1
|
Agüero B, Berrios F, Pardo-Roa C, Ariyama N, Bennett B, Medina RA, Neira V. First detection of Omicron variant BA.4.1 lineage in dogs, Chile. Vet Q 2024; 44:1-10. [PMID: 38174799 PMCID: PMC10769545 DOI: 10.1080/01652176.2023.2298089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
SARS-CoV-2's rapid global spread caused the declaration of COVID-19 as a pandemic in March 2020. Alongside humans, domestic dogs and cats are also susceptible to infection. However, limited reports on pet infections in Chile prompted a comprehensive study to address this knowledge gap. Between March 2021 and March 2023, the study assessed 65 pets (26 dogs and 39 cats) from 33 COVID-19+ households alongside 700 nasal swabs from animals in households with unknown COVID-19 status. Using RT-PCR, nasal, fecal, and environmental samples were analyzed for the virus. In COVID-19+ households, 6.06% tested positive for SARS-CoV-2, belonging to 3 dogs, indicating human-to-pet transmission. Pets from households with unknown COVID-19 status tested negative for the virus. We obtained 2 SARS-CoV-2 genomes from animals, that belonged to Omicron BA.4.1 variant, marking the first report of pets infected with this lineage globally. Phylogenetic analysis showed these sequences clustered with human sequences collected in Chile during the same period when the BA.4.1 variant was prevalent in the country. The prevalence of SARS-CoV-2 in Chilean pets was relatively low, likely due to the country's high human vaccination rate. Our study highlights the importance of upholding and strengthening human vaccination strategies to mitigate the risk of interspecies transmission. It underscores the critical role of the One Health approach in addressing emerging zoonotic diseases, calling for further research on infection dynamics and risk factors for a comprehensive understanding.
Collapse
Affiliation(s)
- B. Agüero
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Universidad de Chile, Santiago, Chile
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - F. Berrios
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - C. Pardo-Roa
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Child and Adolescent Health, School of Nursing, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - N. Ariyama
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Universidad de Chile, Santiago, Chile
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - B. Bennett
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - RA. Medina
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - V. Neira
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Daigle L, Khalid H, Gagnon CA, Arsenault J, Bienzle D, Bisson SK, Blais MC, Denis-Robichaud J, Forest C, Grenier St-Sauveur V, Koszegi M, MacNicol J, Nantel-Fortier N, Nury C, Prystajecky N, Fraser E, Carabin H, Aenishaenslin C. High prevalence of SARS-CoV-2 antibodies and low prevalence of SARS-CoV-2 RNA in cats recently exposed to human cases. BMC Vet Res 2024; 20:304. [PMID: 38982461 PMCID: PMC11232172 DOI: 10.1186/s12917-024-04150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND The primary objective of this cross-sectional study, conducted in Québec and Bristish Columbia (Canada) between February 2021 and January 2022, was to measure the prevalence of viral RNA in oronasal and rectal swabs and serum antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) amongst cats living in households with at least one confirmed human case. Secondary objectives included a description of potential risk factors for the presence of SARS-CoV-2 antibodies and an estimation of the association between the presence of viral RNA in swabs as well as SARS-CoV-2 antibodies and clinical signs. Oronasal and rectal swabs and sera were collected from 55 cats from 40 households at most 15 days after a human case confirmation, and at up to two follow-up visits. A RT-qPCR assay and an ELISA were used to detect SARS-CoV-2 RNA in swabs and serum SARS-CoV-2 IgG antibodies, respectively. Prevalence and 95% Bayesian credibility intervals (BCI) were calculated, and associations were evaluated using prevalence ratio and 95% BCI obtained from Bayesian mixed log-binomial models. RESULTS Nine (0.16; 95% BCI = 0.08-0.28) and 38 (0.69; 95% BCI = 0.56-0.80) cats had at least one positive RT-qPCR and at least one positive serological test result, respectively. No risk factor was associated with the prevalence of SARS-CoV-2 serum antibodies. The prevalence of clinical signs suggestive of COVID-19 in cats, mainly sneezing, was 2.12 (95% BCI = 1.03-3.98) times higher amongst cats with detectable viral RNA compared to those without. CONCLUSIONS We showed that cats develop antibodies to SARS-CoV-2 when exposed to recent human cases, but detection of viral RNA on swabs is rare, even when sampling occurs soon after confirmation of a human case. Moreover, cats with detectable levels of virus showed clinical signs more often than cats without signs, which can be useful for the management of such cases.
Collapse
Affiliation(s)
- Laurence Daigle
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada.
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada.
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Qc, Canada.
| | - Hattaw Khalid
- BC Centre for Disease Control, Vancouver, BC, Canada
- School of Population and Public Health, UBC Centre for Disease Control, University of British Columbia, Vancouver, BC, Canada
| | - Carl A Gagnon
- Swine and Poultry Infectious Diseases Research Center - FRQ, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Molecular Diagnostic Laboratory (MDL), Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Julie Arsenault
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Dorothee Bienzle
- Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah-Kim Bisson
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Marie-Claude Blais
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - José Denis-Robichaud
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Independent Researcher, Amqui, QC, Canada
| | - Caroline Forest
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Valérie Grenier St-Sauveur
- Molecular Diagnostic Laboratory (MDL), Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Marika Koszegi
- Molecular Diagnostic Laboratory (MDL), Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Jennifer MacNicol
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Nicolas Nantel-Fortier
- Molecular Diagnostic Laboratory (MDL), Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Charlotte Nury
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Natalie Prystajecky
- BC Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Erin Fraser
- BC Centre for Disease Control, Vancouver, BC, Canada
- School of Population and Public Health, UBC Centre for Disease Control, University of British Columbia, Vancouver, BC, Canada
| | - Hélène Carabin
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Qc, Canada
| | - Cécile Aenishaenslin
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Qc, Canada
| |
Collapse
|
3
|
Santos RS, Lee DAB, Barreto MDS, Silva EED, de Jesus PC, Moura PHM, Silva DMRR, de Souza JB, Bezerra TL, Santos POM, Guimarães AG, Santana LADM, Prudencio CR, Borges LP. Rapid antigen detection of severe acute respiratory syndrome coronavirus-2 in stray cats: A cross-sectional study. Vet World 2024; 17:1611-1618. [PMID: 39185047 PMCID: PMC11344112 DOI: 10.14202/vetworld.2024.1611-1618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/28/2024] [Indexed: 08/27/2024] Open
Abstract
Background and Aim Although reverse zoonotic transmission events from humans to domestic cats have been described, there is currently little evidence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) circulation in stray cats. Due to the evidence of natural and experimental infections in cats and the capacity to disseminate the virus among them, this study aimed to identify the SARS-CoV-2 antigen in stray cats from the Federal University of Sergipe in Brazil. Materials and Methods One hundred twenty six stray cats from the university were screened for SARS-CoV-2 antigens by random sampling. Throat swab samples were tested for the virus using rapid antigen detection tests. Results Of the 126 animals tested, 30 (23.60%) were positive for SARS-CoV-2 antigens. To our knowledge, for the first time, this study detected the SARS-CoV-2 antigen in stray cats and confirmed the presence of SARS-CoV-2 infections in Brazil's stray cat population. Conclusion The detection of SARS-CoV-2 in stray cats poses a risk for infected and healthy animals and possibly for humans who attend the university daily. As a limitation of the study, the small sample size necessitates caution when interpreting the results. This underscores the need for further research in this area to help control diseases in stray animals during potential pandemics. This highlights the need for monitoring and controlling the spread of the virus in stray animal populations.
Collapse
Affiliation(s)
| | - Daniel Antônio Braga Lee
- Department of Veterinary Medicine, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | | | | | | | | | | | | | - Taynar Lima Bezerra
- Department of Veterinary Medicine, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | | | | | | | - Carlos Roberto Prudencio
- Immunology Center, Adolfo Lutz Institute, São Paulo 01246-902, Brazil
- Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05508-000, Brazil
| | - Lysandro Pinto Borges
- Department of Pharmacy, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
4
|
Thieulent CJ, Carossino M, Peak L, Wolfson W, Balasuriya UBR. Development and validation of multiplex one-step qPCR/RT-qPCR assays for simultaneous detection of SARS-CoV-2 and pathogens associated with feline respiratory disease complex. PLoS One 2024; 19:e0297796. [PMID: 38517847 PMCID: PMC10959388 DOI: 10.1371/journal.pone.0297796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/12/2024] [Indexed: 03/24/2024] Open
Abstract
Feline respiratory disease complex (FRDC) is caused by a wide range of viral and bacterial pathogens. Both Influenza A virus (IAV) and Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) also induce respiratory diseases in cats. Two one-step multiplex qPCR/RT-qPCR assays were developed and validated: FRA_1 (Feline respiratory assay 1) for the detection of four viral targets and FRA_2 for the detection of three bacteria associated with FRDC. Both multiplex assays demonstrated high specificity, efficiency (93.51%-107.8%), linearity (> 0.998), analytical sensitivity (≤ 15 genome copies/μl), repeatability (coefficient of variation [CV] < 5%), and reproducibility (CV < 6%). Among the 63 clinical specimens collected from FRDC-suspected cats, 92.1% were positive for at least one pathogen and co-infection was detected in 57.1% of samples. Mycoplasma felis (61.9%) was the most found pathogen, followed by feline herpesvirus-1 (30.2%), Chlamydia felis (28.7%) and feline calicivirus (27.0%). SARS-CoV-2 was detected in two specimens. In summary, this new panel of qPCR/RT-qPCR assays constitutes a useful and reliable tool for the rapid detection of SARS-CoV-2 and viral and bacterial pathogens associated with FRDC in cats.
Collapse
Affiliation(s)
- Côme J. Thieulent
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Laura Peak
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Wendy Wolfson
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
5
|
Fernández-Figueroa EA, Espinosa-Martínez DV, Miranda-Ortiz H, Ruiz-García E, Figueroa-Esquivel JM, Becerril-Moctezuma ML, Muñoz-Rivas A, Ríos-Muñoz CA. Evidence of SARS-CoV-2 infection in companion animals from owners who tested positive for COVID-19 in the Valley of Mexico. Mol Biol Rep 2024; 51:186. [PMID: 38270725 PMCID: PMC10811044 DOI: 10.1007/s11033-023-09099-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Little is known about the companion animals which tested positive in Mexico for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Due to this, it is that we have documented the infection of companion animals, via an exploratory approach in two localities of the Valley of Mexico, in which the companion animal owners tested positive for COVID-19. METHODS Oropharyngeal and nasopharyngeal swabs were collected from 21 companion animals. Also, a Reverse-Transcription Quantitative Polymerase Chain Reaction was used to test five probes in three SARS-CoV-2 genes. More than one-third (5/14) of these samples were positive for SARS CoV-2 corresponding to dogs. RESULTS This research translates into the first available report on companion animals with SARS-CoV-2 infection in the most populated area of Mexico. Samples were added chronologically to previous reports prepared in other areas of the country, from February through November 2022. CONCLUSION Although SARS-CoV-2 infection in dogs is not as common as in other animals, our results suggest that it can be transmitted to dogs by their owners to a greater extent than previously reported.
Collapse
Affiliation(s)
- Edith A Fernández-Figueroa
- Núcleo B de Innovación en Medicina de Precisión, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Deborah V Espinosa-Martínez
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Arqueozoología, Subdirección de Laboratorios y Apoyo Académico, Instituto Nacional de Antropología e Historia, Mexico City, Mexico
| | - Haydee Miranda-Ortiz
- Unidad de Secuenciación, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Erika Ruiz-García
- Laboratorio de Medicina Traslacional, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | | | - Anallely Muñoz-Rivas
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - César A Ríos-Muñoz
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
6
|
Heydarifard Z, Chegeni AM, Heydarifard F, Nikmanesh B, Salimi V. An overview of SARS-CoV2 natural infections in companion animals: A systematic review of the current evidence. Rev Med Virol 2024; 34:e2512. [PMID: 38282405 DOI: 10.1002/rmv.2512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/10/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
This systematic review provides a comprehensive overview of natural SARS-CoV-2 infections in companion animals. The findings show that these infections are relatively rare. Among the examined dogs, only 1.32% tested positive for SARS-CoV-2, while for cats, the rate was 1.55%. Infections in rabbits and ferrets were even less common, at less than 1%. These results support previous research indicating the infrequency of natural infections in companion animals. The review also includes updated studies that involved various pets, such as cats, dogs, ferrets, and rabbits. The majority of the studies analyzed were primarily concerned with screening pets that visited veterinary clinics, regardless of whether they showed any specific signs of SARS-CoV-2 infection. Only a limited number of studies investigated infections in animals suspected of being in contact with owners or other animals that had COVID-19 or were exhibiting symptoms. The most common variant identified among the SARS-CoV-2 variants in the reviewed studies was B.1.1.7 (alpha), followed by B.1.617.2 (delta), B.1.526 (Iota), and others. The emergence of these variants raises concerns about their potential for increased transmissibility and virulence, highlighting the importance of ongoing monitoring of SARS-CoV-2 infections in both humans and animals. Furthermore, most of the reviewed studies indicated that infected pets either showed no symptoms or experienced mild symptoms. This aligns with previous reports suggesting that animals infected with SARS-CoV-2 generally have less severe illness compared to humans. However, it is essential to recognize the possibility of severe illness or death in animals, particularly those with underlying health conditions. Continuous surveillance of SARS-CoV-2 infections in companion animals is crucial for better understanding the virus's epidemiology in animals and developing effective strategies to protect both animal and human health.
