu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jialin Li
- School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Huiting Ning
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Zhidong Yuan
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Yue Zhong
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Suzhen Wu
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jin-Zhang Zeng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
40
|
α-Mangostin Nanoparticles Cytotoxicity and Cell Death Modalities in Breast Cancer Cell Lines. Molecules 2021; 26:molecules26175119. [PMID: 34500560 PMCID: PMC8434247 DOI: 10.3390/molecules26175119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
α-Mangostin (AMG) is a potent anticancer xanthone that was discovered in mangosteen (Garcinia mangostana Linn.). AMG possesses the highest opportunity for chemopreventive and chemotherapeutic therapy. AMG inhibits every step in the process of carcinogenesis. AMG suppressed multiple breast cancer (BC) cell proliferation and apoptosis by decreasing the creation of cancerous compounds. Accumulating BC abnormalities and their associated molecular signaling pathways promotes novel treatment strategies. Chemotherapy is a commonly used treatment; due to the possibility of unpleasant side effects and multidrug resistance, there has been substantial progress in searching for alternative solutions, including the use of plant-derived natural chemicals. Due to the limitations of conventional cancer therapy, nanotechnology provides hope for effective and efficient cancer diagnosis and treatment. Nanotechnology enables the delivery of nanoparticles and increased solubility of drugs and drug targeting, resulting in increased cytotoxicity and cell death during BC treatment. This review summarizes the progress and development of AMG’s cytotoxicity and the mechanism of death BC cells. The combination of natural medicine and nanotechnology into a synergistic capital will provide various benefits. This information will aid in the development of AMG nanoparticle preparations and may open up new avenues for discovering an effective BC treatment.
Collapse
|
41
|
de Mello RFA, de Souza Pinheiro WB, Benjamim JKF, de Siqueira FC, Chisté RC, Santos AS. A fast and efficient preparative method for separation and purification of main bioactive xanthones from the waste of Garcinia mangostana L. by high-speed countercurrent chromatography. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
42
|
Yang S, Zhou F, Dong Y, Ren F. α-Mangostin Induces Apoptosis in Human Osteosarcoma Cells Through ROS-Mediated Endoplasmic Reticulum Stress via the WNT Pathway. Cell Transplant 2021; 30:9636897211035080. [PMID: 34318699 PMCID: PMC8323427 DOI: 10.1177/09636897211035080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
α-mangostin has been confirmed to promote the apoptosis of MG-63 cells, but its
specific pro-apoptosis mechanism in osteosarcoma (OS) remains further
investigation. Here, we demonstrated that α-mangostin restrained the viability
of OS cells (143B and Saos-2), but had little effect on the growth of normal
human osteoblast. α-mangostin increased OS cell apoptosis by activating the
caspase-3/8 cascade. Besides, α-mangostin induced endoplasmic reticulum (ER)
stress and restrained the Wnt/β-catenin pathway activity. 4PBA (an ER stress
inhibitor) or LiCl (an effective Wnt activator) treatment effectively hindered
α-mangostin-induced apoptosis and the caspase-3/8 cascade. Furthermore, we also
found that α-mangostin induced ER stress by promoting ROS production. And ER
stress-mediated apoptosis caused by ROS accumulation depended on the
inactivation of Wnt/β-catenin pathway. In addition, α-mangostin significantly
hindered the growth of xenograft tumors, induced the expression of ER stress
marker proteins and activation of the caspase-3/8 cascade, and restrained the
Wnt/β-catenin signaling in vivo. In short, ROS-mediated ER stress was involved
in α-mangostin triggered apoptosis, which might depended on Wnt/β-catenin
signaling inactivation.
