1
|
Germanos M, Gao A, Taper M, Yau B, Kebede MA. Inside the Insulin Secretory Granule. Metabolites 2021; 11:metabo11080515. [PMID: 34436456 PMCID: PMC8401130 DOI: 10.3390/metabo11080515] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
The pancreatic β-cell is purpose-built for the production and secretion of insulin, the only hormone that can remove glucose from the bloodstream. Insulin is kept inside miniature membrane-bound storage compartments known as secretory granules (SGs), and these specialized organelles can readily fuse with the plasma membrane upon cellular stimulation to release insulin. Insulin is synthesized in the endoplasmic reticulum (ER) as a biologically inactive precursor, proinsulin, along with several other proteins that will also become members of the insulin SG. Their coordinated synthesis enables synchronized transit through the ER and Golgi apparatus for congregation at the trans-Golgi network, the initiating site of SG biogenesis. Here, proinsulin and its constituents enter the SG where conditions are optimized for proinsulin processing into insulin and subsequent insulin storage. A healthy β-cell is continually generating SGs to supply insulin in vast excess to what is secreted. Conversely, in type 2 diabetes (T2D), the inability of failing β-cells to secrete may be due to the limited biosynthesis of new insulin. Factors that drive the formation and maturation of SGs and thus the production of insulin are therefore critical for systemic glucose control. Here, we detail the formative hours of the insulin SG from the luminal perspective. We do this by mapping the journey of individual members of the SG as they contribute to its genesis.
Collapse
|
2
|
Bäck N, Mains RE, Eipper BA. PAM: diverse roles in neuroendocrine cells, cardiomyocytes, and green algae. FEBS J 2021; 289:4470-4496. [PMID: 34089560 DOI: 10.1111/febs.16049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/28/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022]
Abstract
Our understanding of the ways in which peptides are used for communication in the nervous and endocrine systems began with the identification of oxytocin, vasopressin, and insulin, each of which is stored in electron-dense granules, ready for release in response to an appropriate stimulus. For each of these peptides, entry of its newly synthesized precursor into the ER lumen is followed by transport through the secretory pathway, exposing the precursor to a sequence of environments and enzymes that produce the bioactive products stored in mature granules. A final step in the biosynthesis of many peptides is C-terminal amidation by peptidylglycine α-amidating monooxygenase (PAM), an ascorbate- and copper-dependent membrane enzyme that enters secretory granules along with its soluble substrates. Biochemical and cell biological studies elucidated the highly conserved mechanism for amidated peptide production and raised many questions about PAM trafficking and the effects of PAM on cytoskeletal organization and gene expression. Phylogenetic studies and the discovery of active PAM in the ciliary membranes of Chlamydomonas reinhardtii, a green alga lacking secretory granules, suggested that a PAM-like enzyme was present in the last eukaryotic common ancestor. While the catalytic features of human and C. reinhardtii PAM are strikingly similar, the trafficking of PAM in C. reinhardtii and neuroendocrine cells and secretion of its amidated products differ. A comparison of PAM function in neuroendocrine cells, atrial myocytes, and C. reinhardtii reveals multiple ways in which altered trafficking allows PAM to accomplish different tasks in different species and cell types.
Collapse
Affiliation(s)
- Nils Bäck
- Department of Anatomy, University of Helsinki, Finland
| | - Richard E Mains
- Department of Neuroscience, UConn Health, Farmington, CT, USA
| | - Betty A Eipper
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| |
Collapse
|
3
|
Rao VKS, Eipper BA, Mains RE. Multiple roles for peptidylglycine α-amidating monooxygenase in the response to hypoxia. J Cell Physiol 2021; 236:7745-7758. [PMID: 34061983 DOI: 10.1002/jcp.30457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 11/11/2022]
Abstract
The biosynthesis of many of the peptides involved in homeostatic control requires peptidylglycine α-amidating monooxygenase (PAM), an ancient, highly conserved copper- and ascorbate-dependent enzyme. Using the production of amidated chromogranin A to monitor PAM function in tumor cells, physiologically relevant levels of hypoxia were shown to inhibit this monooxygenase. The ability of primary pituitary cells exposed to hypoxic conditions for 4 h to produce amidated chromogranin A was similarly inhibited. The affinity of the purified monooxygenase for oxygen (Km = 99 ± 19 μM) was consistent with this result. The ability of PAM to alter secretory pathway behavior under normoxic conditions required its monooxygenase activity. Under normoxic conditions, hypoxia-inducible factor 1a levels in dense cultures of corticotrope tumor cells expressing high levels of PAM exceeded those in control cells; expression of inactive monooxygenase did not have this effect. The effects of hypoxia on levels of two PAM-regulated genes (activating transcription factor 3 [Atf3] and FK506 binding protein 2 [Fkbp2]) differed in cells expressing high versus low levels of PAM. Putative hypoxia response elements occur in both human and mouse PAM, and hPAM has consistently been identified as one of the genes upregulated in response to hypoxia. Expression of PAM is also known to alter gene expression. A quarter of the genes consistently upregulated in response to hypoxia were downregulated following increased expression of PAM. Taken together, our data suggest roles for PAM and amidated peptide secretion in the coordination of tissue-specific responses to hypoxia.
Collapse
Affiliation(s)
- Vishwanatha K S Rao
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA.,Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
4
|
Rao VK, Zavala G, Deb Roy A, Mains RE, Eipper BA. A pH-sensitive luminal His-cluster promotes interaction of PAM with V-ATPase along the secretory and endocytic pathways of peptidergic cells. J Cell Physiol 2018; 234:8683-8697. [PMID: 30317586 DOI: 10.1002/jcp.27528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/11/2018] [Indexed: 01/18/2023]
Abstract
The biosynthetic and endocytic pathways of secretory cells are characterized by progressive luminal acidification, a process which is crucial for posttranslational modifications and membrane trafficking. This progressive fall in luminal pH is mainly achieved by the vacuolar-type-H+ ATPase (V-ATPase). V-ATPases are large, evolutionarily ancient rotary proton pumps that consist of a peripheral V1 complex, which hydrolyzes ATP, and an integral membrane V0 complex, which transports protons from the cytosol into the lumen. Upon sensing the desired luminal pH, V-ATPase activity is regulated by reversible dissociation of the complex into its V1 and V0 components. Molecular details of how intraluminal pH is sensed and transmitted to the cytosol are not fully understood. Peptidylglycine α-amidating mono-oxygenase (PAM; EC 1.14.17.3), a secretory pathway membrane enzyme which shares similar topology with two V-ATPase accessory proteins (Ac45 and prorenin receptor), has a pH-sensitive luminal linker region. Immunofluorescence and sucrose gradient analysis of peptidergic cells (AtT-20) identified distinct subcellular compartments exhibiting spatial co-occurrence of PAM and V-ATPase. In vitro binding assays demonstrated direct binding of the cytosolic domain of PAM to V1H. Blue native PAGE identified heterogeneous high-molecular weight complexes of PAM and V-ATPase. A PAM-1 mutant (PAM-1/H3A) with altered pH sensitivity had diminished ability to form high-molecular weight complexes. In addition, V-ATPase assembly status was altered in PAM-1/H3A expressing cells. Our analysis of the secretory and endocytic pathways of peptidergic cells supports the hypothesis that PAM serves as a luminal pH-sensor, regulating V-ATPase action by altering its assembly status.
Collapse
Affiliation(s)
- Vishwanatha K Rao
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Gerardo Zavala
- Department of Chemistry, University of Texas at El Paso, El Paso, Texas
| | - Abhijit Deb Roy
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut.,Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
5
|
Mains RE, Blaby-Haas C, Rheaume BA, Eipper BA. Changes in Corticotrope Gene Expression Upon Increased Expression of Peptidylglycine α-Amidating Monooxygenase. Endocrinology 2018; 159:2621-2639. [PMID: 29788427 PMCID: PMC6287594 DOI: 10.1210/en.2018-00235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/09/2018] [Indexed: 11/19/2022]
Abstract
Throughout evolution, secretion has played an essential role in the ability of organisms and single cells to survive in the face of a changing environment. Peptidylglycine α-amidating monooxygenase (PAM) is an integral membrane monooxygenase, first identified for its role in the biosynthesis of neuroendocrine peptides released by the regulated secretory pathway. PAM was subsequently identified in Chlamydomonas reinhardtii, a unicellular green alga, where it plays an essential role in constitutive secretion and in ciliogenesis. Reduced expression of C. reinhardtii PAM resulted in significant changes in secretion and ciliogenesis. Hence, a screen was performed for transcripts and proteins whose expression responded to changes in PAM levels in a mammalian corticotrope tumor cell line. The goal was to identify genes not previously known to play a role in secretion. The screen identified transcription factors, peptidyl prolyl isomerases, endosomal/lysosomal proteins, and proteins involved in tissue-specific responses to glucose and amino acid availability that had not previously been recognized as relevant to the secretory pathway. Perhaps reflecting the dependence of PAM on molecular oxygen, many PAM-responsive genes are known to be hypoxia responsive. The data highlight the extent to which the performance of the secretory pathway may be integrated into a wide diversity of signaling pathways.
Collapse
Affiliation(s)
- Richard E Mains
- Neuroscience, University of Connecticut Health Center, Farmington,
Connecticut
- Correspondence: Richard E. Mains, PhD, University of Connecticut Health Center, 263 Farmington
Avenue, Farmington, Connecticut 06030. E-mail:
| | | | - Bruce A Rheaume
- Neuroscience, University of Connecticut Health Center, Farmington,
Connecticut
| | - Betty A Eipper
- Neuroscience, University of Connecticut Health Center, Farmington,
Connecticut
- Molecular Biology & Biophysics, University of Connecticut, Farmington,
Connecticut
| |
Collapse
|
6
|
Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway. Nat Commun 2016; 7:10640. [PMID: 26879543 PMCID: PMC4757759 DOI: 10.1038/ncomms10640] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/07/2016] [Indexed: 12/12/2022] Open
Abstract
Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transition from a broad range of redox states to a uniformly reducing cytosol facilitates reduction of the copper chaperone Atox1, liberating its metal-binding site. Concomitantly, expression of Atox1 and its partner, a copper transporter ATP7A, is upregulated. These events produce a higher flux of copper through the secretory pathway that balances copper in the cytosol and increases supply of the cofactor to copper-dependent enzymes, expression of which is elevated in differentiated neurons. Direct link between glutathione oxidation and copper compartmentalization allows for rapid metabolic adjustments essential for normal neuronal function.
