1
|
Berkenfeld K, Carneiro S, Corzo C, Laffleur F, Salar-Behzadi S, Winkeljann B, Esfahani G. Formulation strategies, preparation methods, and devices for pulmonary delivery of biologics. Eur J Pharm Biopharm 2024; 204:114530. [PMID: 39393712 DOI: 10.1016/j.ejpb.2024.114530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Biological products, including vaccines, blood components, and recombinant therapeutic proteins, are derived from natural sources such as humans, animals, or microorganisms and are typically produced using advanced biotechnological methods. The success of biologics, particularly monoclonal antibodies, can be attributed to their favorable safety profiles and target specificity. However, their large molecular size presents significant challenges in drug delivery, particularly in overcoming biological barriers. Pulmonary delivery has emerged as a promising route for administering biologics, offering non-invasive delivery with rapid absorption, high systemic bioavailability, and avoidance of first-pass metabolism. This review first details the anatomy and physiological barriers of the respiratory tract and the associated challenges of pulmonary drug delivery (PDD). It further discusses innovations in PDD, the impact of particle size on drug deposition, and the use of secondary particles, such as nanoparticles, to enhance bioavailability and targeting. The review also explains various devices used for PDD, including dry powder inhalers (DPIs) and nebulizers, highlighting their advantages and limitations in delivering biologics. The role of excipients in improving the stability and performance of inhalation products is also addressed. Since dry powders are considered the suitable format for delivering biomolecules, particular emphasis is placed on the excipients used in DPI development. The final section of the article reviews and compares various dry powder manufacturing methods, clarifying their clinical relevance and potential for future applications in the field of inhalable drug formulation.
Collapse
Affiliation(s)
- Kai Berkenfeld
- Laboratory of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Street 3, 53121 Bonn, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Simone Carneiro
- Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Carolina Corzo
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Sharareh Salar-Behzadi
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Graz, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Benjamin Winkeljann
- Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany; RNhale GmbH, München 81371, Germany; Comprehensive Pneumology Center Munich (CPC-M), Helmholtz Munich, German Center for Lung Research (DZL), 81377 Munich, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Golbarg Esfahani
- Department of Pharmaceutical Technology, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, Halle 06120, Saale, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS).
| |
Collapse
|
2
|
Thalberg K. New theory to explain the effect of lactose fines on the performance of adhesive mixtures for inhalation. Int J Pharm 2024; 663:124549. [PMID: 39128621 DOI: 10.1016/j.ijpharm.2024.124549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
A new theory for the dispersibility enhancing effect of excipient fines for adhesive mixtures for inhalation is presented in this paper, while at the same time the shortcomings of current hypotheses are discussed. The proposed mechanism, denoted the 'viscoelastic damping effect', states that the presence of fines particles acts to dampen the collisions between carrier particles during mixing. As a consequence, fewer fine particles are 'irreversibly' pressed into the carriers, which in turn entails a higher fine particle fraction. The mechanism was demonstrated experimentally at different levels of added lactose fines by studying the influence of processing on fine particle fraction. This approach furthermore enabled quantification of the effect. All fine particles present in the blend (APIs and excipient fines) act together to exert the damping effect. The proposed mechanism is able to explain the main body of published data, including the effect of added excipient fines, the effect of an increased drug load, and the effect of removal of carrier fines. The viscoelastic damping mechanism is general in nature and conveys a broader and more general understanding of the behavior of adhesive mixtures for inhalation.
Collapse
Affiliation(s)
- Kyrre Thalberg
- Food and Pharma Division, Department of Process and Life Science Engineering, Lund University, Lund, Sweden; Emmace Consulting AB, Lund, Sweden.
| |
Collapse
|
3
|
van der Zwaan I, Pilkington GA, Frenning G, Ekström M, Valetti S, Pitcairn GR, Feiler A. Influence of particle diameter on aerosolization performance and release of budesonide loaded mesoporous silica particles. Eur J Pharm Sci 2024; 200:106828. [PMID: 38862047 DOI: 10.1016/j.ejps.2024.106828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/24/2024] [Accepted: 06/08/2024] [Indexed: 06/13/2024]
Abstract
The potential of micron-sized amorphous mesoporous silica particles as a novel controlled release drug delivery system for pulmonary administration has been investigated. Mesoporous silica formulations were demonstrated to provide a narrower particle size distribution and (spherical) shape uniformity compared to commercial micronized formulations, which is critical for repeatable and targeted aerosol delivery to the lungs. The release profiles of a well-known pulmonary drug loaded into mesoporous particles of different mean particle diameters (2.4, 3.9 and 6.3 µm) were analysed after aerosolization in a modified Andersen Cascade Impactor. Systematic control of the release rate of drug loaded into the particles was demonstrated in simulated lung fluid by variation of the mean particle diameter, as well as an enhanced release compared to a commercial micronized formulation. The mesoporous silica formulations all demonstrated an increased release rate of the loaded drug and moreover, under aerosolization from a commercial, low-cost dry powder inhaler (DPI) device, the formulations showed excellent performance, with low retainment and commercially viable fine particle fractions (FPFs). In addition, the measured median mass aerodynamic diameter (MMAD) of the different formulations (2.8, 4.1 and 6.2 µm) was shown to be tuneable with particle size, which can be helpful for targeting different regions in the lung. Together these results demonstrate that mesoporous silica formulations offer a promising novel alternative to current dry powder formulations for pulmonary drug delivery.
Collapse
Affiliation(s)
- Irès van der Zwaan
- Department of Pharmaceutical Biosciences and the Swedish Drug Delivery Center (SweDeliver), Uppsala University, P.O. Box 580, 751 23 Uppsala, Sweden
| | - Georgia A Pilkington
- Nanologica, Forskargatan 20 G, SE-151 36 Södertälje, Sweden; Surface and Corrosion Science, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Göran Frenning
- Department of Pharmaceutical Biosciences and the Swedish Drug Delivery Center (SweDeliver), Uppsala University, P.O. Box 580, 751 23 Uppsala, Sweden.
| | | | - Sabrina Valetti
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | | | - Adam Feiler
- Nanologica, Forskargatan 20 G, SE-151 36 Södertälje, Sweden; Surface and Corrosion Science, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
4
|
Sutar AD, Verma RK, Shukla R. Quality by Design in Pulmonary Drug Delivery: A Review on Dry Powder Inhaler Development, Nanotherapy Approaches, and Regulatory Considerations. AAPS PharmSciTech 2024; 25:178. [PMID: 39095623 DOI: 10.1208/s12249-024-02900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Dry powder inhalers (DPIs) are state-of-the-art pulmonary drug delivery systems. This article explores the transformative impact of nanotechnology on DPIs, emphasizing the Quality Target Product Profile (QTPP) with a focus on aerodynamic performance and particle characteristics. It navigates global regulatory frameworks, underscoring the need for safety and efficacy standards. Additionally, it highlights the emerging field of nanoparticulate dry powder inhalers, showcasing their potential to enhance targeted drug delivery in respiratory medicine. This concise overview is a valuable resource for researchers, physicians, and pharmaceutical developers, providing insights into the development and commercialization of advanced inhalation systems.
Collapse
Affiliation(s)
- Ashish Dilip Sutar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 160062, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
5
|
Li H, Shi Y, Ding X, Zhen C, Lin G, Wang F, Tang B, Li X. Recent advances in transdermal insulin delivery technology: A review. Int J Biol Macromol 2024; 274:133452. [PMID: 38942414 DOI: 10.1016/j.ijbiomac.2024.133452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Transdermal drug delivery refers to the administration of drugs through the skin, after which the drugs can directly act on or circulate through the body to the target organs or cells and avoid the first-pass metabolism in the liver and kidneys experienced by oral drugs, reducing the risk of drug poisoning. From the initial singular approach to transdermal drug delivery, there has been a shift toward combining multiple methods to enhance drug permeation efficiency and address the limitations of individual approaches. Technological advancements have also improved the accuracy of drug delivery. Optimizing insulin itself also enables its long-term release via needle-free injectors. In this review, the diverse transdermal delivery methods employed in insulin therapy and their respective advantages and limitations are discussed. By considering factors such as the principles of transdermal penetration, drug delivery efficiency, research progress, synergistic innovations among different methods, patient compliance, skin damage, and posttreatment skin recovery, a comprehensive evaluation is presented, along with prospects for potential novel combinatorial approaches. Furthermore, as insulin is a macromolecular drug, insights gained from its transdermal delivery may also serve as a valuable reference for the use of other macromolecular drugs for treatment.
Collapse
Affiliation(s)
- Heng Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Yanbin Shi
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China; School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xinbing Ding
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Chengdong Zhen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012, China.
| | - Fei Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Bingtao Tang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Xuelin Li
- School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
6
|
Almurshedi AS, Almarshad SN, Bukhari SI, Aldosari BN, Alhabardi SA, Alkathiri FA, Saleem I, Aldosar NS, Zaki RM. A Novel Inhalable Dry Powder to Trigger Delivery of Voriconazole for Effective Management of Pulmonary Aspergillosis. Pharmaceutics 2024; 16:897. [PMID: 39065594 PMCID: PMC11280232 DOI: 10.3390/pharmaceutics16070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Invasive pulmonary aspergillosis (IPA) is a fatal fungal infection with a high mortality rate. Voriconazole (VCZ) is considered a first-line therapy for IPA and shows efficacy in patients for whom other antifungal treatments have been unsuccessful. The objective of this study was to develop a high-potency VCZ-loaded liposomal system in the form of a dry-powder inhaler (DPI) using the spray-drying technique to convert liposomes into a nanocomposite microparticle (NCMP) DPI, formulated using a thin-film hydration technique. The physicochemical properties, including size, morphology, entrapment efficiency, and loading efficiency, of the formulated liposomes were evaluated. The NCMPs were then examined to determine their drug content, production yield, and aerodynamic size. The L3NCMP was formulated using a 1:1 lipid/L-leucine ratio and was selected for in vitro studies of cell viability, antifungal activity, and stability. These formulated inhalable particles offer a promising approach to the effective management of IPA.
Collapse
Affiliation(s)
- Alanood S. Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.N.A.); (S.I.B.); (B.N.A.); (S.A.A.); (F.A.A.)
| | - Sarah N. Almarshad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.N.A.); (S.I.B.); (B.N.A.); (S.A.A.); (F.A.A.)
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.N.A.); (S.I.B.); (B.N.A.); (S.A.A.); (F.A.A.)
| | - Basmah N. Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.N.A.); (S.I.B.); (B.N.A.); (S.A.A.); (F.A.A.)
| | - Samiah A. Alhabardi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.N.A.); (S.I.B.); (B.N.A.); (S.A.A.); (F.A.A.)
| | - Fai A. Alkathiri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.N.A.); (S.I.B.); (B.N.A.); (S.A.A.); (F.A.A.)
| | - Imran Saleem
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Noura S. Aldosar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, P.O. Box 62514, Beni-Suef 62514, Egypt
| |
Collapse
|
7
|
Pasero L, Susa F, Limongi T, Pisano R. A Review on Micro and Nanoengineering in Powder-Based Pulmonary Drug Delivery. Int J Pharm 2024; 659:124248. [PMID: 38782150 DOI: 10.1016/j.ijpharm.2024.124248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Pulmonary delivery of drugs has emerged as a promising approach for the treatment of both lung and systemic diseases. Compared to other drug delivery routes, inhalation offers numerous advantages including high targeting, fewer side effects, and a huge surface area for drug absorption. However, the deposition of drugs in the lungs can be limited by lung defence mechanisms such as mucociliary and macrophages' clearance. Among the delivery devices, dry powder inhalers represent the optimal choice due to their stability, ease of use, and absence of propellants. In the last decades, several bottom-up techniques have emerged over traditional milling to produce inhalable powders. Among these techniques, the most employed ones are spray drying, supercritical fluid technology, spray freeze-drying, and thin film freezing. Inhalable dry powders can be constituted by micronized drugs attached to a coarse carrier (e.g., lactose) or drugs embedded into a micro- or nanoparticle. Particulate-based formulations are commonly composed of polymeric micro- and nanoparticles, liposomes, solid lipid nanoparticles, dendrimers, nanocrystals, extracellular vesicles, and inorganic nanoparticles. Moreover, engineered formulations including large porous particles, swellable microparticles, nano-in-microparticles, and effervescent nanoparticles have been developed. Particle engineering has also a crucial role in tuning the physical-chemical properties of both carrier-based and carrier-free inhalable powders. This approach can increase powder flowability, deposition, and targeting by customising particle surface features.