Collapse
Affiliation(s)
- Shengsen Yang
- Departments of Spine Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Fei Zhou
- CRISTA orthopedics, The Second People's Hospital of Dongying, Dongying, China
| | - Yi Dong
- Departments of Spine Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Fei Ren
- Orthopedics Department, YuLin NO.2 Hospital, Yulin, China
| |
Collapse
|
43
|
Clinical and Immunological Efficacy of Mangosteen and Propolis Extracted Complex in Patients with Gingivitis: A Multi-Centered Randomized Controlled Clinical Trial. Nutrients 2021; 13:nu13082604. [PMID: 34444764 PMCID: PMC8400303 DOI: 10.3390/nu13082604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Mangosteen and propolis extracts (MAEC) have been potential therapeutic agents known to exhibit powerful antioxidant and anti-inflammatory properties. The aim of the current study was to evaluate the clinical and immunological efficacy of MAEC as well as safety and patient-reported outcomes (PROMs) on gingivitis and incipient periodontitis. Methods: This study was performed on 104 patients diagnosed with gingivitis or incipient periodontitis. At baseline, the participants were randomly allocated to either the test group, with daily intake of a single capsule containing 194 mg of MAEC for eight weeks, or control group, with placebo. Clinical periodontal evaluation and immunological parameters from saliva and gingival sulcular fluid were assessed at baseline, four, and eight weeks. Individual PROMs were assessed by OHIP-14 questionnaires. Results: There was a significant difference of modified gingival index at four and eight weeks between the test and control groups. In the test group, crevicular interleukin (IL)-6 was reduced, and the salivary matrix metalloproteinase (MMP)-9 was increased after eight weeks. PROMs were improved up to four weeks compared to placebo. Conclusion: Oral administration of MAEC would have a potential to reduce gingival inflammation clinically and immunologically in the patients with gingivitis and incipient periodontitis.
Collapse
|
44
|
Hu YH, Han J, Wang L, Shi C, Li Y, Olatunji OJ, Wang X, Zuo J. α-Mangostin Alleviated Inflammation in Rats With Adjuvant-Induced Arthritis by Disrupting Adipocytes-Mediated Metabolism-Immune Feedback. Front Pharmacol 2021; 12:692806. [PMID: 34305602 PMCID: PMC8293671 DOI: 10.3389/fphar.2021.692806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
A previously identified anti-rheumatic compound α-mangostin (MAN) possesses notable metabolism regulatory properties. In this study, we investigated the immune implication of MAN-altered fat metabolism on adjuvant-induced arthritis (AIA) in rats. Seven days after AIA induction, the rats received oral treatment of MAN at 50 mg/kg/day for 30 days. Metabolic indicators and basic clinical parameters were evaluated using samples collected on day 20 and 38 since immunization. Expression of nicotinamide phosphoribosyltransferase (NAMPT), sirtuin 1 (SIRT1), peroxisome proliferator activated receptor gamma (PPAR-γ), stearoyl-coa desaturase 1 (SCD-1), toll like receptor 4 (TLR4), prostaglandin-endoperoxide synthase 2 (COX-2), (p)-JNK, (p)-p65 and IL-1β were investigated by either RT-qPCR or immunobloting methods. In in vitro experiments, we treated (pre)-adipocytes with monocytes/macrophages and MAN, and investigated the changes of macrophages brought by pre-adipocytes co-culture. Generally, MAN restored the impaired fat anabolism in AIA rats, indicated by increased fat reservoir, leptin and adiponectin secretion, and PPAR-γ and SCD-1 expression. Meanwhile, it decreased circulating IL-1β and IL-6 levels, restored serological lipid profile changes, and relieved oxidative stresses, demonstrating potent therapeutic effects on AIA. AIA rats-derived monocytes inhibited mRNA PPAR-γ and SCD-1 expression in pre-adipocytes. Contrarily, MAN facilitated adipocyte differentiation in vitro, and increased free fatty acids production. It also significantly increased PPAR-γ and SCD-1 expression, which can be abrogated by PPAR-γ inhibitor T0070907. Similarly, lipopolysaccharide-primed macrophages inhibited PPAR-γ expression in the co-cultured pre-adipocytes, which was reversed by MAN. In the same co-culture system, lipopolysaccharide-induced inflammation was amplified by the co-existence of pre-adipocytes. More secretion of IL-1β and IL-6 and higher levels expression of COX-2, p-JNK, p-p65 and TLR4 were observed in lipopolysaccharide-treated macrophages when co-cultured by pre-adipocytes. The intensified inflammatory situation was eased by MAN. The treatment with pre-adipocytes culture medium achieved similar effects. Medium from lipopolysaccharide-treated adipocytes promoted IL-1β, IL-6 and MCP-1 production in separately cultured macrophages, and COX-2, p-JNK, p-p65 and TLR4 expression were increased at the meantime. MAN treatment on pre-adipocytes impaired these changes. It suggests that fat anabolism in AIA rats was deficient due to increased energy expenditure caused by inflammatory conditions. MAN restored fat metabolism homeostasis by up-regulating PPAR-γ, and reshaped secretion profile of adipocytes.