Collapse
|
7
|
Carlson K, Pomerantz SC, Vafa O, Naso M, Strohl W, Mains RE, Eipper BA. Optimizing production of Fc-amidated peptides by Chinese hamster ovary cells. BMC Biotechnol 2015; 15:95. [PMID: 26475607 PMCID: PMC4609047 DOI: 10.1186/s12896-015-0210-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 10/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Amidation of the carboxyl terminal of many peptides is essential for full biological potency, often increasing receptor binding and stability. The single enzyme responsible for this reaction is peptidylglycine α-amidating monooxygenase (PAM: EC 1.14.17.3), a copper- and ascorbate-dependent Type I membrane protein. METHODS To make large amounts of high molecular weight amidated product, Chinese hamster ovary (CHO) cells were engineered to express exogenous PAM. To vary access of the enzyme to its substrate, exogenous PAM was targeted to the endoplasmic reticulum, trans-Golgi network, endosomes and lysosomes or to the lumen of the secretory pathway. RESULTS PAM was equally active when targeted to each intracellular location and assayed in homogenates. Immunocytochemical analyses of CHO cells and a pituitary cell line demonstrated that targeting of exogenous PAM was partially successful. PAM substrates generated by expressing peptidylglycine substrates (glucagon-like peptide 1-Gly, peptide YY-Gly and neuromedin U-Gly) fused to the C-terminus of immunoglobulin Fc in CHO cell lines producing targeted PAM. The extent of amidation of the Fc-peptides was determined by mass spectrometry and amidation-specific enzyme immunoassays. Amidation was inhibited by copper chelation, but was not enhanced by the addition of additional copper or ascorbate. CONCLUSIONS Peptide amidation was increased over endogenous levels by exogenous PAM, and targeting PAM to the endoplasmic reticulum or trans-Golgi network increased peptide amidation compared to endogenous CHO PAM.
Collapse
Affiliation(s)
- Kristina Carlson
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA.
| | - Steven C Pomerantz
- Biologics Research, Biotechnology Center of Excellence, Janssen Research & Development, LLC, Spring House, PA, 19477, USA.
| | - Omid Vafa
- Biologics Research, Biotechnology Center of Excellence, Janssen Research & Development, LLC, Spring House, PA, 19477, USA.
| | - Michael Naso
- Biologics Research, Biotechnology Center of Excellence, Janssen Research & Development, LLC, Spring House, PA, 19477, USA.
| | - William Strohl
- Biologics Research, Biotechnology Center of Excellence, Janssen Research & Development, LLC, Spring House, PA, 19477, USA.
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA.
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA. .,Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
8
|
Bonnemaison ML, Bäck N, Duffy ME, Ralle M, Mains RE, Eipper BA. Adaptor Protein-1 Complex Affects the Endocytic Trafficking and Function of Peptidylglycine α-Amidating Monooxygenase, a Luminal Cuproenzyme. J Biol Chem 2015; 290:21264-79. [PMID: 26170456 DOI: 10.1074/jbc.m115.641027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Indexed: 11/06/2022] Open
Abstract
The adaptor protein-1 complex (AP-1), which transports cargo between the trans-Golgi network and endosomes, plays a role in the trafficking of Atp7a, a copper-transporting P-type ATPase, and peptidylglycine α-amidating monooxygenase (PAM), a copper-dependent membrane enzyme. Lack of any of the four AP-1 subunits impairs function, and patients with MEDNIK syndrome, a rare genetic disorder caused by lack of expression of the σ1A subunit, exhibit clinical and biochemical signs of impaired copper homeostasis. To explore the role of AP-1 in copper homeostasis in neuroendocrine cells, we used corticotrope tumor cells in which AP-1 function was diminished by reducing expression of its μ1A subunit. Copper levels were unchanged when AP-1 function was impaired, but cellular levels of Atp7a declined slightly. The ability of PAM to function was assessed by monitoring 18-kDa fragment-NH2 production from proopiomelanocortin. Reduced AP-1 function made 18-kDa fragment amidation more sensitive to inhibition by bathocuproine disulfonate, a cell-impermeant Cu(I) chelator. The endocytic trafficking of PAM was altered, and PAM-1 accumulated on the cell surface when AP-1 levels were reduced. Reduced AP-1 function increased the Atp7a presence in early/recycling endosomes but did not alter the ability of copper to stimulate its appearance on the plasma membrane. Co-immunoprecipitation of a small fraction of PAM and Atp7a supports the suggestion that copper can be transferred directly from Atp7a to PAM, a process that can occur only when both proteins are present in the same subcellular compartment. Altered luminal cuproenzyme function may contribute to deficits observed when the AP-1 function is compromised.
Collapse
Affiliation(s)
| | - Nils Bäck
- the Department of Anatomy, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland, and
| | - Megan E Duffy
- the Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, Oregon 97239
| | - Martina Ralle
- the Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, Oregon 97239
| | - Richard E Mains
- Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Betty A Eipper
- From the Departments of Molecular Biology and Biophysics and Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030,
| |
Collapse
|
9
|
Carlson KR, Pomerantz SC, Li J, Vafa O, Naso M, Strohl W, Mains RE, Eipper BA. Secretion of Fc-amidated peptide fusion proteins by Chinese hamster ovary cells. BMC Biotechnol 2015; 15:61. [PMID: 26116580 PMCID: PMC4482046 DOI: 10.1186/s12896-015-0173-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/29/2015] [Indexed: 12/30/2022] Open
Abstract
Background The therapeutic use of α-amidated peptides (e.g. calcitonin, glucagon-like peptide) has increased dramatically, but there are major impediments to wider use of such peptides. Larger peptides are expensive to synthesize, and short plasma half-lives frequently limit the clinical circumstances in which the peptides would be useful. Both problems are potentially solved by producing peptides as fusions with the Fc region of human immunoglobulin. Methods Glucagon-like peptide 1 (GLP1), peptide YY (PYY) and neuromedin U (NMU) were expressed and purified from stable CHO lines; since the α-amide group is essential for full biological potency of many peptides, Fc-fusion peptides were expressed in CHO lines stably expressing the α-amidating enzyme, peptidylglycine α-amidating monooxygenase (PAM: EC 1.14.17.3). Purified fusion proteins were analyzed intact and after HRV3C rhinovirus protease cleavage, at a site in the linker separating the Fc region from the peptide, by mass spectrometry and amide-specific immunoassays. Results The Fc fusions were expressed at 1–2.5 μg/mg cell protein and secreted at 5-20 % of cell content per hour, in a peptide-specific manner. CHO cells express measurable endogenous PAM activity, amidating 25 % of Fc-PYY and almost 90 % of Fc-GLP1. Expression of exogenous PAM increased the level of peptide amidation to 50 % of Fc-PYY and 95 % of Fc-NMU. The Fc-GLP1 fusions were 10,000-fold less active than synthetic GLP1 in a cell-receptor cyclic AMP-based assay, as expected since the amino terminal of GLP1 is essential for full biological activity. The Fc-PYY fusions were 100-fold less active than PYY-NH2 but 10-fold more active than non-amidated PYY-Gly. Conclusions This type of approach can be used for the production of stabilized α-amidated peptides aimed at clinical trials.
Collapse
Affiliation(s)
- Kristina R Carlson
- Department of Neuroscience, UCONN Health Center, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA.
| | - Steven C Pomerantz
- Biologics Research, Biotechnology Center of Excellence, Janssen Research & Development, LLC, Spring House, PA, 19477, USA.
| | - Jiali Li
- Biologics Research, Janssen Research & Development, San Diego, CA, 92121, USA.
| | - Omid Vafa
- Biologics Research, Biotechnology Center of Excellence, Janssen Research & Development, LLC, Spring House, PA, 19477, USA.
| | - Michael Naso
- Biologics Research, Biotechnology Center of Excellence, Janssen Research & Development, LLC, Spring House, PA, 19477, USA.
| | - William Strohl
- Biologics Research, Biotechnology Center of Excellence, Janssen Research & Development, LLC, Spring House, PA, 19477, USA.
| | - Richard E Mains
- Department of Neuroscience, UCONN Health Center, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA.
| | - Betty A Eipper
- Department of Neuroscience, UCONN Health Center, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA. .,Department of Molecular Biology and Biophysics, UCONN Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
10
|
Bonnemaison M, Bäck N, Lin Y, Bonifacino JS, Mains R, Eipper B. AP-1A controls secretory granule biogenesis and trafficking of membrane secretory granule proteins. Traffic 2014; 15:1099-121. [PMID: 25040637 DOI: 10.1111/tra.12194] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 07/07/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023]
Abstract
The adaptor protein 1A complex (AP-1A) transports cargo between the trans-Golgi network (TGN) and endosomes. In professional secretory cells, AP-1A also retrieves material from immature secretory granules (SGs). The role of AP-1A in SG biogenesis was explored using AtT-20 corticotrope tumor cells expressing reduced levels of the AP-1A μ1A subunit. A twofold reduction in μ1A resulted in a decrease in TGN cisternae and immature SGs and the appearance of regulated secretory pathway components in non-condensing SGs. Although basal secretion of endogenous SG proteins was unaffected, secretagogue-stimulated release was halved. The reduced μ1A levels interfered with the normal trafficking of carboxypeptidase D (CPD) and peptidylglycine α-amidating monooxygenase-1 (PAM-1), integral membrane enzymes that enter immature SGs. The non-condensing SGs contained POMC products and PAM-1, but not CPD. Based on metabolic labeling and secretion experiments, the cleavage of newly synthesized PAM-1 into PHM was unaltered, but PHM basal secretion was increased in sh-μ1A PAM-1 cells. Despite lacking a canonical AP-1A binding motif, yeast two-hybrid studies demonstrated an interaction between the PAM-1 cytosolic domain and AP-1A. Coimmunoprecipitation experiments with PAM-1 mutants revealed an influence of the luminal domains of PAM-1 on this interaction. Thus, AP-1A is crucial for normal SG biogenesis, function and composition.
Collapse
Affiliation(s)
- Mathilde Bonnemaison
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | | | | | | | | | | |
Collapse
|
11
|
Gaier ED, Kleppinger A, Ralle M, Covault J, Mains RE, Kenny AM, Eipper BA. Genetic determinants of amidating enzyme activity and its relationship with metal cofactors in human serum. BMC Endocr Disord 2014; 14:58. [PMID: 25022877 PMCID: PMC4113131 DOI: 10.1186/1472-6823-14-58] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/07/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND α-amidation is a final, essential step in the biosynthesis of about half of all peptide hormones and neurotransmitters. Peptidylglycine α-amidating monooxygenase (PAM), with enzymatic domains that utilize Cu and Zn, is the only enzyme that catalyzes this reaction. PAM activity is detected in serum, but its significance and utility as a clinical biomarker remain unexplored. METHODS We used well-established enzymatic assays specific for the peptidylglycine-α -hydroxylating monooxygenase (PHM) and peptidyl-α-hydroxyglycine α-amidating lyase (PAL) domains of PAM to quantify amidating activity in the sera of 144 elderly men. Relationships between PHM and PAL activity and serum levels of their respective active-site metals, Cu and Zn, were analyzed. Study participants were also genotyped for eight non-coding single nucleotide polymorphisms (SNPs) in PAM, and relationships between genotype and serum enzyme activity and metal levels were analyzed. RESULTS Serum PHM and PAL activities were normally distributed and correlated linearly with each other. Serum PAL activity, but not serum PHM activity, correlated with serum Cu; neither activity correlated with serum Zn. Study subjects possessing the minor alleles for rs32680 had lower PHM and PAL activities, and subjects with minor alleles for rs11952361 and rs10515341 had lower PHM activities. CONCLUSIONS Our results characterize large variation in serum amidating activity and provide unique insight into its potential origin and determinants. Common non-coding polymorphisms affect serum amidating activity and Cu levels. Serum amidating activity should be explored as a biomarker for functionality in the elderly and in additional study groups.
