1
|
Crispim CA, Rinaldi AEM, Azeredo CM, Skene DJ, Moreno CRC. Is time of eating associated with BMI and obesity? A population-based study. Eur J Nutr 2024; 63:527-537. [PMID: 38082033 DOI: 10.1007/s00394-023-03282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/20/2023] [Indexed: 02/28/2024]
Abstract
PURPOSE Time-related eating patterns have been associated with metabolic and nutritional diseases such as obesity. However, there is a lack of representative studies on this subject. This study's aim was to assess the association between the timing of eating and obesity in a large and representative sample of the Brazilian adult population (POF 2008-2009 survey). METHODS Two days of adults' food diary (n = 21,020) were used to estimate tertiles of first and last meal intake times, eating midpoint, caloric midpoint time, and calories consumed from 18:00 h onwards. BMI was estimated and its values, as well as excess weight (BMI ≥ 25 kg/m2) and obesity (BMI ≥ 30 kg/m2) were used as outcomes. Multiple linear and logistic regressions were performed. RESULTS The first (β = 0.65, 95% CI 0.37-0.93) and last food intake time (β = 0.40, 95% CI 0.14-0.66), eating midpoint (β = 0.61, 95% CI 0.34-0.88) and calories consumed after 21:00 h (β = 0.74, 95% CI 0.32-1.16) and 22:00 h (β = 0.75, 95% CI 0.18-1.32) were positively associated with BMI. The likelihood of having excess weight or obesity was significantly higher in the third tertile of the first food intake time (OR = 1.28, 95% CI 1.13-1.45 and OR = 1.34, 95% CI 1.13-1.58, respectively), last food intake time (OR = 1.16, 95% CI 1.03-1.32; and OR = 1.18, 95% CI 1.00-1.41, respectively), eating midpoint (OR = 1.28, 95% CI 1.13-1.45; and OR = 1.35, 95% CI 1.14-1.59, respectively) and energy consumption after 21:00 h (OR = 1.33, 95% CI 1.10-1.59). CONCLUSION Chrononutrition meal patterns indicative of late meal intake were significantly associated with high BMI, excess weight and obesity in the Brazilian population.
Collapse
Affiliation(s)
- Cibele A Crispim
- Chrononutrition Research Group, Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Uberlândia, Av. Pará, 1720, Bloco 2U, Sala 20. Campus Umuarama, Uberlândia, MG, Zip Code: 38405-320, Brazil.
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK.
| | - Ana E M Rinaldi
- Chrononutrition Research Group, Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Uberlândia, Av. Pará, 1720, Bloco 2U, Sala 20. Campus Umuarama, Uberlândia, MG, Zip Code: 38405-320, Brazil
| | - Catarina M Azeredo
- Chrononutrition Research Group, Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Uberlândia, Av. Pará, 1720, Bloco 2U, Sala 20. Campus Umuarama, Uberlândia, MG, Zip Code: 38405-320, Brazil
| | - Debra J Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Claudia R C Moreno
- Department of Health, Life Cycles and Society, School of Public Health, University of São Paulo, São Paulo, Brazil
- Department of Psychology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Rastogi S, Verma N, Raghuwanshi GS, Atam V, Kumar Verma D. The Impact of Time-Restricted Meal Intake on Glycemic Control and Weight Management in Type 2 Diabetes Mellitus Patients: An 18-Month Longitudinal Study. Cureus 2024; 16:e53680. [PMID: 38455801 PMCID: PMC10918388 DOI: 10.7759/cureus.53680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
AIMS This study aimed to investigate the impact of time-restricted meal intake (TRM) on anthropometric and biochemical parameters in patients with type 2 diabetes mellitus (T2DM). METHODS A total of 400 patients diagnosed with T2DM were selected from the Endocrinology Department at King George's Medical University (KGMU), Lucknow, based on the American Diabetes Association (ADA) guidelines and specific criteria. A total of 127 patients were lost to follow-up, resulting in 273 patients who completed the study. The patients were randomly assigned to two groups: the TRM group (consenting to have an early dinner at 7 pm) and the control group (non-TRM/late-night eater group). Baseline data were recorded, and follow-up assessments were conducted at six months, 12 months, and 18 months. Informed consent was obtained, and a diet chart was regularly maintained and updated. RESULTS The TRM group experienced a significant weight loss of 3.88 kg (5.45%) and a substantial reduction in BMI by 1.5 units (5.26%). In contrast, the non-TRM/control group had smaller reductions in weight (1.36 kg, 1.77%) and BMI (0.5 units, 1.65%). TRM group showed significant reductions in fasting blood sugar levels by 33.9 mg/dl (21.17%), postprandial blood sugar levels by 94.6 mg/dl (38.88%), and glycosylated hemoglobin (HbA1c) levels by 1.37 (15.87%). These improvements were significantly greater than the reductions observed in the control group, which had decreases of 29.3 mg/dl (17.85%) in fasting blood sugar levels, 41.6 mg/dl (16.84%) in postprandial blood sugar levels, and 0.59 (6.89%) in HbA1c levels. CONCLUSION Our findings underscore the potential of TRM as an effective strategy for weight management and glycemic control in patients with T2DM, even in a long-term context. These results support time-restricted eating as a sustainable lifestyle modification for managing chronic metabolic diseases.
Collapse
Affiliation(s)
- Smriti Rastogi
- Physiology, King George's Medical University, Lucknow, IND
| | - Narsingh Verma
- Physiology, King George's Medical University, Lucknow, IND
| | - Gourav S Raghuwanshi
- Physiology, People's College of Medical Sciences and Research Centre, Bhopal, IND
| | - Virendra Atam
- Internal Medicine, King George's Medical University, Lucknow, IND
| | | |
Collapse
|
3
|
Lotti S, Dinu M, Colombini B, Amedei A, Sofi F. Circadian rhythms, gut microbiota, and diet: Possible implications for health. Nutr Metab Cardiovasc Dis 2023; 33:1490-1500. [PMID: 37246076 DOI: 10.1016/j.numecd.2023.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/30/2023]
Abstract
AIMS Over the past years, interest in chrono-nutrition has grown enormously as the fundamental role of circadian rhythms in regulating most physiological and metabolic processes has become clearer. Recently, the influence of circadian rhythms on the gut microbiota (GM) composition has also emerged, as more than half of the total microbial composition fluctuates rhythmically throughout the day. At the same time, other studies have observed that the GM itself synchronises the host's circadian biological clock through signals of a different nature. Therefore, it has been hypothesised that there is a two-way communication between the circadian rhythms of the host and the GM, but researchers have only just begun to identify some of its action mechanisms. The manuscript aim is, therefore, to gather and combine the latest evidence in the field of chrono-nutrition with the more recent research on the GM, in order to investigate their relationship and their potential impact on human health. DATA SYNTHESIS Considering current evidence, a desynchronization of circadian rhythms is closely associated with an alteration in the abundance and functionality of the gut microbiota with consequent deleterious effects on health, such as increased risk of numerous pathologies, including cardiovascular disease, cancer, irritable bowel disease, and depression. A key role in maintaining the balance between circadian rhythms and GM seems to be attributed to meal-timing and diet quality, as well as to certain microbial metabolites, in particular short-chain fatty acids. CONCLUSIONS Future studies are needed to decipher the link between the circadian rhythms and specific microbial patterns in relation to different disease frameworks.
Collapse
Affiliation(s)
- Sofia Lotti
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, Italy.
| | - Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, Italy; Unit of Clinical Nutrition, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
4
|
Bijnens S, Depoortere I. Controlled light exposure and intermittent fasting as treatment strategies for metabolic syndrome and gut microbiome dysregulation in night shift workers. Physiol Behav 2023; 263:114103. [PMID: 36731762 DOI: 10.1016/j.physbeh.2023.114103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/09/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
The mammalian circadian clocks are entrained by environmental time cues, such as the light-dark cycle and the feeding-fasting cycle. In modern society, circadian misalignment is increasingly more common under the guise of shift work. Shift workers, accounting for roughly 20% of the workforce population, are more susceptible to metabolic disease. Exposure to artificial light at night and eating at inappropriate times of the day uncouples the central and peripheral circadian clocks. This internal circadian desynchrony is believed to be one of the culprits leading to metabolic disease. In this review, we discuss how alterations in the rhythm of gut microbiota and their metabolites during chronodisruption send conflicting signals to the host, which may ultimately contribute to disturbed metabolic processes. We propose two behavioral interventions to improve health in shift workers. Firstly, by carefully timing the moments of exposure to blue light, and hence shifting the melatonin peak, to improve sleep quality of daytime sleeping episodes. Secondly, by timing the daily time window of caloric intake to the biological morning, to properly align the feeding-fasting cycle with the light-dark cycle and to reduce the risk of metabolic disease. These interventions can be a first step in reducing the worldwide burden of health problems associated with shift work.
Collapse
Affiliation(s)
- Sofie Bijnens
- Gut Peptide Research Lab, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Inge Depoortere
- Gut Peptide Research Lab, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Kamyab P, Kouchaki H, Motamed M, Boroujeni ST, Akbari H, Tabrizi R. Sleep disturbance and gastrointestinal cancer risk: a literature review. J Investig Med 2023; 71:163-172. [PMID: 36645049 DOI: 10.1177/10815589221140595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sleep, accounting for roughly one-third of a person's life, plays an important role in human health. Despite the close association between sleep patterns and medical diseases proven by several studies, it has been neglected in recent years. Presently, all societies are facing the most challenging health-threatening disease, cancer. Among all cancer types, gastrointestinal (GI) cancers, especially colorectal type, seem to be one of the most relevant to an individual's lifestyle; thus, they can be prevented by modifying behaviors most of the time. Previous studies have shown that disruption of the 24-h sleep-wake cycle increases the chance of colorectal cancer, which can be due to exposure to artificial light at night and some complex genetic and hormone-mediated mechanisms. There has also been some evidence showing the possible associations between other aspects of sleep such as sleep duration or some sleep disorders and GI cancer risk. This review brings some information together and presents a detailed discussion of the possible role of sleep patterns in GI malignancy initiation.
