1
|
Nagaraja Shastri P, Shah N, Lechmann M, Mody H, Retter MW, Zhu M, Li T, Wang J, Shaik N, Zheng X, Ovacik M, Hua F, Jawa V, Boetsch C, Cao Y, Burke J, Datta K, Gadkar K, Upreti V, Betts A. Industry Perspective on First-in-Human and Clinical Pharmacology Strategies to Support Clinical Development of T-Cell Engaging Bispecific Antibodies for Cancer Therapy. Clin Pharmacol Ther 2025; 117:34-55. [PMID: 39295563 DOI: 10.1002/cpt.3439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/25/2024] [Indexed: 09/21/2024]
Abstract
T-cell-engaging bispecific antibodies (TCEs) that target tumor antigens and T cells have shown great promise in treating cancer, particularly in hematological indications. The clinical development of TCEs often involves a lengthy first-in-human (FIH) trial with many dose-escalation cohorts leading up to an early proof of concept (POC), enabling either a no-go decision or dose selection for further clinical development. Multiple factors related to the target, product, disease, and patient population influence the efficacy and safety of TCEs. The intricate mechanism of action limits the translatability of preclinical models to the clinic, thereby posing challenges to streamline clinical development. In addition, unlike traditional chemotherapy, the top dose and recommended phase II doses (RP2Ds) for TCEs in the clinic are often not guided by the maximum tolerated dose (MTD), but rather based on the integrated dose-response assessment of the benefit/risk profile. These uncertainties pose complex challenges for translational and clinical pharmacologists (PK/PD scientists), as well as clinicians, to design an efficient clinical study that guides development. To that end, experts in the field, under the umbrella of the American Association of Pharmaceutical Scientists, have reviewed learnings from published literature and currently marketed products to share perspectives on the FIH and clinical pharmacology strategies to support early clinical development of TCEs.
Collapse
Affiliation(s)
- Prathap Nagaraja Shastri
- Clinical Pharmacology and Pharmacometrics, Johnson and Johnson Innovative Medicine, Spring House, Pennsylvania, USA
| | - Nirav Shah
- Clinical Pharmacology and Pharmacometrics, Johnson and Johnson Innovative Medicine, Spring House, Pennsylvania, USA
| | - Martin Lechmann
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Penzberg, Germany
| | - Hardik Mody
- Clinical Pharmacology, Genentech, South San Francisco, California, USA
| | - Marc W Retter
- Preclinical PK/PD, Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Min Zhu
- Clinical Pharmacology, Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Tommy Li
- Clinical Pharmacology, Genmab, Plainsboro, New Jersey, USA
| | - Jun Wang
- Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| | - Naveed Shaik
- Clinical Pharmacology, Pfizer Oncology Development, San Diego, California, USA
| | - Xirong Zheng
- Clinical Pharmacology, Pharmacometrics and Bioanalysis, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Meric Ovacik
- Preclinical PK/PD, Genentech, South San Francisco, California, USA
| | - Fei Hua
- Certara Predictive Technology, Certara, Concord, Massachusetts, USA
| | - Vibha Jawa
- Clinical Pharmacology, Pharmacometrics and Bioanalysis, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Christophe Boetsch
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John Burke
- Certara Predictive Technology, Certara, Concord, Massachusetts, USA
| | - Kaushik Datta
- Nonclinical Safety, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Kapil Gadkar
- Preclinical PK/PD, Genentech, South San Francisco, California, USA
| | - Vijay Upreti
- Clinical Pharmacology, Modeling & Simulation, Amgen, South San Francisco, California, USA
| | - Alison Betts
- Preclinical & Translational Sciences, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Li S, Tao B, Wan J, Montecino-Rodriguez E, Wang P, Ma F, Sun B, Gu Y, Ramadoss S, Su L, Sun Q, Hoeve JT, Stiles L, Collins J, van Dam RM, Tamboline M, Taschereau R, Shirihai O, Kitchen DB, Pellegrini M, Graeber T, Dorshkind K, Xu S, Deb A. A humanized monoclonal antibody targeting an ectonucleotidase rescues cardiac metabolism and heart function after myocardial infarction. Cell Rep Med 2024; 5:101795. [PMID: 39454569 PMCID: PMC11604407 DOI: 10.1016/j.xcrm.2024.101795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Myocardial infarction (MI) results in aberrant cardiac metabolism, but no therapeutics have been designed to target cardiac metabolism to enhance heart repair. We engineer a humanized monoclonal antibody against the ectonucleotidase ENPP1 (hENPP1mAb) that targets metabolic crosstalk in the infarcted heart. In mice expressing human ENPP1, systemic administration of hENPP1mAb metabolically reprograms myocytes and non-myocytes and leads to a significant rescue of post-MI heart dysfunction. Using metabolomics, single-nuclear transcriptomics, and cellular respiration studies, we show that the administration of the hENPP1mAb induces organ-wide metabolic and transcriptional reprogramming of the heart that enhances myocyte cellular respiration and decreases cell death and fibrosis in the infarcted heart. Biodistribution and safety studies showed specific organ-wide distribution with the antibody being well tolerated. In humanized animals, with drug clearance kinetics similar to humans, we demonstrate that a single "shot" of the hENPP1mAb after MI is sufficient to rescue cardiac dysfunction.
Collapse
Affiliation(s)
- Shen Li
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bo Tao
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jijun Wan
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Enca Montecino-Rodriguez
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ping Wang
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Feiyang Ma
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Baiming Sun
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yiqian Gu
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sivakumar Ramadoss
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lianjiu Su
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Qihao Sun
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Johanna Ten Hoeve
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Metabolomics Center, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute of Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Linsey Stiles
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jeffrey Collins
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute of Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - R Michael van Dam
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute of Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mikayla Tamboline
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute of Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Richard Taschereau
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute of Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Orian Shirihai
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Matteo Pellegrini
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thomas Graeber
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Metabolomics Center, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute of Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kenneth Dorshkind
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Shili Xu
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Crump Institute of Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Sajadi MM, Abbasi A, Tehrani ZR, Siska C, Clark R, Chi W, Seaman MS, Mielke D, Wagh K, Liu Q, Jumpa T, Ketchem RR, Nguyen DN, Tolbert WD, Pierce BG, Atkinson B, Deming D, Sprague M, Asakawa A, Ferrer D, Dunn Y, Calvillo S, Yin R, Guest JD, Korber B, Mayer BT, Sato AH, Ouyang X, Foulke S, Habibzadeh P, Karimi M, Aslanabadi A, Hojabri M, Saadat S, Zareidoodeji R, Kędzior M, Pozharski E, Heredia A, Montefiori D, Ferrari G, Pazgier M, Lewis GK, Jardine JG, Lusso P, DeVico A. A comprehensive engineering strategy improves potency and manufacturability of a near pan-neutralizing antibody against HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618178. [PMID: 39464103 PMCID: PMC11507801 DOI: 10.1101/2024.10.14.618178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Anti-HIV envelope broadly neutralizing antibodies (bnAbs) are alternatives to conventional antiretrovirals with the potential to prevent and treat infection, reduce latent reservoirs, and/or mediate a functional cure. Clinical trials with "first generation" bnAbs used alone or in combination show promising antiviral effects but also highlight that additional engineering of "enhanced" antibodies will be required for optimal clinical utility, while preserving or enhancing cGMP manufacturing capability. Here we report the engineering of an anti-CD4 binding-site (CD4bs) bnAb, N49P9.3, purified from the plasma of an HIV elite-neutralizer. Through a series of rational modifications we produced a variant that demonstrates: enhanced potency; superior antiviral activity in combination with other bnAbs; low polyreactivity; and longer circulating half-life. Additional engineering for manufacturing produced a final variant, eN49P9, with properties conducive to cGMP production. Overall, these efforts demonstrate the feasibility of developing enhanced anti-CD4bs bnAbs with greatly improved antiviral properties as well as potential translational value.
Collapse
|
4
|
Patidar K, Pillai N, Dhakal S, Avery LB, Mavroudis PD. A minimal physiologically based pharmacokinetic model to study the combined effect of antibody size, charge, and binding affinity to FcRn/antigen on antibody pharmacokinetics. J Pharmacokinet Pharmacodyn 2024; 51:477-492. [PMID: 38400996 DOI: 10.1007/s10928-023-09899-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/26/2023] [Indexed: 02/26/2024]
Abstract
Protein therapeutics have revolutionized the treatment of a wide range of diseases. While they have distinct physicochemical characteristics that influence their absorption, distribution, metabolism, and excretion (ADME) properties, the relationship between the physicochemical properties and PK is still largely unknown. In this work we present a minimal physiologically-based pharmacokinetic (mPBPK) model that incorporates a multivariate quantitative relation between a therapeutic's physicochemical parameters and its corresponding ADME properties. The model's compound-specific input includes molecular weight, molecular size (Stoke's radius), molecular charge, binding affinity to FcRn, and specific antigen affinity. Through derived and fitted empirical relationships, the model demonstrates the effect of these compound-specific properties on antibody disposition in both plasma and peripheral tissues using observed PK data in mice and humans. The mPBPK model applies the two-pore hypothesis to predict size-based clearance and exposure of full-length antibodies (150 kDa) and antibody fragments (50-100 kDa) within a onefold error. We quantitatively relate antibody charge and PK parameters like uptake rate, non-specific binding affinity, and volume of distribution to capture the relatively faster clearance of positively charged mAb as compared to negatively charged mAb. The model predicts the terminal plasma clearance of slightly positively and negatively charged antibody in humans within a onefold error. The mPBPK model presented in this work can be used to predict the target-mediated disposition of a drug when compound-specific and target-specific properties are known. To our knowledge, a combined effect of antibody weight, size, charge, FcRn, and antigen has not been incorporated and studied in a single mPBPK model previously. By conclusively incorporating and relating a multitude of protein's physicochemical properties to observed PK, our mPBPK model aims to contribute as a platform approach in the early stages of drug development where many of these properties can be optimized to improve a molecule's PK and ultimately its efficacy.
Collapse
Affiliation(s)
- Krutika Patidar
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Nikhil Pillai
- Global DMPK Modeling & Simulation, Sanofi, 350 Water St, Cambridge, MA, 02141, USA
| | - Saroj Dhakal
- Global DMPK Modeling & Simulation, Sanofi, 350 Water St, Cambridge, MA, 02141, USA
| | | | | |
Collapse
|
5
|
Rowland SP, Nixon E, Mohan K, Wang Q, Yates JWT. A systematic review of allometric scaling exponents for IgG mAbs. Xenobiotica 2024; 54:609-614. [PMID: 39067010 DOI: 10.1080/00498254.2024.2383925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Increasing complexity of mAbs in development creates challenges in predicting human pharmacokinetic (PK) parameters from preclinical data. The aim of this analysis was to identify optimal allometric scaling exponents.Data were extracted from literature to create a central database (currently the largest available published database) of two-compartment model parameters for mAbs (n = 59) in cynomolgus monkey (CM) and human.Global allometric exponents were calculated and drug-dependent factors were investigated as potential variables in determining the optimal scaling factor.The global exponents for scaling CM mAb PK data were 0.74 (CL), 0.80 (CL with Fc-modified mAbs excluded), 0.44 (CL with Fc-modified mAbs only), 0.71 (Q), 1.12 (V1), and 0.99 (V2). These values are in line with previously published literature values.
Collapse
Affiliation(s)
| | | | | | - Qianwen Wang
- CPMS Infectious Disease & Vaccine, GSK, London, UK
| | | |
Collapse
|
6
|
Khaimraj A, Baehr CA, Hicks D, Raleigh MD, Pravetoni M. Monoclonal Antibodies Engineered with Fc Region Mutations to Extend Protection against Fentanyl Toxicity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:663-668. [PMID: 39018496 PMCID: PMC11333160 DOI: 10.4049/jimmunol.2400170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Fentanyl and other synthetic opioids are the leading cause of drug-related deaths in the United States. mAbs that selectively target fentanyl and fentanyl analogues offer a promising strategy for treating both opioid-related overdoses and opioid use disorders. To increase the duration of efficacy of a candidate mAb against fentanyl, we selected three sets of mutations in the Fc region of an IgG1 anti-fentanyl mAb (HY6-F9DF215, HY6-F9DHS, HY6-F9YTE) to increase binding to the neonatal Fc receptor (FcRn). The mAb mutants were compared against unmodified (wild-type [WT], HY6-F9WT) anti-fentanyl mAb for fentanyl binding, thermal stability, and FcRn affinity in vitro, and for efficacy against fentanyl and mAb half-life in vivo in mice. Biolayer interferometry showed a >10-fold increase in the affinity for recombinant FcRn of the three mutant mAbs compared with HY6-F9WT. During an acute fentanyl challenge in mice, all FcRn-mutated mAbs provided equal protection against fentanyl-induced effects, and all mAbs reduced brain fentanyl levels compared with the saline group. Serum persistence of the mutant mAbs was tested in Tg276 transgenic mice expressing human FcRn. After administration of 40 mg/kg HY6-F9WT, HY6-F9DF215, HY6-F9DHS, and HY6-F9YTE, the mAbs showed half-lives of 6.3, 26.4, 14.7, and 6.9 d, respectively. These data suggest that modification of mAbs against fentanyl to bind to FcRn with higher affinity can increase their half-life relative to WT mAbs while maintaining efficacy against the toxic effects of fentanyl, further supporting their potential role as a therapeutic treatment option for opioid use disorder and overdose.