Collapse
Affiliation(s)
- Eric D Gaier
- Department of Neuroscience, University of Connecticut Health Center, 06030 Farmington, CT, USA
| | - Alison Kleppinger
- Center on Aging, University of Connecticut Health Center, 06030 Farmington, CT, USA
| | - Martina Ralle
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 97239 Portland, OR, USA
| | - Jonathan Covault
- Department of Neuroscience, University of Connecticut Health Center, 06030 Farmington, CT, USA
- Department of Psychiatry, University of Connecticut Health Center, 06030 Farmington, CT, USA
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, 06030 Farmington, CT, USA
| | - Anne M Kenny
- Center on Aging, University of Connecticut Health Center, 06030 Farmington, CT, USA
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, 06030 Farmington, CT, USA
| |
Collapse
|
12
|
Vishwanatha K, Bäck N, Mains RE, Eipper BA. A histidine-rich linker region in peptidylglycine α-amidating monooxygenase has the properties of a pH sensor. J Biol Chem 2014; 289:12404-20. [PMID: 24627494 DOI: 10.1074/jbc.m113.545947] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Decreasing luminal pH is thought to play a role in the entry of newly synthesized and endocytosed membrane proteins into secretory granules. The two catalytic domains of peptidylglycine α-amidating monooxygenase (PAM), a type I integral membrane protein, catalyze the sequential reactions that convert peptidyl-Gly substrates into amidated products. We explored the hypothesis that a conserved His-rich cluster (His-Gly-His-His) in the linker region connecting its two catalytic domains senses pH and affects PAM trafficking by mutating these His residues to Ala (Ala-Gly-Ala-Ala; H3A). Purified recombinant wild-type and H3A linker peptides were examined using circular dichroism and tryptophan fluorescence; mutation of the His cluster largely eliminated its pH sensitivity. An enzymatically active PAM protein with the same mutations (PAM-1/H3A) was expressed in HEK293 cells and AtT-20 corticotrope tumor cells. Metabolic labeling followed by immunoprecipitation revealed more rapid loss of newly synthesized PAM-1/H3A than PAM-1; although release of newly synthesized monofunctional PHM/H3A was increased, release of soluble bifunctional PAM/H3A, a product of the endocytic pathway, was decreased. Surface biotinylation revealed rapid loss of PAM-1/H3A, with no detectable return of the mutant protein to secretory granules. Consistent with its altered endocytic trafficking, little PAM-1/H3A was subjected to regulated intramembrane proteolysis followed by release of a small nuclear-targeted cytosolic fragment. AtT-20 cells expressing PAM-1/H3A adopted the morphology of wild-type AtT-20 cells; secretory products no longer accumulated in the trans-Golgi network and secretory granule exocytosis was more responsive to secretagogue.
Collapse
|
13
|
Otoikhian A, Barry AN, Mayfield M, Nilges M, Huang Y, Lutsenko S, Blackburn NJ. Lumenal loop M672-P707 of the Menkes protein (ATP7A) transfers copper to peptidylglycine monooxygenase. J Am Chem Soc 2012; 134:10458-68. [PMID: 22577880 DOI: 10.1021/ja301221s] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Copper transfer to cuproproteins located in vesicular compartments of the secretory pathway depends on activity of the copper-translocating ATPase (ATP7A), but the mechanism of transfer is largely unexplored. Copper-ATPase ATP7A is unique in having a sequence rich in histidine and methionine residues located on the lumenal side of the membrane. The corresponding fragment binds Cu(I) when expressed as a chimera with a scaffold protein, and mutations or deletions of His and/or Met residues in its sequence inhibit dephosphorylation of the ATPase, a catalytic step associated with copper release. Here we present evidence for a potential role of this lumenal region of ATP7A in copper transfer to cuproenzymes. Both Cu(II) and Cu(I) forms were investigated since the form in which copper is transferred to acceptor proteins is currently unknown. Analysis of Cu(II) using EPR demonstrated that at Cu:P ratios below 1:1 (15)N-substituted protein had Cu(II) bound by 4 His residues, but this coordination changed as the Cu(II) to protein ratio increased toward 2:1. XAS confirmed this coordination via analysis of the intensity of outer-shell scattering from imidazole residues. The Cu(II) complexes could be reduced to their Cu(I) counterparts by ascorbate, but here again, as shown by EXAFS and XANES spectroscopy, the coordination was dependent on copper loading. At low copper Cu(I) was bound by a mixed ligand set of His + Met, whereas at higher ratios His coordination predominated. The copper-loaded loop was able to transfer either Cu(II) or Cu(I) to peptidylglycine monooxygenase in the presence of chelating resin, generating catalytically active enzyme in a process that appeared to involve direct interaction between the two partners. The variation of coordination with copper loading suggests copper-dependent conformational change which in turn could act as a signal for regulating copper release by the ATPase pump.
Collapse
Affiliation(s)
- Adenike Otoikhian
- Institute of Environmental Health, Oregon Health & Sciences University, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Rajagopal C, Mains RE, Eipper BA. Signaling from the secretory granule to the nucleus. Crit Rev Biochem Mol Biol 2012; 47:391-406. [PMID: 22681236 DOI: 10.3109/10409238.2012.694845] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neurons and endocrine cells use a complex array of signaling molecules to communicate with each other and with various targets. The majority of these signaling molecules are stored in specialized organelles awaiting release on demand: 40-60 nm vesicles carry conventional or small molecule neurotransmitters, and 200-400 nm granules contain bioactive peptides. The supply of small molecule neurotransmitters is tightly regulated by local feedback of synthetic rates and transport processes at sites of release. The larger granules that contain bioactive peptides present the secretory cell with special challenges, as the peptide precursors are inserted into the lumen of the secretory pathway in the cell soma and undergo biosynthetic processing while being transported to distant sites for eventual secretion. One solution to this dilemma in information handling has been to employ proteolytic cleavage of secretory granule membrane proteins to produce cytosolic fragments that can signal to the nucleus, affecting gene expression. The use of regulated intramembrane proteolysis to signal from secretory granules to the nucleus is compared to its much better understood role in relaying information from the endoplasmic reticulum by SREBP and ATF6 and from the plasma membrane by cadherins, Notch and ErbB4.
Collapse
Affiliation(s)
- Chitra Rajagopal
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
| | | | | |
Collapse
|
15
|
Cao F, Gamble AB, Kim HK, Onagi H, Gresser MJ, Kerr J, Easton CJ. Potent and selective inhibitors of human peptidylglycine α-amidating monooxygenase. MEDCHEMCOMM 2011. [DOI: 10.1039/c1md00079a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Rajagopal C, Stone KL, Mains RE, Eipper BA. Secretion stimulates intramembrane proteolysis of a secretory granule membrane enzyme. J Biol Chem 2010; 285:34632-42. [PMID: 20817724 DOI: 10.1074/jbc.m110.145334] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulated intramembrane proteolysis, a highly conserved process employed by diverse regulatory pathways, can release soluble fragments that directly or indirectly modulate gene expression. In this study we used pharmacological tools to identify peptidylglycine α-amidating monooxygenase (PAM), a type I secretory granule membrane protein, as a γ-secretase substrate. PAM, an essential enzyme, catalyzes the final step in the synthesis of the majority of neuropeptides that control metabolic homeostasis. Mass spectroscopy was most consistent with the presence of multiple closely spaced NH(2) termini, suggesting that cleavage occurred near the middle of the PAM transmembrane domain. The luminal domains of PAM must undergo a series of prohormone convertase or α-secretase-mediated cleavages before the remaining transmembrane domain/cytosolic domain fragment can undergo a γ-secretase-like cleavage. Cleavage by γ-secretase generates a soluble fragment of the cytosolic domain (sf-CD) that is known to localize to the nucleus. Although PAM sf-CD is unstable in AtT-20 corticotroph tumor cells, it is readily detected in primary rat anterior pituitary cells. PAM isoform expression, which is tissue-specific and developmentally regulated, affects the efficiency with which sf-CD is produced. sf-CD levels are also modulated by the phosphorylation status of the cytosolic domain and by the ability of the cytosolic domain to interact with cytosolic proteins. sf-CD is produced by primary rat anterior pituitary cells in response to secretogogue, suggesting that sf-CD acts as a signaling molecule relaying information about secretion from the secretory granule to the nucleus.
Collapse
Affiliation(s)
- Chitra Rajagopal
- Departments of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | |
Collapse
|
17
|
Bäck N, Rajagopal C, Mains RE, Eipper BA. Secretory granule membrane protein recycles through multivesicular bodies. Traffic 2010; 11:972-86. [PMID: 20374556 DOI: 10.1111/j.1600-0854.2010.01066.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recycling of secretory granule membrane proteins that reach the plasma membrane following exocytosis is poorly understood. As a model, peptidylglycine alpha-amidating monooxygenase (PAM), a granule membrane protein that catalyzes a final step in peptide processing was examined. Ultrastructural analysis of antibody internalized by PAM and surface biotinylation showed efficient return of plasma membrane PAM to secretory granules. Electron microscopy revealed the rapid movement of PAM from early endosomes to the limiting membranes of multivesicular bodies and then into intralumenal vesicles. Wheat germ agglutinin and PAM antibody internalized simultaneously were largely segregated when they reached multivesicular bodies. Mutation of basally phosphorylated residues (Thr(946), Ser(949)) in the cytoplasmic domain of PAM to Asp (TS/DD) substantially slowed its entry into intralumenal vesicles. Mutation of the same sites to Ala (TS/AA) facilitated the entry of internalized PAM into intralumenal vesicles and its subsequent return to secretory granules. Entry of PAM into intralumenal vesicles is also associated with a juxtamembrane endoproteolytic cleavage that releases a 100-kDa soluble PAM fragment that can be returned to secretory granules. Controlled entry into the intralumenal vesicles of multivesicular bodies plays a key role in the recycling of secretory granule membrane proteins.