Collapse
Affiliation(s)
- Zahra Heydarifard
- Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ardalan Maleki Chegeni
- Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fatemeh Heydarifard
- Department of Veterinary, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Bahram Nikmanesh
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Zoonoses Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Zoonoses Research Centre, Tehran University of Medical Sciences, Tehran, Iran
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Ahmed-Hassan H, Farouk MM, Ali ME, Elsafiee EA, Hagag N, Abdelkader F. SARS-CoV-2 seroprevalence determination in pets and camels in Egypt using multispecies enzyme-linked immunosorbent assay. Vet Immunol Immunopathol 2024; 267:110683. [PMID: 38061231 DOI: 10.1016/j.vetimm.2023.110683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/29/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has translated into a worldwide economic recession and public health crisis. Bats have been incriminated as the main natural host for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of the COVID-19 pandemic. However, the reservoir and carrier hosts of the virus remain unknown. Therefore, a cross sectional serosurvey study was performed to estimate antibodies to SARS-CoV-2. To assess IgM antibodies to SARS-CoV-2 nucleocapsid protein (NP), a SARS-CoV-2 Double Antigen Multispecies diagnostic enzyme-linked immunosorbent assay kit was used. The seropositive samples were confirmed and validated by measuring IgG antibody titers in sera. The enrolled animals were from different locations in the Giza governorate, Egypt, and were sampled at the time of the pandemic; they comprised 92 companion animals and 92 domestic camels. The study established that 4.76% (1/21 clinical samples) of dogs, 7.69% of cats (1/13 shelter samples) and 1.08% (1/92) of camels, had measurable SARS-CoV-2 NP IgM antibodies. All IgM-seropositive samples were IgG positive with a measurable titer of 34.5, 28.6, and 25.8 UI/mL for dog, cat, and camels, respectively. According to our best knowledge, this study was the first to assess SARS-CoV-2 seroprevalence in the specific animals investigated in Egypt. These results may herald a promising epidemiological role for pet animals and camels in SARS-CoV-2 virus maintenance. Thus, our study's results ought to be confirmed with a nationwide seroprevalence study, and further studies are required to clarify whether these animals act as active or passive carriers.
Collapse
Affiliation(s)
- Hanaa Ahmed-Hassan
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Manar M Farouk
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary medicine, Cairo University, Giza 12211, Egypt
| | - M E Ali
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary medicine, Cairo University, Giza 12211, Egypt
| | - Esraa A Elsafiee
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Naglaa Hagag
- Genome Research Unit, Animal Health Research Institute, Dokki 12618, Egypt; Gene Analysis Unit in National Laboratory for Veterinary Quality Control on Poultry Production (NLQP), Animal Health Research Institute, Dokki 12618, Egypt
| | - Fatma Abdelkader
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
8
|
Gomez-Romero N, Basurto-Alcantara FJ, Velazquez-Salinas L. Assessing the Potential Role of Cats ( Felis catus) as Generators of Relevant SARS-CoV-2 Lineages during the Pandemic. Pathogens 2023; 12:1361. [PMID: 38003825 PMCID: PMC10675002 DOI: 10.3390/pathogens12111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Several questions regarding the evolution of SARS-CoV-2 remain poorly elucidated. One of these questions is the possible evolutionary impact of SARS-CoV-2 after the infection in domestic animals. In this study, we aimed to evaluate the potential role of cats as generators of relevant SARS-CoV-2 lineages during the pandemic. A total of 105 full-length genome viral sequences obtained from naturally infected cats during the pandemic were evaluated by distinct evolutionary algorithms. Analyses were enhanced, including a set of highly related SARS-CoV-2 sequences recovered from human populations. Our results showed the apparent high susceptibility of cats to the infection SARS-CoV-2 compared with other animal species. Evolutionary analyses indicated that the phylogenomic characteristics displayed by cat populations were influenced by the dominance of specific SARS-CoV-2 genetic groups affecting human populations. However, disparate dN/dS rates at some genes between populations recovered from cats and humans suggested that infection in these two species may suggest a different evolutionary constraint for SARS-CoV-2. Interestingly, the branch selection analysis showed evidence of the potential role of natural selection in the emergence of five distinct cat lineages during the pandemic. Although these lineages were apparently irrelevant to public health during the pandemic, our results suggested that additional studies are needed to understand the role of other animal species in the evolution of SARS-CoV-2 during the pandemic.
Collapse
Affiliation(s)
- Ninnet Gomez-Romero
- Comisión México-Estados Unidos para la Prevención de Fiebre Aftosa y Otras Enfermedades Exóticas de los Animales, Carretera Mexico-Toluca Km 15.5 Piso 4 Col. Palo Alto, Cuajimalpa de Morelos, Mexico City 05110, Mexico;
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad No. 3000 Col Copilco Universidad, Mexico City 14510, Mexico;
| | - Francisco Javier Basurto-Alcantara
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad No. 3000 Col Copilco Universidad, Mexico City 14510, Mexico;
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
- National Bio and Agro-Defense Facility (NBAF), Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA
| |
Collapse
|
9
|
Cordero-Ortiz M, Reséndiz-Sandoval M, Dehesa-Canseco F, Solís-Hernández M, Pérez-Sánchez J, Martínez-Borges C, Mata-Haro V, Hernández J. Development of a Multispecies Double-Antigen Sandwich ELISA Using N and RBD Proteins to Detect Antibodies against SARS-CoV-2. Animals (Basel) 2023; 13:3487. [PMID: 38003105 PMCID: PMC10668785 DOI: 10.3390/ani13223487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
SARS-CoV-2 infects humans and a broad spectrum of animal species, such as pets, zoo animals, and nondomestic animals. Monitoring infection in animals is important in terms of the risk of interspecies transmission and the emergence of new viral variants. Economical, fast, efficient, and sensitive diagnostic tests are needed to analyze animal infection. Double-antigen sandwich ELISA has the advantage of being multispecies and can be used for detecting infections caused by pathogens that infect several animal hosts. This study aimed to develop a double-antigen sandwich ELISA using two SARS-CoV-2 proteins, N and RBD. We compared its performance, when using these proteins separately, with an indirect ELISA and with a surrogate virus neutralization test. Positive and negative controls from a cat population (n = 31) were evaluated to compare all of the tests. After confirming that double-antigen sandwich ELISA with both RBD and N proteins had the best performance (AUC= 88%), the cutoff was adjusted using positive and negative samples from cats, humans (n = 32) and guinea pigs (n = 3). The use of samples from tigers (n = 2) and rats (n = 51) showed good agreement with the results previously obtained using the microneutralization test. Additionally, a cohort of samples from dogs with unknown infection status was evaluated. These results show that using two SARS-CoV-2 proteins in the double-antigen sandwich ELISA increases its performance and turns it into a valuable assay with which to monitor previous infection caused by SARS-CoV-2 in different animal species.
Collapse
Affiliation(s)
- Maritza Cordero-Ortiz
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo 83304, Sonora, Mexico; (M.C.-O.); (M.R.-S.)
| | - Mónica Reséndiz-Sandoval
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo 83304, Sonora, Mexico; (M.C.-O.); (M.R.-S.)
| | - Freddy Dehesa-Canseco
- Comisión México-Estados Unidos para la Prevención de la Fiebre Aftosa y otras Enfermedades Exóticas de los Animales (CPA), Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA), Secretaría de Agricultura y Desarrollo Rural (SADER), Ciudad de Mexico 05110, Mexico State, Mexico; (F.D.-C.); (M.S.-H.)
| | - Mario Solís-Hernández
- Comisión México-Estados Unidos para la Prevención de la Fiebre Aftosa y otras Enfermedades Exóticas de los Animales (CPA), Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA), Secretaría de Agricultura y Desarrollo Rural (SADER), Ciudad de Mexico 05110, Mexico State, Mexico; (F.D.-C.); (M.S.-H.)
| | - Jahir Pérez-Sánchez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Cd., Reynosa 88710, Tamaulipas, Mexico;
| | | | - Verónica Mata-Haro
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo 83304, Sonora, Mexico;
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo 83304, Sonora, Mexico; (M.C.-O.); (M.R.-S.)
| |
Collapse
|
10
|
Nooruzzaman M, Diel DG. Infection Dynamics, Pathogenesis, and Immunity to SARS-CoV-2 in Naturally Susceptible Animal Species. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1195-1201. [PMID: 37782853 PMCID: PMC10558081 DOI: 10.4049/jimmunol.2300378] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 10/04/2023]
Abstract
SARS-CoV-2, the causative agent of the COVID-19 pandemic, presents a broad host range. Domestic cats and white-tailed deer (WTD) are particularly susceptible to SARS-CoV-2 with multiple variant strains being associated with infections in these species. The virus replicates in the upper respiratory tract and in associated lymphoid tissues, and it is shed through oral and nasal secretions, which leads to efficient transmission of the virus to contact animals. Robust cell-mediated and humoral immune responses are induced upon infection in domestic cats, which curb the progression of clinical disease and are associated with control of infection. In WTD, high levels of neutralizing Abs are detected early upon infection. In this review, the current understanding of the infection dynamics, pathogenesis, and immune responses to SARS-CoV-2 infection in animals, with special focus on naturally susceptible felids and WTD, are discussed.
Collapse
Affiliation(s)
- Mohammed Nooruzzaman
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States of America
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States of America
| |
Collapse
|
11
|
Liu B, Zhao P, Xu P, Han Y, Wang Y, Chen L, Wu Z, Yang J. A comprehensive dataset of animal-associated sarbecoviruses. Sci Data 2023; 10:681. [PMID: 37805633 PMCID: PMC10560225 DOI: 10.1038/s41597-023-02558-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/11/2023] [Indexed: 10/09/2023] Open
Abstract
Zoonotic spillover of sarbecoviruses (SarbeCoVs) from non-human animals to humans under natural conditions has led to two large-scale pandemics, the severe acute respiratory syndrome (SARS) pandemic in 2003 and the ongoing COVID-19 pandemic. Knowledge of the genetic diversity, geographical distribution, and host specificity of SarbeCoVs is therefore of interest for pandemic surveillance and origin tracing of SARS-CoV and SARS-CoV-2. This study presents a comprehensive repository of publicly available animal-associated SarbeCoVs, covering 1,535 viruses identified from 63 animal species distributed in 43 countries worldwide (as of February 14,2023). Relevant meta-information, such as host species, sampling time and location, was manually curated and included in the dataset to facilitate further research on the potential patterns of viral diversity and ecological characteristics. In addition, the dataset also provides well-annotated sequence sets of receptor-binding domains (RBDs) and receptor-binding motifs (RBMs) for the scientific community to highlight the potential determinants of successful cross-species transmission that could be aid in risk estimation and strategic design for future emerging infectious disease control and prevention.
Collapse
Affiliation(s)
- Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Peng Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Panpan Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Yuyang Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Lihong Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China.
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China.
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China.
| |
Collapse
|
12
|
Thieulent CJ, Carossino M, Peak L, Wolfson W, Balasuriya UBR. Multiplex One-Step RT-qPCR Assays for Simultaneous Detection of SARS-CoV-2 and Other Enteric Viruses of Dogs and Cats. Viruses 2023; 15:1890. [PMID: 37766296 PMCID: PMC10534472 DOI: 10.3390/v15091890] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was transmitted from humans to dogs and cats (reverse zoonosis) during the COVID-19 pandemic. SARS-CoV-2 has been detected in fecal samples of infected dogs and cats, indicating potential fecal-oral transmission, environmental contamination, and zoonotic transmission (i.e., spillback). Additionally, gastrointestinal viral infections are prevalent in dogs and cats. In this study, we developed and validated a panel of multiplex one-step reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays for the simultaneous detection of SARS-CoV-2 and common canine enteric viruses: Canine Enteric Assay_1 (CEA_1) for the detection of canine adenovirus-1, canine enteric coronavirus, canine distemper virus, and canine parvovirus, and CEA_2 for the detection of rotavirus A (RVA), and SARS-CoV-2); or common feline enteric viruses (Feline Enteric Assay_1 (FEA_1) for the detection of feline enteric coronavirus, feline panleukopenia virus, RVA, and SARS-CoV-2). All assays demonstrated high analytical sensitivity, detecting as few as 5-35 genome copies/µL in multiplex format. The repeatability and reproducibility of the multiplex assays were excellent, with coefficient of variation <4%. Among the 58 clinical samples tested, 34.5% were positive for at least one of these viruses, and SARS-CoV-2 was detected in two samples collected from one dog and one cat, respectively. In conclusion, these newly developed one-step multiplex RT-qPCR assays allow for rapid diagnosis of enteric viral infections, including SARS-CoV-2, in dogs and cats.
Collapse
Affiliation(s)
- Côme J. Thieulent
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (C.J.T.); (M.C.); (L.P.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (C.J.T.); (M.C.); (L.P.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Laura Peak
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (C.J.T.); (M.C.); (L.P.)
| | - Wendy Wolfson
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (C.J.T.); (M.C.); (L.P.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
13
|
Santos HO, Santos EMS, de Oliveira HDS, dos Santos WS, Tupy AA, Souza EG, Ramires R, Luiz ACO, de Almeida AC. Screening for canine coronavirus, canine influenza virus, and severe acute respiratory syndrome coronavirus 2 in dogs during the coronavirus disease-2019 pandemic. Vet World 2023; 16:1772-1780. [PMID: 37859971 PMCID: PMC10583864 DOI: 10.14202/vetworld.2023.1772-1780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/26/2023] [Indexed: 10/21/2023] Open
Abstract
Background and Aim Although most cases of coronavirus disease-2019 (COVID-19) are in humans, there is scientific evidence to suggest that the virus can also infect dogs and cats. This study investigated the circulation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), canine coronavirus (CCV), and canine influenza virus (CIV) in domiciled and/or stray dogs from different locations in the State of Minas Gerais, Brazil, during the COVID-19 pandemic. Materials and Methods In total, 86 dogs living in homes, on the streets, or in shelters in the cities of Taiobeiras, Salinas, Araçuaí, and Almenara were randomly selected for this study. The COVID Ag Detect® Self-Test was used to detect SARS-CoV-2. The ACCUVET CCV AG TEST - CANINE CORONAVIROSIS® was used to detect CCV, whereas canine influenza was detected using the ACCUVET CIV AG TEST - INFLUENZA CANINA®. All collected data were mapped using QGIS 3.28.1 for spatial data analysis and the identification of disease distribution patterns. Descriptive analysis of the collected data, prevalence calculations, odds ratios (ORs), and 95% confidence intervals, when possible, was performed. Results Of the 86 animals tested, only one dog tested positive for SARS-CoV-2 using the rapid test for viral antigen detection. No animals tested positive for CIV. Canine coronavirus was detected in almost half of the animals tested in Almenara. Severe acute respiratory syndrome-CoV-2 had a low prevalence (1.16%), versus 15.62% for CCV. Although the results were not significant, the age and breed of animals appeared to be associated with the occurrence of CCV. The results indicated that younger animals were 2.375-fold more likely to be infected. Likewise, purebred animals were more likely to contract the disease (OR = 1.944). Conclusion The results indicate the need to maintain preventive measures against CCV, canine influenza, and SARS-CoV-2 in dogs. More studies are needed to better elucidate the panorama of these diseases in dogs, mainly in underdeveloped and developing countries.
