1
|
Verma V, Sinha N, Raja A. Nanoscale warriors against viral invaders: a comprehensive review of Nanobodies as potential antiviral therapeutics. MAbs 2025; 17:2486390. [PMID: 40201976 PMCID: PMC11988260 DOI: 10.1080/19420862.2025.2486390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
Viral infections remain a significant global health threat, with emerging and reemerging viruses causing epidemics and pandemics. Despite advancements in antiviral therapies, the development of effective treatments is often hindered by challenges, such as viral resistance and the emergence of new strains. In this context, the development of novel therapeutic modalities is essential to combat notorious viruses. While traditional monoclonal antibodies are widely used for the treatment of several diseases, nanobodies derived from heavy chain-only antibodies have emerged as promising "nanoscale warriors" against viral infections. Nanobodies possess unique structural properties that enhance their ability to recognize diverse epitopes. Their small size also imparts properties, such as improved bioavailability, solubility, stability, and proteolytic resistance, making them an ideal class of therapeutics for viral infections. In this review, we discuss the role of nanobodies as antivirals against various viruses. Techniques used for developing nanobodies, delivery strategies are covered, and the challenges and opportunities associated with their use as antiviral therapies are discussed. We also offer insights into the future of nanobody-based antiviral research to support the development of new strategies for managing viral infections.
Collapse
Affiliation(s)
- Vaishali Verma
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, India
| | - Nimisha Sinha
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Abhavya Raja
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, India
- Department of Surgery and Cancer, Imperial College London, South, London, UK
| |
Collapse
|
2
|
Gavor E, Choong YK, Gada AH, Sivaraman J. Challenges and design of nanobodies against arboviruses. Trends Biotechnol 2025:S0167-7799(25)00087-3. [PMID: 40155268 DOI: 10.1016/j.tibtech.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Nanobodies (Nbs) show promise in combating arboviruses. Their small size and stability enable blood-brain barrier (BBB) penetration, cryptic epitope binding, and reduced antibody-dependent enhancement (ADE). This forum highlights Nb advantages, challenges, and innovative delivery methods, emphasizing their transformative potential in arbovirus therapeutics and diagnostics.
Collapse
Affiliation(s)
- Edem Gavor
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore.
| | - Yeu Khai Choong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Aditya H Gada
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore.
| |
Collapse
|
3
|
Alphonse N, Sécher T, Heuzé-Vourc'h N. A breath of fresh air: inhaled antibodies to combat respiratory infectious diseases - a clinical trial overview. Expert Opin Drug Deliv 2025; 22:197-218. [PMID: 39711323 DOI: 10.1080/17425247.2024.2446608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION With the worldwide growing burden of respiratory tract infections (RTIs), innovative therapeutic approaches are in high demand. Inhaled antibodies (Abs) represent a promising avenue, offering targeted treatment options with potentially better therapeutic index compared to traditional delivery methods. AREAS COVERED This comprehensive review summarizes the challenges faced in delivering Abs by (intranasal and pulmonary) inhalation. It outlines the physiological and biological barriers encountered by inhaled drugs, as well as the influence of delivery devices and formulation on the deposition and efficacy of inhaled molecules. Moreover, it provides a detailed overview of the current clinical trial landscape of inhaled anti-RTI Abs, highlighting the progress in the development of inhaled Abs targeting a range of pathogens, such as severe acute respiratory syndrome coronavirus 2 and respiratory syncytial virus. The mechanism of action, therapeutic targets, and clinical outcomes of these novel therapies are detailed. EXPERT OPINION Delivery of Abs by inhalation faces several challenges. Addressing these challenges and developing specific approaches to deliver inhaled Abs represent a promising avenue for the development of the next generation of inhaled Abs. By offering targeted, localized therapy with the potential for a better therapeutic index, inhaled Abs could significantly improve outcomes for patients with RTIs.
Collapse
Affiliation(s)
- Noémie Alphonse
- Université de Tours, Centre d'Etude des Pathologies Respiratoires, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
| | - Thomas Sécher
- Université de Tours, Centre d'Etude des Pathologies Respiratoires, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
| | - Nathalie Heuzé-Vourc'h
- Université de Tours, Centre d'Etude des Pathologies Respiratoires, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
| |
Collapse
|
4
|
Zhang G, Zhao B, Liu J. The Development of Animal Models for Respiratory Syncytial Virus (RSV) Infection and Enhanced RSV Disease. Viruses 2024; 16:1701. [PMID: 39599816 PMCID: PMC11598872 DOI: 10.3390/v16111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The development of immunoprophylactic products against respiratory syncytial virus (RSV) has resulted in notable advancements, leading to an increased demand for preclinical experiments and placing greater demands on animal models. Nevertheless, the field of RSV research continues to face the challenge of a lack of ideal animal models. Despite the demonstration of efficacy in animal studies, numerous RSV vaccine candidates have been unsuccessful in clinical trials, primarily due to the lack of suitable animal models. The most commonly utilized animal models for RSV research are cotton rats, mice, lambs, and non-human primates. These animals have been extensively employed in mechanistic studies and in the development and evaluation of vaccines and therapeutics. However, each model only exemplifies some, but not all, aspects of human RSV disease. The aim of this study was to provide a comprehensive summary of the disease symptoms, viral replication, pathological damage, and enhanced RSV disease (ERD) conditions across different RSV animal models. Furthermore, the advantages and disadvantages of each model are discussed, with the intention of providing a valuable reference for related RSV research.
Collapse
Affiliation(s)
| | - Binbin Zhao
- NHC Key Laboratory of Human Disease Comparative Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
| |
Collapse
|
5
|
de Andres PJ, Ferreiro S, Flores A, Garcia A, Henriquez-Camacho C. Histological Assessment of Respiratory Tract and Liver of BALB/c Mice Nebulized with Tocilizumab. Pharmaceutics 2024; 16:862. [PMID: 39065559 PMCID: PMC11280351 DOI: 10.3390/pharmaceutics16070862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Pulmonary drug delivery offers a minimally invasive and efficient method for treating lung conditions, leveraging the lungs' extensive surface area and blood flow for rapid drug absorption. Nebulized therapies aim to deliver drugs directly to the lung tissue. This study investigates the histological impact of nebulized tocilizumab-a monoclonal antibody targeting IL-6, traditionally administered intravenously for rheumatoid arthritis and severe COVID-19-on a murine model. Thirty BALB/c mice were nebulized with tocilizumab (10 mg, 5 mg, and 2.5 mg) and six controls were nebulized with saline solution. They were euthanized 48 h later, and their organs (lungs, nasal mucosa, and liver) were analyzed by a microscopic histological evaluation. The results indicate that all the mice survived the 48 h post-nebulization period without systemic compromise. The macroscopic examination showed no abnormalities, and the histopathological analysis revealed greater lung vascular changes in the control group than in the nebulized animals, which is attributable to the euthanasia with carbon dioxide. Additionally, increased alveolar macrophages were observed in the nebulized groups compared to controls. No significant histological changes were observed in the liver, indicating the safety of nebulized tocilizumab. In conclusion, these findings suggest the potential of nebulized tocilizumab for treating pulmonary inflammation, warranting further research to establish its efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Paloma Jimena de Andres
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria de la, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Sergio Ferreiro
- Unidad de Veterinaria, Radiodiagnóstico y Cirugía Experimental del, Centro de Apoyo Tecnológico de la, Facultad de Ciencias de la Salud de la, Universidad Rey Juan Carlos, 28922 Alcorcon, Spain;
| | - Angela Flores
- Servicio de Farmacia del Hospital Universitario Rey Juan Carlos, 28993 Mostoles, Spain; (A.F.); (A.G.)
| | - Almudena Garcia
- Servicio de Farmacia del Hospital Universitario Rey Juan Carlos, 28993 Mostoles, Spain; (A.F.); (A.G.)
| | - Cesar Henriquez-Camacho
- Servicio de Medicina Interna del Hospital Universitario de Móstoles, 28935 Mostoles, Spain
- Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, 28922 Alcorcon, Spain
| |
Collapse
|
6
|
De Greve H, Fioravanti A. Single domain antibodies from camelids in the treatment of microbial infections. Front Immunol 2024; 15:1334829. [PMID: 38827746 PMCID: PMC11140111 DOI: 10.3389/fimmu.2024.1334829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
Infectious diseases continue to pose significant global health challenges. In addition to the enduring burdens of ailments like malaria and HIV, the emergence of nosocomial outbreaks driven by antibiotic-resistant pathogens underscores the ongoing threats. Furthermore, recent infectious disease crises, exemplified by the Ebola and SARS-CoV-2 outbreaks, have intensified the pursuit of more effective and efficient diagnostic and therapeutic solutions. Among the promising options, antibodies have garnered significant attention due to their favorable structural characteristics and versatile applications. Notably, nanobodies (Nbs), the smallest functional single-domain antibodies of heavy-chain only antibodies produced by camelids, exhibit remarkable capabilities in stable antigen binding. They offer unique advantages such as ease of expression and modification and enhanced stability, as well as improved hydrophilicity compared to conventional antibody fragments (antigen-binding fragments (Fab) or single-chain variable fragments (scFv)) that can aggregate due to their low solubility. Nanobodies directly target antigen epitopes or can be engineered into multivalent Nbs and Nb-fusion proteins, expanding their therapeutic potential. This review is dedicated to charting the progress in Nb research, particularly those derived from camelids, and highlighting their diverse applications in treating infectious diseases, spanning both human and animal contexts.
Collapse
Affiliation(s)
- Henri De Greve
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Antonella Fioravanti
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium
- Fondazione ParSeC – Parco delle Scienze e della Cultura, Prato, Italy
| |
Collapse
|
7
|
Aydin O, Yilmaz A, Turan N, Richt JA, Yilmaz H. Molecular Characterisation and Antibody Response to Bovine Respiratory Syncytial Virus in Vaccinated and Infected Cattle in Turkey. Pathogens 2024; 13:304. [PMID: 38668259 PMCID: PMC11053851 DOI: 10.3390/pathogens13040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is one of the most important respiratory pathogens of cattle. In this study, frequency of infection, analysis of variants, and the immune status of vaccinated and non-vaccinated cattle were studied. Blood (n = 162) and nasal/oropharyngeal (n = 277) swabs were collected from 62 cattle herds in Turkey. Lung samples (n = 37) were also taken from dead animals and abattoirs. Antibodies to BRSV were detected in 76 (46%) out of 162 sera. The antibody levels in the vaccinated and non-vaccinated groups were statistically significant. Among 277 nasal/oropharyngeal swabs and 37 lungs, ten nasal/oropharyngeal and four lung samples were positive for BRSV-RNA. BRSV-G gene sequences of 5 out of 14 RT-PCR positive samples showed that all viruses clustered as Group-III in phylogenetic analysis with 88-100% homology. Similarity with previous Turkish BRSVs was 89-98%, and that with BRSVs detected in the USA and Czechia was 89.47-93.12%. BRSV continues to circulate in Turkish cattle, and vaccination seems beneficial in preventing BRSV. The diversity of the BRSVs found in this study needs be considered in vaccination strategies.