Collapse
Affiliation(s)
- Parnia Kamyab
- Universal Scientific Education and Research Network, Fasa University of Medical Sciences, Fasa, Iran
| | - Hosein Kouchaki
- Universal Scientific Education and Research Network, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahsa Motamed
- Department of Psychiatry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hamed Akbari
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.,Clinical Research Development Unit, Valiasr Hospital, Fasa University of Medical Sciences, Fasa, Iran.,USERN Office, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
6
|
Meyer N, Harvey AG, Lockley SW, Dijk DJ. Circadian rhythms and disorders of the timing of sleep. Lancet 2022; 400:1061-1078. [PMID: 36115370 DOI: 10.1016/s0140-6736(22)00877-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/20/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
The daily alternation between sleep and wakefulness is one of the most dominant features of our lives and is a manifestation of the intrinsic 24 h rhythmicity underlying almost every aspect of our physiology. Circadian rhythms are generated by networks of molecular oscillators in the brain and peripheral tissues that interact with environmental and behavioural cycles to promote the occurrence of sleep during the environmental night. This alignment is often disturbed, however, by contemporary changes to our living environments, work or social schedules, patterns of light exposure, and biological factors, with consequences not only for sleep timing but also for our physical and mental health. Characterised by undesirable or irregular timing of sleep and wakefulness, in this Series paper we critically examine the existing categories of circadian rhythm sleep-wake disorders and the role of the circadian system in their development. We emphasise how not all disruption to daily rhythms is driven solely by an underlying circadian disturbance, and take a broader, dimensional approach to explore how circadian rhythms and sleep homoeostasis interact with behavioural and environmental factors. Very few high-quality epidemiological and intervention studies exist, and wider recognition and treatment of sleep timing disorders are currently hindered by a scarcity of accessible and objective tools for quantifying sleep and circadian physiology and environmental variables. We therefore assess emerging wearable technology, transcriptomics, and mathematical modelling approaches that promise to accelerate the integration of our knowledge in sleep and circadian science into improved human health.
Collapse
Affiliation(s)
- Nicholas Meyer
- Insomnia and Behavioural Sleep Medicine Clinic, University College London Hospitals NHS Foundation Trust, London, UK; Department of Psychosis Studies, Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, UK
| | - Allison G Harvey
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Steven W Lockley
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Surrey Sleep Research Centre, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK; UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, UK.
| |
Collapse
|
7
|
Circadian mechanism disruption is associated with dysregulation of inflammatory and immune responses: a systematic review. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThe circadian rhythms are regulated by the circadian clock which is under the control of suprachiasmatic nucleus of hypothalamus. The central and peripheral clocks on different tissue together synchronize to form circadian system. Factors disrupt the circadian rhythm, such as irregular eating patterns, sleep/wake time, night shift work and temperature. Due to the misalignment of central clock components, it has been recognized as the pathophysiology of lifestyle-related diseases mediated by the inflammation such as diabetes, obesity, neurological disorder and hormonal imbalance. Also we discuss the therapeutic effect of time-restricted feeding over diabetes and obesity caused by miscommunication between central and peripheral clock. The genetic and epigenetic changes involve due to the deregulation of circadian system. The aim of the present review is to discuss the circadian mechanisms that are involved in the complex interaction between host and external factors and its disruption is associated with deregulation of inflammatory and immune responses. Hence, we need to understand the mechanism of functioning of our biological clocks so that it helps us treat health-related problems such as jet lags, sleep disorders due to night-time shift work, obesity and mental disturbances. We hope minimal cost behavioural and lifestyle changes can improve circadian rhythms and presumably provide a better health.
Collapse
|
8
|
Santos-Báez LS, Garbarini A, Shaw D, Cheng B, Popp CJ, Manoogian ENC, Panda S, Laferrère B. Time-restricted eating to improve cardiometabolic health: The New York Time-Restricted EATing randomized clinical trial - Protocol overview. Contemp Clin Trials 2022; 120:106872. [PMID: 35934281 PMCID: PMC10031768 DOI: 10.1016/j.cct.2022.106872] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
Abstract
Re-aligning eating patterns with biological rhythm can reduce the burden of metabolic syndrome in older adults with overweight or obesity. Time-restricted eating (TRE) has been shown to result in weight loss and improved cardiometabolic health while being less challenging than counting calories. The New York Time-Restricted EATing study (NY-TREAT) is a two-arm, randomized clinical trial (RCT) that aims to examine the efficacy and sustainability of TRE (eating window ≤10 h/day) vs. a habitual prolonged eating window (HABIT, ≥14 h/day) in metabolically unhealthy midlife adults (50-75 years) with overweight or obesity and prediabetes or type 2 diabetes (T2D). Our primary hypothesis is that the TRE will result in greater weight loss compared to HABIT at 3 months. The efficacy of the TRE intervention on body weight, fat mass, energy expenditure, and glucose is tested at 3 months, and the sustainability of its effect is measured at 12 months, with ambulatory assessments of sleep and physical activity (ActiGraph), eating pattern (smartphone application), and interstitial glucose (continuous glucose monitoring). The RCT also includes state-of-the-art measurements of body fat (quantitative magnetic resonance), total energy expenditure (doubly-labelled water), insulin secretion, insulin resistance, and glucose tolerance. Adherence to self-monitoring and reduced eating window are monitored remotely in real-time. This RCT will provide further insight into the effects of TRE on cardiometabolic health in individuals with high metabolic risk. Sixty-two participants will be enrolled, and with estimated 30% attrition, 42 participants will return at 12 months. This protocol describes the design, interventions, methods, and expected outcomes. Clinical trial registration:NCT04465721 IRB: AAAS7791.
Collapse
Affiliation(s)
- Leinys S Santos-Báez
- Columbia University Irving Medical Center, Department of Medicine, Division of Endocrinology, Diabetes Research Center, New York, NY, United States of America
| | - Alison Garbarini
- Columbia University Irving Medical Center, Department of Medicine, Division of Endocrinology, Diabetes Research Center, New York, NY, United States of America
| | - Delaney Shaw
- Columbia University Irving Medical Center, Department of Medicine, Division of Endocrinology, Diabetes Research Center, New York, NY, United States of America
| | - Bin Cheng
- Mailman School of Public Health, Department of Biostatistics, Columbia University, New York, NY, United States of America
| | - Collin J Popp
- New York Langone Health, Department of Population Health, New York, NY, United States of America
| | - Emily N C Manoogian
- Salk Institute for Biological Studies, La Jolla, CA, United States of America
| | - Satchidananda Panda
- Salk Institute for Biological Studies, La Jolla, CA, United States of America
| | - Blandine Laferrère
- Columbia University Irving Medical Center, Department of Medicine, Division of Endocrinology, Diabetes Research Center, New York, NY, United States of America.
| |
Collapse
|
9
|
Zhou L, Zhang Z, Nice E, Huang C, Zhang W, Tang Y. Circadian rhythms and cancers: the intrinsic links and therapeutic potentials. J Hematol Oncol 2022; 15:21. [PMID: 35246220 PMCID: PMC8896306 DOI: 10.1186/s13045-022-01238-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The circadian rhythm is an evolutionarily conserved time-keeping system that comprises a wide variety of processes including sleep-wake cycles, eating-fasting cycles, and activity-rest cycles, coordinating the behavior and physiology of all organs for whole-body homeostasis. Acute disruption of circadian rhythm may lead to transient discomfort, whereas long-term irregular circadian rhythm will result in the dysfunction of the organism, therefore increasing the risks of numerous diseases especially cancers. Indeed, both epidemiological and experimental evidence has demonstrated the intrinsic link between dysregulated circadian rhythm and cancer. Accordingly, a rapidly increasing understanding of the molecular mechanisms of circadian rhythms is opening new options for cancer therapy, possibly by modulating the circadian clock. In this review, we first describe the general regulators of circadian rhythms and their functions on cancer. In addition, we provide insights into the mechanisms underlying how several types of disruption of the circadian rhythm (including sleep-wake, eating-fasting, and activity-rest) can drive cancer progression, which may expand our understanding of cancer development from the clock perspective. Moreover, we also summarize the potential applications of modulating circadian rhythms for cancer treatment, which may provide an optional therapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Acupuncture and Chronobiology Laboratory of Sichuan Province, Chengdu, 610075, China.
| |
Collapse
|
10
|
Lotti S, Pagliai G, Colombini B, Sofi F, Dinu M. Chronotype Differences in Energy Intake, Cardiometabolic Risk Parameters, Cancer, and Depression: A Systematic Review with Meta-Analysis of Observational Studies. Adv Nutr 2021; 13:269-281. [PMID: 34549270 PMCID: PMC8803479 DOI: 10.1093/advances/nmab115] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/11/2021] [Accepted: 09/13/2021] [Indexed: 01/31/2023] Open
Abstract
Chronotype is a behavioral manifestation of the internal circadian clock system. It refers to the specific activity-rest preference of an individual over a 24-h period and can be assessed using different methodologies that classify individuals into morning or evening chronotype. In recent years, several studies have suggested a relation between individual chronotype, eating habits, and the risk of developing obesity and other conditions. Our aim was to evaluate the association between chronotype, energy intake, and health status through a meta-analytic approach. A comprehensive search of MEDLINE, Embase, Scopus, Web of Science, and Cochrane Database was conducted. Observational studies that reported a measure of association between chronotype, energy intake, and health indicators were considered eligible. Overall, 39 observational studies (37 cross-sectional studies, 2 prospective cohort studies) were included in the systematic review, with a total of 377,797 subjects. By comparing morning and evening subjects, pooled analyses of cross-sectional studies showed significantly (P < 0.001) higher concentrations of blood glucose [mean difference (MD): 7.82; 95% CI: 3.18, 12.45], glycated hemoglobin (MD: 7.64; 95% CI: 3.08, 12.21), LDL cholesterol (MD: 13.69; 95% CI: 6.84, 20.54), and triglycerides (MD: 12.62; 95% CI: 0.90, 24.35) in evening subjects. Furthermore, an association between evening type and the risk of diabetes (OR: 1.30; 95% CI: 1.20, 1.41), cancer (OR: 1.18; 95% CI: 1.08, 1.30), and depression (OR: 1.86; 95% CI: 1.20, 2.88) was reported. Regarding the other outcomes examined, no significant differences were observed between the groups in terms of energy intake, anthropometric parameters, blood pressure, insulin, total and HDL cholesterol, and hypertension risk. In conclusion, evening chronotype was associated with a worse cardiometabolic risk profile and higher risk of diabetes, cancer, and depression. Further studies are needed to confirm these results and to better elucidate the interplay between chronotype, nutrition, and health status. This systematic review was registered at www.crd.york.ac.uk/prospero/ as CRD42021231044.
