1
|
Deng LS, Xu T, Xu ZW, Zhu L. Emergence of a novel porcine pestivirus with potential for cross-species transmission in China, 2023. Vet Res 2025; 56:32. [PMID: 39915857 PMCID: PMC11804013 DOI: 10.1186/s13567-025-01472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/17/2024] [Indexed: 02/09/2025] Open
Abstract
Pestiviruses, RNA viruses belonging to the Flaviviridae family, have a broad host range. Their pathogenicity varies greatly and they have caused significant economic losses in animal husbandry. In this study, a novel pestivirus, porcine abortion-associated pestivirus (PAAPeV), was isolated from pigs in China in 2023. Clinically, PAAPeV causes abortions in sows and leads to congenital tremors and death in piglets. PAAPeV replicates efficiently in ST cells. Morphologically, PAAPeV virions are spherical particles with a diameter of approximately 80 nm. Phylogenetic analysis reveals that PAAPeV is closely related to Wenzhou Pipistrellus abramus pestivirus and clusters into a distinct branch, suggesting that it represents a new species: Pestivirus chinensis. Animal experiments demonstrated that PAAPeV-infected piglets and mice exhibit significant histopathological changes. In piglets, histopathological examination revealed myocarditis, hepatitis, glial vacuolation and cerebrovascular inflammation. In mice, findings included hepatic monocyte aggregation, glomerular atrophy, pulmonary edema, inflammatory cell infiltration, and capillary dilation. Viremia has been detected in both piglets and mice, with high viral genome loads found in various organs. In vitro results revealed that PAAPeV replicates in ST cells and, to a lesser extent, in human (A549 and HepG2) and monkey (Vero) cells. Overall, PAAPeV infects both pigs and mice and has the potential to infect other mammals, indicating its ability for cross-species transmission. This poses significant risks to the pig industry and public health. Strengthening monitoring and prevention efforts for PAAPeV is crucial. Our findings greatly increase the understanding of pestivirus diversity and its broader pathogen spectrum.
Collapse
Affiliation(s)
- Li-Shuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Wen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
- Sichuan Key Laboratory of Animal Epidemic Disease and Human Health, Sichuan Agricultural University, Chengdu, China.
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
- Sichuan Key Laboratory of Animal Epidemic Disease and Human Health, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
2
|
Söder L, Meyer D, Isken O, Tautz N, König M, Postel A, Becher P. Characterization of the First Marine Pestivirus, Phocoena Pestivirus (PhoPeV). Viruses 2025; 17:107. [PMID: 39861896 PMCID: PMC11768717 DOI: 10.3390/v17010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The first marine pestivirus, Phocoena pestivirus (PhoPeV), isolated from harbor porpoise, has been recently described. To further characterize this unique pestivirus, its host cell tropism and growth kinetics were determined in different cell lines. In addition, the interaction of PhoPeV with innate immunity in porcine epithelial cells and the role of selected cellular factors involved in the viral entry and RNA replication of PhoPeV were investigated in comparison to closely and distantly related pestiviruses. While Bungowannah pestivirus (BuPV), a unique porcine pestivirus closely related to PhoPeV, exhibits a broad cell tropism, PhoPeV only infects cells from pigs, cattle, sheep, and cats, as has been described for classical swine fever virus (CSFV). Viral titers correlate with the amount of intracellular PhoPeV-specific RNA detected in the tested cell lines. PhoPeV replicates most efficiently in the porcine kidney cell line SK6. Pestiviruses generally counteract the cellular innate immune response by degradation of interferon regulatory factor 3 (IRF3) mediated by the viral N-terminal protease (Npro). No degradation of IRF3 and an increased expression of the type 1 interferon-stimulated antiviral protein Mx1 was observed in porcine cells infected with PhoPeV whose genome lacks the Npro encoding region. Infection of a CD46-deficient porcine cell line suggested that CD46, which is implicated in the viral entry of several pestiviruses, is not a major factor for the viral entry of PhoPeV. Moreover, the results of this study confirmed that the cellular factor DNAJC14 plays a crucial role in viral RNA replication of non-cytopathic pestiviruses, including PhoPeV.
Collapse
Affiliation(s)
- Lars Söder
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (L.S.); (A.P.)
| | - Denise Meyer
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (L.S.); (A.P.)
| | - Olaf Isken
- Institute of Virology and Cell Biology, University of Lübeck, D-23562 Lübeck, Germany; (O.I.); (N.T.)
| | - Norbert Tautz
- Institute of Virology and Cell Biology, University of Lübeck, D-23562 Lübeck, Germany; (O.I.); (N.T.)
| | - Matthias König
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, D-35392 Giessen, Germany;
| | - Alexander Postel
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (L.S.); (A.P.)
| | - Paul Becher
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (L.S.); (A.P.)
| |
Collapse
|
3
|
Lamp B, Barth S, Reuscher C, Affeldt S, Cechini A, Netsch A, Lobedank I, Rümenapf T. Essential role of cis-encoded mature NS3 in the genome packaging of classical swine fever virus. J Virol 2024:e0120924. [PMID: 39723819 DOI: 10.1128/jvi.01209-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Classical swine fever virus (CSFV) is a member of the genus Pestivirus within the family Flaviviridae. The enveloped particles contain a plus-stranded RNA genome encoding a single large polyprotein. The processing of this polyprotein undergoes dynamic changes throughout the infection cycle. The release of mature NS3 from the polyprotein is mediated and regulated by the NS2 autoprotease and a cellular co-factor, restricting efficient cleavage to the early phases of infection. NS3 is a multifunctional viral enzyme exhibiting helicase, NTPase, and protease activities pivotal for viral replication. Hence, the release of mature NS3 fuels replication, whereas unprocessed NS2-3 precursors are vital for progeny virus production in later phases of infection. Thus far, no packaging signals have been identified for pestivirus RNA. To explore the prerequisites for particle assembly, trans-packaging experiments were conducted using CSFV subgenomes and coreless CSFV strains. Intriguingly, we discovered a significant role of mature NS3 in genome packaging, effective only when the protein is encoded by the RNA molecule itself. This finding was reinforced by employing artificially engineered CSFV strains with duplicated NS3 genes, separating uncleavable NS2-3 precursors from mature NS3 molecules. The model for NS2-3/NS3 functions in genome packaging of pestiviruses appears to be much more complicated than anticipated, involving distinct functions of the mature NS3 and its precursor molecule NS2-3. Moreover, the reliance of genome packaging on cis-encoded NS3 may act as a downstream quality control mechanism, averting the packaging of defective genomes and coordinating the encapsidation of RNA molecules before membrane acquisition. IMPORTANCE Pestiviruses are economically significant pathogens in livestock. Although genome organization and non-structural protein functions resemble those of other Flaviviridae genera, distinct differences can be observed. Previous studies showed that coreless CSFV strains can produce coreless virions mediated by single compensatory mutations in NS3. In this study, we could show that only RNA molecules encoding these mutations in the mature NS3 are packaged in the absence of the core protein. Unlike this selectivity, a pool of structural proteins in the host cell was readily available for packaging all CSFV genomes. Similarly, the NS2-3-4A precursor molecules required for packaging could also be provided in trans. Consequently, genome packaging in pestiviruses is governed by cis-encoded mature NS3. Reliance on cis-acting proteins restricts the acceptance of defective genomes and establishes packaging specificity regardless of RNA sequence-specific packaging signals. Understanding the role of NS3 in pestiviral genome packaging might uncover new targets for antiviral therapies.
Collapse
Affiliation(s)
- Benjamin Lamp
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Sandra Barth
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Carina Reuscher
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Sebastian Affeldt
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Angelika Cechini
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Anette Netsch
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Irmin Lobedank
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Till Rümenapf
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
4
|
Anoyatbekova A, Yuzhakov A. Isolation and Phylogenetic Analysis of Atypical Porcine Pestivirus Isolates Identified in Russian Swine Herds. Viruses 2024; 17:2. [PMID: 39861791 PMCID: PMC11768848 DOI: 10.3390/v17010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
Atypical porcine pestivirus (APPV) was first identified in 2015 in North America by high-throughput sequencing. APPV is associated with congenital tremor A-II and is widely distributed worldwide. In this study, a total of 2630 samples of domestic pigs obtained from 14 regions of Russia from 2020 to 2024 were screened for APPV presence by qRT-PCR. APPV was detected in 12 farms located in eight regions. The overall positive rate was 8.8%. It has been established that APPV has been circulating in Russian swine herds since at least 2020. The phylogenetic analysis demonstrated that the Russian isolates are variable and assigned into three clusters. The isolates from the Krasnoyarsk Krai, Belgorod, Tomsk, and Kursk regions and the Republic of Buryatia share a high nucleotide identity (94.3-98.8%) with the Hungarian strains, while the isolates from the Moscow and Pskov regions share a nucleotide identity (89.2-94.3%) with strains from the USA. The isolate from the Republic of Mordovia has a high nucleotide identity (97.1%) with the South Korean strain. In vitro studies of the Russian isolates revealed the replication of the Belgorod 151 strain in SPEV cells. Thus, this is the first large-scale study that confirms the circulation of APPV in swine herds in Russia and describes its isolation in cell culture.
Collapse
Affiliation(s)
- Afshona Anoyatbekova
- Federal State Budget Scientific Institution “Federal Scientific Center VIEV”, 109428 Moscow, Russia;
| | | |
Collapse
|
5
|
Beilleau G, Stalder H, Almeida L, Oliveira Esteves BI, Alves MP, Schweizer M. The Pestivirus RNase E rns Tames the Interferon Response of the Respiratory Epithelium. Viruses 2024; 16:1908. [PMID: 39772215 PMCID: PMC11680131 DOI: 10.3390/v16121908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Bovine viral diarrhea virus (BVDV), a pestivirus in the family Flaviviridae, is a major livestock pathogen. Horizontal transmission leads to acute transient infections via the oronasal route, whereas vertical transmission might lead to the birth of immunotolerant, persistently infected animals. In both cases, BVDV exerts an immunosuppressive effect, predisposing infected animals to secondary infections. Erns, an immunomodulatory viral protein, is present on the envelope of the virus and is released as a soluble protein. In this form, it is taken up by cells and, with its RNase activity, degrades single- and double-stranded (ds) RNA, thus preventing activation of the host's interferon system. Here, we show that Erns of the pestiviruses BVDV and Bungowannah virus effectively inhibit dsRNA-induced IFN synthesis in well-differentiated airway epithelial cells cultured at the air-liquid interface. This activity was observed independently of the side of entry, apical or basolateral, of the pseudostratified, polarized cell layer. Virus infection was successful from both surfaces but was inefficient, requiring several days of incubation. Virus release was almost exclusively restricted to the apical side. This confirms that primary, well-differentiated respiratory epithelial cells cultured at the air-liquid interface are an appropriate model to study viral infection and innate immunotolerance in the bovine respiratory tract. Furthermore, evidence is presented that Erns might contribute to the immunosuppressive effect observed after BVDV infections, especially in persistently infected animals.