Collapse
Affiliation(s)
- Ozge Aydin
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Hadimkoy, 34500, Buyukcekmece, Istanbul 66506, Turkey; (O.A.); (A.Y.); (N.T.)
| | - Aysun Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Hadimkoy, 34500, Buyukcekmece, Istanbul 66506, Turkey; (O.A.); (A.Y.); (N.T.)
| | - Nuri Turan
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Hadimkoy, 34500, Buyukcekmece, Istanbul 66506, Turkey; (O.A.); (A.Y.); (N.T.)
| | - Juergen A. Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, NY 66506, USA;
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Huseyin Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Hadimkoy, 34500, Buyukcekmece, Istanbul 66506, Turkey; (O.A.); (A.Y.); (N.T.)
| |
Collapse
|
8
|
McSweeney MD, Alnajjar S, Schaefer AM, Richardson Z, Wolf W, Stewart I, Sriboonyapirat P, McCallen J, Farmer E, Nzati B, Lord S, Farrer B, Moench TR, Kumar PA, Arora H, Pickles RJ, Hickey AJ, Ackermann M, Lai SK. Inhaled "Muco-Trapping" Monoclonal Antibody Effectively Treats Established Respiratory Syncytial Virus (RSV) Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306729. [PMID: 38225749 DOI: 10.1002/advs.202306729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/12/2023] [Indexed: 01/17/2024]
Abstract
Respiratory syncytial virus (RSV) causes substantial morbidity and mortality in infants, the immunocompromised, and the elderly. RSV infects the airway epithelium via the apical membrane and almost exclusively sheds progeny virions back into the airway mucus (AM), making RSV difficult to target by systemically administered therapies. An inhalable "muco-trapping" variant of motavizumab (Mota-MT), a potent neutralizing mAb against RSV F is engineered. Mota-MT traps RSV in AM via polyvalent Fc-mucin bonds, reducing the fraction of fast-moving RSV particles in both fresh pediatric and adult AM by ≈20-30-fold in a Fc-glycan dependent manner, and facilitates clearance from the airways of mice within minutes. Intranasal dosing of Mota-MT eliminated viral load in cotton rats within 2 days. Daily nebulized delivery of Mota-MT to RSV-infected neonatal lambs, beginning 3 days after infection when viral load is at its maximum, led to a 10 000-fold and 100 000-fold reduction in viral load in bronchoalveolar lavage and lung tissues relative to placebo control, respectively. Mota-MT-treated lambs exhibited reduced bronchiolitis, neutrophil infiltration, and airway remodeling than lambs receiving placebo or intramuscular palivizumab. The findings underscore inhaled delivery of muco-trapping mAbs as a promising strategy for the treatment of RSV and other acute respiratory infections.
Collapse
Affiliation(s)
| | - Sarhad Alnajjar
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | - Alison M Schaefer
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Whitney Wolf
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ian Stewart
- RTI International, Research Triangle Park, NC, 27709, USA
| | | | - Justin McCallen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ellen Farmer
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
| | | | - Sam Lord
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
| | - Brian Farrer
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
| | | | - Priya A Kumar
- Department of Anesthesiology, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Outcomes Research Consortium, Cleveland, OH, 44195, USA
| | - Harendra Arora
- Department of Anesthesiology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Raymond J Pickles
- Department of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Mark Ackermann
- USDA/ARS-National Animal Disease Center, Ames, IA, 50010, USA
| | - Samuel K Lai
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
9
|
Loaiza RA, Ramírez RA, Sepúlveda-Alfaro J, Ramírez MA, Andrade CA, Soto JA, González PA, Bueno SM, Kalergis AM. A molecular perspective for the development of antibodies against the human respiratory syncytial virus. Antiviral Res 2024; 222:105783. [PMID: 38145755 DOI: 10.1016/j.antiviral.2023.105783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/27/2023]
Abstract
The human respiratory syncytial virus (hRSV) is the leading etiologic agent causing respiratory infections in infants, children, older adults, and patients with comorbidities. Sixty-seven years have passed since the discovery of hRSV, and only a few successful mitigation or treatment tools have been developed against this virus. One of these is immunotherapy with monoclonal antibodies against structural proteins of the virus, such as Palivizumab, the first prophylactic approach approved by the Food and Drug Administration (FDA) of the USA. In this article, we discuss different strategies for the prevention and treatment of hRSV infection, focusing on the molecular mechanisms against each target that underly the rational design of antibodies against hRSV. At the same time, we describe the latest results regarding currently approved therapies against hRSV and the challenges associated with developing new candidates.
Collapse
Affiliation(s)
- Ricardo A Loaiza
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Robinson A Ramírez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Javiera Sepúlveda-Alfaro
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Mario A Ramírez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Catalina A Andrade
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile; Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
10
|
Duan H, Chen X, Zhang Z, Zhang Z, Li Z, Wang X, Zhao J, Nan Y, Liu B, Zhang A, Sun Y, Zhao Q. A nanobody inhibiting porcine reproductive and respiratory syndrome virus replication via blocking self-interaction of viral nucleocapsid protein. J Virol 2024; 98:e0131923. [PMID: 38084961 PMCID: PMC10804987 DOI: 10.1128/jvi.01319-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 01/24/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a serious global pig industry disease. Understanding the mechanism of viral replication and developing efficient antiviral strategies are necessary for combating with PRRS virus (PRRSV) infection. Recently, nanobody is considered to be a promising antiviral drug, especially for respiratory viruses. The present study evaluated two nanobodies against PRRSV nucleocapsid (N) protein (PRRSV-N-Nb1 and -Nb2) for their anti-PRRSV activity in vitro and in vivo. The results showed that intracellularly expressed PRRSV-N-Nb1 significantly inhibited PRRSV-2 replication in MARC-145 cells (approximately 100%). Then, the PRRSV-N-Nb1 fused with porcine IgG Fc (Nb1-pFc) as a delivering tag was produced and used to determine its effect on PRRSV-2 replication in porcine alveolar macrophages (PAMs) and pigs. The inhibition rate of Nb1-pFc against PRRSV-2 in PAMs could reach >90%, and it can also inhibit viral replication in vivo. Epitope mapping showed that the motif Serine 105 (S105) in PRRSV-2 N protein was the key amino acid binding to PRRSV-N-Nb1, which is also pivotal for the self-interaction of N protein via binding to Arginine 97. Moreover, viral particles were not successfully rescued when the S105 motif was mutated to Alanine (S105A). Attachment, entry, genome replication, release, docking model analysis, and blocking enzyme-linked immunosorbent assay (ELISA) indicated that the binding of PRRSV-N-Nb1 to N protein could block its self-binding, which prevents the viral replication of PRRSV. PRRSV-N-Nb1 may be a promising drug to counter PRRSV-2 infection. We also provided some new insights into the molecular basis of PRRSV N protein self-binding and assembly of viral particles.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) causes serious economic losses to the swine industry worldwide, and there are no highly effective strategies for prevention. Nanobodies are considered a promising novel approach for treating diseases because of their ease of production and low costing. Here, we showed that PRRSV-N-Nb1 against PRRSV-N protein significantly inhibited PRRSV-2 replication in vitro and in vivo. Furthermore, we demonstrated that the motif Serine 105 (S105) in PRRSV-N protein was the key amino acid to interact with PRRSV-N-Nb1 and bond to its motif R97, which is important for the self-binding of N protein. The PRRSV-N-Nb1 could block the self-interaction of N protein following viral assembly. These findings not only provide insights into the molecular basis of PRRSV N protein self-binding as a key factor for viral replication for the first time but also highlight a novel target for the development of anti-PRRSV replication drugs.
Collapse
Affiliation(s)
- Hong Duan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xu Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ziwei Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhijie Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhihan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinjie Wang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jiakai Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Angke Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
11
|
Zou G, Cao S, Gao Z, Yie J, Wu JZ. Current state and challenges in respiratory syncytial virus drug discovery and development. Antiviral Res 2024; 221:105791. [PMID: 38160942 DOI: 10.1016/j.antiviral.2023.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Human respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infections (LRTI) in young children and elderly people worldwide. Recent significant progress in our understanding of the structure and function of RSV proteins has led to the discovery of several clinical candidates targeting RSV fusion and replication. These include both the development of novel small molecule interventions and the isolation of potent monoclonal antibodies. In this review, we summarize the state-of-the-art of RSV drug discovery, with a focus on the characteristics of the candidates that reached the clinical stage of development. We also discuss the lessons learned from failed and discontinued clinical developments and highlight the challenges that remain for development of RSV therapies.
Collapse
Affiliation(s)
- Gang Zou
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China.
| | - Sushan Cao
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Zhao Gao
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Junming Yie
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Jim Zhen Wu
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| |
Collapse
|
12
|
Chaer FE, Kaul DR, Englund JA, Boeckh M, Batista MV, Seo SK, Carpenter PA, Navarro D, Hirsch HH, Ison MG, Papanicolaou GA, Chemaly RF. American Society of Transplantation and Cellular Therapy Series: #7 - Management of Respiratory Syncytial Virus Infections in Hematopoietic Cell Transplant Recipients. Transplant Cell Ther 2023; 29:730-738. [PMID: 37783338 DOI: 10.1016/j.jtct.2023.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
The Practice Guidelines Committee of the American Society of Transplantation and Cellular Therapy (ASTCT) partnered with its Transplant Infectious Disease Special Interest Group (TID-SIG) to update the 2009 compendium-style infectious disease guidelines for hematopoietic cell transplantation (HCT). A new approach was adopted to better serve clinical providers by publishing each standalone topic in the infectious disease series in a concise format of frequently asked questions (FAQ), tables, and figures. Experts in HCT and infectious diseases identified FAQs and then provided answers based on the strength of the recommendation and the level of supporting evidence. In the seventh guideline in the series, we focus on the respiratory syncytial virus (RSV) with FAQs addressing epidemiology, clinical diagnosis, prophylaxis, and treatment. Special consideration was given to RSV in pediatric, cord blood, haploidentical, and T cell-depleted HCT and chimeric antigen receptor T cell therapy recipients, as well as to identify future research directions.
Collapse
Affiliation(s)
- Firas El Chaer
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, Virginia.
| | - Daniel R Kaul
- Division of Infectious Disease, University of Michigan Medical School, Ann Arbor, Michigan
| | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle Children's Research Institute, Seattle, Washington
| | - Michael Boeckh
- Clinical Research and Vaccine and Infectious Disease Divisions, Fred Hutchinson Cancer Center and Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington
| | - Marjorie V Batista
- Department of Infectious Diseases, AC Camargo Cancer Center, Sao Paulo, Brazil
| | - Susan K Seo
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
| | - Paul A Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - David Navarro
- Microbiology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, and Department of Microbiology, School of Medicine, University of Valencia, Valencia & Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Hans H Hirsch
- Clinical Virology Laboratory, Laboratory Medicine, University Hospital Basel, Basel, Switzerland; Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland; Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Michael G Ison
- Respiratory Disease Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Genovefa A Papanicolaou
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
13
|
Edirisinghe HS, Rajapaksa AE, Royce SG, Sourial M, Bischof RJ, Anderson J, Sarila G, Nguyen CD, Mulholland K, Do LAH, Licciardi PV. Aerosol Delivery of Palivizumab in a Neonatal Lamb Model of Respiratory Syncytial Virus Infection. Viruses 2023; 15:2276. [PMID: 38005952 PMCID: PMC10675108 DOI: 10.3390/v15112276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: Palivizumab has been an approved preventative monoclonal antibody for respiratory syncytial virus (RSV) infection for over two decades. However, due to its high cost and requirement for multiple intramuscular injections, its use has been limited mostly to high-income countries. Following our previous study showing the successful lung deposition of aerosolised palivizumab in lambs, this current study evaluated the "proof-of-principle" effect of aerosolised palivizumab delivered as a therapeutic to neonatal lambs following RSV infection. (2) Methods: Neonatal lambs were intranasally inoculated with RSV-A2 on day 0 (day 3 post-birth) and treated with aerosolised palivizumab 3 days later (day 3 post-inoculation). Clinical symptoms, RSV viral load and inflammatory response were measured post-inoculation. (3) Results: Aerosolised therapeutic delivery of palivizumab did not reduce RSV viral loads in the nasopharynx nor the bronchoalveolar lavage fluid, but resulted in a modest reduction in inflammatory response at day 6 post-inoculation compared with untreated lambs. (4) Conclusions: This proof-of-principle study shows some evidence of aerosolised palivizumab reducing RSV inflammation, but further studies using optimized protocols are needed in order to validate these findings.