Collapse
Affiliation(s)
- Aaron Khaimraj
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Carly A. Baehr
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Dustin Hicks
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Michael D. Raleigh
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Marco Pravetoni
- Department of Psychiatry and Behavioral Sciences, University of Washington, University of Washington Center for Medication Development for Substance Use Disorders, Garvey Institute for Brain Solutions, Seattle, WA
| |
Collapse
|
7
|
Tajiri A, Matsumoto S, Maeda S, Soga T, Kagiyama K, Ikeda H, Fukasawa K, Miyata A, Kamimura H. Prediction of human serum concentration-time profiles of therapeutic monoclonal antibodies using common marmosets ( Callithrix jacchus): initial assessment with canakinumab, adalimumab, and bevacizumab. Xenobiotica 2024; 54:648-657. [PMID: 38977390 DOI: 10.1080/00498254.2024.2371921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
Cynomolgus monkeys and human FcRn transgenic mice are generally used for pharmacokinetic predictions of therapeutic monoclonal antibodies (mAbs). In the present study, the application of the common marmoset, a small nonhuman primate, as a potential animal model for prediction was evaluated for the first time.Canakinumab, adalimumab, and bevacizumab, which exhibited linear pharmacokinetics in humans, were selected as the model compounds. Marmoset pharmacokinetic data were reportedly available only for canakinumab, and those for adalimumab and bevacizumab were acquired in-house.Four pharmacokinetic parameters for a two-compartment model (i.e. clearance and volume of distribution in the central and peripheral compartments) in marmosets were extrapolated to the values in humans with allometric scaling using the average exponents of the three mAbs. As a result, the observed human serum concentration-time curves of the three mAbs following intravenous administration and those of canakinumab and adalimumab following subcutaneous injections (with an assumed absorption rate constant and bioavailability) were reasonably predicted.Although further prediction studies using a sufficient number of other mAbs are necessary to evaluate the versatility of this model, the findings indicate that marmosets can be an alternative to preceding animals for human pharmacokinetic predictions of therapeutic mAbs.
Collapse
Affiliation(s)
- Ayaka Tajiri
- Drug Discovery Department, R&D Division, Meiji Seika Pharma Co., Ltd, Tokyo, Japan
| | - Shogo Matsumoto
- Drug Discovery Department, R&D Division, Meiji Seika Pharma Co., Ltd, Tokyo, Japan
| | - Satoshi Maeda
- Yaotsu Breeding Center, CLEA Japan, Inc., Gifu, Japan
| | - Takuma Soga
- Yaotsu Breeding Center, CLEA Japan, Inc., Gifu, Japan
| | | | - Hiroshi Ikeda
- Tokyo Animal and Diet Department, CLEA Japan, Inc., Tokyo, Japan
| | | | - Atsunori Miyata
- Drug Discovery Department, R&D Division, Meiji Seika Pharma Co., Ltd, Tokyo, Japan
| | | |
Collapse
|
8
|
Bryniarski MA, Tuhin MTH, Acker TM, Wakefield DL, Sethaputra PG, Cook KD, Soto M, Ponce M, Primack R, Jagarapu A, LaGory EL, Conner KP. Cellular Neonatal Fc Receptor Recycling Efficiencies can Differentiate Target-Independent Clearance Mechanisms of Monoclonal Antibodies. J Pharm Sci 2024; 113:2879-2894. [PMID: 38906252 DOI: 10.1016/j.xphs.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
In vivo clearance mechanisms of therapeutic monoclonal antibodies (mAbs) encompass both target-mediated and target-independent processes. Two distinct determinants of overall mAb clearance largely separate of target-mediated influences are non-specific cellular endocytosis and subsequent pH-dependent mAb recycling mediated by the neonatal Fc receptor (FcRn), where inter-mAb variability in the efficiency of both processes is observed. Here, we implemented a functional cell-based FcRn recycling assay via Madin-Darby canine kidney type II cells stably co-transfected with human FcRn and its light chain β2-microglobulin. Next, a series of pH-dependent internalization studies using a model antibody demonstrated proper function of the human FcRn complex. We then applied our cellular assays to assess the contribution of both FcRn and non-specific interactions in the cellular turnover for a panel of 8 clinically relevant mAbs exhibiting variable human pharmacokinetic behavior. Our results demonstrate that the interplay of non-specific endocytosis rates, pH-dependent non-specific interactions, and engagement with FcRn all contribute to the overall recycling efficiency of therapeutic monoclonal antibodies. The predictive capacity of our assay approach was highlighted by successful identification of all mAbs within our panel possessing clearance in humans greater than 5 mL/day/kg. These results demonstrate that a combination of cell-based in vitro assays can properly resolve individual mechanisms underlying the overall in vivo recycling efficiency and non-target mediated clearance of therapeutic mAbs.
Collapse
Affiliation(s)
- Mark A Bryniarski
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA.
| | - Md Tariqul Haque Tuhin
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Timothy M Acker
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Devin L Wakefield
- Research Biomics, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Panijaya Gemy Sethaputra
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Kevin D Cook
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Marcus Soto
- Pharmacokinetics & Drug Metabolism, Amgen Research, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Manuel Ponce
- Pharmacokinetics & Drug Metabolism, Amgen Research, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Ronya Primack
- Pharmacokinetics & Drug Metabolism, Amgen Research, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Aditya Jagarapu
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Edward L LaGory
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Kip P Conner
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA.
| |
Collapse
|
9
|
Seckinger A, Buatois V, Moine V, Daubeuf B, Richard F, Chatel L, Viandier A, Bosson N, Rousset E, Masternak K, Salgado-Pires S, Batista C, Mougin C, Juan-Bégeot F, Poitevin Y, Hose D. Targeting CEACAM5-positive solid tumors using NILK-2401, a novel CEACAM5xCD47 κλ bispecific antibody. Front Immunol 2024; 15:1378813. [PMID: 38720892 PMCID: PMC11076849 DOI: 10.3389/fimmu.2024.1378813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Background Blocking the CD47 "don't eat me"-signal on tumor cells with monoclonal antibodies or fusion proteins has shown limited clinical activity in hematologic malignancies and solid tumors thus far. Main side effects are associated with non-tumor targeted binding to CD47 particularly on blood cells. Methods We present here the generation and preclinical development of NILK-2401, a CEACAM5×CD47 bispecific antibody (BsAb) composed of a common heavy chain and two different light chains, one kappa and one lambda, determining specificity (so-called κλ body format). Results NILK-2401 is a fully human BsAb binding the CEACAM5 N-terminal domain on tumor cells by its lambda light chain arm with an affinity of ≈4 nM and CD47 with its kappa chain arm with an intendedly low affinity of ≈500 nM to enabling tumor-specific blockade of the CD47-SIRPα interaction. For increased activity, NILK-2401 features a functional IgG1 Fc-part. NILK-2401 eliminates CEACAM5-positive tumor cell lines (3/3 colorectal, 2/2 gastric, 2/2 lung) with EC50 for antibody-dependent cellular phagocytosis and antibody-dependent cellular cytotoxicity ranging from 0.38 to 25.84 nM and 0.04 to 0.25 nM, respectively. NILK-2401 binds neither CD47-positive/CEACAM5-negative cell lines nor primary epithelial cells. No erythrophagocytosis or platelet activation is observed. Quantification of the pre-existing NILK-2401-reactive T-cell repertoire in the blood of 14 healthy donors with diverse HLA molecules shows a low immunogenic potential. In vivo, NILK-2401 significantly delayed tumor growth in a NOD-SCID colon cancer model and a syngeneic mouse model using human CD47/human SIRPα transgenic mice and prolonged survival. In cynomolgus monkeys, single doses of 0.5 and 20 mg/kg were well tolerated; PK linked to anti-CD47 and Fc-binding seemed to be more than dose-proportional for Cmax and AUC0-inf. Data were validated in human FcRn TG32 mice. Combination of a CEACAM5-targeting T-cell engager (NILK-2301) with NILK-2401 can either boost NILK-2301 activity (Emax) up to 2.5-fold or allows reaching equal NILK-2301 activity at >600-fold (LS174T) to >3,000-fold (MKN-45) lower doses. Conclusion NILK-2401 combines promising preclinical activity with limited potential side effects due to the tumor-targeted blockade of CD47 and low immunogenicity and is planned to enter clinical testing.
Collapse
Affiliation(s)
- Anja Seckinger
- LamKap Bio beta AG, Pfäffikon SZ, Switzerland
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Jette, Belgium
| | | | - Valéry Moine
- Light Chain Bioscience (LCB), Plan-les-Ouates, Switzerland
| | - Bruno Daubeuf
- Light Chain Bioscience (LCB), Plan-les-Ouates, Switzerland
| | | | | | | | - Nicolas Bosson
- Light Chain Bioscience (LCB), Plan-les-Ouates, Switzerland
| | | | | | | | | | | | | | - Yves Poitevin
- Light Chain Bioscience (LCB), Plan-les-Ouates, Switzerland
| | - Dirk Hose
- LamKap Bio beta AG, Pfäffikon SZ, Switzerland
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Jette, Belgium
| |
Collapse
|
10
|
Devanaboyina SC, Li P, LaGory EL, Poon-Andersen C, Cook KD, Soto M, Wang Z, Dang K, Uyeda C, Case RB, Thomas VA, Primack R, Ponce M, Di M, Ouyang B, Kaner J, Lam SK, Mostafavi M. Rapid depletion of "catch-and-release" anti-ASGR1 antibody in vivo. MAbs 2024; 16:2383013. [PMID: 39051531 PMCID: PMC11275528 DOI: 10.1080/19420862.2024.2383013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Targeting antigens with antibodies exhibiting pH/Ca2+-dependent binding against an antigen is an attractive strategy to mitigate target-mediated disposition and antigen buffering. Studies have reported improved serum exposure of antibodies exhibiting pH/Ca2+-binding against membrane-bound receptors. Asialoglycoprotein receptor 1 (ASGR1) is a membrane-bound receptor primarily localized in hepatocytes. With a high expression level of approximately one million receptors per cell, high turnover, and rapid recycling, targeting this receptor with a conventional antibody is a challenge. In this study, we identified an antibody exhibiting pH/Ca2+-dependent binding to ASGR1 and generated antibody variants with increased binding to neonatal crystallizable fragment receptor (FcRn). Serum exposures of the generated anti-ASGR1 antibodies were analyzed in transgenic mice expressing human FcRn. Contrary to published reports of increased serum exposure of pH/Ca2+-dependent antibodies, the pH/Ca2+-dependent anti-ASGR1 antibody had rapid serum clearance in comparison to a conventional anti-ASGR1 antibody. We conducted sub-cellular trafficking studies of the anti-ASGR1 antibodies along with receptor quantification analysis for mechanistic understanding of the rapid serum clearance of pH/Ca2+-dependent anti-ASGR1 antibody. The findings from our study provide valuable insights in identifying the antigens, especially membrane bound, that may benefit from targeting with pH/Ca2+-dependent antibodies to obtain increased serum exposure.
Collapse
Affiliation(s)
- Siva Charan Devanaboyina
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, South San Francisco, CA, USA
| | - Peng Li
- Department of Biologics, Amgen Research, Amgen Inc, South San Francisco, CA, USA
| | - Edward L. LaGory
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, South San Francisco, CA, USA
| | - Carrie Poon-Andersen
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, South San Francisco, CA, USA
| | - Kevin D. Cook
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, South San Francisco, CA, USA
| | - Marcus Soto
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Thousand Oaks, CA, USA
| | - Zhe Wang
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, South San Francisco, CA, USA
| | - Khue Dang
- Department of Biologics, Amgen Research, Amgen Inc, South San Francisco, CA, USA
| | - Craig Uyeda
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, South San Francisco, CA, USA
| | - Ryan B. Case
- Department of Lead Discovery and Characterization, Amgen Research, Amgen Inc, South San Francisco, CA, USA
| | - Veena A. Thomas
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, South San Francisco, CA, USA
| | - Ronya Primack
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Thousand Oaks, CA, USA
| | - Manuel Ponce
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Thousand Oaks, CA, USA
| | - Mei Di
- Department of Cardiometabolic disorders, Amgen Research, Amgen Inc, South San Francisco, CA, USA
| | - Brian Ouyang
- Department of Biologics, Amgen Research, Amgen Inc, South San Francisco, CA, USA
| | - Joelle Kaner
- Department of Biologics, Amgen Research, Amgen Inc, South San Francisco, CA, USA
| | - Sheung Kwan Lam
- Department of Biologics, Amgen Research, Amgen Inc, South San Francisco, CA, USA
| | - Mina Mostafavi
- Department of Biologics, Amgen Research, Amgen Inc, South San Francisco, CA, USA
| |
Collapse
|
11
|
Jain T, Prinz B, Marker A, Michel A, Reichel K, Czepczor V, Klieber S, Sun W, Kathuria S, Oezguer Bruederle S, Lange C, Wahl L, Starr C, Masiero A, Avery L. Assessment and incorporation of in vitro correlates to pharmacokinetic outcomes in antibody developability workflows. MAbs 2024; 16:2384104. [PMID: 39083118 PMCID: PMC11296533 DOI: 10.1080/19420862.2024.2384104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
In vitro assessments for the prediction of pharmacokinetic (PK) behavior of biotherapeutics can help identify corresponding liabilities significantly earlier in the discovery timeline. This can minimize the need for extensive early in vivo PK characterization, thereby reducing animal usage and optimizing resources. In this study, we recommend bolstering classical developability workflows with in vitro measures correlated with PK. In agreement with current literature, in vitro measures assessing nonspecific interactions, self-interaction, and FcRn interaction are demonstrated to have the highest correlations to clearance in hFcRn Tg32 mice. Crucially, the dataset used in this study has broad sequence diversity and a range of physicochemical properties, adding robustness to our recommendations. Finally, we demonstrate a computational approach that combines multiple in vitro measurements with a multivariate regression model to improve the correlation to PK compared to any individual assessment. Our work demonstrates that a judicious choice of high throughput in vitro measurements and computational predictions enables the prioritization of candidate molecules with desired PK properties.