Collapse
Affiliation(s)
| | - Giuditta Pagliai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy,Unit of Clinical Nutrition, Careggi University Hospital, Florence, Italy
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
11
|
A Smartphone Intervention to Promote Time Restricted Eating Reduces Body Weight and Blood Pressure in Adults with Overweight and Obesity: A Pilot Study. Nutrients 2021; 13:nu13072148. [PMID: 34201442 PMCID: PMC8308240 DOI: 10.3390/nu13072148] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
The goal of this study was to test the feasibility of time restricted eating (TRE) in adults with overweight and obesity. Participants (n = 50) logged all eating occasions (>0 kcal) for a 2-week run-in period using a smartphone application. Participants with eating duration ≥14 h enrolled in an open label, non-randomized, prospective 90-day TRE intervention, with a self-selected reduced eating window of 10 h. No dietary counseling was provided. Changes in anthropometrics, eating patterns and adherence after TRE were analyzed using t-tests or Wilcoxon Rank-Sum Test. The mean duration of the baseline eating window was 14 h 32 m ± 2 h 36 m (n = 50) with 56% of participants with duration ≥14 h. TRE participants (n = 16) successfully decreased their eating window from 16 h 04 m ± 1 h 24 m to 11 h 54 m ± 2 h 06 m (p < 0.001), and reduced the number of daily eating occasions by half (p < 0.001). Adherence to logging and to the reduced eating window was 64% ± 22% and 47% ± 19%, respectively. TRE resulted in decreases in body weight (−2.1 ± 3.0 kg, p = 0.017), waist circumference (−2.2 ± 4.6 cm, p = 0.002) and systolic blood pressure (−12 ± 11 mmHg, p = 0.002). This study demonstrates the feasibility and efficacy of TRE administered via a smartphone, in adults with overweight and obesity.
Collapse
|
12
|
Jefcoate PW, Robertson MD, Ogden J, Johnston JD. Identification of factors influencing motivation to undertake time-restricted feeding in humans. Appetite 2021; 164:105240. [PMID: 33812936 DOI: 10.1016/j.appet.2021.105240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 11/29/2022]
Abstract
The interaction between time of day and energy intake, termed chrono-nutrition, has received considerable recent interest. One aspect of chrono-nutrition with potential to benefit long-term cardio-metabolic health is time-restricted feeding (TRF). Current support for TRF primarily derives from animal research, although recent small-scale human studies indicate possible translational benefit. Whether free-living humans, however, can incorporate TRF into their daily lives is poorly understood. This study reports data from participants (n = 608) who completed an online questionnaire to investigate daily routine, likelihood of TRF incorporation within work vs free-days, and key considerations influencing TRF uptake. The majority of participants reported a typical daily feeding window (time between first and last energy intake) of between 10 and 14 h on workdays and free days, 62.7 and 65.5% respectively. Likelihood of adherence to TRF declined with an increase in the proposed restriction of the feeding window by 0.5 to 4-h per day. We then examined data from participants with a typical daily feeding window of 12+ h on workdays (n = 221) and free-days (n = 223) to investigate the likelihood of using TRF, and the most important considerations in making this decision. Of these participants, (n = 132) on workdays and (n = 125) on free days would likely reduce their feeding window by 3-h. Multiple regression analysis revealed that key considerations determining the likelihood of adopting TRF were: cost, time availability, and perceived health benefits (on workdays); wake time, bed time, time availability, motivation to change and perceived health benefits (on free-days). These data provide novel information regarding public attitudes towards TRF and highlight important aspects to be considered when translating controlled laboratory studies to public dietary advice.
Collapse
Affiliation(s)
- Paul W Jefcoate
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK.
| | - M Denise Robertson
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Jane Ogden
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Jonathan D Johnston
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
13
|
Wang Y, Yu L, Gao Y, Jiang L, Yuan L, Wang P, Cao Y, Song X, Ge L, Ding G. Association between shift work or long working hours with metabolic syndrome: a systematic review and dose-response meta-analysis of observational studies. Chronobiol Int 2021; 38:318-333. [PMID: 33557625 DOI: 10.1080/07420528.2020.1797763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This meta-analysis investigates the relationship between both shift work and long working hours and risk of developing metabolic syndrome (MetS). PubMed, EMBASE, and Web of Science databases were searched from the outset to December 10, 2019. Two reviewers independently screened studies, extracted data, and assessed the risk of bias of included studies. A total of 36 (30 cross-sectional, 5 cohort, and a nested case-control) studies, involving 274,263 participants, were included. The pooled odds ratio of shift work and development of MetS was 1.35 (95% confidence interval: 1.24-1.48), and the pooled odds ratio of long working hours and development of MetS was 1.19 (95% confidence interval: 0.97-1.46). In the subgroup analysis stratified by gender, the pooled odds ratios for male and female shift workers were 1.25 (95% confidence interval: 1.14-1.37) and 1.47 (95% confidence interval: 1.18-1.82), respectively. The dose-response (number of years of shift work and development of MetS) analysis showed the pooled odds ratio for 5 years of shift work was 1.07 (95% confidence interval: 1.05-1.09) and for 10 years of shift work 1.11 (95% confidence interval: 1.06-1.15). Our meta-analysis confirmed shift work is significantly associated with risk of metabolic syndrome, but the relationship between long working hours and MetS was not substantiated. Additionally, there was a nonlinear dose-response relationship between the number of years of shift work and risk of MetS, showing positive relationship to about 20 years of shift work but not for longer than 20 years. Prospective cohort studies regarding specific shift work schedules are needed to confirm these results.
Collapse
Affiliation(s)
- Yihui Wang
- Department of Social Medicine and Health Administration, School of Public Health, Lanzhou University, Gansu, China
| | - Li Yu
- Department of Social Medicine and Health Administration, School of Public Health, Lanzhou University, Gansu, China
| | - Yinyan Gao
- Department of Social Medicine and Health Administration, School of Public Health, Lanzhou University, Gansu, China
| | - Lili Jiang
- Department of Social Medicine and Health Administration, School of Public Health, Lanzhou University, Gansu, China
| | - Lin Yuan
- Department of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Gansu, China
| | - Pengju Wang
- Department of Social Medicine and Health Administration, School of Public Health, Lanzhou University, Gansu, China
| | - Yanwen Cao
- Department of Social Medicine and Health Administration, School of Public Health, Lanzhou University, Gansu, China
| | - Xuping Song
- Department of Social Medicine and Health Administration, School of Public Health, Lanzhou University, Gansu, China
| | - Long Ge
- Department of Social Medicine and Health Administration, School of Public Health, Lanzhou University, Gansu, China.,Evidence-Based Social Science Research Center, School of Public Health, Lanzhou University, Gansu, China
| | - Guowu Ding
- Department of Social Medicine and Health Administration, School of Public Health, Lanzhou University, Gansu, China
| |
Collapse
|
14
|
Meessen ECE, Sips FLP, Eggink HM, Koehorst M, Romijn JA, Groen AK, van Riel NAW, Soeters MR. Model-based data analysis of individual human postprandial plasma bile acid responses indicates a major role for the gallbladder and intestine. Physiol Rep 2021; 8:e14358. [PMID: 32170845 PMCID: PMC7070101 DOI: 10.14814/phy2.14358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Bile acids are multifaceted metabolic compounds that signal to cholesterol, glucose, and lipid homeostasis via receptors like the Farnesoid X Receptor (FXR) and transmembrane Takeda G protein-coupled receptor 5 (TGR5). The postprandial increase in plasma bile acid concentrations is therefore a potential metabolic signal. However, this postprandial response has a high interindividual variability. Such variability may affect bile acid receptor activation. METHODS In this study, we analyzed the inter- and intraindividual variability of fasting and postprandial bile acid concentrations during three identical meals on separate days in eight healthy lean male subjects using a statistical and mathematical approach. MAIN FINDINGS The postprandial bile acid responses exhibited large interindividual and intraindividual variability. The individual mathematical models, which represent the enterohepatic circulation of bile acids in each subject, suggest that interindividual variability results from quantitative and qualitative differences of distal active uptake, colon transit, and microbial bile acid transformation. Conversely, intraindividual variations in gallbladder kinetics can explain intraindividual differences in the postprandial responses. CONCLUSIONS We conclude that there is considerable inter- and intraindividual variation in postprandial plasma bile acid levels. The presented personalized approach is a promising tool to identify unique characteristics of underlying physiological processes and can be applied to investigate bile acid metabolism in pathophysiological conditions.
Collapse
Affiliation(s)
- Emma C E Meessen
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Fianne L P Sips
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Hannah M Eggink
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Martijn Koehorst
- Department of Laboratory Medicine, Center for Liver Digestive and Metabolic Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Johannes A Romijn
- Department of Internal Medicine, Amsterdam University Medical Centers, Academic Medical Center (AMC), The Netherlands
| | - Albert K Groen
- Department of Laboratory Medicine, Center for Liver Digestive and Metabolic Diseases, University Medical Center Groningen, Groningen, The Netherlands.,Department of Vascular Medicine, Amsterdam University Medical Centers Amsterdam, Academic Medical Center (AMC), The Netherlands
| | - Natal A W van Riel
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Vascular Medicine, Amsterdam University Medical Centers Amsterdam, Academic Medical Center (AMC), The Netherlands
| | - Maarten R Soeters
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Academic Medical Center (AMC), Amsterdam, The Netherlands
| |
Collapse
|
15
|
Dong TA, Sandesara PB, Dhindsa DS, Mehta A, Arneson LC, Dollar AL, Taub PR, Sperling LS. Intermittent Fasting: A Heart Healthy Dietary Pattern? Am J Med 2020; 133:901-907. [PMID: 32330491 PMCID: PMC7415631 DOI: 10.1016/j.amjmed.2020.03.030] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/26/2022]
Abstract
Dietary patterns, such as the Dietary Approaches to Stop Hypertension (DASH) and the Mediterranean diet, have been shown to improve cardiac health. Intermittent fasting is another type of popular dietary pattern that is based on timed periods of fasting. Two different regimens are alternative day fasting and time-restricted eating. Although there are no large, randomized control trials examining the relationship between intermittent fasting and cardiovascular outcomes, current human studies that suggest this diet could reduce the risk for cardiovascular disease with improvement in weight control, hypertension, dyslipidemia, and diabetes. Intermittent fasting may exert its effects through multiple pathways, including reducing oxidative stress, optimization of circadian rhythms, and ketogenesis. This review evaluates current literature regarding the potential cardiovascular benefits of intermittent fasting and proposes directions for future research.
