1
|
Phuong-Nguyen K, O’Hely M, Kowalski GM, McGee SL, Aston-Mourney K, Connor T, Mahmood MQ, Rivera LR. The Impact of Yoyo Dieting and Resistant Starch on Weight Loss and Gut Microbiome in C57Bl/6 Mice. Nutrients 2024; 16:3138. [PMID: 39339738 PMCID: PMC11435396 DOI: 10.3390/nu16183138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Cyclic weight loss and subsequent regain after dieting and non-dieting periods, a phenomenon termed yoyo dieting, places individuals at greater risk of metabolic complications and alters gut microbiome composition. Resistant starch (RS) improves gut health and systemic metabolism. This study aimed to investigate the effect of yoyo dieting and RS on the metabolism and gut microbiome. C57BL/6 mice were assigned to 6 diets for 20 weeks, including control, high fat (HF), yoyo (alternating HF and control diets every 5 weeks), control with RS, HF with RS, and yoyo with RS. Metabolic outcomes and microbiota profiling using 16S rRNA sequencing were examined. Yoyo dieting resulted in short-term weight loss, which led to improved liver health and insulin tolerance but also a greater rate of weight gain compared to continuous HF feeding, as well as a different microbiota profile that was in an intermediate configuration between the control and HF states. Mice fed HF and yoyo diets supplemented with RS gained less weight than those fed without RS. RS supplementation in yoyo mice appeared to shift the gut microbiota composition closer to the control state. In conclusion, yoyo dieting leads to obesity relapse, and increased RS intake reduces weight gain and might help prevent rapid weight regain via gut microbiome restoration.
Collapse
Affiliation(s)
- Kate Phuong-Nguyen
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia; (M.O.); (S.L.M.); (K.A.-M.); (T.C.)
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
| | - Martin O’Hely
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia; (M.O.); (S.L.M.); (K.A.-M.); (T.C.)
- Murdoch Children’s Research Institute, Royal Children’s Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Greg M. Kowalski
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Sean L. McGee
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia; (M.O.); (S.L.M.); (K.A.-M.); (T.C.)
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
| | - Kathryn Aston-Mourney
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia; (M.O.); (S.L.M.); (K.A.-M.); (T.C.)
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
| | - Timothy Connor
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia; (M.O.); (S.L.M.); (K.A.-M.); (T.C.)
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
| | - Malik Q. Mahmood
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
| | - Leni R. Rivera
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia; (M.O.); (S.L.M.); (K.A.-M.); (T.C.)
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
| |
Collapse
|
2
|
Shi Y, Kan J, Wang W, Cao Y, Wu Y, Chen X, Zheng W, Yang F, Du J, He W, Zhu S. Nut consumption, gut microbiota, and body fat distribution: results of a large, community-based population study. Obesity (Silver Spring) 2024; 32:1778-1788. [PMID: 39041418 DOI: 10.1002/oby.24099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE We aimed to investigate the relationships among nut consumption, gut microbiota, and body fat distribution. METHODS We studied 2255 Chinese adults in the Lanxi Cohort living in urban areas in Lanxi City, China. Fat distribution was assessed by dual-energy x-ray absorptiometry, and nut consumption was assessed using food frequency questionnaires. 16S ribosomal RNA (rRNA) sequencing was performed on stool samples from 1724 participants. Linear regression and Spearman correlation were used in all analyses. A validation study was performed using 1274 participants in the Lanxi Cohort living in rural areas. RESULTS Nut consumption was beneficially associated with regional fat accumulation. Gut microbial analysis suggested that a high intake of nuts was associated with greater microbial α diversity. Six genera were found to be associated with nut consumption, and the abundance of genera Anaerobutyricum, Anaerotaenia, and Fusobacterium was significantly associated with fat distribution. Favorable relationships between α diversity and fat distribution were also observed. Similar relationships between gut microbiota and fat distribution were obtained in the validation analysis. CONCLUSIONS We have shown that nut consumption is beneficially associated with body fat distribution and gut microbiota diversity and taxonomy. Furthermore, the microbial features related to high nut intake are associated with a favorable pattern of fat distribution.
Collapse
Affiliation(s)
- Yuwei Shi
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Zhejiang, China
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University, Zhejiang, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Wenjie Wang
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Zhejiang, China
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University, Zhejiang, China
| | - Yiyang Cao
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Zhejiang, China
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University, Zhejiang, China
| | - Yimian Wu
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Zhejiang, China
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University, Zhejiang, China
| | - Xinyu Chen
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Zhejiang, China
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University, Zhejiang, China
| | - Weifang Zheng
- Lanxi Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Fei Yang
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Zhejiang, China
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University, Zhejiang, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| | - Wei He
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Zhejiang, China
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University, Zhejiang, China
| | - Shankuan Zhu
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Zhejiang, China
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University, Zhejiang, China
| |
Collapse
|
3
|
Zhu Y, Chen B, Zhang X, Akbar MT, Wu T, Zhang Y, Zhi L, Shen Q. Exploration of the Muribaculaceae Family in the Gut Microbiota: Diversity, Metabolism, and Function. Nutrients 2024; 16:2660. [PMID: 39203797 PMCID: PMC11356848 DOI: 10.3390/nu16162660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
The gut microbiota are mainly composed of Bacteroidetes and Firmicutes and are crucial for metabolism and immunity. Muribaculaceae are a family of bacteria within the order Bacteroidetes. Muribaculaceae produce short-chain fatty acids via endogenous (mucin glycans) and exogenous polysaccharides (dietary fibres). The family exhibits a cross-feeding relationship with probiotics, such as Bifidobacterium and Lactobacillus. The alleviating effects of a plant-based diet on inflammatory bowel disease, obesity, and type 2 diabetes are associated with an increased abundance of Muribaculaceae, a potential probiotic bacterial family. This study reviews the current findings related to Muribaculaceae and systematically introduces their diversity, metabolism, and function. Additionally, the mechanisms of Muribaculaceae in the alleviation of chronic diseases and the limitations in this field of research are introduced.
Collapse
Affiliation(s)
- Yiqing Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Borui Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Xinyu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Muhammad Toheed Akbar
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
- Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Yiyun Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Li Zhi
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| |
Collapse
|
4
|
Zhang R, Qiu W, Sun X, Li J, Geng X, Yu S, Liu Y, Huang H, Li M, Fan Z, Li M, Lv G. Gut microbiota dynamics in a 1-year follow-up after adult liver transplantation in Northeast China. Front Physiol 2023; 14:1266635. [PMID: 38187130 PMCID: PMC10766776 DOI: 10.3389/fphys.2023.1266635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Background: Liver transplantation (LTx) is the most effective treatment for end-stage liver diseases. Gut microorganisms influence the host physiology. We aim to profile the dynamics of gut microbiota in the perioperative period and a 1-year follow-up of LTx recipients in Northeast China. Methods: A total of 257 fecal samples were longitudinally collected from 85 LTx patients using anal swabs from pre-LTx to 1-year post-LTx. A total of 48 fecal samples from end-stage liver disease patients without LTx served as the control. 16S rRNA sequencing was used to analyze gut microbiota diversity, bacterial genera, phenotype classification, and metabolic pathways. Results: The diversity of gut microbiota decreased significantly after transplantation, accompanied by a profound change in the microbial structure, which is characterized by increased abundance of facultative anaerobic bacteria dominated by g_Enterococcus and reduced anaerobic bacteria composition. Predicted functional analysis also revealed disturbances in the metabolic pathway of the gut microbiota. After LTx, the diversity of microbiota gradually recovered but to a less preoperative level after 1 year of recovery. Compared with pre-transplantation, the microbiome structure was characterized by an increase in Acidaminococcus and Acidithiobacillus after 1 year of transplantation. Conclusion: LTx and perioperative treatment triggered gut microbial dysbiosis. The gut microbiota was restructured after LTx to near to but significantly differed from that of pre-LTx.