Collapse
Affiliation(s)
- Nils Bäck
- Institute of Biomedicine/Anatomy, University of Helsinki, FIN-00014, Helsinki, Finland.
| | | | | | | |
Collapse
|
18
|
Sobota JA, Bäck N, Eipper BA, Mains RE. Inhibitors of the V0 subunit of the vacuolar H+-ATPase prevent segregation of lysosomal- and secretory-pathway proteins. J Cell Sci 2009; 122:3542-53. [PMID: 19737820 DOI: 10.1242/jcs.034298] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase) establishes pH gradients along secretory and endocytic pathways. Progressive acidification is essential for proteolytic processing of prohormones and aggregation of soluble content proteins. The V-ATPase V(0) subunit is thought to have a separate role in budding and fusion events. Prolonged treatment of professional secretory cells with selective V-ATPase inhibitors (bafilomycin A1, concanamycin A) was used to investigate its role in secretory-granule biogenesis. As expected, these inhibitors eliminated regulated secretion and blocked prohormone processing. Drug treatment caused the formation of large, mixed organelles, with components of immature granules and lysosomes and some markers of autophagy. Markers of the trans-Golgi network and earlier secretory pathway were unaffected. Ammonium chloride and methylamine treatment blocked acidification to a similar extent as the V-ATPase inhibitors without producing mixed organelles. Newly synthesized granule content proteins appeared in mixed organelles, whereas mature secretory granules were spared. Following concanamycin treatment, selected membrane proteins enter tubulovesicular structures budding into the interior of mixed organelles. shRNA-mediated knockdown of the proteolipid subunit of V(0) also caused vesiculation of immature granules. Thus, V-ATPase has a role in protein sorting in immature granules that is distinct from its role in acidification.
Collapse
Affiliation(s)
- Jacqueline A Sobota
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
19
|
Rajagopal C, Stone KL, Francone VP, Mains RE, Eipper BA. Secretory granule to the nucleus: role of a multiply phosphorylated intrinsically unstructured domain. J Biol Chem 2009; 284:25723-34. [PMID: 19635792 DOI: 10.1074/jbc.m109.035782] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intrinsically unstructured domains occur in one-third of all proteins and are characterized by conformational flexibility, protease sensitivity, and the occurrence of multiple phosphorylation. They provide large interfaces for diverse protein-protein interactions. Peptidylglycine alpha-amidating monooxygenase (PAM), an enzyme essential for neuropeptide biosynthesis, is a secretory granule membrane protein. As one of the few proteins spanning the granule membrane, PAM is a candidate to relay information about the status of the granule pool and conditions in the granule lumen. Here, we show that the PAM cytosolic domain is unstructured. Mass spectroscopy and two-dimensional gel electrophoresis demonstrated phosphorylation at 10-12 sites in the cytosolic domain. Stimulation of exocytosis resulted in coupled phosphorylation and dephosphorylation of specific sites and in the endoproteolytic release of a soluble, proteasome-sensitive cytosolic domain fragment. Analysis of granule-rich tissues, such as pituitary and heart, showed that a similar fragment was generated endogenously and translocated to the nucleus. This multiply phosphorylated unstructured domain may act as a signaling molecule that relays information from secretory granules to both cytosol and nucleus.
Collapse
Affiliation(s)
- Chitra Rajagopal
- Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | |
Collapse
|
20
|
De M, Ciccotosto GD, Mains RE, Eipper BA. Trafficking of a secretory granule membrane protein is sensitive to copper. J Biol Chem 2007; 282:23362-71. [PMID: 17562710 DOI: 10.1074/jbc.m702891200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We explored the effect of copper availability on the synthesis and trafficking of peptidylglycine alpha-amidating monooxygenase (PAM), an essential cuproenzyme whose catalytic domains function in the lumen of peptide-containing secretory granules. Corticotrope tumor cell lines expressing integral membrane and soluble forms of PAM were depleted of copper using bathocuproinedisulfonic acid or loaded with copper by incubation with CuCl(2). Depleting cellular copper stimulates basal secretion of soluble enzyme produced by endoproteolytic cleavage of PAM in secretory granules and transit of membrane PAM though the endocytic pathway and back into secretory granules. Unlike many cuproenzymes, lack of copper does not lead to instability of PAM. Copper loading decreases cleavage of PAM in secretory granules, secretion of soluble enzyme, and the return of internalized PAM to secretory granules. The trafficking and stability of the soluble, luminal domain of PAM and truncated membrane PAM lacking a cytosolic domain are not affected by copper availability. Taken together, our data demonstrate a role for copper-sensitive cytosolic machinery in directing endocytosed membrane PAM back to secretory granules or to a degradative pathway. The response of PAM to lack of copper suggests that it facilitates copper homeostasis.
Collapse
Affiliation(s)
- Mithu De
- University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | | | |
Collapse
|
21
|
Sobota JA, Ferraro F, Bäck N, Eipper BA, Mains RE. Not all secretory granules are created equal: Partitioning of soluble content proteins. Mol Biol Cell 2006; 17:5038-52. [PMID: 17005911 PMCID: PMC1761688 DOI: 10.1091/mbc.e06-07-0626] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Secretory granules carrying fluorescent cargo proteins are widely used to study granule biogenesis, maturation, and regulated exocytosis. We fused the soluble secretory protein peptidylglycine alpha-hydroxylating monooxygenase (PHM) to green fluorescent protein (GFP) to study granule formation. When expressed in AtT-20 or GH3 cells, the PHM-GFP fusion protein partitioned from endogenous hormone (adrenocorticotropic hormone, growth hormone) into separate secretory granule pools. Both exogenous and endogenous granule proteins were stored and released in response to secretagogue. Importantly, we found that segregation of content proteins is not an artifact of overexpression nor peculiar to GFP-tagged proteins. Neither luminal acidification nor cholesterol-rich membrane microdomains play essential roles in soluble content protein segregation. Our data suggest that intrinsic biophysical properties of cargo proteins govern their differential sorting, with segregation occurring during the process of granule maturation. Proteins that can self-aggregate are likely to partition into separate granules, which can accommodate only a few thousand copies of any content protein; proteins that lack tertiary structure are more likely to distribute homogeneously into secretory granules. Therefore, a simple "self-aggregation default" theory may explain the little acknowledged, but commonly observed, tendency for both naturally occurring and exogenous content proteins to segregate from each other into distinct secretory granules.
Collapse
Affiliation(s)
- Jacqueline A. Sobota
- *Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401; and
| | - Francesco Ferraro
- *Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401; and
| | - Nils Bäck
- Department of Anatomy, Institute of Biomedicine, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Betty A. Eipper
- *Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401; and
| | - Richard E. Mains
- *Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401; and
| |
Collapse
|
22
|
Ferraro F, Eipper BA, Mains RE. Retrieval and reuse of pituitary secretory granule proteins. J Biol Chem 2005; 280:25424-35. [PMID: 15905171 DOI: 10.1074/jbc.m414156200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pituitary contains professional secretory cells, devoting a large fraction of their energy to the synthesis of hormones that are stored for secretion in response to a complex mixture of inputs. Ba2+, a substitute for Ca2+, and phorbol ester, a mimic for diacylglycerol, have a synergistic effect on exocytosis. By using these secretagogues, we developed a paradigm in which phorbol ester potentiation of Ba2+-evoked exocytosis produces a robust secretory response in multiple pituitary cell types. Because cells subjected to this stimulatory paradigm remain healthy despite their greatly reduced hormone content, we used this paradigm to study the fate of granule membrane proteins. We examined the turnover of peptidylglycine alpha-amidating monooxygenase (PAM), a membrane enzyme involved in the final maturation of many peptides, and VAMP2, a vesicle soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE). The stability of recently synthesized PAM was increased by sustained exocytosis. Biotinylation studies established that the appearance of integral membrane PAM at the plasma membrane was stimulated along with hormone secretion. PAM biotinylated on the cell surface undergoes cleavage to yield soluble peptidylglycine-alpha-hydroxylating monooxygenase that can then be secreted in a regulated fashion. Consistent with a kiss-and-run or cavicapture mode of secretion (Taraska, J. W., Perrais, D., Ohara-Imaizumi, M., Nagamatsu, S., and Almers, W. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 2070-2075), biotinylated prolactin was also retained by the cells and later released in response to secretagogues. Thus, pituitary cells can retrieve and reuse components of the machinery involved in the final stages of exocytosis (the SNAREs) as well as soluble and membrane granule proteins.
Collapse
Affiliation(s)
- Francesco Ferraro
- Neuroscience Department, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | |
Collapse
|
23
|
Arvan P, Castle D. Protein sorting and secretion granule formation in regulated secretory cells. Trends Cell Biol 2004; 2:327-31. [PMID: 14731510 DOI: 10.1016/0962-8924(92)90181-l] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Formation of secretion granules in regulated secretory cells involves packaging a subject of proteins undergoing intracellular transport into specific vesicular carriers that function in stimulus-dependent exocytosis. Recent findings suggest that immature granules are a site of passive sorting, involving condensation of regulated secretory proteins. Proteins that are not condensed are stored to a lesser degree and are enriched in unstimulated, constitutive-like secretion. While these observations have helped to distinguish possible mechanisms of secretory protein sorting, there are only recent hints about the sorting processes that may be required to create the regulated secretory carrier membranes.
Collapse
Affiliation(s)
- P Arvan
- Division of Endocrinology, Beth Israel Hospital, Boston, MA 02215, USA
| | | |
Collapse
|
24
|
Bernard N, Kitabgi P, Rovere-Jovene C. The Arg617-Arg618 cleavage site in the C-terminal domain of PC1 plays a major role in the processing and targeting of the enzyme within the regulated secretory pathway. J Neurochem 2003; 85:1592-603. [PMID: 12787078 DOI: 10.1046/j.1471-4159.2003.01823.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The C-terminal domain of the prohormone convertase PC1 is involved in targeting of the enzyme to secretory granules in neuroendocrine cells and is subsequently processed in this compartment at an Arg617-Arg618 site. Three other dibasics are found in the C-terminal domain of mouse PC1. Here, we examined the role of the four dibasics in targeting PC1 to secretory granules. All 15 possible combinations of dibasic mutations were performed. Wild-type (WT) and mutant PC1 were stably expressed in neuroendocrine PC12 cells that lacked endogenous PC1. Processing, secretion and intracellular localization of PC1 and its mutants were analyzed. Leaving intact Arg617-Arg618 and mutating any combination of the three other dibasics yielded proteins that were stored and processed in secretory granules, similarly to WT PC1. Mutating Arg617-Arg618 alone or with any one of the three remaining dibasics generated proteins that were efficiently stored in secretory granules but were not processed further. Mutating Arg617-Arg618 with more than one of the remaining dibasics produced proteins that reached the TGN but were not stored in secretory granules and exited the cells through the constitutive secretory pathway. These data demonstrate that the Arg617-Arg618 plays a prominent role in targeting PC1 to secretory granules.
