1
|
de Souza Cardoso R, Murakami T, Jacobovitz B, Veatch SL, Ono A. PIP 2 promotes the incorporation of CD43, PSGL-1, and CD44 into nascent HIV-1 particles. SCIENCE ADVANCES 2025; 11:eads9711. [PMID: 40184445 PMCID: PMC11970457 DOI: 10.1126/sciadv.ads9711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/28/2025] [Indexed: 04/06/2025]
Abstract
Determinants regulating sorting of host transmembrane proteins at sites of enveloped virus assembly on the plasma membrane (PM) remain poorly understood. Here, we demonstrate that the PM acidic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) regulates this sorting into an enveloped virus, HIV-1. Incorporation of CD43, PSGL-1, and CD44 into HIV-1 particles has profound effects on viral spread; however, the mechanisms promoting their incorporation were unknown. We found that depletion of cellular PIP2 blocks incorporation of CD43, PSGL-1, and CD44 into HIV-1 particles. Expansion microscopy revealed that PIP2 depletion diminishes nanoscale coclustering between viral structural protein Gag and the three transmembrane proteins at the PM and that Gag induces PIP2 enrichment at its vicinity. CD43, PSGL-1, and CD44 also increased local PIP2 density, revealing their PIP2 affinity. Together, these results support a previously unknown mechanism where local enrichment of an acidic phospholipid drives coclustering between viral structural and cellular transmembrane proteins, thereby modulating the content, and hence the fate, of progeny virus particles.
Collapse
Affiliation(s)
- Ricardo de Souza Cardoso
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tomoyuki Murakami
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Binyamin Jacobovitz
- BRCF Microscopy Core, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sarah L. Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Sánchez-Sánchez BJ, Marcotti S, Salvador-Garcia D, Díaz-de-la-Loza MDC, Burki M, Davidson AJ, Wood W, Stramer BM. Moesin integrates cortical and lamellar actin networks during Drosophila macrophage migration. Nat Commun 2025; 16:1414. [PMID: 39915456 PMCID: PMC11802916 DOI: 10.1038/s41467-024-55510-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Cells are thought to adopt mechanistically distinct migration modes depending on cell-type and environmental factors. These modes are assumed to be driven by mutually exclusive actin cytoskeletal organizations, which are either lamellar (flat, branched network) or cortical (crosslinked to the plasma membrane). Here we exploit Drosophila macrophage (hemocyte) developmental dispersal to reveal that these cells maintain both a lamellar actin network at their cell front and a cortical actin network at the rear. Loss of classical actin cortex regulators, such as Moesin, perturb hemocyte morphology and cell migration. Furthermore, cortical and lamellipodial actin networks are interregulated. Upon phosphorylation and binding to the plasma membrane, Moesin is advected to the rear by lamellar actin flow. Simultaneously, the cortical actin network feeds back on the lamella to help regulate actin flow speed and leading-edge dynamics. These data reveal that hemocyte motility requires both lamellipodial and cortical actin architectures in homeostatic equilibrium.
Collapse
Affiliation(s)
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | - David Salvador-Garcia
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | | | - Mubarik Burki
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | - Andrew J Davidson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, G61 1BD, Glasgow, UK
| | - Will Wood
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh Bioquarter, EH16 4UU, Edinburgh, UK
| | - Brian M Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK.
| |
Collapse
|
3
|
de Souza Cardoso R, Murakami T, Jacobovitz B, Veatch SL, Ono A. PIP2 promotes the incorporation of CD43, PSGL-1 and CD44 into nascent HIV-1 particles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611432. [PMID: 39282414 PMCID: PMC11398503 DOI: 10.1101/2024.09.05.611432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Determinants regulating sorting of host transmembrane proteins at sites of enveloped virus assembly on the plasma membrane (PM) remain poorly understood. Here, we demonstrate for the first time that PM acidic phospholipid PIP2 regulates such sorting into an enveloped virus, HIV-1. Incorporation of CD43, PSGL-1, and CD44 into HIV-1 particles is known to have profound effects on viral spread; however, the mechanisms promoting their incorporation were unknown. We found that depletion of cellular PIP2 blocks the incorporation of CD43, PSGL-1, and CD44 into HIV-1 particles. Expansion microscopy revealed that PIP2 depletion diminishes nanoscale co-clustering between viral structural protein Gag and the three transmembrane proteins at PM and that Gag induces PIP2 enrichment around itself. CD43, PSGL-1, and CD44 also increased local PIP2 density, revealing their PIP2 affinity. Altogether, these results support a new mechanism where local enrichment of an acidic phospholipid drives co-clustering between viral structural and cellular transmembrane proteins, thereby modulating the content, and hence the fate, of progeny virus particles.