Collapse
Affiliation(s)
- Lorena Pasero
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| | - Francesca Susa
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| | - Tania Limongi
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy; Department of Drug Science and Technology, University of Turin, 9 P. Giuria Street, 10125 Torino, Italy.
| | - Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| |
Collapse
|
8
|
Islam N, Suwandecha T, Srichana T. Dry powder inhaler design and particle technology in enhancing Pulmonary drug deposition: challenges and future strategies. Daru 2024:10.1007/s40199-024-00520-3. [PMID: 38861247 DOI: 10.1007/s40199-024-00520-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/27/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVES The efficient delivery of drugs from dry powder inhaler (DPI) formulations is associated with the complex interaction between the device design, drug formulations, and patient's inspiratory forces. Several challenges such as limited emitted dose of drugs from the formulation, low and variable deposition of drugs into the deep lungs, are to be resolved for obtaining the efficiency in drug delivery from DPI formulations. The objective of this study is to review the current challenges of inhaled drug delivery technology and find a way to enhance the efficiency of drug delivery from DPIs. METHODS/EVIDENCE ACQUISITION Using appropriate keywords and phrases as search terms, evidence was collected from the published articles following SciFinder, Web of Science, PubMed and Google Scholar databases. RESULTS Successful lung drug delivery from DPIs is very challenging due to the complex anatomy of the lungs and requires an integrated strategy for particle technology, formulation design, device design, and patient inhalation force. New DPIs are still being developed with limited performance and future device design employs computer simulation and engineering technology to overcome the ongoing challenges. Many issues of drug formulation challenges and particle technology are concerning factors associated with drug dispersion from the DPIs into deep lungs. CONCLUSION This review article addressed the appropriate design of DPI devices and drug formulations aligned with the patient's inhalation maneuver for efficient delivery of drugs from DPI formulations.
Collapse
Affiliation(s)
- Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology, Brisbane, QLD, Australia.
| | - Tan Suwandecha
- Drug and Cosmetic Excellence Center and School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center and Department of Pharmaceutical Technology, Prince of Songkla University, Hat Yai, Songkla, 90110, Thailand.
| |
Collapse
|
9
|
Li HY, Makatsoris C, Forbes B. Particulate bioaerogels for respiratory drug delivery. J Control Release 2024; 370:195-209. [PMID: 38641021 DOI: 10.1016/j.jconrel.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
The bioaerogel microparticles have been recently developed for respiratory drug delivery and attract fast increasing interests. These highly porous microparticles have ultralow density and hence possess much reduced aerodynamic diameter, which favour them with greatly enhanced dispersibility and improved aerosolisation behaviour. The adjustable particle geometric dimensions by varying preparation methods and controlling operation parameters make it possible to fabricate bioaerogel microparticles with accurate sizes for efficient delivery to the targeted regions of respiratory tract (i.e. intranasal and pulmonary). Additionally, the technical process can provide bioaerogel microparticles with the opportunities of accommodating polar, weak polar and non-polar drugs at sufficient amount to satisfy clinical needs, and the adsorbed drugs are primarily in the amorphous form that potentially can facilitate drug dissolution and improve bioavailability. Finally, the nature of biopolymers can further offer additional advantageous characteristics of improved mucoadhesion, sustained drug release and subsequently elongated time for continuous treatment on-site. These fascinating features strongly support bioaerogel microparticles to become a novel platform for effective delivery of a wide range of drugs to the targeted respiratory regions, with increased drug residence time on-site, sustained drug release, constant treatment for local and systemic diseases and anticipated better-quality of therapeutic effects.
Collapse
Affiliation(s)
- Hao-Ying Li
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| | - Charalampos Makatsoris
- Department of Engineering, Faculty of Natural & Mathematical Sciences, King's College London, WC2R 2LS, United Kingdom
| | - Ben Forbes
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| |
Collapse
|
10
|
Elsayed MM, Alfagih IM, Brockbank K, Alheibshy F, Aodah AH, Ali R, Almansour K, Shalash AO. Fine excipient materials in carrier-based dry powder inhalation formulations: The interplay of particle size and concentration effects. Int J Pharm X 2024; 7:100251. [PMID: 38799178 PMCID: PMC11127535 DOI: 10.1016/j.ijpx.2024.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
The contributions of fine excipient materials to drug dispersibility from carrier-based dry powder inhalation (DPI) formulations are well recognized, although they are not completely understood. To improve the understanding of these contributions, we investigated the influences of the particle size of the fine excipient materials on characteristics of carrier-based DPI formulations. We studied two particle size grades of silica microspheres, with volume median diameters of 3.31 μm and 8.14 μm, as fine excipient materials. Inhalation formulations, each composed of a lactose carrier material, one of the fine excipient materials (2.5% or 15.0% w/w), and a drug (fluticasone propionate) material (1.5% w/w) were prepared. The physical microstructure, the rheological properties, the aerosolization pattern, and the aerodynamic performance of the formulations were studied. At low concentration, the large silica microspheres had a more beneficial influence on the drug dispersibility than the small silica microspheres. At high concentration, only the small silica microspheres had a beneficial influence on the drug dispersibility. The results reveal influences of fine excipient materials on mixing mechanics. At low concentration, the fine particles improved deaggregation and distribution of the drug particles over the surfaces of the carrier particles. The large silica microspheres were associated with a greater mixing energy and a greater improvement in the drug dispersibility than the small silica microspheres. At high concentration, the large silica microspheres kneaded the drug particles onto the surfaces of the carrier particles and thus impaired the drug dispersibility. As a critical attribute of fine excipient materials in carrier-based dry powder inhalation formulations, the particle size demands robust specification setting.
Collapse
Affiliation(s)
- Mustafa M.A. Elsayed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Iman M. Alfagih
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Fawaz Alheibshy
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Alhassan H. Aodah
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Raisuddin Ali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khaled Almansour
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Ahmed O. Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
11
|
Kurukularatne C. Risks of thermal home remedies for COVID-19. Singapore Med J 2024; 65:S2-S4. [PMID: 35611503 PMCID: PMC11073649 DOI: 10.11622/smedj.2022062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Changa Kurukularatne
- Managing Director and Head, Infection Prevention and Control, Sarva Medical and Wound Care Clinic, 93 Dehiwala Road, Boralesgamuwa, Sri Lanka
| |
Collapse
|
12
|
Müller RM, Herziger B, Jeschke S, Neininger MP, Bertsche T, Bertsche A. How Intuitive Is the Administration of Pediatric Emergency Medication Devices for Parents? Objective Observation and Subjective Self-Assessment. PHARMACY 2024; 12:36. [PMID: 38392943 PMCID: PMC10893533 DOI: 10.3390/pharmacy12010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND to assess the intuitiveness of parents' administration of pediatric emergency devices (inhalation, rectal, buccal, nasal, and auto-injector). METHODS We invited parents without prior experience to administer the five devices to dummy dolls. We observed whether the parents chose the correct administration route and subsequently performed the correct administration procedures without clinically relevant errors. We interviewed parents for their self-assessment of their own administration performance and willingness to administer devices in actual emergencies. RESULTS The correct administration route was best for the inhalation device (81/84, 96% of parents) and worst for the intranasal device (25/126, 20%). The correct administration procedures were best for the buccal device (63/98, 64%) and worst for the auto-injector device (0/93, 0%). Their own administration performance was rated to be best by parents for the inhalation device (59/84, 70%) and worst for the auto-injector device (17/93, 18%). The self-assessment of the correct administration overestimated the correct administration procedures for all the devices except the buccal one. Most parents were willing to administer the inhalation device in an emergency (67/94, 79%), while the fewest were willing to administration procedures the auto-injector device (28/93, 30%). CONCLUSIONS Intuitiveness concerning the correct administration route and the subsequent correct administration procedures have to be improved for all the devices examined. The parents mostly overestimated their performance. Willingness to use a device in an actual emergency depended on the device.
Collapse
Affiliation(s)
- Ruth Melinda Müller
- Department of Neuropaediatrics, Hospital for Children and Adolescents, University Medicine Rostock, Ernst-Heydemann-Strasse 8, 18057 Rostock, Germany; (R.M.M.); (B.H.); (S.J.); (A.B.)
- Drug Safety Center, Leipzig University Hospital, Leipzig University, Brüderstrasse 32, 04103 Leipzig, Germany;
| | - Birthe Herziger
- Department of Neuropaediatrics, Hospital for Children and Adolescents, University Medicine Rostock, Ernst-Heydemann-Strasse 8, 18057 Rostock, Germany; (R.M.M.); (B.H.); (S.J.); (A.B.)
| | - Sarah Jeschke
- Department of Neuropaediatrics, Hospital for Children and Adolescents, University Medicine Rostock, Ernst-Heydemann-Strasse 8, 18057 Rostock, Germany; (R.M.M.); (B.H.); (S.J.); (A.B.)
- Department of Neuropaediatrics, Hospital for Children and Adolescents, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse 1, 17475 Greifswald, Germany
| | - Martina Patrizia Neininger
- Drug Safety Center, Leipzig University Hospital, Leipzig University, Brüderstrasse 32, 04103 Leipzig, Germany;
- Clinical Pharmacy, Institute of Pharmacy, Medical Faculty, Leipzig University, Brüderstrasse 32, 04103 Leipzig, Germany
| | - Thilo Bertsche
- Drug Safety Center, Leipzig University Hospital, Leipzig University, Brüderstrasse 32, 04103 Leipzig, Germany;
- Clinical Pharmacy, Institute of Pharmacy, Medical Faculty, Leipzig University, Brüderstrasse 32, 04103 Leipzig, Germany
| | - Astrid Bertsche
- Department of Neuropaediatrics, Hospital for Children and Adolescents, University Medicine Rostock, Ernst-Heydemann-Strasse 8, 18057 Rostock, Germany; (R.M.M.); (B.H.); (S.J.); (A.B.)