Collapse
Affiliation(s)
- Guillaume Beilleau
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Lea Almeida
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Blandina I. Oliveira Esteves
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Marco P. Alves
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, CH-3012 Bern, Switzerland
| | - Matthias Schweizer
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| |
Collapse
|
6
|
Leveringhaus E, Poljakovic R, Herrmann G, Roman-Sosa G, Becher P, Postel A. Porcine low-density lipoprotein receptor plays an important role in classical swine fever virus infection. Emerg Microbes Infect 2024; 13:2327385. [PMID: 38514916 PMCID: PMC10962300 DOI: 10.1080/22221751.2024.2327385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
Several cellular factors have been reported to be required for replication of classical swine fever virus (CSFV), a member of the genus Pestivirus within the family Flaviviridae. However, many steps of its replication cycle are still poorly understood. The low-density lipoprotein receptor (LDLR) is involved in cell entry and post-entry processes of different viruses including other members of the Flaviviridae. In this study, the relevance of LDLR in replication of CSFV and another porcine pestivirus, Bungowannah pestivirus (BuPV), was investigated by antibody-mediated blocking of LDLR and genetically engineered porcine cell lines providing altered LDLR expression levels. An LDLR-specific antibody largely blocked infection with CSFV, but had only a minor impact on BuPV. Infections of the genetically modified cells confirmed an LDLR-dependent replication of CSFV. Compared to wild type cells, lower and higher expression of LDLR resulted in a 3.5-fold decrease or increase in viral titers already 20 h post infection. Viral titers were 25-fold increased in LDLR-overexpressing cells compared to cells with reduced LDLR expression at 72 h post infection. The varying LDLR expression levels had no clear effect on permissivity to BuPV. A decoy receptor assay using recombinant soluble LDLR provided no evidence that LDLR may function as a receptor for CSFV or BuPV. Differences in their dependency on LDLR suggest that CSFV and BuPV likely use different mechanisms to interact with their host cells. Moreover, this study reveals similarities in the replication cycles of CSFV and other members of the family Flaviviridae that are dependent on LDLR.
Collapse
Affiliation(s)
- Elena Leveringhaus
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Robin Poljakovic
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gina Herrmann
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gleyder Roman-Sosa
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Paul Becher
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Alexander Postel
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
7
|
Geranio F, Affeldt S, Cechini A, Barth S, Reuscher CM, Riedel C, Rümenapf T, Lamp B. Exclusion of Superinfection or Enhancement of Superinfection in Pestiviruses-APPV Infection Is Not Dependent on ADAM17. Viruses 2024; 16:1834. [PMID: 39772144 PMCID: PMC11680174 DOI: 10.3390/v16121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Some viruses can suppress superinfections of their host cells by related or different virus species. The phenomenon of superinfection exclusion can be caused by inhibiting virus attachment, receptor binding and entry, by replication interference, or competition for host cell resources. Blocking attachment and entry not only prevents unproductive double infections but also stops newly produced virions from re-entering the cell post-exocytosis. In this study, we investigated the exclusion of superinfections between the different pestivirus species. Bovine and porcine cells pre-infected with non-cytopathogenic pestivirus strains were evaluated for susceptibility to subsequent superinfection using comparative titrations. Our findings revealed significant variation in exclusion potency depending on the pre- and superinfecting virus species, as well as the host cell species. Despite this variability, all tested classical pestivirus species reduced host cell susceptibility to subsequent infections, indicating a conserved entry mechanism. Unexpectedly, pre-infection with atypical porcine pestivirus (APPV) increased host cell susceptibility to classical pestiviruses. Further analysis showed that APPV can infect SK-6 cells independently of ADAM17, a critical attachment factor for the classical pestiviruses. These results indicate that APPV uses different binding and entry mechanisms than the other pestiviruses. The observed increase in the susceptibility of cells post-APPV infection warrants further investigation and could have practical implications, such as aiding challenging pestivirus isolation from diagnostic samples.
Collapse
Affiliation(s)
- Francesco Geranio
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Sebastian Affeldt
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Angelika Cechini
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Sandra Barth
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Carina M. Reuscher
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Christiane Riedel
- CIRI-Centre International de Recherche en Infectiologie, Université Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, 69007 Lyon, France;
| | - Till Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Benjamin Lamp
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| |
Collapse
|
8
|
Chen HW, Zaruba M, Dawood A, Düsterhöft S, Lamp B, Ruemenapf T, Riedel C. Modulation of ADAM17 Levels by Pestiviruses Is Species-Specific. Viruses 2024; 16:1564. [PMID: 39459898 PMCID: PMC11512297 DOI: 10.3390/v16101564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Upon host cell infection, viruses modulate their host cells to better suit their needs, including the downregulation of virus entry receptors. ADAM17, a cell surface sheddase, is an essential factor for infection of bovine cells with several pestiviruses. To assess the effect of pestivirus infection on ADAM17, the amounts of cellular ADAM17 and its presence at the cell surface were determined. Mature ADAM17 levels were reduced upon infection with a cytopathic pestivirus bovis (bovine viral diarrhea virus, cpBVDV), pestivirus suis (classical swine fever virus, CSFV) or pestivirus giraffae (strain giraffe), but not negatively affected by pestivirus L (Linda virus, LindaV). A comparable reduction of ADAM17 surface levels, which represents the bioactive form, could be observed in the presence of E2 of BVDV and CSFV, but not LindaV or atypical porcine pestivirus (pestivirus scrofae) E2. Superinfection exclusion in BVDV infection is caused by at least two proteins, glycoprotein E2 and protease/helicase NS3. To evaluate whether the lowered ADAM17 levels could be involved in superinfection exclusion, persistently CSFV- or LindaV-infected cells were challenged with different pestiviruses. Persistently LindaV-infected cells were significantly more susceptible to cpBVDV infection than persistently CSFV-infected cells, whilst the other pestiviruses tested were not or only hardly able to infect the persistently infected cells. These results provide evidence of a pestivirus species-specific effect on ADAM17 levels and hints at the possibility of its involvement in superinfection exclusion.
Collapse
Affiliation(s)
- Hann-Wei Chen
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (H.-W.C.); (M.Z.); (A.D.)
| | - Marianne Zaruba
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (H.-W.C.); (M.Z.); (A.D.)
| | - Aroosa Dawood
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (H.-W.C.); (M.Z.); (A.D.)
| | - Stefan Düsterhöft
- Institute for Molecular Pharmacology, RWTH Aachen University, 52062 Aachen, Germany;
| | - Benjamin Lamp
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany;
| | - Till Ruemenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (H.-W.C.); (M.Z.); (A.D.)
| | - Christiane Riedel
- CIRI—Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, 69007 Lyon, France
| |
Collapse
|
9
|
Hill H, Reddick D, Caspe G, Ramage C, Frew D, Rocchi MS, Opriessnig T, McNeilly TN. Enhancing the understanding of coinfection outcomes: Impact of natural atypical porcine pestivirus infection on porcine reproductive and respiratory syndrome in pigs. Virus Res 2024; 348:199443. [PMID: 39094475 PMCID: PMC11342287 DOI: 10.1016/j.virusres.2024.199443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Atypical porcine pestivirus (APPV) is a novel member of the Pestivirus genus detected in association with congenital tremor (CT) type A-II outbreaks and from apparently healthy pigs, both as singular infection and as part of multi-pathogen infections. 'Classical' pestiviruses are known to cause immunosuppression of their host, which can increase susceptibility to secondary infections, severely impacting health, welfare, and production. To investigate APPV's effect on the host's immune system and characterise disease outcomes, 12 piglets from a natural APPV CT type A-II outbreak were experimentally infected with porcine reproductive and respiratory syndrome virus (PRRSV), a significant porcine pathogen. Rectal temperatures indicating febrile responses, viremia and viral-specific humoral and cellular responses were assessed throughout the study. Pathological assessment of the lungs and APPV-PRRSV co-localisation within the lungs was performed at necropsy. Viral co-localisation and pathological assessment of the lungs (Immunohistochemistry, BaseScope in situ hybridisation) were performed post-mortem. APPV status did not impact virological or immunological differences in PRRSV-infected groups. However, significantly higher rectal temperatures were observed in the APPV+ve/PRRSV+ve group over four days, indicating APPV increased the febrile response. Significant differences in the lung consolidation of the apical and intermediate lobes were also present, suggesting that APPV co-infection may augment lung pathology.
Collapse
Affiliation(s)
- Holly Hill
- Moredun Research Institute, Pentlands Science Park, Edinburgh, United Kingdom.
| | - David Reddick
- Moredun Scientific, Pentlands Science Park, Edinburgh, United Kingdom
| | - Gastón Caspe
- Moredun Research Institute, Pentlands Science Park, Edinburgh, United Kingdom; Estación Experimental Mercedes, Instituto Nacional de Tecnología Agropecuaria (INTA), Mercedes CP 3470, Argentina
| | - Clifford Ramage
- Moredun Scientific, Pentlands Science Park, Edinburgh, United Kingdom
| | - David Frew
- Moredun Research Institute, Pentlands Science Park, Edinburgh, United Kingdom
| | - Mara S Rocchi
- Moredun Research Institute, Pentlands Science Park, Edinburgh, United Kingdom
| | - Tanja Opriessnig
- Moredun Research Institute, Pentlands Science Park, Edinburgh, United Kingdom; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Schulz D, Aebischer A, Wernike K, Beer M. No evidence of spread of Linda pestivirus in the wild boar population in Southern Germany. Virol J 2024; 21:205. [PMID: 39215313 PMCID: PMC11365151 DOI: 10.1186/s12985-024-02476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Lateral-shaking inducing neuro-degenerative agent virus (LindaV) is a novel member of the highly diverse genus Pestivirus within the family Flaviviridae. LindaV was first detected in Austria in 2015 and was associated with congenital tremor in piglets. Since then, the virus or specific antibodies have been found in a few further pig farms in Austria. However, the actual spatial distribution and the existence of reservoir hosts is largely unknown. Since other pestiviruses of pigs such as classical swine fever virus or atypical porcine pestivirus can also infect wild boar, the question arises whether LindaV is likewise present in the wild boar population. Therefore, we investigated the presence of neutralizing antibodies against LindaV in 200 wild boar samples collected in Southern Germany, which borders Austria. To establish a serological test system, we made use of the interchangeability of the surface glycoproteins and created a chimeric pestivirus using Bungowannah virus (species Pestivirus australiaense) as synthetic backbone. The E1 and E2 glycoproteins were replaced by the heterologous E1 and E2 of LindaV resulting in the chimera BV_E1E2_LV. Viable virus could be rescued and was subsequently applied in a neutralization test. A specific positive control serum generated against the E2 protein of LindaV gave a strong positive result, thereby confirming the functionality of the test system. All wild boar samples, however, tested negative. Hence, there is no evidence that LindaV has become highly prevalent in the wild boar population in Southern Germany.