Collapse
Affiliation(s)
- Tiffany A Dong
- Department of Medicine; Emory Clinical Cardiovascular Research Institute
| | - Pratik B Sandesara
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University, Emory School of Medicine, Atlanta, Ga
| | - Devinder S Dhindsa
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University, Emory School of Medicine, Atlanta, Ga
| | - Anurag Mehta
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University, Emory School of Medicine, Atlanta, Ga
| | - Laura C Arneson
- Department of Medicine at Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Allen L Dollar
- Division of Cardiology, Emory University, Emory School of Medicine, Atlanta, Ga
| | - Pam R Taub
- Division of Cardiovascular Medicine, UC San Diego School of Medicine, La Jolla, Calif
| | - Laurence S Sperling
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University, Emory School of Medicine, Atlanta, Ga.
| |
Collapse
|
16
|
Queiroz JDN, Macedo RCO, Tinsley GM, Reischak-Oliveira A. Time-restricted eating and circadian rhythms: the biological clock is ticking. Crit Rev Food Sci Nutr 2020; 61:2863-2875. [DOI: 10.1080/10408398.2020.1789550] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jéssica do Nascimento Queiroz
- Physical Education, Physiotherapy and Dance School, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rodrigo Cauduro Oliveira Macedo
- Physical Education, Physiotherapy and Dance School, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Nutrition Department, University of Santa Cruz do Sul (UNISC), Santa Cruz do Sul, Brazil
| | - Grant M. Tinsley
- Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Alvaro Reischak-Oliveira
- Physical Education, Physiotherapy and Dance School, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
17
|
Yaegashi A, Suzuki J. Effects of Evening-Only Low-Carbohydrate Meal on Healthy Volunteers. J Nutr Sci Vitaminol (Tokyo) 2020; 66:229-236. [PMID: 32612085 DOI: 10.3177/jnsv.66.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We performed a pre/post-interventional study with participants as self-controls to evaluate the effects of consuming an evening-only low-carbohydrate meal (LCM) at 1800 h on biochemical measures of glucose and lipid metabolism. Study participants comprised 14 healthy men (age range, 20-29 y) who, consumed standard test meals (STMs) or LCM at 1800 h. Blood samples were collected at fasting, and at 60-, 120-, and 240 min after the start of the meals. The 60-min postprandial levels and the area under the curve (AUC) 0-120 min for plasma glucose were significantly lower after the LCM than after the STMs. The 60- and 120-min postprandial levels and the AUC 0-240 min for plasma insulin were significantly lower after the LCM than after the STMs (p<0.01). Postprandial triglyceride (TG) levels at 120- and 240 min and the AUC 0-240 min were significantly higher after the LCM than after the STMs (p<0.05, p<0.01, and p<0.05, respectively). The interleukin-6 levels were significantly higher 240 min after the STMs than before the meals (p<0.05), but not after the LCM. In these healthy volunteers, consuming an LCM at 1800 h suppressed postprandial hyperglycemia and insulin secretion; however, postprandial TG increased. Consuming an LCM at 1800 h was beneficial as it inhibited elevation of blood glucose; however, it may also increase the risk of arteriosclerosis through increasing TG levels.
Collapse
Affiliation(s)
- Akinori Yaegashi
- Department of Health and Nutrition, Faculty of Human Science, Hokkaido Bunkyo University.,Graduate School of Nursing and Nutrition, Tenshi College
| | - Junko Suzuki
- Graduate School of Nursing and Nutrition, Tenshi College
| |
Collapse
|
18
|
Qiao H, Beibei Z, Chong T, Tieying Z, Yuzhi G, Jing M, Davidson PM. Both frequency and duration of rotating night shifts are associated with metabolic parameters: a cross-sectional study. Sleep Med 2020; 71:89-96. [DOI: 10.1016/j.sleep.2020.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
|
19
|
Shi Y, Liu L, Hamada T, Nowak JA, Giannakis M, Ma Y, Song M, Nevo D, Kosumi K, Gu M, Kim SA, Morikawa T, Wu K, Sui J, Papantoniou K, Wang M, Chan AT, Fuchs CS, Meyerhardt JA, Giovannucci E, Ogino S, Schernhammer ES, Nishihara R, Zhang X. Night-Shift Work Duration and Risk of Colorectal Cancer According to IRS1 and IRS2 Expression. Cancer Epidemiol Biomarkers Prev 2020; 29:133-140. [PMID: 31666286 PMCID: PMC6954315 DOI: 10.1158/1055-9965.epi-19-0325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/05/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We hypothesized that the risk of colorectal cancer in night-shift workers might be different according to insulin receptor substrate status. METHODS Among 77,470 eligible women having night work assessed in the Nurses' Health Study, we documented a total of 1,397 colorectal cancer cases, of which 304 or 308 had available data on IRS1 and IRS2, respectively. We used duplication-method Cox proportional hazards regression analysis for competing risks to calculate HRs and 95% confidence intervals (CI) for each colorectal cancer subtype. We measured tumor IRS1 or IRS2 expression by immunohistochemistry (IHC). RESULTS Compared with women who never worked night shifts, those working ≥15 years night shifts had a marginal trend of increased overall risk of colorectal cancer (P trend = 0.06; multivariable HR = 1.20; 95% CI, 0.99-1.45). Longer duration of night-shift work was associated with a higher risk of IRS2-positive tumors (multivariable HR = 2.69; 95% CI, 1.48-4.89; P trend = 0.001, ≥15 years night shifts vs. never) but not with IRS2-negative tumors (multivariable HR = 0.90; 95% CI, 0.54-1.51; P trend = 0.72; P heterogeneity for IRS2 = 0.008). Similarly, the corresponding multivariable HRs were 1.81 for IRS1-positive tumors (95% CI, 0.94-3.48; P trend = 0.06) and 1.13 for IRS1-negative tumors (95% CI, 0.71-1.80; P trend = 0.56; P heterogeneity for IRS1 = 0.02). CONCLUSIONS Our molecular pathologic epidemiology data suggest a potential role of IRS in mediating carcinogenesis induced by night-shift work. IMPACT Although these findings need validation, rotating night shift might increase colorectal cancer risk in women with abnormal insulin receptor pathways.
Collapse
Affiliation(s)
- Yan Shi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Li Liu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marios Giannakis
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Yanan Ma
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Daniel Nevo
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Keisuke Kosumi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Mancang Gu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Sun A Kim
- Laboratory of Human Carcinogenesis, NCI, NIH, Bethesda, Maryland
| | - Teppei Morikawa
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jing Sui
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Kyriaki Papantoniou
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Molin Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Andrew T Chan
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Charles S Fuchs
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Yale Cancer Center, New Haven, Connecticut
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
- Smilow Cancer Hospital, New Haven, Connecticut
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Edward Giovannucci
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Shuji Ogino
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Eva S Schernhammer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Reiko Nishihara
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
20
|
Abstract
Humans, like all mammals, partition their daily behaviour into activity (wakefulness) and rest (sleep) phases that differ largely in their metabolic requirements. The circadian clock evolved as an autonomous timekeeping system that aligns behavioural patterns with the solar day and supports the body functions by anticipating and coordinating the required metabolic programmes. The key component of this synchronization is a master clock in the brain, which responds to light-darkness cues from the environment. However, to achieve circadian control of the entire organism, each cell of the body is equipped with its own circadian oscillator that is controlled by the master clock and confers rhythmicity to individual cells and organs through the control of rate-limiting steps of metabolic programmes. Importantly, metabolic regulation is not a mere output function of the circadian system, but nutrient, energy and redox levels signal back to cellular clocks in order to reinforce circadian rhythmicity and to adapt physiology to temporal tissue-specific needs. Thus, multiple systemic and molecular mechanisms exist that connect the circadian clock with metabolism at all levels, from cellular organelles to the whole organism, and deregulation of this circadian-metabolic crosstalk can lead to various pathologies.
Collapse
|
21
|
Abstract
For many years now a treatment mitigating the debilitating effects of jet lag has been sought. Rapid travel across time zones leads, in most people, to temporary symptoms, in particular poor sleep, daytime alertness and poor performance. Mis-timed circadian rhythms are considered to be the main factor underlying jet-lag symptoms, together with the sleep deprivation from long haul flights. Virtually all aspects of physiology are rhythmic, from cells to systems, and circadian rhythms are coordinated by a central pacemaker or clock in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN adapts slowly to changes in time zone, and peripheral clocks or oscillators adapt at different rates, such that the organism is in a state of desynchrony from the external environment and internally. Light exposure is the main factor controlling the circadian system and needs to be considered together with any pharmacological interventions. This review covers the relatively new chronobiotic drugs, which can hasten adaptation of the circadian system, together with drugs directly affecting alertness and sleep propensity. No current treatment can instantly shift circadian phase to a new time zone; however, adaptation can be hastened. The melatoninergic drugs are promising but larger trials in real-life situations are needed. For short stopovers it is recommended to preserve sleep and alertness without necessarily modifying the circadian system. New research suggests that modification of clock function via genetic manipulation may one day have clinical applications.