Collapse
Affiliation(s)
- Tushar Jain
- Department of Computational Biology, Adimab LLC, Mountain View, CA, USA
| | - Bianka Prinz
- Department of Antibody Discovery, Adimab LLC, Lebanon, NH, USA
| | - Alexander Marker
- Department of Drug Metabolism and Pharmacokinetics, Sanofi, Frankfurt, Germany
| | - Alexander Michel
- Department of Drug Metabolism and Pharmacokinetics, Sanofi, Cambridge, MA, USA
| | - Katrin Reichel
- Department of Large Molecule Research, Sanofi, Frankfurt, Germany
| | - Valerie Czepczor
- Department of Drug Metabolism and Pharmacokinetics, Sanofi, Paris, France
| | - Sylvie Klieber
- Department of Drug Metabolism and Pharmacokinetics, Sanofi, Paris, France
| | - Wei Sun
- Department of Drug Metabolism and Pharmacokinetics, Sanofi, Cambridge, MA, USA
| | - Sagar Kathuria
- Department of Large Molecule Research, Sanofi, Cambridge, MA, USA
| | | | - Christian Lange
- Department of Large Molecule Research, Sanofi, Frankfurt, Germany
| | - Lena Wahl
- Department of Large Molecule Research, Sanofi, Frankfurt, Germany
| | | | | | - Lindsay Avery
- Department of Drug Metabolism and Pharmacokinetics, Sanofi, Cambridge, MA, USA
| |
Collapse
|
12
|
Vu TT, Kim K, Manna M, Thomas J, Remaily BC, Montgomery EJ, Costa T, Granchie L, Xie Z, Guo Y, Chen M, Castillo AMM, Kulp SK, Mo X, Nimmagadda S, Gregorevic P, Owen DH, Ganesan LP, Mace TA, Coss CC, Phelps MA. Decoupling FcRn and tumor contributions to elevated immune checkpoint inhibitor clearance in cancer cachexia. Pharmacol Res 2024; 199:107048. [PMID: 38145833 PMCID: PMC10798214 DOI: 10.1016/j.phrs.2023.107048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
High baseline clearance of immune checkpoint inhibitors (ICIs), independent of dose or systemic exposure, is associated with cachexia and poor outcomes in cancer patients. Mechanisms linking ICI clearance, cachexia and ICI therapy failure are unknown. Here, we evaluate in four murine models and across multiple antibodies whether altered baseline catabolic clearance of administered antibody requires a tumor and/or cachexia and whether medical reversal of cachexia phenotype can alleviate altered clearance. Key findings include mild cachexia phenotype and lack of elevated pembrolizumab clearance in the MC38 tumor-bearing model. We also observed severe cachexia and decreased, instead of increased, baseline pembrolizumab clearance in the tumor-free cisplatin-induced cachexia model. Liver Fcgrt expression correlated with altered baseline catabolic clearance, though elevated clearance was still observed with antibodies having no (human IgA) or reduced (human H310Q IgG1) FcRn binding. We conclude cachexia phenotype coincides with altered antibody clearance, though tumor presence is neither sufficient nor necessary for altered clearance in immunocompetent mice. Magnitude and direction of clearance alteration correlated with hepatic Fcgrt, suggesting changes in FcRn expression and/or recycling function may be partially responsible, though factors beyond FcRn also contribute to altered clearance in cachexia.
Collapse
Affiliation(s)
- Trang T Vu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Kyeongmin Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Millennium Manna
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Justin Thomas
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Bryan C Remaily
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Emma J Montgomery
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Travis Costa
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Lauren Granchie
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Zhiliang Xie
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Yizhen Guo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Min Chen
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Alyssa Marie M Castillo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Samuel K Kulp
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Xiaokui Mo
- Center for Biostatistics, Ohio State University, Columbus, OH, USA; Pelotonia Institute for Immuno-Oncology, OSUCCC - James, The Ohio State University, Columbus, OH , USA
| | - Sridhar Nimmagadda
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul Gregorevic
- Department of Anatomy & Physiology and Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Dwight H Owen
- Pelotonia Institute for Immuno-Oncology, OSUCCC - James, The Ohio State University, Columbus, OH , USA; The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Latha P Ganesan
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Thomas A Mace
- Pelotonia Institute for Immuno-Oncology, OSUCCC - James, The Ohio State University, Columbus, OH , USA; The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Christopher C Coss
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| | - Mitch A Phelps
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA; Pelotonia Institute for Immuno-Oncology, OSUCCC - James, The Ohio State University, Columbus, OH , USA; The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
13
|
Okura Y, Ikawa-Teranishi Y, Mizoroki A, Takahashi N, Tsushima T, Irie M, Harfuddin Z, Miura-Okuda M, Ito S, Nakamura G, Takesue H, Ozono Y, Nishihara M, Yamada K, Gan SW, Hayasaka A, Ishii S, Wakabayashi T, Muraoka M, Nagaya N, Hino H, Nemoto T, Kuramochi T, Torizawa T, Shimada H, Kitazawa T, Okazaki M, Nezu J, Sollid LM, Igawa T. Characterizations of a neutralizing antibody broadly reactive to multiple gluten peptide:HLA-DQ2.5 complexes in the context of celiac disease. Nat Commun 2023; 14:8502. [PMID: 38135691 PMCID: PMC10746718 DOI: 10.1038/s41467-023-44083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
In human celiac disease (CeD) HLA-DQ2.5 presents gluten peptides to antigen-specific CD4+ T cells, thereby instigating immune activation and enteropathy. Targeting HLA-DQ2.5 with neutralizing antibody for treating CeD may be plausible, yet using pan-HLA-DQ antibody risks affecting systemic immunity, while targeting selected gluten peptide:HLA-DQ2.5 complex (pHLA-DQ2.5) may be insufficient. Here we generate a TCR-like, neutralizing antibody (DONQ52) that broadly recognizes more than twenty-five distinct gluten pHLA-DQ2.5 through rabbit immunization with multi-epitope gluten pHLA-DQ2.5 and multidimensional optimization. Structural analyses show that the proline-rich and glutamine-rich motif of gluten epitopes critical for pathogenesis is flexibly recognized by multiple tyrosine residues present in the antibody paratope, implicating the mechanisms for the broad reactivity. In HLA-DQ2.5 transgenic mice, DONQ52 demonstrates favorable pharmacokinetics with high subcutaneous bioavailability, and blocks immunity to gluten while not affecting systemic immunity. Our results thus provide a rationale for clinical testing of DONQ52 in CeD.
Collapse
Affiliation(s)
- Yuu Okura
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, Japan
| | | | - Akihiko Mizoroki
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | | | | | - Machiko Irie
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | | | | | - Shunsuke Ito
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Genki Nakamura
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Hiroaki Takesue
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Yui Ozono
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | | | - Kenta Yamada
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Siok Wan Gan
- Chugai Pharmabody Research Pte. Ltd., Singapore, Singapore
| | - Akira Hayasaka
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Shinya Ishii
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | | | - Masaru Muraoka
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Nishiki Nagaya
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Hiroshi Hino
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Takayuki Nemoto
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Taichi Kuramochi
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Takuya Torizawa
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | | | | | - Makoto Okazaki
- Chugai Pharmabody Research Pte. Ltd., Singapore, Singapore
| | - Junichi Nezu
- R&D Portfolio Management Department, Chugai Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Ludvig M Sollid
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tomoyuki Igawa
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, Japan.
| |
Collapse
|
14
|
Seckinger A, Majocchi S, Moine V, Nouveau L, Ngoc H, Daubeuf B, Ravn U, Pleche N, Calloud S, Broyer L, Cons L, Lesnier A, Chatel L, Papaioannou A, Salgado-Pires S, Krämer S, Gockel I, Lordick F, Masternak K, Poitevin Y, Magistrelli G, Malinge P, Shang L, Kallendrusch S, Strein K, Hose D. Development and characterization of NILK-2301, a novel CEACAM5xCD3 κλ bispecific antibody for immunotherapy of CEACAM5-expressing cancers. J Hematol Oncol 2023; 16:117. [PMID: 38087365 PMCID: PMC10717981 DOI: 10.1186/s13045-023-01516-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND T-cell retargeting to eliminate CEACAM5-expressing cancer cells via CEACAM5xCD3 bispecific antibodies (BsAbs) showed limited clinical activity so far, mostly due to insufficient T-cell activation, dose-limiting toxicities, and formation of anti-drug antibodies (ADA). METHODS We present here the generation and preclinical development of NILK-2301, a BsAb composed of a common heavy chain and two different light chains, one kappa and one lambda, determining specificity (so-called κλ body format). RESULTS NILK-2301 binds CD3ɛ on T-cells with its lambda light chain arm with an affinity of ≈100 nM, and the CEACAM5 A2 domain on tumor cells by its kappa light chain arm with an affinity of ≈5 nM. FcγR-binding is abrogated by the "LALAPA" mutation (Leu234Ala, Leu235Ala, Pro329Ala). NILK-2301 induced T-cell activation, proliferation, cytokine release, and T-cell dependent cellular cytotoxicity of CEACAM5-positive tumor cell lines (5/5 colorectal, 2/2 gastric, 2/2 lung), e.g., SK-CO-1 (Emax = 89%), MKN-45 (Emax = 84%), and H2122 (Emax = 97%), with EC50 ranging from 0.02 to 0.14 nM. NILK-2301 binds neither to CEACAM5-negative or primary colon epithelial cells nor to other CEACAM family members. NILK-2301 alone or in combination with checkpoint inhibition showed activity in organotypic tumor tissue slices and colorectal cancer organoid models. In vivo, NILK-2301 at 10 mg/kg significantly delayed tumor progression in colon- and a pancreatic adenocarcinoma model. Single-dose pharmacokinetics (PK) and tolerability in cynomolgus monkeys at 0.5 or 10 mg/kg intravenously or 20 mg subcutaneously showed dose-proportional PK, bioavailability ≈100%, and a projected half-life in humans of 13.1 days. NILK-2301 was well-tolerated. Data were confirmed in human FcRn TG32 mice. CONCLUSIONS In summary, NILK-2301 combines promising preclinical activity and safety with lower probability of ADA-generation due to its format compared to other molecules and is scheduled to enter clinical testing at the end of 2023.
Collapse
Affiliation(s)
- Anja Seckinger
- LamKap Bio Alpha AG, Bahnhofstrasse 1, 8808, Pfäffikon, SZ, Switzerland
| | - Sara Majocchi
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Valéry Moine
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Lise Nouveau
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Hoang Ngoc
- Institute of Anatomy, Leipzig University, Liebigstrasse 13, 04103, Leipzig, Germany
| | - Bruno Daubeuf
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Ulla Ravn
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Nicolas Pleche
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Sebastien Calloud
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Lucile Broyer
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Laura Cons
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Adeline Lesnier
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Laurence Chatel
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Anne Papaioannou
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Susana Salgado-Pires
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Sebastian Krämer
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Ines Gockel
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Florian Lordick
- Department of Medicine II, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Liebigstrasse 22, 04103, Leipzig, Germany
| | - Krzysztof Masternak
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Yves Poitevin
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Giovanni Magistrelli
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Pauline Malinge
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Limin Shang
- Light Chain Bioscience - Novimmune SA, Chemin du Pré-Fleuri 15, 1228, Plan-les-Ouates, Switzerland
| | - Sonja Kallendrusch
- Institute of Anatomy, Leipzig University, Liebigstrasse 13, 04103, Leipzig, Germany
- Institute of Clinical Research and System Medicine, Health and Medical University Potsdam, Schiffbauergasse 14, 14467, Potsdam, Germany
| | - Klaus Strein
- LamKap Bio Alpha AG, Bahnhofstrasse 1, 8808, Pfäffikon, SZ, Switzerland
| | - Dirk Hose
- LamKap Bio Alpha AG, Bahnhofstrasse 1, 8808, Pfäffikon, SZ, Switzerland.
| |
Collapse
|
15
|
Ledo AM, Dimke T, Tschantz WR, Rowlands D, Growcott E. The role of airway mucus and diseased pulmonary epithelium on the absorption of inhaled antibodies. Int J Pharm 2023; 647:123519. [PMID: 37852310 DOI: 10.1016/j.ijpharm.2023.123519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Inhaled antibody therapy for the treatment of respiratory diseases is a promising strategy to maximize pulmonary exposure and reduce side effects associated with parenteral administration. However, the development of inhaled antibodies is often challenging due to a poor understanding of key mechanisms governing antibody absorption and clearance in healthy and diseased pulmonary epithelium. Here, we utilize well established Human Bronchial Epithelial Cell (HBEC) models grown at air-liquid interface to study the absorption process of antibodies and antibody fragments. With these cellular models, we recapitulate the morphology and function of healthy and diseased pulmonary epithelium, and incorporate the mucosal barrier to enable the investigation of both cellular permeability as well as mucodiffusion. We studied the saturation of antibody transport across the HBEC barriers and estimated the impact of disease-like epithelial barriers on antibody paracellular transport. Additionally, we identified a potential role of neonatal Fc receptor (FcRn)-independent and target-mediated transcytosis in the transport of Fragment antigen-binding (Fab) and F(ab)2 antibody fragments. Lastly, our models were able to pinpoint an impaired antibody diffusion across mucus gels. These mechanistic cellular models are promising in vitro tools to inform Physiologically-based Pharmacokinetic (PBPK) computational models for dose prediction toward de-risking the development of inhaled biologics.
Collapse
Affiliation(s)
- Adriana Martinez Ledo
- Disease Area X, Novartis Institutes for BioMedical Research, Cambridge, MA, 02139, United States
| | - Thomas Dimke
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - William R Tschantz
- NIBR Biologics Center, Novartis Institutes for BioMedical Research, Cambridge, MA, 02139, United States
| | - David Rowlands
- Disease Area X, Novartis Institutes for BioMedical Research, Cambridge, MA, 02139, United States
| | - Ellena Growcott
- Disease Area X, Novartis Institutes for BioMedical Research, Cambridge, MA, 02139, United States.
| |
Collapse
|
16
|
Yokoyama M, Suzuki E, Oitate M, Watanabe N. A Quantitative Prediction Method for the Human Pharmacokinetics of Fc-Fusion Proteins. Eur J Drug Metab Pharmacokinet 2023; 48:541-552. [PMID: 37530974 DOI: 10.1007/s13318-023-00845-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND AND OBJECTIVE Fc fusion is an effective strategy for extending the half-lives of therapeutic proteins. This study aimed to evaluate the applicability of a human pharmacokinetics prediction method for Fc-fusion proteins by extending on reported methods for monoclonal antibodies (mAbs). METHODS To predict human pharmacokinetic profiles following intravenous (IV) dosing, the pharmacokinetic data for 11 Fc-fusion proteins in monkeys were analysed by two approaches: a species-invariant time method with a range of allometric exponents in clearance (CL, 0.7-1.0) and a two-compartment model reported for mAbs. The pharmacokinetic profiles following subcutaneous (SC) dosing were predicted by simple dose normalisation from monkeys or using the geometric means of the absorption rate constant (Ka) and bioavailability (BA) for mAbs or Fc-fusion proteins in humans and compared. RESULTS In the case of IV administration, the area under the curve could be predicted for more than 85% of Fc-fusion proteins within a twofold difference from the observed value using the species-invariant time method (scaling exponent for CL, 0.95). For SC dosing, incorporating the geometric means of absorption parameters for both mAbs (BA 68.2%, Ka 0.287 day-1) and Fc-fusion proteins (BA 63.0%, Ka 0.209 day-1) in humans provided better accuracy than simple normalisation from monkeys. CONCLUSION We have successfully predicted the human pharmacokinetic profiles of Fc-fusion proteins for both IV and SC administration within twofold of the observed value from monkey pharmacokinetic data by extending on reported methods for mAbs. This method will facilitate drug discovery and development of Fc-fusion proteins.