Collapse
Affiliation(s)
- Natacha Bernard
- Institut de Pharmacologie Molèculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR 6097, Valbonne, France
| | | | | |
Collapse
|
25
|
El Meskini R, Culotta VC, Mains RE, Eipper BA. Supplying copper to the cuproenzyme peptidylglycine alpha-amidating monooxygenase. J Biol Chem 2003; 278:12278-84. [PMID: 12529325 DOI: 10.1074/jbc.m211413200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We explored the role of known copper transporters and chaperones in delivering copper to peptidylglycine-alpha-hydroxylating monooxygenase (PHM), a copper-dependent enzyme that functions in the secretory pathway lumen. We examined the roles of yeast Ccc2, a P-type ATPase related to human ATP7A (Menkes disease protein) and ATP7B (Wilson disease protein), as well as yeast Atx1, a cytosolic copper chaperone. We expressed soluble PHMcc (catalytic core) in yeast using the yeast pre-pro-alpha-mating factor leader region to target the enzyme to the secretory pathway. Although the yeast genome encodes no PHM-like enzyme, PHMcc expressed in yeast is at least as active as PHMcc produced by mammalian cells. PHMcc partially co-migrated with a Golgi marker during subcellular fractionation and partially co-localized with Ccc2 based on immunofluorescence. To determine whether production of active PHM was dependent on copper trafficking pathways involving the CCC2 or ATX1 genes, we expressed PHMcc in wild-type, ccc2, and atx1 mutant yeast. Although ccc2 and atx1 mutant yeast produce normal levels of PHMcc protein, it lacks catalytic activity. Addition of exogenous copper yields fully active PHMcc. Similarly, production of active PHM in mouse fibroblasts is impaired in the presence of a mutant ATP7A gene. Although delivery of copper to lumenal cuproproteins like PAM involves ATP7A, lumenal chaperones may not be required.
Collapse
Affiliation(s)
- Rajaâ El Meskini
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | | | |
Collapse
|
26
|
Steveson TC, Ciccotosto GD, Ma XM, Mueller GP, Mains RE, Eipper BA. Menkes protein contributes to the function of peptidylglycine alpha-amidating monooxygenase. Endocrinology 2003; 144:188-200. [PMID: 12488345 DOI: 10.1210/en.2002-220716] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Menkes protein (ATP7A) is a P-type ATPase involved in copper uptake and homeostasis. Disturbed copper homeostasis occurs in patients with Menkes disease, an X-linked disorder characterized by mental retardation, neurodegeneration, connective tissue disorders, and early childhood death. Mutations in ATP7A result in malfunction of copper-requiring enzymes, such as tyrosinase and copper/zinc superoxide dismutase. The first step of the two-step amidation reaction carried out by peptidylglycine alpha-amidating monooxygenase (PAM) also requires copper. We used tissue from wild-type rats and mice and an ATP7A-specific antibody to determine that ATP7A is expressed at high levels in tissues expressing high levels of PAM. ATP7A is largely localized to the trans Golgi network in pituitary endocrine cells. The Atp7a mouse, bearing a mutation in the Atp7a gene, is an excellent model system for examining the consequences of ATP7A malfunction. Despite normal levels of PAM protein, levels of several amidated peptides were reduced in pituitary and brain extracts of Atp7a mice, demonstrating that PAM function is compromised when ATP7A is inactive. Based on these results, we conclude that a reduction in the ability of PAM to produce bioactive end-products involved in neuronal growth and development could contribute to many of the biological effects associated with Menkes disease.
Collapse
Affiliation(s)
- Tami C Steveson
- Department of Neuroscience,, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | | | | | | | |
Collapse
|
27
|
Kolhekar AS, Bell J, Shiozaki EN, Jin L, Keutmann HT, Hand TA, Mains RE, Eipper BA. Essential features of the catalytic core of peptidyl-alpha-hydroxyglycine alpha-amidating lyase. Biochemistry 2002; 41:12384-94. [PMID: 12369828 DOI: 10.1021/bi0260280] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bioactive peptides frequently terminate with an essential alpha-amide that is generated from a COOH-terminal Gly in a two-step enzymatic process occurring within the lumen of the secretory pathway. The first enzyme, peptidylglycine alpha-hydroxylating monooxygenase, is a member of the copper- and ascorbate-dependent monooxygenase family. The second enzyme, peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL, EC 4.3.2.5), has no known homologues. Examination of the catalytic core of PAL (PALcc) using trypsin, BNPS skatole, and COOH-terminally truncated proteins failed to identify stable subdomains. Treatment of PALcc with divalent metal ion chelators inactivated the enzyme and increased its protease and thermal sensitivity, suggesting a structural role for bound metal. Purified PALcc contained 0.7 +/- 0.4 mol of zinc/mol of enzyme. Since the four Cys residues in PALcc form two disulfide bonds, potential Zn ligands include conserved Asp, Glu, and His residues. The secretion and activity of PALcc bearing mutations in each conserved Asp, Glu, and His residue were evaluated. Mutation of three conserved Asp residues and two conserved His residues yielded a protein that could not be secreted, suggesting that these residues play a structural role. Analysis of mutants that were efficiently secreted identified three His residues along with single Asp residue that may play a role in catalysis. These essential residues occur in a pattern unique to PAL.
Collapse
Affiliation(s)
- Aparna S Kolhekar
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Garmendia O, Rodríguez MP, Burrell MA, Villaro AC. Immunocytochemical finding of the amidating enzymes in mouse pancreatic A-, B-, and D-cells: a comparison with human and rat. J Histochem Cytochem 2002; 50:1401-16. [PMID: 12364573 DOI: 10.1177/002215540205001013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
alpha-Amidation is catalyzed by two enzymatic activities, peptidyl-glycine alpha-hydroxylating mono-oxygenase (PHM) and peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL), denoted collectively as peptidyl-glycine alpha-amidating mono-oxygenase (PAM), which also may include transmembrane and cytoplasmic domains. PAM is present in mammalian pancreas, where it appears to be abundant in the perinatal period. Nevertheless, there is no agreement on the cell type(s) that produces PAM or even on its presence in adults. In the present study we found PAM (PHM and cytoplasmic domain) immunoreactivity (IR) in A-, B-, and D-cells of adult mouse pancreas. In contrast to previous reports, PAM IR was found in B-cells of human and rat. Most of the B/D-cells were PAM immunoreactive, although with variable intensity, whereas less than half of A-cells displayed IR. Immunocytochemistry and Western blotting suggested the existence of different PAM molecules. Differences in the cellular distribution of IR for PAM domains were also observed. Whereas PHM-IR was extended throughout the cytoplasm in the three cell types, presumably in the secretory granules, IR for the cytoplasmic domain in A/D-cells was restricted to a juxtanuclear region, perhaps indicating its cleavage in Golgi areas. Although glucagon, insulin, and somatostatin are non-amidated, amidated peptides (glucagon-like peptide 1, adrenomedullin, proadrenomedullin N-terminal 20 peptide) were found in the three cell types.
Collapse
Affiliation(s)
- Oihana Garmendia
- Department of Cytology and Histology, University of Navarra, Pamplona, Spain.
| | | | | | | |
Collapse
|
29
|
Wasmeier C, Bright NA, Hutton JC. The lumenal domain of the integral membrane protein phogrin mediates targeting to secretory granules. Traffic 2002; 3:654-65. [PMID: 12191017 DOI: 10.1034/j.1600-0854.2002.30907.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phogrin, a transmembrane glycoprotein of neuroendocrine cells, is localized to dense-core secretory granules. We have investigated the subcellular targeting of phogrin by analyzing the sorting of a series of deletion mutants to the regulated pathway of secretion in AtT20 cells. The lumenal domain as a soluble protein was efficiently routed to granules, based on a combination of morphological analysis and secretion studies. Sorting was not dependent on a candidate targeting signal consisting of an N-terminal conserved cysteine-rich motif. Both the pro-region and the lumenal domain of mature, post-translationally processed phogrin independently reached the granule, although the pro-region was sorted more efficiently. Once within the regulated secretory pathway, all phogrin lumenal domain proteins were stored in functional granules for extended periods of time. Thus, phogrin possesses several domains contributing to its targeting to the secretory granule. Our findings support a model of granule biogenesis where proteins are sorted on the basis of their biochemical properties rather than via signal-dependent binding to a targeting receptor. Sorting of integral membrane proteins mediated by the lumenal domain may ensure that functionally important transmembrane molecules are included in the forming granule.
Collapse
Affiliation(s)
- Christina Wasmeier
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, 4200 East 9th Avenue, Box B140, Denver, CO 80262, USA
| | | | | |
Collapse
|
30
|
Abstract
Routing of membrane proteins to large dense core vesicles in neuroendocrine cells can depend on information in both the lumenal and cytoplasmic domains. This study in PC12 cells focuses on the routing, cleavage, and secretion of an integral membrane protein, peptidylglycine alpha-amidating monooxygenase (PAM), examining both endogenous and virally derived membrane PAM. The role of the lumenal catalytic domains in membrane PAM trafficking was examined by replacement with an epitope tag. Virally derived membrane PAM is localized to the perinuclear area and to slender processes where the large dense core vesicles are located. Expression of PAM along with a neuroendocrine-specific endoprotease liberates a soluble monooxygenase domain, yielding regulated secretion of both the monooxygenase and the prohormone convertase from large dense core vesicles. The subcellular distribution of the epitope-substituted version of PAM within the cells is similar to that of membrane PAM, and both proteins are internalized from the plasma membrane. When secretion is stimulated, Serine937 in the cytoplasmic domain of PAM is phosphorylated to a similar extent in endogenous membrane PAM, virally encoded membrane PAM, and epitope-substituted PAM. Thus, the lumenal PAM catalytic domains are not required for routing or phosphorylation of PAM in PC12 cells.
Collapse
Affiliation(s)
- Ruth Marx
- Department of Neuroscience, University of Connecticut Health Center, Farmington 06030-3401, USA
| | | |
Collapse
|
31
|
Steveson TC, Zhao GC, Keutmann HT, Mains RE, Eipper BA. Access of a membrane protein to secretory granules is facilitated by phosphorylation. J Biol Chem 2001; 276:40326-37. [PMID: 11524414 DOI: 10.1074/jbc.m011460200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptidylglycine alpha-amidating monooxygenase (PAM), an integral membrane protein essential for the biosynthesis of amidated peptides, was used to assess the role of cytosolic acidic clusters in trafficking to regulated secretory granules. Casein kinase II phosphorylates Ser(949) and Thr(946) of PAM, generating a short, cytosolic acidic cluster. P-CIP2, a protein kinase identified by its ability to interact with several juxtamembrane determinants in the PAM cytosolic domain, also phosphorylates Ser(949). Antibody specific for phospho-Ser(949)-PAM-CD demonstrates that a small fraction of the PAM-1 localized to the perinuclear region bears this modification. Pituitary cell lines expressing PAM-1 mutants that mimic (TS/DD) or prevent (TS/AA) phosphorylation at these sites were studied. PAM-1 TS/AA yields a lumenal monooxygenase domain that enters secretory granules inefficiently and is rapidly degraded. In contrast, PAM-1 TS/DD is routed to regulated secretory granules more efficiently than wild-type PAM-1 and monooxygenase release is more responsive to secretagogue. Furthermore, this acidic cluster affects exit of internalized PAM-antibody complexes from late endosomes; internalized PAM-1 TS/DD accumulates in a late endocytic compartment instead of the trans-Golgi network. The increased ability of solubilized PAM-1 TS/DD to aggregate at neutral pH may play an important role in its altered trafficking.