Collapse
Affiliation(s)
- Josephine Arendt
- Faculty of Health and Medical Sciences (FHMS), University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| |
Collapse
|
22
|
Kiranmala K, Aslam M, Mishra BK, Jhamb R, Madhu SV. Association of postprandial triglyceride responses with insulin resistance among rotational night shift healthcare workers. Exp Physiol 2019; 104:819-825. [DOI: 10.1113/ep087514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/04/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Keithellakpam Kiranmala
- Department of EndocrinologyCentre for Diabetes Endocrinology & MetabolismUniversity College of Medical Sciences (University of Delhi) & GTB Hospital Delhi India
- Department of MedicineUniversity College of Medical Sciences (University of Delhi) & GTB Hospital Delhi India
| | - Mohammad Aslam
- Department of EndocrinologyCentre for Diabetes Endocrinology & MetabolismUniversity College of Medical Sciences (University of Delhi) & GTB Hospital Delhi India
| | - Brijesh Kumar Mishra
- Department of EndocrinologyCentre for Diabetes Endocrinology & MetabolismUniversity College of Medical Sciences (University of Delhi) & GTB Hospital Delhi India
| | - Rajat Jhamb
- Department of MedicineUniversity College of Medical Sciences (University of Delhi) & GTB Hospital Delhi India
| | - Sri Venkata Madhu
- Department of EndocrinologyCentre for Diabetes Endocrinology & MetabolismUniversity College of Medical Sciences (University of Delhi) & GTB Hospital Delhi India
| |
Collapse
|
23
|
Castro MAD, Garcez MR, Pereira JL, Fisberg RM. Eating behaviours and dietary intake associations with self-reported sleep duration of free-living Brazilian adults. Appetite 2019; 137:207-217. [PMID: 30844412 DOI: 10.1016/j.appet.2019.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/17/2019] [Accepted: 02/26/2019] [Indexed: 11/29/2022]
Abstract
Sleep duration in modern societies has been decreasing over the past decades and many environmental and behaviour factors contribute with. Evidence have shown that individuals with short sleep duration have worse eating behaviours and dietary intakes than those with adequate sleep. This study aimed to describe eating behaviours and dietary intakes of Brazilian adults and investigate their associations with self-reported sleep duration encompassing aspects of chrono-nutrition. Demographic, socioeconomic, anthropometric, lifestyle, sleep duration and dietary data were obtained from an interviewer-administered structured questionnaire of the cross-sectional population-based study, 2015 ISA-Capital, (n = 1081 adults, ≥20y). The independent associations between sleep duration (categories: ≤6 h, 7-8 h, and ≥9 h) and dietary variables were assessed after adjustment for covariates. Employment status, physical activity, number of chronic diseases and day of recalled intake were significantly associated with sleep duration categories (p < 0.05). Short duration sleepers (≤6 h) showed the largest probabilities of eating breakfast and snacks. Snacks contributed to 23% of total energy intake and provided the largest amounts of total and added sugar than other eating occasions among short duration sleepers. Long duration sleepers (≥9 h) exhibited lower probability of consumption of the three main meals, lower energy and nutrient intakes in the morning, lower eating frequency and shorter eating period. Irrespective of sleep duration, the largest contribution to total energy intake was in the afternoon (43-46%), followed by the evening (30-32%) and morning (22-25%) periods. In conclusion, sleep duration was associated with different dietary intakes and eating behaviours among Brazilian adults. The largest energy intakes in the afternoon and evening periods signalize the relevance to consider the timing of food consumption aside sleep duration as a target to nutritional counseling for prevention of circadian misalignment and related metabolic disturbances.
Collapse
Affiliation(s)
| | | | | | - Regina Mara Fisberg
- Department of Nutrition, School of Public Health, University of São Paulo, Brazil.
| |
Collapse
|
24
|
|
25
|
Abstract
Last year melatonin was 60 years old, or at least its discovery was 60 years ago. The molecule itself may well be almost as old as life itself. So it is time to take yet another perspective on our understanding of its functions, effects and clinical uses. This is not a formal review-there is already a multitude of systematic reviews, narrative reviews, meta-analyses and even reviews of reviews. In view of the extraordinary variety of effects attributed to melatonin in the last 25 years, it is more of an attempt to sort out some areas where a consensus opinion exists, and where placebo controlled, randomized, clinical trials have confirmed early observations on therapeutic uses. The current upsurge of concern about the multiple health problems associated with disturbed circadian rhythms has generated interest in related therapeutic interventions, of which melatonin is one. The present text will consider the physiological role of endogenous melatonin, and the mostly pharmacological effects of exogenous treatment, on the assumption that normal circulating concentrations represent endogenous pineal production. It will concentrate mainly on the most researched, and accepted area of therapeutic use and potential use of melatonin-its undoubted ability to realign circadian rhythms and sleep-since this is the author's bias. It will touch briefly upon some other systems with prominent rhythmic attributes including certain cancers, the cardiovascular system, the entero-insular axis and metabolism together with the use of melatonin to assess circadian status. Many of the ills of the developed world relate to deranged rhythms-and everything is rhythmic unless proved otherwise.
Collapse
|
26
|
A pilot feasibility study exploring the effects of a moderate time-restricted feeding intervention on energy intake, adiposity and metabolic physiology in free-living human subjects. J Nutr Sci 2018. [DOI: 10.1017/jns.2018.13] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AbstractThis pilot study explored the feasibility of a moderate time-restricted feeding (TRF) intervention and its effects on adiposity and metabolism. For 10 weeks, a free-living TRF group delayed breakfast and advanced dinner by 1·5 h each. Changes in dietary intake, adiposity and fasting biochemistry (glucose, insulin, lipids) were compared with controls who maintained habitual feeding patterns. Thirteen participants (29 (sem2) kg/m2) completed the study. The average daily feeding interval was successfully reduced in the TRF group (743 (sem32) to 517 (sem22) min/d;P < 0·001;n7), although questionnaire responses indicated that social eating/drinking opportunities were negatively impacted. TRF participants reduced total daily energy intake (P = 0·019) despitead libitumfood access, with accompanying reductions in adiposity (P = 0·047). There were significant between-group differences in fasting glucose (P = 0·008), albeit driven primarily by an increase among controls. Larger studies can now be designed/powered, based on these novel preliminary qualitative and quantitative data, to ascertain and maximise the long-term sustainability of TRF.
Collapse
|
27
|
Franceschi C, Ostan R, Santoro A. Nutrition and Inflammation: Are Centenarians Similar to Individuals on Calorie-Restricted Diets? Annu Rev Nutr 2018; 38:329-356. [DOI: 10.1146/annurev-nutr-082117-051637] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Individuals capable of reaching the extreme limit of human life such as centenarians are characterized by an exceptionally healthy phenotype—that is, a low number of diseases, low blood pressure, optimal metabolic and endocrine parameters, and increased diversity in the gut microbiota—and they are epigenetically younger than their chronological age. We present data suggesting that such a remarkable phenotype is largely similar to that found in adults following a calorie-restricted diet. Interviews with centenarians and historical data on the nutritional and lifestyle habits of Italians during the twentieth century suggest that as children and into adulthood, centenarians lived in an environment that was nonobesogenic, but at the same time the environment did not produce malnutrition. Centenarians appear to be creatures of habit, and we argue that their habit of eating meals at the same time each day favored the maintenance of circadian rhythms, including their sleep cycle. Finally, we argue that centenarians’ chronic inflammatory status, which we dubbed inflammaging, is peculiar, likely adaptive, and less detrimental than in younger people.
Collapse
Affiliation(s)
- Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy
| | - Rita Ostan
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES) and Interdepartmental Centre “L. Galvani” (CIG), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;,
| | - Aurelia Santoro
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES) and Interdepartmental Centre “L. Galvani” (CIG), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;,
| |
Collapse
|
28
|
Lipidomics reveals diurnal lipid oscillations in human skeletal muscle persisting in cellular myotubes cultured in vitro. Proc Natl Acad Sci U S A 2017; 114:E8565-E8574. [PMID: 28973848 DOI: 10.1073/pnas.1705821114] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Circadian clocks play an important role in lipid homeostasis, with impact on various metabolic diseases. Due to the central role of skeletal muscle in whole-body metabolism, we aimed at studying muscle lipid profiles in a temporal manner. Moreover, it has not been shown whether lipid oscillations in peripheral tissues are driven by diurnal cycles of rest-activity and food intake or are able to persist in vitro in a cell-autonomous manner. To address this, we investigated lipid profiles over 24 h in human skeletal muscle in vivo and in primary human myotubes cultured in vitro. Glycerolipids, glycerophospholipids, and sphingolipids exhibited diurnal oscillations, suggesting a widespread circadian impact on muscle lipid metabolism. Notably, peak levels of lipid accumulation were in phase coherence with core clock gene expression in vivo and in vitro. The percentage of oscillating lipid metabolites was comparable between muscle tissue and cultured myotubes, and temporal lipid profiles correlated with transcript profiles of genes implicated in their biosynthesis. Lipids enriched in the outer leaflet of the plasma membrane oscillated in a highly coordinated manner in vivo and in vitro. Lipid metabolite oscillations were strongly attenuated upon siRNA-mediated clock disruption in human primary myotubes. Taken together, our data suggest an essential role for endogenous cell-autonomous human skeletal muscle oscillators in regulating lipid metabolism independent of external synchronizers, such as physical activity or food intake.
Collapse
|
29
|
Abstract
The objective of this review is to provide an overview of intermittent fasting regimens, summarize the evidence on the health benefits of intermittent fasting, and discuss physiological mechanisms by which intermittent fasting might lead to improved health outcomes. A MEDLINE search was performed using PubMed and the terms "intermittent fasting," "fasting," "time-restricted feeding," and "food timing." Modified fasting regimens appear to promote weight loss and may improve metabolic health. Several lines of evidence also support the hypothesis that eating patterns that reduce or eliminate nighttime eating and prolong nightly fasting intervals may result in sustained improvements in human health. Intermittent fasting regimens are hypothesized to influence metabolic regulation via effects on (a) circadian biology, (b) the gut microbiome, and (c) modifiable lifestyle behaviors, such as sleep. If proven to be efficacious, these eating regimens offer promising nonpharmacological approaches to improving health at the population level, with multiple public health benefits.
Collapse
Affiliation(s)
- Ruth E Patterson
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093; .,Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California 92093
| | - Dorothy D Sears
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093; .,Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California 92093.,Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
30
|
Wehrens SMT, Christou S, Isherwood C, Middleton B, Gibbs MA, Archer SN, Skene DJ, Johnston JD. Meal Timing Regulates the Human Circadian System. Curr Biol 2017; 27:1768-1775.e3. [PMID: 28578930 PMCID: PMC5483233 DOI: 10.1016/j.cub.2017.04.059] [Citation(s) in RCA: 326] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/09/2017] [Accepted: 04/27/2017] [Indexed: 12/28/2022]
Abstract
Circadian rhythms, metabolism, and nutrition are intimately linked [1, 2], although effects of meal timing on the human circadian system are poorly understood. We investigated the effect of a 5-hr delay in meals on markers of the human master clock and multiple peripheral circadian rhythms. Ten healthy young men undertook a 13-day laboratory protocol. Three meals (breakfast, lunch, dinner) were given at 5-hr intervals, beginning either 0.5 (early) or 5.5 (late) hr after wake. Participants were acclimated to early meals and then switched to late meals for 6 days. After each meal schedule, participants' circadian rhythms were measured in a 37-hr constant routine that removes sleep and environmental rhythms while replacing meals with hourly isocaloric snacks. Meal timing did not alter actigraphic sleep parameters before circadian rhythm measurement. In constant routines, meal timing did not affect rhythms of subjective hunger and sleepiness, master clock markers (plasma melatonin and cortisol), plasma triglycerides, or clock gene expression in whole blood. Following late meals, however, plasma glucose rhythms were delayed by 5.69 ± 1.29 hr (p < 0.001), and average glucose concentration decreased by 0.27 ± 0.05 mM (p < 0.001). In adipose tissue, PER2 mRNA rhythms were delayed by 0.97 ± 0.29 hr (p < 0.01), indicating that human molecular clocks may be regulated by feeding time and could underpin plasma glucose changes. Timed meals therefore play a role in synchronizing peripheral circadian rhythms in humans and may have particular relevance for patients with circadian rhythm disorders, shift workers, and transmeridian travelers.