Collapse
Affiliation(s)
| | | | | | | | | | - Elber Gomes Souza
- Clínica Veterinária e Pet Shop Neres e Souza, Salinas, Minas Gerais, Brazil
| | - Rair Ramires
- Zecão pet shop clínica veterinária, Salinas, Minas Gerais, Brazil
| | | | - Anna Christina de Almeida
- Institute of Agricultural Sciences, Federal University of Minas Gerais, Montes Claros, Minas Gerais, Brazil
| |
Collapse
|
14
|
Jones S, Tyson GB, Orton RJ, Smollett K, Manna F, Kwok K, Suárez NM, Logan N, McDonald M, Bowie A, Filipe ADS, Willett BJ, Weir W, Hosie MJ. SARS-CoV-2 in Domestic UK Cats from Alpha to Omicron: Swab Surveillance and Case Reports. Viruses 2023; 15:1769. [PMID: 37632111 PMCID: PMC10459977 DOI: 10.3390/v15081769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Although domestic cats are susceptible to infection with SARS-CoV-2, the role of the virus in causing feline disease is less well defined. We conducted a large-scale study to identify SARS-CoV-2 infections in UK pet cats, using active and passive surveillance. Remnant feline respiratory swab samples, submitted for other pathogen testing between May 2021 and February 2023, were screened using RT-qPCR. In addition, we appealed to veterinarians for swab samples from cats suspected of having clinical SARS-CoV-2 infections. Bespoke testing for SARS-CoV-2 neutralising antibodies was also performed, on request, in suspected cases. One RT-qPCR-positive cat was identified by active surveillance (1/549, 0.18%), during the Delta wave (1/175, 0.57%). Passive surveillance detected one cat infected with the Alpha variant, and two of ten cats tested RT-qPCR-positive during the Delta wave. No cats tested RT-qPCR-positive after the emergence of Omicron BA.1 and its descendants although 374 were tested by active and eleven by passive surveillance. We describe four cases of SARS-CoV-2 infection in pet cats, identified by RT-qPCR and/or serology, that presented with a range of clinical signs, as well as their SARS-CoV-2 genome sequences. These cases demonstrate that, although uncommon in cats, a variety of clinical signs can occur.
Collapse
Affiliation(s)
- Sarah Jones
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Grace B. Tyson
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Richard J. Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Katherine Smollett
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Federica Manna
- Bath Vet Referrals, Rosemary Lodge Veterinary Hospital, Wellsway, Bath BA2 5RL, UK
| | - Kirsty Kwok
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Nicolás M. Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Nicola Logan
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Michael McDonald
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Andrea Bowie
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Ana Da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Brian J. Willett
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - William Weir
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| |
Collapse
|
15
|
Jaramillo Hernández DA, Chacón MC, Velásquez MA, Vásquez-Trujillo A, Sánchez AP, Salazar Garces LF, García GL, Velasco-Santamaría YM, Pedraza LN, Lesmes-Rodríguez LC. Seroprevalence of exposure to SARS-CoV-2 in domestic dogs and cats and its relationship with COVID-19 cases in the city of Villavicencio, Colombia. F1000Res 2023; 11:1184. [PMID: 37965037 PMCID: PMC10643872 DOI: 10.12688/f1000research.125780.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 11/16/2023] Open
Abstract
Background: Since the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak, different animal species have been implicated as possible intermediate hosts that could facilitate the transmission of the virus between species. The detection of these hosts has intensified, reporting wild, zoo, farm, and pet animals. The goal of this study was to determine the seroprevalence of anti-SARS-CoV-2 immunoglobulins (IgG) in domestic dogs and cats and its epidemiological association with the frequency of coronavirus disease 2019 (COVID-19) patients in Villavicencio, Colombia. Methods: 300 dogs and 135 cats were randomly selected in a two-stage distribution by clusters according to COVID-19 cases (positive RT-qPCR for SARS-CoV-2) within the human population distributed within the eight communes of Villavicencio. Indirect enzyme-linked immunosorbent assay (ELISA) technique was applied in order to determine anti-SARS-CoV-2 IgG in sera samples. Kernel density estimation was used to compare the prevalence of COVID-19 cases with the seropositivity of dogs and cats. Results: The overall seroprevalence of anti-SARS-CoV-2 IgG was 4.6% (95% CI=3.2-7.4). In canines, 3.67% (95% CI=2.1-6.4) and felines 6.67% (95% CI=3.6-12.18). Kernel density estimation indicated that seropositive cases were concentrated in the southwest region of the city. There was a positive association between SARS-CoV-2 seropositivity in pet animals and their habitat in Commune 2 (adjusted OR=5.84; 95% CI=1.1-30.88). Spearman's correlation coefficients were weakly positive ( p=0.32) between the ratio of COVID-19 cases in November 2020 and the results for domestic dogs and cats from the eight communes of Villavicencio. Conclusions: In the present research cats were more susceptible to SARS-CoV-2 infection than dogs. This study provides the first positive results of anti-SARS-CoV-2 ELISA serological tests in domestic dogs and cats in Colombia with information about the virus transmission dynamics in Latin America during the COVID-19 pandemic.
Collapse
Affiliation(s)
| | - María Clara Chacón
- Programa de Medicina Veterinaria y Zootecnia, Escuela de Ciencias Animales, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Meta, 1745, Colombia
| | - María Alejandra Velásquez
- Programa de Medicina Veterinaria y Zootecnia, Escuela de Ciencias Animales, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Meta, 1745, Colombia
| | - Adolfo Vásquez-Trujillo
- Escuela de Ciencias Animales, Universidad de los Llanos, Villavicencio, Meta, 1745, Colombia
| | - Ana Patricia Sánchez
- Secretaria de Salud Municipal, Alcaldía de Villavicencio, Villavicencio, Meta, 110221, Colombia
| | - Luis Fabian Salazar Garces
- Research and Development Department (DIDE), Faculty of Health Sciences, Technical University of Ambato, Ambato, Ambato, Av. Colombia and Chile s/n, Ecuador
| | - Gina Lorena García
- Escuela de Ciencias Animales, Universidad de los Llanos, Villavicencio, Meta, 1745, Colombia
| | | | - Luz Natalia Pedraza
- Escuela de Ciencias Animales, Universidad de los Llanos, Villavicencio, Meta, 1745, Colombia
| | - Lida Carolina Lesmes-Rodríguez
- Departamento de Biología & Química, Facultad de Ciencias Básicas e Ingeniería, Universidad de los Llanos, Villavicencio, Meta, 1745, Colombia
| |
Collapse
|
16
|
Duijvestijn MBHM, Schuurman NNMP, Vernooij JCM, van Leeuwen MAJM, Bosch BJ, van den Brand JMA, Wagenaar JA, van Kuppeveld FJM, Egberink HF, Verhagen JH. Serological Survey of Retrovirus and Coronavirus Infections, including SARS-CoV-2, in Rural Stray Cats in The Netherlands, 2020-2022. Viruses 2023; 15:1531. [PMID: 37515217 PMCID: PMC10385588 DOI: 10.3390/v15071531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Stray cats can host (zoonotic) viral pathogens and act as a source of infection for domestic cats or humans. In this cross-sectional (sero)prevalence study, sera from 580 stray cats living in 56 different cat groups in rural areas in The Netherlands were collected from October 2020 to July 2022. These were used to investigate the prevalence of the cat-specific feline leukemia virus (FeLV, n = 580), the seroprevalence of the cat-specific feline viruses feline immunodeficiency virus (FIV, n = 580) and feline coronavirus (FCoV, n = 407), and the zoonotic virus severe acute respiratory coronavirus-2 (SARS-CoV-2, n = 407) using enzyme-linked immunosorbent assays (ELISAs). ELISA-positive results were confirmed using Western blot (FIV) or pseudovirus neutralization test (SARS-CoV-2). The FIV seroprevalence was 5.0% (95% CI (Confidence Interval) 3.4-7.1) and ranged from 0-19.0% among groups. FIV-specific antibodies were more often detected in male cats, cats ≥ 3 years and cats with reported health problems. No FeLV-positive cats were found (95% CI 0.0-0.6). The FCoV seroprevalence was 33.7% (95% CI 29.1-38.5) and ranged from 4.7-85.7% among groups. FCoV-specific antibodies were more often detected in cats ≥ 3 years, cats with reported health problems and cats living in industrial areas or countryside residences compared to cats living at holiday parks or campsites. SARS-CoV-2 antibodies against the subunit 1 (S1) and receptor binding domain (RBD) protein were detected in 2.7% (95% CI 1.4-4.8) of stray cats, but sera were negative in the pseudovirus neutralization test and therefore were considered SARS-CoV-2 suspected. Our findings suggest that rural stray cats in The Netherlands can be a source of FIV and FCoV, indicating a potential risk for transmission to other cats, while the risk for FeLV is low. However, suspected SARS-CoV-2 infections in these cats were uncommon. We found no evidence of SARS-CoV-2 cat-to-cat spread in the studied stray cat groups and consider the likelihood of spillover to humans as low.
Collapse
Affiliation(s)
- Mirjam B H M Duijvestijn
- Clinical Infectiology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Nancy N M P Schuurman
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Johannes C M Vernooij
- Division of Farm Animal Health, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands
| | | | - Berend-Jan Bosch
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Judith M A van den Brand
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Jaap A Wagenaar
- Clinical Infectiology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Herman F Egberink
- Clinical Infectiology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Josanne H Verhagen
- Clinical Infectiology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| |
Collapse
|
17
|
Saneei D, Jamshidi S, Ghalyanchi Langeroudi A, Akbarein H, Nadji SA, Shoarzargari L, Salehi-Vaziri M, Moazezi Ghavihelm A, Hojabr Rajeoni A, Shahbazi V. Molecular detection of SARS-CoV-2 in domestic cats in close contact with positively-infected owners in Tehran, Iran in 2021. JFMS Open Rep 2023; 9:20551169231172620. [PMID: 37575355 PMCID: PMC10422899 DOI: 10.1177/20551169231172620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Objectives In 2019, COVID-19 emerged in China and has since spread worldwide. Owing to the virus's ability to adhere to specific receptors, cats are susceptible to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The popularity of pet cats in Iran has sparked fears of human-cat-human transmission of the virus. This study aimed to identify positive cases in cats owned by people infected with SARS-CoV-2, to determine if they remained positive for >3 weeks and to examine the virus genome isolated from a number of cats and one of their owners. Methods A total of 30 cats were sampled approximately 3 days after their owners tested positive (day 1), and 3 weeks later, in strict accordance with health regulations. Rectal and oropharyngeal samples were collected. All samples were subjected to a qualitative PCR and reverse transcription PCR. The S-gene region was partially sequenced in positive samples and the results were used to create a phylogenetic tree. Results SARS-CoV-2 was detected in 7/30 (23.3%) cats examined. In the third week, every cat tested negative. The sequence data of positive cats and one of their owners revealed that the retrieved RNAs belonged to the alpha variation. The genetic distance between the samples and the reference sequence (20I/B.1.1.7: OM003849, MZ344997) was minimal, with a 99% similarity. Positive samples of cats had four mutations in gene S. Amino acid substitutions in the spike glycoprotein at positions N501Y, A570D, D614G and P681H were recorded in the isolates compared with 780 other sequences of Iranian strains. Conclusions and relevance This study confirmed the presence of SARS-CoV-2-infected cats living in close contact with infected owners. Despite cats' susceptibility to COVID-19, the risk of severe infection in these animals is low, as evidenced by the lack of clinical signs in positive cats.
Collapse
Affiliation(s)
- Dorsa Saneei
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shahram Jamshidi
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Arash Ghalyanchi Langeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hesamedin Akbarein
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Seyed Alireza Nadji
- Virology Research Center, National Institutes of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laleh Shoarzargari
- Virology Research Center, National Institutes of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Salehi-Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers, Pasteur Institute of Iran, Tehran, Iran
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Moazezi Ghavihelm
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Hojabr Rajeoni
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Vahid Shahbazi
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
18
|
High seroprevalence of SARS-CoV-2 antibodies in household cats and dogs of Lebanon. Res Vet Sci 2023; 157:13-16. [PMID: 36842247 PMCID: PMC9942449 DOI: 10.1016/j.rvsc.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
The COVID-19 pandemic has been declared in late 2019. It is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Flu-like symptoms and acute respiratory illnesses are the main manifestations of the disease. Recent studies have confirmed the susceptibility of domestic animals to SARS-CoV-2 infection. However, the seroprevalence of SARS-CoV-2 in household pets and the importance of pets in the epidemiology of this infection remain unknown. In Lebanon, there is no epidemiological data regarding SARS-CoV-2 infection in companion animals. Thus, this investigation aimed to determine the seroprevalence of SARS-CoV-2 antibodies in household pets of Lebanon during the COVID-19 pandemic. A cross-sectional study was carried out between April 2020 and February 2021. Blood samples from 145 cats and 180 dogs were collected from 12 veterinary clinics located in the North, Mount, and Beirut governorates. A validated ELISA assay was used to detect the anti- SARS-CoV-2 in the sera of the tested animals. An overall seroprevalence of 16.92% (55/325) was reported; 13.79% seroprevalence was found in cats (20/145) and 19.44% (35/180) in dogs. The young age and the cold season were significantly associated with an increased seropositivity rate to SARS-CoV-2 infection (P < 0.01). These results confirm the circulation of SARS-CoV-2 in household pets, in various geographical regions in Lebanon. Although, there is a lack of evidence to suggest that naturally infected pets could transmit the SARS-CoV-2 infection. Yet, owners diagnosed with COVID-19 should limit their contact with their animals during the course of the disease to curb the risk of transmission.
Collapse
|
19
|
Panzera Y, Mirazo S, Baz M, Techera C, Grecco S, Cancela F, Fuques E, Condon E, Calleros L, Camilo N, Fregossi A, Vaz I, Pessina P, Deshpande N, Pérez R, Benech A. Detection and genome characterisation of SARS-CoV-2 P.6 lineage in dogs and cats living with Uruguayan COVID-19 patients. Mem Inst Oswaldo Cruz 2023; 117:e220177. [PMID: 36651456 PMCID: PMC9870267 DOI: 10.1590/0074-02760220177] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in domestic animals have occurred from the beginning of the pandemic to the present time. Therefore, from the perspective of One Health, investigating this topic is of global scientific and public interest. OBJECTIVES The present study aimed to determine the presence of SARS-CoV-2 in domestic animals whose owners had coronavirus disease 2019 (COVID-19). METHODS Nasopharyngeal and faecal samples were collected in Uruguay. Using quantitative polymerase chain reaction (qPCR), we analysed the presence of the SARS-CoV-2 genome. Complete genomes were obtained using ARTIC enrichment and Illumina sequencing. Sera samples were used for virus neutralisation assays. FINDINGS SARS-CoV-2 was detected in an asymptomatic dog and a cat. Viral genomes were identical and belonged to the P.6 Uruguayan SARS-CoV-2 lineage. Only antiserum from the infected cat contained neutralising antibodies against the ancestral SARS-CoV-2 strain and showed cross-reactivity against the Delta but not against the B.A.1 Omicron variant. MAIN CONCLUSIONS Domestic animals and the human SARS-CoV-2 P.6 variant comparison evidence a close relationship and gene flow between them. Different SARS-CoV-2 lineages infect dogs and cats, and no specific variants are adapted to domestic animals. This first record of SARS-CoV-2 in domestic animals from Uruguay supports regular surveillance of animals close to human hosts.