Collapse
Affiliation(s)
- Doreen Schulz
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Andrea Aebischer
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Kerstin Wernike
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| | - Martin Beer
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| |
Collapse
|
11
|
Huynh LT, Otsuka M, Kobayashi M, Ngo HD, Hew LY, Hiono T, Isoda N, Sakoda Y. Assessment of the Safety Profile of Chimeric Marker Vaccine against Classical Swine Fever: Reversion to Virulence Study. Viruses 2024; 16:1120. [PMID: 39066282 PMCID: PMC11281528 DOI: 10.3390/v16071120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric marker vaccine candidates, vGPE-/PAPeV Erns and vGPE-/PhoPeV Erns, have been generated and their efficacy and capability to differentiate infected from vaccinated animals were confirmed in previous studies. The safety profile of the two chimeric marker vaccine candidates, particularly in the potential reversion to virulence, was evaluated. Each virus was administered to pigs with a dose equivalent to the vaccination dose, and pooled tonsil homogenates were subsequently inoculated into further pigs. Chimeric virus vGPE-/PAPeV Erns displayed the most substantial attenuation, achieving this within only two passages, whereas vGPE-/PhoPeV Erns was detectable until the third passage and disappeared entirely by the fourth passage. The vGPE- strain, assessed alongside, consistently exhibited stable virus recovery across each passage without any signs of increased virulence in pigs. In vitro assays revealed that the type I interferon-inducing capacity of vGPE-/PAPeV Erns was significantly higher than that of vGPE-/PhoPeV Erns and vGPE-. In conclusion, the safety profile of the two chimeric marker vaccine candidates was affirmed. Further research is essential to ensure the stability of their attenuation and safety in diverse pig populations.
Collapse
Affiliation(s)
- Loc Tan Huynh
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (L.T.H.); (M.K.); (H.D.N.); (L.Y.H.); (T.H.); (N.I.)
- Faculty of Veterinary Medicine, College of Agriculture, Can Tho University, Can Tho 900000, Vietnam
| | - Mikihiro Otsuka
- The Gifu Hida Livestock Hygiene Service Center, Gifu 506-8688, Japan;
| | - Maya Kobayashi
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (L.T.H.); (M.K.); (H.D.N.); (L.Y.H.); (T.H.); (N.I.)
| | - Hung Dinh Ngo
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (L.T.H.); (M.K.); (H.D.N.); (L.Y.H.); (T.H.); (N.I.)
| | - Lim Yik Hew
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (L.T.H.); (M.K.); (H.D.N.); (L.Y.H.); (T.H.); (N.I.)
| | - Takahiro Hiono
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (L.T.H.); (M.K.); (H.D.N.); (L.Y.H.); (T.H.); (N.I.)
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- Hokkaido University Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (L.T.H.); (M.K.); (H.D.N.); (L.Y.H.); (T.H.); (N.I.)
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- Hokkaido University Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (L.T.H.); (M.K.); (H.D.N.); (L.Y.H.); (T.H.); (N.I.)
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- Hokkaido University Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
12
|
Aitkenhead H, Riedel C, Cowieson N, Rümenapf HT, Stuart DI, El Omari K. Structural comparison of typical and atypical E2 pestivirus glycoproteins. Structure 2024; 32:273-281.e4. [PMID: 38176409 DOI: 10.1016/j.str.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/02/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Pestiviruses, within the family Flaviviridae, are economically important viruses of livestock. In recent years, new pestiviruses have been reported in domestic animals and non-cloven-hoofed animals. Among them, atypical porcine pestivirus (APPV) and Norway rat pestivirus (NRPV) have relatively little sequence conservation in their surface glycoprotein E2. Despite E2 being the main target for neutralizing antibodies and necessary for cell attachment and viral fusion, the mechanism of viral entry remains elusive. To gain further insights into the pestivirus E2 mechanism of action and to assess its diversity within the genus, we report X-ray structures of the pestivirus E2 proteins from APPV and NRPV. Despite the highly divergent structures, both are able to dimerize through their C-terminal domain and contain a solvent-exposed β-hairpin reported to be involved in host receptor binding. Functional analysis of this β-hairpin in the context of BVDV revealed its ability to rescue viral infectivity.
Collapse
Affiliation(s)
- Hazel Aitkenhead
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK; Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, Oxfordshire OX3 7BN, UK
| | - Christiane Riedel
- CIRI-Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, 69007 Lyon, France
| | - Nathan Cowieson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Hans Tillmann Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - David I Stuart
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, Oxfordshire OX3 7BN, UK.
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK.
| |
Collapse
|
13
|
Huynh LT, Isoda N, Hew LY, Ogino S, Mimura Y, Kobayashi M, Kim T, Nishi T, Fukai K, Hiono T, Sakoda Y. Generation and Efficacy of Two Chimeric Viruses Derived from GPE - Vaccine Strain as Classical Swine Fever Vaccine Candidates. Viruses 2023; 15:1587. [PMID: 37515273 PMCID: PMC10384557 DOI: 10.3390/v15071587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
A previous study proved that vGPE- mainly maintains the properties of classical swine fever (CSF) virus, which is comparable to the GPE- vaccine seed and is a potentially valuable backbone for developing a CSF marker vaccine. Chimeric viruses were constructed based on an infectious cDNA clone derived from the live attenuated GPE- vaccine strain as novel CSF vaccine candidates that potentially meet the concept of differentiating infected from vaccinated animals (DIVA) by substituting the glycoprotein Erns of the GPE- vaccine strain with the corresponding region of non-CSF pestiviruses, either pronghorn antelope pestivirus (PAPeV) or Phocoena pestivirus (PhoPeV). High viral growth and genetic stability after serial passages of the chimeric viruses, namely vGPE-/PAPeV Erns and vGPE-/PhoPeV Erns, were confirmed in vitro. In vivo investigation revealed that two chimeric viruses had comparable immunogenicity and safety profiles to the vGPE- vaccine strain. Vaccination at a dose of 104.0 TCID50 with either vGPE-/PAPeV Erns or vGPE-/PhoPeV Erns conferred complete protection for pigs against the CSF virus challenge in the early stage of immunization. In conclusion, the characteristics of vGPE-/PAPeV Erns and vGPE-/PhoPeV Erns affirmed their properties, as the vGPE- vaccine strain, positioning them as ideal candidates for future development of a CSF marker vaccine.
Collapse
Affiliation(s)
- Loc Tan Huynh
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- Faculty of Veterinary Medicine, College of Agriculture, Can Tho University, Can Tho 900000, Vietnam
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - Lim Yik Hew
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
| | - Saho Ogino
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
| | - Yume Mimura
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
| | - Maya Kobayashi
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
| | - Taksoo Kim
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
| | - Tatsuya Nishi
- Kodaira Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira 187-0022, Tokyo, Japan
| | - Katsuhiko Fukai
- Kodaira Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira 187-0022, Tokyo, Japan
| | - Takahiro Hiono
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| |
Collapse
|
14
|
Cui X, Fan K, Liang X, Gong W, Chen W, He B, Chen X, Wang H, Wang X, Zhang P, Lu X, Chen R, Lin K, Liu J, Zhai J, Liu DX, Shan F, Li Y, Chen RA, Meng H, Li X, Mi S, Jiang J, Zhou N, Chen Z, Zou JJ, Ge D, Yang Q, He K, Chen T, Wu YJ, Lu H, Irwin DM, Shen X, Hu Y, Lu X, Ding C, Guan Y, Tu C, Shen Y. Virus diversity, wildlife-domestic animal circulation and potential zoonotic viruses of small mammals, pangolins and zoo animals. Nat Commun 2023; 14:2488. [PMID: 37120646 PMCID: PMC10148632 DOI: 10.1038/s41467-023-38202-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
Wildlife is reservoir of emerging viruses. Here we identified 27 families of mammalian viruses from 1981 wild animals and 194 zoo animals collected from south China between 2015 and 2022, isolated and characterized the pathogenicity of eight viruses. Bats harbor high diversity of coronaviruses, picornaviruses and astroviruses, and a potentially novel genus of Bornaviridae. In addition to the reported SARSr-CoV-2 and HKU4-CoV-like viruses, picornavirus and respiroviruses also likely circulate between bats and pangolins. Pikas harbor a new clade of Embecovirus and a new genus of arenaviruses. Further, the potential cross-species transmission of RNA viruses (paramyxovirus and astrovirus) and DNA viruses (pseudorabies virus, porcine circovirus 2, porcine circovirus 3 and parvovirus) between wildlife and domestic animals was identified, complicating wildlife protection and the prevention and control of these diseases in domestic animals. This study provides a nuanced view of the frequency of host-jumping events, as well as assessments of zoonotic risk.
Collapse
Affiliation(s)
- Xinyuan Cui
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Kewei Fan
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan, 364012, China
| | - Xianghui Liang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjie Gong
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Xiaoyuan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hai Wang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao Wang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xingbang Lu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Rujian Chen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Kaixiong Lin
- Fujian Meihuashan Institute of South China Tiger Breeding, Longyan, 364201, China
| | - Jiameng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Junqiong Zhai
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Ding Xiang Liu
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong, China
| | - Fen Shan
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Yuqi Li
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan, 364012, China
| | - Rui Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong, China
| | - Huifang Meng
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaobing Li
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan, 364012, China
| | - Shijiang Mi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Jianfeng Jiang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Niu Zhou
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Zujin Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Jie-Jian Zou
- Guangdong Provincial Wildlife Monitoring and Rescue Center, Guangzhou, 510000, China
| | - Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kai He
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Tengteng Chen
- Fujian Meihuashan Institute of South China Tiger Breeding, Longyan, 364201, China
| | - Ya-Jiang Wu
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Haoran Lu
- School of Mathematics, Sun Yat-sen University, Guangzhou, 510275, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, M5S1A8, Canada
| | - Xuejuan Shen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanjia Hu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoman Lu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 201106, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| | - Yi Guan
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou, 515041, China.
- Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China.
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| | - Yongyi Shen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Hong T, Yang Y, Wang P, Zhu G, Zhu C. Pestiviruses infection: Interferon-virus mutual regulation. Front Cell Infect Microbiol 2023; 13:1146394. [PMID: 36936761 PMCID: PMC10018205 DOI: 10.3389/fcimb.2023.1146394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Pestiviruses are a class of viruses that in some cases can cause persistent infection of the host, thus posing a threat to the livestock industry. Interferons (IFNs) are a group of secreted proteins that play a crucial role in antiviral defense. In this review, on the one hand, we elaborate on how pestiviruses are recognized by the host retinoic acid-inducible gene-I (RIG-I), melanoma-differentiation-associated protein 5 (MDA5), and Toll-like receptor 3 (TLR3) proteins to induce the synthesis of IFNs. On the other hand, we focus on reviewing how pestiviruses antagonize the production of IFNs utilizing various strategies mediated by self-encoded proteins, such as the structural envelope protein (Erns) and non-structural protein (Npro). Hence, the IFN signal transduction pathway induced by pestiviruses infection and the process of pestiviruses blockade on the production of IFNs intertwines into an intricate regulatory network. By reviewing the interaction between IFN and pestiviruses (based on studies on BVDV and CSFV), we expect to provide a theoretical basis and reference for a better understanding of the mechanisms of induction and evasion of the innate immune response during infection with these viruses.