Collapse
Affiliation(s)
- Ying-Hao Hu
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China.,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Jun Han
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China.,Drug Research and Development Center, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Lin Wang
- Department of Pharmacy, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Chao Shi
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China.,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Yan Li
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China.,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | | | - Xiu Wang
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China.,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Jian Zuo
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China.,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| |
Collapse
|
45
|
Yang Z, Yin Q, Olatunji OJ, Li Y, Pan S, Wang DD, Zuo J. Activation of cholinergic anti-inflammatory pathway involved in therapeutic actions of α-mangostin on lipopolysaccharide-induced acute lung injury in rats. Int J Immunopathol Pharmacol 2021; 34:2058738420954941. [PMID: 32886564 PMCID: PMC7485160 DOI: 10.1177/2058738420954941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Introduction: Alpha-mangostin (MAN) possesses a wide variety of pharmacological effects. In
this study, we investigated its effect on cholinergic anti-inflammatory
pathway (CAP), and tested if CAP regulation was involved in the therapeutic
action on acute lung injury (ALI). Methods: Male Sprague Dawley rats were pre-treated with MAN (40 mg/kg) for 3 days and
ALI was induced with an intraperitoneal injection of lipopolysaccharide
(LPS). Certain rats received monolateral vagotomy or sham surgery. The
effects on inflammatory reactions and relevant pathways in ALI rats or LPS
pre-treated RAW 264.7 cells were investigated by histological,
immunohistochemical, immunoblotting, RT-qPCR, and immunofluorescence assays,
while levels of proinflammatory cytokines, acetylcholine (Ach) and the
enzymatic activity of acetylcholinesterase (AchE) were determined by
corresponding quantitative kits. Results: Oral administration of MAN reduced the severity of ALI, while vagotomy
surgery antagonized this effect. MAN restored the decline in α7 nicotinic
acetylcholine receptor (α7nAchR) in the lungs of ALI rats, and promoted the
expression of α7nAchR and choline acetyltransferase (CHAT) in RAW 264.7
cells. Although AchE expression was barely affected by MAN at 5 μg/ml, its
catalytic activity was reduced by almost 95%. Extracellular rather than
intracellular Ach was notably raised shortly after MAN treatment.
Furthermore, MAN at 5 μg/ml effectively inhibited LPS-induced increase in
phosphorylation and nucleus translocation of p65 subunit, and secretion of
TNF-α and IL-1β, which was then offset by methyllycaconitine citrate
hydrate. Conclusion: MAN activated CAP by increasing peripheral Ach and up-regulating α7nAchR
expression, which eventually led to NF-κB inhibition and remission of acute
inflammations.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Traditional Chinese Medicine, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Qin Yin
- The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | | | - Yan Li
- Department of Traditional Chinese Medicine, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Shu Pan
- The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Dan-Dan Wang
- Department of Traditional Chinese Medicine, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Jian Zuo
- Department of Traditional Chinese Medicine, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| |
Collapse
|
46
|
Jamila N, Khan N, Bibi N, Waqas M, Khan SN, Atlas A, Amin F, Khan F, Saba M. Hg(II) sensing, catalytic, antioxidant, antimicrobial, and anticancer potential of Garcinia mangostana and α-mangostin mediated silver nanoparticles. CHEMOSPHERE 2021; 272:129794. [PMID: 35534954 DOI: 10.1016/j.chemosphere.2021.129794] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/17/2021] [Accepted: 01/23/2021] [Indexed: 06/14/2023]
Abstract
This study reports synthesis of Garcinia mangostana fruit pericarp (unwanted waste material) and α-mangostin mediated silver nanoparticles (AgNPs). These AgNPs were efficiently produced using 1:10 (extract and salt) ratio under stirring and heating, which was confirmed by surface plasmon resonance (SPR) band in UV-Visible spectroscopic analysis, and size of 73-91 nm determined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The synthesized AgNPs were used for Hg(II) detection in tap water, where the limits of detection and quantification were 2.6 μM and 8.9 μM, respectively. Furthermore, the subject AgNPs showed promising catalytic activity in the reduction of dyes and food colours including Congo red (CR), methylene blue (MB), malachite green (MG), methyl orange (MO), para-nitrophenol (PNP), rhodamine B (RdB), zarda yellow (ZY), deep green (DG), and bright red (BR). The synthesized AgNPs were also evaluated for their antioxidant, antimicrobial, and anticancer properties, where α-mangostin and its nanoparticles (Mang-AgNPs) exhibited promising IC50 values of 14.1 and 13.5 μg/mL, respectively against DU-145 cell line validated by in silico molecular docking study. This study is the first report highlighting the application of AgNPs of G. mangostana fruit pericarp extracts, and α-mangostin in Hg(II) detection, dyes degradation, and anticancer potential against DU-145. Finding of this study suggested the suitability of AgNPs as promising solid biosensor in Hg(II) metal detection, dyes reduction, and target in anticancer drug development.