Collapse
Affiliation(s)
- Hasindu S. Edirisinghe
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
- Department of Paediatrics, University of Melbourne, Melbourne 3010, Australia
| | - Anushi E. Rajapaksa
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
- Department of Paediatrics, University of Melbourne, Melbourne 3010, Australia
- Royal Children’s Hospital, Melbourne 3052, Australia
- Royal Women’s Hospital, Melbourne 3052, Australia
| | - Simon G. Royce
- Monash Biomedicine Discovery Institute, Monash University, Melbourne 3168, Australia;
| | - Magdy Sourial
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
- Royal Children’s Hospital, Melbourne 3052, Australia
| | - Robert J. Bischof
- Institute of Innovation, Science and Sustainability, Federation University, Melbourne 3806, Australia;
| | - Jeremy Anderson
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
- Department of Paediatrics, University of Melbourne, Melbourne 3010, Australia
| | - Gulcan Sarila
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
- Department of Paediatrics, University of Melbourne, Melbourne 3010, Australia
| | - Cattram D. Nguyen
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
| | - Kim Mulholland
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
- Department of Paediatrics, University of Melbourne, Melbourne 3010, Australia
| | - Lien Anh Ha Do
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
- Department of Paediatrics, University of Melbourne, Melbourne 3010, Australia
| | - Paul V. Licciardi
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
- Department of Paediatrics, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
14
|
McNee A, Vanover D, Rijal P, Paudyal B, Lean FZX, MacLoughlin R, Núñez A, Townsend A, Santangelo PJ, Tchilian E. A direct contact pig influenza challenge model for assessing protective efficacy of monoclonal antibodies. Front Immunol 2023; 14:1229051. [PMID: 37965320 PMCID: PMC10641767 DOI: 10.3389/fimmu.2023.1229051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Monoclonal antibodies (mAbs) can be used to complement immunization for the therapy of influenza virus infection. We have established the pig, a natural large animal host for influenza A, with many physiological, immunological, and anatomical similarities to humans, as an appropriate model for testing mAbs. We have evaluated the protective efficacy of the strongly neutralizing human anti-hemagglutinin mAb, 2-12C in the pig influenza model. Intravenous administration of recombinant 2-12C reduced virus load and lung pathology, however, it did not prevent virus nasal shedding and, consequently, transmission. This may be because the pigs were directly infected intranasally with a high dose of the H1N1pdm09 virus. To address this, we developed a contact challenge model in which the animals were given 2-12C and one day later co-housed with donor pigs previously infected intra-nasally with H1N1pdm09. 2-12C pre-treatment completely prevented infection. We also administered a lower dose of 2-12C by aerosol to the respiratory tract, but this did not prevent shedding in the direct challenge model, although it abolished lung infection. We propose that the direct contact challenge model of pig influenza may be useful for evaluating candidate mAbs and emerging delivery platforms prior to clinical trials.
Collapse
Affiliation(s)
- Adam McNee
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, United States
| | - Pramila Rijal
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Basudev Paudyal
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Fabian Z. X. Lean
- Department of Pathology, Animal and Plant Health Agency (APHA)-Weybridge, Addlestone, United Kingdom
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Ltd, Galway, Ireland
| | - Alejandro Núñez
- Department of Pathology, Animal and Plant Health Agency (APHA)-Weybridge, Addlestone, United Kingdom
| | - Alain Townsend
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, United States
| | - Elma Tchilian
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| |
Collapse
|
15
|
Modhiran N, Lauer SM, Amarilla AA, Hewins P, Lopes van den Broek SI, Low YS, Thakur N, Liang B, Nieto GV, Jung J, Paramitha D, Isaacs A, Sng JD, Song D, Jørgensen JT, Cheuquemilla Y, Bürger J, Andersen IV, Himelreichs J, Jara R, MacLoughlin R, Miranda-Chacon Z, Chana-Cuevas P, Kramer V, Spahn C, Mielke T, Khromykh AA, Munro T, Jones ML, Young PR, Chappell K, Bailey D, Kjaer A, Herth MM, Jurado KA, Schwefel D, Rojas-Fernandez A, Watterson D. A nanobody recognizes a unique conserved epitope and potently neutralizes SARS-CoV-2 omicron variants. iScience 2023; 26:107085. [PMID: 37361875 PMCID: PMC10251734 DOI: 10.1016/j.isci.2023.107085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/12/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) Omicron variant sub-lineages spread rapidly worldwide, mostly due to their immune-evasive properties. This has put a significant part of the population at risk for severe disease and underscores the need for effective anti-SARS-CoV-2 agents against emergent strains in vulnerable patients. Camelid nanobodies are attractive therapeutic candidates due to their high stability, ease of large-scale production, and potential for delivery via inhalation. Here, we characterize the receptor binding domain (RBD)-specific nanobody W25 and show superior neutralization activity toward Omicron sub-lineages in comparison to all other SARS-CoV2 variants. Structure analysis of W25 in complex with the SARS-CoV2 spike glycoprotein shows that W25 engages an RBD epitope not covered by any of the antibodies previously approved for emergency use. In vivo evaluation of W25 prophylactic and therapeutic treatments across multiple SARS-CoV-2 variant infection models, together with W25 biodistribution analysis in mice, demonstrates favorable pre-clinical properties. Together, these data endorse W25 for further clinical development.
Collapse
Affiliation(s)
- Naphak Modhiran
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD, Australia
| | - Simon Malte Lauer
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - Peter Hewins
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara Irene Lopes van den Broek
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Yu Shang Low
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - Nazia Thakur
- The Pirbright Institute, Ash Road, Guildford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benjamin Liang
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - Guillermo Valenzuela Nieto
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - James Jung
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - Devina Paramitha
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - Ariel Isaacs
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - Julian D.J. Sng
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - David Song
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesper Tranekjær Jørgensen
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Yorka Cheuquemilla
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Jörg Bürger
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Microscopy and Cryo-Electron Microscopy Service Group, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Ida Vang Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Johanna Himelreichs
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Ronald Jara
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland
| | | | - Pedro Chana-Cuevas
- CETRAM & Faculty of Medical Science Universidad de Santiago de Chile, Chile
| | - Vasko Kramer
- PositronPharma SA, Rancagua 878, 7500921 Providencia, Santiago, Chile
| | - Christian Spahn
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Thorsten Mielke
- Microscopy and Cryo-Electron Microscopy Service Group, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| | - Trent Munro
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD, Australia
| | - Martina L. Jones
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD, Australia
| | - Paul R. Young
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| | - Keith Chappell
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| | - Dalan Bailey
- The Pirbright Institute, Ash Road, Guildford, UK
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Matthias Manfred Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Kellie Ann Jurado
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - David Schwefel
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Alejandro Rojas-Fernandez
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Berking Biotechnology, Valdivia, Chile
| | - Daniel Watterson
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Yang X, Duan H, Liu X, Zhang X, Pan S, Zhang F, Gao P, Liu B, Yang J, Chi X, Yang W. Broad Sarbecovirus Neutralizing Antibodies Obtained by Computational Design and Synthetic Library Screening. J Virol 2023:e0061023. [PMID: 37367229 PMCID: PMC10373554 DOI: 10.1128/jvi.00610-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
Members of the Sarbecovirus subgenus of Coronaviridae have twice caused deadly threats to humans. There is increasing concern about the rapid mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has evolved into multiple generations of epidemic variants in 3 years. Broad neutralizing antibodies are of great importance for pandemic preparedness against SARS-CoV-2 variants and divergent zoonotic sarbecoviruses. Here, we analyzed the structural conservation of the receptor-binding domain (RBD) from representative sarbecoviruses and chose S2H97, a previously reported RBD antibody with ideal breadth and resistance to escape, as a template for computational design to enhance the neutralization activity and spectrum. A total of 35 designs were purified for evaluation. The neutralizing activity of a large proportion of these designs against multiple variants was increased from several to hundreds of times. Molecular dynamics simulation suggested that extra interface contacts and enhanced intermolecular interactions between the RBD and the designed antibodies are established. After light and heavy chain reconstitution, AI-1028, with five complementarity determining regions optimized, showed the best neutralizing activity across all tested sarbecoviruses, including SARS-CoV, multiple SARS-CoV-2 variants, and bat-derived viruses. AI-1028 recognized the same cryptic RBD epitope as the parental prototype antibody. In addition to computational design, chemically synthesized nanobody libraries are also a precious resource for rapid antibody development. By applying distinct RBDs as baits for reciprocal screening, we identified two novel nanobodies with broad activities. These findings provide potential pan-sarbecovirus neutralizing drugs and highlight new pathways to rapidly optimize therapeutic candidates when novel SARS-CoV-2 escape variants or new zoonotic coronaviruses emerge. IMPORTANCE The subgenus Sarbecovirus includes human SARS-CoV, SARS-CoV-2, and hundreds of genetically related bat viruses. The continuous evolution of SARS-CoV-2 has led to the striking evasion of neutralizing antibody (NAb) drugs and convalescent plasma. Antibodies with broad activity across sarbecoviruses would be helpful to combat current SARS-CoV-2 mutations and longer term animal virus spillovers. The study of pan-sarbecovirus NAbs described here is significant for the following reasons. First, we established a structure-based computational pipeline to design and optimize NAbs to obtain more potent and broader neutralizing activity across multiple sarbecoviruses. Second, we screened and identified nanobodies from a highly diversified synthetic library with a broad neutralizing spectrum using an elaborate screening strategy. These methodologies provide guidance for the rapid development of antibody therapeutics against emerging pathogens with highly variable characteristics.
Collapse
Affiliation(s)
- Xuehua Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huarui Duan
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiuying Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinhui Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shengnan Pan
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fangyuan Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Peixiang Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaojing Chi
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Loo CY, Lee WH, Zhou QT. Recent Advances in Inhaled Nanoformulations of Vaccines and Therapeutics Targeting Respiratory Viral Infections. Pharm Res 2023; 40:1015-1036. [PMID: 37186073 PMCID: PMC10129308 DOI: 10.1007/s11095-023-03520-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
With the rapid outbreak of respiratory viral infections, various biological (e.g. vaccines, peptides, recombinant proteins, antibodies and genes) and antiviral agents (e.g. ribavirin, palivizumab and valaciclovir) have been successfully developed for the treatment of respiratory virus infections such as influenza, respiratory syncytial virus and SARS-CoV-2 infections. These therapeutics are conventionally delivered via oral, intramuscular or injection route and are associated with several adverse events due to systemic toxicity. The inherent in vivo instability of biological therapeutics may hinder them from being administered without proper formulations. Therefore, we have witnessed a boom in nanotechnology coupled with a needle-free administration approach such as the inhalation route for the delivery of complex therapeutics to treat respiratory infections. This review discussed the recent advances in the inhalation strategies of nanoformulations that target virus respiratory infections.
Collapse
Affiliation(s)
- Ching-Yee Loo
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL RCMP), 30450, Perak, Malaysia.
| | - Wing-Hin Lee
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL RCMP), 30450, Perak, Malaysia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
18
|
Diethelm-Varela B, Soto JA, Riedel CA, Bueno SM, Kalergis AM. New Developments and Challenges in Antibody-Based Therapies for the Respiratory Syncytial Virus. Infect Drug Resist 2023; 16:2061-2074. [PMID: 37063935 PMCID: PMC10094422 DOI: 10.2147/idr.s379660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023] Open
Abstract
Since the discovery of the human respiratory syncytial virus (hRSV), multiple research efforts have been conducted to develop vaccines and treatments capable of reducing the risk of severe disease, hospitalization, long-term sequelae, and death from this pathogen in susceptible populations. In this sense, therapies specifically directed against hRSV are mainly based on monoclonal and polyclonal antibodies such as intravenous IgG (IVIG)-RSV and the monoclonal antibody palivizumab. However, these therapies are associated with significant limitations, including the need for the recruitment of a high number of convalescent volunteers who donate blood to procure IVIG-RSV and the costs associated with the need for repeated administrations of palivizumab. These limitations render this product not cost-effective for populations other than high-risk patients. These problems have underscored that it is still necessary to identify new safe and effective therapies for human use. However, these new therapies must benefit from a comparatively cheap production cost and the opportunity to be available to the high-risk population and anyone who requires treatment. Here, we review the different antibodies used to prevent the pathology caused by hRSV infection, highlighting therapies currently approved for human use and their clinical value. Also, the new, most promising candidates based on preclinical studies and clinical trial results are revised.
Collapse
Affiliation(s)
- Benjamín Diethelm-Varela
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Soto
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
19
|
Yong Joon Kim J, Sang Z, Xiang Y, Shen Z, Shi Y. Nanobodies: Robust miniprotein binders in biomedicine. Adv Drug Deliv Rev 2023; 195:114726. [PMID: 36754285 PMCID: PMC11725230 DOI: 10.1016/j.addr.2023.114726] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/30/2022] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Variable domains of heavy chain-only antibodies (VHH), also known as nanobodies (Nbs), are monomeric antigen-binding domains derived from the camelid heavy chain-only antibodies. Nbs are characterized by small size, high target selectivity, and marked solubility and stability, which collectively facilitate high-quality drug development. In addition, Nbs are readily expressed from various expression systems, including E. coli and yeast cells. For these reasons, Nbs have emerged as preferred antibody fragments for protein engineering, disease diagnosis, and treatment. To date, two Nb-based therapies have been approved by the U.S. Food and Drug Administration (FDA). Numerous candidates spanning a wide spectrum of diseases such as cancer, immune disorders, infectious diseases, and neurodegenerative disorders are under preclinical and clinical investigation. Here, we discuss the structural features of Nbs that allow for specific, versatile, and strong target binding. We also summarize emerging technologies for identification, structural analysis, and humanization of Nbs. Our main focus is to review recent advances in using Nbs as a modular scaffold to facilitate the engineering of multivalent polymers for cutting-edge applications. Finally, we discuss remaining challenges for Nb development and envision new opportunities in Nb-based research.