Collapse
Affiliation(s)
- Sophie M T Wehrens
- Faculty of Health and Medical Science, University of Surrey, Stag Hill Campus, Guildford, Surrey GU2 7XH, UK
| | - Skevoulla Christou
- Faculty of Health and Medical Science, University of Surrey, Stag Hill Campus, Guildford, Surrey GU2 7XH, UK
| | - Cheryl Isherwood
- Faculty of Health and Medical Science, University of Surrey, Stag Hill Campus, Guildford, Surrey GU2 7XH, UK
| | - Benita Middleton
- Faculty of Health and Medical Science, University of Surrey, Stag Hill Campus, Guildford, Surrey GU2 7XH, UK
| | - Michelle A Gibbs
- Faculty of Health and Medical Science, University of Surrey, Stag Hill Campus, Guildford, Surrey GU2 7XH, UK
| | - Simon N Archer
- Faculty of Health and Medical Science, University of Surrey, Stag Hill Campus, Guildford, Surrey GU2 7XH, UK
| | - Debra J Skene
- Faculty of Health and Medical Science, University of Surrey, Stag Hill Campus, Guildford, Surrey GU2 7XH, UK
| | - Jonathan D Johnston
- Faculty of Health and Medical Science, University of Surrey, Stag Hill Campus, Guildford, Surrey GU2 7XH, UK.
| |
Collapse
|
31
|
Liu Y, Lin X, Zhou X, Wan D, Wang Z, Wu X, Yin Y. Effects of dynamic feeding low and high methionine diets on egg quality traits in laying hens. Poult Sci 2017; 96:1459-1465. [DOI: 10.3382/ps/pew398] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/10/2016] [Indexed: 12/20/2022] Open
|
32
|
Sabino FC, de Oliveira JA, Pedrazzoli M. Per3 expression in different tissues of Cebus apella. Sleep Sci 2016; 9:262-265. [PMID: 28154738 PMCID: PMC5279932 DOI: 10.1016/j.slsci.2016.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/20/2016] [Accepted: 12/07/2016] [Indexed: 11/16/2022] Open
Abstract
We present a study of Per3 expression in six different tissues of the non-human primate Cebus apella (capuchin monkey). The aim of this study was to verify whether the expression of the Per3 gene in different tissues of capuchin monkey occurs in a circadian pattern, its phase and the phase relationships between these different tissues during the 24 h of a day. We observed that gene expression oscillated in all of the tissues studied during this time period, although only the liver and muscle presented a robust circadian pattern. This preliminary study highlights the possibility of using Cebus apella as a model to study circadian rhythms at the gene expression level and opens an opportunity for future researches.
Collapse
|
33
|
Abstract
Although light is accepted as the dominant zeitgeber for entrainment of the human circadian system, there is evidence that nonphotic stimuli may play a role. This review critically assesses the current evidence in support of nonphotic entrainment in humans. Studies involving manipulations of sleep-wake schedules, exercise, mealtimes, and social stimuli are re-examined, bearing in mind the fact that the human circadian clock is sensitive to very dim light and has a free-running period very close to 24 h. Because of light confounds, the study of totally blind subjects with free-running circadian rhythms represents the ideal model to investigate the effects of nonphotic stimuli on circadian phase and period. Strong support for nonphotic entrainment in humans has already come from the study of a few blind subjects with entrained circadian rhythms. However, in these studies the nonphotic stimulus(i) responsible was not identified. The effect of appropriately timed exercise or exogenous melatonin represents the best proof to date of an effect of nonphotic stimuli on human circadian timing. Phase-response curves for both exercise and melatonin have been constructed. Given the powerful effect of feeding as a circadian zeitgeber in various nonhuman species, studies of meal timing are recommended. In conclusion, the available evidence indicates that it remains worthwhile to continue to study nonphotic effects on human circadian timing to identify treatment strategies for shift workers and transmeridian travelers as well as for the blind and possibly the elderly.
Collapse
Affiliation(s)
- Ralph E Mistlberger
- Department of Psychology, Simon Fraser University, Burnaby, British Columbia, Canada.
| | | |
Collapse
|
34
|
Chrono-nutrition: a review of current evidence from observational studies on global trends in time-of-day of energy intake and its association with obesity. Proc Nutr Soc 2016; 75:487-500. [DOI: 10.1017/s0029665116000306] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The importance of the circadian rhythm in regulating human food intake behaviour and metabolism has long been recognised. However, little is known as to how energy intake is distributed over the day in existing populations, and its potential association with obesity. The present review describes global trends in time-of-day of energy intake in the general population based on data from cross-sectional surveys and longitudinal cohorts. Evidence of the association between time-of-day of energy intake and obesity is also summarised. Overall, there were a limited number of cross-sectional surveys and longitudinal cohorts that provided data on time-of-day of energy intake. In the identified studies, a wide variation in time-of-day of energy intake was observed, with patterns of energy distribution varying greatly by country and geographical area. In relation to obesity, eight cross-sectional surveys and two longitudinal cohorts were identified. The association between time-of-day of energy intake and obesity varied widely, with several studies reporting a positive link between evening energy intake and obesity. In conclusion, the current review summarises global trends in time-of-day of energy intake. The large variations across countries and global regions could have important implications to health, emphasising the need to understand the socio-environmental factors guiding such differences in eating patterns. Evidence of the association between time-of-day of energy intake and BMI also varied. Further larger scale collaborations between various countries and regions are needed to sum data from existing surveys and cohorts, and guide our understanding of the role of chrono-nutrition in health.
Collapse
|
35
|
Abstract
Circadian alignment is crucial for body-weight management, and for metabolic health. In this context, circadian alignment consists of alignment of sleep, meal patterns and physical activity. During puberty a significant reduction in sleep duration occurs, and pubertal status is inversely associated with sleep duration. A consistent inverse association between habitual sleep duration and body-weight development occurs, independent of possible confounders. Research on misalignment reveals that circadian misalignment affects sleep-architecture and subsequently disturbs glucose–insulin metabolism, substrate oxidation, leptin- and ghrelin concentrations, appetite, food reward, hypothalamic–pituitary–adrenal-axis activity and gut-peptide concentrations enhancing positive energy balance and metabolic disturbance. Not only aligning meals and sleep in a circadian way is crucial, also regular physical activity during the day strongly promotes the stability and amplitude of circadian rhythm, and thus may serve as an instrument to restore poor circadian rhythms. Endogenicity may play a role in interaction of these environmental variables with a genetic predisposition. In conclusion, notwithstanding the separate favourable effects of sufficient daily physical activity, regular meal patterns, sufficient sleep duration and quality sleep on energy balance, the overall effect of the amplitude and stability of the circadian rhythm, perhaps including genetic predisposition, may integrate the separate effects in an additive way.
Collapse
|
36
|
Abstract
Traditionally only a small proportion of the workforce was engaged in shift work. Changing economic pressures have resulted in increased engagement in shift work, with approximately 17 % of the workforce in Europe engaged in this work pattern. The present narrative review aimed to summarise the data on the effects of shift work on the diet, lifestyle and health of employees, while addressing the barriers to, and opportunities for, improving health among shift workers. Shift work can result in low-quality diet and irregular eating patterns. Adverse health behaviours are also reported; particularly increased smoking and poor sleep patterns. These altered lifestyle habits, in conjunction with disruption to circadian rhythms, can create an unfavourable metabolic phenotype which facilitates the development and progression of chronic disease. Although the data are inconclusive due to issues such as poor study design and inadequate control for confounding factors; shift workers appear to be at increased mental and physical health risk, particularly with regard to non-communicable diseases. Information is lacking on the obstacles to leading a healthier lifestyle while working shifts, and where opportunities lie for intervention and health promotion among this group. In order to provide an informed evidence base to assist shift workers in overcoming associated occupational hazards, this gap must be addressed. This review highlights the unique nutritional issues faced by shift workers, and the subsequent effect on health. In societies already burdened with increased incidence of non-communicable chronic diseases, there is a clear need for education and behaviour change interventions among this group.
Collapse
|
37
|
Peschke E, Bähr I, Mühlbauer E. Experimental and clinical aspects of melatonin and clock genes in diabetes. J Pineal Res 2015; 59:1-23. [PMID: 25904189 DOI: 10.1111/jpi.12240] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/20/2015] [Indexed: 12/15/2022]
Abstract
The pineal hormone melatonin influences insulin secretion, as well as glucagon and somatostatin secretion, both in vivo and in vitro. These effects are mediated by two specific, high-affinity, seven transmembrane, pertussis toxin-sensitive, Gi-protein-coupled melatonin receptors, MT1 and MT2. Both isoforms are expressed in the β-cells, α-cells as well as δ-cells of the pancreatic islets of Langerhans and are involved in the modulation of insulin secretion, leading to inhibition of the adenylate cyclase-dependent cyclic adenosine monophosphate as well as cyclic guanosine monophosphate formation in pancreatic β-cells by inhibiting the soluble guanylate cyclase, probably via MT2 receptors. In this way, melatonin also likely inhibits insulin secretion, whereas using the inositol triphosphate pathway after previous blocking of Gi-proteins by pertussis toxin, melatonin increases insulin secretion. Desynchrony of receptor signaling may lead to the development of type 2 diabetes. This notion has recently been supported by genomewide association studies pinpointing variances of the MT2 receptor as a risk factor for this rapidly spreading metabolic disturbance. As melatonin is secreted in a clearly diurnal fashion, it is safe to assume that it also has a diurnal impact on the blood-glucose-regulating function of the islet. Observations of the circadian expression of clock genes (Clock, Bmal1, Per1,2,3, and Cry1,2) in pancreatic islets, as well as in INS1 rat insulinoma cells, may indicate that circadian rhythms are generated in the β-cells themselves. The circadian secretion of insulin from pancreatic islets is clock-driven. Disruption of circadian rhythms and clock function leads to metabolic disturbances, for example, type 2 diabetes. The study of melatonin-insulin interactions in diabetic rat models has revealed an inverse relationship between these two hormones. Both type 2 diabetic rats and patients exhibit decreased melatonin levels and slightly increased insulin levels, whereas type 1 diabetic rats show extremely reduced levels or the absence of insulin, but statistically significant increases in melatonin levels. Briefly, an increase in melatonin levels leads to a decrease in stimulated insulin secretion and vice versa. Melatonin levels in blood plasma, as well as the activity of the key enzyme of melatonin synthesis, AA-NAT (arylalkylamine-N-acetyltransferase) in pineal, are lower in type 2 diabetic rats compared to controls. In contrast, melatonin and pineal AA-NAT mRNA are increased and insulin receptor mRNA is decreased in type 1 diabetic rats, which also indicates a close relationship between insulin and melatonin. As an explanation, it was hypothesized that catecholamines, which reduce insulin levels and stimulate melatonin synthesis, control insulin-melatonin interactions. This conviction stems from the observation that catecholamines are increased in type 1 but are diminished in type 2 diabetes. In this context, another important line of inquiry involves the fact that melatonin protects β-cells against functional overcharge and, consequently, hinders the development of type 2 diabetes.