Collapse
Affiliation(s)
- Tianqi Hong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yi Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Pengzhi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- *Correspondence: Guoqiang Zhu, ; Congrui Zhu,
| | - Congrui Zhu
- College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Guoqiang Zhu, ; Congrui Zhu,
| |
Collapse
|
16
|
Jesse ST, Ciurkiewicz M, Siesenop U, Spitzbarth I, Osterhaus ADME, Baumgärtner W, Ludlow M. Molecular characterization of a bovine adenovirus type 7 (Bovine Atadenovirus F) strain isolated from a systemically infected calf in Germany. Virol J 2022; 19:89. [PMID: 35610654 PMCID: PMC9131638 DOI: 10.1186/s12985-022-01817-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/11/2022] [Indexed: 12/01/2022] Open
Abstract
Bovine adenovirus 7 (BAdV-7) is an unclassified member of the genus Atadenovirus with a worldwide distribution and has been reported to induce clinical disease of varying severity in infected cattle, ranging from asymptomatic infections to severe enteric or respiratory disease. In this study, we used next-generation sequencing to obtain the first complete genome sequence of a European strain of BadV-7, from pooled spleen and liver tissue obtained from a deceased newborn Limousin calf. Histopathological analysis and electron microscopy showing systemic lesions in multiple organs with intranuclear amphophilic inclusions observed in endothelial cells in multiple peripheral tissues. Virus isolation was readily achieved from tissue homogenate using bovine esophagus cells (KOP-R), a strategy which should facilitate future in vitro or in vivo BAdV-7 studies. Phylogenetic analysis of available genome sequences of BAdV-7 showed that the newly identified strain groups most closely with a recent BAdV-7 strain, SD18-74, from the USA, confirming that this newly identified strain is a member of the Atadenovirus genus. The fiber gene was found to be highly conserved within BAdV-7 strains but was highly divergent in comparison to Ovine adenovirus 7 (OAdV-7) (39.56% aa sequence identity). Furthermore, we report a variable region of multiple tandem repeats between the coding regions of E4.1 and RH5 genes. In summary, the presented pathological and molecular characterization of this case suggests that further research into the worldwide molecular epidemiology and disease burden of BAdV-7 is warranted.
Collapse
Affiliation(s)
- Sonja T Jesse
- Research Center Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, D-30559, Hannover, Germany
| | | | - Ute Siesenop
- Department of Microbiology, University of Veterinary Medicine Hanover, Hannover, Germany
| | - Ingo Spitzbarth
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
- Faculty of Veterinary Medicine, Institute of Veterinary Pathology, Leipzig University, Leipzig, Germany
| | - A D M E Osterhaus
- Research Center Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, D-30559, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
| | - Martin Ludlow
- Research Center Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, D-30559, Hannover, Germany.
| |
Collapse
|
17
|
Wernike K, Beer M. International proficiency trial for bovine viral diarrhea virus (BVDV) antibody detection: limitations of milk serology. BMC Vet Res 2022; 18:168. [PMID: 35524302 PMCID: PMC9074317 DOI: 10.1186/s12917-022-03265-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background Control programs were implemented in several countries against bovine viral diarrhea (BVD), one of the most significant cattle diseases worldwide. Most of the programs rely on serological diagnostics in any phase of the program. For the detection of antibodies against BVD virus (BVDV), neutralization tests as well as a variety of (commercially available) ELISAs are used. Here, test systems applied in various laboratories were evaluated in the context of an international interlaboratory proficiency trial. A panel of standardized samples comprising five sera and five milk samples was sent to veterinary diagnostic laboratories (n=51) and test kit manufacturers (n=3). Results The ring trial sample panel was investigated by nine commercially available antibody ELISAs as well as by neutralization tests against diverse BVDV-1, BVDV-2 and/or border disease virus (BDV) strains. The negative serum and milk sample as well as a serum collected after BVDV-2 infection were mostly correctly tested regardless of the applied test system. A serum sample obtained from an animal immunized with an inactivated BVDV-1 vaccine tested positive by neutralization tests or by total antibody or Erns-based ELISAs, while all applied NS3-based ELISAs gave negative results. A further serum, containing antibodies against the ovine BDV, reacted positive in all applied BVDV ELISAs, a differentiation between anti-BDV and anti-BVDV antibodies was only enabled by parallel application of neutralization tests against BVDV and BDV isolates. For the BVDV antibody-positive milk samples (n=4), which mimicked prevalences of 20% (n=2) or 50% (n=2), considerable differences in the number of positive results were observed, which mainly depended on the ELISA kit and the sample incubation protocols used. These 4 milk samples tested negative in 43.6%, 50.9%, 3.6% and 56.4%, respectively, of all investigations. Overall, negative results occurred more often, when a short sample incubation protocol instead of an over-night protocol was applied. Conclusions While the seronegative samples were correctly evaluated in most cases, there were considerable differences in the number of correct evaluations for the seropositive samples, most notably when pooled milk samples were tested. Hence, thorough validation and careful selection of ELISA tests are necessary, especially when applied during surveillance programs in BVD-free regions.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany.
| |
Collapse
|
18
|
New Emergence of the Novel Pestivirus Linda Virus in a Pig Farm in Carinthia, Austria. Viruses 2022; 14:v14020326. [PMID: 35215920 PMCID: PMC8874435 DOI: 10.3390/v14020326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
Linda virus (LindaV) was first identified in a pig farm in Styria, Austria in 2015 and associated with congenital tremor (CT) type A-II in newborn piglets. Since then, only one more LindaV affected farm was retrospectively discovered 10 km away from the initially affected farm. Here, we report the recent outbreak of a novel LindaV strain in a farrow-to-finish farm in the federal state Carinthia, Austria. No connection between this farm and the previously affected farms could be discovered. The outbreak was characterized by severe CT cases in several litters and high preweaning mortality. A herd visit two months after the onset of clinical symptoms followed by a diagnostic workup revealed the presence of several viremic six-week-old nursery pigs. These animals shed large amounts of virus via feces and saliva, implying an important epidemiological role for within- and between-herd virus transmission. The novel LindaV strain was isolated and genetically characterized. The findings underline a low prevalence of LindaV in the Austrian pig population and highlight the threat when introduced into a pig herd. Furthermore, the results urge the need to better understand the routes of persistence and transmission of this enigmatic pestivirus in the pig population.
Collapse
|
19
|
de Martin E, Schweizer M. Fifty Shades of Erns: Innate Immune Evasion by the Viral Endonucleases of All Pestivirus Species. Viruses 2022; 14:v14020265. [PMID: 35215858 PMCID: PMC8880635 DOI: 10.3390/v14020265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/10/2022] Open
Abstract
The genus Pestivirus, family Flaviviridae, includes four historically accepted species, i.e., bovine viral diarrhea virus (BVDV)-1 and -2, classical swine fever virus (CSFV), and border disease virus (BDV). A large number of new pestivirus species were identified in recent years. A common feature of most members is the presence of two unique proteins, Npro and Erns, that pestiviruses evolved to regulate the host’s innate immune response. In addition to its function as a structural envelope glycoprotein, Erns is also released in the extracellular space, where it is endocytosed by neighboring cells. As an endoribonuclease, Erns is able to cleave viral ss- and dsRNAs, thus preventing the stimulation of the host’s interferon (IFN) response. Here, we characterize the basic features of soluble Erns of a large variety of classified and unassigned pestiviruses that have not yet been described. Its ability to form homodimers, its RNase activity, and the ability to inhibit dsRNA-induced IFN synthesis were investigated. Overall, we found large differences between the various Erns proteins that cannot be predicted solely based on their primary amino acid sequences, and that might be the consequence of different virus-host co-evolution histories. This provides valuable information to delineate the structure-function relationship of pestiviral endoribonucleases.
Collapse
Affiliation(s)
- Elena de Martin
- Institute of Virology and Immunology, Länggass-Str. 122, POB, CH-3001 Bern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Matthias Schweizer
- Institute of Virology and Immunology, Länggass-Str. 122, POB, CH-3001 Bern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
- Correspondence:
| |
Collapse
|
20
|
Stokholm I, Fischer N, Baechlein C, Postel A, Galatius A, Kyhn LA, Thøstesen CB, Persson S, Siebert U, Olsen MT, Becher P. In the Search of Marine Pestiviruses: First Case of Phocoena Pestivirus in a Belt Sea Harbour Porpoise. Viruses 2022; 14:161. [PMID: 35062365 PMCID: PMC8780987 DOI: 10.3390/v14010161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Pestiviruses are widespread pathogens causing severe acute and chronic diseases among terrestrial mammals. Recently, Phocoena pestivirus (PhoPeV) was described in harbour porpoises (Phocoena phocoena) of the North Sea, expanding the host range to marine mammals. While the role of the virus is unknown, intrauterine infections with the most closely related pestiviruses- Bungowannah pestivirus (BuPV) and Linda virus (LindaV)-can cause increased rates of abortions and deaths in young piglets. Such diseases could severely impact already vulnerable harbour porpoise populations. Here, we investigated the presence of PhoPeV in 77 harbour porpoises, 277 harbour seals (Phoca vitulina), grey seals (Halichoerus grypus) and ringed seals (Pusa hispida) collected in the Baltic Sea region between 2002 and 2019. The full genome sequence of a pestivirus was obtained from a juvenile female porpoise collected along the coast of Zealand in Denmark in 2011. The comparative Bayesian phylogenetic analyses revealed a close relationship between the new PhoPeV sequence and previously published North Sea sequences with a recent divergence from genotype 1 sequences between 2005 and 2009. Our findings provide further insight into the circulation of PhoPeV and expand the distribution from the North Sea to the Baltic Sea region with possible implications for the vulnerable Belt Sea and endangered Baltic Proper harbour porpoise populations.
Collapse
Affiliation(s)
- Iben Stokholm
- Evolutionary Genomics Section, GLOBE, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen, Denmark; (I.S.); (M.T.O.)