Collapse
Affiliation(s)
- Miki Yokoyama
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan.
| | - Eiko Suzuki
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| | - Masataka Oitate
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| | - Nobuaki Watanabe
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| |
Collapse
|
17
|
Conner CM, van Fossan D, Read K, Cowley DO, Alvarez O, Xu SXR, Webb DR, Jarnagin K. A precisely humanized FCRN transgenic mouse for preclinical pharmacokinetics studies. Biochem Pharmacol 2023; 210:115470. [PMID: 36870576 DOI: 10.1016/j.bcp.2023.115470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
Monoclonal antibodies (mAbs) are one of the fastest-growing classes of drugs and have been approved to treat several diseases, including cancers and autoimmune disorders. Preclinical pharmacokinetics studies are performed to determine the therapeutically meaningful dosages and efficacy of candidate drugs. These studies are typically performed in non-human primates; however, using primates is costly and raises ethical considerations. As a result, rodent models that better mimic human-like pharmacokinetics have been generated and remain an area of active investigation. Pharmacokinetic characteristics of a candidate drug, such as half-life, are partly controlled by antibody binding to the human neonatal receptor hFCRN. Due to the abnormally high binding of human antibodies to mouse FCRN, traditional laboratory rodents do not accurately model the pharmacokinetics of human mAbs. In response, humanized rodents expressing hFCRN have been generated. However, these models generally use large inserts randomly integrated into the mouse genome. Here, we report the production and characterization of a CRISPR/Cas9-mediated hFCRN transgenic mouse termed SYNB-hFCRN. Using CRISPR/Cas9-assisted gene targeting, we prepared a strain with a simultaneous knockout of mFcrn and insertion of a hFCRN mini-gene under the control of the endogenous mouse promoter. These mice are healthy and express hFCRN in the appropriate tissues and immune cell subtypes. Pharmacokinetic evaluation of human IgG and adalimumab (Humira®) demonstrate hFCRN-mediated protection. These newly generated SYNB-hFCRN mice provide another valuable animal model for use in preclinical pharmacokinetics studies during early drug development.
Collapse
Affiliation(s)
| | - Don van Fossan
- Synbal, Inc. 1759 Yorktown Rd., San Mateo, CA 94402, USA
| | - Kristen Read
- Synbal, Inc. 1759 Yorktown Rd., San Mateo, CA 94402, USA
| | - Dale O Cowley
- TransViragen, Inc., PO Box 110301, Research Triangle Park, NC 27709, USA
| | - Oscar Alvarez
- Synbal, Inc. 1759 Yorktown Rd., San Mateo, CA 94402, USA
| | | | - David R Webb
- Synbal, Inc. 1759 Yorktown Rd., San Mateo, CA 94402, USA
| | - Kurt Jarnagin
- Synbal, Inc. 1759 Yorktown Rd., San Mateo, CA 94402, USA.
| |
Collapse
|
18
|
de Witte WEA, Avery LB, Mackness BC, Van Bogaert T, Park A, Sargentini-Maier ML. Mechanistic incorporation of FcRn binding in plasma and endosomes in a whole body PBPK model for large molecules. J Pharmacokinet Pharmacodyn 2023; 50:229-241. [PMID: 36877385 DOI: 10.1007/s10928-023-09849-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/15/2023] [Indexed: 03/07/2023]
Abstract
Monoclonal antibodies, endogenous IgG, and serum albumin bind to FcRn in the endosome for salvaging and recycling after pinocytotic uptake, which prolongs their half-life. This mechanism has been broadly recognized and is incorporated in currently available PBPK models. Newer types of large molecules have been designed and developed, which also bind to FcRn in the plasma space for various mechanistic reasons. To incorporate FcRn binding affinity in PBPK models, binding in the plasma space and subsequent internalisation into the endosome needs to be explicitly represented. This study investigates the large molecules model in PK-Sim® and its applicability to molecules with FcRn binding affinity in plasma. With this purpose, simulations of biologicals with and without plasma binding to FcRn were performed with the large molecule model in PK-Sim®. Subsequently, this model was extended to ensure a more mechanistic description of the internalisation of FcRn and the FcRn-drug complexes. Finally, the newly developed model was used in simulations to explore the sensitivity for FcRn binding in the plasma space, and it was fitted to an in vivo dataset of wild-type IgG and FcRn inhibitor plasma concentrations in Tg32 mice. The extended model demonstrated a strongly increased sensitivity of the terminal half-life towards the plasma FcRn binding affinity and could successfully fit the in vivo dataset in Tg32 mice with meaningful parameter estimates.
Collapse
|
19
|
Monoclonal antibodies in breast cancer: A critical appraisal. Crit Rev Oncol Hematol 2023; 183:103915. [PMID: 36702424 DOI: 10.1016/j.critrevonc.2023.103915] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/01/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
In breast cancer, mAbs can play multifunctional roles like targeting cancer cells, sometimes directly attacking them, helping in locating and delivering therapeutic drugs to targets, inhibiting cell growth and blocking immune system inhibitors, etc. Monoclonal antibodies are also one of the important successful treatment strategies especially against HER2 but they have not been explored much for other types of breast cancers especially in triple negative breast cancers. Monoclonal antibodies impact the feasibility of antigen specificity, bispecific and trispecific mAbs have opened new doors for more targeted specific efficacy. Monoclonal antibodies can be used diversly and with efficacy as compared to other methods of treatment thus maining it a suitable candidate for breast cancer treatment. However, mAbs treatment also causes various side effects such as fever, trembling, fatigue, headache and muscle pain, nausea/vomiting, difficulty in breathing, rashes and bleeding. Understanding the pros and cons of this strategy, we have explored in this review, the current and future potential capabilities of monoclonal antibodies with respect to diagnosis and treatment of breast cancer. DATA AVAILABILITY: Not applicable.
Collapse
|
20
|
Grandits M, Grünwald-Gruber C, Gastine S, Standing JF, Reljic R, Teh AYH, Ma JKC. Improving the efficacy of plant-made anti-HIV monoclonal antibodies for clinical use. FRONTIERS IN PLANT SCIENCE 2023; 14:1126470. [PMID: 36923134 PMCID: PMC10009187 DOI: 10.3389/fpls.2023.1126470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Introduction Broadly neutralising antibodies are promising candidates for preventing and treating Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS), as an alternative to or in combination with antiretroviral therapy (ART). These mAbs bind to sites on the virus essential for virus attachment and entry, thereby inhibiting entry into the host cell. However, the cost and availability of monoclonal antibodies, especially combinations of antibodies, hampers implementation of anti-HIV bNAb therapies in low- to middle- income countries (LMICs) where HIV-1 prevalence is highest. Methods We have produced three HIV broadly neutralizing antibodies (bNAbs), 10-1074, VRC01 and 3BNC117 in the Nicotiana benthamiana transient expression system. The impact of specific modifications to enhance potency and efficacy were assessed. To prolong half-life and increase bioavailability, a M252Y/S254T/T256E (YTE) or M428L/N434S (LS) mutation was introduced. To increase antibody dependent cellular cytotoxicity (ADCC), we expressed an afucosylated version of each antibody using a glycoengineered plant line. Results The majority of bNAbs and their variants could be expressed at yields of up to 47 mg/kg. Neither the expression system nor the modifications impacted the neutralization potential of the bNAbs. Afucosylated bNAbs exhibit enhanced ability to bind to FcγRIIIa and trigger ADCC, regardless of the presence of Fc amino acid mutations. Lastly, we demonstrated that Fc-modified variants expressed in plants show enhanced binding to FcRn, which results in a favourable in vivo pharmacokinetic profile compared to their unmodified counterparts. Conclusion Tobacco plants are suitable expression hosts for anti-HIV bNAbs with increased efficacy and an improved pharmacokinetic profile.
Collapse
Affiliation(s)
- Melanie Grandits
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Silke Gastine
- Infection, Immunity and Inflammation Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Joseph F. Standing
- Infection, Immunity and Inflammation Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Rajko Reljic
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| | - Audrey Y-H. Teh
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| | - Julian K-C. Ma
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| |
Collapse
|
21
|
Toshkova N, Zhelyazkova V, Justesen S, Dimitrov JD. Conservative pattern of interaction of bat and human IgG antibodies with FcRn. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104579. [PMID: 36272453 DOI: 10.1016/j.dci.2022.104579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Recently, numerous studies report bats as reservoirs of emerging pathogens with little to no signs of infections. This is thought to be connected to the unique immune system of bats, which remains poorly characterized. Despite the physiological importance of the Neonatal Fc receptor (FcRn) in the homeostasis of IgG antibodies, it is unclear how its functional activity is evolutionary conservative among mammals, and so is the case for bats. Using surface plasmon resonance-based technology, we tested the interactions of IgG antibodies isolated from three bat species with recombinant human and mouse FcRn. Our data show that IgG from the studied bat species binds to both human and mouse FcRn, albeit with distinct affinities. Importantly, the binding pattern of bat IgG is similar to human IgG. This confirms the conservative nature of IgG-FcRn interaction and highlights the importance of FcRn IgG salvaging system in bats.
Collapse
Affiliation(s)
- Nia Toshkova
- National Museum of Natural History, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000, Sofia, Bulgaria; Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000, Sofia, Bulgaria.
| | - Violeta Zhelyazkova
- National Museum of Natural History, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000, Sofia, Bulgaria; Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Sune Justesen
- Immunitrack Aps, Lersoe Park Alle 42, 2100, Copenhagen East, Denmark
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université de Paris, 75006, Paris, France.
| |
Collapse
|
22
|
Chow MYT, Pan HW, Seow HC, Lam JKW. Inhalable neutralizing antibodies - promising approach to combating respiratory viral infections. Trends Pharmacol Sci 2023; 44:85-97. [PMID: 36566131 DOI: 10.1016/j.tips.2022.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
Monoclonal antibodies represent an exciting class of therapeutics against respiratory viral infections. Notwithstanding their specificity and affinity, the conventional parenteral administration is suboptimal in delivering antibodies for neutralizing activity in the airways due to the poor distribution of macromolecules to the respiratory tract. Inhaled therapy is a promising approach to overcome this hurdle in a noninvasive manner, while advances in antibody engineering have led to the development of unique antibody formats which exhibit properties desirable for inhalation. In this Opinion, we examine the major challenges surrounding the development of inhaled antibodies, identify knowledge gaps that need to be addressed and provide strategies from a drug delivery perspective to enhance the efficacy and safety of neutralizing antibodies against respiratory viral infections.
Collapse
Affiliation(s)
- Michael Y T Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Harry W Pan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Han Cong Seow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China; School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
23
|
Maciuba S, Bowden GD, Stratton HJ, Wisniewski K, Schteingart CD, Almagro JC, Valadon P, Lowitz J, Glaser SM, Lee G, Dolatyari M, Navratilova E, Porreca F, Rivière PJ. Discovery and characterization of prolactin neutralizing monoclonal antibodies for the treatment of female-prevalent pain disorders. MAbs 2023; 15:2254676. [PMID: 37698877 PMCID: PMC10498814 DOI: 10.1080/19420862.2023.2254676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Prolactin (PRL) has recently been demonstrated to elicit female-selective nociceptor sensitization and increase pain-like behaviors in female animals. Here we report the discovery and characterization of first-in-class, humanized PRL neutralizing monoclonal antibodies (PRL mAbs). We obtained two potent and selective PRL mAbs, PL 200,031 and PL 200,039. PL 200,031 was engineered as human IgG1 whereas PL 200,039 was reformatted as human IgG4. Both mAbs have sub-nanomolar affinity for human PRL (hPRL) and produce concentration-dependent and complete inhibition of hPRL signaling at the hPRL receptor (hPRLR). These two PRL mAbs are selective for hPRL as they do not inhibit other hPRLR agonists such as human growth hormone or placental lactogen. They also cross-react with non-human primate PRL but not with rodent PRL. Further, both mAbs show long clearance half-lives after intravenous administration in FcRn-humanized mice. Consistent with their isotypes, these mAbs only differ in binding affinities to Fcγ receptors, as expected by design. Finally, PL 200,019, the murine parental mAb of PL 200,031 and PL 200,039, fully blocked stress-induced and PRL-dependent pain behaviors in female PRL-humanized mice, thereby providing in vivo preclinical proof-of-efficacy for PRL mAbs in mechanisms relevant to pain in females.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Grace Lee
- Department of Pharmacology, The University of Arizona, Tucson, AZ, USA
| | - Mahdi Dolatyari
- Department of Pharmacology, The University of Arizona, Tucson, AZ, USA
| | - Edita Navratilova
- Department of Pharmacology, The University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, The University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
24
|
Fernández-Quintero ML, Ljungars A, Waibl F, Greiff V, Andersen JT, Gjølberg TT, Jenkins TP, Voldborg BG, Grav LM, Kumar S, Georges G, Kettenberger H, Liedl KR, Tessier PM, McCafferty J, Laustsen AH. Assessing developability early in the discovery process for novel biologics. MAbs 2023; 15:2171248. [PMID: 36823021 PMCID: PMC9980699 DOI: 10.1080/19420862.2023.2171248] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/18/2023] [Indexed: 02/25/2023] Open
Abstract
Beyond potency, a good developability profile is a key attribute of a biological drug. Selecting and screening for such attributes early in the drug development process can save resources and avoid costly late-stage failures. Here, we review some of the most important developability properties that can be assessed early on for biologics. These include the influence of the source of the biologic, its biophysical and pharmacokinetic properties, and how well it can be expressed recombinantly. We furthermore present in silico, in vitro, and in vivo methods and techniques that can be exploited at different stages of the discovery process to identify molecules with liabilities and thereby facilitate the selection of the most optimal drug leads. Finally, we reflect on the most relevant developability parameters for injectable versus orally delivered biologics and provide an outlook toward what general trends are expected to rise in the development of biologics.