Collapse
Affiliation(s)
- Ruoyan Zhang
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Qiu
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaodong Sun
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Li
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaochen Geng
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shichao Yu
- The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Ying Liu
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Heyu Huang
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mingyue Li
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Li L, Wang S, Zhang T, Lv B, Jin Y, Wang Y, Chen X, Li N, Han N, Wu Y, Yuan J. Walnut peptide alleviates obesity, inflammation and dyslipidemia in mice fed a high-fat diet by modulating the intestinal flora and metabolites. Front Immunol 2023; 14:1305656. [PMID: 38162665 PMCID: PMC10755907 DOI: 10.3389/fimmu.2023.1305656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Obesity is a chronic disease in which the body stores excess energy in the form of fat, and intestinal bacterial metabolism and inflammatory host phenotypes influence the development of obesity. Walnut peptide (WP) is a small molecule biopeptide, and the mechanism of action of WP against metabolic disorders has not been fully elucidated. In this study, we explored the potential intervention mechanism of WP on high-fat diet (HFD)-induced obesity through bioinformatics combined with animal experiments. Methods PPI networks of Amino acids and their metabolites in WP (AMWP) and "obesity" and "inflammation" diseases were searched and constructed by using the database, and their core targets were enriched and analyzed. Subsequently, Cytoscape software was used to construct the network diagram of the AMWP-core target-KEGG pathway and analyze the topological parameters. MOE2019.0102 was used to verify the molecular docking of core AMWP and core target. Subsequently, an obese Mice model induced by an HFD was established, and the effects of WP on obesity were verified by observing weight changes, glucose, and lipid metabolism levels, liver pathological changes, the size of adipocytes in groin adipose tissue, inflammatory infiltration of colon tissue, and intestinal microorganisms and their metabolites. Results The network pharmacology and molecular docking showed that glutathione oxide may be the main active component of AMWP, and its main targets may be EGFR, NOS3, MMP2, PLG, PTGS2, AR. Animal experiments showed that WP could reduce weight gain and improve glucose-lipid metabolism in HFD-induced obesity model mice, attenuate hepatic lesions reduce the size of adipocytes in inguinal adipose tissue, and reduce the inflammatory infiltration in colonic tissue. In addition, the abundance and diversity of intestinal flora were remodeled, reducing the phylum Firmicutes/Bacteroidetes (F/B) ratio, while the intestinal mucosal barrier was repaired, altering the content of short-chain fatty acids (SCFAs), and alleviating intestinal inflammation in HFD-fed mice. These results suggest that WP intervenes in HFD-induced obesity and dyslipidemia by repairing the intestinal microenvironment, regulating flora metabolism and anti-inflammation. Discussion Our findings suggest that WP intervenes in HFD-induced obesity and dyslipidemia by repairing the intestinal microenvironment, regulating flora metabolism, and exerting anti-inflammatory effects. Thus, WP may be a potential therapeutic strategy for preventing and treating metabolic diseases, and for alleviating the intestinal flora disorders induced by these diseases. This provides valuable insights for the development of WP therapies.
Collapse
Affiliation(s)
- Lei Li
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Si Wang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- First Clinical School of Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Tong Zhang
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bijun Lv
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yanling Jin
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yue Wang
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiaojiao Chen
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ning Li
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- First Clinical School of Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Niping Han
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yueying Wu
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jiali Yuan
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
6
|
Huang H, Zhao T, Li J, Shen J, Xiao R, Ma W. Gut microbiota regulation of inflammatory cytokines and microRNAs in diabetes-associated cognitive dysfunction. Appl Microbiol Biotechnol 2023; 107:7251-7267. [PMID: 37733050 DOI: 10.1007/s00253-023-12754-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/10/2023] [Accepted: 08/26/2023] [Indexed: 09/22/2023]
Abstract
Type 2 diabetes mellitus (T2DM) has a major comorbidity known as diabetes-associated cognitive dysfunction (DACD). Studies have demonstrated that the gut microbiota is crucial in mediating the cognitive abnormalities that occur in diabetic individuals. Additionally, changes in dietary fatty acid intake levels, inflammatory cytokines, and microRNAs (miRs) have an effect on cognitive performance. However, further studies are needed to identify the link between gut microbiota and cognition in T2DM patients and the role that the above indicators play in this process. In order to provide a new rationale for the treatment of cognitive dysfunction in diabetes, this study was conducted in the middle-aged and elderly Beijing population to examine the differences in gut microbiota between DACD and T2DM patients as well as to further explore the role of erythrocyte membrane fatty acids, inflammatory cytokines, and miRs in gut microbiota-mediated cognitive impairment. According to the results, the abundance of norank_f_Eubacterium_coprostanoligenes_group, Acidaminococcus, Enterorhabdus, and norank_f_Clostridium_methylpentosum_group was higher in DACD patients compared to T2DM patients at the genus level. Compared with T2DM patients, plasma interleukin-12 (IL-12) concentrations were significantly higher in DACD patients than in T2DM patients, and IL-12 was significantly positively correlated with norank_f_Eubacterium_coprostanoligenes_group. In addition, plasma miR-142-5p was significantly positively correlated with Enterorhabdus and norank_f_Eubacterium_coprostanoligenes_group. We therefore hypothesize that cognitive impairment in T2DM patients is associated with altered gut microbial composition and that the effect of microbiota on cognition may be mediated through IL-12 and miR-142-5p. KEY POINTS: • Type 2 diabetes with or without cognitive impairment differs in gut microbiota. • Differential genera of gut microbiota were associated with inflammatory cytokines. • Differential genera of gut microbiota were associated with plasma microRNAs.
Collapse
Affiliation(s)
- Hongying Huang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Tong Zhao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jinchen Li
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jingyi Shen
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Weiwei Ma
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
7
|
Zhang J, Feng J, Bai Y, Che Q, Cao H, Guo J, Su Z. Ameliorating the effect and mechanism of chitosan oligosaccharide on nonalcoholic fatty liver disease in mice. Food Funct 2023; 14:10459-10474. [PMID: 37921441 DOI: 10.1039/d3fo03745b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Previous studies have found that chitosan oligosaccharide (COST) can alleviate the clinical symptoms in non-alcoholic fatty liver disease (NAFLD) patients. We intend to intervene with different concentrations of COST in mice with NAFLD induced by a high fat diet. The basic effect of COST on NAFLD model mice was observed using physiological and biochemical indexes. 16S rRNA sequencing technology was used to analyze the gut microbiota and further analyze the content of short-chain fatty acids (SCFAs). Western blot and RT-PCR were used to detect the effects of COST on the PI3K/AKT/mTOR signaling pathway in the livers of NAFLD mice. It was found that the COST-high-dose group could reduce the weight of NAFLD mice, improve dyslipidemia, and alleviate liver lesions, and COST has a therapeutic effect on NAFLD mice. 16S rRNA sequencing analysis showed that COST could increase the diversity of the gut microbiota in NAFLD mice. The downregulation of SCFAs in NAFLD mice was reversed. WB and RT-PCR results showed that the PI3K/AKT/mTOR signaling pathway was involved in the development of NAFLD mice. COST improved liver lipid metabolism in NAFLD mice by inhibiting liver DNL. COST could increase the expression of thermogenic protein and UCP1 and PGC-1α genes; the PI3K/AKT/mTOR signaling pathway is inhibited at the protein and gene levels. This study revealed that COST regulates the expression of related inflammatory factors caused by lipid toxicity through the gut microbiota and SCFAs, and improves the liver lipid metabolism of HFD-induced NAFLD mice, laying a foundation for the development of effective and low toxicity drugs for the treatment of NAFLD.
Collapse
Affiliation(s)
- Jiahua Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China.
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Jiayao Feng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China.
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou (510310), China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou (510663), China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan (528458), China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| |
Collapse
|
8
|
Zhang L, Zi L, Kuang T, Wang K, Qiu Z, Wu Z, Liu L, Liu R, Wang P, Wang W. Investigating causal associations among gut microbiota, metabolites, and liver diseases: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1159148. [PMID: 37476494 PMCID: PMC10354516 DOI: 10.3389/fendo.2023.1159148] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/13/2023] [Indexed: 07/22/2023] Open
Abstract
Objective There is some evidence for an association between gut microbiota and nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), and viral hepatitis, but no studies have explored their causal relationship. Methods Instrumental variables of the gut microbiota (N = 13266) and gut microbiota-derived metabolites (N = 7824) were acquired, and a Mendelian randomization study was performed to explore their influence on NAFLD (1483 European cases and 17,781 European controls), ALD (2513 European cases and 332,951 European controls), and viral hepatitis risk (1971 European cases and 340,528 European controls). The main method for examining causality is inverse variance weighting (IVW). Results IVW results confirmed that Anaerotruncus (p = 0.0249), Intestinimonas (p = 0.0237), Lachnoclostridium (p = 0.0245), Lachnospiraceae NC2004 group (p = 0.0083), Olsenella (p = 0.0163), and Peptococcus (p = 0.0472) were protective factors for NAFLD, and Ruminococcus 1 (p = 0.0120) was detrimental for NAFLD. The higher abundance of three genera, Lachnospira (p = 0.0388), Desulfovibrio (p = 0.0252), and Ruminococcus torques group (p = 0.0364), was correlated with a lower risk of ALD, while Ruminococcaceae UCG 002 level was associated with a higher risk of ALD (p = 0.0371). The Alistipes (p = 0.0069) and Ruminococcaceae NK4A214 group (p = 0.0195) were related to a higher risk of viral hepatitis. Besides, alanine (p = 0.0076) and phenyllactate (p = 0.0100) were found to be negatively correlated with NAFLD, while stachydrine (Op = 0.0244) was found to be positively associated with NAFLD. The phenylacetate (p = 0.0353) and ursodeoxycholate (p = 0.0144) had a protective effect on ALD, while the threonate (p = 0.0370) exerted a detrimental influence on ALD. The IVW estimates of alanine (p = 0.0408) and cholate (p = 0.0293) showed their suggestive harmful effects against viral hepatitis, while threonate (p = 0.0401) displayed its suggestive protective effect against viral hepatitis. Conclusion In conclusion, our research supported causal links between the gut microbiome and its metabolites and NAFLD, ALD, and viral hepatitis.