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstr. 6, 25761 Büsum, Germany;
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Christine Baechlein
- Institute of Virology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (C.B.); (A.P.)
| | - Alexander Postel
- Institute of Virology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (C.B.); (A.P.)
| | - Anders Galatius
- Marine Mammal Research, Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; (A.G.); (L.A.K.)
| | - Line Anker Kyhn
- Marine Mammal Research, Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; (A.G.); (L.A.K.)
| | | | - Sara Persson
- Swedish Museum of Natural History, Department of Environmental Research and Monitoring, 104 05 Stockholm, Sweden;
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstr. 6, 25761 Büsum, Germany;
| | - Morten Tange Olsen
- Evolutionary Genomics Section, GLOBE, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen, Denmark; (I.S.); (M.T.O.)
| | - Paul Becher
- Institute of Virology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (C.B.); (A.P.)
| |
Collapse
|
21
|
Koethe S, König P, Wernike K, Schulz J, Reimann I, Beer M. Bungowannah Pestivirus Chimeras as Novel Double Marker Vaccine Strategy against Bovine Viral Diarrhea Virus. Vaccines (Basel) 2022; 10:vaccines10010088. [PMID: 35062749 PMCID: PMC8778585 DOI: 10.3390/vaccines10010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 12/23/2022] Open
Abstract
Marker or DIVA (differentiation of infected from vaccinated animals) vaccines are beneficial tools for the eradication of animal diseases in regions with a high prevalence of the designated disease. Bovine viral diarrhea virus (BVDV)-1 (syn. Pestivirus A) is a flavivirus that infects predominantly cattle resulting in major economic losses. An increasing number of countries have implemented BVDV eradication programs that focus on the detection and removal of persistently infected cattle. No efficient marker or DIVA vaccine is yet commercially available to drive the eradication success, to prevent fetal infection and to allow serological monitoring of the BVDV status in vaccinated farms. Bungowannah virus (BuPV, species Pestivirus F), a related member of the genus Pestivirus with a restricted prevalence to a single pig farm complex in Australia, was chosen as the genetic backbone for a marker vaccine candidate. The glycoproteins E1 and E2 of BuPV were substituted by the heterologous E1 and E2, which are major immunogens, of the BVDV-1 strain CP7. In addition, the candidate vaccine was further attenuated by the introduction of a deletion within the Npro protein coding sequence, a major type I interferon inhibitor. Immunization of cattle with the chimeric vaccine virus BuPV_ΔNpro_E1E2 CP7 (modified live or inactivated) followed by a subsequent experimental challenge infection confirmed the safety of the prototype strain and provided a high level of clinical protection against BVDV-1. The serological discrimination of vaccinated cattle could be enabled by the combined detection of BVDV-1 E2- in the absence of both BVDV NS3- and BVDV Erns-specific antibodies. The study demonstrates for the first time the generation and application of an efficient BVDV-1 modified double marker vaccine candidate that is based on the genetic background of BuPV accompanied by commercially available serological marker ELISA systems.
Collapse
Affiliation(s)
- Susanne Koethe
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Patricia König
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Jana Schulz
- Institute of Epidemiology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Ilona Reimann
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
22
|
Pasin F, Daròs JA, Tzanetakis IE. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6534904. [PMID: 35195244 PMCID: PMC9249622 DOI: 10.1093/femsre/fuac011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Potyviridae, the largest family of known RNA viruses (realm Riboviria), belongs to the picorna-like supergroup and has important agricultural and ecological impacts. Potyvirid genomes are translated into polyproteins, which are in turn hydrolyzed to release mature products. Recent sequencing efforts revealed an unprecedented number of potyvirids with a rich variability in gene content and genomic layouts. Here, we review the heterogeneity of non-core modules that expand the structural and functional diversity of the potyvirid proteomes. We provide a family-wide classification of P1 proteinases into the functional Types A and B, and discuss pretty interesting sweet potato potyviral ORF (PISPO), putative zinc fingers, and alkylation B (AlkB)—non-core modules found within P1 cistrons. The atypical inosine triphosphate pyrophosphatase (ITPase/HAM1), as well as the pseudo tobacco mosaic virus-like coat protein (TMV-like CP) are discussed alongside homologs of unrelated virus taxa. Family-wide abundance of the multitasking helper component proteinase (HC-pro) is revised. Functional connections between non-core modules are highlighted to support host niche adaptation and immune evasion as main drivers of the Potyviridae evolutionary radiation. Potential biotechnological and synthetic biology applications of potyvirid leader proteinases and non-core modules are finally explored.
Collapse
Affiliation(s)
- Fabio Pasin
- Corresponding author: Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), UPV Building 8E, Ingeniero Fausto Elio, 46011 Valencia, Spain. E-mail:
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), 46011 Valencia, Spain
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, 72701 Fayetteville, AR, USA
| |
Collapse
|
23
|
Nessler JN, Jo WK, Osterhaus ADME, Ludlow M, Tipold A. Canine Meningoencephalitis of Unknown Origin-The Search for Infectious Agents in the Cerebrospinal Fluid via Deep Sequencing. Front Vet Sci 2021; 8:645517. [PMID: 34950723 PMCID: PMC8688736 DOI: 10.3389/fvets.2021.645517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 11/15/2021] [Indexed: 01/02/2023] Open
Abstract
Meningoencephalitis of unknown origin (MUO) describes a group of meningoencephalitides in dogs with a hitherto unknown trigger. An infectious agent has been suggested as one possible trigger of MUO but has not been proven so far. A relatively new method to screen for viral RNA or DNA is next-generation sequencing (NGS) or deep sequencing. In this study, a metagenomics analysis of the virome in a sample is analyzed and scanned for known or unknown viruses. We examined fresh-frozen CSF of 6 dogs with MUO via NGS using a modified sequence-independent, single-primer amplification protocol to detect a possible infectious trigger. Analysis of sequencing reads obtained from the six CSF samples showed no evidence of a virus infection. The inability to detect a viral trigger which could be implicated in the development of MUO in the examined population of European dogs, suggests that the current techniques are not sufficiently sensitive to identify a possible virus infection, that the virus is already eliminated at the time-point of disease outbreak, the trigger might be non-infectious or that there is no external trigger responsible for initiating MUO in dogs.
Collapse
Affiliation(s)
- Jasmin Nicole Nessler
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Wendy Karen Jo
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Martin Ludlow
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Foundation, Hannover, Germany
| |
Collapse
|
24
|
Störk T, de le Roi M, Haverkamp AK, Jesse ST, Peters M, Fast C, Gregor KM, Könenkamp L, Steffen I, Ludlow M, Beineke A, Hansmann F, Wohlsein P, Osterhaus ADME, Baumgärtner W. Analysis of avian Usutu virus infections in Germany from 2011 to 2018 with focus on dsRNA detection to demonstrate viral infections. Sci Rep 2021; 11:24191. [PMID: 34921222 PMCID: PMC8683490 DOI: 10.1038/s41598-021-03638-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/07/2021] [Indexed: 11/11/2022] Open
Abstract
Usutu virus (USUV) is a zoonotic arbovirus causing avian mass mortalities. The first outbreak in North-Western Germany occurred in 2018. This retrospective analysis focused on combining virological and pathological findings in birds and immunohistochemistry. 25 common blackbirds, one great grey owl, and one kingfisher collected from 2011 to 2018 and positive for USUV by qRT-PCR were investigated. Macroscopically, most USUV infected birds showed splenomegaly and hepatomegaly. Histopathological lesions included necrosis and lymphohistiocytic inflammation within spleen, Bursa fabricii, liver, heart, brain, lung and intestine. Immunohistochemistry revealed USUV antigen positive cells in heart, spleen, pancreas, lung, brain, proventriculus/gizzard, Bursa fabricii, kidney, intestine, skeletal muscle, and liver. Analysis of viral genome allocated the virus to Europe 3 or Africa 2 lineage. This study investigated whether immunohistochemical detection of double-stranded ribonucleic acid (dsRNA) serves as an alternative tool to detect viral intermediates. Tissue samples of six animals with confirmed USUV infection by qRT-PCR but lacking viral antigen in liver and spleen, were further examined immunohistochemically. Two animals exhibited a positive signal for dsRNA. This could indicate either an early state of infection without sufficient formation of virus translation products, occurrence of another concurrent virus infection or endogenous dsRNA not related to infectious pathogens and should be investigated in more detail in future studies.
Collapse
|
25
|
Kaiser FK, van Dyck L, Jo WK, Schreiner T, Pfankuche VM, Wohlsein P, Baumann I, Peters M, Baumgärtner W, Osterhaus ADME, Ludlow M. Detection of Systemic Canine Kobuvirus Infection in Peripheral Tissues and the Central Nervous System of a Fox Infected with Canine Distemper Virus. Microorganisms 2021; 9:microorganisms9122521. [PMID: 34946122 PMCID: PMC8705045 DOI: 10.3390/microorganisms9122521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Canine kobuvirus (CaKV) is a globally distributed pathogen of dogs and is predominantly associated with infection of the gastrointestinal tract. However, an etiological link to enteric disease has not been established since CaKV has been identified in both asymptomatic dogs and animals with diarrheic symptoms. In this study, an extraintestinal CaKV infection was detected by next-generation sequencing in a fox (Vulpes vulpes) in Germany concomitant with a canine distemper virus (canine morbillivirus; CDV) co-infection. Phylogenetic analysis of the complete coding region sequence showed that this strain was most closely related to a CaKV strain detected in a dog in the United Kingdom in 2008. The tissue and cellular tropism of CaKV was characterized by the detection of viral antigens and RNA. CaKV RNA was detected by in situ hybridization in different tissues, including epithelial cells of the stomach and ependymal cells in the brain. The use of a new RT-qPCR assay for CaKV confirmed the systemic distribution of CaKV with viral RNA also detected in the lymph nodes, bladder, trachea, and brain. The detection of a CDV infection in this fox suggests that immunosuppression should be further investigated as a contributing factor to the enhanced extraintestinal spread of CaKV.
Collapse
Affiliation(s)
- Franziska K. Kaiser
- Research Center for Infectious Disease and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (F.K.K.); (W.K.J.); (I.B.); (A.D.M.E.O.)
| | - Lydia van Dyck
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (L.v.D.); (T.S.); (V.M.P.); (P.W.); (W.B.)
| | - Wendy K. Jo
- Research Center for Infectious Disease and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (F.K.K.); (W.K.J.); (I.B.); (A.D.M.E.O.)
| | - Tom Schreiner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (L.v.D.); (T.S.); (V.M.P.); (P.W.); (W.B.)
| | - Vanessa M. Pfankuche
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (L.v.D.); (T.S.); (V.M.P.); (P.W.); (W.B.)
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (L.v.D.); (T.S.); (V.M.P.); (P.W.); (W.B.)
| | - Ilka Baumann
- Research Center for Infectious Disease and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (F.K.K.); (W.K.J.); (I.B.); (A.D.M.E.O.)
| | - Martin Peters
- Chemisches und Veterinäruntersuchungsamt Westfalen, 59821 Arnsberg, Germany;
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (L.v.D.); (T.S.); (V.M.P.); (P.W.); (W.B.)
| | - Albert D. M. E. Osterhaus
- Research Center for Infectious Disease and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (F.K.K.); (W.K.J.); (I.B.); (A.D.M.E.O.)
| | - Martin Ludlow
- Research Center for Infectious Disease and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (F.K.K.); (W.K.J.); (I.B.); (A.D.M.E.O.)