- Department of Neuropaediatrics, Hospital for Children and Adolescents, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse 1, 17475 Greifswald, Germany
| |
Collapse
|
13
|
Pioch T, Fischer T, Schneider M. Aspherical, Nano-Structured Drug Delivery System with Tunable Release and Clearance for Pulmonary Applications. Pharmaceutics 2024; 16:232. [PMID: 38399290 PMCID: PMC10891959 DOI: 10.3390/pharmaceutics16020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/21/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Addressing the challenge of efficient drug delivery to the lungs, a nano-structured, microparticulate carrier system with defined and customizable dimensions has been developed. Utilizing a template-assisted approach and capillary forces, particles were rapidly loaded and stabilized. The system employs a biocompatible alginate gel as a stabilizing matrix, facilitating the breakdown of the carrier in body fluids with the subsequent release of its nano-load, while also mitigating long-term accumulation in the lung. Different gel strengths and stabilizing steps were applied, allowing us to tune the release kinetics, as evaluated by a quantitative method based on a flow-imaging system. The micro-cylinders demonstrated superior aerodynamic properties in Next Generation Impactor (NGI) experiments, such as a smaller median aerodynamic diameter (MMAD), while yielding a higher fine particle fraction (FPF) than spherical particles similar in critical dimensions. They exhibited negligible toxicity to a differentiated macrophage cell line (dTHP-1) for up to 24 h of incubation. The kinetics of the cellular uptake by dTHP-1 cells was assessed via fluorescence microscopy, revealing an uptake-rate dependence on the aspect ratio (AR = l/d); cylinders with high AR were phagocytosed more slowly than shorter rods and comparable spherical particles. This indicates that this novel drug delivery system can modulate macrophage uptake and clearance by adjusting its geometric parameters while maintaining optimal aerodynamic properties and featuring a biodegradable stabilizing matrix.
Collapse
Affiliation(s)
| | | | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany; (T.P.); (T.F.)
| |
Collapse
|
14
|
Li X, Su Z, Wang C, Wu W, Zhang Y, Wang C. Mapping the evolution of inhaled drug delivery research: Trends, collaborations, and emerging frontiers. Drug Discov Today 2024; 29:103864. [PMID: 38141779 DOI: 10.1016/j.drudis.2023.103864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Inhaled drug delivery is a unique administration route known for its ability to directly target pulmonary or brain regions, facilitating rapid onset and circumventing the hepatic first-pass effect. To characterize current global trends and provide a visual overview of the latest trends in inhaled drug delivery research, bibliometric analysis of data acquired from the Web of Science Core Collection database was performed via VOSviewer and CiteSpace. Inhaled drug delivery can not only be utilized in respiratory diseases but also has potential in other types of diseases for both fundamental and clinical applications. Overall, we provide an overview of present trends, collaborations, and newly discovered frontiers of inhaled drug delivery.
Collapse
Affiliation(s)
- Xinyuan Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, PR China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 404120, PR China
| | - Zhengxing Su
- Sichuan Kelun Pharmaceutical Research Institute Co. Ltd, Chengdu 611138, Sichuan, PR China
| | - Chunyou Wang
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, PR China
| | - Wen Wu
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 404120, PR China.
| | - Yan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, PR China.
| | - Chenhui Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, PR China.
| |
Collapse
|
15
|
Zhang Q, Kou S, Cui Y, Dong J, Ye Y, Wang Y, Lu R, Li X, Nie Y, Shi K, Chen F, Hall P, Chen X, Wang Z, Jiang X. Ternary Dry Powder Agglomerate Inhalation Formulation of Melatonin With Air Jet Mixing to Improve In Vitro And In Vivo Performance. J Pharm Sci 2024; 113:434-444. [PMID: 37995838 DOI: 10.1016/j.xphs.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
An improved agglomerate formulation with melatonin and fine lactose for dry powder inhalation using Turbuhaler® was developed. Co-grinding lactose with 1 % magnesium stearate prior to air jet mixing served as a key factor to improve the in vitro aerosolization and in vivo efficacy. Elevated mixing pressure facilitated the dispersion and homogenization of the cohesive mixture for even distribution of agglomerate size after spheroidization and subsequent higher emitted dose with lower variation. Magnesium stearate was employed as a tertiary component to adjust the interparticle force for better aerosolization. At optimized mixing pressure, co-grinding lactose with magnesium stearate before jet mixing displayed further improvement of fine particle fraction to 71.6 ± 3.1 %. The superior fine particle deposition efficiency contributed to rapid onset of action and a high bioavailability of 67.0 % after intratracheal administration to rats. Overall, an inhalable melatonin dry powder formulation exhibiting good aerosol property and lung deposition with clinical translation potential was developed.
Collapse
Affiliation(s)
- Qingzhen Zhang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, Zhejiang, 315100, China
| | - Shanglong Kou
- Shenzhen Relx Tech. Co. Ltd., Shenzhen, Guangdong, 518000, China
| | - Yingtong Cui
- Shenzhen Relx Tech. Co. Ltd., Shenzhen, Guangdong, 518000, China
| | - Jie Dong
- Suzhou Inhal Pharma Co., Ltd, Suzhou, Jiangsu, 215000, China
| | - Yuqing Ye
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, The University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo, Zhejiang, 315100, China
| | - Yuanyuan Wang
- Shenzhen Relx Tech. Co. Ltd., Shenzhen, Guangdong, 518000, China
| | - Rui Lu
- Shenzhen Relx Tech. Co. Ltd., Shenzhen, Guangdong, 518000, China
| | - Xinduo Li
- Shenzhen Relx Tech. Co. Ltd., Shenzhen, Guangdong, 518000, China
| | - Yi Nie
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, The University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo, Zhejiang, 315100, China
| | - Kaiqi Shi
- Suzhou Inhal Pharma Co., Ltd, Suzhou, Jiangsu, 215000, China
| | - Fang Chen
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, The University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo, Zhejiang, 315100, China
| | - Philip Hall
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, Zhejiang, 315100, China; Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, The University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo, Zhejiang, 315100, China
| | - Xiaoling Chen
- Shenzhen Relx Tech. Co. Ltd., Shenzhen, Guangdong, 518000, China
| | - Zheng Wang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, Zhejiang, 315100, China; Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, The University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo, Zhejiang, 315100, China.
| | - Xingtao Jiang
- Shenzhen Relx Tech. Co. Ltd., Shenzhen, Guangdong, 518000, China.
| |
Collapse
|
16
|
Chaugule V, Dos Reis LG, Fletcher DF, Young PM, Traini D, Soria J. A counter-swirl design concept for dry powder inhalers. Int J Pharm 2024; 650:123694. [PMID: 38081562 DOI: 10.1016/j.ijpharm.2023.123694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
A swirling airflow is incorporated in several dry powder inhalers (DPIs) for effective powder de-agglomeration. This commonly requires the use of a flow-straightening grid in the DPI to reduce drug deposition loss caused by large lateral spreading of the emerging aerosol. Here, we propose a novel grid-free DPI design concept that improves the aerosol flow characteristics and reduces the aforementioned drug loss. The basis of this design is the implementation of a secondary airflow that swirls in the opposite direction (counter-swirl) to that of a primary swirling airflow. In-vitro deposition, computational fluid dynamics simulations and particle image velocimetry measurements are used to evaluate the counter-swirl DPI aerosol performance and flow characteristics. In comparison with a baseline-DPI that has only a primary swirling airflow, the counter-swirl DPI has 20% less deposition of the emitted drug dose in the induction port and pre-separator of a next generation impactor (NGI). This occurs as a result of the lower flow-swirl generated from the counter-swirl DPI which eliminates the axial reverse flow outside of the mouthpiece and substantially reduces lateral spreading in the exiting aerosol. Modifications to the counter-swirl DPI design were made to prevent drug loss from the secondary airflow tangential inlets, which involved the addition of wall perforations in the tangential inlets and the separation of the primary and secondary swirling airflows by an annular channel. These modified DPI devices were successful in that aspect but had higher flow-swirl than that in the counter-swirl DPI and thus had higher drug mass retained in the device and deposited in the induction port and pre-separator of the NGI. The fine particle fraction in the aerosols generated from all the counter-swirl-based DPIs and the baseline-DPI are found to be statistically similar to each other.
Collapse
Affiliation(s)
- Vishal Chaugule
- Laboratory for Turbulence Research in Aerospace and Combustion (LTRAC), Department of Mechanical and Aerospace Engineering, Monash University, Clayton Campus, Melbourne, Australia
| | | | - David F Fletcher
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, Australia
| | - Paul M Young
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia; Department of Marketing, Macquarie Business School, Macquarie University, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia; Macquarie Medical School, Department of Biological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Julio Soria
- Laboratory for Turbulence Research in Aerospace and Combustion (LTRAC), Department of Mechanical and Aerospace Engineering, Monash University, Clayton Campus, Melbourne, Australia.
| |
Collapse
|
17
|
Shah K, Chan LW, Wong TW. Conversion of liquid chitosan-based nanoemulsions into inhalable solid microparticles: Process challenges with polysaccharide. Int J Biol Macromol 2023; 253:126991. [PMID: 37739286 DOI: 10.1016/j.ijbiomac.2023.126991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/05/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
Solid particles ≤5 μm are essential to allow lower lung deposition and macrophage phagocytosis of anti-tubercular drugs. Decorating liquid nanoemulsion of anti-tubercular drug with macrophage-specific chitosan and chitosan-folate conjugate and spray drying the nanoemulsion with lactose produced oversized solid particles due to polysaccharide binding effects. This study designed solid nanoemulsion using lactose as the primary solid carrier and explored additives and spray-drying variables to reduce the binding and particle growth effects of chitosan. Deposition of magnesium stearate on lactose negated chitosan-inducible excessive lactose-liquid nanoemulsion binding and solid particle growth. Moderating the adhesion of chitosan-decorated liquid nanoemulsion onto lactose produced smooth-surface solid microparticles (size: 5.45 ± 0.26 μm; roughness: ∼80 nm) with heterogeneous size (span: 1.87 ± 1.21) through plasticization of constituent materials of nanoemulsion and lactose involving OH/N-H, C-H, CONH and/or COO moieties. Smaller solid particles could attach onto the larger particles with minimal steric hindrance by smooth surfaces. Together with round solid particulate structures (circularity: 0.919 ± 0.002), good pulmonary inhalation beneficial for treatment of pulmonary tuberculosis as well as other diseases is conferred.
Collapse
Affiliation(s)
- Kifayatullah Shah
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, 42300, Selangor, Malaysia
| | - Lai Wah Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, 117543, Republic of Singapore
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, 42300, Selangor, Malaysia; Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
18
|
McEvoy C, Argula R, Sahay S, Shapiro S, Eagan C, Hickey AJ, Smutney C, Dillon C, Winkler T, Davis BN, Broderick M, Burger C. Tyvaso DPI: Drug-device characteristics and patient clinical considerations. Pulm Pharmacol Ther 2023; 83:102266. [PMID: 37967762 DOI: 10.1016/j.pupt.2023.102266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/13/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
Tyvaso DPI is a drug-device combination therapy comprised of a small, portable, reusable, breath-powered, dry powder inhaler (DPI) for the delivery of treprostinil. It is approved for the treatment of pulmonary arterial hypertension and pulmonary hypertension associated with interstitial lung disease. Tyvaso DPI utilizes single-use prefilled cartridges to ensure proper dosing. Unlike nebulizer devices, administration of Tyvaso DPI is passive and does not require coordination with the device. The low-flow rate design results in targeted delivery to the peripheral lungs due to minimal drug loss from impaction in the oropharynx. The inert fumaryl diketopiperazine (FDKP) excipient forms microparticles that carry treprostinil into the airways, with a high fraction of the particles in the respirable range. In a clinical study in patients with pulmonary arterial hypertension, Tyvaso DPI had similar exposure and pharmacokinetics, low incidence of adverse events, and high patient satisfaction compared with nebulized treprostinil solution. Tyvaso DPI may be considered as a first prostacyclin agent or for those that do not tolerate other prostacyclin formulations, patients with pulmonary comorbidities, patients with mixed Group 1 and Group 3 pulmonary hypertension, or those that prefer an active lifestyle and need a portable, non-invasive treatment. Tyvaso DPI is a patient-preferred, maintenance-free, safe delivery option that may improve patient compliance and adherence.