Collapse
Affiliation(s)
- Monica L. Fernández-Quintero
- Center for Molecular Biosciences Innsbruck (CMBI), Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Franz Waibl
- Center for Molecular Biosciences Innsbruck (CMBI), Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Jan Terje Andersen
- Department of Immunology, University of Oslo, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo, Oslo, Norway
| | | | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bjørn Gunnar Voldborg
- National Biologics Facility, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lise Marie Grav
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sandeep Kumar
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Guy Georges
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Hubert Kettenberger
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Klaus R. Liedl
- Center for Molecular Biosciences Innsbruck (CMBI), Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Peter M. Tessier
- Department of Chemical Engineering, Pharmaceutical Sciences and Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - John McCafferty
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Maxion Therapeutics, Babraham Research Campus, Cambridge, UK
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
25
|
Liu S, Humphreys SC, Cook KD, Conner KP, Correia AR, Jacobitz AW, Yang M, Primack R, Soto M, Padaki R, Lubomirski M, Smith R, Mock M, Thomas VA. Utility of physiologically based pharmacokinetic modeling to predict inter-antibody variability in monoclonal antibody pharmacokinetics in mice. MAbs 2023; 15:2263926. [PMID: 37824334 PMCID: PMC10572049 DOI: 10.1080/19420862.2023.2263926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/24/2023] [Indexed: 10/14/2023] Open
Abstract
In this investigation, we tested the hypothesis that a physiologically based pharmacokinetic (PBPK) model incorporating measured in vitro metrics of off-target binding can largely explain the inter-antibody variability in monoclonal antibody (mAb) pharmacokinetics (PK). A diverse panel of 83 mAbs was evaluated for PK in wild-type mice and subjected to 10 in vitro assays to measure major physiochemical attributes. After excluding for target-mediated elimination and immunogenicity, 56 of the remaining mAbs with an eight-fold variability in the area under the curve (A U C 0 - 672 h : 1.74 × 106 -1.38 × 107 ng∙h/mL) and 10-fold difference in clearance (2.55-26.4 mL/day/kg) formed the training set for this investigation. Using a PBPK framework, mAb-dependent coefficients F1 and F2 modulating pinocytosis rate and convective transport, respectively, were estimated for each mAb with mostly good precision (coefficient of variation (CV%) <30%). F1 was estimated to be the mean and standard deviation of 0.961 ± 0.593, and F2 was estimated to be 2.13 ± 2.62. Using principal component analysis to correlate the regressed values of F1/F2 versus the multidimensional dataset composed of our panel of in vitro assays, we found that heparin chromatography retention time emerged as the predictive covariate to the mAb-specific F1, whereas F2 variability cannot be well explained by these assays. A sigmoidal relationship between F1 and the identified covariate was incorporated within the PBPK framework. A sensitivity analysis suggested plasma concentrations to be most sensitive to F1 when F1 > 1. The predictive utility of the developed PBPK model was evaluated against a separate panel of 14 mAbs biased toward high clearance, among which area under the curve of PK data of 12 mAbs was predicted within 2.5-fold error, and the positive and negative predictive values for clearance prediction were 85% and 100%, respectively. MAb heparin chromatography assay output allowed a priori identification of mAb candidates with unfavorable PK.
Collapse
Affiliation(s)
- Shufang Liu
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | - Sara C. Humphreys
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | - Kevin D. Cook
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | - Kip P. Conner
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | | | | | - Melissa Yang
- Therapeutic Discovery, Amgen, Thousand Oaks, CA, USA
| | - Ronya Primack
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, Thousand Oaks, CA, USA
| | - Marcus Soto
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, Thousand Oaks, CA, USA
| | - Rupa Padaki
- Process Development, Amgen Inc, Thousand Oaks, CA, USA
| | | | - Richard Smith
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | - Marissa Mock
- Therapeutic Discovery, Amgen, Thousand Oaks, CA, USA
| | - Veena A. Thomas
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| |
Collapse
|
26
|
Silva Brito R, Canedo A, Farias D, Rocha TL. Transgenic zebrafish (Danio rerio) as an emerging model system in ecotoxicology and toxicology: Historical review, recent advances, and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157665. [PMID: 35907527 DOI: 10.1016/j.scitotenv.2022.157665] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/13/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Zebrafish (Danio rerio) is an alternative model system for drug screening, developing new products, and assessing ecotoxic effects of pollutants and biomonitor species in environmental risk assessment. However, the history and current use of transgenic zebrafish lines in ecotoxicology and toxicology studies remain poorly explored. Thus, the present study aimed to summarize and discuss the existing data in the literature about the applications of transgenic zebrafish lines in ecotoxicology and toxicology. The articles were analyzed according to publication year, journal, geographic distribution, and collaborations. Also, the bioassays were evaluated according to the tested chemical, transgenic lines, development stage, biomarkers, and exposure conditions (i.e., concentration, time, type, and route of exposure). Revised data showed that constitutive transgenic lines are the main type of transgenic used in the studies, besides most of uses embryos and larvae under static conditions. Tg(fli1: EGFP) was the main transgenic line, while the GFP and EGFP were the main reporter proteins. Transgenic zebrafish stands out in assessing vasotoxicity, neurotoxicity, systemic toxicity, hepatoxicity, endocrine disruption, cardiotoxicity, immunotoxicity, hematotoxicity, ototoxicity, and pancreotoxicity. This review showed that transgenic zebrafish lines are emerging as a suitable in vivo model system for assessing the mechanism of action and toxicity of chemicals and new biotechnology products, and the effects of traditional and emerging pollutants.
Collapse
Affiliation(s)
- Rafaella Silva Brito
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Aryelle Canedo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Davi Farias
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Center of Exact and Natural Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
27
|
Zhang B, Gollapudi D, Gorman J, O’Dell S, Damron LF, McKee K, Asokan M, Yang ES, Pegu A, Lin BC, Chao CW, Chen X, Gama L, Ivleva VB, Law WH, Liu C, Louder MK, Schmidt SD, Shen CH, Shi W, Stein JA, Seaman MS, McDermott AB, Carlton K, Mascola JR, Kwong PD, Lei QP, Doria-Rose NA. Engineering of HIV-1 neutralizing antibody CAP256V2LS for manufacturability and improved half life. Sci Rep 2022; 12:17876. [PMID: 36284200 PMCID: PMC9596707 DOI: 10.1038/s41598-022-22435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/14/2022] [Indexed: 01/20/2023] Open
Abstract
The broadly neutralizing antibody (bNAb) CAP256-VRC26.25 has exceptional potency against HIV-1 and has been considered for clinical use. During the characterization and production of this bNAb, we observed several unusual features. First, the antibody appeared to adhere to pipette tips, requiring tips to be changed during serial dilution to accurately measure potency. Second, during production scale-up, proteolytic cleavage was discovered to target an extended heavy chain loop, which was attributed to a protease in spent medium from 2-week culture. To enable large scale production, we altered the site of cleavage via a single amino acid change, K100mA. The resultant antibody retained potency and breadth while avoiding protease cleavage. We also added the half-life extending mutation LS, which improved the in vivo persistence in animal models, but did not impact neutralization activity; we observed the same preservation of neutralization for bNAbs VRC01, N6, and PGDM1400 with LS on a 208-virus panel. The final engineered antibody, CAP256V2LS, retained the extraordinary neutralization potency of the parental antibody, had a favorable pharmacokinetic profile in animal models, and was negative in in vitro assessment of autoreactivity. CAP256V2LS has the requisite potency, developability and suitability for scale-up, allowing its advancement as a clinical candidate.
Collapse
Affiliation(s)
- Baoshan Zhang
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Deepika Gollapudi
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Jason Gorman
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Sijy O’Dell
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Leland F. Damron
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Krisha McKee
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Mangaiarkarasi Asokan
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Eun Sung Yang
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Amarendra Pegu
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Bob C. Lin
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Cara W. Chao
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Xuejun Chen
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Lucio Gama
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Vera B. Ivleva
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - William H. Law
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Cuiping Liu
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Mark K. Louder
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Stephen D. Schmidt
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Chen-Hsiang Shen
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Wei Shi
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Judith A. Stein
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Michael S. Seaman
- grid.239395.70000 0000 9011 8547Beth Israel Deaconess Medical Center, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - Adrian B. McDermott
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Kevin Carlton
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - John R. Mascola
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Peter D. Kwong
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Q. Paula Lei
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Nicole A. Doria-Rose
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| |
Collapse
|
28
|
Narayanan E, Falcone S, Elbashir SM, Attarwala H, Hassett K, Seaman MS, Carfi A, Himansu S. Rational Design and In Vivo Characterization of mRNA-Encoded Broadly Neutralizing Antibody Combinations against HIV-1. Antibodies (Basel) 2022; 11:67. [PMID: 36412833 PMCID: PMC9680504 DOI: 10.3390/antib11040067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/30/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022] Open
Abstract
Monoclonal antibodies have been used successfully as recombinant protein therapy; however, for HIV, multiple broadly neutralizing antibodies may be necessary. We used the mRNA-LNP platform for in vivo co-expression of 3 broadly neutralizing antibodies, PGDM1400, PGT121, and N6, directed against the HIV-1 envelope protein. mRNA-encoded HIV-1 antibodies were engineered as single-chain Fc (scFv-Fc) to overcome heavy- and light-chain mismatch. In vitro neutralization breadth and potency of the constructs were compared to their parental IgG form. We assessed the ability of these scFv-Fcs to be expressed individually and in combination in vivo, and neutralization and pharmacokinetics were compared to the corresponding full-length IgGs. Single-chain PGDM1400 and PGT121 exhibited neutralization potency comparable to parental IgG, achieving peak systemic concentrations ≥ 30.81 μg/mL in mice; full-length N6 IgG achieved a peak concentration of 974 μg/mL, but did not tolerate single-chain conversion. The mRNA combination encoding full-length N6 IgG and single-chain PGDM1400 and PGT121 was efficiently expressed in mice, achieving high systemic concentration and desired neutralization potency. Analysis of mice sera demonstrated each antibody contributed towards neutralization of multiple HIV-1 pseudoviruses. Together, these data show that the mRNA-LNP platform provides a promising approach for antibody-based HIV treatment and is well-suited for development of combination therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | |
Collapse
|
29
|
Moise KJ, Oepkes D, Lopriore E, Bredius RGM. Targeting neonatal Fc receptor: potential clinical applications in pregnancy. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:167-175. [PMID: 35229965 DOI: 10.1002/uog.24891] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The neonatal Fc receptor (FcRn) plays an important role in the transfer of the immunoglobulin G isotype (IgG) from the mother to the fetus. FcRn expressed on endothelial cells also binds to IgG and albumin, regulating the circulating half-lives of these proteins. Alloimmune and autoimmune IgG antibodies have been implicated in various perinatal immune-mediated diseases. FcRn-mediated placental transfer of pathogenic antibodies can result in cell and tissue injury in the fetus and neonate, with devastating outcomes. Thus, blockade of FcRn may be an effective treatment strategy in managing these conditions and could additionally reduce the concentration of pathogenic antibodies in the maternal circulation by preventing IgG recycling. In this review, we discuss the biology of FcRn, the rationale and considerations for development of FcRn-blocking agents, and their potential clinical applications in various perinatal immune-mediated diseases. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- K J Moise
- Department of Women's Health, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - D Oepkes
- Department of Obstetrics and Fetal Therapy, Leiden University Medical Center, Leiden, The Netherlands
| | - E Lopriore
- Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| | - R G M Bredius
- Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
30
|
Sialylation-dependent pharmacokinetics and differential complement pathway inhibition are hallmarks of CR1 activity in vivo. Biochem J 2022; 479:1007-1030. [PMID: 35470373 DOI: 10.1042/bcj20220054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
Human Complement Receptor 1 (HuCR1) is a potent membrane-bound regulator of complement both in vitro and in vivo, acting via interaction with its ligands C3b and C4b. Soluble versions of HuCR1 have been described such as TP10, the recombinant full-length extracellular domain, and more recently CSL040, a truncated version lacking the C-terminal long homologous repeat domain D (LHR-D). However, the role of N-linked glycosylation in determining its pharmacokinetic (PK) and pharmacodynamic (PD) properties is only partly understood. We demonstrated a relationship between the asialo-N-glycan levels of CSL040 and its PK/PD properties in rats and non-human primates (NHPs), using recombinant CSL040 preparations with varying asialo-N-glycan levels. The clearance mechanism likely involves the asialoglycoprotein receptor (ASGR), as clearance of CSL040 with a high proportion of asialo-N-glycans was attenuated in vivo by co-administration of rats with asialofetuin, which saturates the ASGR. Biodistribution studies also showed CSL040 localisation to the liver following systemic administration. Our studies uncovered differential PD effects by CSL040 on complement pathways, with extended inhibition in both rats and NHPs of the alternative pathway compared to the classical and lectin pathways that were not correlated with its PK profile. Further studies showed that this effect was dose dependent and observed with both CSL040 and the full-length extracellular domain of HuCR1. Taken together, our data suggests that sialylation optimization is an important consideration for developing HuCR1-based therapeutic candidates such as CSL040 with improved PK properties and shows that CSL040 has superior PK/PD responses compared to full-length soluble HuCR1.