- Correspondence:
| |
Collapse
|
26
|
Dénes L, Ruedas-Torres I, Szilasi A, Balka G. Detection and localization of atypical porcine pestivirus in the testicles of naturally infected, congenital tremor affected piglets. Transbound Emerg Dis 2021; 69:e621-e629. [PMID: 34705340 PMCID: PMC9541069 DOI: 10.1111/tbed.14355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 11/27/2022]
Abstract
Atypical porcine pestivirus (APPV) belongs to the genus Pestivirus within the family Flaviviridae. Recently, APPV has been identified as the causative agent of congenital tremor (CT) type AII. The disease is a neurological disorder that affects newborn piglets and is characterized by generalized trembling of the animals and often splay legs. CT is well known worldwide, and the virus seems to be highly prevalent in major swine producing areas. However, little is known about the epidemiology of the infection, transmission and spread of the virus between herds. Here, we show the high prevalence of APPV in processing fluid samples collected from Hungarian pig herds which led us to investigate the cellular targets of the virus in the testicles of newborn piglets affected by CT. By the development of an RNA in situ hybridization assay and the use of immunohistochemistry on consecutive slides, we identified the target cells of APPV in the testicle: interstitial Leydig cells, peritubular myoid cells and smooth muscle cells of medium-sized arteries. Previous studies have shown that APPV can be found in the semen of sexually mature boars suggesting the role of infected boars and their semen in the transmission of the virus similar to many other members of the Flaviviridae family. As in our case, the virus has not been identified in cells beyond the Sertoli cell barrier, further studies on infected adult boars' testicles and other reproductive glands are needed to analyze the possible changes in the cell tropism of APPV that might contribute to its prolonged extraction by the semen beyond the period of viraemia.
Collapse
Affiliation(s)
- Lilla Dénes
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | - Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Anna Szilasi
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
27
|
Golender N, Bumbarov V, Kovtunenko A, David D, Guini-Rubinstein M, Sol A, Beer M, Eldar A, Wernike K. Identification and Genetic Characterization of Viral Pathogens in Ruminant Gestation Abnormalities, Israel, 2015-2019. Viruses 2021; 13:v13112136. [PMID: 34834943 PMCID: PMC8619439 DOI: 10.3390/v13112136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 01/02/2023] Open
Abstract
Infectious agents including viruses are important abortifacients and can cause fetal abnormalities in livestock animals. Here, samples that had been collected in Israel from aborted or malformed ruminant fetuses between 2015 and 2019 were investigated for the presence of the following viruses: the reoviruses bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV), the flaviviruses bovine viral diarrhea virus (BVDV) and border disease virus (BDV), the peribunyaviruses Shuni virus (SHUV) and Akabane virus (AKAV), bovine herpesvirus type 1 (BoHV-1) and bovine ephemeral fever virus (BEFV). Domestic (cattle, sheep, goat) and wild/zoo ruminants were included in the study. The presence of viral nucleic acid or antigen could be confirmed in 21.8 % of abnormal pregnancies (213 out of 976 investigated cases), with peribunyaviruses, reoviruses and pestiviruses being the most prevalent. At least four different BTV serotypes were involved in abnormal courses of pregnancy in Israel. The subtyping of pestiviruses revealed the presence of two BDV and several distinct BVDV type 1 strains. The peribunyaviruses AKAV and SHUV were identified annually throughout the study period, however, variation in the extent of virus circulation could be observed between the years. In 2018, AKAV even represented the most detected pathogen in cases of small domestic ruminant gestation abnormalities. In conclusion, it was shown that various viruses are involved in abnormal courses of pregnancy in ruminants in Israel.
Collapse
Affiliation(s)
- Natalia Golender
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
- Correspondence: ; Tel.: +972-3968-8949; Fax: +972-3968-1788
| | - Velizar Bumbarov
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Anita Kovtunenko
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Dan David
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Marisol Guini-Rubinstein
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Asaf Sol
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.B.); (K.W.)
| | - Avi Eldar
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.B.); (K.W.)
| |
Collapse
|
28
|
Schweizer M, Stalder H, Haslebacher A, Grisiger M, Schwermer H, Di Labio E. Eradication of Bovine Viral Diarrhoea (BVD) in Cattle in Switzerland: Lessons Taught by the Complex Biology of the Virus. Front Vet Sci 2021; 8:702730. [PMID: 34557540 PMCID: PMC8452978 DOI: 10.3389/fvets.2021.702730] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/10/2021] [Indexed: 01/28/2023] Open
Abstract
Bovine viral diarrhoea virus (BVDV) and related ruminant pestiviruses occur worldwide and cause considerable economic losses in livestock and severely impair animal welfare. Switzerland started a national mandatory control programme in 2008 aiming to eradicate BVD from the Swiss cattle population. The peculiar biology of pestiviruses with the birth of persistently infected (PI) animals upon in utero infection in addition to transient infection of naïve animals requires vertical and horizontal transmission to be taken into account. Initially, every animal was tested for PI within the first year, followed by testing for the presence of virus in all newborn calves for the next four years. Prevalence of calves being born PI thus diminished substantially from around 1.4% to <0.02%, which enabled broad testing for the virus to be abandoned and switching to economically more favourable serological surveillance with vaccination being prohibited. By the end of 2020, more than 99.5% of all cattle farms in Switzerland were free of BVDV but eliminating the last remaining PI animals turned out to be a tougher nut to crack. In this review, we describe the Swiss BVD eradication scheme and the hurdles that were encountered and still remain during the implementation of the programme. The main challenge is to rapidly identify the source of infection in case of a positive result during antibody surveillance, and to efficiently protect the cattle population from re-infection, particularly in light of the endemic presence of the related pestivirus border disease virus (BDV) in sheep. As a consequence of these measures, complete eradication will (hopefully) soon be achieved, and the final step will then be the continuous documentation of freedom of disease.
Collapse
Affiliation(s)
- Matthias Schweizer
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | | | - Elena Di Labio
- Federal Food Safety and Veterinary Office (FSVO), Bern, Switzerland
| |
Collapse
|
29
|
Postel A, Smith DB, Becher P. Proposed Update to the Taxonomy of Pestiviruses: Eight Additional Species within the Genus Pestivirus, Family Flaviviridae. Viruses 2021; 13:v13081542. [PMID: 34452407 PMCID: PMC8402895 DOI: 10.3390/v13081542] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022] Open
Abstract
Pestiviruses are plus-stranded RNA viruses belonging to the family Flaviviridae. They comprise several important pathogens like classical swine fever virus and bovine viral diarrhea virus that induce economically important animal diseases. In 2017, the last update of pestivirus taxonomy resulted in demarcation of 11 species designated Pestivirus A through Pestivirus K. Since then, multiple new pestiviruses have been reported including pathogens associated with disease in pigs or small ruminants. In addition, pestivirus sequences have been found during metagenomics analysis of different non-ungulate hosts (bats, rodents, whale, and pangolin), but the consequences of this pestivirus diversity for animal health still need to be established. To provide a systematic classification of the newly discovered viruses, we analyzed the genetic relationship based on complete coding sequences (cds) and deduced polyprotein sequences and calculated pairwise distances that allow species demarcation. In addition, phylogenetic analysis was performed based on a highly conserved region within the non-structural protein NS5B. Taking into account the genetic relationships observed together with available information about antigenic properties, host origin, and characteristics of disease, we propose to expand the number of pestivirus species to 19 by adding eight additional species designated Pestivirus L through Pestivirus S.
Collapse
Affiliation(s)
- Alexander Postel
- Institute of Virology, University of Veterinary Medicine, 30559 Hannover, Germany;
| | - Donald B. Smith
- Nuffield Department of Experimental Medicine, University of Oxford, Peter Medawar Building, South Parks Road, Oxford OX1 3SY, UK;
| | - Paul Becher
- Institute of Virology, University of Veterinary Medicine, 30559 Hannover, Germany;
- Correspondence: ; Tel.: +49-511-953-8840
| |
Collapse
|
30
|
Comparative Analysis of Tunisian Sheep-like Virus, Bungowannah Virus and Border Disease Virus Infection in the Porcine Host. Viruses 2021; 13:v13081539. [PMID: 34452404 PMCID: PMC8402848 DOI: 10.3390/v13081539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 02/07/2023] Open
Abstract
Apart from the established pestivirus species Pestivirus A to Pestivirus K novel species emerged. Pigs represent not only hosts for porcine pestiviruses, but are also susceptible to bovine viral diarrhea virus, border disease virus (BDV) and other ruminant pestiviruses. The present study focused on the characterization of the ovine Tunisian sheep-like virus (TSV) as well as Bungowannah virus (BuPV) and BDV strain Frijters, which were isolated from pigs. For this purpose, we performed genetic characterization based on complete coding sequences, studies on virus replication in cell culture and in domestic pigs, and cross-neutralization assays using experimentally derived sera. TSV forms a distinct phylogenetic group more closely related to Pestivirus C (classical swine fever virus, CSFV) than to Pestivirus D (BDV). In contrast to BDV and BuPV, TSV replicates by far more efficiently on ovine than on porcine cells. Nevertheless, pigs were susceptible to TSV. As a consequence of close antigenic relatedness of TSV to CSFV, cross-reactivity was detected in CSFV-specific antibody assays. In conclusion, TSV is genetically closely related to CSFV and can replicate in domestic pigs. Due to close antigenic relatedness, field infections of pigs with TSV and other ruminant pestiviruses can interfere with serological diagnosis of classical swine fever.