Collapse
Affiliation(s)
- Ricardo de Souza Cardoso
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tomoyuki Murakami
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Sarah L Veatch
- BRCF Microscopy Core, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Qiao J, Tan Y, Liu H, Yang B, Zhang Q, Liu Q, Sun W, Li Z, Wang Q, Feng W, Yang S, Cui L. Histone H3K18 and Ezrin Lactylation Promote Renal Dysfunction in Sepsis-Associated Acute Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307216. [PMID: 38767134 PMCID: PMC11267308 DOI: 10.1002/advs.202307216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Histone lactylation is a metabolic stress-related histone modification. However, the role of histone lactylation in the development of sepsis-associated acute kidney injury (SA-AKI) remains unclear. Here, histone H3K18 lactylation (H3K18la) is elevated in SA-AKI, which is reported in this study. Furthermore, this lactate-dependent histone modification is enriched at the promoter of Ras homolog gene family member A (RhoA) and positively correlated with the transcription. Correction of abnormal lactate levels resulted in a reversal of abnormal histone lactylation at the promoter of RhoA. Examination of related mechanism revealed that histone lactylation promoted the RhoA/Rho-associated protein kinase (ROCK) /Ezrin signaling, the activation of nuclear factor-κB (NF-κB), inflammation, cell apoptosis, and aggravated renal dysfunction. In addition, Ezrin can undergo lactylation modification. Multiple lactylation sites are identified in Ezrin and confirmed that lactylation mainly occurred at the K263 site. The role of histone lactylation is revealed in SA-AKI and reportes a novel post-translational modification in Ezrin. Its potential role in regulating inflammatory metabolic adaptation of renal proximal tubule epithelial cells is also elucidated. The results provide novel insights into the epigenetic regulation of the onset of SA-AKI.
Collapse
Affiliation(s)
- Jiao Qiao
- Institute of Medical TechnologyPeking University Health Science CenterBeijing100191China
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Yuan Tan
- Institute of Medical TechnologyPeking University Health Science CenterBeijing100191China
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Hongchao Liu
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Boxin Yang
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Qian Zhang
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Qi Liu
- Institute of Medical TechnologyPeking University Health Science CenterBeijing100191China
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Wenyuan Sun
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Zhongxin Li
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Qingchen Wang
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Weimin Feng
- Institute of Medical TechnologyPeking University Health Science CenterBeijing100191China
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Shuo Yang
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Liyan Cui
- Institute of Medical TechnologyPeking University Health Science CenterBeijing100191China
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| |
Collapse
|
5
|
Le T, Ferling I, Qiu L, Nabaile C, Assunção L, Roskelley CD, Grinstein S, Freeman SA. Redistribution of the glycocalyx exposes phagocytic determinants on apoptotic cells. Dev Cell 2024; 59:853-868.e7. [PMID: 38359833 DOI: 10.1016/j.devcel.2024.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/08/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Phagocytes remove dead and dying cells by engaging "eat-me" ligands such as phosphatidylserine (PtdSer) on the surface of apoptotic targets. However, PtdSer is obscured by the bulky exofacial glycocalyx, which also exposes ligands that activate "don't-eat-me" receptors such as Siglecs. Clearly, unshielding the juxtamembrane "eat-me" ligands is required for the successful engulfment of apoptotic cells, but the mechanisms underlying this process have not been described. Using human and murine cells, we find that apoptosis-induced retraction and weakening of the cytoskeleton that anchors transmembrane proteins cause an inhomogeneous redistribution of the glycocalyx: actin-depleted blebs emerge, lacking the glycocalyx, while the rest of the apoptotic cell body retains sufficient actin to tether the glycocalyx in place. Thus, apoptotic blebs can be engaged by phagocytes and are targeted for engulfment. Therefore, in cells with an elaborate glycocalyx, such as mucinous cancer cells, this "don't-come-close-to-me" barrier must be removed to enable clearance by phagocytosis.