Collapse
|
31
|
Haraya K, Tsutsui H, Komori Y, Tachibana T. Recent Advances in Translational Pharmacokinetics and Pharmacodynamics Prediction of Therapeutic Antibodies Using Modeling and Simulation. Pharmaceuticals (Basel) 2022; 15:ph15050508. [PMID: 35631335 PMCID: PMC9145563 DOI: 10.3390/ph15050508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) have been a promising therapeutic approach for several diseases and a wide variety of mAbs are being evaluated in clinical trials. To accelerate clinical development and improve the probability of success, pharmacokinetics and pharmacodynamics (PKPD) in humans must be predicted before clinical trials can begin. Traditionally, empirical-approach-based PKPD prediction has been applied for a long time. Recently, modeling and simulation (M&S) methods have also become valuable for quantitatively predicting PKPD in humans. Although several models (e.g., the compartment model, Michaelis–Menten model, target-mediated drug disposition model, and physiologically based pharmacokinetic model) have been established and used to predict the PKPD of mAbs in humans, more complex mechanistic models, such as the quantitative systemics pharmacology model, have been recently developed. This review summarizes the recent advances and future direction of M&S-based approaches to the quantitative prediction of human PKPD for mAbs.
Collapse
Affiliation(s)
- Kenta Haraya
- Discovery Biologics Department, Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba 412-8513, Japan;
- Correspondence:
| | - Haruka Tsutsui
- Discovery Biologics Department, Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba 412-8513, Japan;
| | - Yasunori Komori
- Pharmaceutical Science Department, Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba 412-8513, Japan; (Y.K.); (T.T.)
| | - Tatsuhiko Tachibana
- Pharmaceutical Science Department, Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba 412-8513, Japan; (Y.K.); (T.T.)
| |
Collapse
|
32
|
An antibody Fc engineered for conditional antibody-dependent cellular cytotoxicity at the low tumor microenvironment pH. J Biol Chem 2022; 298:101798. [PMID: 35248534 PMCID: PMC9006656 DOI: 10.1016/j.jbc.2022.101798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
Despite the exquisite specificity and high affinity of antibody-based cancer therapies, treatment side effects can occur since the tumor-associated antigens targeted are also present on healthy cells. However, the low pH of the tumor microenvironment provides an opportunity to develop conditionally active antibodies with enhanced tumor specificity. Here, we engineered the human IgG1 Fc domain to enhance pH-selective binding to the receptor FcγRIIIa and subsequent antibody-dependent cellular cytotoxicity (ADCC). We displayed the Fc domain on the surface of mammalian cells and generated a site-directed library by altering Fc residues at the Fc-FcγRIIIa interface to support interactions with positively charged histidine residues. We then used a competitive staining and flow cytometric selection strategy to isolate Fc variants exhibiting reduced FcγRIIIa affinities at neutral pH, but physiological affinities at the tumor-typical pH 6.5. We demonstrate that antibodies composed of Fab arms binding the breast cell epithelial marker Her2 and the lead Fc variant, termed acid-Fc, exhibited an ∼2-fold pH-selectivity for FcγRIIIa binding based on the ratio of equilibrium dissociation constants Kd,7.4/Kd,6.5, due to a faster dissociation rate at pH 7.4. Finally, in vitro ADCC assays with human FcγRIIIa-positive natural killer and Her2-positive target cells demonstrated similar activities for anti-Her2 antibodies bearing the wild-type or acid-Fc at pH 6.5, but nearly 20-fold reduced ADCC for acid-Fc at pH 7.4, based on EC50 ratios. This work shows the promise of mammalian cell display for Fc engineering and the feasibility of pH-selective Fc activation to provide a second dimension of selective tumor cell targeting.
Collapse
|
33
|
Ball K, Bruin G, Escandon E, Funk C, Pereira JN, Yang TY, Yu H. Characterizing the pharmacokinetics and biodistribution of therapeutic proteins: an industry white paper. Drug Metab Dispos 2022; 50:858-866. [PMID: 35149542 DOI: 10.1124/dmd.121.000463] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022] Open
Abstract
Characterization of the pharmacokinetics (PK) and biodistribution of therapeutic proteins (TPs) is a hot topic within the pharmaceutical industry, particularly with an ever-increasing catalog of novel modality TPs. Here, we review the current practices, and provide a summary of extensive cross-company discussions as well as a survey completed by International Consortium for Innovation and Quality (IQ consortium) members on this theme. A wide variety of in vitro, in vivo and in silico techniques are currently used to assess PK and biodistribution of TPs, and we discuss the relevance of these from an industry perspective, focusing on PK/PD understanding at the preclinical stage of development, and translation to human. We consider that the 'traditional in vivo biodistribution study' is becoming insufficient as a standalone tool, and thorough characterization of the interaction of the TP with its target(s), target biology, and off-target interactions at a microscopic scale are key to understand the overall biodistribution at a full-body scale. Our summary of the current challenges and our recommendations to address these issues could provide insight into the implementation of best practices in this area of drug development, and continued cross-company collaboration will be of tremendous value. Significance Statement The Innovation & Quality Consortium (IQ) Translational and ADME Sciences Leadership Group (TALG) working group for the ADME of therapeutic proteins evaluates the current practices, recent advances, and challenges in characterizing the PK and biodistribution of therapeutic proteins during drug development, and proposes recommendations to address these issues. Incorporating the in vitro, in vivo and in silico approaches discussed herein may provide a pragmatic framework to increase early understanding of PK/PD relationships, and aid translational modelling for first-in-human dose predictions.
Collapse
Affiliation(s)
| | - Gerard Bruin
- Novartis Institutes for Biomedical Research, Switzerland
| | | | - Christoph Funk
- Dept. of Drug Metabolism and Pharmacokinetics, F. Hoffmann-La Roche Ltd., Switzerland
| | | | | | - Hongbin Yu
- Boehringer Ingelheim Pharmaceuticals, Inc, United States
| |
Collapse
|
34
|
Bolleddula J, Brady K, Bruin G, Lee AJ, Martin JA, Walles M, Xu K, Yang TY, Zhu X, Yu H. Absorption, Distribution, Metabolism, and Excretion (ADME) of Therapeutic Proteins: Current Industry Practices and Future Perspectives. Drug Metab Dispos 2022; 50:837-845. [PMID: 35149541 DOI: 10.1124/dmd.121.000461] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022] Open
Abstract
Therapeutics proteins (TPs) comprise a variety of modalities including antibody-based drugs, coagulation factors, recombinant cytokines, enzymes, growth factors, and hormones. TPs usually cannot traverse cellular barriers and exert their pharmacological activity by interacting with targets on the exterior membrane of cells or with soluble ligands in the tissue interstitial fluid/blood. Due to large size, lack of cellular permeability, variation in metabolic fate, and distinct physicochemical characteristics, TPs are subject to different absorption, distribution, metabolism, and excretion (ADME) processes as compared to small molecules. Limited regulatory guidance makes it challenging to determine the most relevant ADME data required for regulatory submissions. The TP ADME working group (WG) was sponsored by the Translational and ADME Sciences Leadership Group (TALG) within the Innovation and Quality (IQ) consortium with objectives to: i) better understand the current practices of ADME data generated for TPs across IQ member companies, ii) learn about their regulatory strategy and interaction experiences, and iii) provide recommendations on best practices for conducting ADME studies. To understand current ADME practices and regulatory strategies, an industry-wide survey was conducted within IQ member companies. In addition, ADME data submitted to FDA was also collated by reviewing regulatory submission packages of TPs approved between 2011-2020. This article summarizes the key learnings from the survey and an overview of ADME data presented in BLAs along with future perspectives and recommendations for conducting ADME studies for internal decision making as well as regulatory submissions for TPs. Significance Statement This article provides comprehensive assessment of the current practices of absorption, distribution, metabolism, and excretion (ADME) data generated for therapeutic proteins across the Innovation and Quality (IQ) participating companies and the utility of the data in discovery, development, and regulatory submissions. The TP ADME working group (WG) working group also recommends the best practices for conducting ADME studies for internal decision making and regulatory submissions.
Collapse
Affiliation(s)
| | | | - Gerard Bruin
- Novartis Institutes for Biomedical Research, Switzerland
| | | | | | - Markus Walles
- DMPK, Novartis Institutes for Biomedical Research, Switzerland
| | | | | | | | - Hongbin Yu
- Boehringer Ingelheim Pharmaceuticals, Inc, United States
| |
Collapse
|
35
|
Ménochet K, Yu H, Wang B, Tibbitts J, Hsu CP, Kamath AV, Richter WF, Baumann A. Non-human primates in the PKPD evaluation of biologics: Needs and options to reduce, refine, and replace. A BioSafe White Paper. MAbs 2022; 14:2145997. [PMID: 36418217 PMCID: PMC9704389 DOI: 10.1080/19420862.2022.2145997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Monoclonal antibodies (mAbs) deliver great benefits to patients with chronic and/or severe diseases thanks to their strong specificity to the therapeutic target. As a result of this specificity, non-human primates (NHP) are often the only preclinical species in which therapeutic antibodies cross-react with the target. Here, we highlight the value and limitations that NHP studies bring to the design of safe and efficient early clinical trials. Indeed, data generated in NHPs are integrated with in vitro information to predict the concentration/effect relationship in human, and therefore the doses to be tested in first-in-human trials. The similarities and differences in the systems defining the pharmacokinetics and pharmacodynamics (PKPD) of mAbs in NHP and human define the nature and the potential of the preclinical investigations performed in NHPs. Examples have been collated where the use of NHP was either pivotal to the design of the first-in-human trial or, inversely, led to the termination of a project prior to clinical development. The potential impact of immunogenicity on the results generated in NHPs is discussed. Strategies to optimize the use of NHPs for PKPD purposes include the addition of PD endpoints in safety assessment studies and the potential re-use of NHPs after non-terminal studies or cassette dosing several therapeutic agents of interest. Efforts are also made to reduce the use of NHPs in the industry through the use of in vitro systems, alternative in vivo models, and in silico approaches. In the case of prediction of ocular PK, the body of evidence gathered over the last two decades renders the use of NHPs obsolete. Expert perspectives, advantages, and pitfalls with these alternative approaches are shared in this review.
Collapse
Affiliation(s)
| | - Hongbin Yu
- R&D Project Management and Development Strategies, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA
| | - Bonnie Wang
- Nonclinical Disposition and Bioanalysis, Bristol Myers Squibb, Inc, Princeton, NJ, USA
| | - Jay Tibbitts
- Nonclinical Development, South San Francisco, CA, USA
| | - Cheng-Pang Hsu
- Preclinical Development and Clinical Pharmacology, AskGene Pharma Inc, Camarillo, CA, USA
| | - Amrita V. Kamath
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, South San Francisco, CA, USA
| | - Wolfgang F. Richter
- Roche Pharma Research and Early Development, Roche Innovation, Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Andreas Baumann
- R&D, Bayer Pharma AG, Berlin, Germany & Non-clinical Biotech Consulting, Potsdam, Germany °(° present affiliation)
| |
Collapse
|
36
|
Low BE, Christianson GJ, Lowell E, Qin W, Wiles MV. Functional humanization of immunoglobulin heavy constant gamma 1 Fc domain human FCGRT transgenic mice. MAbs 2021; 12:1829334. [PMID: 33025844 PMCID: PMC7577234 DOI: 10.1080/19420862.2020.1829334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A major asset of many monoclonal antibody (mAb)-based biologics is their persistence in circulation. The MHC class I family Fc receptor, FCGRT, is primarily responsible for this extended pharmacokinetic behavior. Engagement of FCGRT with the crystallizable fragment (Fc) domain protects IgG from catabolic elimination, thereby extending the persistence and bioavailability of IgG and related Fc-based biologics. There is a need for reliable in vivo models to facilitate the preclinical development of novel IgG-based biologics. FcRn-humanized mice have been widely accepted as translationally relevant surrogates for IgG-based biologics evaluations. Although such FCGRT-humanized mice, especially the mouse strain, B6.Cg-Fcgrttm1Dcr Tg(FCGRT)32Dcr (abbreviated Tg32), have been substantially validated for modeling humanized IgG-based biologics, there is a recognized caveat – they lack an endogenous source of human IgG that typifies the human competitive condition. Here, we used CRISPR/Cas9-mediated homology-directed repair to equip the hFCGRT Tg32 strain with a human IGHG1 Fc domain. This replacement now results in mice that produce human IgG1 Fc-mouse IgG Fab2 chimeric antibodies at physiologically relevant levels, which can be further heightened by immunization. This endogenous chimeric IgG1 significantly dampens the serum half-life of administered humanized mAbs in an hFCGRT-dependent manner. Thus, such IgG1-Fc humanized mice may provide a more physiologically relevant competitive hFCGRT-humanized mouse model for the preclinical development of human IgG-based biologics.
Collapse
Affiliation(s)
| | | | - Emily Lowell
- Previously at the Jackson Laboratory , Bar Harbor, ME, USA
| | - Wenning Qin
- Previously at the Jackson Laboratory , Bar Harbor, ME, USA
| | | |
Collapse
|
37
|
Valente D, Mauriac C, Schmidt T, Focken I, Beninga J, Mackness B, Qiu H, Vicat P, Kandira A, Radošević K, Rao S, Darbyshire J, Kabiri M. Pharmacokinetics of novel Fc-engineered monoclonal and multispecific antibodies in cynomolgus monkeys and humanized FcRn transgenic mouse models. MAbs 2021; 12:1829337. [PMID: 33079615 PMCID: PMC7587234 DOI: 10.1080/19420862.2020.1829337] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Monoclonal antibodies (mAbs) are among the fastest growing and most effective therapies for myriad diseases. Multispecific antibodies are an emerging class of novel therapeutics that can target more than one tumor- or immune-associated modulators per molecule. The combination of different binding affinities and target classes, such as soluble or membrane-bound antigens, within multispecific antibodies confers unique pharmacokinetic (PK) properties. Numerous factors affect an antibody’s PK, with affinity to the neonatal Fc receptor (FcRn) a key determinant of half-life. Recent work has demonstrated the potential for humanized FcRn transgenic mice to predict the PK of mAbs in humans. However, such work has not been extended to multispecific antibodies. We engineered mAbs and multispecific antibodies with various Fc modifications to enhance antibody performance. PK analyses in humanized FcRn transgenic mouse (homozygous Tg32 and Tg276) and non-human primate (NHP) models showed that FcRn-binding mutations improved the plasma half-lives of the engineered mAbs and multispecific antibodies, while glycan engineering to eliminate effector function did not affect the PK compared with wild-type controls. Furthermore, results suggest that the homozygous Tg32 mouse model can replace NHP models to differentiate PK of variants during lead optimization, not only for wild-type mAbs but also for Fc-engineered mAbs and multispecific antibodies. This Tg32-mouse model would enable prediction of half-life and linear clearance of mAbs and multispecific antibodies in NHPs to guide the design of further pharmacology/safety studies in this species. The allometric exponent for clearance scaling from Tg32 mice to NHPs was estimated to be 0.91 for all antibodies.