Collapse
Affiliation(s)
- Jeffrey Yong Joon Kim
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1, Gustave L. Levy Pl, New York, NY 10029, USA; Medical Scientist Training Program, University of Pittsburgh School of Medicine and Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zhe Sang
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1, Gustave L. Levy Pl, New York, NY 10029, USA
| | - Yufei Xiang
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1, Gustave L. Levy Pl, New York, NY 10029, USA
| | - Zhuolun Shen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Shi
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1, Gustave L. Levy Pl, New York, NY 10029, USA.
| |
Collapse
|
20
|
Mayor A, Thibert B, Huille S, Bensaid F, Respaud R, Audat H, Heuzé-Vourc'h N. Inhaled IgG1 antibodies: The buffering system is an important driver of stability during mesh-nebulization. Eur J Pharm Biopharm 2022; 181:173-182. [PMID: 36395981 DOI: 10.1016/j.ejpb.2022.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
In the past decade, oral inhalation has been a thriving focus of research to administer antibody directly to the lungs as an aerosol, for local treatment of respiratory diseases. Formulation of inhaled antibodies is central for the stability of antibody, lung safety and to ensure inhaler performances. Surfactants have already been shown to prevent antibody degradation during aerosolization, but little is known about the impact of other components of liquid formulations on the structural stability of antibodies. Here, we report for the first time to the best of our knowledge, a significant effect of the buffering system on monoclonal antibodies stability, during mesh-nebulization. While the monoclonal antibody extensively aggregated in citrate buffer after nebulization and required high concentration of polysorbate 80 (PS80) to maintain protein integrity, acetate and histidine buffers resulted in a slight to moderate aggregation without PS80 and low concentration of PS80 was sufficient to stabilize antibody during mesh-nebulization.
Collapse
Affiliation(s)
- Alexie Mayor
- INSERM, Centre D'Etude Des Pathologies Respiratoires, Université François Rabelais de Tours, 10 Boulevard Tonnellé, U1100F-37032 Tours, France; University of Tours, Tours, France; Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400 Vitry-sur-Seine, France
| | - Béatrice Thibert
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400 Vitry-sur-Seine, France
| | - Sylvain Huille
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400 Vitry-sur-Seine, France
| | - Fethi Bensaid
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400 Vitry-sur-Seine, France
| | - Renaud Respaud
- INSERM, Centre D'Etude Des Pathologies Respiratoires, Université François Rabelais de Tours, 10 Boulevard Tonnellé, U1100F-37032 Tours, France
| | - Héloïse Audat
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400 Vitry-sur-Seine, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Centre D'Etude Des Pathologies Respiratoires, Université François Rabelais de Tours, 10 Boulevard Tonnellé, U1100F-37032 Tours, France; University of Tours, Tours, France.
| |
Collapse
|
21
|
Soto JA, Galvez NMS, Rivera DB, Díaz FE, Riedel CA, Bueno SM, Kalergis AM. From animal studies into clinical trials: the relevance of animal models to develop vaccines and therapies to reduce disease severity and prevent hRSV infection. Expert Opin Drug Discov 2022; 17:1237-1259. [PMID: 36093605 DOI: 10.1080/17460441.2022.2123468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Human respiratory syncytial virus (hRSV) is an important cause of lower respiratory tract infections in the pediatric and the geriatric population worldwide. There is a substantial economic burden resulting from hRSV disease during winter. Although no vaccines have been approved for human use, prophylactic therapies are available for high-risk populations. Choosing the proper animal models to evaluate different vaccine prototypes or pharmacological treatments is essential for developing efficient therapies against hRSV. AREAS COVERED This article describes the relevance of using different animal models to evaluate the effect of antiviral drugs, pharmacological molecules, vaccine prototypes, and antibodies in the protection against hRSV. The animal models covered are rodents, mustelids, bovines, and nonhuman primates. Animals included were chosen based on the available literature and their role in the development of the drugs discussed in this manuscript. EXPERT OPINION Choosing the correct animal model is critical for exploring and testing treatments that could decrease the impact of hRSV in high-risk populations. Mice will continue to be the most used preclinical model to evaluate this. However, researchers must also explore the use of other models such as nonhuman primates, as they are more similar to humans, prior to escalating into clinical trials.
Collapse
Affiliation(s)
- J A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - N M S Galvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - D B Rivera
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F E Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - S M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
22
|
Li Q, Humphries F, Girardin RC, Wallace A, Ejemel M, Amcheslavsky A, McMahon CT, Schiller ZA, Ma Z, Cruz J, Dupuis AP, Payne AF, Maryam A, Yilmaz NK, McDonough KA, Pierce BG, Schiffer CA, Kruse AC, Klempner MS, Cavacini LA, Fitzgerald KA, Wang Y. Mucosal nanobody IgA as inhalable and affordable prophylactic and therapeutic treatment against SARS-CoV-2 and emerging variants. Front Immunol 2022; 13:995412. [PMID: 36172366 PMCID: PMC9512078 DOI: 10.3389/fimmu.2022.995412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Anti-COVID antibody therapeutics have been developed but not widely used due to their high cost and escape of neutralization from the emerging variants. Here, we describe the development of VHH-IgA1.1, a nanobody IgA fusion molecule as an inhalable, affordable and less invasive prophylactic and therapeutic treatment against SARS-CoV-2 Omicron variants. VHH-IgA1.1 recognizes a conserved epitope of SARS-CoV-2 spike protein Receptor Binding Domain (RBD) and potently neutralizes major global SARS-CoV-2 variants of concern (VOC) including the Omicron variant and its sub lineages BA.1.1, BA.2 and BA.2.12.1. VHH-IgA1.1 is also much more potent against Omicron variants as compared to an IgG Fc fusion construct, demonstrating the importance of IgA mediated mucosal protection for Omicron infection. Intranasal administration of VHH-IgA1.1 prior to or after challenge conferred significant protection from severe respiratory disease in K18-ACE2 transgenic mice infected with SARS-CoV-2 VOC. More importantly, for cost-effective production, VHH-IgA1.1 produced in Pichia pastoris had comparable potency to mammalian produced antibodies. Our study demonstrates that intranasal administration of affordably produced VHH-IgA fusion protein provides effective mucosal immunity against infection of SARS-CoV-2 including emerging variants.
Collapse
Affiliation(s)
- Qi Li
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - Fiachra Humphries
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Roxie C. Girardin
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Aaron Wallace
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - Monir Ejemel
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - Alla Amcheslavsky
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - Conor T. McMahon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Zachary A. Schiller
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - Zepei Ma
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - John Cruz
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Alan P. Dupuis
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Anne F. Payne
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Arooma Maryam
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | | | - Brian G. Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Andrew C. Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Mark S. Klempner
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - Lisa A. Cavacini
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
- *Correspondence: Yang Wang, ; Katherine A. Fitzgerald, ; Lisa A. Cavacini,
| | - Katherine A. Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
- *Correspondence: Yang Wang, ; Katherine A. Fitzgerald, ; Lisa A. Cavacini,
| | - Yang Wang
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
- *Correspondence: Yang Wang, ; Katherine A. Fitzgerald, ; Lisa A. Cavacini,
| |
Collapse
|
23
|
Correlation between the binding affinity and the conformational entropy of nanobody SARS-CoV-2 spike protein complexes. Proc Natl Acad Sci U S A 2022; 119:e2205412119. [PMID: 35858383 PMCID: PMC9351521 DOI: 10.1073/pnas.2205412119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the structural principles that determine the binding affinity of nanobodies to the spike protein of severe acute respiratory syndrome coronavirus 2 has been difficult. We analyzed electron microscopy maps of nanobody-spike complexes and quantified the conformational entropy of binding. This informed the design of an engineered nanobody with improved binding to the spike protein. This result offers a guiding principle for the rational maturation of nanobodies directed against the spike. High-binding potency nanobodies have been shown to be effective in animal models; thus, this technology could have application in future pandemics. Camelid single-domain antibodies, also known as nanobodies, can be readily isolated from naïve libraries for specific targets but often bind too weakly to their targets to be immediately useful. Laboratory-based genetic engineering methods to enhance their affinity, termed maturation, can deliver useful reagents for different areas of biology and potentially medicine. Using the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and a naïve library, we generated closely related nanobodies with micromolar to nanomolar binding affinities. By analyzing the structure–activity relationship using X-ray crystallography, cryoelectron microscopy, and biophysical methods, we observed that higher conformational entropy losses in the formation of the spike protein–nanobody complex are associated with tighter binding. To investigate this, we generated structural ensembles of the different complexes from electron microscopy maps and correlated the conformational fluctuations with binding affinity. This insight guided the engineering of a nanobody with improved affinity for the spike protein.
Collapse
|
24
|
Huang K, Ying T, Wu Y. Single-Domain Antibodies as Therapeutics for Respiratory RNA Virus Infections. Viruses 2022; 14:1162. [PMID: 35746634 PMCID: PMC9230756 DOI: 10.3390/v14061162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Over the years, infectious diseases with high morbidity and mortality disrupted human healthcare systems and devastated economies globally. Respiratory viruses, especially emerging or re-emerging RNA viruses, including influenza and human coronavirus, are the main pathogens of acute respiratory diseases that cause epidemics or even global pandemics. Importantly, due to the rapid mutation of viruses, there are few effective drugs and vaccines for the treatment and prevention of these RNA virus infections. Of note, a class of antibodies derived from camelid and shark, named nanobody or single-domain antibody (sdAb), was characterized by smaller size, lower production costs, more accessible binding epitopes, and inhalable properties, which have advantages in the treatment of respiratory diseases compared to conventional antibodies. Currently, a number of sdAbs have been developed against various respiratory RNA viruses and demonstrated potent therapeutic efficacy in mouse models. Here, we review the current status of the development of antiviral sdAb and discuss their potential as therapeutics for respiratory RNA viral diseases.
Collapse
Affiliation(s)
- Keke Huang
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Tianlei Ying
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| | - Yanling Wu
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| |
Collapse
|
25
|
Moliner-Morro A, McInerney GM, Hanke L. Nanobodies in the limelight: Multifunctional tools in the fight against viruses. J Gen Virol 2022; 103. [PMID: 35579613 DOI: 10.1099/jgv.0.001731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibodies are natural antivirals generated by the vertebrate immune system in response to viral infection or vaccination. Unsurprisingly, they are also key molecules in the virologist's molecular toolbox. With new developments in methods for protein engineering, protein functionalization and application, smaller antibody-derived fragments are moving in focus. Among these, camelid-derived nanobodies play a prominent role. Nanobodies can replace full-sized antibodies in most applications and enable new possible applications for which conventional antibodies are challenging to use. Here we review the versatile nature of nanobodies, discuss their promise as antiviral therapeutics, for diagnostics, and their suitability as research tools to uncover novel aspects of viral infection and disease.
Collapse
Affiliation(s)
- Ainhoa Moliner-Morro
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
26
|
Camelid Single-Domain Antibodies: Promises and Challenges as Lifesaving Treatments. Int J Mol Sci 2022; 23:ijms23095009. [PMID: 35563400 PMCID: PMC9100996 DOI: 10.3390/ijms23095009] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/07/2023] Open
Abstract
Since the discovery of camelid heavy-chain antibodies in 1993, there has been tremendous excitement for these antibody domains (VHHs/sdAbs/nanobodies) as research tools, diagnostics, and therapeutics. Commercially, several patents were granted to pioneering research groups in Belgium and the Netherlands between 1996–2001. Ablynx was established in 2001 with the aim of exploring the therapeutic applications and development of nanobody drugs. Extensive efforts over two decades at Ablynx led to the first approved nanobody drug, caplacizumab (Cablivi) by the EMA and FDA (2018–2019) for the treatment of rare blood clotting disorders in adults with acquired thrombotic thrombocytopenic purpura (TPP). The relatively long development time between camelid sdAb discovery and their entry into the market reflects the novelty of the approach, together with intellectual property restrictions and freedom-to-operate issues. The approval of the first sdAb drug, together with the expiration of key patents, may open a new horizon for the emergence of camelid sdAbs as mainstream biotherapeutics in the years to come. It remains to be seen if nanobody-based drugs will be cheaper than traditional antibodies. In this review, I provide critical perspectives on camelid sdAbs and present the promises and challenges to their widespread adoption as diagnostic and therapeutic agents.