Collapse
Affiliation(s)
- Trieu Le
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Iuliia Ferling
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Lanhui Qiu
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Clement Nabaile
- Department of Learning and Research in Biology, Ecole Normale Supérieure Paris-Saclay, Gif-sur-Yvette, France
| | - Leonardo Assunção
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Calvin D Roskelley
- Department of Cellular and Physiological Sciences, the Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
6
|
Guerra-Espinosa C, Jiménez-Fernández M, Sánchez-Madrid F, Serrador JM. ICAMs in Immunity, Intercellular Adhesion and Communication. Cells 2024; 13:339. [PMID: 38391953 PMCID: PMC10886500 DOI: 10.3390/cells13040339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Interactions among leukocytes and leukocytes with immune-associated auxiliary cells represent an essential feature of the immune response that requires the involvement of cell adhesion molecules (CAMs). In the immune system, CAMs include a wide range of members pertaining to different structural and functional families involved in cell development, activation, differentiation and migration. Among them, β2 integrins (LFA-1, Mac-1, p150,95 and αDβ2) are predominantly involved in homotypic and heterotypic leukocyte adhesion. β2 integrins bind to intercellular (I)CAMs, actin cytoskeleton-linked receptors belonging to immunoglobulin superfamily (IgSF)-CAMs expressed by leukocytes and vascular endothelial cells, enabling leukocyte activation and transendothelial migration. β2 integrins have long been viewed as the most important ICAMs partners, propagating intracellular signalling from β2 integrin-ICAM adhesion receptor interaction. In this review, we present previous evidence from pioneering studies and more recent findings supporting an important role for ICAMs in signal transduction. We also discuss the contribution of immune ICAMs (ICAM-1, -2, and -3) to reciprocal cell signalling and function in processes in which β2 integrins supposedly take the lead, paying particular attention to T cell activation, differentiation and migration.
Collapse
Affiliation(s)
- Claudia Guerra-Espinosa
- Immune System Development and Function Unit, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - María Jiménez-Fernández
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; (M.J.-F.); (F.S.-M.)
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; (M.J.-F.); (F.S.-M.)
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan M. Serrador
- Immune System Development and Function Unit, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
7
|
Calabrese B, Halpain S. MARCKS and PI(4,5)P 2 reciprocally regulate actin-based dendritic spine morphology. Mol Biol Cell 2024; 35:ar23. [PMID: 38088877 PMCID: PMC10881156 DOI: 10.1091/mbc.e23-09-0370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 01/14/2024] Open
Abstract
Myristoylated, alanine-rich C-kinase substrate (MARCKS) is an F-actin and phospholipid binding protein implicated in numerous cellular activities, including the regulation of morphology in neuronal dendrites and dendritic spines. MARCKS contains a lysine-rich effector domain that mediates its binding to plasma membrane phosphatidylinositol-4,5-biphosphate (PI(4,5)P2) in a manner controlled by PKC and calcium/calmodulin. In neurons, manipulations of MARCKS concentration and membrane targeting strongly affect the numbers, shapes, and F-actin properties of dendritic spines, but the mechanisms remain unclear. Here, we tested the hypothesis that the effects of MARCKS on dendritic spine morphology are due to its capacity to regulate the availability of plasma membrane PI(4,5)P2. We observed that the concentration of free PI(4,5)P2 on the dendritic plasma membrane was inversely proportional to the concentration of MARCKS. Endogenous PI(4,5)P2 levels were increased or decreased, respectively, by acutely overexpressing either phosphatidylinositol-4-phosphate 5-kinase (PIP5K) or inositol polyphosphate 5-phosphatase (5ptase). PIP5K, like MARCKS depletion, induced severe spine shrinkage; 5ptase, like constitutively membrane-bound MARCKS, induced aberrant spine elongation. These phenotypes involved changes in actin properties driven by the F-actin severing protein cofilin. Collectively, these findings support a model in which neuronal activity regulates actin-dependent spine morphology through antagonistic interactions of MARCKS and PI(4,5)P2.