Collapse
Affiliation(s)
- Yanina Panzera
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay,+ Corresponding author:
| | - Santiago Mirazo
- Universidad de la República, Facultad de Ciencias, Sección Virología, Montevideo, Uruguay,Universidad de la República, Facultad de Medicina, Instituto de Higiene, Departamento de Bacteriología y Virología, Montevideo, Uruguay
| | - Mariana Baz
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute, Melbourne, Victoria, Australia
| | - Claudia Techera
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Sofía Grecco
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Florencia Cancela
- Universidad de la República, Facultad de Ciencias, Sección Virología, Montevideo, Uruguay
| | - Eddie Fuques
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Emma Condon
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Lucía Calleros
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Natalia Camilo
- Universidad de la República, Facultad de Veterinaria, Unidad de Clínica y Hospital Veterinario, Montevideo, Uruguay
| | - Andrea Fregossi
- Universidad de la República, Facultad de Veterinaria, Unidad de Clínica y Hospital Veterinario, Montevideo, Uruguay
| | - Inés Vaz
- Universidad de la República, Facultad de Veterinaria, Unidad de Clínica y Hospital Veterinario, Montevideo, Uruguay
| | - Paula Pessina
- Universidad de la República, Facultad de Veterinaria, Laboratorio Clínico del Hospital Veterinario, Montevideo, Uruguay
| | - Nikita Deshpande
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute, Melbourne, Victoria, Australia
| | - Ruben Pérez
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Alejandro Benech
- Universidad de la República, Facultad de Veterinaria, Unidad de Clínica y Hospital Veterinario, Montevideo, Uruguay
| |
Collapse
|
20
|
Kuhlmeier E, Chan T, Agüí CV, Willi B, Wolfensberger A, Beisel C, Topolsky I, Beerenwinkel N, Stadler T, Jones S, Tyson G, Hosie MJ, Reitt K, Hüttl J, Meli ML, Hofmann-Lehmann R. Detection and Molecular Characterization of the SARS-CoV-2 Delta Variant and the Specific Immune Response in Companion Animals in Switzerland. Viruses 2023; 15:245. [PMID: 36680285 PMCID: PMC9864232 DOI: 10.3390/v15010245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
In human beings, there are five reported variants of concern of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). However, in contrast to human beings, descriptions of infections of animals with specific variants are still rare. The aim of this study is to systematically investigate SARS-CoV-2 infections in companion animals in close contact with SARS-CoV-2-positive owners ("COVID-19 households") with a focus on the Delta variant. Samples, obtained from companion animals and their owners were analyzed using a real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and next-generation sequencing (NGS). Animals were also tested for antibodies and neutralizing activity against SARS-CoV-2. Eleven cats and three dogs in nine COVID-19-positive households were RT-qPCR and/or serologically positive for the SARS-CoV-2 Delta variant. For seven animals, the genetic sequence could be determined. The animals were infected by one of the pangolin lineages B.1.617.2, AY.4, AY.43 and AY.129 and between zero and three single-nucleotide polymorphisms (SNPs) were detected between the viral genomes of animals and their owners, indicating within-household transmission between animal and owner and in multi-pet households also between the animals. NGS data identified SNPs that occur at a higher frequency in the viral sequences of companion animals than in viral sequences of humans, as well as SNPs, which were exclusively found in the animals investigated in the current study and not in their owners. In conclusion, our study is the first to describe the SARS-CoV-2 Delta variant transmission to animals in Switzerland and provides the first-ever description of Delta-variant pangolin lineages AY.129 and AY.4 in animals. Our results reinforce the need of a One Health approach in the monitoring of SARS-CoV-2 in animals.
Collapse
Affiliation(s)
- Evelyn Kuhlmeier
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Tatjana Chan
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Cecilia Valenzuela Agüí
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Barbara Willi
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Aline Wolfensberger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Ivan Topolsky
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | | | - Sarah Jones
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
- MRC-University of Glasgow Centre for Virus, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Grace Tyson
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Katja Reitt
- Center for Laboratory Medicine, Veterinary Diagnostic Services, Frohbergstrasse 3, 9001 St. Gallen, Switzerland
| | - Julia Hüttl
- Center for Laboratory Medicine, Veterinary Diagnostic Services, Frohbergstrasse 3, 9001 St. Gallen, Switzerland
| | - Marina L. Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
21
|
Pourbagher-Shahri AM, Mohammadi G, Ghazavi H, Forouzanfar F. Susceptibility of domestic and companion animals to SARS-CoV-2: a comprehensive review. Trop Anim Health Prod 2023; 55:60. [PMID: 36725815 PMCID: PMC9891761 DOI: 10.1007/s11250-023-03470-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a large global outbreak. The reports of domestic animals' infection with SARS-CoV-2 raise concerns about the virus's longer-lasting spread, the establishment of a new host reservoir, or even the evolution of a new virus, as seen with COVID-19. In this review, we focus on the susceptibility of domestic animals, especially companion animals, towards SARS-CoV-2 in light of existing studies of natural infection, experimental infection, and serological surveys. Susceptibility of domestic and companion animals to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ali Mohammad Pourbagher-Shahri
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Mohammadi
- Department of Clinical Science, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamed Ghazavi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
He L, Zhong J, Li G, Lin Z, Zhao P, Yang C, Wang H, Zhang Y, Yang X, Wang Z. Development of SARS-CoV-2 animal vaccines using a stable and efficient NDV expression system. J Med Virol 2023; 95:e28237. [PMID: 36258299 PMCID: PMC9874532 DOI: 10.1002/jmv.28237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/24/2022] [Accepted: 10/16/2022] [Indexed: 01/27/2023]
Abstract
With the continuation of the coronavirus disease 2019 pandemic and the emergence of new severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants, the control of the spread of the virus remains urgent. Various animals, including cats, ferrets, hamsters, nonhuman primates, minks, tree shrews, fruit bats, and rabbits, are susceptible to SARS-CoV-2 infection naturally or experimentally. Therefore, to avoid animals from becoming mixing vessels of the virus, vaccination of animals should be considered. In the present study, we report the establishment of an efficient and stable system using Newcastle disease virus (NDV) as a vector to express SARS-CoV-2 spike protein/subunit for the rapid generation of vaccines against SARS-CoV-2 in animals. Our data showed that the S and S1 protein was sufficiently expressed in rNDV-S and rNDV-S1-infected cells, respectively. The S protein was incorporated into and displayed on the surface of rNDV-S viral particles. Intramuscular immunization with rNDV-S was found to induce the highest level of binding and neutralizing antibodies, as well as strong S-specific T-cell response in mice. Intranasal immunization with rNDV-S1 provoked a robust T-cell response but barely any detectable antibodies. Overall, the NDV-vectored vaccine candidates were able to induce profound humoral and cellular immunity, which will provide a good system for developing vaccines targeting both T-cell and antibody responses.
Collapse
Affiliation(s)
- Lei He
- College of Animal Science and Technology, Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and ControlHenan University of Science and TechnologyHenanLuoyangChina
| | - Jiaying Zhong
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Guichang Li
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Zhengfang Lin
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Peijing Zhao
- Division of MicrobiologyGuangdong Huawei Testing Co., Ltd.GuangzhouChina
| | - Chuhua Yang
- Division of MicrobiologyGuangdong Huawei Testing Co., Ltd.GuangzhouChina
| | - Hairong Wang
- College of Animal Science and Technology, Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and ControlHenan University of Science and TechnologyHenanLuoyangChina
| | - Yuhao Zhang
- College of Animal Science and Technology, Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and ControlHenan University of Science and TechnologyHenanLuoyangChina
| | - Xiaoyun Yang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina,Guangzhou LaboratoryGuangzhouChina
| | - Zhongfang Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina,Guangzhou LaboratoryGuangzhouChina
| |
Collapse
|
23
|
Bellinati L, Campalto M, Mazzotta E, Ceglie L, Cavicchio L, Mion M, Lucchese L, Salomoni A, Bortolami A, Quaranta E, Magarotto J, Favarato M, Squarzon L, Natale A. One-Year Surveillance of SARS-CoV-2 Exposure in Stray Cats and Kennel Dogs from Northeastern Italy. Microorganisms 2022; 11:microorganisms11010110. [PMID: 36677401 PMCID: PMC9866628 DOI: 10.3390/microorganisms11010110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Dogs and cats are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). During the pandemic, several studies have been performed on owned cats and dogs, whereas limited data are available on the exposure to stray animals. The objective of this study was to investigate the exposure to SARS-CoV-2 of feral cats and kennel dogs in northeastern Italy, through serological and molecular methods. From May 2021 to September 2022, public health veterinary services collected serum, oropharyngeal, and rectal swab samples from 257 free-roaming dogs newly introduced to shelters, and from 389 feral cats examined during the routinely trap-neutered-return programs. The swabs were analyzed for viral RNA through a real-time reverse transcriptase PCR (rRT-PCR), and sera were tested for the presence of the specific antibody against SARS-CoV-2 (enzyme-linked immunosorbent assay). Serology was positive in nine dogs (9/257) and three cats (3/389), while two asymptomatic cats tested positive to rRT-PCR. One cat turned out to be positive both for serology and molecular analysis. In addition, this study described the case of a possible human-to-animal SARS-CoV-2 transmission in a cat that travelled in close contact to a COVID-19-positive refugee from Ukraine. This study shows that SARS-CoV-2 can infect, in natural conditions, stray cats and kennel dogs in northeastern Italy, although with a low prevalence.
Collapse
Affiliation(s)
- Laura Bellinati
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Mery Campalto
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
- Correspondence:
| | - Elisa Mazzotta
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Letizia Ceglie
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Lara Cavicchio
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Monica Mion
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Laura Lucchese
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Angela Salomoni
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Alessio Bortolami
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Erika Quaranta
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | | | - Mosè Favarato
- UOSD Genetica e Citogenetica e Diagnostica Molecolare-Azienda ULSS 3 Serenissima, 30174 Venice, Italy
| | - Laura Squarzon
- UOSD Genetica e Citogenetica e Diagnostica Molecolare-Azienda ULSS 3 Serenissima, 30174 Venice, Italy
| | - Alda Natale
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| |
Collapse
|
24
|
Pellegrini F, Omar AH, Buonavoglia C, Pratelli A. SARS-CoV-2 and Animals: From a Mirror Image to a Storm Warning. Pathogens 2022; 11:pathogens11121519. [PMID: 36558853 PMCID: PMC9782541 DOI: 10.3390/pathogens11121519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), emerged in Wuhan city (Hubei province, China) in December 2019, and the World Health Organization (WHO) declared an international public health emergency on 11 March 2020 [...].
Collapse
|
25
|
SARS-CoV-2 Transmission from Human to Pet and Suspected Transmission from Pet to Human, Thailand. J Clin Microbiol 2022; 60:e0105822. [DOI: 10.1128/jcm.01058-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been the cause of human pandemic infection since late 2019. SARS-CoV-2 infection in animals has also been reported both naturally and experimentally, rendering awareness about a potential source of infection for one health concern.
Collapse
|
26
|
Kleinerman G, Gross S, Topol S, Ariel E, Volokh G, Melloul S, Mergy SE, Malamud Y, Gilboa S, Gal Y, Weiss L, Richt JA, Decaro N, Eskandar S, Arieli Y, Gingis E, Sachter Y, Chaim L. Low serological rate of SARS-CoV-2 in cats from military bases in Israel. Comp Immunol Microbiol Infect Dis 2022; 90-91:101905. [PMID: 36356507 PMCID: PMC9632235 DOI: 10.1016/j.cimid.2022.101905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/05/2022]
Abstract
Domestic cats are susceptible to SARS-CoV-2 infection and can transmit the virus to other felines. A high number of COVID-19 human cases within the military personnel and a high density of stray cats living close to soldiers raised the need to perform active animal surveillance. We validated a novel quantitative serological microarray for use in cats, that enables simultaneous detection of IgG and IgM responses; in addition, molecular genetic SARS-CoV-2 detection was performed. Three out of 131 cats analyzed, showed IgG antibodies against SARS-CoV-2 RBD and S2P (2.3 %). None of cats were positive for SARS-CoV-2 RNA by RT-PCR. SARS-CoV-2 infection rate in soldiers ranged from 4.7 % to 16 % (average rate=8.9 %). Further investigations on a larger cohort are necessary, in the light of the emerging new viral variants in other animal species and in humans.
Collapse
Affiliation(s)
- Gabriela Kleinerman
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel.
| | - Saar Gross
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Shira Topol
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Ella Ariel
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Gerry Volokh
- Emek HaMaayanot Regional Veterinary Service, Emek Beit She'an 11710, Israel
| | - Sivan Melloul
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Shani Etty Mergy
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Yaakov Malamud
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Sagi Gilboa
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Yoav Gal
- Chemical, Biological, Radiological and Nucleal Defense Diviosion, Israeli Ministry of Defense, HaKiria, Tel Aviv 61909, Israel
| | - Libby Weiss
- Chemical, Biological, Radiological and Nucleal Defense Diviosion, Israeli Ministry of Defense, HaKiria, Tel Aviv 61909, Israel
| | - Juergen A Richt
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Nicola Decaro
- Department of VeterinaryMedicine, University of Bari, 70010 Valenzano, Bari, Italy
| | - Shadi Eskandar
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Yarden Arieli
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Efrat Gingis
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Yacov Sachter
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Lavie Chaim
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| |
Collapse
|
27
|
Pappas G, Vokou D, Sainis I, Halley JM. SARS-CoV-2 as a Zooanthroponotic Infection: Spillbacks, Secondary Spillovers, and Their Importance. Microorganisms 2022; 10:2166. [PMID: 36363758 PMCID: PMC9696655 DOI: 10.3390/microorganisms10112166] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 10/06/2023] Open
Abstract
In the midst of a persistent pandemic of a probable zoonotic origin, one needs to constantly evaluate the interplay of SARS-CoV-2 (severe acute respiratory syndrome-related coronavirus-2) with animal populations. Animals can get infected from humans, and certain species, including mink and white-tailed deer, exhibit considerable animal-to-animal transmission resulting in potential endemicity, mutation pressure, and possible secondary spillover to humans. We attempt a comprehensive review of the available data on animal species infected by SARS-CoV-2, as presented in the scientific literature and official reports of relevant organizations. We further evaluate the lessons humans should learn from mink outbreaks, white-tailed deer endemicity, zoo outbreaks, the threat for certain species conservation, the possible implication of rodents in the evolution of novel variants such as Omicron, and the potential role of pets as animal reservoirs of the virus. Finally, we outline the need for a broader approach to the pandemic and epidemics, in general, incorporating the principles of One Health and Planetary Health.