Collapse
Affiliation(s)
- Colleen McEvoy
- Division of Pulmonary and Critical Care Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Rahul Argula
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Sandeep Sahay
- Division of Pulmonary, Critical Care & Sleep Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Shelley Shapiro
- Cardiology Division, Greater Los Angeles VA Healthcare System, Department of Pulmonary Critical Care, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Christina Eagan
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | | | | | - Chris Dillon
- United Therapeutics Corporation, Research Triangle Park, NC, USA
| | - Thomas Winkler
- United Therapeutics Corporation, Research Triangle Park, NC, USA
| | - Brittany N Davis
- United Therapeutics Corporation, Research Triangle Park, NC, USA
| | | | - Charles Burger
- Division of Pulmonary, Allergy and Sleep Medicine, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
19
|
Magramane S, Vlahović K, Gordon P, Kállai-Szabó N, Zelkó R, Antal I, Farkas D. Inhalation Dosage Forms: A Focus on Dry Powder Inhalers and Their Advancements. Pharmaceuticals (Basel) 2023; 16:1658. [PMID: 38139785 PMCID: PMC10747137 DOI: 10.3390/ph16121658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
In this review, an extensive analysis of dry powder inhalers (DPIs) is offered, focusing on their characteristics, formulation, stability, and manufacturing. The advantages of pulmonary delivery were investigated, as well as the significance of the particle size in drug deposition. The preparation of DPI formulations was also comprehensively explored, including physico-chemical characterization of powders, powder processing techniques, and formulation considerations. In addition to manufacturing procedures, testing methods were also discussed, providing insights into the development and evaluation of DPI formulations. This review also explores the design basics and critical attributes specific to DPIs, highlighting the significance of their optimization to achieve an effective inhalation therapy. Additionally, the morphology and stability of 3 DPI capsules (Spiriva, Braltus, and Onbrez) were investigated, offering valuable insights into the properties of these formulations. Altogether, these findings contribute to a deeper understanding of DPIs and their development, performance, and optimization of inhalation dosage forms.
Collapse
Affiliation(s)
- Sabrina Magramane
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Kristina Vlahović
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Péter Gordon
- Department of Electronics Technology, Budapest University of Technology and Economics, Egry J. Str. 18, H-1111 Budapest, Hungary;
| | - Nikolett Kállai-Szabó
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Romána Zelkó
- Department of Pharmacy Administration, Semmelweis University, Hőgyes Str. 7–9, H-1092 Budapest, Hungary;
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Dóra Farkas
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| |
Collapse
|
20
|
Welle A, Mehta M, Marek K, Peters H, van der Wel P, Imole O. Impact of high shear blending on distribution of magnesium stearate on lactose for dry powder inhaled formulations. Int J Pharm 2023; 647:123503. [PMID: 37827391 DOI: 10.1016/j.ijpharm.2023.123503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The use of magnesium stearate along with lactose in Dry Powder Inhaler (DPI) formulations is increasing. The impact of different conditions of high shear blending on the distribution of magnesium stearate on lactose particles was investigated in this study. The formulated blends were manufactured using high shear blending of pre-blended coarse and fine lactose particles with 1.0% (w/w) magnesium stearate under different blending conditions, specifically blending speed and time. The effects of blending conditions on the distribution of magnesium stearate on lactose particles were clearly identifiable by characterizing the formulated blends by means of rheological evaluations, scanning electron microscopy, and chemical surface analysis using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Rheological properties were significantly affected in blends with magnesium stearate compared to blends without magnesium stearate. Blending speed exhibited a strong influence on the distribution of magnesium stearate on lactose surface, while blending time had relatively minor effect.
Collapse
Affiliation(s)
- Alexander Welle
- Karlsruhe Nano Micro Facility, Institute for Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Mohit Mehta
- Harro Höfliger Verpackungsmaschinen GmbH, Helmholtzstraße 4, 71573 Allmersbach i.T., Germany
| | - Karin Marek
- Harro Höfliger Verpackungsmaschinen GmbH, Helmholtzstraße 4, 71573 Allmersbach i.T., Germany
| | - Harry Peters
- DFE Pharma GmbH, Kleverstrasse 187, 47568 Goch, Germany
| | - Peter van der Wel
- Hosokawa Micron B.V., Gildenstraat 26, 7005 BL, Doetinchem, the Netherlands
| | - Olukayode Imole
- Hosokawa Micron B.V., Gildenstraat 26, 7005 BL, Doetinchem, the Netherlands
| |
Collapse
|
21
|
Jin Z, Gao Q, Wu K, Ouyang J, Guo W, Liang XJ. Harnessing inhaled nanoparticles to overcome the pulmonary barrier for respiratory disease therapy. Adv Drug Deliv Rev 2023; 202:115111. [PMID: 37820982 DOI: 10.1016/j.addr.2023.115111] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
The lack of effective treatments for pulmonary diseases presents a significant global health burden, primarily due to the challenges posed by the pulmonary barrier that hinders drug delivery to the lungs. Inhaled nanomedicines, with their capacity for localized and precise drug delivery to specific pulmonary pathologies through the respiratory route, hold tremendous promise as a solution to these challenges. Nevertheless, the realization of efficient and safe pulmonary drug delivery remains fraught with multifaceted challenges. This review summarizes the delivery barriers associated with major pulmonary diseases, the physicochemical properties and drug formulations affecting these barriers, and emphasizes the design advantages and functional integration of nanomedicine in overcoming pulmonary barriers for efficient and safe local drug delivery. The review also deliberates on established nanocarriers and explores drug formulation strategies rooted in these nanocarriers, thereby furnishing essential guidance for the rational design and implementation of pulmonary nanotherapeutics. Finally, this review cast a forward-looking perspective, contemplating the clinical prospects and challenges inherent in the application of inhaled nanomedicines for respiratory diseases.
Collapse
Affiliation(s)
- Zhaokui Jin
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Qi Gao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Keke Wu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Jiang Ouyang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Weisheng Guo
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Xing-Jie Liang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, PR China.
| |
Collapse
|
22
|
Wostry M, Scherließ R. Possibilities and advantages of additive manufacturing in dry powder formulations for inhalation. Eur J Pharm Sci 2023; 190:106583. [PMID: 37703932 DOI: 10.1016/j.ejps.2023.106583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
In dry powder formulations for inhalation, coarse carrier particles are often used to improve handling, dosing and dispersion of the active pharmaceutical ingredient (API). Carrier particles, mostly alpha-lactose monohydrate crystals, always show a certain size distribution and are never exactly uniform in their geometry. This might be one factor of the rather high invivo variability in fine particle dose from dry powder inhalers. To address the inhomogeneity of carrier particles, additive manufacturing has come to mind. The parametric design of the perfect carrier geometry could further improve the efficiency of dry powder formulations. In this study, a numerical simulation setup using the discrete element method as well as an experimental approach with 3D printed particles were used to determine the loading capacity of a model API onto two different carrier geometries. The difference between the two geometries was reduced solely to their surface's topology to assess the impact of that. The results indicate differences in the loading capacity for the two geometries, depending on the loading process. This study highlights the importance of the carrier geometry for the efficiency of dry powder formulations and thus, strengthens the idea of artificially designed and printed carrier particles.
Collapse
Affiliation(s)
- Melvin Wostry
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Grasweg 9a, Kiel 24118, Germany
| | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Grasweg 9a, Kiel 24118, Germany; Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, Kiel, Germany.
| |
Collapse
|
23
|
Lechanteur A, Gresse E, Orozco L, Plougonven E, Léonard A, Vandewalle N, Lumay G, Evrard B. Inhalation powder development without carrier: How to engineer ultra-flying microparticles? Eur J Pharm Biopharm 2023; 191:26-35. [PMID: 37595762 DOI: 10.1016/j.ejpb.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Particle engineering technologies have led to the commercialization of new inhaled powders like PulmoSolTM or PulmoSphereTM. Such platforms are produced by spray drying, a well-known process popular for its versatility, thanks to wide-ranging working parameters. Whereas these powders contain a high drug-loading, we have studied a low-dose case, in optimizing the production of powders with two anti-asthmatic drugs, budesonide and formoterol. Using a Design of Experiments approach, 27 powders were produced, with varying excipient mixes (cyclodextrins, raffinose and maltodextrins), solution concentrations, and spray drying parameters in order to maximize deep lung deposition, measured through fine particle fraction (next generation impactor). Based on statistical analysis, two powders made of hydropropyl-β-cyclodextrin alone or mixed with raffinose and L-leucine were selected. Indeed, the two powders demonstrated very high fine particle fraction (>55%), considerably better than commercially available products. Deep lung deposition has been correlated to very fine particle size and lower microparticles interactions shown by laser diffraction assays at different working pressures, and particle morphometry. Moreover, the two drugs would be predicted to deposit homogeneously into the lung according to impaction studies. Uniform delivery is fundamental to control symptoms of asthma. In this study, we develop carrier-free inhalation powders promoting very efficient lung deposition and demonstrate the high impact of inter-particular interactions intensity on their aerosolization behaviour.
Collapse
Affiliation(s)
- Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium.
| | - Eva Gresse
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| | - Luisa Orozco
- Group of Research and Applications in Statistical Physics, CESAM Research Unit Institute of Physics B5a, University of Liège, Liège 4000, Belgium
| | - Erwan Plougonven
- PEPs, Laboratory of Chemical Engineering, Department of Applied Chemistry, University of Liège, Building B6a, Sart-Tilman, Liège 4000, Belgium
| | - Angélique Léonard
- PEPs, Laboratory of Chemical Engineering, Department of Applied Chemistry, University of Liège, Building B6a, Sart-Tilman, Liège 4000, Belgium
| | - Nicolas Vandewalle
- Group of Research and Applications in Statistical Physics, CESAM Research Unit Institute of Physics B5a, University of Liège, Liège 4000, Belgium
| | - Geoffroy Lumay
- Group of Research and Applications in Statistical Physics, CESAM Research Unit Institute of Physics B5a, University of Liège, Liège 4000, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| |
Collapse
|
24
|
Behrend-Keim B, Castro-Muñoz A, Monrreal-Ortega L, Ávalos-León B, Campos-Estrada C, Smyth HDC, Bahamondez-Canas TF, Moraga-Espinoza D. The forgotten material: Highly dispersible and swellable gelatin-based microspheres for pulmonary drug delivery of cromolyn sodium and ipratropium bromide. Int J Pharm 2023; 644:123331. [PMID: 37597595 DOI: 10.1016/j.ijpharm.2023.123331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
Controlled-release formulations for pulmonary delivery are highly desirable for treating chronic diseases such as COPD. However, a limited number of polymers are currently approved for inhalation. The study presents a promising strategy using gelatin as a matrix for inhalable dry powders, allowing the controlled release of ionic drugs. Ionized cromoglicate sodium (CS) and ipratropium bromide (IBr) interacted in solution with charged gelatin before spray drying (SD). Calcium carbonate was used as a crosslinker. The microspheres showed remarkable aerosol performance after optimizing the SD parameters and did not cause cytotoxicity in A549 cells. The microspheres were highly dispersible with ∼ 50-60% of respirable fraction and fine particle fraction 55-70%. Uncrosslinked microspheres increased their size from four to ten times by swelling after 5 min showing potential as a strategy to avoid macrophage clearance and prolong the therapeutic effect of the drug. Crosslinkers prevented particle swelling. Ionic interaction generated a moderate reduction of the drug release. Overall, this study provides a novel approach for developing DPI formulations for treating chronic respiratory diseases using a biopolymer approved by the FDA, potentially enhancing drug activity through controlled release and avoiding macrophage clearance.