Collapse
|
31
|
Chen X, Ding X, Zhu L, Zhang G. The identification of a B-cell epitope in bovine viral diarrhea virus (BVDV) core protein based on a mimotope obtained from a phage-displayed peptide library. Int J Biol Macromol 2021; 183:2376-2386. [PMID: 34111485 DOI: 10.1016/j.ijbiomac.2021.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 01/03/2023]
Abstract
Bovine pestivirus A and B, previously known as bovine viral diarrhea virus (BVDV)-1 and 2, respectively, are important pathogens of cattle worldwide, which causes significant economic losses. B-cell epitopes in BVDV glycoprotein E2 and nonstructural protein NS2/3 have been extensively identified. In this study, we screened a 12-mer phage display peptide library using commercial goat anti-BVDV serum, and identified a mimotope "LTPHKHHKHLHA" referred to as P3. With sequence alignment, a putative B-cell epitope "77ESRKKLEKALLA88" termed as P3-BVDV1/2 residing in BVDV core protein was identified. The synthesized peptides of both P3 and P3-BVDV1/2 show strong reactivity with BVDV serum in immune blot assay. Immunization of mice with these individual peptides leads to the production of antibody that cannot neutralize virus infectivity. Thus for the first time we identified a B-cell epitope, "77ESRKKLEKALLA88", in BVDV core protein. Interestingly, the epitope was highly conserved in Pestivirus A, B, C, D, as well as emerging Pestivirus E and I, but highly variable in Pestiviruses H, G, F, and J, as well as unclassified Pestivirus originated from non-ruminant animals. Whether this putative B-cell epitope is implicated in pestivirus pathogenesis or evolution needs further investigations once large numbers of isolates are available in the future.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Cattle
- Cell Surface Display Techniques
- Diarrhea Virus 1, Bovine Viral/genetics
- Diarrhea Virus 1, Bovine Viral/immunology
- Diarrhea Virus 1, Bovine Viral/pathogenicity
- Diarrhea Virus 2, Bovine Viral/genetics
- Diarrhea Virus 2, Bovine Viral/immunology
- Diarrhea Virus 2, Bovine Viral/pathogenicity
- Dogs
- Epitope Mapping
- Epitopes, B-Lymphocyte/administration & dosage
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Female
- Immunization
- Immunogenicity, Vaccine
- Madin Darby Canine Kidney Cells
- Mice, Inbred BALB C
- Mutation
- Peptide Library
- Viral Core Proteins/administration & dosage
- Viral Core Proteins/genetics
- Viral Core Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Mice
Collapse
Affiliation(s)
- Xinye Chen
- College of Life Sciences, Hebei University, Baoding 071002, China; College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiuyan Ding
- College of Life Sciences, Hebei University, Baoding 071002, China; College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Liqian Zhu
- College of Life Sciences, Hebei University, Baoding 071002, China; College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
32
|
Zheng J, Wang J, Gong Z, Han GZ. Molecular fossils illuminate the evolution of retroviruses following a macroevolutionary transition from land to water. PLoS Pathog 2021; 17:e1009730. [PMID: 34252162 PMCID: PMC8297934 DOI: 10.1371/journal.ppat.1009730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/22/2021] [Accepted: 06/18/2021] [Indexed: 11/18/2022] Open
Abstract
The ancestor of cetaceans underwent a macroevolutionary transition from land to water early in the Eocene Period >50 million years ago. However, little is known about how diverse retroviruses evolved during this shift from terrestrial to aquatic environments. Did retroviruses transition into water accompanying their hosts? Did retroviruses infect cetaceans through cross-species transmission after cetaceans invaded the aquatic environments? Endogenous retroviruses (ERVs) provide important molecular fossils for tracing the evolution of retroviruses during this macroevolutionary transition. Here, we use a phylogenomic approach to study the origin and evolution of ERVs in cetaceans. We identify a total of 8,724 ERVs within the genomes of 25 cetaceans, and phylogenetic analyses suggest these ERVs cluster into 315 independent lineages, each of which represents one or more independent endogenization events. We find that cetacean ERVs originated through two possible routes. 298 ERV lineages may derive from retrovirus endogenization that occurred before or during the transition from land to water of cetaceans, and most of these cetacean ERVs were reaching evolutionary dead-ends. 17 ERV lineages are likely to arise from independent retrovirus endogenization events that occurred after the split of mysticetes and odontocetes, indicating that diverse retroviruses infected cetaceans through cross-species transmission from non-cetacean mammals after the transition to aquatic life of cetaceans. Both integration time and synteny analyses support the recent or ongoing activity of multiple retroviral lineages in cetaceans, some of which proliferated into hundreds of copies within the host genomes. Although ERVs only recorded a proportion of past retroviral infections, our findings illuminate the complex evolution of retroviruses during one of the most marked macroevolutionary transitions in vertebrate history.
Collapse
Affiliation(s)
- Jialu Zheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jianhua Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhen Gong
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
- * E-mail:
| |
Collapse
|
33
|
King J, Pohlmann A, Dziadek K, Beer M, Wernike K. Cattle connection: molecular epidemiology of BVDV outbreaks via rapid nanopore whole-genome sequencing of clinical samples. BMC Vet Res 2021; 17:242. [PMID: 34247601 PMCID: PMC8272987 DOI: 10.1186/s12917-021-02945-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As a global ruminant pathogen, bovine viral diarrhea virus (BVDV) is responsible for the disease Bovine Viral Diarrhea with a variety of clinical presentations and severe economic losses worldwide. Classified within the Pestivirus genus, the species Pestivirus A and B (syn. BVDV-1, BVDV-2) are genetically differentiated into 21 BVDV-1 and four BVDV-2 subtypes. Commonly, the 5' untranslated region and the Npro protein are utilized for subtyping. However, the genetic variability of BVDV leads to limitations in former studies analyzing genome fragments in comparison to a full-genome evaluation. RESULTS To enable rapid and accessible whole-genome sequencing of both BVDV-1 and BVDV-2 strains, nanopore sequencing of twelve representative BVDV samples was performed on amplicons derived through a tiling PCR procedure. Covering a multitude of subtypes (1b, 1d, 1f, 2a, 2c), sample matrices (plasma, EDTA blood and ear notch), viral loads (Cq-values 19-32) and species (cattle and sheep), ten of the twelve samples produced whole genomes, with two low titre samples presenting 96 % genome coverage. CONCLUSIONS Further phylogenetic analysis of the novel sequences emphasizes the necessity of whole-genome sequencing to identify novel strains and supplement lacking sequence information in public repositories. The proposed amplicon-based sequencing protocol allows rapid, inexpensive and accessible obtainment of complete BVDV genomes.
Collapse
Affiliation(s)
- Jacqueline King
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Kamila Dziadek
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany.
| |
Collapse
|
34
|
Buckley AC, Falkenberg SM, Palmer MV, Arruda PH, Magstadt DR, Schwartz KJ, Gatto IR, Neill JD, Arruda BL. Distribution and persistence of atypical porcine pestivirus in experimentally inoculated pigs. J Vet Diagn Invest 2021; 33:952-955. [PMID: 34078182 DOI: 10.1177/10406387211022683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Atypical porcine pestivirus (APPV) is a cause of congenital tremors (CTs) in piglets and has been found in swine populations around the globe. Although systemic distribution of the virus has been reported, there is limited information regarding viral localization at the cellular level and distribution at the tissue level. We collected multiple tissues from 2-d-old piglets (n = 36) born to sows inoculated at 45 or 62 d of gestation with APPV via 3 simultaneous routes: intravenous, intranasal, and directly in amniotic vesicles. In addition, 2 boars from APPV-inoculated sows with CT were raised and euthanized when 11 mo old. In situ hybridization performed on tissue samples from piglets demonstrated a broad and systemic distribution of viral RNA including endothelial cells, fibroblasts, and smooth muscle. Labeling in tissues was more pronounced in piglet tissues compared to boars, with the notable exception of diffuse labeling of the cerebellum in boars. Presence of APPV in boar tissues well after resolution of clinical signs suggests persistence of APPV similar to other pestiviruses.
Collapse
Affiliation(s)
- Alexandra C Buckley
- Virus and Prion Research Unit, National Animal Disease Center, Agriculture Research Service, U.S. Department of Agriculture, Ames, IA, USA
| | - Shollie M Falkenberg
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agriculture Research Service, U.S. Department of Agriculture, Ames, IA, USA
| | - Mitchell V Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agriculture Research Service, U.S. Department of Agriculture, Ames, IA, USA
| | - Paulo H Arruda
- VRI/AMVC Audubon Manning Veterinary Clinic, Ames, IA, USA
| | - Drew R Magstadt
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| | - Kent J Schwartz
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| | - Igor R Gatto
- Ourofino Animal Health, Cravinhos, São Paulo, Brazil
| | - John D Neill
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agriculture Research Service, U.S. Department of Agriculture, Ames, IA, USA
| | - Bailey L Arruda
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| |
Collapse
|
35
|
Prevalence of Linda Virus Neutralizing Antibodies in the Austrian Pig Population. Viruses 2021; 13:v13061001. [PMID: 34071946 PMCID: PMC8229103 DOI: 10.3390/v13061001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
A novel pestivirus species, termed Lateral-shaking Inducing Neuro-Degenerative Agent virus (LindaV), was discovered in a piglet-producing farm in Austria in 2015 related to severe congenital tremor cases. Since the initial outbreak LindaV has not been found anywhere else. In this study, we determined the seroprevalence of LindaV infections in the domestic pig population of Austria. A fluorophore labeled infectious cDNA clone of LindaV (mCherry-LindaV) was generated and used in serum virus neutralization (SVN) assays for the detection of LindaV specific neutralizing antibodies in porcine serum samples. In total, 637 sera from sows and gilts from five federal states of Austria, collected between the years 2015 and 2020, were analyzed. We identified a single serum showing a high neutralizing antibody titer, that originated from a farm (Farm S2) in the proximity of the initially affected farm. The analysis of 57 additional sera from Farm S2 revealed a wider spread of LindaV in this pig herd. Furthermore, a second LindaV strain originating from this farm could be isolated in cell culture and was further characterized at the genetic level. Possible transmission routes and virus reservoir hosts of this emerging porcine virus need to be addressed in future studies.
Collapse
|
36
|
Riedel C, Aitkenhead H, El Omari K, Rümenapf T. Atypical Porcine Pestiviruses: Relationships and Conserved Structural Features. Viruses 2021; 13:v13050760. [PMID: 33926056 PMCID: PMC8146772 DOI: 10.3390/v13050760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 01/22/2023] Open
Abstract
For two decades, the genus pestivirus has been expanding and the host range now extends to rodents, bats and marine mammals. In this review, we focus on one of the most diverse pestiviruses, atypical porcine pestivirus or pestivirus K, comparing its special traits to what is already known at the structural and functional level from other pestiviruses.
Collapse
Affiliation(s)
- Christiane Riedel
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Correspondence:
| | - Hazel Aitkenhead
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (H.A.); (K.E.O.)
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, UK
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (H.A.); (K.E.O.)
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, UK
| | - Till Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| |
Collapse
|
37
|
Koethe S, König P, Wernike K, Pfaff F, Schulz J, Reimann I, Makoschey B, Beer M. A Synthetic Modified Live Chimeric Marker Vaccine against BVDV-1 and BVDV-2. Vaccines (Basel) 2020; 8:vaccines8040577. [PMID: 33023099 PMCID: PMC7712951 DOI: 10.3390/vaccines8040577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV), a pestivirus which exists in the two distinct species BVDV-1 (syn. Pestivirus A) and BVDV-2 (syn. Pestivirus B), is the causative agent of one of the most widespread and economically important virus infections in cattle. For economic as well as for animal health reasons, an increasing number of national BVDV control programs were recently implemented. The main focus lies on the detection and removal of persistently infected cattle. The application of efficient marker or DIVA (differentiation of infected from vaccinated animals) vaccines would be beneficial for the eradication success in regions with a high BVDV prevalence to prevent fetal infection and it would allow serological monitoring of the BVDV status also in vaccinated farms. Therefore, a marker vaccine based on the cytopathic (cp) BVDV-1b strain CP7 was constructed as a synthetic backbone (BVDV-1b_synCP7). For serological discrimination of vaccinated from infected animals, the viral protein Erns was substituted by the heterologous Erns of Bungowannah virus (BuPV, species Pestivirus F). In addition, the vaccines were attenuated by a deletion within the type I interferon inhibitor Npro protein encoding sequence. The BVDV-2 vaccine candidate is based on the genetic sequence of the glycoproteins E1 and E2 of BVDV-2 strain CS8644 (CS), which were introduced into the backbone of BVDV-1b_synCP7_ΔNpro_Erns Bungo in substitution of the homologous glycoproteins. Vaccine virus recovery resulted in infectious cytopathic virus chimera that grew to titers of up to 106 TCID50/mL. Both synthetic chimera BVDV-1b_synCP7_ΔNpro_Erns Bungo and BVDV-1b_synCP7_ΔNpro_Erns Bungo_E1E2 BVDV-2 CS were avirulent in cattle, provided a high level of protection in immunization and challenge experiments against both BVDV species and allowed differentiation of infected from vaccinated cattle. Our study presents the first report on an efficient BVDV-1 and -2 modified live marker vaccine candidate and the accompanying commercially available serological marker ELISA system.