Collapse
|
27
|
Wang J, Kang G, Yuan H, Cao X, Huang H, de Marco A. Research Progress and Applications of Multivalent, Multispecific and Modified Nanobodies for Disease Treatment. Front Immunol 2022; 12:838082. [PMID: 35116045 PMCID: PMC8804282 DOI: 10.3389/fimmu.2021.838082] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/30/2021] [Indexed: 12/22/2022] Open
Abstract
Recombinant antibodies such as nanobodies are progressively demonstrating to be a valid alternative to conventional monoclonal antibodies also for clinical applications. Furthermore, they do not solely represent a substitute for monoclonal antibodies but their unique features allow expanding the applications of biotherapeutics and changes the pattern of disease treatment. Nanobodies possess the double advantage of being small and simple to engineer. This combination has promoted extremely diversified approaches to design nanobody-based constructs suitable for particular applications. Both the format geometry possibilities and the functionalization strategies have been widely explored to provide macromolecules with better efficacy with respect to single nanobodies or their combination. Nanobody multimers and nanobody-derived reagents were developed to image and contrast several cancer diseases and have shown their effectiveness in animal models. Their capacity to block more independent signaling pathways simultaneously is considered a critical advantage to avoid tumor resistance, whereas the mass of these multimeric compounds still remains significantly smaller than that of an IgG, enabling deeper penetration in solid tumors. When applied to CAR-T cell therapy, nanobodies can effectively improve the specificity by targeting multiple epitopes and consequently reduce the side effects. This represents a great potential in treating malignant lymphomas, acute myeloid leukemia, acute lymphoblastic leukemia, multiple myeloma and solid tumors. Apart from cancer treatment, multispecific drugs and imaging reagents built with nanobody blocks have demonstrated their value also for detecting and tackling neurodegenerative, autoimmune, metabolic, and infectious diseases and as antidotes for toxins. In particular, multi-paratopic nanobody-based constructs have been developed recently as drugs for passive immunization against SARS-CoV-2 with the goal of impairing variant survival due to resistance to antibodies targeting single epitopes. Given the enormous research activity in the field, it can be expected that more and more multimeric nanobody molecules will undergo late clinical trials in the next future. Systematic Review Registration.
Collapse
Affiliation(s)
- Jiewen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Institute of Shaoxing, Tianjin University, Zhejiang, China
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Institute of Shaoxing, Tianjin University, Zhejiang, China
| | - Haibin Yuan
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Institute of Shaoxing, Tianjin University, Zhejiang, China
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Institute of Shaoxing, Tianjin University, Zhejiang, China
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| |
Collapse
|
28
|
Bivalent single domain antibody constructs for effective neutralization of Venezuelan equine encephalitis. Sci Rep 2022; 12:700. [PMID: 35027600 PMCID: PMC8758676 DOI: 10.1038/s41598-021-04434-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a mosquito borne alphavirus which leads to high viremia in equines followed by lethal encephalitis and lateral spread to humans. In addition to naturally occurring outbreaks, VEEV is a potential biothreat agent with no approved human vaccine or therapeutic currently available. Single domain antibodies (sdAb), also known as nanobodies, have the potential to be effective therapeutic agents. Using an immune phage display library derived from a llama immunized with an equine vaccine that included inactivated VEEV, five sdAb sequence families were identified that showed varying ability to neutralize VEEV. One of the sequence families had been identified previously in selections against chikungunya virus, a related alphavirus of public health concern. A key advantage of sdAb is the ability to optimize properties such as neutralization capacity through protein engineering. Neutralization of VEEV was improved by two orders of magnitude by genetically linking sdAb. One of the bivalent constructs showed effective neutralization of both VEEV and chikungunya virus. Several of the bivalent constructs neutralized VEEV in cell-based assays with reductions in the number of plaques by 50% at protein concentrations of 1 ng/mL or lower, making future evaluation of their therapeutic potential compelling.
Collapse
|
29
|
Zebardast A, Hosseini P, Hasanzadeh A, latifi T. The role of single-domain antibodies (or nanobodies) in SARS-CoV-2 neutralization. Mol Biol Rep 2022; 49:647-656. [PMID: 34648139 PMCID: PMC8514607 DOI: 10.1007/s11033-021-06819-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/08/2021] [Indexed: 01/06/2023]
Abstract
The severe acute respiratory syndrome (SARS-CoV-2), a newly emerging of coronavirus, continues to infect humans in the absence of a viable treatment. Neutralizing antibodies that disrupt the interaction of RBD and ACE2 has been under the spotlight as a way of developing the COVID-19 treatment. Some animals, such as llamas, manufacture heavy-chain antibodies that have a single variable domain (VHH) instead of two variable domains (VH/VL) as opposed to typical antibodies. Nanobodies are antigen-specific, single-domain, changeable segments of camelid heavy chain-only antibodies that are recombinantly produced. These types of antibodies exhibit a wide range of strong physical and chemical properties, like high solubility, and stability. The VHH's high-affinity attachment to the receptor-binding domain (RBD) allowed the neutralization of SARS-CoV-2. To tackle COVID-19, some nanobodies are being developed against SARS-CoV-2, some of which have been recently included in clinical trials. Nanobody therapy may be useful in managing the COVID-19 pandemic as a potent and low-cost treatment. This paper describes the application of nanobodies as a new class of recombinant antibodies in COVID-19 treatment.
Collapse
Affiliation(s)
- Arghavan Zebardast
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Hosseini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hasanzadeh
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Tayebeh latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Esparza TJ, Chen Y, Martin NP, Bielefeldt-Ohmann H, Bowen RA, Tolbert WD, Pazgier M, Brody DL. Nebulized delivery of a broadly neutralizing SARS-CoV-2 RBD-specific nanobody prevents clinical, virological, and pathological disease in a Syrian hamster model of COVID-19. MAbs 2022; 14:2047144. [PMID: 35289719 PMCID: PMC8928829 DOI: 10.1080/19420862.2022.2047144] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There remains an unmet need for globally deployable, low-cost therapeutics for the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Previously, we reported on the isolation and in vitro characterization of a potent single-domain nanobody, NIH-CoVnb-112, specific for the receptor-binding domain (RBD) of SARS-CoV-2. Here, we report on the molecular basis for the observed broad in vitro neutralization capability of NIH-CoVnb-112 against variant SARS-CoV-2 pseudoviruses. The structure of NIH-CoVnb-112 bound to SARS-CoV-2 RBD reveals a large contact surface area overlapping the angiotensin converting enzyme 2 (ACE2) binding site, which is largely unencumbered by the common RBD mutations. In an in vivo pilot study, we demonstrate effective reductions in weight loss, viral burden, and lung pathology in a Syrian hamster model of COVID-19 following nebulized delivery of NIH-CoVnb-112. These findings support the further development of NIH-CoVnb-112 as a potential adjunct preventative therapeutic for the treatment of SARS-CoV-2 infection.Abbreviations: ACE2 - angiotensin converting enzyme 2BSA - buried surface areaCDR - complementary determining regionRBD - receptor binding domainRBM - receptor-binding motifSARS-CoV-2 - severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Thomas J Esparza
- The National Institute of Neurological Disorders and Stroke Intramural Research Program, Laboratory of Functional and Molecular Imaging, Bethesda, MD, USA.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Yaozong Chen
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Negin P Martin
- Viral Vector Core, National Institute of Environmental Health Sciences, NIH/DHHS, NC, USA.,Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH/DHHS, NC, USA
| | - Helle Bielefeldt-Ohmann
- School of Chemistry & Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Qld, Australia
| | - Richard A Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - William D Tolbert
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Marzena Pazgier
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - David L Brody
- The National Institute of Neurological Disorders and Stroke Intramural Research Program, Laboratory of Functional and Molecular Imaging, Bethesda, MD, USA.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD, USA.,Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
31
|
Esparza TJ, Chen Y, Martin NP, Bielefeldt-Ohmann H, Bowen RA, Tolbert WD, Pazgier M, Brody DL. Nebulized delivery of a broadly neutralizing SARS-CoV-2 RBD-specific nanobody prevents clinical, virological and pathological disease in a Syrian hamster model of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.11.10.468147. [PMID: 34790977 PMCID: PMC8597880 DOI: 10.1101/2021.11.10.468147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There remains an unmet need for globally deployable, low-cost therapeutics for the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Previously, we reported on the isolation and in vitro characterization of a potent single-domain nanobody, NIH-CoVnb-112, specific for the receptor binding domain (RBD) of SARS-CoV-2. Here, we report on the molecular basis for the observed broad in vitro neutralization capability of NIH-CoVnb-112 against variant SARS-CoV-2 pseudoviruses, including the currently dominant Delta variant. The structure of NIH-CoVnb-112 bound to SARS-CoV-2 RBD reveals a large contact surface area overlapping the angiotensin converting enzyme 2 (ACE2) binding site, which is largely unencumbered by the common RBD mutations. In an in vivo pilot study, we demonstrate effective reductions in weight loss, viral burden, and lung pathology in a Syrian hamster model of COVID-19 following nebulized delivery of NIH-CoVnb-112. These findings support the further development of NIH-CoVnb-112 as a potential adjunct preventative therapeutic for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Thomas J. Esparza
- The National Institute of Neurological Disorders and Stroke Intramural Research Program, Laboratory of Functional and Molecular Imaging, Bethesda, MD, USA 20892
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD, USA 20817
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA 20817
| | - Yaozong Chen
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Negin P. Martin
- Viral Vector Core, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, NC, USA 27709
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, NC, USA 27709
| | - Helle Bielefeldt-Ohmann
- School of Chemistry & Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA, 80523
| | - William D. Tolbert
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Marzena Pazgier
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - David L. Brody
- The National Institute of Neurological Disorders and Stroke Intramural Research Program, Laboratory of Functional and Molecular Imaging, Bethesda, MD, USA 20892
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD, USA 20817
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| |
Collapse
|
32
|
Shen Z, Xiang Y, Vergara S, Chen A, Xiao Z, Santiago U, Jin C, Sang Z, Luo J, Chen K, Schneidman-Duhovny D, Camacho C, Calero G, Hu B, Shi Y. A resource of high-quality and versatile nanobodies for drug delivery. iScience 2021; 24:103014. [PMID: 34522857 PMCID: PMC8426283 DOI: 10.1016/j.isci.2021.103014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/09/2021] [Accepted: 08/18/2021] [Indexed: 01/08/2023] Open
Abstract
Therapeutic and diagnostic efficacies of small biomolecules and chemical compounds are hampered by suboptimal pharmacokinetics. Here, we developed a repertoire of robust and high-affinity antihuman serum albumin nanobodies (NbHSA) that can be readily fused to small biologics for half-life extension. We characterized the thermostability, binding kinetics, and cross-species reactivity of NbHSAs, mapped their epitopes, and structurally resolved a tetrameric HSA-Nb complex. We parallelly determined the half-lives of a cohort of selected NbHSAs in an HSA mouse model by quantitative proteomics. Compared to short-lived control nanobodies, the half-lives of NbHSAs were drastically prolonged by 771-fold. NbHSAs have distinct and diverse pharmacokinetics, positively correlating with their albumin binding affinities at the endosomal pH. We then generated stable and highly bioactive NbHSA-cytokine fusion constructs "Duraleukin" and demonstrated Duraleukin's high preclinical efficacy for cancer treatment in a melanoma model. This high-quality and versatile Nb toolkit will help tailor drug half-life to specific medical needs.