Collapse
Affiliation(s)
| | | | | | - Ingo Focken
- Biologics Research, Sanofi , Frankfurt, Germany
| | | | - Brian Mackness
- Translational In vivo Models (TIM), Sanofi, Frankfurt, Germany
| | - Huawei Qiu
- Biologics, Xilio Therapeutics, Inc. Cambridge, US
| | | | | | | | - Srini Rao
- Translational In vivo Models (TIM), Sanofi, Cambridge, US
| | | | - Mostafa Kabiri
- Translational In vivo Models (TIM), Sanofi, Frankfurt, Germany
| |
Collapse
|
38
|
Kaempffe A, Dickgiesser S, Rasche N, Paoletti A, Bertotti E, De Salve I, Sirtori FR, Kellner R, Könning D, Hecht S, Anderl J, Kolmar H, Schröter C. Effect of Conjugation Site and Technique on the Stability and Pharmacokinetics of Antibody-Drug Conjugates. J Pharm Sci 2021; 110:3776-3785. [PMID: 34363839 DOI: 10.1016/j.xphs.2021.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022]
Abstract
Appropriate selection of conjugation sites and conjugation technologies is now widely accepted as crucial for the success of antibody-drug conjugates (ADCs). Herein, we present ADCs conjugated by different conjugation methods to different conjugation positions being systematically characterized by multiple in vitro assays as well as in vivo pharmacokinetic (PK) analyses in transgenic Tg276 mice. Conjugation to cysteines, genetically introduced at positions N325, L328, S239, D265, and S442, was compared to enzymatic conjugation via microbial transglutaminase (mTG) either to C-terminal light (LC) or heavy chain (HC) recognition motifs or to endogenous position Q295 of a native antibody. All conjugations yielded homogeneous DAR 2 ADCs with similar hydrophobicity, thermal stability, human neonatal Fc receptor (huFcRn) binding, and serum stability properties, but with pronounced differences in their PK profiles. mTG-conjugated ADC variants conjugated either to Q295 or to LC recognition motifs showed superior PK behavior. Within the panel of engineered cysteine variants L328 showed a similar PK profile compared to previously described S239 but superior PK compared to S442, D265, and N325. While all positions were first tested with trastuzumab, L328 and mTG LC were further evaluated with additional antibody scaffolds derived from clinically evaluated monoclonal antibodies (mAb). Based on PK analyses, this study confirms the newly described position L328 as favorable site for cysteine conjugation, comparable to the well-established engineered cysteine position S239, and emphasizes the favorable position Q295 of native antibodies and the tagged LC antibody variant for enzymatic conjugations via mTG. In addition, hemizygous Tg276 mice are evaluated as an adequate model for ADC pharmacokinetics, facilitating the selection of suitable ADC candidates early in the drug discovery process.
Collapse
Affiliation(s)
- Anna Kaempffe
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany; Antibody Drug Conjugates & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Stephan Dickgiesser
- Antibody Drug Conjugates & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Nicolas Rasche
- Antibody Drug Conjugates & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Andrea Paoletti
- NBE-DMPK Discovery and Preclinical Bioanalytics, Merck KGaA, RBM S.p.A., Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | - Elisa Bertotti
- NBE-DMPK Discovery and Preclinical Bioanalytics, Merck KGaA, RBM S.p.A., Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | - Ilse De Salve
- NBE-DMPK Discovery and Preclinical Bioanalytics, Merck KGaA, RBM S.p.A., Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | - Federico Riccardi Sirtori
- NBE-DMPK Discovery and Preclinical Bioanalytics, Merck KGaA, RBM S.p.A., Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | - Roland Kellner
- Antibody Drug Conjugates & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Doreen Könning
- Antibody Drug Conjugates & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Stefan Hecht
- Antibody Drug Conjugates & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Jan Anderl
- Antibody Drug Conjugates & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Christian Schröter
- Antibody Drug Conjugates & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany.
| |
Collapse
|
39
|
Liu C, Kim YS, Lowe JHN, Chung S. A cell-based FcRn-dependent recycling assay for predictive pharmacokinetic assessment of therapeutic antibodies. Bioanalysis 2021; 13:1135-1144. [PMID: 34289743 DOI: 10.4155/bio-2021-0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aim: Evaluation of suitable pharmacokinetic properties is critical for successful development of IgG-based biotherapeutics. The prolonged half-lives of IgGs depend on the intracellular trafficking function of neonatal Fc receptor, which rescues internalized IgGs from lysosomal degradation and recycles them back to circulation. Results: Here, we developed a novel cell-based assay to quantify recycling of monoclonal antibodies in a transwell culture system that uses a cell line that stably expresses human neonatal Fc receptor. We tested seven therapeutic antibodies and showed that the recycling output of the assay strongly correlated with the clearance in humans. Conclusion: This recycling assay has potential application as a pharmacokinetic prescreening tool to facilitate development and selection of IgG-based candidate therapeutic monoclonal antibodies.
Collapse
Affiliation(s)
- Chang Liu
- Department of BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yeon Su Kim
- Department of BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - John Hok-Nin Lowe
- Department of BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Shan Chung
- Department of BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
40
|
Fieux M, Le Quellec S, Bartier S, Coste A, Louis B, Giroudon C, Nourredine M, Bequignon E. FcRn as a Transporter for Nasal Delivery of Biologics: A Systematic Review. Int J Mol Sci 2021; 22:6475. [PMID: 34204226 PMCID: PMC8234196 DOI: 10.3390/ijms22126475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
FcRn plays a major role in regulating immune homeostasis, but it is also able to transport biologics across cellular barriers. The question of whether FcRn could be an efficient transporter of biologics across the nasal epithelial barrier is of particular interest, as it would allow a less invasive strategy for the administration of biologics in comparison to subcutaneous, intramuscular or intravenous administrations, which are often used in clinical practice. A focused systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. It was registered on the international prospective register of systematic reviews PROSPERO, which helped in identifying articles that met the inclusion criteria. Clinical and preclinical studies involving FcRn and the nasal delivery of biologics were screened, and the risk of bias was assessed across studies using the Oral Health Assessment Tool (OHAT). Among the 12 studies finally included in this systematic review (out of the 758 studies screened), 11 demonstrated efficient transcytosis of biologics through the nasal epithelium. Only three studies evaluated the potential toxicity of biologics' intranasal delivery, and they all showed that it was safe. This systematic review confirmed that FcRn is expressed in the nasal airway and the olfactory epithelium, and that FcRn may play a role in IgG and/or IgG-derived molecule-transcytosis across the airway epithelium. However, additional research is needed to better characterize the pharmacokinetic and pharmacodynamic properties of biologics after their intranasal delivery.
Collapse
Affiliation(s)
- Maxime Fieux
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d’ORL, D’otoneurochirurgie et de Chirurgie Cervico-Faciale, Pierre Bénite, CEDEX, F-69495 Lyon, France
- Université de Lyon, Université Lyon 1, F-69003 Lyon, France; (S.L.Q.); (M.N.)
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Créteil, France; (S.B.); (A.C.); (B.L.); (E.B.)
- CNRS ERL 7000, F-94010 Créteil, France
| | - Sandra Le Quellec
- Université de Lyon, Université Lyon 1, F-69003 Lyon, France; (S.L.Q.); (M.N.)
- Hospices Civils de Lyon, Hôpital Cardiologique Louis Pradel, Unité D’hémostase Clinique, CEDEX, F-69500 Bron, France
- EA 4609 Hémostase et Cancer, Université Claude Bernard Lyon 1, F-69372 Lyon, France
- Hospices Civils de Lyon, Centre de Biologie et de Pathologie Est, Service D’hématologie Biologique, CEDEX, F-69500 Bron, France
| | - Sophie Bartier
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Créteil, France; (S.B.); (A.C.); (B.L.); (E.B.)
- CNRS ERL 7000, F-94010 Créteil, France
- Service d’ORL, de Chirurgie Cervico Faciale, Hôpital Henri Mondor, Assistance Publique des Hôpitaux de Paris, F-94000 Créteil, France
| | - André Coste
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Créteil, France; (S.B.); (A.C.); (B.L.); (E.B.)
- CNRS ERL 7000, F-94010 Créteil, France
- Service d’ORL, de Chirurgie Cervico Faciale, Centre Hospitalier Intercommunal de Créteil, F-94010 Créteil, France
| | - Bruno Louis
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Créteil, France; (S.B.); (A.C.); (B.L.); (E.B.)
- CNRS ERL 7000, F-94010 Créteil, France
| | - Caroline Giroudon
- Hospices Civils de Lyon, Service de la Documentation Centrale, CEDEX, F-69424 Lyon, France;
| | - Mikail Nourredine
- Université de Lyon, Université Lyon 1, F-69003 Lyon, France; (S.L.Q.); (M.N.)
- Hospices Civils de Lyon, Service de Biostatistique et Bioinformatique, F-69003 Lyon, France
- CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F-69100 Villeurbanne, France
| | - Emilie Bequignon
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Créteil, France; (S.B.); (A.C.); (B.L.); (E.B.)
- CNRS ERL 7000, F-94010 Créteil, France
- Service d’ORL, de Chirurgie Cervico Faciale, Centre Hospitalier Intercommunal de Créteil, F-94010 Créteil, France
| |
Collapse
|
41
|
Grinshpun B, Thorsteinson N, Pereira JN, Rippmann F, Nannemann D, Sood VD, Fomekong Nanfack Y. Identifying biophysical assays and in silico properties that enrich for slow clearance in clinical-stage therapeutic antibodies. MAbs 2021; 13:1932230. [PMID: 34116620 PMCID: PMC8204999 DOI: 10.1080/19420862.2021.1932230] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Understanding the pharmacokinetic (PK) properties of a drug, such as clearance, is a crucial step for evaluating efficacy. The PK of therapeutic antibodies can be complex and is influenced by interactions with the target, Fc-receptors, anti-drug antibodies, and antibody intrinsic factors. A growing body of literature has linked biophysical properties of antibodies, particularly nonspecific-binding propensity, hydrophobicity and charged regions to rapid clearance in preclinical species and selected human PK studies. A clear understanding of the connection between biophysical properties and their impact on PK would allow for early selection and optimization of antibodies and reduce costly attrition during clinical trials due to sub-optimal human clearance. Due to the difficulty in obtaining large and unbiased human PK data, previous studies have focused mostly on preclinical PK. For this study, we obtained and curated the most comprehensive clinical PK dataset to date and calculated accurate estimates of linear clearance for 64 monoclonal antibodies ranging from investigational candidates in Phase 2 trials to marketed products. This allows for the first time a deep analysis of the influence of biophysical and sequence-based in silico properties directly on human clearance. We use statistical analysis and a Random Forest classifier to identify properties that have the greatest influence in our dataset. Our findings indicate that in vitro poly-specificity assay and in silico estimated isoelectric point can discriminate fast and slow clearing antibodies, extending previous observations on preclinical clearance. This provides a simple yet powerful approach to select antibodies with desirable PK during early-stage screening.
Collapse
Affiliation(s)
- Boris Grinshpun
- Discovery & Development Technologies, Drug Disposition & Design, EMD Serono Research & Development Institute, Inc, Billerica, MA, USA
| | - Nels Thorsteinson
- Department of Scientific Services, Chemical Computing Group ULC, Montreal, Quebec, Canada
| | - Joao Ns Pereira
- Discovery & Development Technologies, Drug Disposition & Design, Merck Healthcare KGaA, Darmstadt, Germany
| | - Friedrich Rippmann
- Discovery & Development Technologies, Drug Disposition & Design, Merck Healthcare KGaA, Darmstadt, Germany
| | - David Nannemann
- Discovery & Development Technologies, Drug Disposition & Design, EMD Serono Research & Development Institute, Inc, Billerica, MA, USA
| | - Vanita D Sood
- Discovery & Development Technologies, Drug Disposition & Design, EMD Serono Research & Development Institute, Inc, Billerica, MA, USA
| | - Yves Fomekong Nanfack
- Discovery & Development Technologies, Drug Disposition & Design, EMD Serono Research & Development Institute, Inc, Billerica, MA, USA
| |
Collapse
|
42
|
Berwanger JD, Tan HY, Jokhadze G, Bruening ML. Determination of the Serum Concentrations of the Monoclonal Antibodies Bevacizumab, Rituximab, and Panitumumab Using Porous Membranes Containing Immobilized Peptide Mimotopes. Anal Chem 2021; 93:7562-7570. [PMID: 33999602 DOI: 10.1021/acs.analchem.0c04903] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Effective monoclonal antibody (mAb) therapies require a threshold mAb concentration in patient serum. Moreover, the serum concentration of the mAb Bevacizumab should reside in a specific range to avoid side effects. Methods for conveniently determining the levels of mAbs in patient sera could allow for personalized dosage schedules that lead to more successful treatments. This work utilizes microporous nylon membranes functionalized with antibody-binding peptides to capture Bevacizumab, Rituximab, or Panitumumab from diluted (25%) serum. Modification of the capture-peptide terminus is often crucial to creating the affinity necessary for effective binding. The high purity of eluted mAbs allows for their quantitation using native fluorescence, and membranes are effective in spin devices that can be used in any laboratory. The technique is effective over the therapeutic range of Bevacizumab concentrations. Future work aims at further modifications to develop rapid point-of-care devices and decrease detection limits.