Collapse
Affiliation(s)
- Beatriz Behrend-Keim
- Escuela de Química y Farmacia, Universidad de Valparaíso, Gran Bretaña 1093, Playa Ancha, Valparaíso, Región de Valparaíso 2340000, Chile; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Almendra Castro-Muñoz
- Escuela de Química y Farmacia, Universidad de Valparaíso, Gran Bretaña 1093, Playa Ancha, Valparaíso, Región de Valparaíso 2340000, Chile
| | - Luis Monrreal-Ortega
- Escuela de Química y Farmacia, Universidad de Valparaíso, Gran Bretaña 1093, Playa Ancha, Valparaíso, Región de Valparaíso 2340000, Chile
| | - Bárbara Ávalos-León
- Escuela de Química y Farmacia, Universidad de Valparaíso, Gran Bretaña 1093, Playa Ancha, Valparaíso, Región de Valparaíso 2340000, Chile
| | - Carolina Campos-Estrada
- Escuela de Química y Farmacia, Universidad de Valparaíso, Gran Bretaña 1093, Playa Ancha, Valparaíso, Región de Valparaíso 2340000, Chile; Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Gran Bretaña 1093, Playa Ancha, Valparaíso, Región de Valparaíso 2340000, Chile
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Tania F Bahamondez-Canas
- Escuela de Química y Farmacia, Universidad de Valparaíso, Gran Bretaña 1093, Playa Ancha, Valparaíso, Región de Valparaíso 2340000, Chile; Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Gran Bretaña 1093, Playa Ancha, Valparaíso, Región de Valparaíso 2340000, Chile
| | - Daniel Moraga-Espinoza
- Escuela de Química y Farmacia, Universidad de Valparaíso, Gran Bretaña 1093, Playa Ancha, Valparaíso, Región de Valparaíso 2340000, Chile; Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Gran Bretaña 1093, Playa Ancha, Valparaíso, Región de Valparaíso 2340000, Chile.
| |
Collapse
|
25
|
Miyagi MYS, de Oliveira Faria R, de Souza GB, Lameu C, Tagami T, Ozeki T, Bezzon VDN, Yukuyama MN, Bou-Chacra NA, de Araujo GLB. Optimizing adjuvant inhaled chemotherapy: Synergistic enhancement in paclitaxel cytotoxicity by flubendazole nanocrystals in a cycle model approach. Int J Pharm 2023; 644:123324. [PMID: 37591475 DOI: 10.1016/j.ijpharm.2023.123324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Lung cancer is the leading cause of cancer-related death. In addition to new innovative approaches, practical strategies that improve the efficacy of already available drugs are urgently needed. In this study, an inhalable dry powder formulation is used to repurpose flubendazole, a poorly soluble anthelmintic drug with potential against a variety of cancer lineages. Flubendazole nanocrystals were obtained through nanoprecipitation, and dry powder was produced by spray drying. Through fractional factorial design, the spray drying parameters were optimized and the impact of formulation on aerolization properties was clarified. The loading limitations were clarified through response surface methodology, and a 15% flubendazole loading was feasible through the addition of 20% L-leucine, leading to a flubendazole particle size of 388.6 nm, median mass aerodynamic diameter of 2.9 μm, 50.3% FPF, emitted dose of 83.2% and triple the initial solubility. Although the cytotoxicity of this formulation in A549 cells was limited, the formulation showed a synergistic effect when associated with paclitaxel, leading to a surprising 1000-fold reduction in the IC50. Compared to 3 cycles of paclitaxel alone, a 3-cycle model combined treatment increased the threshold of cytotoxicity by 25% for the same dose. Our study suggests, for the first time, that orally inhaled flubendazole nanocrystals show high potential as adjuvants to increase cytotoxic agents' potency and reduce adverse effects.
Collapse
Affiliation(s)
- Mariana Yasue Saito Miyagi
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Rafael de Oliveira Faria
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 748, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Gabriel Batista de Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 748, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Claudiana Lameu
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 748, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil.
| | - Tatsuaki Tagami
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Tetsuya Ozeki
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Vinícius Danilo Nonato Bezzon
- Departamento de Física, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, 786, Quatro Road, 35402-136 Ouro Preto, MG, Brazil
| | - Megumi Nishitani Yukuyama
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Nadia Araci Bou-Chacra
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Gabriel Lima Barros de Araujo
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
26
|
Hibbard T, Mitchell H, Kim Y, Shankland K, Al-Obaidi H. Spray Dried Progesterone Formulations for Carrier Free Dry Powder Inhalation. Eur J Pharm Biopharm 2023:S0939-6411(23)00171-6. [PMID: 37392870 DOI: 10.1016/j.ejpb.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Low oral absorption and extensive first pass metabolism of progesterone is reported for many oral formulations which warrants investigation into other routes of administration. It is the aim of this study to investigate the generation of inhaled formulations of progesterone though a spray drying approach with a focus on how spray drying impacts the physicochemical properties of progesterone. Formulations of progesterone with L-leucine and hydroxypropyl methylcellulose acetate succinate (HPMCAS) are reported to this aim. X-ray diffraction, spectroscopy and thermal analysis were used to characterise these formulations and confirmed that progesterone crystallises as the Form II polymorph during spray drying regardless of the solvent used. The resultant formulations showed higher aqueous solubility than progesterone Form I starting material and the addition of HPMCAS was shown to temporarily enable a supersaturated state. Thermal analysis was used to show that the Form II polymorph was sensitive to transformation to Form I during heating. The addition of L-leucine to the formulations reduced the temperature for the polymorphic transformation by ∼10 °C. However, when HPMCAS was added to the formulation, the Form II polymorph was prevented from transforming to the Form I polymorph. Cascade impaction was used to determine the aerosol performance of the spray dried powders and showed promising lung deposition profiles (mass median aerodynamic diameter 5 µm) with significant variation depending on the organic solvent used and the ratio of organic to aqueous phase in the feedstock. However, further optimisation of formulations was required to direct more progesterone into the alveolar regions. The addition of HPMCAS was seen to increase the alveolar deposition and therefore formed a formulation with a lower fine particle fraction and mass median aerodynamic diameter. The most suitable formulation for inhalation was formed from a 50:50 acetone:water destockck and showed an ED, FPF and FPD of 81.7%, 44.5% and 7.3 mg respectively. Therefore, HPMCAS is suggested as a suitable excipient to increase solubility, prevent polymorphic transformation and improve inhalation properties of spray dried progesterone formulations. This study highlights the use of spray drying to form inhalable progesterone powders with higher solubility which may broaden the application of this medicine.
Collapse
Affiliation(s)
- Thomas Hibbard
- School of Pharmacy, University of Reading, Reading, RG6 6AD, UK
| | - Hannah Mitchell
- School of Pharmacy, University of Reading, Reading, RG6 6AD, UK
| | - Yoonha Kim
- School of Pharmacy, University of Reading, Reading, RG6 6AD, UK
| | | | - Hisham Al-Obaidi
- School of Pharmacy, University of Reading, Reading, RG6 6AD, UK.
| |
Collapse
|
27
|
Tang P, Kakhi M, Albariqi A, Ravindra Babu Behara S, Walenga R, Yang R, Chan HK. The role of capsule aperture size on the dispersion of carrier-based formulation at different air flowrates. Int J Pharm 2023:123152. [PMID: 37339687 DOI: 10.1016/j.ijpharm.2023.123152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
The effect of capsule aperture size on the aerosol performance of lactose blend formulation was studied using Foradil® (containing 12 μg of formoterol fumarate (FF1) and 24 mg of lactose) dispersed with a powder inhaler Aerolizer® at increasing air flowrates. Apertures sizes of 0.4, 1.0, 1.5, 2.5, and 4.0 mm were introduced at the opposite ends of the capsule. The formulation was dispersed into a Next Generation Impactor (NGI) at 30, 60 and 90 L/min, with the fine particle fractions (FPFrec and FPFem) measured by chemical assay of FF and lactose using high-performance liquid chromatography. Particle size distribution (PSD) of FF particles dispersed in wet media was also characterized by laser diffraction. FPFrec showed a stronger dependency on the flowrate than the capsule aperture size. The most efficient dispersion was achieved at 90 L/min. At a given flowrate, FPFem remained broadly constant across different aperture sizes. The laser diffraction studies demonstrated the presence of large agglomerates.
Collapse
Affiliation(s)
- Patricia Tang
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia
| | - Maziar Kakhi
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Ahmed Albariqi
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia
| | - Srinivas Ravindra Babu Behara
- Division of Immediate and Modified Release Products III, Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Ross Walenga
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Runyu Yang
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales, Australia
| | - Hak-Kim Chan
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
28
|
Ari A, Alhamad BR. Evaluating dry powder inhalers: From in vitro studies to mobile health technologies. Respir Med 2023:107281. [PMID: 37244487 DOI: 10.1016/j.rmed.2023.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023]
Abstract
Dry powder inhalers (DPIs) are essential in treating patients with pulmonary diseases. Since DPIs were introduced in the 1960s, a remarkable improvement has been made in their technology, dose delivery, efficiency, reproducibility, stability, and performance based on safety and efficacy. While there are many DPIs on the market and several more under development, it is vital to evaluate the performance of DPIs for effective aerosol drug delivery to patients with respiratory disorders. Their performance evaluation includes particle size, metering system, device design, dose preparation, inhalation technique, and patient-device integration. The purpose of this paper is to review current literature evaluating DPIs through in vitro studies, computational fluid models, and in vivo/clinical studies. We will also explain how mobile health applications are used to monitor and evaluate patients' adherence to prescribed medications.
Collapse
Affiliation(s)
- Arzu Ari
- Department of Respiratory Care, Texas State University, 200 Bobcat Way, Suite 214, Round Rock, TX, 78665, USA.
| | - Bshayer Ramadan Alhamad
- Respiratory Therapy Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Science, Al Ahsa, Saudi Arabia; King Abdullah International Medical Research Center, Al Ahsa, Saudi Arabia.
| |
Collapse
|
29
|
Li HY, Xu EY. Dual functional pullulan-based spray-dried microparticles for controlled pulmonary drug delivery. Int J Pharm 2023; 641:123057. [PMID: 37207859 DOI: 10.1016/j.ijpharm.2023.123057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/30/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Two main challenges are associated with current spray-dried microparticles for inhalation, including the enhancement of aerosolization performance of microparticles and the creation of sustained drug release for continuous treatment on-site. For achieving these purposes, pullulan was explored as a novel excipient to prepare spray-dried inhalable microparticles (with salbutamol sulphate, SS, as a model drug), which were further modified by additives of leucine (Leu), ammonium bicarbonate (AB), ethanol and acetone. It was demonstrated that all pullulan-based spray-dried microparticles had improved flowability and enhanced aerosolization behavior, with the fine particle (<4.46µm) fraction of 42.0-68.7% w/w, much higher than 11.4% w/w of lactose-SS. Moreover, all modified microparticles showed augmented emitted fractions of 88.0-96.9% w/w, over 86.5% w/w of pullulan-SS. The pullulan-Leu-SS and pullulan-(AB)-SS microparticles demonstrated further increased fine particle (<1.66µm) doses of 54.7µg and 53.3µg respectively, surpassing that (49.6µg) of pullulan-SS, suggesting an additionally increased drug deposition in the deep lungs. Furthermore, pullulan-based microparticles revealed sustained drug release profiles with elongated time (60mins) over the control (2mins). Clearly, pullulan has a great potential to construct dual functional microparticles for inhalation with improved pulmonary delivery efficiency and sustained drug release on-site.