Collapse
Affiliation(s)
| | - Ina Bähr
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | |
Collapse
|
38
|
Abstract
Circadian rhythms, metabolism and nutrition are closely interlinked. A great deal of recent research has investigated not only how aspects of metabolic physiology are driven by circadian clocks, but also how these circadian clocks are themselves sensitive to metabolic change. At the cellular level, novel feedback loops have been identified that couple circadian 'clock genes' and their proteins to expression of nuclear receptors, regulation of redox state and other major pathways. Using targeted disruption of circadian clocks, mouse models are providing novel insight into the role of tissue-specific clocks in glucose homeostasis and body weight regulation. The relationship between circadian rhythms and obesity appears complex, with variable alteration of rhythms in obese individuals. However, it is clear from animal studies that the timing and nutritional composition of meals can regulate circadian rhythms, particularly in peripheral tissues. Translation of these findings to human physiology now represents an important goal.
Collapse
Affiliation(s)
- Jonathan D Johnston
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
39
|
Effects of sequential feeding with low- and high-protein diets on growth performances and plasma metabolite levels in geese. Animal 2015; 9:952-7. [PMID: 25556532 DOI: 10.1017/s1751731114003267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study was conducted by two trials to investigate effects of sequential feeding with low- and high-protein diets on growth traits and plasma metabolites in geese. In Trial I, the effect of sequential feeding under time-restricted feeding system was investigated. Seventy-two White Roman goslings were randomly allotted into either sequential feeding (S1) or control feeding (C1) group. All goslings were fed for 1 h at morning and at evening, respectively, from 2 to 8 weeks of age. S1 group was offered 13% CP diet at morning and 19% CP diet at evening. C1 group was offered the same diet (16% CP; mixed equally with the two diets mentioned above) at both morning and evening. Blood samples were hourly collected for 4 h after feeding at both morning and evening for the determination of the postprandial plasma levels of glucose, triacylglycerol and uric acid at the end of experiment. Results showed that BW, average daily gain (ADG), and daily feed intake (FI) were not different between groups, but the feed efficiency (FE) in S1 group was significantly higher than that in C1 group (P<0.05). The areas under curve (AUC) of plasma postprandial levels of glucose, triacylglycerol and uric acid were not affected by treatment, but the AUC of triacylglycerol and uric acid in morning were lower than those in evening (P<0.05). In Trial II, the effect of sequential feeding under ad libitum feeding system was investigated. Twenty-four goslings were randomly allotted into either sequential feeding (S2) or control feeding (C2) group. Diets were altered at 0600 and 1800 h, respectively, and geese were fed ad libitum from 4 to 8 weeks of age. S2 group was offered 14% CP diet at morning and 20% CP diet at evening. C2 group was supplied the same diet (mixed with the two diets according to the ratio of diets consumed by S2 group on the preceded day) at both morning and evening. Results showed that the ADG in S2 group was higher than those in C2 group (P<0.05). Summarized data from both trials showed that sequential feeding improves daily gain and FE in growing geese.
Collapse
|
40
|
Sargis RM. Metabolic disruption in context: Clinical avenues for synergistic perturbations in energy homeostasis by endocrine disrupting chemicals. ENDOCRINE DISRUPTORS (AUSTIN, TEX.) 2015; 3:e1080788. [PMID: 27011951 PMCID: PMC4801233 DOI: 10.1080/23273747.2015.1080788] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The global epidemic of metabolic disease is a clear and present danger to both individual and societal health. Understanding the myriad factors contributing to obesity and diabetes is essential for curbing their decades-long expansion. Emerging data implicate environmental endocrine disrupting chemicals (EDCs) in the pathogenesis of metabolic diseases such as obesity and diabetes. The phenylsulfamide fungicide and anti-fouling agent tolylfluanid (TF) was recently added to the list of EDCs promoting metabolic dysfunction. Dietary exposure to this novel metabolic disruptor promoted weight gain, increased adiposity, and glucose intolerance as well as systemic and cellular insulin resistance. Interestingly, the increase in body weight and adipose mass was not a consequence of increased food consumption; rather, it may have resulted from disruptions in diurnal patterns of energy intake, raising the possibility that EDCs may promote metabolic dysfunction through alterations in circadian rhythms. While these studies provide further evidence that EDCs may promote the development of obesity and diabetes, many questions remain regarding the clinical factors that modulate patient-specific consequences of EDC exposure, including the impact of genetics, diet, lifestyle, underlying disease, pharmacological treatments, and clinical states of fat redistribution. Currently, little is known regarding the impact of these factors on an individual's susceptibility to environmentally-mediated metabolic disruption. Advances in these areas will be critical for translating EDC science into the clinic to enable physicians to stratify an individual's risk of developing EDC-induced metabolic disease and to provide direction for treating exposed patients.
Collapse
Affiliation(s)
- Robert M Sargis
- Committee on Molecular Metabolism and Nutrition; Kovler Diabetes Center; Section of Endocrinology, Diabetes, and Metabolism; Department of Medicine; University of Chicago; Chicago, IL USA
| |
Collapse
|
41
|
Narciso FV, Teixeira CW, Oliveira e Silva L, Koyama RG, Carvalho ANDS, Esteves AM, Tufik S, Mello MTD. Maquinistas ferroviários: trabalho em turnos e repercussões na saúde. REVISTA BRASILEIRA DE SAÚDE OCUPACIONAL 2014. [DOI: 10.1590/0303-7657000084113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objetivo descrever o impacto do trabalho em turnos na saúde, no sono e na qualidade de vida de maquinistas ferroviários. Métodos foram avaliados 611 maquinistas (escalas de trabalho 4 x 1 e 6 x 2), por meio de polissonografia, Índice da Qualidade do Sono de Pittsburgh, Índice de Gravidade de Insônia, Questionário de Qualidade de Vida SF-36, Questionário de Horne e Östberg, Capacidade de Trabalho e Escala de Sonolência de Epworth. Resultados os maquinistas apresentaram idade média de 36,6 ± 15,1 anos, 22% apresentaram obesidade e 38,1% risco para doenças cardiovasculares. Em relação ao sono, 64,2% dos maquinistas relataram qualidade ruim de sono, 11,6% apresentaram distúrbios do sono e 29,3% sonolência excessiva. Os resultados da polissonografia mostraram que 36,1% deles apresentaram apneia do sono e 47,2% demonstraram eficiência do sono reduzida. Além disso, os maquinistas apresentaram baixos índices de qualidade de vida, especialmente os da escala 4 x 1. Conclusão é possível afirmar, na população estudada, que a exposição ao trabalho em turnos, a rotatividade inversa, pouco tempo dispensado às folgas e horas extras de trabalho estão associados a danos ao bem-estar, saúde, sociabilização e ao sono de qualidade desses trabalhadores e que provavelmente os fatores relacionados aos turnos de trabalho contribuem para esses danos.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sérgio Tufik
- Associação Fundo de Incentivo a Pesquisa, Brazil; Universidade Federal de São Paulo, Brazil
| | - Marco Túlio de Mello
- Associação Fundo de Incentivo a Pesquisa, Brazil; Universidade Federal de São Paulo, Brazil
| |
Collapse
|
42
|
Hampton SM, Johnston JD. Probing the diurnal regulation of glycemic control. J Diabetes Complications 2014; 28:751-2. [PMID: 25161099 DOI: 10.1016/j.jdiacomp.2014.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 01/02/2023]
|
43
|
Faraut B, Bayon V, Léger D. Neuroendocrine, immune and oxidative stress in shift workers. Sleep Med Rev 2013; 17:433-44. [DOI: 10.1016/j.smrv.2012.12.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 12/11/2012] [Accepted: 12/20/2012] [Indexed: 10/26/2022]
|
44
|
Spudeit WA, Sulzbach NS, Bittencourt MDA, Duarte AMC, Liang H, Lino-de-Oliveira C, Marino-Neto J. The behavioral satiety sequence in pigeons (Columba livia). Description and development of a method for quantitative analysis. Physiol Behav 2013; 122:62-71. [DOI: 10.1016/j.physbeh.2013.08.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/30/2013] [Indexed: 11/15/2022]
|
45
|
Almoosawi S, Prynne CJ, Hardy R, Stephen AM. Diurnal eating rhythms: association with long-term development of diabetes in the 1946 British birth cohort. Nutr Metab Cardiovasc Dis 2013; 23:1025-1030. [PMID: 23541169 DOI: 10.1016/j.numecd.2013.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 01/07/2013] [Accepted: 01/07/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS Few studies have described the association between time-of-day of macronutrient intake and diabetes. This study examined the prospective association between time-of-day and nutrient composition of eating occasions in relation to diabetes incidence in the 1946 British birth cohort. METHODS AND RESULTS The study included 1618 survey members who completed dietary assessment at age 43 (1989) and for whom data on glycosylated haemoglobin at age 53 years (1999) were available. Diet was assessed using 5d estimated diaries, divided into seven meal slots: breakfast, mid-morning, lunch, mid-afternoon, dinner, late evening and extras. Diabetes was defined by glycosylated haemoglobin (HbA1c) ≥ 6.5% or diabetes medication use. The association between time-of-day of macronutrient intake at age 43 years and diabetes at age 53 years was assessed using logistic multivariate nutrient density models after adjustment for potential confounders. There were 66 cases of diabetes at age 53 years. Survey members with diabetes obtained 50.4% of their energy from carbohydrate at breakfast compared to 55.9% in survey members without diabetes (P = 0.001). Increasing carbohydrate intake at breakfast at the expense of fat was related to lower odds ratio (OR) of diabetes (OR = 0.86; 95%CI = 0.79-0.93; P < 0.001). This relationship was attenuated after adjustment for body mass index and waist circumference. CONCLUSION Increasing energy intake from carbohydrate at the expense of fat at breakfast is inversely associated with 10-year diabetes incidence. However, further studies are required to elucidate whether the type or source of carbohydrates or fat influences the above association.