Collapse
Affiliation(s)
- Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Liuliu Zi
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tianrui Kuang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Kunpeng Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhendong Qiu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhongkai Wu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Li Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rongqiang Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Peng Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
9
|
Mi F, Wang X, Zheng W, Wang J, Lin T, Sun M, Su M, Li H, Ye H. Effects of Different Preparation Methods on Microbiota Composition of Fecal Suspension. Mol Biotechnol 2023; 65:871-880. [PMID: 36315335 DOI: 10.1007/s12033-022-00590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/20/2022] [Indexed: 05/23/2023]
Abstract
Fecal microbiota transplantation is an emerging disease-modifying therapy. The viability of the microbiome in feces and its successful transfer depends on the preparation of fecal microbiota suspension. However, currently, no standard operation procedure is proposed for fecal suspension preparation. This study aims to compare the effect of different preparation methods on the composition of fecal microbiota composition in the rat. Four methods were used to collect the fecal suspension from fresh rat fecal (Group A), including stirring with normal saline (Group B), stirring with normal saline and then standing (Group C), stirring with normal saline and filtered with gauze (Group D), and stirring with normal saline and centrifuged (Group E). 16S ribosomal RNA gene (16S rDNA) sequencing technology was used to analyze the microbiota diversity and composition of each group of samples. Compared with fresh feces, the bacterial richness of the fecal suspension obtained by the four methods was significantly decreased (P < 0.05). The structural similarity with fresh fecal microbiota from high to low is groups B, D, C, and E. All four methods changed the microbiota structure to varying degrees, thus may affect the effect of FMT. In conclusion, choosing different methods to prepare fecal suspensions may help to better optimize the application of FMT.
Collapse
Affiliation(s)
- Fangxia Mi
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315046, Zhejiang, People's Republic of China
| | - Xinxue Wang
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315046, Zhejiang, People's Republic of China
| | - Wentao Zheng
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315046, Zhejiang, People's Republic of China
| | - Jian Wang
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315046, Zhejiang, People's Republic of China
| | - Tong Lin
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315046, Zhejiang, People's Republic of China
| | - Mengxia Sun
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315046, Zhejiang, People's Republic of China
| | - Mingli Su
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315046, Zhejiang, People's Republic of China
| | - Hong Li
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315046, Zhejiang, People's Republic of China
| | - Hua Ye
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315046, Zhejiang, People's Republic of China.
| |
Collapse
|
10
|
Šik Novak K, Bogataj Jontez N, Petelin A, Hladnik M, Baruca Arbeiter A, Bandelj D, Pražnikar J, Kenig S, Mohorko N, Jenko Pražnikar Z. Could Gut Microbiota Composition Be a Useful Indicator of a Long-Term Dietary Pattern? Nutrients 2023; 15:2196. [PMID: 37432336 DOI: 10.3390/nu15092196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 07/12/2023] Open
Abstract
Despite the known effects of diet on gut microbiota composition, not many studies have evaluated the relationship between distinct dietary patterns and gut microbiota. The aim of our study was to determine whether gut microbiota composition could be a useful indicator of a long-term dietary pattern. We collected data from 89 subjects adhering to omnivorous, vegetarian, vegan, and low-carbohydrate, high-fat diet that were equally distributed between groups and homogenous by age, gender, and BMI. Gut microbiota composition was analyzed with a metabarcoding approach using V4 hypervariable region of the 16S rRNA gene. K-means clustering of gut microbiota at the genus level was performed and the nearest neighbor classifier was applied to predict microbiota clustering classes. Our results suggest that gut microbiota composition at the genus level is not a useful indicator of a subject's dietary pattern, with the exception of a vegan diet that is represented by a high abundance of Prevotella 9. Based on our model, a combination of 26 variables (anthropometric measurements, serum biomarkers, lifestyle factors, gastrointestinal symptoms, psychological factors, specific nutrients intake) is more important to predict an individual's microbiota composition cluster, with 91% accuracy, than the dietary intake alone. Our findings could serve to develop strategies to educate individuals about changes of some modifiable lifestyle factors, aiming to classify them into clusters with favorable health markers, independent of their dietary pattern.
Collapse
Affiliation(s)
- Karin Šik Novak
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Nives Bogataj Jontez
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Ana Petelin
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Matjaž Hladnik
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Alenka Baruca Arbeiter
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Dunja Bandelj
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Jure Pražnikar
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Saša Kenig
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Nina Mohorko
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Zala Jenko Pražnikar
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| |
Collapse
|
11
|
Guimarães VHD, Marinho BM, Motta-Santos D, Mendes GDRL, Santos SHS. Nutritional implications in the mechanistic link between the intestinal microbiome, renin-angiotensin system, and the development of obesity and metabolic syndrome. J Nutr Biochem 2023; 113:109252. [PMID: 36509338 DOI: 10.1016/j.jnutbio.2022.109252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/12/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Obesity and metabolic disorders represent a significant global health problem and the gut microbiota plays an important role in modulating systemic homeostasis. Recent evidence shows that microbiota and its signaling pathways may affect the whole metabolism and the Renin-Angiotensin System (RAS), which in turn seems to modify microbiota. The present review aimed to investigate nutritional implications in the mechanistic link between the intestinal microbiome, renin-angiotensin system, and the development of obesity and metabolic syndrome components. A description of metabolic changes was obtained based on relevant scientific literature. The molecular and physiological mechanisms that impact the human microbiome were addressed, including the gut microbiota associated with obesity, diabetes, and hepatic steatosis. The RAS interaction signaling and modulation were analyzed. Strategies including the use of prebiotics, symbiotics, probiotics, and biotechnology may affect the gut microbiota and its impact on human health.
Collapse
Affiliation(s)
- Victor Hugo Dantas Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Barbhara Mota Marinho
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Daisy Motta-Santos
- School of Physical Education, Physiotherapy, and Occupational Therapy - EEFFTO, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Gabriela da Rocha Lemos Mendes
- Food Engineering, Institute of Agricultural Sciences (ICA), Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil; Food Engineering, Institute of Agricultural Sciences (ICA), Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Fujisaka S, Watanabe Y, Tobe K. The gut microbiome: a core regulator of metabolism. J Endocrinol 2023; 256:e220111. [PMID: 36458804 PMCID: PMC9874984 DOI: 10.1530/joe-22-0111] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/02/2022] [Indexed: 12/03/2022]
Abstract
The human body is inhabited by numerous bacteria, fungi, and viruses, and each part has a unique microbial community structure. The gastrointestinal tract harbors approximately 100 trillion strains comprising more than 1000 bacterial species that maintain symbiotic relationships with the host. The gut microbiota consists mainly of the phyla Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Of these, Firmicutes and Bacteroidetes constitute 70-90% of the total abundance. Gut microbiota utilize nutrients ingested by the host, interact with other bacterial species, and help maintain healthy homeostasis in the host. In recent years, it has become increasingly clear that a breakdown of the microbial structure and its functions, known as dysbiosis, is associated with the development of allergies, autoimmune diseases, cancers, and arteriosclerosis, among others. Metabolic diseases, such as obesity and diabetes, also have a causal relationship with dysbiosis. The present review provides a brief overview of the general roles of the gut microbiota and their relationship with metabolic disorders.