Collapse
Affiliation(s)
- Hao-Ying Li
- Institute of Pharmaceutical Science, King's College London, London SE1 9NN.
| | - En-Yu Xu
- Department of Forensic Toxicological Analysis, School of Forensic Medicine, China Medical University, Shen-Yang, Liao-Ning, 110122, China
| |
Collapse
|
30
|
Farkas D, Thomas ML, Hassan A, Bonasera S, Hindle M, Longest W. Near Elimination of In Vitro Predicted Extrathoracic Aerosol Deposition in Children Using a Spray-Dried Antibiotic Formulation and Pediatric Air-Jet DPI. Pharm Res 2023; 40:1193-1207. [PMID: 35761163 PMCID: PMC10616820 DOI: 10.1007/s11095-022-03316-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE This study evaluated the in vitro aerosol performance of a dry powder antibiotic product that combined a highly dispersible tobramycin powder with a previously optimized pediatric air-jet dry powder inhaler (DPI) across a subject age range of 2-10 years. METHODS An excipient enhanced growth (EEG) formulation of the antibiotic tobramycin (Tobi) was prepared using a small particle spray drying technique that included mannitol as the hygroscopic excipient and trileucine as the dispersion enhancer. The Tobi-EEG formulation was aerosolized using a positive-pressure pediatric air-jet DPI that included a 3D rod array. Realistic in vitro experiments were conducted in representative airway models consistent with children in the age ranges of 2-3, 5-6 and 9-10 years using oral or nose-to-lung administration, non-humidified or humidified airway conditions, and constant or age-specific air volumes. RESULTS Across all conditions tested, mouth-throat depositional loss was < 1% and nose-throat depositional loss was < 3% of loaded dose. Lung delivery efficiency was in the range of 77.3-85.1% of loaded dose with minor variations based on subject age (~ 8% absolute difference), oral or nasal administration (< 2%), and delivered air volume (< 2%). Humidified airway conditions had an insignificant impact on extrathoracic depositional loss and significantly increased aerosol size at the exit of a representative lung chamber. CONCLUSIONS In conclusion, the inhaled antibiotic product nearly eliminated extrathoracic depositional loss, demonstrated high efficiency nose-to-lung antibiotic aerosol delivery in pediatric airway models for the first time, and provided ~ 80% lung delivery efficiency with little variability across subject age and administered air volume.
Collapse
Affiliation(s)
- Dale Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, Virginia, 23284-3015 , USA
| | - Morgan L Thomas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, Virginia, 23284-3015 , USA
| | - Amr Hassan
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Serena Bonasera
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, Virginia, 23284-3015 , USA.
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
31
|
Sarangi S, Simonsson A, Frenning G. Segregation in inhalable powders: Quantification of the effect of vibration on adhesive mixtures. Eur J Pharm Biopharm 2023; 187:107-119. [PMID: 37100091 DOI: 10.1016/j.ejpb.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023]
Abstract
The objective of this investigation was to study the effect of induced vibrations on adhesive mixtures containing budesonide and salbutamol sulphate as active pharmaceutical ingredients (APIs) and InhaLac 70 as carrier. A series of adhesive mixtures with varied API concentration (1-4%) was prepared for each API. Half of the adhesive mixture was stressed on a vibrating sieve under conditions resembling hopper flow. Based on scanning electron micrographs, it was concluded that InhaLac 70 contains particles of two distinct shapes, one irregular with groves and valleys and the other more regular with well defined edges. The dispersibility of the control and stressed mixtures was studied using a next generation impactor. The stressed mixtures containing 1 and 1.5% API displayed a significant reduction in fine particle dose (FPD) compared to the control. The reduction in FPD resulted from a loss of API from the adhesive mixture during vibration and as a consequence of restructuring and self agglomeration resulting in reduced dispersibility. However, no significant difference was observed for mixtures with larger weight fractions of API (2 and 4% API) but these have a drawback of reduced fine particle fraction (FPF). It is concluded that vibrations induced on the adhesive mixtures during handling potentially have a significant effect on the dispersibility of the API and the total amount of drug delivered to the lungs.
Collapse
Affiliation(s)
- Sohan Sarangi
- Department of Pharmaceutical Biosciences and Swedish Drug Delivery Centre, Uppsala University, Box 591, 751 24 Uppsala, Sweden
| | - Anna Simonsson
- Department of Pharmaceutical Biosciences and Swedish Drug Delivery Centre, Uppsala University, Box 591, 751 24 Uppsala, Sweden
| | - Göran Frenning
- Department of Pharmaceutical Biosciences and Swedish Drug Delivery Centre, Uppsala University, Box 591, 751 24 Uppsala, Sweden.
| |
Collapse
|
32
|
Carneiro SP, Greco A, Chiesa E, Genta I, Merkel OM. Shaping the future from the small scale: dry powder inhalation of CRISPR-Cas9 lipid nanoparticles for the treatment of lung diseases. Expert Opin Drug Deliv 2023; 20:471-487. [PMID: 36896650 PMCID: PMC7614984 DOI: 10.1080/17425247.2023.2185220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Most lung diseases are serious conditions resulting from genetic and environmental causes associated with high mortality and severe symptoms. Currently, treatments available have a palliative effect and many targets are still considered undruggable. Gene therapy stands as an attractive approach to offering innovative therapeutic solutions. CRISPRCas9 has established a remarkable potential for genome editing with high selectivity to targeted mutations. To ensure high efficacy with minimum systemic exposure, the delivery and administration route are key components that must be investigated. AREAS COVERED This review is focused on the delivery of CRISPRCas9 to the lungs, taking advantage of lipid nanoparticles (LNPs), the most clinically advanced nucleic acid carriers. We also aim to highlight the benefits of pulmonary administration as a local delivery route and the use of spray drying to prepare stable nucleic-acid-based dry powder formulations that can overcome multiple lung barriers. EXPERT OPINION Exploring the pulmonary administration to deliver CRISPRCas9 loaded in LNPs as a dry powder increases the chances to achieve high efficacy and reduced adverse effects. CRISPRCas9 loaded in LNP-embedded microparticles has not yet been reported in the literature but has the potential to reach and accumulate in target cells in the lung, thus, enhancing overall efficacy and safety.
Collapse
Affiliation(s)
- Simone P. Carneiro
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - Antonietta Greco
- University School for Advanced Studies (IUSS), Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Enrica Chiesa
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, Pavia, Italy
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, Pavia, Italy
| | - Olivia M. Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| |
Collapse
|
33
|
Gaikwad SS, Pathare SR, More MA, Waykhinde NA, Laddha UD, Salunkhe KS, Kshirsagar SJ, Patil SS, Ramteke KH. Dry Powder Inhaler with the technical and practical obstacles, and forthcoming platform strategies. J Control Release 2023; 355:292-311. [PMID: 36739908 DOI: 10.1016/j.jconrel.2023.01.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
A Dry Powder Inhaler (DPI) is a technique as well as a device used to inhale formulation which is in the form of dry powder, and is inhaled through the nose or mouth. It was developed for the purpose of treating conditions like chronic obstructive pulmonary disease (COPD), Asthma, and even cystic fibrosis etc. The aim of the review is to discuss the different methods of preparation of dry powders along with the characterization of DPI. Here we present the outline of different methods like supercritical fluid extraction (SCF), spray drying, and milling. The review focussed on various devices including single and multi-dose devices used in the DPI. It also highlights on recent advances in the DPI including nano particulate system, siRNA-based medication, liposomes, and pro-liposomes based delivery. In COVID-19 silver nanoparticles-based DPIs provide very prominent results in the infected lungs. Moreover, this review states that the AI-based DPI development provides and improvement in the bioavailability and effectiveness of the drug along with the role of artificial neural networks (ANN). The study also showed that nasally administered drugs (nose to brain) can easily cross the blood-brain barrier (BBB) and enter the central nervous system (CNS) through the olfactory and trigeminal pathway which provides effective CNS concentrations at lower dosage. It is suggested that DPIs not only target respiratory complications but also treat CNS complications too. This review provides support and guides the researcher in the recent development and evaluation of DPI.
Collapse
Affiliation(s)
- Sachin S Gaikwad
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India; Department of Pharmaceutics, MET's Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, Bhujbal Knowledge City, Adgaon, Nashik 422003, India.
| | - Snehal R Pathare
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Mayur A More
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Nikita A Waykhinde
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Umesh D Laddha
- Department of Pharmaceutics, MET's Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, Bhujbal Knowledge City, Adgaon, Nashik 422003, India
| | - Kishor S Salunkhe
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Sanjay J Kshirsagar
- Department of Pharmaceutics, MET's Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, Bhujbal Knowledge City, Adgaon, Nashik 422003, India
| | - Sakshi S Patil
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Kuldeep H Ramteke
- Department of Pharmaceutics, Shivajirao Pawar College of Pharmacy, Pachegaon, Newasa, Ahmednagar Pin: 413725, Affiliated to Dr. Babasaheb Ambedkar Technological University, Lonare, India
| |
Collapse
|
34
|
Vartiainen VA, Lavorini F, Murphy AC, Rabe KF. High inhaler resistance does not limit successful inspiratory maneuver among patients with asthma or COPD. Expert Opin Drug Deliv 2023; 20:385-393. [PMID: 36820500 DOI: 10.1080/17425247.2023.2179984] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
INTRODUCTION There has been an active discussion on the sustainability of inhaler therapy in respiratory diseases, and it has cast a shadow on pMDIs which rely on propellant with high global warming potential (GWP). DPIs offer a lower GWP and effective alternative, but there has been concern whether all patients can generate sufficient inspiratory effort to disperse the drug. This review focuses on airflow resistance of DPIs and its clinical relevance. AREAS COVERED For this narrative review, we searched the literature for studies comparing flow patterns with different devices. We also included a section on clinical trials comparing reliever administration with DPI, pMDI with spacer, and nebulizer during exacerbation. EXPERT OPINION The evidence supports the efficacy of DPIs irrespective of respiratory condition or age of the patient even during acute exacerbations. Air flow resistance does not limit the use of DPIs and the patients were able to generate sufficient inspiratory flow rate with almost any device studied. None of 16 identified clinical trials comparing reliever administration via DPIs to other types of devices during exacerbation or bronchial challenge showed statistically significant difference between the device types in FEV1 recovery. DPIs performed as well as other types of inhaler devices even during asthma or COPD exacerbation.