Collapse
Affiliation(s)
- Georgios Pappas
- Institute of Continuing Medical Education of Ioannina, 45333 Ioannina, Greece
| | - Despoina Vokou
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Sainis
- Medical School, Faculty of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - John M. Halley
- Laboratory of Ecology, Department of Biological Applications and Technology, Faculty of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
28
|
Kannekens‐Jager MM, de Rooij MMT, de Groot Y, Biesbroeck E, de Jong MK, Pijnacker T, Smit LAM, Schuurman N, Broekhuizen‐Stins MJ, Zhao S, Duim B, Langelaar MFM, Stegeman A, Kooistra HS, Radstake C, Egberink HF, Wagenaar JA, Broens EM. SARS-CoV-2 infection in dogs and cats is associated with contact to COVID-19-positive household members. Transbound Emerg Dis 2022; 69:4034-4040. [PMID: 36163676 PMCID: PMC9538208 DOI: 10.1111/tbed.14713] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 02/07/2023]
Abstract
Several domestic and wild animal species are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Reported (sero)prevalence in dogs and cats vary largely depending on the target population, test characteristics, geographical location and time period. This research assessed the prevalence of SARS-CoV-2-positive cats and dogs (PCR- and/or antibody positive) in two different populations. Dogs and cats living in a household with at least one confirmed COVID-19-positive person (household (HH) study; 156 dogs and 152 cats) and dogs and cats visiting a veterinary clinic (VC) (VC study; 183 dogs and 140 cats) were sampled and tested for presence of virus (PCR) and antibodies. Potential risk factors were evaluated and follow-up of PCR-positive animals was performed to determine the duration of virus shedding and to detect potential transmission between pets in the same HH. In the HH study, 18.8% (27 dogs, 31 cats) tested SARS-CoV-2 positive (PCR- and/or antibody positive), whereas in the VC study, SARS-CoV-2 prevalence was much lower (4.6%; six dogs, nine cats). SARS-CoV-2 prevalence amongst dogs and cats was significantly higher in the multi-person HHs with two or more COVID-19-positive persons compared with multi-person HHs with only one COVID-19-positive person. In both study populations, no associations could be identified between SARS-CoV-2 status of the animal and health status, age or sex. During follow-up of PCR-positive animals, no transmission to other pets in the HH was observed despite long-lasting virus shedding in cats (up to 35 days). SARS-CoV-2 infection in dogs and cats appeared to be clearly associated with reported COVID-19-positive status of the HH. Our study supports previous findings and suggests a very low risk of pet-to-human transmission within HHs, no severe clinical signs in pets and a negligible pet-to-pet transmission between HHs.
Collapse
Affiliation(s)
- Marleen M. Kannekens‐Jager
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Myrna M. T. de Rooij
- Department of Population Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Yasmina de Groot
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Elena Biesbroeck
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marja K. de Jong
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Tera Pijnacker
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Lidwien A. M. Smit
- Department of Population Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Nancy Schuurman
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marian J. Broekhuizen‐Stins
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Shan Zhao
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Birgitta Duim
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Merel F. M. Langelaar
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Arjan Stegeman
- Department of Population Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Hans S. Kooistra
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Carien Radstake
- Stray Cat Foundation NetherlandsNieuw BeijerlandThe Netherlands
| | - Herman F. Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Jaap A. Wagenaar
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Els M. Broens
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
29
|
Ramanujam H, Palaniyandi K. COVID-19 in animals: A need for One Health approach. Indian J Med Microbiol 2022; 40:485-491. [PMID: 35927142 PMCID: PMC9340561 DOI: 10.1016/j.ijmmb.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND SARS-CoV-2 has been identified as the cause of the COVID-19, which caused a global pandemic. It is a pathogen that causes respiratory disease and can easily navigate the interspecies barrier. A significant number of COVID-19 cases in animals have been reported worldwide, including but not limited to animals in farms, captivity, and household pets. Thus, assessing the affected population and anticipating 'at risk' population becomes essential. OBJECTIVES This article aims to emphasize the zoonotic potential of SARS- CoV-2 and discuss the One Health aspects of the disease. CONTENT This is a narrative review of recently published studies on animals infected with SARS-CoV-2, both experimental and natural. The elucidation of the mechanism of infection by binding SARS-CoV-2 spike protein to the ACE-2 receptor cells in humans has led to bioinformatic analysis that has identified a few other susceptible species in silico. While infections in animals have been extensively reported, no intermediary host has yet been identified for this disease. The articles collected in this review have been grouped into four categories; experimental inoculations, infection in wild animals, infection in farm animals and infection in pet animals, along with a review of literature in each category. The risk of infection transmission between humans and animals and vice versa and the importance of the One Health approach has been discussed at length in this article.
Collapse
Affiliation(s)
- Harini Ramanujam
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai, India
| | - Kannan Palaniyandi
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai, India.
| |
Collapse
|
30
|
Bashor L, Gagne RB, Bosco-Lauth A, Stenglein M, VandeWoude S. Rapid evolution of SARS-CoV-2 in domestic cats. Virus Evol 2022; 8:veac092. [PMID: 36398096 PMCID: PMC9619536 DOI: 10.1093/ve/veac092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 11/26/2023] Open
Abstract
SARS-CoV-2 (SARS2) infection of a novel permissive host species can result in rapid viral evolution. Data suggest that felids are highly susceptible to SARS2 infection, and species-specific adaptation following human-to-felid transmission may occur. We employed experimental infection and analysis of publicly available SARS2 sequences to observe variant emergence and selection in domestic cats. Three cohorts of cats (N = 23) were inoculated with SARS-CoV-2 USA-WA1/2020 or infected via cat-to-cat contact transmission. Full viral genomes were recovered from RNA obtained from nasal washes 1-3 days post-infection and analyzed for within-host viral variants. We detected 118 unique variants at ≥3 per cent allele frequency in two technical replicates. Seventy of these (59 per cent) were nonsynonymous single nucleotide variants (SNVs); the remainder were synonymous SNVs or structural variants. On average, we observed twelve variants per cat, nearly 10-fold higher than what is commonly reported in human patients. We observed signatures of positive selection in the spike protein and the emergence of eleven within-host variants located at the same genomic positions as mutations in SARS2 variant lineages that have emerged during the pandemic. Fewer variants were noted in cats infected from contact with other cats and in cats exposed to lower doses of cultured inoculum. An analysis of ninety-three publicly available SARS2 consensus genomes recovered from naturally infected domestic cats reflected variant lineages circulating in the local human population at the time of sampling, illustrating that cats are susceptible to SARS2 variants that have emerged in humans, and suggesting human-to-felid transmission occurring in domestic settings is typically unidirectional. These experimental results underscore the rapidity of SARS2 adaptation in felid hosts, representing a theoretical potential origin for variant lineages in human populations. Further, cats should be considered susceptible hosts capable of shedding virus during infections occurring within households.
Collapse
Affiliation(s)
- Laura Bashor
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Roderick B Gagne
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kenneth Square, Pennsylvania, USA
| | - Angela Bosco-Lauth
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Mark Stenglein
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sue VandeWoude
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
31
|
Fernández‐Bastit L, Marfil S, Pradenas E, Valle R, Roca N, Rodon J, Pailler‐García L, Trinité B, Parera M, Noguera‐Julian M, Martorell J, Izquierdo‐Useros N, Carrillo J, Clotet B, Blanco J, Vergara‐Alert J, Segalés J. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and humoral responses against different variants of concern in domestic pet animals and stray cats from North-Eastern Spain. Transbound Emerg Dis 2022; 69:3518-3529. [PMID: 36167932 PMCID: PMC9538463 DOI: 10.1111/tbed.14714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 02/04/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic in humans, is able to infect several domestic, captive and wildlife animal species. Since reverse zoonotic transmission to pets has been demonstrated, it is crucial to determine their role in the epidemiology of the disease to prevent further spillover events and major spread of SARS-CoV-2. In the present study, we determined the presence of virus and the seroprevalence to SARS-CoV-2, as well as the levels of neutralizing antibodies (nAbs) against several variants of concern (VOCs) in pets (cats, dogs and ferrets) and stray cats from North-Eastern of Spain. We confirmed that cats and dogs can be infected by different VOCs of SARS-CoV-2 and, together with ferrets, are able to develop nAbs against the ancestral (B.1), Alpha (B.1.1.7), Beta (B.1.315), Delta (B.1.617.2) and Omicron (BA.1) variants, with lower titres against the latest in dogs and cats, but not in ferrets. Although the prevalence of active SARS-CoV-2 infection measured as direct viral RNA detection was low (0.3%), presence of nAbs in pets living in COVID-19-positive households was relatively high (close to 25% in cats, 10% in dogs and 40% in ferrets). It is essential to continue monitoring SARS-CoV-2 infections in these animals due to their frequent contact with human populations, and we cannot discard the probability of a higher animal susceptibility to new potential SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Leira Fernández‐Bastit
- Unitat mixta d'Investigació IRTA‐UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA)Campus de la Universitat Autònoma de Barcelona (UAB)BellaterraCatalonia08193Spain,IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA)Campus de la Universitat Autònoma de Barcelona (UAB)BellaterraCatalonia08193Spain
| | | | | | - Rosa Valle
- Unitat mixta d'Investigació IRTA‐UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA)Campus de la Universitat Autònoma de Barcelona (UAB)BellaterraCatalonia08193Spain,IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA)Campus de la Universitat Autònoma de Barcelona (UAB)BellaterraCatalonia08193Spain
| | - Núria Roca
- Unitat mixta d'Investigació IRTA‐UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA)Campus de la Universitat Autònoma de Barcelona (UAB)BellaterraCatalonia08193Spain,IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA)Campus de la Universitat Autònoma de Barcelona (UAB)BellaterraCatalonia08193Spain
| | - Jordi Rodon
- Unitat mixta d'Investigació IRTA‐UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA)Campus de la Universitat Autònoma de Barcelona (UAB)BellaterraCatalonia08193Spain,IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA)Campus de la Universitat Autònoma de Barcelona (UAB)BellaterraCatalonia08193Spain
| | - Lola Pailler‐García
- Unitat mixta d'Investigació IRTA‐UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA)Campus de la Universitat Autònoma de Barcelona (UAB)BellaterraCatalonia08193Spain,IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA)Campus de la Universitat Autònoma de Barcelona (UAB)BellaterraCatalonia08193Spain
| | | | - Mariona Parera
- IrsiCaixa AIDS Research InstituteBadalona08916Spain,Infectious Diseases and Immunity, Faculty of MedicineUniversity of Vic‐Central University of Catalonia (UVic‐UCC)Barcelona08500Spain
| | - Marc Noguera‐Julian
- IrsiCaixa AIDS Research InstituteBadalona08916Spain,Infectious Diseases and Immunity, Faculty of MedicineUniversity of Vic‐Central University of Catalonia (UVic‐UCC)Barcelona08500Spain,Infectious Disease Networking Biomedical Research Center (CIBERINFEC)Carlos III Health InstituteMadridSpain
| | - Jaume Martorell
- Departament de Medicina i Cirugia AnimalsUniversitat Autònoma de Barcelona (UAB)Spain
| | - Nuria Izquierdo‐Useros
- IrsiCaixa AIDS Research InstituteBadalona08916Spain,Infectious Disease Networking Biomedical Research Center (CIBERINFEC)Carlos III Health InstituteMadridSpain,Germans Trias i Pujol Research Institute (IGTP)Can Ruti CampusBadalona08916Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research InstituteBadalona08916Spain,Infectious Disease Networking Biomedical Research Center (CIBERINFEC)Carlos III Health InstituteMadridSpain,Germans Trias i Pujol Research Institute (IGTP)Can Ruti CampusBadalona08916Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research InstituteBadalona08916Spain,Infectious Diseases and Immunity, Faculty of MedicineUniversity of Vic‐Central University of Catalonia (UVic‐UCC)Barcelona08500Spain,Lluita contra la SIDA FoundationHospital Universitari Germans Trias i PujolBadalona08916Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research InstituteBadalona08916Spain,Infectious Diseases and Immunity, Faculty of MedicineUniversity of Vic‐Central University of Catalonia (UVic‐UCC)Barcelona08500Spain,Infectious Disease Networking Biomedical Research Center (CIBERINFEC)Carlos III Health InstituteMadridSpain,Germans Trias i Pujol Research Institute (IGTP)Can Ruti CampusBadalona08916Spain
| | - Júlia Vergara‐Alert
- Unitat mixta d'Investigació IRTA‐UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA)Campus de la Universitat Autònoma de Barcelona (UAB)BellaterraCatalonia08193Spain,IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA)Campus de la Universitat Autònoma de Barcelona (UAB)BellaterraCatalonia08193Spain
| | - Joaquim Segalés
- Unitat mixta d'Investigació IRTA‐UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA)Campus de la Universitat Autònoma de Barcelona (UAB)BellaterraCatalonia08193Spain,Departament de Sanitat i Anatomia Animals, Facultat de VeterinàriaUniversitat Autònoma de BarcelonaCerdanyola del Vallès08193Spain
| |
Collapse
|
32
|
Alberto-Orlando S, Calderon JL, Leon-Sosa A, Patiño L, Zambrano-Alvarado MN, Pasquel-Villa LD, Rugel-Gonzalez DO, Flores D, Mera MD, Valencia P, Zuñiga-Velarde JJ, Tello-Cabrera C, Garcia-Bereguiain MA. SARS-CoV-2 transmission from infected owner to household dogs and cats is associated with food sharing. Int J Infect Dis 2022; 122:295-299. [PMID: 35643308 PMCID: PMC9132679 DOI: 10.1016/j.ijid.2022.05.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES Several cases of reverse transmission of SARS-CoV-2 from human to pets were reported during the first year of the COVID-19 pandemic. Accordingly, the World Organization for Animal Health has recommended to improve SARS-CoV-2 surveillance on household animals to assess the risk of transmission between species. After such recommendation, we studied the potential SARS-CoV-2 infection in household dogs and cats in the city of Guayaquil, the most populated city in Ecuador. METHODS Oral and nasal swab samples were collected from dogs and cats within 10 days of a positive SARS-CoV-2 test result of their owners. Total ribonucleic acid was extracted and detection of viral gene targets N and ORF1ab was performed by quantitative reverse transcription polymerase chain reaction. RESULTS From the 50 cats and dogs tested, 12 were SARS-CoV-2 positive, giving a total positivity rate of 24%. A total of 1 of 8 cats tested positive, whereas 11 of 42 dogs were positive, yielding a positivity rate of 12.5% and 26.2%, respectively. SARS-CoV-2 was confirmed by whole genome sequencing. In addition, we also found a statistically significant association between SARS-CoV-2 pet positivity and food sharing with infected owners. CONCLUSION This study is the second active surveillance of SARS-CoV-2 in household dogs and cats in Latin America. Moreover, it is the first study to address the risk factors associated with potential anthropogenic SARS-CoV-2 transmission to domestic cats and dogs. Given the high presence of free-roaming dogs and cats in rural and urban areas in Latin American countries and the high capacity shown by coronaviruses for interspecies transmission, our findings support the view that SARS-CoV-2 surveillance in pets is necessary to better understand the role that pet-human interaction plays in the COVID-19 spread.