Collapse
Affiliation(s)
- Shiho Fujisaka
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Japan
| | - Yoshiyuki Watanabe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Japan
| |
Collapse
|
13
|
Al-Jafar R, Wahyuni NS, Belhaj K, Ersi MH, Boroghani Z, Alreshidi A, Alkhalaf Z, Elliott P, Tsilidis KK, Dehghan A. The impact of Ramadan intermittent fasting on anthropometric measurements and body composition: Evidence from LORANS study and a meta-analysis. Front Nutr 2023; 10:1082217. [PMID: 36733380 PMCID: PMC9886683 DOI: 10.3389/fnut.2023.1082217] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Background Although the effect of Ramadan intermittent fasting (RIF) on anthropometry and body composition has been questioned, none of the previous studies tried to explain the reported changes in these parameters. Also, systematic reviews that investigated the topic were limited to healthy individuals or a specific disease group. Methods The London Ramadan Study (LORANS) is an observational study on health effects of RIF. We measured weight, waist circumference (WC), hip circumference (HC), body mass index (BMI), waist-to-hip ratio (WHR), basal metabolic rate (BMR), fat percentage (FP), free-fat mass (FFM), extremities predicted muscle mass, total body water (TBW), trunk FM, trunk FFM and trunk predicted muscle mass before and immediately after Ramadan. Using mixed-effects regression models, we investigated the effect of RIF with adjustment for potential confounders. We also conducted a meta-analysis of the results of LORANS with other studies that investigated the effect of RIF on anthropometry and body composition. The review protocol is registered with PROSPERO registry (CRD42020186532). Results We recruited 146 participants (Mean ± SD age = 43.3 ± 15 years). Immediately after Ramadan, compared with before Ramadan, the mean difference was-1.6 kg (P<0.01) in weight,-1.95cm (P<0.01) in WC,-2.86cm (P <0.01) in HC, -0.60 kg/m2 (P < 0.01) in BMI and -1.24 kg (P < 0.01) in FM. In the systematic review and meta-analysis, after screening 2,150 titles and abstracts, 66 studies comprising 7,611 participants were included. In the general population, RIF was followed by a reduction of 1.12 Kg in body weight (-1.89- -0.36, I2 = 0), 0.74 kg/m2 reduction in BMI (-0.96- -0.53, I2 = 0), 1.54cm reduction in WC (-2.37- -0.71, I2 = 0) and 1.76cm reduction in HC (-2.69- -0.83, I2 = 0). The effect of fasting on anthropometric and body composition parameters starts to manifest in the second week of Ramadan and starts to diminish 3 weeks after Ramadan. Conclusion RIF is associated with a reduction in body weight, BMI, WC, HC, FM, FP and TBW. Most of these reductions are partially attributed to reduced FM and TBW. The reductions in these parameters appear to reverse after Ramadan.
Collapse
Affiliation(s)
- Rami Al-Jafar
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Department of Data Services, Lean Business Services, Riyadh, Saudi Arabia
| | - Nisa Sri Wahyuni
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Karim Belhaj
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Mohammad Hamed Ersi
- Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Boroghani
- Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Clinical Research Development of Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amer Alreshidi
- Pharmaceutical Care Department, Hail General Hospital, Hail Health Cluster, Ministry of Health, Hail, Saudi Arabia
| | - Zahra Alkhalaf
- Dammam Medical Complex, Medical and Clinical Affairs, Dammam, Saudi Arabia
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Dementia Research Institute at Imperial College London, London, United Kingdom
- National Institute for Health Research Imperial College Biomedical Research Centre, Imperial College London, London, United Kingdom
| | - Konstantinos K. Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Dementia Research Institute at Imperial College London, London, United Kingdom
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
14
|
Freitas RGBON, Vasques ACJ, Fernandes GR, Ribeiro FB, Solar I, Barbosa MG, Almeida-Pititto B, Geloneze B, Ferreira SRG. Gestational weight gain and visceral adiposity in adult offspring: Is there a link with the fecal abundance of Acidaminococcus genus? Eur J Clin Nutr 2022; 76:1705-1712. [PMID: 35906333 DOI: 10.1038/s41430-022-01182-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022]
Abstract
Intrauterine environment can influence the offspring's body adiposity whose distribution affect the cardiometabolic risk. Underlying mechanisms may involve the gut microbiome. We investigated associations of gestational weight gain with the adult offspring's gut microbiota, body adiposity and related parameters in participants of the Nutritionists' Health Study. METHODS This cross-sectional analysis included 114 women who had early life and clinical data, body composition, and biological samples collected. The structure of fecal microbiota was analyzed targeting the V4 region of the 16 S rRNA gene. Beta diversity was calculated by PCoA and PERMANOVA used to test the impact of categorical variables into the diversity. Bacterial clusters were identified based on the Jensen-Shannon divergence matrix and Calinski-Harabasz index. Correlations were tested by Spearman coefficient. RESULTS Median age was 28 (IQR 24-31) years and BMI 24.5 (IQR 21.4-28.0) kg/m2. Fifty-eight participants were assigned to a profile driven by Prevotella and 56 to another driven by Blautia. Visceral adipose tissue was correlated to abundance of Acidaminococcus genus considering the entire sample (r = 0.37; p < 0.001) and the profiles (Blautia: r = 0.35, p = 0.009, and Prevotella: r = 0.38, p = 0.006). In Blautia-driven profile, the same genus was also correlated to maternal gestational weight gain (r = 0.38, p = 0.006). CONCLUSIONS Association of Acidaminococcus with gestational weight gain could reinforce the relevance with mothers' nutritional status for gut colonization at the beginning of life. Whether Acidaminococcus abundance could be a marker for central distribution of adiposity in young women requires further investigation.
Collapse
Affiliation(s)
- R G B O N Freitas
- Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo, Brazil
- Laboratory of Investigation in Metabolism and Diabetes, Gastrocentro, School of Medical Sciences - University of Campinas, São Paulo, Brazil
| | - A C J Vasques
- Laboratory of Investigation in Metabolism and Diabetes, Gastrocentro, School of Medical Sciences - University of Campinas, São Paulo, Brazil
- School of Applied Sciences - University of Campinas, São Paulo, Brazil
| | - G R Fernandes
- Oswaldo Cruz Foundation, Belo Horizonte, São Paulo, Brazil
| | - F B Ribeiro
- Laboratory of Investigation in Metabolism and Diabetes, Gastrocentro, School of Medical Sciences - University of Campinas, São Paulo, Brazil
| | - I Solar
- Laboratory of Investigation in Metabolism and Diabetes, Gastrocentro, School of Medical Sciences - University of Campinas, São Paulo, Brazil
- School of Applied Sciences - University of Campinas, São Paulo, Brazil
| | - M G Barbosa
- School of Applied Sciences - University of Campinas, São Paulo, Brazil
| | - B Almeida-Pititto
- Department of Preventive Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - B Geloneze
- Laboratory of Investigation in Metabolism and Diabetes, Gastrocentro, School of Medical Sciences - University of Campinas, São Paulo, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, São Paulo, Brazil
| | - S R G Ferreira
- Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
15
|
Aljazairy EA, Al-Musharaf S, Abudawood M, Almaarik B, Hussain SD, Alnaami AM, Sabico S, Al-Daghri NM, Clerici M, Aljuraiban GS. Influence of Adiposity on the Gut Microbiota Composition of Arab Women: A Case-Control Study. BIOLOGY 2022; 11:1586. [PMID: 36358288 PMCID: PMC9687783 DOI: 10.3390/biology11111586] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 08/24/2023]
Abstract
Recent evidence has suggested that the gut microbiota is a possible risk factor for obesity. However, limited evidence is available on the association between the gut microbiota composition and obesity markers in the Middle-Eastern region. We aimed to investigate the association between gut microbiota and obesity markers in a case-control study including 92 Saudi women aged 18-25 years, including participants with obesity (case, n = 44) and with normal weight (control, n = 48). Anthropometric, body composition, and biochemical data were collected. The whole-genome shotgun technique was used to analyze the gut microbiota. The Shannon alpha and Bray-Curtis beta diversity were determined. The microbial alpha diversity was significantly associated with only the waist-to-hip ratio (WHR) (p-value = 0.04), while the microbial beta diversity was significantly associated with body mass index (p-value = 0.048), %body fat (p-value = 0.018), and WHR (p-value = 0.050). Specific bacteria at different taxonomic levels, such as Bacteroidetes and Synergistetes, were positively associated with different obesity markers. Alistipes was higher in the control group compared with the case group. The results highlight the association of the gut microbiota with obesity and suggest that the gut microbiota of Saudi women is associated with specific obesity markers. Future studies are needed to determine the role of the identified strains in the metabolism of individuals with obesity.