Collapse
Affiliation(s)
- Nargis Jamila
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan.
| | - Naeem Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan.
| | - Nousheen Bibi
- Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Waqas
- Department of Botanical and Environmental Science, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Sadiq Noor Khan
- Department of Medical Lab Technology, University of Haripur, Haripur, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Amir Atlas
- Department of Chemistry, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Farhat Amin
- Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Faryal Khan
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Malka Saba
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
47
|
Li RR, Zeng DY. The effects and mechanism of α-mangostin on chemosensitivity of gastric cancer cells. Kaohsiung J Med Sci 2021; 37:709-717. [PMID: 34003591 DOI: 10.1002/kjm2.12388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
This work investigated the effect of α-mangostin (α-M) on gastric cancer (GC) cell chemoresistance and its underlying mechanisms. Different concentrations of α-M and CDDP were applied to treat GC cells (SGC7901) and CDDP-resistant GC cells (SGC7901/CDDP) for 24 or 48 h. CCK-8 assays were used to measure the inhibitory effect of CDDP or α-M on SGC7901 and SGC7901/CDDP cells as well as the half-maximal inhibitory concentrations (IC50) of α-M for SGC7901 and SGC7901/CDDP cells. The optimal concentration and induction time of CDDP or α-M were determined. SGC7901/CDDP cells were treated with CDDP or/and α-M, where some of them were transfected with pcDNA3.1 or pcDNA3.1-EBI3. Cell proliferation and apoptosis were assessed as well as the levels of EBI3, STAT3, p-STAT3, autophagy-related proteins, and apoptosis-related proteins. CDDP inhibited SGC7901 cell proliferation in a dose-dependent manner. The IC50 of α-M for SGC7901 cells was 12.86 μM and that for SGC7901/CDDP cells was 13.69 μM. The optimal concentrations of CDDP and α-M for SGC7901/CDDP cells were 2 and 15 μM, respectively, and the optimal time was 48 h. The SGC7901/CDDP cells in the CDDP+/α-M+ group had elevated inhibition of proliferation and apoptosis rates. Western blot analysis revealed enhanced levels of LC3-II/I and Beclin1, reduced p62 level, decreased Bcl2 level, and increased levels of Bax and cleaved caspase-3/9. The EBI3/STAT3 pathway was implicated in the effect of α-M on SGC7901/CDDP cell development. α-M increases the chemosensitivity of GC cells by facilitating autophagy and inactivating the EBI3/STAT3 pathway.
Collapse
Affiliation(s)
- Rong-Rong Li
- Department of Medical Oncology-Gastroenterology and Urology, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - De-Yu Zeng
- Department of Medical Oncology-Gastroenterology and Urology, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
48
|
Klamrak A, Nabnueangsap J, Nualkaew N. Biotransformation of Benzoate to 2,4,6-Trihydroxybenzophenone by Engineered Escherichia coli. Molecules 2021; 26:molecules26092779. [PMID: 34066831 PMCID: PMC8125937 DOI: 10.3390/molecules26092779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 11/16/2022] Open
Abstract
The synthesis of natural products by E. coli is a challenging alternative method of environmentally friendly minimization of hazardous waste. Here, we establish a recombinant E. coli capable of transforming sodium benzoate into 2,4,6-trihydroxybenzophenone (2,4,6-TriHB), the intermediate of benzophenones and xanthones derivatives, based on the coexpression of benzoate-CoA ligase from Rhodopseudomonas palustris (BadA) and benzophenone synthase from Garcinia mangostana (GmBPS). It was found that the engineered E. coli accepted benzoate as the leading substrate for the formation of benzoyl CoA by the function of BadA and subsequently condensed, with the endogenous malonyl CoA by the catalytic function of BPS, into 2,4,6-TriHB. This metabolite was excreted into the culture medium and was detected by the high-resolution LC-ESI-QTOF-MS/MS. The structure was elucidated by in silico tools: Sirius 4.5 combined with CSI FingerID web service. The results suggested the potential of the new artificial pathway in E. coli to successfully catalyze the transformation of sodium benzoate into 2,4,6-TriHB. This system will lead to further syntheses of other benzophenone derivatives via the addition of various genes to catalyze for functional groups.