Collapse
Affiliation(s)
- Solon Alberto-Orlando
- Instituto Nacional de Investigación y Salud Publica, Dirección Investigación Desarrollo e Innovación, Guayaquil, Ecuador; Universidad Espiritu Santo, Guayaquil, Ecuador.
| | - Joselyn L Calderon
- Instituto Nacional de Investigación y Salud Publica, Dirección Investigación Desarrollo e Innovación, Guayaquil, Ecuador
| | - Ariana Leon-Sosa
- Instituto Nacional de Investigación y Salud Publica, Dirección Investigación Desarrollo e Innovación, Guayaquil, Ecuador
| | - Leandro Patiño
- Instituto Nacional de Investigación y Salud Publica, Dirección Investigación Desarrollo e Innovación, Guayaquil, Ecuador
| | - Melissa N Zambrano-Alvarado
- Instituto Nacional de Investigación y Salud Publica, Dirección Investigación Desarrollo e Innovación, Guayaquil, Ecuador
| | | | - David O Rugel-Gonzalez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Agraria del Ecuador, Guayaquil, Ecuador
| | - Dayana Flores
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Agraria del Ecuador, Guayaquil, Ecuador
| | - Maria Daniela Mera
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Agraria del Ecuador, Guayaquil, Ecuador
| | - Pamela Valencia
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Agraria del Ecuador, Guayaquil, Ecuador
| | | | - Clara Tello-Cabrera
- Instituto Nacional de Investigación y Salud Publica, Dirección Investigación Desarrollo e Innovación, Guayaquil, Ecuador
| | | |
Collapse
|
33
|
Adler JM, Weber C, Wernike K, Michelitsch A, Friedrich K, Trimpert J, Beer M, Kohn B, Osterrieder K, Müller E. Prevalence of anti-severe acute respiratory syndrome coronavirus 2 antibodies in cats in Germany and other European countries in the early phase of the coronavirus disease-19 pandemic. Zoonoses Public Health 2022; 69:439-450. [PMID: 35238485 PMCID: PMC9115359 DOI: 10.1111/zph.12932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/14/2022] [Accepted: 02/13/2022] [Indexed: 01/14/2023]
Abstract
During the first months of the coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), cases of human-to-cat transmission were reported. Seroconversion was shown in cats infected under experimental and natural conditions. This large-scale survey of 1,005 serum samples was conducted to investigate anti-SARS-CoV-2 antibody prevalence in domestic cats during the first 7 months of the pandemic in Germany and other European countries. In addition, we compared the sensitivity and specificity of two multispecies SARS-CoV-2 antibody enzyme-linked immunosorbent assays (ELISA). Results were confirmed by using an indirect immunofluorescence test (iIFT) and a surrogate virus neutralization test (sVNT). Sera that were highly positive for feline coronavirus (FCoV) antibodies (n = 103) were included to correct for cross-reactivity of the tests used. Our results showed an overall SARS-CoV-2 seropositivity of 1.9% (n = 19) in a receptor-binding domain (RBD)-based ELISA, additional 0.8% (n = 8) were giving inconclusive results. In contrast, a nucleocapsid-based ELISA revealed 0.5% (n = 5) positive and 0.2% (n = 2) inconclusive results. While the iIFT and sVNT confirmed 100% of positive and 50%-57.1% of the doubtful results as determined in the RBD ELISA, the nucleocapsid-based assay showed a high discrepancy and only one of the five positive results could be confirmed. The results indicate significant deficits of the nucleocapsid-based ELISA with respect to sensitivity and specificity. Due to a significantly higher rate (5.8%) of positive results in the group of highly FCoV antibody-positive samples, cross-reactivity of the FCoV-ELISA with SARS-CoV-2 antibodies cannot be excluded. Furthermore, we investigated the impact of direct contact of domestic cats (n = 23) to SARS-CoV-2 positive owners. Considering one inconclusive result, which got confirmed by iIFT, this exposure did not lead to a significantly higher prevalence (4.4%; p = .358) among tested subjects. Overall, we conclude that cats are a negligible entity with respect to virus transmission in Europe.
Collapse
Affiliation(s)
- Julia Maria Adler
- Institut für VirologieFreie Universität BerlinBerlinGermany
- Laboklin GmbH & Co.KGBad KissingenGermany
- Present address:
Department of Infectious Diseases and Respiratory MedicineCharitéUniversitätsmedizin BerlinBerlinGermany
| | | | - Kerstin Wernike
- Institute of Diagnostic VirologyFriedrich‐Loeffler‐InstitutGreifswald–Insel RiemsGermany
| | - Anna Michelitsch
- Institute of Diagnostic VirologyFriedrich‐Loeffler‐InstitutGreifswald–Insel RiemsGermany
| | | | - Jakob Trimpert
- Institut für VirologieFreie Universität BerlinBerlinGermany
| | - Martin Beer
- Institute of Diagnostic VirologyFriedrich‐Loeffler‐InstitutGreifswald–Insel RiemsGermany
| | - Barbara Kohn
- Klinik für kleine HaustiereFreie Universität BerlinBerlinGermany
| | - Klaus Osterrieder
- Institut für VirologieFreie Universität BerlinBerlinGermany
- Department of Infectious Diseases and Public HealthJockey Club College of Veterinary Medicine and Life SciencesCity University of Hong KongKowloonHong Kong
| | | |
Collapse
|
34
|
Seroprevalence of SARS-CoV-2 in Client-Owned Cats from Portugal. Vet Sci 2022; 9:vetsci9070363. [PMID: 35878380 PMCID: PMC9315516 DOI: 10.3390/vetsci9070363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
The close contact between humans and domestic cats raises concerns about the potential risks of SARS-CoV-2 transmission. Thus, this study aims to investigate anti-SARS-CoV-2 seroprevalence in client-owned cats from Portugal and evaluate the infection risk of cats that maintain contact with human COVID-19 cases. A total of 176 cats, belonging to 94 households, were sampled. Cat owners answered an online questionnaire, and cats were screened for antibodies against SARS-CoV-2 using a commercial ELISA. Twenty (21.3%) households reported at least one confirmed human COVID-19 case. Forty cats (22.7%) belonged to a COVID-19-positive and 136 (77.3%) to a COVID-19-negative household. The seroprevalences of cats from COVID-19-positive and -negative households were 5.0% (2/40) and 0.7% (1/136). The two SARS-CoV-2-seropositive cats from COVID-19-positive households had an indoor lifestyle, and their owners stated that they maintained a close and frequent contact with them, even after being diagnosed with COVID-19, pointing towards human-to-cat transmission. The SARS-CoV-2-seropositive cat from the COVID-19-negative household had a mixed indoor/outdoor lifestyle and chronic diseases. Owners of the three SARS-CoV-2-seropositive cats did not notice clinical signs or behavior changes. This study highlights the low risk of SARS-CoV-2 transmission from COVID-19-positive human household members to domestic cats, even in a context of close and frequent human–animal contact.
Collapse
|
35
|
Doliff R, Martens P. Cats and SARS-CoV-2: A Scoping Review. Animals (Basel) 2022; 12:1413. [PMID: 35681877 PMCID: PMC9179433 DOI: 10.3390/ani12111413] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
Since the beginning of the COVID-19 pandemic, various animal species were found to be susceptible to SARS-CoV-2 infection. The close contact that exists between humans and cats warrants special attention to the role of this species. Therefore, a scoping review was performed to obtain a comprehensive overview of the existing literature, and to map key concepts, types of research, and possible gaps in the research. A systematic search of the databases PubMed, Google Scholar, and Scopus and the preprint servers medRxiv and bioRxiv was performed. After a two-step screening process, 27 peer-reviewed articles, 8 scientific communication items, and 2 unpublished pre-prints were included. The main themes discussed were susceptibility to SARS-CoV-2, induced immunity, prevalence of infection, manifestation of infection, interspecies transmission between humans and cats, and lastly, intraspecies transmission between cats. The main gaps in the research identified were a lack of large-scale studies, underrepresentation of stray, feral, and shelter cat populations, lack of investigation into cat-to-cat transmissions under non-experimental conditions, and the relation of cats to other animal species regarding SARS-CoV-2. Overall, cats seemingly play a limited role in the spread of SARS-CoV-2. While cats are susceptible to the virus and reverse zoonotic transmission from humans to cats happens regularly, there is currently no evidence of SARS-CoV-2 circulation among cats.
Collapse
Affiliation(s)
| | - Pim Martens
- University College Venlo, Maastricht University, Nassaustraat 36, 5911 BV Venlo, The Netherlands;
| |
Collapse
|
36
|
Ozer K, Yilmaz A, Carossino M, Yuzbasioglu Ozturk G, Erdogan Bamac O, Tali HE, Mahzunlar E, Cizmecigil UY, Aydin O, Tali HB, Yilmaz SG, Mutlu Z, Kekec AI, Turan N, Gurel A, Balasuriya U, Iqbal M, Richt JA, Yilmaz H. Clinical, virological, imaging and pathological findings in a SARS CoV-2 antibody positive cat. J Vet Sci 2022; 23:e52. [PMID: 35920120 PMCID: PMC9346522 DOI: 10.4142/jvs.21310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/20/2022] Open
Abstract
This paper reports a presumptive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in a cat. A cat with respiratory disease living with three individuals with coronavirus disease 2019 showed bilateral ground-glass opacities in the lung on X-ray and computed tomography. The clinical swabs were negative for SARS-CoV-2 RNA, but the serum was positive for SARS-CoV-2 antibodies. Interstitial pneumonia and prominent type 2 pneumocyte hyperplasia were noted on histopathology. Respiratory tissues were negative for SARS-CoV-2 RNA or antigen, but the cat was positive for feline parvovirus DNA. In conclusion, the respiratory disease and associated pathology in this cat could have been due to exposure to SARS-CoV-2.
Collapse
Affiliation(s)
- Kursat Ozer
- Zeytinburnu Veterinary Clinic, Merv Caddesi, 34025 Zeytinburnu, Istanbul, Turkey
| | - Aysun Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, 34500 Buyukcekmece, Istanbul, Turkey
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Gulay Yuzbasioglu Ozturk
- Department of Pathology, Veterinary Faculty, Istanbul University-Cerrahpasa, Buyukcekmece, 34500 Istanbul, Turkey
| | - Ozge Erdogan Bamac
- Department of Pathology, Veterinary Faculty, Istanbul University-Cerrahpasa, Buyukcekmece, 34500 Istanbul, Turkey
| | - Hasan E. Tali
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, 34500 Buyukcekmece, Istanbul, Turkey
| | - Egemen Mahzunlar
- Zeytinburnu Veterinary Clinic, Merv Caddesi, 34025 Zeytinburnu, Istanbul, Turkey.,Department of Gynecology and Obstetric, Veterinary Faculty, Istanbul University-Cerrahpasa, 34320 Avcılar, Istanbul, Turkey
| | - Utku Y. Cizmecigil
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, 34500 Buyukcekmece, Istanbul, Turkey
| | - Ozge Aydin
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, 34500 Buyukcekmece, Istanbul, Turkey
| | - Hamid B. Tali
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, 34500 Buyukcekmece, Istanbul, Turkey
| | - Semaha G. Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, 34500 Buyukcekmece, Istanbul, Turkey
| | - Zihni Mutlu
- Department of Surgery, Veterinary Faculty, Istanbul University-Cerrahpasa, 34320 Avcılar, Istanbul, Turkey
| | - Ayse Ilgın Kekec
- Department of Microbiology, Veterinary Faculty, Istanbul University-Cerrahpasa, Buyukcekmece, 34500 Istanbul, Turkey
| | - Nuri Turan
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, 34500 Buyukcekmece, Istanbul, Turkey
| | - Aydin Gurel
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, 34500 Buyukcekmece, Istanbul, Turkey
| | - Udeni Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Munir Iqbal
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Juergen A. Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Huseyin Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, 34500 Buyukcekmece, Istanbul, Turkey.
| |
Collapse
|
37
|
Zambrano-Mila MS, Freire-Paspuel B, Orlando SA, Garcia-Bereguiain MA. SARS-CoV-2 infection in free roaming dogs from the Amazonian jungle. One Health 2022; 14:100387. [PMID: 35402682 PMCID: PMC8979833 DOI: 10.1016/j.onehlt.2022.100387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 11/24/2022] Open
Abstract
During the ongoing COVID-19 pandemic, there were several reports of SARS-CoV-2 transmission from human to animals, mostly to companion cats and dogs but also to free ranging wild species like minks and deers. Under this scenario, SARS-CoV-2 surveillance in domestic animals to assess the risk of transmission between species have been suggested by the OIE. Here we present a case report of SARS-CoV-2 infection in free roaming dogs, found at a rural indigenous community from the Ecuadorian Amazonia. Oral and nasal swabs samples were collected from three dogs found during a COVID-19 surveillance intervention in Amazonian indigenous communities where severe COVID-19 outbreaks were suspected. Total RNA was extracted from dog samples and detection of SARS-CoV-2 gene targets N, ORF1ab and S was performed. The three dogs tested positive for at least two SARS-CoV-2 viral targets. Moreover, there was a high SARS-CoV-2 infection rate of 87.2% within this community. Given that 17.1% of SARS-CoV-2 positive individuals had an ultra high load greater than 108 copies/ml, transmission from humans to dogs likely occurred. To our knowledge, this study is the first report of SARS-CoV-2 positive free roaming dogs. Also, as those animals were found in the Amazonian forest, SARS-CoV-2 transmission to wild mammals is a potential concern. Given the high presence of free roaming dogs associated to rural and indigenous communities in South America, the potential role of these domestic animals on COVID-19 spread would deserve further surveillance studies involving SARS-CoV-2 detection by PCR and molecular epidemiology based on genome sequencing to confirm human to dog transmission.