Collapse
Affiliation(s)
- Esra’a A. Aljazairy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Turki Alawwal Street, Riyadh 11451, Saudi Arabia
| | - Sara Al-Musharaf
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Turki Alawwal Street, Riyadh 11451, Saudi Arabia
| | - Manal Abudawood
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Basmah Almaarik
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Syed D. Hussain
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M. Alnaami
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shaun Sabico
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nasser M. Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Ghadeer S. Aljuraiban
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Turki Alawwal Street, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Li L, Yang K, Li C, Zhang H, Yu H, Chen K, Yang X, Liu L. Metagenomic shotgun sequencing and metabolomic profiling identify specific human gut microbiota associated with diabetic retinopathy in patients with type 2 diabetes. Front Immunol 2022; 13:943325. [PMID: 36059453 PMCID: PMC9434375 DOI: 10.3389/fimmu.2022.943325] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundDiabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus (DM) and is one of the leading causes of blindness among DM patients. However, the molecular mechanism involving DR remains unclear.MethodsA case–control study with age-, sex-, and duration-matched diabetic patients and controls was conducted, which included 15 type 2 DM (T2DM) patients with DR and 15 T2DM patients without DR. Shotgun sequencing and non-targeted metabolomic profiling analyses of fecal samples were performed, and comprehensive bioinformatics analyses were conducted.ResultsUsing metagenomic analyses, we identified 293,460 unique genes in the non-DR group, while that in the DR group was 283,235, and the number of overlapping genes was 1,237,914. Regarding phylum levels, Actinobacteria decreased but Bacteroidetes increased in the DR group when compared with those in the control group. Regarding genus levels, Bifidobacterium and Lactobacillus decreased. Cellular processes, environmental information processes, and metabolism-related pathways were found at higher levels in the gut microbiome of DR patients. Using metabolomic analyses, we found 116 differentially expressed metabolites with a positive ion model and 168 differentially expressed metabolites with a negative ion model between the two groups. Kyoto Encyclopedia of Genes and Genomes annotation revealed six pathways with different levels between DR and diabetic controls, namely, cellular processes, environmental information processing, genetic information processing, human diseases, organismal systems and metabolism. Moreover, lysine biosynthesis and lysine degradation were enriched using a positive model, but histidine metabolism and β-alanine metabolism were enriched using a negative model.ConclusionsTogether, the metagenomic profiles of DR patients indicated different gut microbiota compositions and characteristic fecal metabolic phenotypes in DR patients. Our findings of microbial pathways therefore provided potential etiological and therapeutic targets for DR patients.
Collapse
Affiliation(s)
- Lihua Li
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kaibo Yang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Cong Li
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Han Zhang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kang Chen
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Kang Chen, ; Xiaohong Yang, ; Lei Liu,
| | - Xiaohong Yang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Kang Chen, ; Xiaohong Yang, ; Lei Liu,
| | - Lei Liu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Kang Chen, ; Xiaohong Yang, ; Lei Liu,
| |
Collapse
|
17
|
Gomes MJC, da Silva JS, Alves NEG, de Assis A, de Mejía EG, Mantovani HC, Martino HSD. Cooked common bean flour, but not its protein hydrolysate, has the potential to improve gut microbiota composition and function in BALB/c mice fed a high-fat diet added with 6-propyl-2-thiouracil. J Nutr Biochem 2022; 106:109022. [DOI: 10.1016/j.jnutbio.2022.109022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 10/29/2021] [Accepted: 03/18/2022] [Indexed: 12/28/2022]
|
18
|
Pinart M, Dötsch A, Schlicht K, Laudes M, Bouwman J, Forslund SK, Pischon T, Nimptsch K. Gut Microbiome Composition in Obese and Non-Obese Persons: A Systematic Review and Meta-Analysis. Nutrients 2021; 14:nu14010012. [PMID: 35010887 PMCID: PMC8746372 DOI: 10.3390/nu14010012] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
Whether the gut microbiome in obesity is characterized by lower diversity and altered composition at the phylum or genus level may be more accurately investigated using high-throughput sequencing technologies. We conducted a systematic review in PubMed and Embase including 32 cross-sectional studies assessing the gut microbiome composition by high-throughput sequencing in obese and non-obese adults. A significantly lower alpha diversity (Shannon index) in obese versus non-obese adults was observed in nine out of 22 studies, and meta-analysis of seven studies revealed a non-significant mean difference (−0.06, 95% CI −0.24, 0.12, I2 = 81%). At the phylum level, significantly more Firmicutes and fewer Bacteroidetes in obese versus non-obese adults were observed in six out of seventeen, and in four out of eighteen studies, respectively. Meta-analyses of six studies revealed significantly higher Firmicutes (5.50, 95% 0.27, 10.73, I2 = 81%) and non-significantly lower Bacteroidetes (−4.79, 95% CI −10.77, 1.20, I2 = 86%). At the genus level, lower relative proportions of Bifidobacterium and Eggerthella and higher Acidaminococcus, Anaerococcus, Catenibacterium, Dialister, Dorea, Escherichia-Shigella, Eubacterium, Fusobacterium, Megasphera, Prevotella, Roseburia, Streptococcus, and Sutterella were found in obese versus non-obese adults. Although a proportion of studies found lower diversity and differences in gut microbiome composition in obese versus non-obese adults, the observed heterogeneity across studies precludes clear answers.
Collapse
Affiliation(s)
- Mariona Pinart
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (M.P.); (T.P.)
| | - Andreas Dötsch
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)—Federal Research Institute of Nutrition and Food, 76131 Karlsruhe, Germany;
| | - Kristina Schlicht
- Institute of Diabetes and Clinical Metabolic Research, University of Kiel, 24105 Kiel, Germany; (K.S.); (M.L.)
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University of Kiel, 24105 Kiel, Germany; (K.S.); (M.L.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, Kiel University, 24118 Kiel, Germany
| | - Jildau Bouwman
- Microbiology and Systems Biology Group, Toegepast Natuurwetenschappelijk Onderzoek (TNO), Utrechtseweg 48, 3704 HE Zeist, The Netherlands;
| | - Sofia K. Forslund
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125 Berlin, Germany;
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117 Berlin, Germany
- Host-Microbiome Factors in Cardiovascular Disease Lab, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Biobank Core Facility, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (M.P.); (T.P.)
- Biobank Core Facility, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
- Biobank Technology Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Katharina Nimptsch
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (M.P.); (T.P.)
- Correspondence: ; Tel.: +49-30-9046-4573
| |
Collapse
|
19
|
Wang Z, Usyk M, Vázquez-Baeza Y, Chen GC, Isasi CR, Williams-Nguyen JS, Hua S, McDonald D, Thyagarajan B, Daviglus ML, Cai J, North KE, Wang T, Knight R, Burk RD, Kaplan RC, Qi Q. Microbial co-occurrence complicates associations of gut microbiome with US immigration, dietary intake and obesity. Genome Biol 2021; 22:336. [PMID: 34893089 PMCID: PMC8665519 DOI: 10.1186/s13059-021-02559-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 11/23/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Obesity and related comorbidities are major health concerns among many US immigrant populations. Emerging evidence suggests a potential involvement of the gut microbiome. Here, we evaluated gut microbiome features and their associations with immigration, dietary intake, and obesity in 2640 individuals from a population-based study of US Hispanics/Latinos. RESULTS The fecal shotgun metagenomics data indicate that greater US exposure is associated with reduced ɑ-diversity, reduced functions of fiber degradation, and alterations in individual taxa, potentially related to a westernized diet. However, a majority of gut bacterial genera show paradoxical associations, being reduced with US exposure and increased with fiber intake, but increased with obesity. The observed paradoxical associations are not explained by host characteristics or variation in bacterial species but might be related to potential microbial co-occurrence, as seen by positive correlations among Roseburia, Prevotella, Dorea, and Coprococcus. In the conditional analysis with mutual adjustment, including all genera associated with both obesity and US exposure in the same model, the positive associations of Roseburia and Prevotella with obesity did not persist, suggesting that their positive associations with obesity might be due to their co-occurrence and correlations with obesity-related taxa, such as Dorea and Coprococcus. CONCLUSIONS Among US Hispanics/Latinos, US exposure is associated with unfavorable gut microbiome profiles for obesity risk, potentially related to westernized diet during acculturation. Microbial co-occurrence could be an important factor to consider in future studies relating individual gut microbiome taxa to environmental factors and host health and disease.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Mykhaylo Usyk
- Departments of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yoshiki Vázquez-Baeza
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA USA
- Jacobs School of Engineering, University of California, San Diego, La Jolla, CA USA
| | - Guo-Chong Chen
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Carmen R. Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | | | - Simin Hua
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Daniel McDonald
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
| | | | | | - Jianwen Cai
- University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Kari E. North
- University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA USA
| | - Robert D. Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
- Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY USA
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY USA
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA USA
| |
Collapse
|
20
|
Aragón-Vela J, Solis-Urra P, Ruiz-Ojeda FJ, Álvarez-Mercado AI, Olivares-Arancibia J, Plaza-Diaz J. Impact of Exercise on Gut Microbiota in Obesity. Nutrients 2021; 13:nu13113999. [PMID: 34836254 PMCID: PMC8624603 DOI: 10.3390/nu13113999] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Physical activity, exercise, or physical fitness are being studied as helpful nonpharmacological therapies to reduce signaling pathways related to inflammation. Studies describing changes in intestinal microbiota have stated that physical activity could increase the microbial variance and enhance the ratio of Firmicutes/Bacteroidetes, and both actions could neutralize the obesity progression and diminish body weight. The aim of this review is to provide an overview of the literature describing the relationship between physical activity profiles and gut microbiota and in obesity and some associated comorbidities. Promoting physical activity could support as a treatment to maintain the gut microbiota composition or to restore the balance toward an improvement of dysbiosis in obesity; however, these mechanisms need to be studied in more detail. The opportunity to control the microbiota by physical activity to improve health results and decrease obesity and related comorbidities is very attractive. Nevertheless, several incompletely answered questions need to be addressed before this strategy can be implemented.