Collapse
Affiliation(s)
- Zhuolun Shen
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Yufei Xiang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sandra Vergara
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Apeng Chen
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Pediatric Neurosurgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Zhengyun Xiao
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ulises Santiago
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Changzhong Jin
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhe Sang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh-Carnegie Mellon University Joint Program for Computational Biology, Pittsburgh, PA, USA
| | - Jiadi Luo
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kong Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, Institute of Life Sciences, University of Jerusalem, Tambaram, Israel
| | - Carlos Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Pediatric Neurosurgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Molecular and Cellular Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh-Carnegie Mellon University Joint Program for Computational Biology, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Cheng L, Zhang X, Chen Y, Wang D, Zhang D, Yan S, Wang H, Xiao M, Liang T, Li H, Xu M, Hou X, Dai J, Wu X, Li M, Lu M, Wu D, Tian R, Zhao J, Zhang Y, Cao W, Wang J, Yan X, Zhou X, Liu Z, Xu Y, He F, Li Y, Yu X, Zhang S. Dynamic landscape mapping of humoral immunity to SARS-CoV-2 identifies non-structural protein antibodies associated with the survival of critical COVID-19 patients. Signal Transduct Target Ther 2021; 6:304. [PMID: 34404759 PMCID: PMC8368053 DOI: 10.1038/s41392-021-00718-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/19/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022] Open
Abstract
A comprehensive analysis of the humoral immune response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential in understanding COVID-19 pathogenesis and developing antibody-based diagnostics and therapy. In this work, we performed a longitudinal analysis of antibody responses to SARS-CoV-2 proteins in 104 serum samples from 49 critical COVID-19 patients using a peptide-based SARS-CoV-2 proteome microarray. Our data show that the binding epitopes of IgM and IgG antibodies differ across SARS-CoV-2 proteins and even within the same protein. Moreover, most IgM and IgG epitopes are located within nonstructural proteins (nsps), which are critical in inactivating the host's innate immune response and enabling SARS-CoV-2 replication, transcription, and polyprotein processing. IgM antibodies are associated with a good prognosis and target nsp3 and nsp5 proteases, whereas IgG antibodies are associated with high mortality and target structural proteins (Nucleocapsid, Spike, ORF3a). The epitopes targeted by antibodies in patients with a high mortality rate were further validated using an independent serum cohort (n = 56) and using global correlation mapping analysis with the clinical variables that are associated with COVID-19 severity. Our data provide fundamental insight into humoral immunity during SARS-CoV-2 infection. SARS-CoV-2 immunogenic epitopes identified in this work could also help direct antibody-based COVID-19 treatment and triage patients.
Collapse
Affiliation(s)
- Linlin Cheng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaomei Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Yu Chen
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Dan Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Dong Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Songxin Yan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongye Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Meng Xiao
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Te Liang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Meng Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Xin Hou
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jiayu Dai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Xian Wu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Mingyuan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Minya Lu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Dong Wu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ran Tian
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jing Zhao
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yan Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Cao
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinglan Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaowei Yan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiang Zhou
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhengyin Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China.
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China.
| | - Shuyang Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
34
|
Rahman F, Libre C, Oleinikov A, Tcherniuk S. Chloroquine and pyrimethamine inhibit the replication of human respiratory syncytial virus A. J Gen Virol 2021; 102. [PMID: 34342560 DOI: 10.1099/jgv.0.001627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human respiratory syncytial virus (hRSV) is a major cause of respiratory illness in young children and can cause severe infections in the elderly or in immunocompromised adults. To date, there is no vaccine to prevent hRSV infections, and disease management is limited to preventive care by palivizumab in infants and supportive care for adults. Intervention with small-molecule antivirals specific for hRSV represents a good alternative, but no such compounds are currently approved. The investigation of existing drugs for new therapeutic purposes (drug repositioning) can be a faster approach to address this issue. In this study, we show that chloroquine and pyrimethamine inhibit the replication of human respiratory syncytial virus A (long strain) and synergistically increase the anti-replicative effect of ribavirin in cellulo. Moreover, chloroquine, but not pyrimethamine, inhibits hRSV replication in the mouse model. Our results show that chloroquine can potentially be an interesting compound for treatment of hRSV infection in monotherapy or in combination with other antivirals.
Collapse
Affiliation(s)
- Fryad Rahman
- Department of Biology, College of Science, University of Sulaimani, Kurdistan Region, Iraq.,Department of Molecular Biology, High Quality Laboratory, Anwar Sheikha Medical City, Sulaymaniyah, Iraq
| | - Camille Libre
- Cancer Research Center of Lyon, INSERM U1052 UMR CNRS 5286, Equipe labellisée Ligue Contre le Cancer, Université de Lyon, 69008 Lyon, France
| | - Andrew Oleinikov
- Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| | - Sergey Tcherniuk
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris SaclayJouy-en-Josas, France.,Department of Biological Sciences, Youth Academy of Sciences, Kiev, Ukraine
| |
Collapse
|
35
|
Parray HA, Shukla S, Perween R, Khatri R, Shrivastava T, Singh V, Murugavelu P, Ahmed S, Samal S, Sharma C, Sinha S, Luthra K, Kumar R. Inhalation monoclonal antibody therapy: a new way to treat and manage respiratory infections. Appl Microbiol Biotechnol 2021; 105:6315-6332. [PMID: 34423407 PMCID: PMC8380517 DOI: 10.1007/s00253-021-11488-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/23/2022]
Abstract
The route of administration of a therapeutic agent has a substantial impact on its success. Therapeutic antibodies are usually administered systemically, either directly by intravenous route, or indirectly by intramuscular or subcutaneous injection. However, treatment of diseases contained within a specific tissue necessitates a better alternate route of administration for targeting localised infections. Inhalation is a promising non-invasive strategy for antibody delivery to treat respiratory maladies because it provides higher concentrations of antibody in the respiratory airways overcoming the constraints of entry through systemic circulation and uncertainity in the amount reaching the target tissue. The nasal drug delivery route is one of the extensively researched modes of administration, and nasal sprays for molecular drugs are deemed successful and are presently commercially marketed. This review highlights the current state and future prospects of inhaled therapies, with an emphasis on the use of monoclonal antibodies for the treatment of respiratory infections, as well as an overview of their importance, practical challenges, and clinical trial outcomes.Key points• Immunologic strategies for preventing mucosal transmission of respiratory pathogens.• Mucosal-mediated immunoprophylaxis could play a major role in COVID-19 prevention.• Applications of monoclonal antibodies in passive immunisation.
Collapse
Affiliation(s)
- Hilal Ahmad Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Shivangi Shukla
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Reshma Perween
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Ritika Khatri
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Vanshika Singh
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Praveenkumar Murugavelu
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Chandresh Sharma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India.
| |
Collapse
|
36
|
Pymm P, Adair A, Chan LJ, Cooney JP, Mordant FL, Allison CC, Lopez E, Haycroft ER, O'Neill MT, Tan LL, Dietrich MH, Drew D, Doerflinger M, Dengler MA, Scott NE, Wheatley AK, Gherardin NA, Venugopal H, Cromer D, Davenport MP, Pickering R, Godfrey DI, Purcell DFJ, Kent SJ, Chung AW, Subbarao K, Pellegrini M, Glukhova A, Tham WH. Nanobody cocktails potently neutralize SARS-CoV-2 D614G N501Y variant and protect mice. Proc Natl Acad Sci U S A 2021; 118:e2101918118. [PMID: 33893175 PMCID: PMC8126837 DOI: 10.1073/pnas.2101918118] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neutralizing antibodies are important for immunity against SARS-CoV-2 and as therapeutics for the prevention and treatment of COVID-19. Here, we identified high-affinity nanobodies from alpacas immunized with coronavirus spike and receptor-binding domains (RBD) that disrupted RBD engagement with the human receptor angiotensin-converting enzyme 2 (ACE2) and potently neutralized SARS-CoV-2. Epitope mapping, X-ray crystallography, and cryo-electron microscopy revealed two distinct antigenic sites and showed two neutralizing nanobodies from different epitope classes bound simultaneously to the spike trimer. Nanobody-Fc fusions of the four most potent nanobodies blocked ACE2 engagement with RBD variants present in human populations and potently neutralized both wild-type SARS-CoV-2 and the N501Y D614G variant at concentrations as low as 0.1 nM. Prophylactic administration of either single nanobody-Fc or as mixtures reduced viral loads by up to 104-fold in mice infected with the N501Y D614G SARS-CoV-2 virus. These results suggest a role for nanobody-Fc fusions as prophylactic agents against SARS-CoV-2.
Collapse
Affiliation(s)
- Phillip Pymm
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Amy Adair
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Li-Jin Chan
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - James P Cooney
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Francesca L Mordant
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Cody C Allison
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ester Lopez
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Ebene R Haycroft
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Matthew T O'Neill
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Li Lynn Tan
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Melanie H Dietrich
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Damien Drew
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Marcel Doerflinger
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Michael A Dengler
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Nicholas A Gherardin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Hariprasad Venugopal
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Deborah Cromer
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Raelene Pickering
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Marc Pellegrini
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Alisa Glukhova
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Drug Discovery Biology, Monash Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Wai-Hong Tham
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
37
|
Potent Neutralization of SARS-CoV-2 by Hetero-bivalent Alpaca Nanobodies Targeting the Spike Receptor-Binding Domain. J Virol 2021; 95:JVI.02438-20. [PMID: 33658349 PMCID: PMC8139655 DOI: 10.1128/jvi.02438-20] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cell entry by SARS-CoV-2 requires the binding between the receptor-binding domain (RBD) of the viral Spike protein and the cellular angiotensin-converting enzyme 2 (ACE2). As such, RBD has become the major target for vaccine development, while RBD-specific antibodies are pursued as therapeutics. Here, we report the development and characterization of SARS-CoV-2 RBD-specific VHH/nanobody (Nb) from immunized alpacas. Seven RBD-specific Nbs with high stability were identified using phage display. They bind to SARS-CoV-2 RBD with affinity KD ranging from 2.6 to 113 nM, and six of them can block RBD-ACE2 interaction. The fusion of the Nbs with IgG1 Fc resulted in homodimers with greatly improved RBD-binding affinities (KD ranging from 72.7 pM to 4.5 nM) and nanomolar RBD-ACE2 blocking abilities. Furthermore, the fusion of two Nbs with non-overlapping epitopes resulted in hetero-bivalent Nbs, namely aRBD-2-5 and aRBD-2-7, with significantly higher RBD binding affinities (KD of 59.2 pM and 0.25 nM) and greatly enhanced SARS-CoV-2 neutralizing potency. The 50% neutralization dose (ND50) of aRBD-2-5 and aRBD-2-7 was 1.22 ng/mL (∼0.043 nM) and 3.18 ng/mL (∼0.111 nM), respectively. These high-affinity SARS-CoV-2 blocking Nbs could be further developed into therapeutics as well as diagnostic reagents for COVID-19.ImportanceTo date, SARS-CoV-2 has caused tremendous loss of human life and economic output worldwide. Although a few COVID-19 vaccines have been approved in several countries, the development of effective therapeutics, including SARS-CoV-2 targeting antibodies, remains critical. Due to their small size (13-15 kDa), high solubility, and stability, Nbs are particularly well suited for pulmonary delivery and more amenable to engineer into multivalent formats than the conventional antibody. Here, we report a series of new anti-SARS-CoV-2 Nbs isolated from immunized alpaca and two engineered hetero-bivalent Nbs. These potent neutralizing Nbs showed promise as potential therapeutics against COVID-19.
Collapse
|
38
|
Mayor A, Thibert B, Huille S, Respaud R, Audat H, Heuzé-Vourc'h N. Inhaled antibodies: formulations require specific development to overcome instability due to nebulization. Drug Deliv Transl Res 2021; 11:1625-1633. [PMID: 33768475 PMCID: PMC7993445 DOI: 10.1007/s13346-021-00967-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Abstract Respiratory infections are life-threatening and therapeutic antibodies (Ab) have a tremendous opportunity to benefit to patients with pneumonia due to multidrug resistance bacteria or emergent virus, before a vaccine is manufactured. In respiratory infections, inhalation of anti-infectious Ab may be more relevant than intravenous (IV) injection-the standard route-to target the site of infection and improve Ab therapeutic index. One major challenge associated to Ab inhalation is to prevent protein instability during the aerosolization process. Ab drug development for IV injection aims to design a high-quality product, stable to different environment stress. In this study, we evaluated the suitability of Ab formulations developed for IV injection to be extended for inhalation delivery. We studied the aerosol characteristics and the aggregation profile of three Ab formulations developed for IV injection after nebulization, with two mesh nebulizers. Although the formulations for IV injection were compatible with mesh nebulization and deposition into the respiratory tract, the Ab were more unstable during nebulization than exposition to a vigorous shaking. Overall, our findings indicate that Ab formulations developed for IV delivery may not easily be repurposed for inhalation delivery and point to the requirement of a specific formulation development for inhaled Ab. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s13346-021-00967-w.