Collapse
|
38
|
Tabynov K, Orynbassar M, Yelchibayeva L, Turebekov N, Yerubayev T, Matikhan N, Yespolov T, Petrovsky N, Tabynov K. A Spike Protein-Based Subunit SARS-CoV-2 Vaccine for Pets: Safety, Immunogenicity, and Protective Efficacy in Juvenile Cats. Front Vet Sci 2022; 9:815978. [PMID: 35372556 PMCID: PMC8967242 DOI: 10.3389/fvets.2022.815978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/27/2022] [Indexed: 11/24/2022] Open
Abstract
Whereas, multiple vaccine types have been developed to curb the spread of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) among humans, there are very few vaccines being developed for animals including pets. To combat the threat of human-to-animal, animal-to-animal, and animal-to-human transmission and the generation of new virus variants, we developed a subunit SARS-CoV-2 vaccine which is based on the recombinant spike protein extracellular domain expressed in insect cells and then formulated with appropriate adjuvants. Sixteen 8–12-week-old outbred female and male kittens (n = 4 per group) were randomly assigned into four treatment groups: spike protein alone; spike plus ESSAI oil-in-water (O/W) 1849102 adjuvant; spike plus aluminum hydroxide adjuvant; and a PBS control. All animals were vaccinated intramuscularly twice, 2 weeks apart, with 5 μg of spike protein in a volume of 0.5 ml. On days 0 and 28, serum samples were collected to evaluate anti-spike IgG, antibody inhibition of spike binding to angiotensin-converting enzyme 2 (ACE-2), neutralizing antibodies against wild-type and delta variant viruses, and hematology studies. At day 28, all groups were challenged with SARS-CoV-2 wild-type virus 106 TCID50 intranasally. On day 31, tissue samples (lung, heart, and nasal turbinates) were collected for viral RNA detection, and virus titration. After two immunizations, both vaccines induced high titers of serum anti-spike IgG that inhibited spike ACE-2 binding and neutralized both wild-type and delta variant virus. Both adjuvanted vaccine formulations protected juvenile cats against virus shedding from the upper respiratory tract and viral replication in the lower respiratory tract and hearts. These promising data warrant ongoing evaluation of the vaccine's ability to protect cats against SARS-CoV-2 infection and in particular to prevent transmission.
Collapse
Affiliation(s)
- Kairat Tabynov
- International Center for Vaccinology, Kazakh National Agrarian Research University, Almaty, Kazakhstan
- Preclinical Research Laboratory With Vivarium, M. Aikimbayev National Research Center for Especially Dangerous Infections (NSCEDI), Almaty, Kazakhstan
- T&TvaX LLC, Almaty, Kazakhstan
| | - Madiana Orynbassar
- International Center for Vaccinology, Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - Leila Yelchibayeva
- International Center for Vaccinology, Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - Nurkeldi Turebekov
- Central Reference Laboratory, M. Aikimbayev National Scientific Center for Especially Dangerous Infections (NSCEDI), Almaty, Kazakhstan
| | - Toktassyn Yerubayev
- Central Reference Laboratory, M. Aikimbayev National Scientific Center for Especially Dangerous Infections (NSCEDI), Almaty, Kazakhstan
| | - Nurali Matikhan
- International Center for Vaccinology, Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - Tlektes Yespolov
- International Center for Vaccinology, Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Adelaide, SA, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Kaissar Tabynov
- International Center for Vaccinology, Kazakh National Agrarian Research University, Almaty, Kazakhstan
- Preclinical Research Laboratory With Vivarium, M. Aikimbayev National Research Center for Especially Dangerous Infections (NSCEDI), Almaty, Kazakhstan
- T&TvaX LLC, Almaty, Kazakhstan
- *Correspondence: Kaissar Tabynov ;
| |
Collapse
|
39
|
Pecora A, Malacari DA, Mozgovoj MV, Díaz MDLÁ, Peralta AV, Cacciabue M, Puebla AF, Carusso C, Mundo SL, Gonzalez Lopez Ledesma MM, Gamarnik AV, Rinaldi O, Vidal O, Mas J, Dus Santos MJ. Anthropogenic Infection of Domestic Cats With SARS-CoV-2 Alpha Variant B.1.1.7 Lineage in Buenos Aires. Front Vet Sci 2022; 9:790058. [PMID: 35310416 PMCID: PMC8925007 DOI: 10.3389/fvets.2022.790058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2 reverse zoonosis, particularly to domestic animals, and the potential role of infected animals in perpetuating the spread of the virus is an issue of increasing concern. In this case report, we identified the natural infection of two cats by SARS-CoV-2, in Argentina, whose owner had been previously infected by SARS-CoV-2. Viral genetic material was detected in feline oropharyngeal (OP) and rectal (R) swab by RT-qPCR, and sequence analysis revealed that the virus infecting the owner and one cat were genetically similar. The alpha variant (B.1.1.7 lineage) was identified with a unique additional mutation, strongly suggesting human-to-cat route of transmission. This study reinforces the One Health concept and the importance of integrating human, animal, and environmental perspectives to promptly address relevant health issues.
Collapse
Affiliation(s)
- Andrea Pecora
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Marina Valeria Mozgovoj
- Instituto de Biotecnología, Universidad Nacional de Hurlingham, Buenos Aires, Argentina
- Centro de Agroindustria, Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables, Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Andrea Verónica Peralta
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Agrobiotecnología y Biología Molecular, Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marco Cacciabue
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Agrobiotecnología y Biología Molecular, Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrea Fabiana Puebla
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Agrobiotecnología y Biología Molecular, Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cristian Carusso
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Leonor Mundo
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Andrea Vanesa Gamarnik
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA, CONICET-Fundación Instituto Leloir), Buenos Aires, Argentina
| | | | | | - Javier Mas
- Diagnogen S.A., Buenos Aires, Argentina
- Diagnotest SRL, Buenos Aires, Argentina
| | - María José Dus Santos
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Biotecnología, Universidad Nacional de Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
40
|
The SARS-CoV-2 Reproduction Number R 0 in Cats. Viruses 2021; 13:v13122480. [PMID: 34960749 PMCID: PMC8704225 DOI: 10.3390/v13122480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
Domestic cats are susceptible to SARS-CoV-2 virus infection and given that they are in close contact with people, assessing the potential risk cats represent for the transmission and maintenance of SARS-CoV-2 is important. Assessing this risk implies quantifying transmission from humans-to-cats, from cats-to-cats and from cats-to-humans. Here we quantified the risk of cat-to-cat transmission by reviewing published literature describing transmission either experimentally or under natural conditions in infected households. Data from these studies were collated to quantify the SARS-CoV-2 reproduction number R0 among cats. The estimated R0 was significantly higher than one, hence cats could play a role in the transmission and maintenance of SARS-CoV-2. Questions that remain to be addressed are the risk of transmission from humans-to-cats and cats-to-humans. Further data on household transmission and data on virus levels in both the environment around infected cats and their exhaled air could be a step towards assessing these risks.
Collapse
|
41
|
Bi Z, Hong W, Yang J, Lu S, Peng X. Animal models for SARS-CoV-2 infection and pathology. MedComm (Beijing) 2021; 2:548-568. [PMID: 34909757 PMCID: PMC8662225 DOI: 10.1002/mco2.98] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 02/05/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiology of coronavirus disease 2019 (COVID-19) pandemic. Current variants including Alpha, Beta, Gamma, Delta, and Lambda increase the capacity of infection and transmission of SARS-CoV-2, which might disable the in-used therapies and vaccines. The COVID-19 has now put an enormous strain on health care system all over the world. Therefore, the development of animal models that can capture characteristics and immune responses observed in COVID-19 patients is urgently needed. Appropriate models could accelerate the testing of therapeutic drugs and vaccines against SARS-CoV-2. In this review, we aim to summarize the current animal models for SARS-CoV-2 infection, including mice, hamsters, nonhuman primates, and ferrets, and discuss the details of transmission, pathology, and immunology induced by SARS-CoV-2 in these animal models. We hope this could throw light to the increased usefulness in fundamental studies of COVID-19 and the preclinical analysis of vaccines and therapeutic agents.
Collapse
Affiliation(s)
- Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Shuaiyao Lu
- National Kunming High‐level Biosafety Primate Research CenterInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeYunnanChina
| | - Xiaozhong Peng
- National Kunming High‐level Biosafety Primate Research CenterInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeYunnanChina
| |
Collapse
|
42
|
Gaudreault NN, Carossino M, Morozov I, Trujillo JD, Meekins DA, Madden DW, Cool K, Artiaga BL, McDowell C, Bold D, Balaraman V, Kwon T, Ma W, Henningson J, Wilson DW, Wilson WC, Balasuriya UBR, García-Sastre A, Richt JA. Experimental re-infected cats do not transmit SARS-CoV-2. Emerg Microbes Infect 2021; 10:638-650. [PMID: 33704016 PMCID: PMC8023599 DOI: 10.1080/22221751.2021.1902753] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2 is the causative agent of COVID-19 and responsible for the current global pandemic. We and others have previously demonstrated that cats are susceptible to SARS-CoV-2 infection and can efficiently transmit the virus to naïve cats. Here, we address whether cats previously exposed to SARS-CoV-2 can be re-infected with SARS-CoV-2. In two independent studies, SARS-CoV-2-infected cats were re-challenged with SARS-CoV-2 at 21 days post primary challenge (DPC) and necropsies performed at 4, 7 and 14 days post-secondary challenge (DP2C). Sentinels were co-mingled with the re-challenged cats at 1 DP2C. Clinical signs were recorded, and nasal, oropharyngeal, and rectal swabs, blood, and serum were collected and tissues examined for histologic lesions. Viral RNA was transiently shed via the nasal, oropharyngeal and rectal cavities of the re-challenged cats. Viral RNA was detected in various tissues of re-challenged cats euthanized at 4 DP2C, mainly in the upper respiratory tract and lymphoid tissues, but less frequently and at lower levels in the lower respiratory tract when compared to primary SARS-CoV-2 challenged cats at 4 DPC. Viral RNA and antigen detected in the respiratory tract of the primary SARS-CoV-2 infected cats at early DPCs were absent in the re-challenged cats. Naïve sentinels co-housed with the re-challenged cats did not shed virus or seroconvert. Together, our results indicate that cats previously infected with SARS-CoV-2 can be experimentally re-infected with SARS-CoV-2; however, the levels of virus shed was insufficient for transmission to co-housed naïve sentinels. We conclude that SARS-CoV-2 infection in cats induces immune responses that provide partial, non-sterilizing immune protection against re-infection.
Collapse
Affiliation(s)
- Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - David A. Meekins
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Daniel W. Madden
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Konner Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Bianca Libanori Artiaga
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Chester McDowell
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Dashzeveg Bold
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Velmurugan Balaraman
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- Department of Veterinary Pathobiology and Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Dennis W. Wilson
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - William C. Wilson
- Arthropod Borne Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
43
|
Laidoudi Y, Sereme Y, Medkour H, Watier-Grillot S, Scandola P, Ginesta J, Andréo V, Labarde C, Comtet L, Pourquier P, Raoult D, Marié JL, Davoust B. SARS-CoV-2 antibodies seroprevalence in dogs from France using ELISA and an automated western blotting assay. One Health 2021; 13:100293. [PMID: 34377760 PMCID: PMC8327341 DOI: 10.1016/j.onehlt.2021.100293] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/23/2022] Open
Abstract
Dogs are occasionally susceptible to SARS-CoV-2, developing few or no clinical signs. Epidemiological surveillance of SARS-CoV-2 in dogs requires testing to distinguish it from other canine coronaviruses. In the last year, significant advances have been made in the diagnosis of SARS-CoV-2, allowing its surveillance in both human and animal populations. Here, using ELISA and automated western blotting (AWB) assays, we performed a longitudinal study on 809 apparently healthy dogs from different regions of France to investigate anti-SARS-CoV-2 antibodies. There were three main groups: (i) 356 dogs sampled once before the pandemic, (ii) 235 dogs sampled once during the pandemic, and (iii) 218 dogs, including 82 dogs sampled twice (before and during the pandemic), 125 dogs sampled twice during the pandemic and 11 dogs sampled three times (once before and twice during the pandemic). Using ELISA, seroprevalence was significantly higher during the pandemic [5.5% (25/453)] than during the pre-pandemic period [1.1% (5/449)]. Among the 218 dogs sampled twice, at least 8 ELISA-seroconversions were observed. ELISA positive pre-pandemic sera were not confirmed in serial tests by AWB, indicating possible ELISA cross-reactivity, probably with other canine coronaviruses. A significant difference was observed between these two serological tests (Q = 88, p = 0.008). A clear correlation was observed between SARS-CoV-2 seroprevalence in dogs and the incidence of SARS-CoV-2 infection in human population from the same area. AWB could be used as a second line assay to confirm the doubtful and discrepant ELISA results in dogs. Our results confirm the previous experimental models regarding the susceptibility of dogs to SARS-CoV-2, suggesting that viral transmission from and between dogs is weak or absent. However, the new variants with multiple mutations could adapt to dogs; this hypothesis cannot be ruled out in the absence of genomic data on SARS-CoV-2 from dogs.