Collapse
Affiliation(s)
- Jerónimo Aragón-Vela
- Department of Physiology, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Granada, Spain; (F.J.R.-O.); (A.I.Á.-M.)
- Correspondence: (J.A.-V.); (J.P.-D.); Tel.: +34-958220319 (J.A.-V.); +34-958241599 (J.P.-D.)
| | - Patricio Solis-Urra
- PROFITH “PROmoting FITness and Health through Physical Activity” Research Group, Department of Physical Education and Sports, Faculty of Sports Science, University of Granada, 18071 Granada, Spain;
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2531015, Chile
| | - Francisco Javier Ruiz-Ojeda
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Granada, Spain; (F.J.R.-O.); (A.I.Á.-M.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, Neuherberg, 85764 Munich, Germany
| | - Ana Isabel Álvarez-Mercado
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Granada, Spain; (F.J.R.-O.); (A.I.Á.-M.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Jorge Olivares-Arancibia
- Grupo AFySE, Investigación en Actividad Física y Salud Escolar, Escuela de Pedagogía en Educación Física, Facultad de Educación, Universidad de las Américas, Santiago 8370035, Chile;
- IRyS Research Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Correspondence: (J.A.-V.); (J.P.-D.); Tel.: +34-958220319 (J.A.-V.); +34-958241599 (J.P.-D.)
| |
Collapse
|
21
|
Chen YR, Jing QL, Chen FL, Zheng H, Chen LD, Yang ZC. Desulfovibrio is not always associated with adverse health effects in the Guangdong Gut Microbiome Project. PeerJ 2021; 9:e12033. [PMID: 34466295 PMCID: PMC8380029 DOI: 10.7717/peerj.12033] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/30/2021] [Indexed: 01/08/2023] Open
Abstract
Desulfovibrio (DSV) is frequently found in the human intestine but limited knowledge is available regarding the relationship between DSV and host health. In this study, we analyzed large-scale cohort data from the Guangdong Gut Microbiome Project to study the ecology of DSV and the associations of DSV and host health parameters. Phylogenetic analysis showed that Desulfovibrio piger might be the most common and abundant DSV species in the GGMP. Predominant sub-OTUs of DSV were positively associated with bacterial community diversity. The relative abundance of DSV was positively correlated with beneficial genera, including Oscillospira, Coprococcus,Ruminococcus,Akkermansia, Roseburia,Faecalibacterium, andBacteroides, and was negatively associated with harmful genera, such as Clostridium,Escherichia,Klebsiella, and Ralstonia. Moreover, the relative abundance of DSV was negatively correlated with body mass index, waist size, triglyceride levels, and uric acid levels. This suggests that DSV is associated with healthy hosts in some human populations.
Collapse
Affiliation(s)
- Yi-Ran Chen
- Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Qin-Long Jing
- Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Fang-Lan Chen
- Department of Intensive Care Unit, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Huimin Zheng
- Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Li-Dan Chen
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, Guangdong, China
| | - Zhi-Cong Yang
- Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Murphy K, O'Donovan AN, Caplice NM, Ross RP, Stanton C. Exploring the Gut Microbiota and Cardiovascular Disease. Metabolites 2021; 11:metabo11080493. [PMID: 34436434 PMCID: PMC8401482 DOI: 10.3390/metabo11080493] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) has been classified as one of the leading causes of morbidity and mortality worldwide. CVD risk factors include smoking, hypertension, dyslipidaemia, obesity, inflammation and diabetes. The gut microbiota can influence human health through multiple interactions and community changes are associated with the development and progression of numerous disease states, including CVD. The gut microbiota are involved in the production of several metabolites, such as short-chain fatty acids (SCFAs), bile acids and trimethylamine-N-oxide (TMAO). These products of microbial metabolism are important modulatory factors and have been associated with an increased risk of CVD. Due to its association with CVD development, the gut microbiota has emerged as a target for therapeutic approaches. In this review, we summarise the current knowledge on the role of the gut microbiome in CVD development, and associated microbial communities, functions, and metabolic profiles. We also discuss CVD therapeutic interventions that target the gut microbiota such as probiotics and faecal microbiota transplantation.
Collapse
Affiliation(s)
- Kiera Murphy
- Teagasc Food Research Centre, Moorepark, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
| | - Aoife N O'Donovan
- Teagasc Food Research Centre, Moorepark, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- VistaMilk SFI Research Centre, Teagasc, Moorepark, Co. Cork P61 C996, Ireland
| | - Noel M Caplice
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- Centre for Research in Vascular Biology, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- VistaMilk SFI Research Centre, Teagasc, Moorepark, Co. Cork P61 C996, Ireland
| |
Collapse
|
23
|
Gut Microbiota Profile and Its Association with Clinical Variables and Dietary Intake in Overweight/Obese and Lean Subjects: A Cross-Sectional Study. Nutrients 2021; 13:nu13062032. [PMID: 34199239 PMCID: PMC8231825 DOI: 10.3390/nu13062032] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
We aimed to differentiate gut microbiota composition of overweight/obese and lean subjects and to determine its association with clinical variables and dietary intake. A cross-sectional study was performed with 96 overweight/obese subjects and 32 lean subjects. Anthropometric parameters were positively associated with Collinsella aerofaciens, Dorea formicigenerans and Dorea longicatena, which had higher abundance the overweight/obese subjects. Moreover, different genera of Lachnospiraceae were negatively associated with body fat, LDL and total cholesterol. Saturated fatty acids (SFAs) were negatively associated with the genus Intestinimonas, a biomarker of the overweight/obese group, whereas SFAs were positively associated with Roseburia, a biomarker for the lean group. In conclusion, Dorea formicigenerans, Dorea longicatena and Collinsella aerofaciens could be considered obesity biomarkers, Lachnospiraceae is associated with lipid cardiovascular risk factors. SFAs exhibited opposite association profiles with butyrate-producing bacteria depending on the BMI. Thus, the relationship between diet and microbiota opens new tools for the management of obesity.