Collapse
Affiliation(s)
- Anuwatchakij Klamrak
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Jaran Nabnueangsap
- Salaya Central Instrument Facility RSPG, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Natsajee Nualkaew
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
- Correspondence:
| |
Collapse
|
49
|
Hu Y, Li J, Chang AK, Li Y, Tao X, Liu W, Wang Z, Su W, Li Z, Liang X. Screening and tissue distribution of protein tyrosine phosphatase 1B inhibitors in mice following oral administration of Garcinia mangostana L. ethanolic extract. Food Chem 2021; 357:129759. [PMID: 33878587 DOI: 10.1016/j.foodchem.2021.129759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022]
Abstract
Garcinia mangostana L. (mangosteen) is a tropical fruit that is rich in xanthones and is thought to have an anti-diabetic effect. In this study, we screened for the xanthones in mangosteen that could inhibit the activity of protein tyrosine phosphatase 1B (PTP1B), an enzyme that is targeted by diabetic drugs. Mice were orally administered mangosteen extract and blood samples were screened for the presence of PTP1B-interacting xanthones. Six such compounds (1-6) were identified by UF-HPLC-QTOF-MS and their inhibition against PTP1B was confirmed by activity assay. Among them, garcinone E (5) was found to be the most effective PTP1B inhibitor (IC50 = 0.43 μM). Tissue distribution analysis showed that the six compounds were distributed in eleven tissues, including the liver, muscle, fat, stomach, large intestine, small intestine, brain, kidney, heart, lung, and spleen. The results demonstrated that mangosteen might be a promising source of natural compounds with high PTP1B-inhibitory activity.
Collapse
Affiliation(s)
- Yu Hu
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Jianxin Li
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China; College of Chemistry, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Alan K Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang Province, PR China
| | - Yanan Li
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Xia Tao
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Wenbao Liu
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Zhina Wang
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Weiping Su
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Zehao Li
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Xiao Liang
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China; Academy of Forensic Science, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China.
| |
Collapse
|
50
|
Xu Q, Zhou X, Strober W, Mao L. Inflammasome Regulation: Therapeutic Potential for Inflammatory Bowel Disease. Molecules 2021; 26:molecules26061725. [PMID: 33808793 PMCID: PMC8003415 DOI: 10.3390/molecules26061725] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
Inflammasomes are multiprotein complexes formed to regulate the maturation of pro-inflammatory caspases, in response to intracellular or extracellular stimulants. Accumulating studies showed that the inflammasomes are implicated in the pathogenesis of inflammatory bowel disease (IBD), although their activation is not a decisive factor for the development of IBD. Inflammasomes and related cytokines play an important role in the maintenance of gut immune homeostasis, while its overactivation might induce excess immune responses and consequently cause tissue damage in the gut. Emerging studies provide evidence that some genetic abnormalities might induce enhanced NLRP3 inflammasome activation and cause colitis. In these cases, the colonic inflammation can be ameliorated by blocking NLRP3 activation or its downstream cytokine IL-1β. A number of natural products were shown to play a role in preventing colon inflammation in various experimental colitis models. On the other hand, lack of inflammasome function also causes intestinal abnormalities. Thus, an appropriate regulation of inflammasomes might be a promising therapeutic strategy for IBD intervention. This review aims at summarizing the main findings in these studies and provide an outline for further studies that might contribute to our understanding of the role of inflammasomes in the pathogenesis and therapeutic treatment of IBD.
Collapse
Affiliation(s)
- Qiuyun Xu
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226019, China; (Q.X.); (X.Z.)
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226019, China; (Q.X.); (X.Z.)
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence: (W.S.); (L.M.)
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226019, China; (Q.X.); (X.Z.)
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong 226019, China
- Correspondence: (W.S.); (L.M.)
| |
Collapse
|