Collapse
Affiliation(s)
- T C Steveson
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
32
|
Oyarce AM, Steveson TC, Jin L, Eipper BA. Dopamine beta-monooxygenase signal/anchor sequence alters trafficking of peptidylglycine alpha-hydroxylating monooxygenase. J Biol Chem 2001; 276:33265-72. [PMID: 11418593 DOI: 10.1074/jbc.m101088200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dopamine beta-monooxygenase (DBM) and peptidylglycine alpha-hydroxylating monooxygenase (PHM) are essential for the biosynthesis of catecholamines and amidated peptides, respectively. The enzymes share a conserved catalytic core. We studied the role of the DBM signal sequence by appending it to soluble PHM (PHMs) and expressing the DBMsignal/PHMs chimera in AtT-20 and Chinese hamster ovary cells. PHMs produced as part of DBMsignal/PHMs was active. In vitro translated and cellular DBMsignal/PHMs had similar masses, indicating that the DBM signal was not removed. DBMsignal/PHMs was membrane-associated and had the properties of an intrinsic membrane protein. After in vitro translation in the presence of microsomal membranes, trypsin treatment removed 2 kDa from DBMsignal/PHMs while PHMs was entirely protected. In addition, a Cys residue in DBMsignal/PHMs was accessible to Cys-directed biotinylation. Thus the chimera adopts the topology of a type II membrane protein. Pulse-chase experiments indicate that DBMsignal/PHMs turns over rapidly after exiting the trans-Golgi network. Although PHMs is efficiently localized to secretory granules, DBMsignal/PHMs is largely localized to the endoplasmic reticulum in AtT-20 cells. On the basis of stimulated secretion, the small amount of PHMs generated is stored in secretory granules. In contrast, the expression of DBMsignal/PHMs in PC12 cells yields protein that is localized to secretory granules.
Collapse
Affiliation(s)
- A M Oyarce
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2105, USA.
| | | | | | | |
Collapse
|
33
|
Bell-Parikh LC, Eipper BA, Mains RE. Response of an integral granule membrane protein to changes in pH. J Biol Chem 2001; 276:29854-63. [PMID: 11395514 DOI: 10.1074/jbc.m103936200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A key feature of the regulated secretory pathway in neuroendocrine cells is lumenal pH, which decreases between trans-Golgi network and mature secretory granules. Because peptidylglycine alpha-amidating monooxygenase (PAM) is one of the few membrane-spanning proteins concentrated in secretory granules and is a known effector of regulated secretion, we examined its sensitivity to pH. Based on antibody binding experiments, the noncatalytic linker regions between the two enzymatic domains of PAM show pH-dependent conformational changes; these changes occur in the presence or absence of a transmembrane domain. Integral membrane PAM-1 solubilized from rat anterior pituitary or from transfected AtT-20 cells aggregates reversibly at pH 5.5 while retaining enzyme activity. Over 35% of the PAM-1 in anterior pituitary extracts aggregates at pH 5.5, whereas only about 5% aggregates at pH 7.5. PAM-1 recovered from secretory granules and endosomes is highly responsive to low pH-induced aggregation, whereas PAM-1 recovered from a light, intracellular recycling compartment is not. Mutagenesis studies indicate that a transmembrane domain is necessary but not sufficient for low pH-induced aggregation and reveal a short lumenal, juxtamembrane segment that also contributes to pH-dependent aggregation. Taken together, these results demonstrate that several properties of membrane PAM serve as indicators of granule pH in neuroendocrine cells.
Collapse
Affiliation(s)
- L C Bell-Parikh
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
34
|
Pituitary adenylyl cyclase-activating peptides and alpha-amidation in olfactory neurogenesis and neuronal survival in vitro. J Neurosci 2001. [PMID: 11425890 DOI: 10.1523/jneurosci.21-13-04625.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated the role of amidated neuropeptides, and specifically pituitary adenylyl cyclase-activating polypeptide (PACAP), in olfactory neurogenesis and olfactory receptor neuronal survival. Using both immunohistochemistry and in situ hybridization, we find that both peptidylglycine alpha-amidating monooxygenase (PAM), the enzyme responsible for amidation and therefore activation of all amidated neuropeptides, and amidated PACAP are expressed in developing and adult olfactory epithelium. Amidated PACAP is highly expressed in proliferative basal cells and in immature olfactory neurons. The PACAP-specific receptor PAC(1) receptor is also expressed in this population, establishing that these cells can be PACAP responsive. Experiments were conducted to determine whether amidated neuropeptides, such as PACAP38, might function in olfactory neurogenesis and neuronal survival. Addition of PACAP38 to olfactory cultures increased the number of neurons to >250% of control and stimulated neuronal proliferation and survival. In primary olfactory cultures, pharmacologically decreased PAM activity, as well as neutralization of PACAP38, caused neuron-specific loss that was reversed by PACAP38. Mottled (Brindled) mice, which lack a functional ATP7A copper transporter and serve as a model for Menkes disease, provided an in vivo partial loss-of-function PAM knock-out. These mice had decreased amidated PACAP production and concomitant decreased numbers of olfactory receptor neurons. These data establish amidated peptides and specifically PACAP as having important roles in proliferation in the olfactory system and suggest that a similar function exists in vivo.
Collapse
|
35
|
Hansel DE, May V, Eipper BA, Ronnett GV. Pituitary adenylyl cyclase-activating peptides and alpha-amidation in olfactory neurogenesis and neuronal survival in vitro. J Neurosci 2001; 21:4625-36. [PMID: 11425890 PMCID: PMC6762377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2001] [Revised: 03/20/2001] [Accepted: 03/27/2001] [Indexed: 02/20/2023] Open
Abstract
We investigated the role of amidated neuropeptides, and specifically pituitary adenylyl cyclase-activating polypeptide (PACAP), in olfactory neurogenesis and olfactory receptor neuronal survival. Using both immunohistochemistry and in situ hybridization, we find that both peptidylglycine alpha-amidating monooxygenase (PAM), the enzyme responsible for amidation and therefore activation of all amidated neuropeptides, and amidated PACAP are expressed in developing and adult olfactory epithelium. Amidated PACAP is highly expressed in proliferative basal cells and in immature olfactory neurons. The PACAP-specific receptor PAC(1) receptor is also expressed in this population, establishing that these cells can be PACAP responsive. Experiments were conducted to determine whether amidated neuropeptides, such as PACAP38, might function in olfactory neurogenesis and neuronal survival. Addition of PACAP38 to olfactory cultures increased the number of neurons to >250% of control and stimulated neuronal proliferation and survival. In primary olfactory cultures, pharmacologically decreased PAM activity, as well as neutralization of PACAP38, caused neuron-specific loss that was reversed by PACAP38. Mottled (Brindled) mice, which lack a functional ATP7A copper transporter and serve as a model for Menkes disease, provided an in vivo partial loss-of-function PAM knock-out. These mice had decreased amidated PACAP production and concomitant decreased numbers of olfactory receptor neurons. These data establish amidated peptides and specifically PACAP as having important roles in proliferation in the olfactory system and suggest that a similar function exists in vivo.
Collapse
Affiliation(s)
- D E Hansel
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
36
|
Alam MR, Steveson TC, Johnson RC, Bäck N, Abraham B, Mains RE, Eipper BA. Signaling mediated by the cytosolic domain of peptidylglycine alpha-amidating monooxygenase. Mol Biol Cell 2001; 12:629-44. [PMID: 11251076 PMCID: PMC30969 DOI: 10.1091/mbc.12.3.629] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The luminal domains of membrane peptidylglycine alpha-amidating monooxygenase (PAM) are essential for peptide alpha-amidation, and the cytosolic domain (CD) is essential for trafficking. Overexpression of membrane PAM in corticotrope tumor cells reorganizes the actin cytoskeleton, shifts endogenous adrenocorticotropic hormone (ACTH) from mature granules localized at the tips of processes to the TGN region, and blocks regulated secretion. PAM-CD interactor proteins include a protein kinase that phosphorylates PAM (P-CIP2) and Kalirin, a Rho family GDP/GTP exchange factor. We engineered a PAM protein unable to interact with either P-CIP2 or Kalirin (PAM-1/K919R), along with PAM proteins able to interact with Kalirin but not with P-CIP2. AtT-20 cells expressing PAM-1/K919R produce fully active membrane enzyme but still exhibit regulated secretion, with ACTH-containing granules localized to process tips. Immunoelectron microscopy demonstrates accumulation of PAM and ACTH in tubular structures at the trans side of the Golgi in AtT-20 cells expressing PAM-1 but not in AtT-20 cells expressing PAM-1/K919R. The ability of PAM to interact with P-CIP2 is critical to its ability to block exit from the Golgi and affect regulated secretion. Consistent with this, mutation of its P-CIP2 phosphorylation site alters the ability of PAM to affect regulated secretion.
Collapse
Affiliation(s)
- M R Alam
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
El Meskini R, Galano GJ, Marx R, Mains RE, Eipper BA. Targeting of membrane proteins to the regulated secretory pathway in anterior pituitary endocrine cells. J Biol Chem 2001; 276:3384-93. [PMID: 11060304 DOI: 10.1074/jbc.m008062200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unlike the neuroendocrine cell lines widely used to study trafficking of soluble and membrane proteins to secretory granules, the endocrine cells of the anterior pituitary are highly specialized for the production of mature secretory granules. Therefore, we investigated the trafficking of three membrane proteins in primary anterior pituitary endocrine cells. Peptidylglycine alpha-amidating monooxygenase (PAM), an integral membrane protein essential to the production of many bioactive peptides, is cleaved and enters the regulated secretory pathway even when expressed at levels 40-fold higher than endogenous levels. Myc-TMD/CD, a membrane protein lacking the lumenal, catalytic domains of PAM, is still stored in granules. Secretory granules are not the default pathway for all membrane proteins, because Tac accumulates on the surface of pituitary endocrine cells. Overexpression of PAM is accompanied by a diminution in its endoproteolytic cleavage and in its BaCl(2)-stimulated release from mature granules. Because internalized PAM/PAM-antibody complexes are returned to secretory granules, the endocytic machinery of the pituitary endocrine cells is not saturated. As in corticotrope tumor cells, expression of PAM or Myc-TMD/CD alters the organization of the actin cytoskeleton. PAM-mediated alterations in the cytoskeleton may limit maturation of PAM and storage in mature granules.