Collapse
Affiliation(s)
- Younes Laidoudi
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Youssouf Sereme
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Hacène Medkour
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Stéphanie Watier-Grillot
- French Military Health Service, Animal Epidemiology Expert Group, Tours, France
- French Army Center for Epidemiology and Public Health, Marseille, France
| | - Pierre Scandola
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- French Military Health Service, Animal Epidemiology Expert Group, Tours, France
- 1 Veterinary Group, Toulon, France
| | | | | | - Claire Labarde
- French Military Health Service, Animal Epidemiology Expert Group, Tours, France
- 1 Veterinary Group, Toulon, France
| | | | | | - Didier Raoult
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Jean-Lou Marié
- French Military Health Service, Animal Epidemiology Expert Group, Tours, France
| | - Bernard Davoust
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- French Military Health Service, Animal Epidemiology Expert Group, Tours, France
- 1 Veterinary Group, Toulon, France
| |
Collapse
|
44
|
Miró G, Regidor-Cerrillo J, Checa R, Diezma-Díaz C, Montoya A, García-Cantalejo J, Botías P, Arroyo J, Ortega-Mora LM. SARS-CoV-2 Infection in One Cat and Three Dogs Living in COVID-19-Positive Households in Madrid, Spain. Front Vet Sci 2021; 8:779341. [PMID: 34901253 PMCID: PMC8660077 DOI: 10.3389/fvets.2021.779341] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Abstract
In this study, we describe SARS-CoV-2 infection dynamics in one cat and three dogs from households with confirmed human cases of COVID-19 living in the Madrid Community (Spain) at the time of expansion (December 2020 through June 2021) of the alpha variant (lineage B.1.1.7). A thorough physical exam and nasopharyngeal, oropharyngeal, and rectal swabs were collected for real-time reverse-transcription PCR (RT-qPCR) SARS-CoV-2 testing on day 0 and in successive samplings on days 7, 14, 21, and 47 during monitoring. Blood was also drawn to determine complete blood counts, biochemical profiles, and serology of the IgG response against SARS-CoV-2. On day 0, the cat case 1 presented with dyspnea and fever associated with a mild bronchoalveolar pattern. The dog cases 2, 3, and 4 were healthy, but case 2 presented with coughing, dyspnea, and weakness, and case 4 exhibited coughing and bilateral nasal discharge 3 and 6 days before the clinical exam. Case 3 (from the same household as case 2) remained asymptomatic. SARS-CoV-2 detection by RT-qPCR showed that the cat case 1 and the dog case 2 exhibited the lowest cycle threshold (Ct) (Ct < 30) when they presented clinical signs. Viral detection failed in successive samplings. Serological analyses revealed a positive IgG response in cat case 1 and dog cases 3 and 4 shortly after or simultaneously to virus shedding. Dog case 2 was seronegative, but seroconverted 21 days after SARS-CoV-2 detection. SARS-CoV-2 genome sequencing was attempted, and genomes were classified as belonging to the B.1.1.7 lineage.
Collapse
Affiliation(s)
- Guadalupe Miró
- Pet Parasite Lab, Department of Animal Health, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain,*Correspondence: Guadalupe Miró
| | - Javier Regidor-Cerrillo
- Saluvet-Innova S.L., Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Rocio Checa
- Pet Parasite Lab, Department of Animal Health, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Carlos Diezma-Díaz
- Saluvet-Innova S.L., Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Ana Montoya
- Pet Parasite Lab, Department of Animal Health, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Jesús García-Cantalejo
- Unidad de Genómica, Centro de Asistencia a la Investigación-Técnicas Biológicas, Complutense University of Madrid, Madrid, Spain
| | - Pedro Botías
- Unidad de Genómica, Centro de Asistencia a la Investigación-Técnicas Biológicas, Complutense University of Madrid, Madrid, Spain
| | - Javier Arroyo
- Unidad de Genómica, Centro de Asistencia a la Investigación-Técnicas Biológicas, Complutense University of Madrid, Madrid, Spain
| | - Luis-Miguel Ortega-Mora
- Saluvet, Department of Animal Health, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain,Luis-Miguel Ortega-Mora
| |
Collapse
|
45
|
Chetboul V, Foulex P, Kartout K, Klein AM, Sailleau C, Dumarest M, Delaplace M, Gouilh MA, Mortier J, Le Poder S. Myocarditis and Subclinical-Like Infection Associated With SARS-CoV-2 in Two Cats Living in the Same Household in France: A Case Report With Literature Review. Front Vet Sci 2021; 8:748869. [PMID: 34746286 PMCID: PMC8566889 DOI: 10.3389/fvets.2021.748869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
This report provides the first clinical, radiographic, echocardiographic, and biological description of SARS-CoV-2-associated myocarditis with a 6-month follow-up in a 5-year-old obese male domestic shorthair cat (Cat-1) presented for refractory congestive heart failure, with high cardiac troponin-I level (5.24 ng/ml), and a large lingual ulcer. The animal was SARS-CoV-2 positive on serology. The other cat living in the same household (Cat-2) never showed any clinical sign but was also confirmed SARS-CoV-2 positive on serology. Both cats were SARS-CoV-2 PCR negative. Cat-1 had closer contact than Cat-2 with their owner, who had been in close contact with a coworker tested PCR positive for COVID-19 (Alpha (B.1.1.7) variant) 4 weeks before Cat-1's first episode of congestive heart failure. A focused point-of-care echocardiography at presentation revealed for Cat-1 numerous B-lines, pleural effusion, severe left atrial dilation and dysfunction, and hypertrophic cardiomyopathy phenotype associated with focal pulmonary consolidations. Both myocarditis and pneumonia were suspected, leading to the prescription of cardiac medications and antibiotics. One month later, Cat-1 recovered, with normalization of left atrial size and function, and radiographic and echocardiography disappearance of heart failure signs and pulmonary lesions. An extensive literature review of SARS-CoV-2-related cardiac injury in pets in comparison with human pathology is discussed.
Collapse
Affiliation(s)
- Valérie Chetboul
- École Nationale Vétérinaire d'Alfort, CHUVA, Unité de Cardiologie d'Alfort (UCA), Maisons-Alfort, France.,Université Paris Est Créteil, INSERM, IMRB, Créteil, France
| | - Pierre Foulex
- École Nationale Vétérinaire d'Alfort, CHUVA, Unité de Cardiologie d'Alfort (UCA), Maisons-Alfort, France
| | - Kahina Kartout
- École Nationale Vétérinaire d'Alfort, CHUVA, Unité de Cardiologie d'Alfort (UCA), Maisons-Alfort, France
| | | | - Corinne Sailleau
- École Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, INRAE, ANSES, Laboratoire de santé animale, Université Paris-Est, Maisons-Alfort, France
| | - Marine Dumarest
- École Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, INRAE, ANSES, Laboratoire de santé animale, Université Paris-Est, Maisons-Alfort, France
| | - Manon Delaplace
- École Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, INRAE, ANSES, Laboratoire de santé animale, Université Paris-Est, Maisons-Alfort, France
| | - Meriadeg Ar Gouilh
- Groupe de Recherche sur l'Adaptation Microbienne (GRAM 2.0), Normandie Université, UNICAEN, 13 UNIROUEN, Caen, France
| | - Jeremy Mortier
- École Nationale Vétérinaire d'Alfort, CHUVA, Service d'Imagerie Médicale, Maisons-Alfort, France
| | - Sophie Le Poder
- École Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, INRAE, ANSES, Laboratoire de santé animale, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
46
|
SARS-CoV-2 evolution in animals suggests mechanisms for rapid variant selection. Proc Natl Acad Sci U S A 2021; 118:2105253118. [PMID: 34716263 PMCID: PMC8612357 DOI: 10.1073/pnas.2105253118] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 spillback from humans into domestic and wild animals has been well documented, and an accumulating number of studies illustrate that human-to-animal transmission is widespread in cats, mink, deer, and other species. Experimental inoculations of cats, mink, and ferrets have perpetuated transmission cycles. We sequenced full genomes of Vero cell-expanded SARS-CoV-2 inoculum and viruses recovered from cats (n = 6), dogs (n = 3), hamsters (n = 3), and a ferret (n = 1) following experimental exposure. Five nonsynonymous changes relative to the USA-WA1/2020 prototype strain were near fixation in the stock used for inoculation but had reverted to wild-type sequences at these sites in dogs, cats, and hamsters within 1- to 3-d postexposure. A total of 14 emergent variants (six in nonstructural genes, six in spike, and one each in orf8 and nucleocapsid) were detected in viruses recovered from animals. This included substitutions in spike residues H69, N501, and D614, which also vary in human lineages of concern. Even though a live virus was not cultured from dogs, substitutions in replicase genes were detected in amplified sequences. The rapid selection of SARS-CoV-2 variants in vitro and in vivo reveals residues with functional significance during host switching. These observations also illustrate the potential for spillback from animal hosts to accelerate the evolution of new viral lineages, findings of particular concern for dogs and cats living in households with COVID-19 patients. More generally, this glimpse into viral host switching reveals the unrealized rapidity and plasticity of viral evolution in experimental animal model systems.
Collapse
|
47
|
Flegr J. Toxoplasmosis is a risk factor for acquiring SARS-CoV-2 infection and a severe course of COVID-19 in the Czech and Slovak population: a preregistered exploratory internet cross-sectional study. Parasit Vectors 2021; 14:508. [PMID: 34583758 PMCID: PMC8477627 DOI: 10.1186/s13071-021-05021-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022] Open
Abstract
Background Latent toxoplasmosis, i.e. a lifelong infection with the protozoan parasite Toxoplasma gondii, affects about a third of the human population worldwide. In the past 10 years, numerous studies have shown that infected individuals have a significantly higher incidence of mental and physical health problems and are more prone to exhibiting the adverse effects of various diseases. Methods A cross-sectional internet study was performed on a population of 4499 (786 Toxoplasma-infected) participants and looked for factors which positively or negatively affect the risk of SARS-CoV-2 infection and likelihood of a severe course of COVID-19. Results Logistic regression and partial Kendall correlation controlling for sex, age, and size of the place of residence showed that latent toxoplasmosis had the strongest effect on the risk of infection (OR = 1.50) before sport (OR = 1.30) and borreliosis (1.27). It also had the strongest effect on the risk of severe course of infection (Tau = 0.146), before autoimmunity, immunodeficiency, male sex, keeping a cat, being overweight, borreliosis, higher age, or chronic obstructive pulmonary disease. Toxoplasmosis augmented the adverse effects of other risk factors but was not the proximal cause of the effect of cat-keeping on higher likelihood of COVID infection and higher severity of the course of infection because the effect of cat-keeping was also observed (and in particular) in a subset of Toxoplasma-infected respondents (Tau = 0.153). Effects of keeping a cat were detected only in respondents from multi-member families, suggesting that a cat could be a vector for the transmission of SARS-CoV-2 within a family. Conclusions Toxoplasmosis is currently not considered a risk factor for COVID-19, and Toxoplasma-infected individuals are neither informed about their higher risk nor prioritised in vaccination programs. Because toxoplasmosis affects a large segment of the human population, its impact on COVID-19-associated effects on public health could be considerable. Graphical abstract ![]()
Collapse
Affiliation(s)
- Jaroslav Flegr
- Laboratory of Evolutionary Biology, Division of Biology, Department of Philosophy and History of Sciences, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic. .,National Institute of Mental Health, Klecany, 250 67, Czech Republic.
| |
Collapse
|
48
|
Schiaffino F, Ferradas C, Jara LM, Salvatierra G, Dávila-Barclay A, Sanchez-Carrion C, Ulloa A, Mascaro L, Pajuelo MJ, Guevara Sarmiento L, Fernandez M, Zimic M. First Detection and Genome Sequencing of SARS-CoV-2 Lambda (C.37) Variant in Symptomatic Domestic Cats in Lima, Peru. Front Vet Sci 2021; 8:737350. [PMID: 34604373 PMCID: PMC8484519 DOI: 10.3389/fvets.2021.737350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/23/2021] [Indexed: 01/10/2023] Open
Abstract
The role of domestic cats in the dynamics of SARS-CoV-2 remains poorly characterized, especially in epidemiologic contexts of countries with high viral transmission. Here, we report the first evidence of SARS-CoV-2 Lambda variant of interest in symptomatic domestic cats whose owners were diagnosed with COVID-19 in Lima, Peru, providing evidence that transmission of this new variant in domestic cats is occurring. More epidemiological studies are required to further characterize the role of domestic animals in the transmission dynamics of SARS-CoV-2.
Collapse
Affiliation(s)
- Francesca Schiaffino
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Cusi Ferradas
- Unidad de Investigación en Enfermedades Emergentes y Cambio Climático (Emerge), Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Luis M. Jara
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Guillermo Salvatierra
- Unidad de Investigación en Enfermedades Emergentes y Cambio Climático (Emerge), Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | | | - Lucero Mascaro
- Laboratorio de Microbiología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Monica J. Pajuelo
- Laboratorio de Microbiología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | - Mirko Zimic
- Farmacologicos Veterinarios (FARVET), Chincha, Peru
- Laboratorio de Bioinformatica, Biologia Molecular y Desarrollos Tecnológicos, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
49
|
Report of One-Year Prospective Surveillance of SARS-CoV-2 in Dogs and Cats in France with Various Exposure Risks: Confirmation of a Low Prevalence of Shedding, Detection and Complete Sequencing of an Alpha Variant in a Cat. Viruses 2021; 13:v13091759. [PMID: 34578341 PMCID: PMC8473452 DOI: 10.3390/v13091759] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the probable zoonotic origin of SARS-CoV-2, only limited research efforts have been made to understand the role of companion animals in SARS-CoV-2 epidemiology. According to recent serological prevalence studies, human-to-companion animal transmission is quite frequent, which led us to consider that the risk of SARS-CoV-2 transmission from animal to human, albeit negligible in the present context, may have been underestimated. In this study, we provide the results of a prospective survey that was conducted to evaluate the SARS-CoV-2 isolation rate by qRT-PCR in dogs and cats with different exposure risks and clinical statuses. From April 2020 to April 2021, we analyzed 367 samples and investigated the presence of SARS-CoV-2 RNA using qRT-PCR. Only four animals tested positive, all of them being cats. Three cats were asymptomatic and one presented a coryza-like syndrome. We describe in detail the infection in two cats and the associated clinical characteristics. Importantly, we obtained SARS-CoV-2 genomes from one infected animal and characterized them as Alpha variants. This represents the first identification of the SARS-CoV-2 Alpha variant in an infected animal in France.
Collapse
|
50
|
Tereshchenko LG. Monitoring the Spread of SARS-CoV-2 Is an Important Public Health Task. Am J Public Health 2021; 111:1387-1388. [PMID: 34464201 PMCID: PMC8489600 DOI: 10.2105/ajph.2021.306392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Larisa G Tereshchenko
- Larisa G. Tereshchenko is with the School of Medicine, Department of Medicine, Oregon Health & Science University, Portland, and the Johns Hopkins School of Medicine, Department of Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|