Collapse
Affiliation(s)
- Ville A Vartiainen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Finland, Finland.,Department of Pulmonary Medicine, Heart and Lung Center, Helsinki University Hospital, Finland
| | - Federico Lavorini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Anna C Murphy
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Klaus F Rabe
- LungenClinic Grosshansdorf and Department of Medicine, Christian Albrechts University Kiel, Germany
| |
Collapse
|
35
|
Yildiz Türkyilmaz G, Özdokur KV, Alparslan L, Karasulu E. Sodium hyaluronate dry powder inhalation in combination with sodium cromoglycate prepared using optimized spray drying conditions. Pharm Dev Technol 2023; 28:240-247. [PMID: 36730066 DOI: 10.1080/10837450.2023.2176517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sodium hyaluronate (SHA) is an anti-inflammatory and protective agent against bronchoconstriction, and sodium cromoglicate (SCG) prevents exercise-induced bronchoconstriction and inflammation. Based on the pharmacological properties of both substances, this study aimed to develop a dry powder inhaler (DPI) of SHA alone and in combination with SCG. The target of the study was to develop flowable formulations without any surfactants by using the spray drying method. To obtain respirable SHA and SCG:SHA particles, variables of the spray dryer, such as inlet temperature, atomized air flow, and feed solution, were changed. The particles 1-8 μm in size were produced with high yield by spray drying and increasing the ethanol percentage of the feed solution (60%), which is the most remarkable parameter. After that, physicochemical characterizations were performed. The aerosol performance of DPI formulations prepared using lactose was evaluated using Handihaler® DPI. The fine particle fraction (FPF) was 36% for the SHA formulation, whereas it was 52 and 53% for SCG and SHA, respectively, in the SCG:SHA formulation. Consequently, both particles were produced reproducibly by spray drying, and inhaled SHA and SCG:SHA dry powder formulations were developed due to their high FPF and flowability with lactose.
Collapse
Affiliation(s)
- Gülbeyaz Yildiz Türkyilmaz
- Center For Drug R&D and Pharmacokinetic Applications (ARGEFAR), Ege University, İzmir, Türkiye.,Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, Ege University, Izmir, Türkiye
| | - Kemal Volkan Özdokur
- Department of Chemistry, Faculty of Science and Letter, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Levent Alparslan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, Istanbul, Türkiye
| | - Ercüment Karasulu
- Center For Drug R&D and Pharmacokinetic Applications (ARGEFAR), Ege University, İzmir, Türkiye.,Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, Ege University, Izmir, Türkiye
| |
Collapse
|
36
|
Sun N, Zhang M, Zhu W, Song P, Dai T, Huang P, Han Z, Wang D. Allyl isothiocyanate dry powder inhaler based on cyclodextrin-metal organic frameworks for pulmonary delivery. iScience 2022; 26:105910. [PMID: 36686390 PMCID: PMC9852347 DOI: 10.1016/j.isci.2022.105910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
In this study, allyl isothiocyanate (AITC) was prepared as the dry powder inhalation by loading cyclodextrin metal-organic framework (CD-MOF) to enhance pulmonary delivery. β-CD-MOF and γ-CD-MOF both could be used to carry AITC with the optimal loading conditions (50˚C, n CD: n AITC = 1:7, 7 h). Compared with β-CD-MOF, γ-CD-MOF had more advantages in AITC loading due to its high drug loading and stable crystal morphology. The particle size and the mass median aerodynamic diameter of γ-CD-MOF-AITC were accorded with the aerodynamic characteristics of lung inhalation. γ-CD-MOF-AITC might be deposited effectively in the deep lung, and the release rate of AITC reached over 90% within 5 min. Meanwhile, it had good pulmonary local tolerance, permeability, and no significant toxicity. Such results indicated that γ-CD-MOF could be used as a dry powder inhaler carrier to deliver safely AITC to lung and increase its pulmonary absorption.
Collapse
Affiliation(s)
- Nianxia Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Applicaiton, Hefei, Anhui 230012, China,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China
| | - Min Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Wentao Zhu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Pingping Song
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Tingting Dai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Peng Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Zhili Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China
| | - Dianlei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Applicaiton, Hefei, Anhui 230012, China,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China,Corresponding author
| |
Collapse
|
37
|
Mohan AR, Wang Q, Dhapare S, Bielski E, Kaviratna A, Han L, Boc S, Newman B. Advancements in the Design and Development of Dry Powder Inhalers and Potential Implications for Generic Development. Pharmaceutics 2022; 14:pharmaceutics14112495. [PMID: 36432683 PMCID: PMC9695470 DOI: 10.3390/pharmaceutics14112495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Dry powder inhalers (DPIs) are drug-device combination products where the complexity of the formulation, its interaction with the device, and input from users play important roles in the drug delivery. As the landscape of DPI products advances with new powder formulations and novel device designs, understanding how these advancements impact performance can aid in developing generics that are therapeutically equivalent to the reference listed drug (RLD) products. This review details the current understanding of the formulation and device related principles driving DPI performance, past and present research efforts to characterize these performance factors, and the implications that advances in formulation and device design may present for evaluating bioequivalence (BE) for generic development.
Collapse
|
38
|
Newman B, Babiskin A, Bielski E, Boc S, Dhapare S, Fang L, Feibus K, Kaviratna A, Li BV, Luke MC, Ma T, Spagnola M, Walenga RL, Wang Z, Zhao L, El-Gendy N, Bertha CM, Abd El-Shafy M, Gaglani DK. Scientific and regulatory activities initiated by the U.S. Food and drug administration to foster approvals of generic dry powder inhalers: Bioequivalence perspective. Adv Drug Deliv Rev 2022; 190:114526. [PMID: 36067967 DOI: 10.1016/j.addr.2022.114526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023]
Abstract
Regulatory science for generic dry powder inhalers (DPIs) in the United States (U.S.) has evolved over the last decade. In 2013, the U.S. Food and Drug Administration (FDA) published the draft product-specific guidance (PSG) for fluticasone propionate and salmeterol xinafoate inhalation powder. This was the first PSG for a DPI available in the U.S., which provided details on a weight-of-evidence approach for establishing bioequivalence (BE). A variety of research activities including in vivo and in vitro studies were used to support these recommendations, which have led to the first approval of a generic DPI in the U.S. for fluticasone propionate and salmeterol xinafoate inhalation powder in January of 2019. This review describes the scientific and regulatory activities that have been initiated by FDA to support the current BE recommendations for DPIs that led to the first generic DPI approvals, as well as research with novel in vitro and in silico methods that may potentially facilitate generic DPI development and approval.
Collapse
Affiliation(s)
- Bryan Newman
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Andrew Babiskin
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Elizabeth Bielski
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Susan Boc
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sneha Dhapare
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lanyan Fang
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Katharine Feibus
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Anubhav Kaviratna
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Bing V Li
- Office of Bioequivalence, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Markham C Luke
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Tian Ma
- Division of Bioequivalence I, Office of Bioequivalence, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Michael Spagnola
- Division of Clinical Safety and Surveillance, Office of Safety and Clinical Evaluation, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ross L Walenga
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA.
| | - Zhong Wang
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Liang Zhao
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Nashwa El-Gendy
- Division of Immediate and Modified Release Drug Products III, Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Craig M Bertha
- Division of New Drug Products II, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Mohammed Abd El-Shafy
- Division of Immediate and Modified Release Drug Products III, Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Dhaval K Gaglani
- Division of Immediate and Modified Release Drug Products III, Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
39
|
Ramezani Kalmer R, Karimi A, Golizadeh M, Mohammadi Haddadan M, Azizi M, Ramezanalizadeh H, Ghanbari M. Effect of different molecular weights of polyethylene glycol as a plasticizer on the formulation of dry powder inhaler capsules: Investigation of puncturing size, morphologies, and surface properties. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
40
|
Jansen EM, Frijlink HW, Hinrichs WLJ, Ruigrok MJR. Are inhaled mRNA vaccines safe and effective? A review of preclinical studies. Expert Opin Drug Deliv 2022; 19:1471-1485. [DOI: 10.1080/17425247.2022.2131767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Evalyne M Jansen
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Wouter LJ Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Mitchel JR Ruigrok
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
41
|
Al-Nemrawi NK, Darweesh RS, Al-shriem LA, Al-Qawasmi FS, Emran SO, Khafajah AS, Abu-Dalo MA. Polymeric Nanoparticles for Inhaled Vaccines. Polymers (Basel) 2022; 14:4450. [PMID: 36298030 PMCID: PMC9607145 DOI: 10.3390/polym14204450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022] Open
Abstract
Many recent studies focus on the pulmonary delivery of vaccines as it is needle-free, safe, and effective. Inhaled vaccines enhance systemic and mucosal immunization but still faces many limitations that can be resolved using polymeric nanoparticles (PNPs). This review focuses on the use of properties of PNPs, specifically chitosan and PLGA to be used in the delivery of vaccines by inhalation. It also aims to highlight that PNPs have adjuvant properties by themselves that induce cellular and humeral immunogenicity. Further, different factors influence the behavior of PNP in vivo such as size, morphology, and charge are discussed. Finally, some of the primary challenges facing PNPs are reviewed including formulation instability, reproducibility, device-related factors, patient-related factors, and industrial-level scale-up. Herein, the most important variables of PNPs that shall be defined in any PNPs to be used for pulmonary delivery are defined. Further, this study focuses on the most popular polymers used for this purpose.
Collapse
Affiliation(s)
- Nusaiba K. Al-Nemrawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Ruba S. Darweesh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Lubna A. Al-shriem
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Farah S. Al-Qawasmi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Sereen O. Emran
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Areej S. Khafajah
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Muna A. Abu-Dalo
- Department of Chemistry, Faculty of Science and Art, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
42
|
Hebbink GA, Jaspers M, Peters HJW, Dickhoff BHJ. Recent developments in lactose blend formulations for carrier-based dry powder inhalation. Adv Drug Deliv Rev 2022; 189:114527. [PMID: 36070848 DOI: 10.1016/j.addr.2022.114527] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023]
Abstract
Lactose is the most commonly used excipient in carrier-based dry powder inhalation (DPI) formulations. Numerous inhalation therapies have been developed using lactose as a carrier material. Several theories have described the role of carriers in DPI formulations. Although these theories are valuable, each DPI formulation is unique and are not described by any single theory. For each new formulation, a specific development trajectory is required, and the versatility of lactose can be exploited to optimize each formulation. In this review, recent developments in lactose-based DPI formulations are discussed. The effects of varying the material properties of lactose carrier particles, such as particle size, shape, and morphology are reviewed. Owing to the complex interactions between the particles in a formulation, processing adhesive mixtures of lactose with the active ingredient is crucial. Therefore, blending and filling processes for DPI formulations are also reviewed. While the role of ternary agents, such as magnesium stearate, has increased, lactose remains the excipient of choice in carrier-based DPI formulations. Therefore, new developments in lactose-based DPI formulations are crucial in the optimization of inhalable medicine performance.
Collapse
|
43
|
Ruzycki CA, Tavernini S, Martin AR, Finlay WH. Characterization of dry powder inhaler performance through experimental methods. Adv Drug Deliv Rev 2022; 189:114518. [PMID: 36058349 DOI: 10.1016/j.addr.2022.114518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 01/24/2023]
Abstract
Experimental methods provide means for the quality control of existing DPIs and for exploring the influence of formulation and device parameters well in advance of clinical trials for novel devices and formulations. In this review, we examine the state of the art of in vitro testing of DPIs, with a focus primarily on the development of accurate in vitro-in vivo correlations. Aspects of compendial testing are discussed, followed by the influence of flow profiles on DPI performance, the characterization of extrathoracic deposition using mouth-throat geometries, and the characterization of regional thoracic deposition. Additional experimental methods that can inform the timing of bolus delivery, the influence of environmental conditions, and the development of electrostatic charge on aerosolized DPI powders are reviewed. We conclude with perspectives on current in vitro methods and identify potential areas for future investigation, including the estimation of variability in deposition, better characterization of existing compendial methods, optimization of formulation and device design to bypass extrathoracic deposition, and the use of novel tracheobronchial filters that aim to provide more clinically relevant measures of performance directly from in vitro testing.