Collapse
Affiliation(s)
- Alexie Mayor
- INSERM, Centre D'Etude Des Pathologies Respiratoires, Universite François Rabelais de Tours, 10 Boulevard Tonnellé, U1100F-37032, Tours, France
- University of Tours, Tours, France
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400, Vitry-sur-Seine, France
| | - Béatrice Thibert
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400, Vitry-sur-Seine, France
| | - Sylvain Huille
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400, Vitry-sur-Seine, France
| | | | - Héloïse Audat
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400, Vitry-sur-Seine, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Centre D'Etude Des Pathologies Respiratoires, Universite François Rabelais de Tours, 10 Boulevard Tonnellé, U1100F-37032, Tours, France.
- University of Tours, Tours, France.
| |
Collapse
|
39
|
Kulkarni SS, Falzarano D. Unique aspects of adaptive immunity in camelids and their applications. Mol Immunol 2021; 134:102-108. [PMID: 33751993 DOI: 10.1016/j.molimm.2021.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 01/01/2023]
Abstract
Members of the Camelidae have unique adaptive immunological features that are not widely observed in other species. All camelids are known to have three distinct IgG isotypes - IgG1, IgG2 and IgG3. While IgG1 has a conventional antibody structure, both IgG2 and IgG3 are devoid of light chains and instead possess hypervariable regions in their heavy chain (VHH), while lacking the typical CH1 domain found in heavy chains. VHH domains are increasingly being utilized as "next generation" antibodies, as they have unique biochemical and structural properties including high pH stability as well as a lower molecular weight allowing for increased tissue penetration. These features of VHH domains offer a number of advantages for both biotechnology and clinical applications and are commonly termed "nanobodies". A second unique aspect of the camelid adaptive response is involves T cell-mediated immunity. Characterization of gamma delta (ꝩδ) T cells in camelid species has found they use somatic hypermutation in their T cell receptor gamma (TRG) and delta (TRD) loci to increase the structural stability of their ꝩδ T receptor. The use of somatic hyper mutation to increase the diversity of their T cell repertoire, is a feature that has not been observed in other mammalian species. In addition, in alpacas there is a unique subset of ꝩδ T cells called Vꝩ9Vδ2 T cells. Activation of these cells is dependent upon phosphoantigen (PAg)-mediated interaction with B7-like butyrophilin molecules (BTN-3). This makes alpacas the first species outside of primates to be identified with this unique subset and activation mechanism. Here we review some fundamentals of camelid adaptive immunity that make them distinct from other vertebrate species and their potential applications to human therapies.
Collapse
Affiliation(s)
- Swarali S Kulkarni
- Vaccine and Infectious Disease Organization and Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization and Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
40
|
Streptococcus pneumoniae serotype 22F infection in respiratory syncytial virus infected neonatal lambs enhances morbidity. PLoS One 2021; 16:e0235026. [PMID: 33705390 PMCID: PMC7951856 DOI: 10.1371/journal.pone.0235026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/22/2021] [Indexed: 11/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the primary cause of viral bronchiolitis resulting in hospitalization and a frequent cause of secondary respiratory bacterial infection, especially by Streptococcus pneumoniae (Spn) in infants. While murine studies have demonstrated enhanced morbidity during a viral/bacterial co-infection, human meta-studies have conflicting results. Moreover, little knowledge about the pathogenesis of emerging Spn serotype 22F, especially the co-pathologies between RSV and Spn, is known. Here, colostrum-deprived neonate lambs were divided into four groups. Two of the groups were nebulized with RSV M37, and the other two groups were mock nebulized. At day three post-RSV infection, one RSV group (RSV/Spn) and one mock-nebulized group (Spn only) were inoculated with Spn intratracheally. At day six post-RSV infection, bacterial/viral loads were assessed along with histopathology and correlated with clinical symptoms. Lambs dually infected with RSV/Spn trended with higher RSV titers, but lower Spn. Additionally, lung lesions were observed to be more frequent in the RSV/Spn group characterized by increased interalveolar wall thickness accompanied by neutrophil and lymphocyte infiltration and higher myeloperoxidase. Despite lower Spn in lungs, co-infected lambs had more significant morbidity and histopathology, which correlated with a different cytokine response. Thus, enhanced disease severity during dual infection may be due to lesion development and altered immune responses rather than bacterial counts.
Collapse
|
41
|
Chouchane L, Grivel JC, Farag EABA, Pavlovski I, Maacha S, Sathappan A, Al-Romaihi HE, Abuaqel SW, Ata MMA, Chouchane AI, Remadi S, Halabi N, Rafii A, Al-Thani MH, Marr N, Subramanian M, Shan J. Dromedary camels as a natural source of neutralizing nanobodies against SARS-CoV-2. JCI Insight 2021; 6:145785. [PMID: 33529170 PMCID: PMC8021111 DOI: 10.1172/jci.insight.145785] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
The development of prophylactic and therapeutic agents for coronavirus disease 2019 (COVID-19) is a current global health priority. Here, we investigated the presence of cross-neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in dromedary camels that were Middle East respiratory syndrome coronavirus (MERS-CoV) seropositive but MERS-CoV free. The tested 229 dromedaries had anti–MERS-CoV camel antibodies with variable cross-reactivity patterns against SARS-CoV-2 proteins, including the S trimer and M, N, and E proteins. Using SARS-CoV-2 competitive immunofluorescence immunoassays and pseudovirus neutralization assays, we found medium-to-high titers of cross-neutralizing antibodies against SARS-CoV-2 in these animals. Through linear B cell epitope mapping using phage immunoprecipitation sequencing and a SARS-CoV-2 peptide/proteome microarray, we identified a large repertoire of Betacoronavirus cross-reactive antibody specificities in these dromedaries and demonstrated that the SARS-CoV-2–specific VHH antibody repertoire is qualitatively diverse. This analysis revealed not only several SARS-CoV-2 epitopes that are highly immunogenic in humans, including a neutralizing epitope, but also epitopes exclusively targeted by camel antibodies. The identified SARS-CoV-2 cross-neutralizing camel antibodies are not proposed as a potential treatment for COVID-19. Rather, their presence in nonimmunized camels supports the development of SARS-CoV-2 hyperimmune camels, which could be a prominent source of therapeutic agents for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Lotfi Chouchane
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA.,Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | | | - Igor Pavlovski
- Deep Phenotyping Core, Research Branch, Sidra Medicine, Doha, Qatar
| | - Selma Maacha
- Deep Phenotyping Core, Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Hamad Eid Al-Romaihi
- Department of Communicable Diseases Control, Ministry of Public Health, Doha, Qatar
| | - Sirin Wj Abuaqel
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA.,Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | | | | | - Najeeb Halabi
- Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Arash Rafii
- Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | - Nico Marr
- Department of Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Murugan Subramanian
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA.,Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Jingxuan Shan
- Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
42
|
Yao H, Cai H, Li T, Zhou B, Qin W, Lavillette D, Li D. A high-affinity RBD-targeting nanobody improves fusion partner's potency against SARS-CoV-2. PLoS Pathog 2021; 17:e1009328. [PMID: 33657135 PMCID: PMC7959386 DOI: 10.1371/journal.ppat.1009328] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/15/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
A key step to the SARS-CoV-2 infection is the attachment of its Spike receptor-binding domain (S RBD) to the host receptor ACE2. Considerable research has been devoted to the development of neutralizing antibodies, including llama-derived single-chain nanobodies, to target the receptor-binding motif (RBM) and to block ACE2-RBD binding. Simple and effective strategies to increase potency are desirable for such studies when antibodies are only modestly effective. Here, we identify and characterize a high-affinity synthetic nanobody (sybody, SR31) as a fusion partner to improve the potency of RBM-antibodies. Crystallographic studies reveal that SR31 binds to RBD at a conserved and 'greasy' site distal to RBM. Although SR31 distorts RBD at the interface, it does not perturb the RBM conformation, hence displaying no neutralizing activities itself. However, fusing SR31 to two modestly neutralizing sybodies dramatically increases their affinity for RBD and neutralization activity against SARS-CoV-2 pseudovirus. Our work presents a tool protein and an efficient strategy to improve nanobody potency.
Collapse
Affiliation(s)
- Hebang Yao
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongmin Cai
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bingjie Zhou
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wenming Qin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute (Zhangjiang Laboratory), Chinese Academy of Sciences, Shanghai, China
| | - Dimitri Lavillette
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Pasteurien College, Soochow University, Jiangsu, China
| | - Dianfan Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Valenzuela Nieto G, Jara R, Watterson D, Modhiran N, Amarilla AA, Himelreichs J, Khromykh AA, Salinas-Rebolledo C, Pinto T, Cheuquemilla Y, Margolles Y, López González Del Rey N, Miranda-Chacon Z, Cuevas A, Berking A, Deride C, González-Moraga S, Mancilla H, Maturana D, Langer A, Toledo JP, Müller A, Uberti B, Krall P, Ehrenfeld P, Blesa J, Chana-Cuevas P, Rehren G, Schwefel D, Fernandez LÁ, Rojas-Fernandez A. Potent neutralization of clinical isolates of SARS-CoV-2 D614 and G614 variants by a monomeric, sub-nanomolar affinity nanobody. Sci Rep 2021; 11:3318. [PMID: 33558635 PMCID: PMC7870875 DOI: 10.1038/s41598-021-82833-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Despite unprecedented global efforts to rapidly develop SARS-CoV-2 treatments, in order to reduce the burden placed on health systems, the situation remains critical. Effective diagnosis, treatment, and prophylactic measures are urgently required to meet global demand: recombinant antibodies fulfill these requirements and have marked clinical potential. Here, we describe the fast-tracked development of an alpaca Nanobody specific for the receptor-binding-domain (RBD) of the SARS-CoV-2 Spike protein with potential therapeutic applicability. We present a rapid method for nanobody isolation that includes an optimized immunization regimen coupled with VHH library E. coli surface display, which allows single-step selection of Nanobodies using a simple density gradient centrifugation of the bacterial library. The selected single and monomeric Nanobody, W25, binds to the SARS-CoV-2 S RBD with sub-nanomolar affinity and efficiently competes with ACE-2 receptor binding. Furthermore, W25 potently neutralizes SARS-CoV-2 wild type and the D614G variant with IC50 values in the nanomolar range, demonstrating its potential as antiviral agent.
Collapse
Affiliation(s)
| | - Ronald Jara
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel Watterson
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, Australia
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, Australia
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Alberto A Amarilla
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Johanna Himelreichs
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Alexander A Khromykh
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | | | - Teresa Pinto
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Yorka Cheuquemilla
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Berking Biotechnology, Valdivia, Chile
| | - Yago Margolles
- Department of Microbial Biotechnology, National Biotechnology Center, Superior Council of Scientific Research, Madrid, Spain
| | | | - Zaray Miranda-Chacon
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Alexei Cuevas
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | | | - Camila Deride
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Institute of Veterinary Clinical Sciences, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | | | - Héctor Mancilla
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel Maturana
- NanoTemper Technologies GmbH, Floessergasse 4, 81369, Munich, Germany
| | - Andreas Langer
- NanoTemper Technologies GmbH, Floessergasse 4, 81369, Munich, Germany
| | - Juan Pablo Toledo
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Ananda Müller
- Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
- Institute of Veterinary Clinical Sciences, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Benjamín Uberti
- Institute of Veterinary Clinical Sciences, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Paola Krall
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Department of Pediatrics and Children's Surgery Oriente, Universidad de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Institute of Anatomy, Histology, and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Mostoles, 28938, Madrid, Spain
| | - Pedro Chana-Cuevas
- CETRAM & Faculty of Medical Science, Universidad de Santiago de Chile, Santiago, Chile
| | - German Rehren
- Technology Transfer and Licensing Office, Universidad Austral de Chile, Valdivia, Chile
| | - David Schwefel
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Luis Ángel Fernandez
- Department of Microbial Biotechnology, National Biotechnology Center, Superior Council of Scientific Research, Madrid, Spain
| | - Alejandro Rojas-Fernandez
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.