Collapse
Affiliation(s)
- R El Meskini
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | | | | | |
Collapse
|
38
|
Kako K, Tsumori K, Ohmasa Y, Takahashi Y, Munekata E. The expression of Cox17p in rodent tissues and cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6699-707. [PMID: 11054125 DOI: 10.1046/j.1432-1327.2000.01771.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous works have reported the isolation of a novel polypeptide from porcine heart. Structural analysis has shown that it is a mammalian homologue of Cox17p, believed essential for the assembly of functional cytochrome c oxidase and delivery of copper ions to the mitochondrion for insertion into the enzyme in yeast. Although the human, mouse and porcine homologs of this small protein have already been cloned or purified, the function of Cox17p in the mammalian system has not yet been elucidated. To investigate the physiological function of Cox17p in mammals, we performed Northern blot analysis using probes containing the mouse and rat sequences obtained by RT-PCR. The hybridization signals were detected in all mouse tissues, but notably intense signals were observed in heart, brain and kidney RNA samples. Some of the neuroendocrine and endocrine cell lines showed higher expression levels than fibroblasts. The highest expression level of Cox17p mRNA in mouse brain was observed in the pituitary sample. While in rat heart, Cox17p mRNA expression was detected from early development, in rat brain, embryonic and postnatal changes in the expression were observed. Immunocytochemical analysis showed that Cox17p immunoreactivity was strong in the pituitary cell line, AtT-20. These findings suggested that Cox17p is not only part of the respiratory chain but also involved in brain and endocrine functions.
Collapse
Affiliation(s)
- K Kako
- Institute of Applied Biochemistry, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
39
|
Fan X, Spijker S, Akalal DB, Nagle GT. Neuropeptide amidation: cloning of a bifunctional alpha-amidating enzyme from Aplysia. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 82:25-34. [PMID: 11042355 DOI: 10.1016/s0169-328x(00)00173-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
One of the most common mechanisms of posttranslational modifications to generate biologically active (neuro)peptides is the process of peptide alpha-amidation. The only enzyme known to catalyze this important modification is peptidylglycine alpha-amidating monooxygenase (PAM): a (bifunctional) zymogen, giving rise to a monooxygenase (PHM) and a lyase (PAL). The highly peptidergic central nervous system and endocrine system of the marine mollusk Aplysia has homologs of various mammalian peptide processing enzymes, including furin, Afurin2, prohormone convertase 1 (PC1), PC2, carboxypeptidase E (CPE) and CPD. Previously, it has been shown that the abdominal ganglion of Aplysia, which contains approximately 800 peptidergic bag cell neurons, contains the highest specific alpha-amidating activity. We have identified and cloned multiple overlapping central nervous system and bag cell cDNAs that encode a predicted 748-residue protein that is a member of the PAM family. The protein sequence contains the contiguous sequence of the catalytic domains of PHM and PAL, clearly demonstrating the existence of bifunctional Aplysia PAM, the first invertebrate PAM zymogen with an organization similar to that in vertebrates. None of the characterized clones encoded the so-called exon A domain between the PHM and PAL domains. Furthermore, in a specific search by reverse transcription-polymerase chain reaction of RNA from multiple tissues we could only detect exon A-less transcripts. PAM expression was detected in the central nervous system, and in several endocrine and exocrine organs. Aplysia PAM is a candidate prohormone processing enzyme that plays an important role in the processing of Aplysia prohormones in the secretory pathway.
Collapse
Affiliation(s)
- X Fan
- Marine Biomedical Institute and Department of Anatomy and Neurosciences, University of Texas Medical Branch, Medical Research Building, Galveston, TX 77555-1043, USA
| | | | | | | |
Collapse
|
40
|
Hodel A, Edwardson JM. Targeting of the zymogen-granule protein syncollin in AR42J and AtT-20 cells. Biochem J 2000; 350 Pt 3:637-43. [PMID: 10970774 PMCID: PMC1221292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Syncollin is a 13-kDa protein associated with the membranes of pancreatic zymogen granules. Here we determine the in situ localization of syncollin in pancreatic acinar cells from adult and neonatal rats, and study the targeting of green fluorescent protein-(GFP-) and His(6)-tagged syncollin chimaeras in model exocrine and endocrine secretory cells. Immunocytochemical analysis of the distribution of syncollin in fully differentiated and neonatal acinar cells revealed a granular pattern that corresponded with that of the zymogen-granule markers synaptobrevin 2 and amylase. In fully differentiated acinar cells syncollin-positive vesicles were detected in the apical region of the cells, whereas in neonatal acinar cells they were found clustered near the cell nucleus. Both GFP- and His(6)-tagged syncollin entered the secretory pathway when transiently expressed in AR42J or AtT-20 cells. Syncollin-GFP was found predominantly in amylase-positive granules in AR42J cells and in adrenocorticotrophic hormone- (ACTH-) positive granules in AtT-20 cells. Syncollin-GFP was also present in the Golgi complex in AR42J cells. Syncollin-His(6) became localized in ACTH-containing granules in the neuritic processes of AtT-20 cells. In AR42J cells syncollin-His(6) did not co-localize with amylase, but was detected in acidic vesicles. These results show that the exocrine protein syncollin contains intrinsic cell-type-independent targeting information that is retained in both exocrine and endocrine cells after fusion to the GFP tag. In contrast, His(6)-tagged syncollin is efficiently targeted to secretory granules only in AtT-20 cells and not in AR42J cells.
Collapse
Affiliation(s)
- A Hodel
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, U.K
| | | |
Collapse
|
41
|
El Meskini R, Mains RE, Eipper BA. Cell type-specific metabolism of peptidylglycine alpha-amidating monooxygenase in anterior pituitary. Endocrinology 2000; 141:3020-34. [PMID: 10919291 DOI: 10.1210/endo.141.8.7620] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peptidylglycine alpha-amidating monooxygenase (PAM) is a bifunctional enzyme expressed in each major anterior pituitary cell type. We used primary cultures of adult male rat anterior pituitary to examine PAM expression, processing, and secretion in the different pituitary cell types and to compare these patterns to those observed in transfected AtT-20 corticotrope tumor cells. Immunostaining and subcellular fractionation identified PAM in pituitary secretory granules and additional vesicular compartments; in contrast, in AtT-20 cells, transfected PAM was primarily localized to the trans-Golgi network. PAM expression was highest in gonadotropes, with moderate levels in somatotropes and thyrotropes and lower levels in corticotropes and lactotropes. Under basal conditions, less than 1% of the cell content of monooxygenase activity was secreted per h, a rate comparable to the basal rate of release of individual pituitary hormones. General secretagogues stimulated PAM secretion 3- to 5-fold. Stimulation with specific hypothalamic releasing hormones demonstrated that different pituitary cell types secrete characteristic sets of PAM proteins. Gonadotropes and thyrotropes release primarily monofunctional monooxygenase. Somatotropes secrete primarily bifunctional PAM, whereas corticotropes secrete a mixture of mono- and bifunctional proteins. As observed in transfected AtT-20 cells, pituitary cells rapidly internalize the PAM/PAM-antibody complex from the cell surface. The distinctly different steady-state localizations of endogenous PAM in primary pituitary cells and transfected PAM in AtT-20 cell lines may simply reflect the increased storage capacity of primary pituitary cells.
Collapse
Affiliation(s)
- R El Meskini
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
42
|
Driscoll WJ, König S, Fales HM, Pannell LK, Eipper BA, Mueller GP. Peptidylglycine-alpha-hydroxylating monooxygenase generates two hydroxylated products from its mechanism-based suicide substrate, 4-phenyl-3-butenoic acid. Biochemistry 2000; 39:8007-16. [PMID: 10891082 DOI: 10.1021/bi0002380] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bifunctional enzyme peptidylglycine-alpha-amidating monooxygenase mediates the conversion of C-terminal glycine-extended peptides to their active alpha-amidated products. Peptidylglycine-alpha-hydroxylating monooxygenase (PHM, EC 1.14.17. 3) catalyzes the first reaction in this two-step process. The olefinic compound 4-phenyl-3-butenoic acid (PBA) is the most potent irreversible, mechanism-based PHM inactivator known. While the details of the inhibitory action of PBA on PHM remain undefined, covalent modification of the protein has been proposed as the underlying mechanism. We report here that, in the process of inactivating PHM, PBA itself serves as a substrate without covalently labeling the enzyme. Approximately 100 molecules of PBA are metabolized per molecule of PHM inactivated, under saturating conditions. The metabolism of PBA by PHM generates two hydroxylated products, 2-hydroxy-4-phenyl-3-butenoic acid and its allylic isomer, 4-hydroxy-4-phenyl-2-butenoic acid. While one enantiomer for each product is significantly favored in the reaction, both are produced. From these observations, we conclude that hydroxylated PBA products are formed by a delocalized free radical mechanism and that the lack of absolute stereospecificity indicates significant freedom of movement within the catalytic site. The ability of PHM to metabolize PBA suggests that the physiological functions of PHM may include the hydroxylation of substrates other than those containing terminal glycines.
Collapse
Affiliation(s)
- W J Driscoll
- Department of Physiology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Expression of dopamine beta-monooxygenase (DBM), the enzyme that converts dopamine into norepinephrine, is limited to adrenal chromaffin cells and a small population of neurons. We studied DBM trafficking to regulated granules by stably expressing rat DBM in AtT-20 corticotrope tumor cells, which contain regulated granules, and in Chinese hamster ovary (CHO) cells, which lack regulated granules. The behavior of exogenous DBM in both cell lines was compared with endogenous DBM in adrenal chromaffin cells. CHO cells secreted active DBM, indicating that production of active enzyme does not require features unique to neuroendocrine cells. Pulse-chase experiments indicated that early steps in DBM maturation followed a similar time course in AtT-20, CHO, and adrenal chromaffin cells. Use of a conformation-sensitive DBM antiserum indicated that acquisition of a folded structure occurred with a similar time course in all three cell types. Cell type-specific differences in DBM trafficking became apparent only when storage in granules was examined. As expected, DBM was stored in secretory granules in chromaffin cells; CHO cells failed to store DBM. Despite the fact that AtT-20 cells have regulated granules, exogenous DBM was not stored in these granules. Thus storage of DBM in secretory granules requires cell type specific factors.
Collapse
Affiliation(s)
- A M Oyarce
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2105, USA
| | | |
Collapse
|
44
|
Ciccotosto GD, Hand TA, Mains RE, Eipper BA. Breeding stock-specific variation in peptidylglycine alpha-amidating monooxygenase messenger ribonucleic acid splicing in rat pituitary. Endocrinology 2000; 141:476-86. [PMID: 10650926 DOI: 10.1210/endo.141.2.7337] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peptidylglycine alpha-amidating monooxygenase (PAM) is a bifunctional enzyme that catalyzes the carboxyl-terminal amidation of glycine-extended peptides in a two-step reaction involving a monooxygenase and a lyase. Several forms of PAM messenger RNA result from alternative splicing of the single copy PAM gene. The presence of alternately spliced exon A between the two enzymatic domains allows endoproteolytic cleavage to occur in selected tissues, generating soluble monooxygenase and membrane lyase from integral membrane PAM. While using an exon A antiserum, we made the unexpected observation that Charles River Sprague Dawley rats expressed forms of PAM containing exon A in their pituitaries, whereas Harlan Sprague Dawley rats did not. Forms of PAM containing exon A were expressed in the atrium and hypothalamus of both types of Sprague Dawley rat, although in different proportions. PAM transmembrane domain splicing also differed between rat breeders, and full-length PAM-1 was not prevalent in the anterior pituitary of either type of rat. Despite striking differences in PAM splicing, no differences in levels of monooxygenase or lyase activity were observed in tissue or serum samples. The splicing patterns of other alternatively spliced genes, pituitary adenylate cyclase-activating polypeptide receptor type 1 and cardiac troponin T, did not vary with rat breeder. Strain-specific variations in the splicing of transcripts such as PAM must be taken into account in analyzing the resultant proteins, and knowledge of these differences should identify variations with functional significance.