Collapse
|
24
|
Yang X, Tang T, Wen J, Li M, Chen J, Li T, Dai Y, Cheng Q. Effects of S24-7 on the weight of progeny rats after exposure to ceftriaxone sodium during pregnancy. BMC Microbiol 2021; 21:166. [PMID: 34082715 PMCID: PMC8176729 DOI: 10.1186/s12866-021-02231-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/13/2021] [Indexed: 11/10/2022] Open
Abstract
Antibiotic exposure during pregnancy will adversely affect the growth of offspring; however, this remains controversial and the mechanism is poorly understood. To study this phenomenon, we added ceftriaxone sodium to the drinking water of pregnant rats and continuously monitored the body weight of their offspring. The results showed that compared with the control group, the offspring exposed to antibiotics during pregnancy had a higher body weight up to 3 weeks old but had a lower body weight at 6 weeks old. To determine the role of the gut microbiota and its metabolites in the growth of offspring, we collected feces for sequencing and further established that the experimental group has a different composition ratio of dominant bacteria at 6 week old, among which S24–7 correlated negatively with body weight and the metabolites that correlated with body weight-related unique flora were L-Valine, L-Leucine, Glutaric acid, N-Acetyl-L-glutamate, and 5-Methylcytosine. To further explore how they affect the growth of offspring, we submitted these data to Kyoto Encyclopedia of Genes and Genomes website for relevant pathway analysis. The results showed that compared with the control, the following metabolic pathways changed significantly: Valine, leucine, and isoleucine biosynthesis; Protein digestion and absorption; and Mineral absorption. Therefore, we believe that our findings support the conclusion that ceftriaxone sodium exposure in pregnancy has a long-lasting adverse effect on the growth of offspring because of an imbalance of gut microbiota, especially S24–7, via different metabolic pathways.
Collapse
Affiliation(s)
- Xin Yang
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Ting Tang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Jing Wen
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Mengchun Li
- Chongqing Key Laboratory of Child Health and Nutrition, Chongqing, China
| | - Jie Chen
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Tingyu Li
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ying Dai
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Qian Cheng
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
25
|
Nagu P, Parashar A, Behl T, Mehta V. Gut Microbiota Composition and Epigenetic Molecular Changes Connected to the Pathogenesis of Alzheimer's Disease. J Mol Neurosci 2021; 71:1436-1455. [PMID: 33829390 DOI: 10.1007/s12031-021-01829-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, and its pathogenesis is not fully known. Although there are several hypotheses, such as neuroinflammation, tau hyperphosphorylation, amyloid-β plaques, neurofibrillary tangles, and oxidative stress, none of them completely explain the origin and progression of AD. Emerging evidence suggests that gut microbiota and epigenetics can directly influence the pathogenesis of AD via their effects on multiple pathways, including neuroinflammation, oxidative stress, and amyloid protein. Various gut microbes such as Actinobacteria, Bacteroidetes, E. coli, Firmicutes, Proteobacteria, Tenericutes, and Verrucomicrobia are known to play a crucial role in the pathogenesis of AD. These microbes and their metabolites modulate various physiological processes that contribute to AD pathogenesis, such as neuroinflammation and other inflammatory processes, amyloid deposition, cytokine storm syndrome, altered BDNF and NMDA signaling, impairing neurodevelopmental processes. Likewise, epigenetic markers associated with AD mainly include histone modifications and DNA methylation, which are under the direct control of a variety of enzymes, such as acetylases and methylases. The activity of these enzymes is dependent upon the metabolites generated by the host's gut microbiome, suggesting the significance of epigenetics in AD pathogenesis. It is interesting to know that both gut microbiota and epigenetics are dynamic processes and show a high degree of variation according to diet, stressors, and environmental factors. The bidirectional relation between the gut microbiota and epigenetics suggests that they might work in synchrony to modulate AD representation, its pathogenesis, and progression. They both also provide numerous targets for early diagnostic biomarkers and for the development of AD therapeutics. This review discusses the gut microbiota and epigenetics connection in the pathogenesis of AD and aims to highlight vast opportunities for diagnosis and therapeutics of AD.
Collapse
Affiliation(s)
- Priyanka Nagu
- Department of Pharmaceutics, Govt. College of Pharmacy, Rohru, Himachal Pradesh, India.,Department of Pharmacy, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan, India
| | - Arun Parashar
- Faculty of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vineet Mehta
- Department of Pharmacology, Govt. College of Pharmacy, Rohru, Himachal Pradesh, India.
| |
Collapse
|
26
|
Guo W, Kim SH, Wu D, Li L, Ortega EF, Thomas M, Meydani SN, Meydani M. Dietary Fruit and Vegetable Supplementation Suppresses Diet-Induced Atherosclerosis in LDL Receptor Knockout Mice. J Nutr 2021; 151:902-910. [PMID: 33561256 DOI: 10.1093/jn/nxaa410] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Epidemiologic studies suggest that fruit and vegetable (F&V) consumption is inversely associated with incidence of cardiovascular disease (CVD). However, evidence for causality is lacking, and the underlying mechanisms are not well understood. OBJECTIVES We aimed to determine whether there is a causal relation between consuming high levels of F&V and prevention of atherosclerosis, the hallmark of CVD pathogenesis. Furthermore, the underlying mechanisms were determined. METHODS Six-week-old male LDL receptor-knockout mice were randomly assigned to 3 diet groups (12 mice/group) for 20 wk: control (CON, 10% kcal fat, 0.20 g/kg cholesterol), atherogenic (Ath, 27% kcal fat, 0.55 g/kg cholesterol), and Ath supplemented with 15% F&V (Ath + FV) (equivalent to 8-9 servings/d in humans). F&V was added as a freeze-dried powder that was prepared from the 24 most commonly consumed F&Vs in the United States. Body weight, aortic atherosclerotic lesion area, hepatic steatosis area, serum lipid profile and proinflammatory cytokine TNF-α concentrations, gut microbiota, and liver TNF-α and fatty acid synthase (Fasn) mRNA concentrations were assessed. RESULTS F&V supplementation did not affect weight gain. Mice fed the Ath + FV diet had a smaller aortic atherosclerotic lesion area (71.7% less) and hepatic steatosis area (80.7% less) than those fed the Ath diet (both P < 0.001) independent of impact on weight, whereas no difference was found between Ath + FV and CON groups in these 2 pathologic markers. Furthermore, F&V supplementation prevented Ath diet-induced dyslipidemia (high concentrations of serum TG and VLDL cholesterol and lower concentrations of HDL cholesterol), reduced serum TNF-α concentration (by 21.5%), suppressed mRNA expression of liver TNF-α and Fasn, and ameliorated Ath-induced gut microbiota dysbiosis. CONCLUSIONS Our results indicate that consuming a large quantity and variety of F&Vs causally attenuates diet-induced atherosclerosis and hepatic steatosis in mice. These effects of F&Vs are associated with, and may be mediated through, improved atherogenic dyslipidemia, alleviated gut dysbiosis, and suppressed inflammation.
Collapse
Affiliation(s)
- Weimin Guo
- Nutritional Immunology Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Sharon H Kim
- Vascular Biology Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Dayong Wu
- Nutritional Immunology Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Lijun Li
- Nutritional Immunology Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Edwin Frank Ortega
- Nutritional Immunology Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Michael Thomas
- Vascular Biology Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Simin Nikbin Meydani
- Nutritional Immunology Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Mohsen Meydani
- Vascular Biology Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| |
Collapse
|
27
|
Guo W, Wu D, Dao MC, Li L, Lewis ED, Ortega EF, Eom H, Thomas M, Nikolova-Karakashian M, Meydani M, Meydani SN. A Novel Combination of Fruits and Vegetables Prevents Diet-Induced Hepatic Steatosis and Metabolic Dysfunction in Mice. J Nutr 2020; 150:2950-2960. [PMID: 32939550 PMCID: PMC7919336 DOI: 10.1093/jn/nxaa259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/01/2020] [Accepted: 08/04/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Epidemiological studies suggest that higher fruits and vegetables (F&V) consumption correlates with reduced risk of hepatic steatosis, yet evidence for causality and the underlying mechanisms is lacking. OBJECTIVES We aimed to determine the causal relation between F&V consumption and improved metabolic disorders in mice fed high-fat (HF) (Experiment-1) or normal-fat (Experiment-2) diets and its underlying mechanisms. METHODS Six-week-old male C57BL/6J mice were randomly grouped and fed diets supplemented at 0%-15% (wt:wt) with a freeze-dried powder composed of 24 commonly consumed F&V (human equivalent of 0-9 servings/d) for 20 wk. In Experiment-1, mice were fed an HF (45% kcal fat) diet with 0% (HF0), 5%, 10%, or 15% (HF15) F&V or a matched low-fat control diet (10% kcal fat). In Experiment-2, mice were fed an AIN-93 diet (basal) (B, 16% kcal fat) with 0% (B0), 5%, 10%, or 15% (B15) F&V supplementation. Body weight and composition, food intake, hepatic steatosis, inflammation, ceramide levels, sphingomyelinase activity, and gut microbiota were assessed. RESULTS In Experiment-1, mice fed the HF15 diet had lower weight gain (17.9%), hepatic steatosis (48.4%), adipose tissue inflammation, blood (24.6%) and liver (33.9%) ceramide concentrations, and sphingomyelinase activity (38.8%) than HF0 mice (P < 0.05 for all). In Experiment-2, mice fed the B15 diet had no significant changes in weight gain but showed less hepatic steatosis (28.5%), blood and adipose tissue inflammation, and lower blood (30.0%) ceramide concentrations than B0 mice (P < 0.05 for all). These F&V effects were associated with favorable microbiota changes. CONCLUSIONS These findings represent the first evidence for a causal role of high F&V intake in mitigating hepatic steatosis in mice. These beneficial effects may be mediated through changes in ceramide and/or gut microbiota, and suggest that higher than currently recommended servings of F&V may be needed to achieve maximum health benefits.