Collapse
Affiliation(s)
- Joshua D Berwanger
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hui Yin Tan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Gia Jokhadze
- Takara Bio USA, Inc., Mountain View, California 94043, United States
| | - Merlin L Bruening
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
43
|
Nagayasu M, Ozeki K. Combination of cassette-dosing and microsampling for reduced animal usage for antibody pharmacokinetics in cynomolgus monkeys, wild-type mice, and human FcRn transgenic mice. Pharm Res 2021; 38:583-592. [PMID: 33782838 DOI: 10.1007/s11095-021-03028-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/03/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE The aim of this study was to develop a useful antibody PK evaluation tool using a combination of cassette-dosing and microsampling in mice and monkeys in order to reduce the number of animals used. METHODS Cetuximab, denosumab, infliximab, and a mixture of the three antibodies, i.e., cassette-dosing, were administered intravenously to cynomolgus monkeys, C57BL/6J mice, and homozygous human neonatal Fc-receptor transgenic (Tg32) mice. Mouse blood was collected from one animal continuously via the jugular vein at nine points. RESULTS In cynomolgus monkeys, infliximab showed faster elimination in the cassette-dosing group than in the single-dose group. Anti-drug antibody production was observed, but the PK parameters of the clearance and distribution volume were similar in both groups. In C57BL/6J and Tg32 mice, each of the plasma concentrations-time profiles after cassette-dosing were similar to those after single dosing. PK evaluation using a combination of cassette-dosing and microsampling in mice may reduce the number of mice used by approximately 90% compared with the conventional method. CONCLUSIONS The combination of antibody cassette-dosing and microsampling is a promising PK evaluation method as a high-throughput and reliable with reduced numbers of mice and cynomolgus monkeys.
Collapse
Affiliation(s)
- Miho Nagayasu
- Research Division, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba-shi, Shizuoka, 412-8513, Japan
| | - Kazuhisa Ozeki
- Research Division, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba-shi, Shizuoka, 412-8513, Japan.
| |
Collapse
|
44
|
Qi T, Cao Y. In Translation: FcRn across the Therapeutic Spectrum. Int J Mol Sci 2021; 22:3048. [PMID: 33802650 PMCID: PMC8002405 DOI: 10.3390/ijms22063048] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
As an essential modulator of IgG disposition, the neonatal Fc receptor (FcRn) governs the pharmacokinetics and functions many therapeutic modalities. In this review, we thoroughly reexamine the hitherto elucidated biological and thermodynamic properties of FcRn to provide context for our assessment of more recent advances, which covers antigen-binding fragment (Fab) determinants of FcRn affinity, transgenic preclinical models, and FcRn targeting as an immune-complex (IC)-clearing strategy. We further comment on therapeutic antibodies authorized for treating SARS-CoV-2 (bamlanivimab, casirivimab, and imdevimab) and evaluate their potential to saturate FcRn-mediated recycling. Finally, we discuss modeling and simulation studies that probe the quantitative relationship between in vivo IgG persistence and in vitro FcRn binding, emphasizing the importance of endosomal transit parameters.
Collapse
Affiliation(s)
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA;
| |
Collapse
|
45
|
Nakamura G, Ozeki K, Takesue H, Tabo M, Hosoya KI. Prediction of Human Pharmacokinetics Profile of Monoclonal Antibody Using hFcRn Transgenic Mouse Model. Biol Pharm Bull 2021; 44:389-395. [PMID: 33642546 DOI: 10.1248/bpb.b20-00775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human pharmacokinetics (PK) profiles of monoclonal antibodies (mAbs) are usually predicted using non-human primates (NHP), but this comes with drawbacks in terms of cost and throughput. Therefore, we established a human PK profile prediction method using human neonatal Fc receptor (hFcRn) transgenic mice (TgM). We administered launched 13 mAbs to hFcRn TgM and measured the concentration in plasma using electro-chemiluminescence immunoassay. This was then used to calculate PK parameters and predict human PK profiles. The mAbs showed a bi-phased elimination pattern, and clearance (CL) (mL/d/kg) and distribution volume at steady state (Vdss) (mL/kg) ranges were 11.0 to 131 and 110 to 285, respectively. There was a correlation in half-life at elimination phase (t1/2β) between hFcRn TgM and humans for 10 mAbs showing CL of more than 80% in the elimination phase (R2 = 0.714). Human t1/2β was predicted using hFcRn TgM t1/2β; 9 out of 10 mAbs were within 2-fold the actual values, and all mAbs were within 3-fold. Regarding the predicted CL values, 7 out of 10 mAbs were within 2-fold the human values and all mAbs were within 3-fold. Furthermore, even on day 7 the predicted CL values of 8 out of 10 mAbs were within 2-fold the observed value, with all mAbs within 3-fold. These results suggest human PK profiles can be predicted using hFcRn TgM data. These methods can accelerate the development of antibody drugs while also reducing cost and improving throughput.
Collapse
Affiliation(s)
- Genki Nakamura
- Research Division, Chugai Pharmaceutical Co., Ltd.,Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | | | | | | | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
46
|
Ko S, Jo M, Jung ST. Recent Achievements and Challenges in Prolonging the Serum Half-Lives of Therapeutic IgG Antibodies Through Fc Engineering. BioDrugs 2021; 35:147-157. [PMID: 33608823 PMCID: PMC7894971 DOI: 10.1007/s40259-021-00471-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2021] [Indexed: 01/02/2023]
Abstract
Association of FcRn molecules to the Fc region of IgG in acidified endosomes and subsequent dissociation of the interaction in neutral pH serum enables IgG molecules to be recycled for prolonged serum persistence after internalization by endothelial cells, rather than being degraded in the serum and in the lysosomes inside the cells. Exploiting this intracellular trafficking and recycling mechanism, many researchers have engineered the Fc region to further extend the serum half-lives of therapeutic antibodies by optimizing the pH-dependent IgG Fc-FcRn interaction, and have generated various Fc variants exhibiting significantly improved circulating half-lives of therapeutic IgG antibodies. In order to estimate pharmacokinetic profiles of IgG Fc variants in human serum, not only a variety of in vitro techniques to determine the equilibrium binding constants and instantaneous rate constants for pH-dependent FcRn binding, but also diverse in vivo animal models including wild-type mouse, human FcRn transgenic mouse (Tg32 and Tg276), humanized mouse (Scarlet), or cynomolgus monkey have been harnessed. Currently, multiple IgG Fc variants that have been validated for their prolonged therapeutic potency in preclinical models have been successfully entered into human clinical trials for cancer, infectious diseases, and autoimmune diseases.
Collapse
Affiliation(s)
- Sanghwan Ko
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.,Institute of Human Genetics, Korea University College of Medicine, Seoul, Republic of Korea
| | - Migyeong Jo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea. .,Institute of Human Genetics, Korea University College of Medicine, Seoul, Republic of Korea. .,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea. .,Department of Biomedical Sciences, Graduate School, Korea University, Seoul, Republic of Korea. .,Biomedical Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| |
Collapse
|
47
|
Nakamura G, Ozeki K, Nagayasu M, Nambu T, Nemoto T, Hosoya KI. Predicting Method for the Human Plasma Concentration-Time Profile of a Monoclonal Antibody from the Half-life of Non-human Primates. Biol Pharm Bull 2021; 43:823-830. [PMID: 32378559 DOI: 10.1248/bpb.b19-01042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Efficiency (speed and cost) and animal welfare are important factors in the development of new drugs. A novel method (the half-life method) was developed to predict the human plasma concentration-time profile of a monoclonal antibody (mAb) after intravenous (i.v.) administration using less data compared to the conventional approach; moreover, predicted results were comparable to conventional method. This new method use human geometric means of pharmacokinetics (PK) parameters and the non-human primates (NHP) half-life of each mAb. PK data on mAbs in humans and NHPs were collected from literature focusing on linear elimination, and the two-compartment model was used for analysis. The following features were revealed in humans: 1) the coefficient of variation in the distribution volume of the central compartment and at steady state of mAbs was small (22.6 and 23.8%, respectively) and 2) half-life at the elimination phase (t1/2β) was the main contributor to plasma clearance. Moreover, distribution volume showed no significant correlation between humans and NHPs, and human t1/2β showed a good correlation with allometrically scaled t1/2β of NHP. Based on the features revealed in this study, we propose a new method for predicting the human plasma concentration-time profile of mAbs after i.v. dosing. When tested, this half-life method showed reasonable human prediction compared with a conventional empirical approach. The half-life method only requires t1/2β to predict human PK, and is therefore able to improve animal welfare and potentially accelerate the drug development process.
Collapse
Affiliation(s)
- Genki Nakamura
- Research Division, Chugai Pharmaceutical Co., Ltd.,Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | | | | | - Takeru Nambu
- Research Division, Chugai Pharmaceutical Co., Ltd
| | | | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
48
|
Kraft TE, Richter WF, Emrich T, Knaupp A, Schuster M, Wolfert A, Kettenberger H. Heparin chromatography as an in vitro predictor for antibody clearance rate through pinocytosis. MAbs 2021; 12:1683432. [PMID: 31769731 PMCID: PMC6927760 DOI: 10.1080/19420862.2019.1683432] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The pharmacokinetic (PK) properties of therapeutic antibodies directly affect efficacy, dose and dose intervals, application route and tissue penetration. In indications where health-care providers and patients can choose between several efficacious and safe therapeutic options, convenience (determined by dosing interval or route of application), which is mainly driven by PK properties, can affect drug selection. Therapeutic antibodies can have greatly different PK even if they have identical Fc domains and show no target-mediated drug disposition. Biophysical properties like surface charge or hydrophobicity, and binding to surrogates for high abundant off-targets (e.g., baculovirus particles, Chinese hamster ovary cell membrane proteins) were proposed to be responsible for these differences. Here, we used heparin chromatography to separate a polyclonal mix of endogenous human IgGs (IVIG) into fractions that differ in their PK properties. Heparin was chosen as a surrogate for highly negatively charged glycocalyx components on endothelial cells, which are among the main contributors to nonspecific clearance. By directly correlating heparin retention time with clearance, we identified heparin chromatography as a tool to assess differences in unspecific cell-surface interaction and the likelihood for increased pinocytotic uptake and degradation. Building on these results, we combined predictors for FcRn-mediated recycling and cell-surface interaction. The combination of heparin and FcRn chromatography allow identification of antibodies with abnormal PK by mimicking the major root causes for fast, non-target-mediated, clearance of therapeutic, Fc-containing proteins.
Collapse
Affiliation(s)
- Thomas E Kraft
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Wolfgang F Richter
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Thomas Emrich
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Alexander Knaupp
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Michaela Schuster
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Andreas Wolfert
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Hubert Kettenberger
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
49
|
Germovsek E, Cheng M, Giragossian C. Allometric scaling of therapeutic monoclonal antibodies in preclinical and clinical settings. MAbs 2021; 13:1964935. [PMID: 34530672 PMCID: PMC8463036 DOI: 10.1080/19420862.2021.1964935] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Constant technological advancement enabled the production of therapeutic monoclonal antibodies (mAbs) and will continue to contribute to their rapid expansion. Compared to small-molecule drugs, mAbs have favorable characteristics, but also more complex pharmacokinetics (PK), e.g., target-mediated nonlinear elimination and recycling by neonatal Fc-receptor. This review briefly discusses mAb biology, similarities and differences in PK processes across species and within human, and provides a detailed overview of allometric scaling approaches for translating mAb PK from preclinical species to human and extrapolating from adults to children. The approaches described here will remain vital in mAb drug development, although more data are needed, for example, from very young patients and mAbs with nonlinear PK, to allow for more confident conclusions and contribute to further growth of this field. Improving mAb PK predictions will facilitate better planning of (pediatric) clinical studies and enable progression toward the ultimate goal of expediting drug development.
Collapse
Affiliation(s)
- Eva Germovsek
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | - Ming Cheng
- Development Biologicals, Drug Metabolism And Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, US
| | - Craig Giragossian
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, US
| |
Collapse
|
50
|
Jones HM, Tolsma J, Zhang Z, Jasper P, Luo H, Weber GL, Wright K, Bard J, Bell R, Messing D, Kelleher K, Piche-Nicholas N, Webster R. A Physiologically-Based Pharmacokinetic Model for the Prediction of "Half-Life Extension" and "Catch and Release" Monoclonal Antibody Pharmacokinetics. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2020; 9:534-541. [PMID: 32697437 PMCID: PMC7499188 DOI: 10.1002/psp4.12547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022]
Abstract
Monoclonal antibodies (mAbs) can be engineered to have “extended half‐life” and “catch and release” properties to improve target coverage. We have developed a mAb physiologically‐based pharmacokinetic model that describes intracellular trafficking, neonatal Fc receptor (FcRn) recycling, and nonspecific clearance of mAbs. We extended this model to capture target binding as a function of target affinity, expression, and turnover. For mAbs engineered to have an extended half‐life, the model was able to accurately predict the terminal half‐life (82% within 2‐fold error of the observed value) in the human FcRn transgenic (Tg32) homozygous mouse and human. The model also accurately captures the trend in pharmacokinetic and target coverage data for a set of mAbs with differing catch and release properties in the Tg32 mouse. The mechanistic nature of this model allows us to explore different engineering techniques early in drug discovery, potentially expanding the number of “druggable” targets.
Collapse
Affiliation(s)
- Hannah M Jones
- BioMedicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| | | | | | | | - Haobin Luo
- RES Group Inc., Needham, Massachusetts, USA
| | - Gregory L Weber
- BioMedicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| | - Katherine Wright
- BioMedicine Design, Pfizer Worldwide R&D, Andover, Massachusetts, USA
| | - Joel Bard
- BioMedicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| | - Robert Bell
- Rare Disease Research Unit, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| | - Dean Messing
- BioMedicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| | - Kerry Kelleher
- BioMedicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| | | | - Robert Webster
- BioMedicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| |
Collapse
|