Collapse
Affiliation(s)
- G D Ciccotosto
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
45
|
Huang P, Trotter K, Boucher RC, Milgram SL, Stutts MJ. PKA holoenzyme is functionally coupled to CFTR by AKAPs. Am J Physiol Cell Physiol 2000; 278:C417-22. [PMID: 10666038 DOI: 10.1152/ajpcell.2000.278.2.c417] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cystic fibrosis transmembrane regulator (CFTR) is reported to be preferentially regulated by membrane-bound protein kinase A (PKAII). We tested for close physical and functional association of PKA with CFTR in inside-out membrane patches excised from Calu-3 cells. In the presence of MgATP, 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate (CPT-cAMP) increased the product of CFTR channel number and open probability (from 0.36 +/- 0.12 to 1.23 +/- 0.57, n = 20, P < 0.0025), and this stimulation was abolished by PKI. Thus Calu-3 membrane isolated from cells retains PKA holoenzyme that is functionally coupled to CFTR. PKAII is anchored at specific subcellular sites by A kinase anchoring proteins (AKAPs). Exposure of excised patches to HT-31, a peptide that disrupts the association of PKAII and AKAPs, prevented CPT-cAMP stimulation of CFTR. Therefore, PKA holoenzyme in isolated membrane patches is bound to AKAPs. In whole cell voltage-clamp studies, intracellular dialysis of Calu-3 cells with HT-31 blocked the activation of CFTR by extracellular adenosine. These results suggest that AKAPs mediate PKA compartmentalization with CFTR and are required for activation of CFTR by physiological regulators.
Collapse
Affiliation(s)
- P Huang
- Departments of Medicine and CF/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | |
Collapse
|
46
|
Martínez A, López J, Sesma P. The nervous system of the chicken proventriculus: an immunocytochemical and ultrastructural study. THE HISTOCHEMICAL JOURNAL 2000; 32:63-70. [PMID: 10805386 DOI: 10.1023/a:1003962413417] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The proventriculus constitutes the glandular region of the chicken stomach. This organ is innervated by two parasympathetic networks, the myenteric and submucous plexus, and here we present a systematic study of this system by immunohistochemistry and electron microscopy. All the neurons and fibres were positive for the neural markers, protein gene product 9.5 and the amidating enzymes. Immunoreactivities for the constitutive neuronal isoform of the enzyme nitric oxide synthase and the vasoactive intestinal peptide were present in neuronal bodies suggesting an intrinsic origin for the similarly immunoreactive fibres found in the proventriculus. On the other hand, immunoreactivity to gastric inhibitory peptide was only found in varicose fibres making contact with the blood vessels and the glandular epithelium, but never in the neuronal somas, suggesting that this substance may be provided by an extrinsic nervous system whose neuronal bodies are located elsewhere. Electron microscopy revealed frequent neuromuscular and neuroepithelial connections in the muscle layers, the wall of the blood vessels and the epithelium. In addition, synapsis-like structures were identified in the proximity of cells belonging to the diffuse endocrine system, providing a new example of neuroendocrine contacts. No positivity was found for antibodies against other neural substances including somatostatin, peptide histidine-isoleucine, peptide tyrosine-tyrosine, neuropeptide tyrosine, bombesin, met-enkephalin, serotonin, substance P, galanin, calcitonin gene-related peptide and S-100 protein.
Collapse
Affiliation(s)
- A Martínez
- Department of Cytology and Histology, Universidad de Navarra, Pamplona, Spain
| | | | | |
Collapse
|
47
|
Caldwell BD, Darlington DN, Penzes P, Johnson RC, Eipper BA, Mains RE. The novel kinase peptidylglycine alpha-amidating monooxygenase cytosolic interactor protein 2 interacts with the cytosolic routing determinants of the peptide processing enzyme peptidylglycine alpha-amidating monooxygenase. J Biol Chem 1999; 274:34646-56. [PMID: 10574929 DOI: 10.1074/jbc.274.49.34646] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytosolic domain of the peptide-processing integral membrane protein peptidylglycine alpha-amidating monooxygenase (PAM; EC 1.14. 17.3) contains multiple signals determining its subcellular localization. Three PAM cytosolic interactor proteins (P-CIPs) were identified using the yeast two hybrid system (Alam, M. R., Caldwel, B. D., Johnson, R. C., Darlington, D. N., Mains, R. E., and Eipper, B. A. (1996) J. Biol. Chem. 271, 28636-28640); the partial amino acid sequence of P-CIP2 suggested that it was a protein kinase. In situ hybridization and immunocytochemistry show that P-CIP2 is expressed widely throughout the brain; PAM and P-CIP2 are expressed in the same neurons. Based on subcellular fractionation, the 47-kDa P-CIP2 protein is mostly cytosolic. P-CIP2 is a highly selective kinase, phosphorylating the cytosolic domain of PAM, but not the corresponding region of furin or carboxypeptidase D. Although P-CIP2 interacts with stathmin, it does not phosphorylate stathmin. Site-directed mutagenesis, phosphoamino acid analysis, and use of synthetic peptides demonstrate that PAM-Ser(949) is the major site phosphorylated by P-CIP2. Based on both in vitro binding experiments and co-immunoprecipitation from cell extracts, P-CIP2 interacts with PAM proteins containing the wild type cytosolic domain, but not with mutant forms of PAM whose trafficking is disrupted. P-CIP2, through its highly selective phosphorylation of a key site in the cytosolic domain of PAM, appears to play a critical role in the trafficking of this protein.
Collapse
Affiliation(s)
- B D Caldwell
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
48
|
Differences in the ways sympathetic neurons and endocrine cells process, store, and secrete exogenous neuropeptides and peptide-processing enzymes. J Neurosci 1999. [PMID: 10493731 DOI: 10.1523/jneurosci.19-19-08300.1999] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most neurons store peptides in large dense core vesicles (LDCVs) and release the neuropeptides in a regulated manner. Although LDCVs have been studied in endocrine cells, less is known about these storage organelles in neurons. In this study we use the endogenous peptide NPY (neuropeptide Y) and the endogenous peptide-processing enzyme PAM (peptidylglycine alpha-amidating monooxygenase) as tools to study the peptidergic system in cultured neurons from the superior cervical ganglion (SCG). Once mature, SCG neurons devote as much of their biosynthetic capabilities to neurotransmitter production as endocrine cells devote to hormone production. Unlike pituitary and atrium, SCG neurons cleave almost all of the bifunctional PAM protein they produce into soluble monofunctional enzymes. Very little PAM or NPY is secreted under basal conditions, and the addition of secretagogue dramatically stimulates the secretion of PAM and NPY to a similar extent. Although endocrine cells typically package "foreign" secretory products together with endogenous products, pro-opiomelanocortin- and PAM-derived products encoded by adenovirus in large part were excluded from the LDCVs of SCG neurons. When expressed in corticotrope tumor cells and primary anterior pituitary cultures, the same virally encoded products were metabolized normally. The differences that were observed could reflect differences in the properties of neuronal and endocrine peptidergic systems or differences in the ability of neurons and endocrine cells to express viral transcripts.
Collapse
|
49
|
Marx R, El Meskini R, Johns DC, Mains RE. Differences in the ways sympathetic neurons and endocrine cells process, store, and secrete exogenous neuropeptides and peptide-processing enzymes. J Neurosci 1999; 19:8300-11. [PMID: 10493731 PMCID: PMC6783039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Most neurons store peptides in large dense core vesicles (LDCVs) and release the neuropeptides in a regulated manner. Although LDCVs have been studied in endocrine cells, less is known about these storage organelles in neurons. In this study we use the endogenous peptide NPY (neuropeptide Y) and the endogenous peptide-processing enzyme PAM (peptidylglycine alpha-amidating monooxygenase) as tools to study the peptidergic system in cultured neurons from the superior cervical ganglion (SCG). Once mature, SCG neurons devote as much of their biosynthetic capabilities to neurotransmitter production as endocrine cells devote to hormone production. Unlike pituitary and atrium, SCG neurons cleave almost all of the bifunctional PAM protein they produce into soluble monofunctional enzymes. Very little PAM or NPY is secreted under basal conditions, and the addition of secretagogue dramatically stimulates the secretion of PAM and NPY to a similar extent. Although endocrine cells typically package "foreign" secretory products together with endogenous products, pro-opiomelanocortin- and PAM-derived products encoded by adenovirus in large part were excluded from the LDCVs of SCG neurons. When expressed in corticotrope tumor cells and primary anterior pituitary cultures, the same virally encoded products were metabolized normally. The differences that were observed could reflect differences in the properties of neuronal and endocrine peptidergic systems or differences in the ability of neurons and endocrine cells to express viral transcripts.
Collapse
Affiliation(s)
- R Marx
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | | | | | |
Collapse
|
50
|
Bruzzaniti A, Marx R, Mains RE. Activation and routing of membrane-tethered prohormone convertases 1 and 2. J Biol Chem 1999; 274:24703-13. [PMID: 10455138 DOI: 10.1074/jbc.274.35.24703] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many peptide hormones and neuropeptides are processed by members of the subtilisin-like family of prohormone convertases (PCs), which are either soluble or integral membrane proteins. PC1 and PC2 are soluble PCs that are primarily localized to large dense core vesicles in neurons and endocrine cells. We examined whether PC1 and PC2 were active when expressed as membrane-tethered proteins, and how tethering to membranes alters the biosynthesis, enzymatic activity, and intracellular routing of these PCs. PC1 and PC2 chimeras were constructed using the transmembrane domain and cytoplasmic domain of the amidating enzyme, peptidylglycine alpha-amidating monooxygenase (PAM). The membrane-tethered PCs were rerouted from large dense core vesicles to the Golgi region. In addition, the chimeras were transiently expressed at the cell surface and rapidly internalized to the Golgi region in a fashion similar to PAM. Membrane-tethered PC1 and PC2 exhibited changes in pro-domain maturation rates, N-glycosylation, and in the pH and calcium optima required for maximal enzymatic activity against a fluorogenic substrate. In addition, the PC chimeras efficiently cleaved endogenous pro-opiomelanocortin to the correct bioactive peptides. The PAM transmembrane domain/cytoplasmic domain also prevented stimulated secretion of pro-opiomelanocortin products in AtT-20 cells.
Collapse
Affiliation(s)
- A Bruzzaniti
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|