- Berking Biotechnology, Valdivia, Chile.
- Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile.
- Institute of Philosophy and Complexity Sciences, Santiago, Chile.
| |
Collapse
|
44
|
Cruz-Teran C, Tiruthani K, McSweeney M, Ma A, Pickles R, Lai SK. Challenges and opportunities for antiviral monoclonal antibodies as COVID-19 therapy. Adv Drug Deliv Rev 2021; 169:100-117. [PMID: 33309815 PMCID: PMC7833882 DOI: 10.1016/j.addr.2020.12.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 01/08/2023]
Abstract
To address the COVID-19 pandemic, there has been an unprecedented global effort to advance potent neutralizing mAbs against SARS-CoV-2 as therapeutics. However, historical efforts to advance antiviral monoclonal antibodies (mAbs) for the treatment of other respiratory infections have been met with categorical failures in the clinic. By investigating the mechanism by which SARS-CoV-2 and similar viruses spread within the lung, along with available biodistribution data for systemically injected mAb, we highlight the challenges faced by current antiviral mAbs for COVID-19. We summarize some of the leading mAbs currently in development, and present the evidence supporting inhaled delivery of antiviral mAb as an early intervention against COVID-19 that could prevent important pulmonary morbidities associated with the infection.
Collapse
Affiliation(s)
- Carlos Cruz-Teran
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karthik Tiruthani
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Alice Ma
- UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raymond Pickles
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Inhalon Biopharma, Durham, NC 27709, USA; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
45
|
Matera MG, Calzetta L, Ora J, Rogliani P, Cazzola M. Pharmacokinetic/pharmacodynamic approaches to drug delivery design for inhalation drugs. Expert Opin Drug Deliv 2021; 18:891-906. [PMID: 33412922 DOI: 10.1080/17425247.2021.1873271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Inhaled drugs are important in the treatment of many lung pathologies, but to be therapeutically effective they must reach unbound concentrations at their effect site in the lung that are adequate to interact with their pharmacodynamic properties (PD) and exert the pharmacological action over an appropriate dosing interval. Therefore, the evaluation of pharmacokinetic (PK)/PD relationship is critical to predict their possible therapeutic effect.Areas covered: We review the approaches used to assess the PK/PD relationship of the major classes of inhaled drugs that are prescribed to treat pulmonary pathologies.Expert opinion: There are still great difficulties in producing data on lung concentrations of inhaled drugs and interpreting them as to their ability to induce the desired therapeutic action. The structural complexity of the lungs, the multiplicity of processes involved simultaneously and the physical interactions between the lungs and drug make any PK/PD approach to drug delivery design for inhalation medications extremely challenging. New approaches/methods are increasing our understanding about what happens to inhaled drugs, but they are still not ready for regulatory purposes. Therefore, we must still rely on plasma concentrations based on the axiom that they reflect both the extent and the pattern of deposition within the lungs.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Dept. Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigino Calzetta
- Unit of Respiratory Disease and Lung Function, Dept. Medicine and Surgery, University of Parma, Parma, Italy
| | - Josuel Ora
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
46
|
Esparza TJ, Martin NP, Anderson GP, Goldman ER, Brody DL. High affinity nanobodies block SARS-CoV-2 spike receptor binding domain interaction with human angiotensin converting enzyme. Sci Rep 2020; 10:22370. [PMID: 33353972 PMCID: PMC7755911 DOI: 10.1038/s41598-020-79036-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
There are currently few approved effective treatments for SARS-CoV-2, the virus responsible for the COVID-19 pandemic. Nanobodies are 12–15 kDa single-domain antibody fragments that can be delivered by inhalation and are amenable to relatively inexpensive large scale production compared to other biologicals. We have isolated nanobodies that bind to the SARS-CoV-2 spike protein receptor binding domain and block spike protein interaction with the angiotensin converting enzyme 2 (ACE2) with 1–5 nM affinity. The lead nanobody candidate, NIH-CoVnb-112, blocks SARS-CoV-2 spike pseudotyped lentivirus infection of HEK293 cells expressing human ACE2 with an EC50 of 0.3 µg/mL. NIH-CoVnb-112 retains structural integrity and potency after nebulization. Furthermore, NIH-CoVnb-112 blocks interaction between ACE2 and several high affinity variant forms of the spike protein. These nanobodies and their derivatives have therapeutic, preventative, and diagnostic potential.
Collapse
Affiliation(s)
- Thomas J Esparza
- Laboratory of Functional and Molecular Imaging, The National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD, 20892, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20892, USA
| | - Negin P Martin
- Viral Vector Core, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, NC, 27709, USA.,Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, NC, 27709, USA
| | - George P Anderson
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, 20375, USA
| | - Ellen R Goldman
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, 20375, USA
| | - David L Brody
- Laboratory of Functional and Molecular Imaging, The National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD, 20892, USA. .,Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
47
|
Sécher T, Bodier-Montagutelli E, Guillon A, Heuzé-Vourc'h N. Correlation and clinical relevance of animal models for inhaled pharmaceuticals and biopharmaceuticals. Adv Drug Deliv Rev 2020; 167:148-169. [PMID: 32645479 DOI: 10.1016/j.addr.2020.06.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 12/01/2022]
Abstract
Nonclinical studies are fundamental for the development of inhaled drugs, as for any drug product, and for successful translation to clinical practice. They include in silico, in vitro, ex vivo and in vivo studies and are intended to provide a comprehensive understanding of the inhaled drug beneficial and detrimental effects. To date, animal models cannot be circumvented during drug development programs, acting as surrogates of humans to predict inhaled drug response, fate and toxicity. Herein, we review the animal models used during the different development stages of inhaled pharmaceuticals and biopharmaceuticals, highlighting their strengths and limitations.
Collapse
Affiliation(s)
- T Sécher
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France
| | - E Bodier-Montagutelli
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France; CHRU de Tours, Pharmacy Department, Tours, France
| | - A Guillon
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France; CHRU de Tours, Critical Care Department, Tours, France
| | - N Heuzé-Vourc'h
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France.
| |
Collapse
|
48
|
Liang W, Pan HW, Vllasaliu D, Lam JKW. Pulmonary Delivery of Biological Drugs. Pharmaceutics 2020; 12:E1025. [PMID: 33114726 PMCID: PMC7693150 DOI: 10.3390/pharmaceutics12111025] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
In the last decade, biological drugs have rapidly proliferated and have now become an important therapeutic modality. This is because of their high potency, high specificity and desirable safety profile. The majority of biological drugs are peptide- and protein-based therapeutics with poor oral bioavailability. They are normally administered by parenteral injection (with a very few exceptions). Pulmonary delivery is an attractive non-invasive alternative route of administration for local and systemic delivery of biologics with immense potential to treat various diseases, including diabetes, cystic fibrosis, respiratory viral infection and asthma, etc. The massive surface area and extensive vascularisation in the lungs enable rapid absorption and fast onset of action. Despite the benefits of pulmonary delivery, development of inhalable biological drug is a challenging task. There are various anatomical, physiological and immunological barriers that affect the therapeutic efficacy of inhaled formulations. This review assesses the characteristics of biological drugs and the barriers to pulmonary drug delivery. The main challenges in the formulation and inhalation devices are discussed, together with the possible strategies that can be applied to address these challenges. Current clinical developments in inhaled biological drugs for both local and systemic applications are also discussed to provide an insight for further research.
Collapse
Affiliation(s)
- Wanling Liang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| | - Harry W. Pan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| | - Driton Vllasaliu
- School of Cancer and Pharmaceutical Sciences, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| | - Jenny K. W. Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| |
Collapse
|
49
|
Peyron I, Kizlik‐Masson C, Dubois M, Atsou S, Ferrière S, Denis CV, Lenting PJ, Casari C, Christophe OD. Camelid-derived single-chain antibodies in hemostasis: Mechanistic, diagnostic, and therapeutic applications. Res Pract Thromb Haemost 2020; 4:1087-1110. [PMID: 33134775 PMCID: PMC7590285 DOI: 10.1002/rth2.12420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/03/2020] [Accepted: 07/12/2020] [Indexed: 12/16/2022] Open
Abstract
Hemostasis is a complex process involving the concerted action of molecular and vascular components. Its basic understanding as well as diagnostic and therapeutic aspects have greatly benefited from the use of monoclonal antibodies. Interestingly, camelid-derived single-domain antibodies (sdAbs), also known as VHH or nanobodies, have become available during the previous 2 decades as alternative tools in this regard. Compared to classic antibodies, sdAbs are easier to produce and their small size facilitates their engineering and functionalization. It is not surprising, therefore, that sdAbs are increasingly used in hemostasis-related research. In addition, they have the capacity to recognize unique epitopes unavailable to full monoclonal antibodies. This property can be used to develop novel diagnostic tests identifying conformational variants of hemostatic proteins. Examples include sdAbs that bind active but not globular von Willebrand factor or free factor VIIa but not tissue factor-bound factor VIIa. Finally, sdAbs have a high therapeutic potential, exemplified by caplacizumab, a homodimeric sdAb targeting von Willebrand factor that is approved for the treatment of thrombotic thrombocytopenic purpura. In this review, the various applications of sdAbs in thrombosis and hemostasis-related research, diagnostics, and therapeutic strategies will be discussed.
Collapse
Affiliation(s)
- Ivan Peyron
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | | | - Marie‐Daniéla Dubois
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
- EA 7525 VPMCUniversité des AntillesSchoelcherMartiniqueFrance
| | - Sénadé Atsou
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Stephen Ferrière
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Cécile V. Denis
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Peter J. Lenting
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Caterina Casari
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | | |
Collapse
|
50
|
Riggioni C, Comberiati P, Giovannini M, Agache I, Akdis M, Alves‐Correia M, Antó JM, Arcolaci A, Azkur AK, Azkur D, Beken B, Boccabella C, Bousquet J, Breiteneder H, Carvalho D, De las Vecillas L, Diamant Z, Eguiluz‐Gracia I, Eiwegger T, Eyerich S, Fokkens W, Gao Y, Hannachi F, Johnston SL, Jutel M, Karavelia A, Klimek L, Moya B, Nadeau KC, O'Hehir R, O'Mahony L, Pfaar O, Sanak M, Schwarze J, Sokolowska M, Torres MJ, van de Veen W, van Zelm MC, Wang DY, Zhang L, Jiménez‐Saiz R, Akdis CA. A compendium answering 150 questions on COVID-19 and SARS-CoV-2. Allergy 2020; 75:2503-2541. [PMID: 32535955 PMCID: PMC7323196 DOI: 10.1111/all.14449] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023]
Abstract
In December 2019, China reported the first cases of the coronavirus disease 2019 (COVID-19). This disease, caused by the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), has developed into a pandemic. To date, it has resulted in ~9 million confirmed cases and caused almost 500 000 related deaths worldwide. Unequivocally, the COVID-19 pandemic is the gravest health and socioeconomic crisis of our time. In this context, numerous questions have emerged in demand of basic scientific information and evidence-based medical advice on SARS-CoV-2 and COVID-19. Although the majority of the patients show a very mild, self-limiting viral respiratory disease, many clinical manifestations in severe patients are unique to COVID-19, such as severe lymphopenia and eosinopenia, extensive pneumonia, a "cytokine storm" leading to acute respiratory distress syndrome, endothelitis, thromboembolic complications, and multiorgan failure. The epidemiologic features of COVID-19 are distinctive and have changed throughout the pandemic. Vaccine and drug development studies and clinical trials are rapidly growing at an unprecedented speed. However, basic and clinical research on COVID-19-related topics should be based on more coordinated high-quality studies. This paper answers pressing questions, formulated by young clinicians and scientists, on SARS-CoV-2, COVID-19, and allergy, focusing on the following topics: virology, immunology, diagnosis, management of patients with allergic disease and asthma, treatment, clinical trials, drug discovery, vaccine development, and epidemiology. A total of 150 questions were answered by experts in the field providing a comprehensive and practical overview of COVID-19 and allergic disease.
Collapse
|