Collapse
Affiliation(s)
- Weimin Guo
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Dayong Wu
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Maria C Dao
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Lijun Li
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Erin D Lewis
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Edwin F Ortega
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Heesun Eom
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Michael Thomas
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | | | - Mohsen Meydani
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Simin N Meydani
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| |
Collapse
|
28
|
Chen YR, Zheng HM, Zhang GX, Chen FL, Chen LD, Yang ZC. High Oscillospira abundance indicates constipation and low BMI in the Guangdong Gut Microbiome Project. Sci Rep 2020; 10:9364. [PMID: 32518316 PMCID: PMC7283226 DOI: 10.1038/s41598-020-66369-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/15/2020] [Indexed: 01/16/2023] Open
Abstract
Oscillospira is a common yet rarely cultivated gut bacterial genus. Recently human gut microbiota studies have demonstrated its underlying significance for host health. However, little is known about Oscillospira-related host information and the links between Oscillospira and other members of the gut microbial community. To study the ecology of Oscillospira and gain insights into Oscillospira-related host physiological conditions, we analyzed data from the Guangdong Gut Microbiome Project, one of the largest gut microbiota database currently. Data of 6376 participants were analyzed. We studied the prevalence and relative abundance of Oscillospira as well as the profiles of associated microbial communities. We found that Oscillospira is closely related to human health because its abundance was positively correlated with microbial diversity, high density lipoprotein, and sleep time, and was inversely correlated with diastolic blood pressure, systolic blood pressure, fasting blood glucose, triglyceride, uric acid and Bristol stool type. Moreover, random forest analysis with five-fold cross validation showed Oscillospira could be a predictor of low BMI and constipation in the subset. Overall, in this study, we provide a basic understanding of Oscillospira-related microbiota profile and physiological parameters of the host. Our results indicate Oscillospira may play a role in aggravating constipation.
Collapse
Affiliation(s)
- Yi-Ran Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Hui-Min Zheng
- Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Guo-Xia Zhang
- Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Fang-Lan Chen
- Department of Intensive Care Unit, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Li-Dan Chen
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, Guangdong, China.
| | - Zhi-Cong Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China.
| |
Collapse
|
29
|
Kaplan RC, Wang Z, Usyk M, Sotres-Alvarez D, Daviglus ML, Schneiderman N, Talavera GA, Gellman MD, Thyagarajan B, Moon JY, Vázquez-Baeza Y, McDonald D, Williams-Nguyen JS, Wu MC, North KE, Shaffer J, Sollecito CC, Qi Q, Isasi CR, Wang T, Knight R, Burk RD. Gut microbiome composition in the Hispanic Community Health Study/Study of Latinos is shaped by geographic relocation, environmental factors, and obesity. Genome Biol 2019; 20:219. [PMID: 31672155 PMCID: PMC6824043 DOI: 10.1186/s13059-019-1831-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hispanics living in the USA may have unrecognized potential birthplace and lifestyle influences on the gut microbiome. We report a cross-sectional analysis of 1674 participants from four centers of the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), aged 18 to 74 years old at recruitment. RESULTS Amplicon sequencing of 16S rRNA gene V4 and fungal ITS1 fragments from self-collected stool samples indicate that the host microbiome is determined by sociodemographic and migration-related variables. Those who relocate from Latin America to the USA at an early age have reductions in Prevotella to Bacteroides ratios that persist across the life course. Shannon index of alpha diversity in fungi and bacteria is low in those who relocate to the USA in early life. In contrast, those who relocate to the USA during adulthood, over 45 years old, have high bacterial and fungal diversity and high Prevotella to Bacteroides ratios, compared to USA-born and childhood arrivals. Low bacterial diversity is associated in turn with obesity. Contrasting with prior studies, our study of the Latino population shows increasing Prevotella to Bacteroides ratio with greater obesity. Taxa within Acidaminococcus, Megasphaera, Ruminococcaceae, Coriobacteriaceae, Clostridiales, Christensenellaceae, YS2 (Cyanobacteria), and Victivallaceae are significantly associated with both obesity and earlier exposure to the USA, while Oscillospira and Anaerotruncus show paradoxical associations with both obesity and late-life introduction to the USA. CONCLUSIONS Our analysis of the gut microbiome of Latinos demonstrates unique features that might be responsible for health disparities affecting Hispanics living in the USA.
Collapse
Affiliation(s)
- Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Zheng Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Mykhaylo Usyk
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY USA
| | - Daniela Sotres-Alvarez
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC USA
| | - Martha L. Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago College of Medicine, Chicago, IL USA
| | | | - Gregory A. Talavera
- Division of Health Promotion and Behavioral Science, San Diego State University, San Diego, CA USA
| | - Marc D. Gellman
- Department of Psychology, University of Miami, Miami, FL USA
| | - Bharat Thyagarajan
- Division of Molecular Pathology and Genomics, University of Minnesota, Minneapolis, MN USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Yoshiki Vázquez-Baeza
- Jacobs School of Engineering, University of California, San Diego, La Jolla, CA USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA USA
| | - Daniel McDonald
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
| | | | - Michael C. Wu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Kari E. North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC USA
| | - Justin Shaffer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
| | | | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Carmen R. Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA USA
| | - Robert D. Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY USA
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY USA
| |
Collapse
|
30
|
Rajab M, Jumaa M, Horaniah MY, Barakat A, Bakleh S, Zarzour W. Correlations of C-Reactive Protein and Folate with Smoking, Sport, Hematological Inflammation Biomarkers and Anthropometrics in Syrian University Female Students Cross-Sectional Study. Sci Rep 2019; 9:15189. [PMID: 31645641 PMCID: PMC6811634 DOI: 10.1038/s41598-019-51658-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 10/07/2019] [Indexed: 11/09/2022] Open
Abstract
In Syria, high-Sensitive C-Reactive (hsCRP), folate, and, other health risk data in young women are limited. This cross-sectional study evaluates hsCRP and folate levels along with anthropometric characteristics, lifestyle factors and some biomarkers linked to cardiovascular disease (CVD) risk factors in healthy female students (n = 207, 18-25 years old). Among participants, hsCRP level was at average or high risk of CVD in 20.7% and 2.5% respectively and it was significantly higher in participants who had high body mass index (BMI) (Nonparametric statistical tests, p value < 0.05). Unexpectedly, it did not vary significantly between smokers and nonsmokers. And, it correlated positively with anthropometric and erythrocyte sedimentation rate (ESR) measurements. While folate level was low in 3.4% of participants, no association between hsCRP and folate levels was found. Finally, low hemoglobin level and habit of waterpipe smoking are spreading; and, sport practicing is shrinking. After reviewing similar works, this study suggests that the possible correlation between hsCRP and folate could be displayed in patients older than 30 years. Also, the marked decrease in hemoglobin level needs more attention. Finally, young females in Syria are advised to consider a lifestyle free of smoking and packed with physical activity.
Collapse
Affiliation(s)
- Mazen Rajab
- Biochemistry Department, Faculty of Pharmacy, Arab International University, Damascus, Syria.
| | - Mohamad Jumaa
- Biochemistry Department, Faculty of Pharmacy, Arab International University, Damascus, Syria
| | - Muhammad Yusr Horaniah
- Biochemistry Department, Faculty of Pharmacy, Arab International University, Damascus, Syria
| | - Ahmad Barakat
- Biochemistry Department, Faculty of Pharmacy, Arab International University, Damascus, Syria
| | - Saied Bakleh
- Biochemistry Department, Faculty of Pharmacy, Arab International University, Damascus, Syria
| | - Wafika Zarzour
- Biochemistry Department, Faculty of Pharmacy, Arab International University, Damascus, Syria
| |
Collapse
|