Collapse
Affiliation(s)
- Conor A Ruzycki
- Lovelace Biomedical, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108, USA.
| | - Scott Tavernini
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Andrew R Martin
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Warren H Finlay
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
44
|
Sahin G, Akbal-Dagistan O, Culha M, Erturk A, Basarir NS, Sancar S, Yildiz-Pekoz A. Antivirals and the Potential Benefits of Orally Inhaled Drug Administration in COVID-19 Treatment. J Pharm Sci 2022; 111:2652-2661. [PMID: 35691607 PMCID: PMC9181835 DOI: 10.1016/j.xphs.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/05/2022] [Accepted: 06/05/2022] [Indexed: 12/25/2022]
Abstract
Coronavirus Disease 2019 (COVID-19) pandemic has been on the agenda of humanity for more than 2 years. In the meantime, the pandemic has caused economic shutdowns, halt of daily lives and global mobility, overcrowding of the healthcare systems, panic, and worse, more than 6 million deaths. Today, there is still no specific therapy for COVID-19. Research focuses on repurposing of antiviral drugs that are licensed or currently in the research phase, with a known systemic safety profile. However, local safety profile should also be evaluated depending on the new indication, administration route and dosage form. Additionally, various vaccines have been developed. But the causative virus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has undergone multiple variations, too. The premise that vaccines may suffice to eradicate new and all variants is unreliable, as they are based on earlier versions of the virus. Therefore, a specific medication therapy for COVID-19 is crucial and needed in order to prevent severe complications of the disease. Even though there is no specific drug that inhibits the replication of the disease-causing virus, among the current treatment options, systemic antivirals are the most medically appropriate. As SARS-CoV-2 directly targets the lungs and initiates lung damage, treating COVID-19 with inhalants can offer many advantages over the enteral/parenteral administration. Inhaled drug delivery provides higher drug concentration, specifically in the pulmonary system. This enables the reduction of systemic side effects and produces a rapid clinical response. In this article, the most frequently (systemically) used antiviral compounds are reviewed including Remdesivir, Favipiravir, Molnupiravir, Lopinavir-Ritonavir, Umifenovir, Chloroquine, Hydroxychloroquine and Heparin. A comprehensive literature search was conducted to provide insight into the potential inhaled use of these antiviral drugs and the current studies on inhalation therapy for COVID-19 was presented. A brief evaluation was also made on the use of inhaler devices in the treatment of COVID-19. Inhaled antivirals paired with suitable inhaler devices should be considered for COVID-19 treatment options.
Collapse
Affiliation(s)
- Gokben Sahin
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Turkey; Trakya University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Turkey
| | - Ozlem Akbal-Dagistan
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Turkey
| | - Meltem Culha
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Turkey
| | - Aybige Erturk
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Turkey; Istinye University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Turkey
| | - Nur Sena Basarir
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Turkey
| | - Serap Sancar
- Istanbul University, Faculty of Science, Department of Molecular Biology, Turkey
| | - Ayca Yildiz-Pekoz
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Turkey.
| |
Collapse
|
45
|
Modelling Deaggregation Due to Normal Carrier–Wall Collision in Dry Powder Inhalers. Processes (Basel) 2022. [DOI: 10.3390/pr10081661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Powder deaggregation in Dry Powder Inhalers (DPI) with carrier-based formulations is a key process for the effectiveness of drug administration. Carrier-wall collisions are one of the recognised mechanisms responsible for active pharmaceutical ingredient (API) aerosolisation, and DPI geometries are designed to maximise their efficacy. The detachment of fine and cohesive API particles is investigated at a fundamental level by simulating with DEM the normal collision of a carrier sphere with an API particle attached. The impact velocity at which detachment occurs (escape velocity) is determined as a function of key parameters, such as cohesiveness, coefficient of restitution, static and rolling friction. An analytical model for the escape velocity is then derived, examining the role of the initial position of the particle, cohesion model and particle size. Finally, the results are framed in the context of DPI inhalers, comparing the results obtained with impact velocities typically recorded in commercial devices.
Collapse
|
46
|
de Boer AH, Hagedoorn P, Grasmeijer F. Dry powder inhalation, part 2: the present and future. Expert Opin Drug Deliv 2022; 19:1045-1059. [PMID: 35984322 DOI: 10.1080/17425247.2022.2112570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The manufacture of modern dry powder inhalers (DPIs), starting with the Spinhaler (Fisons) in 1967, was only possible thanks to a series of technological developments in the 20th century, of which many started first around 1950. Not until then, it became possible to design and develop effective, cheap and mass-produced DPIs. The link between these technological developments and DPI development has never been presented and discussed before in reviews about the past and present of DPI technology. AREAS COVERED The diversity of currently used DPIs with single dose, multiple-unit dose and multi-dose DPIs is discussed, including the benefits and drawbacks of this diversity for correct use and the efficacy of the therapy. No specific databases or search engines otherwise than PubMed and Google have been used. EXPERT OPINION Considering the relatively poor efficacy regarding lung deposition of currently used DPIs, the high rates of incorrect inhaler use and inhalation errors and the poor adherence to the therapy with inhalers, much effort must be put in improving these shortcomings for future DPI designs. Delivered fine particle doses must be increased, correct inhaler handling must become more intuitive and simpler to perform, and the use of multiple inhalers must be avoided.
Collapse
Affiliation(s)
- Anne Haaije de Boer
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Paul Hagedoorn
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Floris Grasmeijer
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands.,PureIMS B.V, Roden, The Netherlands
| |
Collapse
|
47
|
de Boer AH, Hagedoorn P, Grasmeijer F. Dry powder inhalation, part 1: ancient history and precursors to modern dry powder inhalers. Expert Opin Drug Deliv 2022; 19:1033-1044. [PMID: 35982634 DOI: 10.1080/17425247.2022.2112568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Inhalation of herbs and other compounds has a long history but habits for medical treatment are intertwined with rituals to obtain hallucinatory effects and pleasurable sensations. Several examples of inhaled herbs, and the diseases they were used for, based on early translations of ancient manuscripts related to inhalation were found to be speculative and inconsistent with each other in literature. They needed to be reconsidered and verified with the original sources of information. AREAS COVERED Examples of ancient inhalation and the development of early dry powder inhalers up to and including the first half of the twentieth century. Databases used for literature about historic events, ancient habits, and ancient science, included SmartCat, JSTOR, and ANDAT; various facts were verified via personal communication with historians and custodians of historic manuscripts and artifacts. EXPERT OPINION Inhalation does not necessarily require active creation of inhalable aerosols, smokes or fumes. Inhaling 'healthy air' with volatile and gaseous components, or fine aerosols in pine forests, on volcano slopes and at the seaside must be considered as inhalation therapy too. From this viewpoint, inhalation therapy may have been much more common and widespread and have a longer history than is currently known from written evidence.
Collapse
Affiliation(s)
- Anne Haaije de Boer
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Paul Hagedoorn
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Floris Grasmeijer
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands.,PureIMS B.V, Roden, The Netherlands
| |
Collapse
|
48
|
Chen Y, Yan S, Zhang S, Yin Q, Chen XD, Wu WD. Micro-fluidic Spray Freeze Dried Ciprofloxacin Hydrochloride-Embedded Dry Powder for Inhalation. AAPS PharmSciTech 2022; 23:211. [PMID: 35915199 DOI: 10.1208/s12249-022-02371-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Active pharmaceutical ingredient (API)-embedded dry powder for inhalation (AeDPI) is highly desirable for pulmonary delivery of high-dose drug. Herein, a series of spray freeze-dried (SFD) ciprofloxacin hydrochloride (CH)-embedded dry powders were fabricated via a self-designed micro-fluidic spray freeze tower (MFSFT) capable of tuning freezing temperature of cooling air as the refrigerant medium. The effects of total solid content (TSC), mass ratio of CH to L-leucine (Leu) as the aerosol dispersion enhancer, and the freezing temperature on particle morphology, size, density, moisture content, crystal properties, flowability, and aerodynamic performance were investigated. It was found that the Leu content and freezing temperature had considerable influence on the fine particle fraction (FPF) of the SFD microparticles. The optimal formulation (CH/Leu = 7:3, TSC = 2%w/w) prepared at - 40°C exhibited remarkable effective drug deposition (~ 33.38%), good aerodynamic performance (~ 47.69% FPF), and excellent storage stability with ultralow hygroscopicity (~ 1.93%). This work demonstrated the promising feasibility of using the MFSFT instead of conventional liquid nitrogen assisted method in the research and development of high-dose AeDPI.
Collapse
Affiliation(s)
- Yingjie Chen
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, People's Republic of China
| | - Shen Yan
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, People's Republic of China
| | - Shengyu Zhang
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, People's Republic of China
| | - Quanyi Yin
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, People's Republic of China.
| | - Xiao Dong Chen
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, People's Republic of China
| | - Winston Duo Wu
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, People's Republic of China.
| |
Collapse
|
49
|
Capecelatro J, Longest W, Boerman C, Sulaiman M, Sundaresan S. Recent developments in the computational simulation of dry powder inhalers. Adv Drug Deliv Rev 2022; 188:114461. [PMID: 35868587 DOI: 10.1016/j.addr.2022.114461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
This article reviews recent developments in computational modeling of dry powder inhalers (DPIs). DPIs deliver drug formulations (sometimes blended with larger carrier particles) to a patient's lungs via inhalation. Inhaler design is complicated by the need for maximum aerosolization efficiency, which is favored by high levels of turbulence near the mouthpiece, with low extrathoracic depositional loss, which requires low turbulence levels near the mouth-throat region. In this article, we review the physical processes contributing to aerosolization and subsequent dispersion and deposition. We assess the performance characteristics of DPIs using existing simulation techniques and offer a perspective on how such simulations can be improved to capture the physical processes occurring over a wide range of length- and timescales more efficiently.
Collapse
Affiliation(s)
- Jesse Capecelatro
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Connor Boerman
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mostafa Sulaiman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Sankaran Sundaresan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
50
|
Nainwal N, Sharma Y, Jakhmola V. Dry powder inhalers of antitubercular drugs. Tuberculosis (Edinb) 2022; 135:102228. [PMID: 35779497 DOI: 10.1016/j.tube.2022.102228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/10/2022] [Accepted: 06/19/2022] [Indexed: 12/15/2022]
Abstract
Despite advancements in the medical and pharmaceutical fields, tuberculosis remains a major health problem globally. Patients do not widely accept the conventional approach to treating tuberculosis (TB) due to prolonged treatment periods with multiple high doses of drugs and associated side effects. A pulmonary route is a non-invasive approach to delivering drugs, hormones, nucleic acid, steroids, proteins, and peptides directly to the lungs, improving the efficacy of the treatment and consequently decreasing the adverse effect of the treatment. This route has been successfully developed for the treatment of various respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), tuberculosis (TB), lung cancer, and other pulmonary infections. The major approaches of inhalation delivery systems include nebulizers, metered-dose inhalers (MDIs), and dry powder inhalers (DPIs). However, dry powder inhalers (DPIs) are more advantageous due to their stability and ability to deliver a high dose of the drug to the lungs. The present review analyzes the modern therapeutic approach of inhaled dry powders, with a special focus on novel drug delivery system (NDDS) based DPIs for the treatment of TB. The article also discussed the challenges of preparing inhalable dry powder formulations for the treatment of TB. The clinical development of inhalable anti-TB drugs is also reviewed.
Collapse
Affiliation(s)
- Nidhi Nainwal
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248161, India.
| | - Yuwanshi Sharma
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248161, India.
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|