Collapse
Affiliation(s)
- Susanne Koethe
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (S.K.); (P.K.); (K.W.); (F.P.); (I.R.)
| | - Patricia König
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (S.K.); (P.K.); (K.W.); (F.P.); (I.R.)
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (S.K.); (P.K.); (K.W.); (F.P.); (I.R.)
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (S.K.); (P.K.); (K.W.); (F.P.); (I.R.)
| | - Jana Schulz
- Institute of Epidemiology Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany;
| | - Ilona Reimann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (S.K.); (P.K.); (K.W.); (F.P.); (I.R.)
| | - Birgit Makoschey
- Intervet International B.V., MSD Animal Health, 5831 AN Boxmeer, The Netherlands;
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (S.K.); (P.K.); (K.W.); (F.P.); (I.R.)
- Correspondence: ; Tel.: +49-38351-71200
| |
Collapse
|
38
|
Ganges L, Crooke HR, Bohórquez JA, Postel A, Sakoda Y, Becher P, Ruggli N. Classical swine fever virus: the past, present and future. Virus Res 2020; 289:198151. [PMID: 32898613 DOI: 10.1016/j.virusres.2020.198151] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
Abstract
Classical swine fever (CSF) is among the most relevant viral epizootic diseases of swine. Due to its severe economic impact, CSF is notifiable to the world organisation for animal health. Strict control policies, including systematic stamping out of infected herds with and without vaccination, have permitted regional virus eradication. Nevertheless, CSF virus (CSFV) persists in certain areas of the world and has re-emerged regularly. This review summarizes the basic established knowledge in the field and provides a comprehensive and updated overview of the recent advances in fundamental CSFV research, diagnostics and vaccine development. It covers the latest discoveries on the genetic diversity of pestiviruses, with implications for taxonomy, the progress in understanding disease pathogenesis, immunity against acute and persistent infections, and the recent findings in virus-host interactions and virulence determinants. We also review the progress and pitfalls in the improvement of diagnostic tools and the challenges in the development of modern and efficacious marker vaccines compatible with serological tests for disease surveillance. Finally, we highlight the gaps that require research efforts in the future.
Collapse
Affiliation(s)
- Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain.
| | - Helen R Crooke
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Jose Alejandro Bohórquez
- OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
| | - Alexander Postel
- EU & OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine, Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Paul Becher
- EU & OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine, Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Nicolas Ruggli
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| |
Collapse
|
39
|
A CRISPR/Cas9 Generated Bovine CD46-knockout Cell Line-A Tool to Elucidate the Adaptability of Bovine Viral Diarrhea Viruses (BVDV). Viruses 2020; 12:v12080859. [PMID: 32781607 PMCID: PMC7472008 DOI: 10.3390/v12080859] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/16/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) entry into a host cell is mediated by the interaction of the viral glycoprotein E2 with the cellular transmembrane CD46 receptor. In this study, we generated a stable Madin-Darby Bovine Kidney (MDBK) CD46-knockout cell line to study the ability of different pestivirus A and B species (BVDV-1 and -2) to escape CD46-dependent cell entry. Four different BVDV-1/2 isolates showed a clearly reduced infection rate after inoculation of the knockout cells. However, after further passaging starting from the remaining virus foci on the knockout cell line, all tested virus isolates were able to escape CD46-dependency and grew despite the lack of the entry receptor. Whole-genome sequencing of the escape-isolates suggests that the genetic basis for the observed shift in infectivity is an amino acid substitution of an uncharged (glycine/asparagine) for a charged amino acid (arginine/lysine) at position 479 in the ERNS in three of the four isolates tested. In the fourth isolate, the exchange of a cysteine at position 441 in the ERNS resulted in a loss of ERNS dimerization that is likely to influence viral cell-to-cell spread. In general, the CD46-knockout cell line is a useful tool to analyze the role of CD46 for pestivirus replication and the virus-receptor interaction.
Collapse
|
40
|
Autonomously Replicating RNAs of Bungowannah Pestivirus: E RNS Is Not Essential for the Generation of Infectious Particles. J Virol 2020; 94:JVI.00436-20. [PMID: 32404522 DOI: 10.1128/jvi.00436-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022] Open
Abstract
Autonomously replicating subgenomic Bungowannah virus (BuPV) RNAs (BuPV replicons) with deletions of the genome regions encoding the structural proteins C, ERNS, E1, and E2 were constructed on the basis of an infectious cDNA clone of BuPV. Nanoluciferase (Nluc) insertion was used to compare the replication efficiencies of all constructs after electroporation of in vitro-transcribed RNA from the different clones. Deletion of C, E1, E2, or the complete structural protein genome region (C-ERNS-E1-E2) prevented the production of infectious progeny virus, whereas deletion of ERNS still allowed the generation of infectious particles. However, those ΔERNS viral particles were defective in virus assembly and/or egress and could not be further propagated for more than three additional passages in porcine SK-6 cells. These "defective-in-third-cycle" BuPV ΔERNS mutants were subsequently used to express the classical swine fever virus envelope protein E2, the N-terminal domain of the Schmallenberg virus Gc protein, and the receptor binding domain of the Middle East respiratory syndrome coronavirus spike protein. The constructs could be efficiently complemented and further passaged in SK-6 cells constitutively expressing the BuPV ERNS protein. Importantly, BuPVs are able to infect a wide variety of target cell lines, allowing expression in a very wide host spectrum. Therefore, we suggest that packaged BuPV ΔERNS replicon particles have potential as broad-spectrum viral vectors.IMPORTANCE The proteins NPRO and ERNS are unique for the genus Pestivirus, but only NPRO has been demonstrated to be nonessential for in vitro growth. While this was also speculated for ERNS, it has always been previously shown that pestivirus replicons with deletions of the structural proteins ERNS, E1, or E2 did not produce any infectious progeny virus in susceptible host cells. Here, we demonstrated for the first time that BuPV ERNS is dispensable for the generation of infectious virus particles but still important for efficient passaging. The ERNS-defective BuPV particles showed clearly limited growth in cell culture but were capable of several rounds of infection, expression of foreign genes, and highly efficient trans-complementation to rescue virus replicon particles (VRPs). The noncytopathic characteristics and the absence of preexisting immunity to BuPV in human populations and livestock also provide a significant benefit for a possible use, e.g., as a vector vaccine platform.
Collapse
|
41
|
Gao WH, Lin XD, Chen YM, Xie CG, Tan ZZ, Zhou JJ, Chen S, Holmes EC, Zhang YZ. Newly identified viral genomes in pangolins with fatal disease. Virus Evol 2020; 6:veaa020. [PMID: 32296543 PMCID: PMC7151644 DOI: 10.1093/ve/veaa020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epizootic pathogens pose a major threat to many wildlife species, particularly in the context of rapidly changing environments. Pangolins (order Pholidota) are highly threatened mammals, in large part due to the trade in illegal wildlife. During July to August 2018 four sick wild pangolins (three Manis javanica and one Manis pentadactyla) exhibiting a variety of clinical symptoms were rescued by the Jinhua Wildlife Protection Station in Zhejiang province, China. Although three of these animals died, fortunately one recovered after 2 weeks of symptomatic treatment. Using meta-transcriptomics combined with reverse transcription polymerase chain reaction (RT-PCR), we identified two novel RNA viruses in two of the dead pangolins. Genomic analysis revealed that these viruses were most closely related to pestiviruses and coltiviruses, although still highly genetically distinct, with more than 48 and 25 per cent sequence divergence at the amino acid level, respectively. We named these Dongyang pangolin virus (DYPV) and Lishui pangolin virus (LSPV) based on the sampling site and hosts. Although coltiviruses (LSPV) are known to be transmitted by ticks, we found no evidence of LSPV in ticks sampled close to where the pangolins were collected. In addition, although DYPV was present in nymph ticks (Amblyomma javanense) collected from a diseased pangolin, they were not found in the local tick population. Epidemiological investigation revealed that both novel viruses might have been imported following the illegal international trade of pangolins. Hence, these data indicate that illegal wildlife trafficking not only threatens the status of pangolin populations, but may also spread epizootic pathogens.
Collapse
Affiliation(s)
- Wen-Hua Gao
- Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xian-Dan Lin
- Wenzhou Center for Disease Control and Prevention, Wenzhou, 325001, Zhejiang, China
| | - Yan-Mei Chen
- Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Shanghai Public Health Clinical Center & School of Life Science, Fudan University, Shanghai, 201052, China
| | - Chun-Gang Xie
- Jinhua Wildlife Protection Station, Jinhua Forestry Bureau, Jinhua, 321000, Zhejiang, China
| | - Zhi-Zhou Tan
- Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jia-Jun Zhou
- Zhejiang Forest Resource Monitoring Center, Hangzhou, 310020, Zhejiang, China
| | - Shuai Chen
- Wenzhou Center for Disease Control and Prevention, Wenzhou, 325001, Zhejiang, China
| | - Edward C Holmes
- Shanghai Public Health Clinical Center & School of Life Science, Fudan University, Shanghai, 201052, China.,Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yong-Zhen Zhang
- Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Shanghai Public Health Clinical Center & School of Life Science, Fudan University, Shanghai, 201052, China
| |
Collapse
|
42
|
Akkina R, Garry R, Bréchot C, Ellerbrok H, Hasegawa H, Menéndez-Arias L, Mercer N, Neyts J, Romanowski V, Segalés J, Vahlne A. 2019 meeting of the global virus network. Antiviral Res 2019; 172:104645. [PMID: 31697957 PMCID: PMC7127664 DOI: 10.1016/j.antiviral.2019.104645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 12/20/2022]
Abstract
The Global Virus Network (GVN) was established in 2011 to strengthen research and responses to emerging viral causes of human disease and to prepare against new viral pandemics. There are now 52 GVN Centers of Excellence and 9 Affiliate laboratories in 32 countries. The 11th International GVN meeting was held from June 9-11, 2019 in Barcelona, Spain and was jointly organized with the Spanish Society of Virology. A common theme throughout the meeting was globalization and climate change. This report highlights the recent accomplishments of GVN researchers in several important areas of medical virology, including severe virus epidemics, anticipation and preparedness for changing disease dynamics, host-pathogen interactions, zoonotic virus infections, ethical preparedness for epidemics and pandemics, one health and antivirals.
Collapse
Affiliation(s)
- Ramesh Akkina
- Colorado State University. Microbiology, Immunology and Pathology, USA
| | | | | | - Heinz Ellerbrok
- Robert Koch Institute. Center for International Health Protection, Germany
| | - Hideki Hasegawa
- National Institute of Infectious Diseases. Department of Pathology, Japan
| | | | | | - Johan Neyts
- Rega Institute for Medical Research, University of Leuven, Belgium
| | - Victor Romanowski
- Universidad Nacional de La Plata. IBBM, Facultad de Ciencias Exactas, Argentina
| | - Joaquim Segalés
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, and Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), UAB, Bellaterra, Spain
| | - Anders Vahlne
- Karolinska Institutet, Stockholm, Sweden; Global Virus Network, Baltimore, MD, USA.
| |
Collapse
|