Collapse
Affiliation(s)
- S Almoosawi
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, UK.
| | | | | | | |
Collapse
|
46
|
Flynn-Evans EE, Mucci L, Stevens RG, Lockley SW. Shiftwork and prostate-specific antigen in the National Health and Nutrition Examination Survey. J Natl Cancer Inst 2013; 105:1292-7. [PMID: 23943864 DOI: 10.1093/jnci/djt169] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Shiftwork has been implicated as a risk factor for prostate cancer. Results from prior studies have been mixed but generally support an association between circadian disruption and prostate cancer. Our aim was to investigate the relationship between shiftwork and prostate-specific antigen (PSA) test obtained as part of the National Health and Nutrition Examination Survey (NHANES) study. METHODS We combined three NHANES surveys (2005-2010) to obtain current work schedule among employed men aged 40 to 65 years with no prior history of cancer (except nonmelanoma skin cancer). Men who reported working regular night shifts or rotating shifts were considered shiftworkers. We obtained the total and percentage free PSA test results for these men and dichotomized total PSA into less than 4.0 ng/mL or 4.0 ng/mL or greater and total PSA of 4.0 ng/mL or greater combined with percentage free PSA less than or equal to 25%. Using multivariable logistic regression models, we compared PSA level among current shiftworkers and nonshiftworkers. All statistical tests were two-sided. RESULTS We found a statistically significant, age-adjusted association between current shiftwork and elevated PSA at the 4.0 ng/mL or greater level (odds ratio = 2.48, 95% confidence interval [CI] = 1.08 to 5.70; P = .03). The confounder-adjusted odds ratio was 2.62 (95% CI = 1.16 to 5.95; P = .02). The confounder-adjusted odds ratio for those with total PSA of 4.0 ng/mL or greater and free PSA less than or equal to 25% was 3.13 (95% CI = 1.38 to 7.09; P = .01). CONCLUSIONS We observed a strong positive association with shiftwork and elevated PSA level. Our data support the notion that sleep or circadian disruption is associated with elevated PSA, indicating that shiftworking men likely have an increased risk of developing prostate cancer.
Collapse
Affiliation(s)
- Erin E Flynn-Evans
- Division of Sleep Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
47
|
Adachi M, Yamaoka K, Watanabe M, Nishikawa M, Kobayashi I, Hida E, Tango T. Effects of lifestyle education program for type 2 diabetes patients in clinics: a cluster randomized controlled trial. BMC Public Health 2013; 13:467. [PMID: 23672733 PMCID: PMC3658890 DOI: 10.1186/1471-2458-13-467] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 05/06/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The prevalence of type 2 diabetes is rising worldwide, as has been the global mean fasting plasma glucose level. This study aimed to evaluate the effectiveness of a structured individual-based lifestyle education (SILE) program to reduce the hemoglobin A1c (HbA1c) level in type 2 diabetes patients delivered by registered dietitians in primary care clinical settings. METHODS This was a 6-month prospective cluster randomized controlled trial in a primary care setting with randomization at the practice level. Twenty general practitioners in 20 clinics in Kanagawa prefecture, Japan, were involved. 193 adults (51% men, mean age 61.3 years) with type 2 diabetes and HbA1c ≥6.5% who received treatment in medical clinics were the participants. A SILE program was implemented through 4 sessions with trained registered dietitians during the 6-month study period. Results were compared with those of a control group who received usual care. The primary endpoint was the change in HbA1c levels at 6 months from baseline. Secondary endpoints were the changes at 6 months from baseline in fasting plasma glucose, lipid profile, blood pressure, BMI, energy, and nutrient intakes (whole day and each meal). Intention-to-treat analysis was conducted. Mixed-effects linear models were used to examine the effects of the treatment. RESULTS The mean change at 6 months from baseline in HbA1c was a 0.7% decrease in the intervention group (n = 100) and a 0.2% decrease in the control group (n = 93) (difference -0.5%, 95%CI: -0.2% to -0.8%, p = 0.004). After adjusting for baseline values and other factors, the difference was still significant (p = 0.003 ~ 0.011). The intervention group had a significantly greater decrease in mean energy intake at dinner compared with the control group and a greater increase in mean vegetable intake for the whole day, breakfast, and lunch as shown in crude and adjusted models. A tendency toward improvement was observed in the other secondary endpoints but the improvement was not statistically significant. These results were confirmed by several sensitivity analyses. CONCLUSIONS The SILE program that was provided in primary care settings for patients with type 2 diabetes resulted in greater improvement in HbA1c levels than usual diabetes care and education. TRIAL REGISTRATION http://UMIN000004049.
Collapse
Affiliation(s)
- Misa Adachi
- Nutrition Support Network LLC, 2-2-4 Wakamatu, Sagamihara, Kanagawa, 252-0334, Japan
| | - Kazue Yamaoka
- Teikyo University, Graduate School of Public Health, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Mariko Watanabe
- Showa Women’s University, Graduate School of Life Science, 1-7 Taishido, Setagaya, Tokyo, 154-0004, Japan
| | - Masako Nishikawa
- Department of Technology Assessment and Biostatistics, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama, 351-0197, Japan
| | - Itsuro Kobayashi
- Kobayashi Medical Clinic, Ryokujukai Cooperation, 5-27-28 Sagamiono, Sagamihara, Kanagawa, 252-0303, Japan
| | - Eisuke Hida
- Center for Medical Statistics, SAN Building 401, 2-9-6 Higashi Shinbashi, Minato-ku, Tokyo, 105-0021, Japan
| | - Toshiro Tango
- Center for Medical Statistics, SAN Building 401, 2-9-6 Higashi Shinbashi, Minato-ku, Tokyo, 105-0021, Japan
| |
Collapse
|
48
|
Gonnissen HKJ, Hulshof T, Westerterp-Plantenga MS. Chronobiology, endocrinology, and energy- and food-reward homeostasis. Obes Rev 2013; 14:405-16. [PMID: 23387351 DOI: 10.1111/obr.12019] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/07/2013] [Accepted: 01/07/2013] [Indexed: 12/28/2022]
Abstract
Energy- and food-reward homeostasis is the essential component for maintaining energy balance and its disruption may lead to metabolic disorders, including obesity and diabetes. Circadian alignment, quality sleep and sleep architecture in relation to energy- and food-reward homeostasis are crucial. A reduced sleep duration, quality sleep and rapid-eye movement sleep affect substrate oxidation, leptin and ghrelin concentrations, sleeping metabolic rate, appetite, food reward, hypothalamic-pituitary-adrenal (HPA)-axis activity, and gut-peptide concentrations, enhancing a positive energy balance. Circadian misalignment affects sleep architecture and the glucose-insulin metabolism, substrate oxidation, homeostasis model assessment of insulin resistance (HOMA-IR) index, leptin concentrations and HPA-axis activity. Mood disorders such as depression occur; reduced dopaminergic neuronal signaling shows decreased food reward. A good sleep hygiene, together with circadian alignment of food intake, a regular meal frequency, and attention for protein intake or diets, contributes in curing sleep abnormalities and overweight/obesity features by preventing overeating; normalizing substrate oxidation, stress, insulin and glucose metabolism including HOMA-IR index, and leptin, GLP-1 concentrations, lipid metabolism, appetite, energy expenditure and substrate oxidation; and normalizing food reward. Synchrony between circadian and metabolic processes including meal patterns plays an important role in the regulation of energy balance and body-weight control. Additive effects of circadian alignment including meal patterns, sleep restoration, and protein diets in the treatment of overweight and obesity are suggested.
Collapse
Affiliation(s)
- H K J Gonnissen
- Department of Human Biology, Nutrim, Maastricht University, Maastricht, the Netherlands
| | | | | |
Collapse
|
49
|
Gamble KL, Young ME. Metabolism as an integral cog in the mammalian circadian clockwork. Crit Rev Biochem Mol Biol 2013; 48:317-31. [PMID: 23594144 DOI: 10.3109/10409238.2013.786672] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Circadian rhythms are an integral part of life. These rhythms are apparent in virtually all biological processes studies to date, ranging from the individual cell (e.g. DNA synthesis) to the whole organism (e.g. behaviors such as physical activity). Oscillations in metabolism have been characterized extensively in various organisms, including mammals. These metabolic rhythms often parallel behaviors such as sleep/wake and fasting/feeding cycles that occur on a daily basis. What has become increasingly clear over the past several decades is that many metabolic oscillations are driven by cell-autonomous circadian clocks, which orchestrate metabolic processes in a temporally appropriate manner. During the process of identifying the mechanisms by which clocks influence metabolism, molecular-based studies have revealed that metabolism should be considered an integral circadian clock component. The implications of such an interrelationship include the establishment of a vicious cycle during cardiometabolic disease states, wherein metabolism-induced perturbations in the circadian clock exacerbate metabolic dysfunction. The purpose of this review is therefore to highlight recent insights gained regarding links between cell-autonomous circadian clocks and metabolism and the implications of clock dysfunction in the pathogenesis of cardiometabolic diseases.
Collapse
Affiliation(s)
- Karen L Gamble
- Division of Behavioral Neurobiology, Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
50
|
Lamport DJ, Dye L, Mansfield MW, Lawton CL. Acute glycaemic load breakfast manipulations do not attenuate cognitive impairments in adults with type 2 diabetes. Clin Nutr 2013; 32:265-72. [DOI: 10.1016/j.clnu.2012.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 07/20/2012] [Accepted: 07/21/2012] [Indexed: 01/08/2023]
|