Collapse
Affiliation(s)
- Barbara Calabrese
- Department of Neurobiology, School of Biological Sciences, University of California San Diego and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Shelley Halpain
- Department of Neurobiology, School of Biological Sciences, University of California San Diego and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| |
Collapse
|
8
|
Du Y, Bradshaw WJ, Leisner TM, Annor-Gyamfi JK, Qian K, Bashore FM, Sikdar A, Nwogbo FO, Ivanov AA, Frye SV, Gileadi O, Brennan PE, Levey AI, Axtman AD, Pearce KH, Fu H, Katis VL. Discovery of FERM domain protein-protein interaction inhibitors for MSN and CD44 as a potential therapeutic approach for Alzheimer's disease. J Biol Chem 2023; 299:105382. [PMID: 37866628 PMCID: PMC10692723 DOI: 10.1016/j.jbc.2023.105382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Proteomic studies have identified moesin (MSN), a protein containing a four-point-one, ezrin, radixin, moesin (FERM) domain, and the receptor CD44 as hub proteins found within a coexpression module strongly linked to Alzheimer's disease (AD) traits and microglia. These proteins are more abundant in Alzheimer's patient brains, and their levels are positively correlated with cognitive decline, amyloid plaque deposition, and neurofibrillary tangle burden. The MSN FERM domain interacts with the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) and the cytoplasmic tail of CD44. Inhibiting the MSN-CD44 interaction may help limit AD-associated neuronal damage. Here, we investigated the feasibility of developing inhibitors that target this protein-protein interaction. We have employed structural, mutational, and phage-display studies to examine how CD44 binds to the FERM domain of MSN. Interestingly, we have identified an allosteric site located close to the PIP2 binding pocket that influences CD44 binding. These findings suggest a mechanism in which PIP2 binding to the FERM domain stimulates CD44 binding through an allosteric effect, leading to the formation of a neighboring pocket capable of accommodating a receptor tail. Furthermore, high-throughput screening of a chemical library identified two compounds that disrupt the MSN-CD44 interaction. One compound series was further optimized for biochemical activity, specificity, and solubility. Our results suggest that the FERM domain holds potential as a drug development target. Small molecule preliminary leads generated from this study could serve as a foundation for additional medicinal chemistry efforts with the goal of controlling microglial activity in AD by modifying the MSN-CD44 interaction.
Collapse
Affiliation(s)
- Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William J Bradshaw
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, UK
| | - Tina M Leisner
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chapel Hill, North Carolina, USA
| | - Joel K Annor-Gyamfi
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Structural Genomics Consortium, Chapel Hill, North Carolina, USA
| | - Kun Qian
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Frances M Bashore
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Structural Genomics Consortium, Chapel Hill, North Carolina, USA
| | - Arunima Sikdar
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chapel Hill, North Carolina, USA
| | - Felix O Nwogbo
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chapel Hill, North Carolina, USA
| | - Andrey A Ivanov
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stephen V Frye
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chapel Hill, North Carolina, USA
| | - Opher Gileadi
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, UK
| | - Paul E Brennan
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, UK
| | - Allan I Levey
- Department of Neurology, Emory Goizueta Alzheimer's Disease Research Center, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alison D Axtman
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Structural Genomics Consortium, Chapel Hill, North Carolina, USA.
| | - Kenneth H Pearce
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chapel Hill, North Carolina, USA.
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia, USA.
| | - Vittorio L Katis
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Deng DX, Li CY, Zheng ZY, Wen B, Liao LD, Zhang XJ, Li EM, Xu LY. Prenylated PALM2 Promotes the Migration of Esophageal Squamous Cell Carcinoma Cells Through Activating Ezrin. Mol Cell Proteomics 2023; 22:100593. [PMID: 37328063 PMCID: PMC10393820 DOI: 10.1016/j.mcpro.2023.100593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Proteins containing a CAAX motif at the C-terminus undergo prenylation for localization and activity and include a series of key regulatory proteins, such as RAS superfamily members, heterotrimeric G proteins, nuclear lamina protein, and several protein kinases and phosphatases. However, studies of prenylated proteins in esophageal cancer are limited. Here, through research on large-scale proteomic data of esophageal cancer in our laboratory, we found that paralemmin-2 (PALM2), a potential prenylated protein, was upregulated and associated with poor prognosis in patients. Low-throughput verification showed that the expression of PALM2 in esophageal cancer tissues was higher than that in their paired normal esophageal epithelial tissues, and it was generally expressed in the membrane and cytoplasm of esophageal cancer cells. PALM2 interacted with the two subunits of farnesyl transferase (FTase), FNTA and FNTB. Either the addition of an FTase inhibitor or mutation in the CAAX motif of PALM2 (PALM2C408S) impaired its membranous localization and reduced the membrane location of PALM2, indicating PALM2 was prenylated by FTase. Overexpression of PALM2 enhanced the migration of esophageal squamous cell carcinoma cells, whereas PALM2C408S lost this ability. Mechanistically, PALM2 interacted with the N-terminal FERM domain of ezrin of the ezrin/radixin/moesin (ERM) family. Mutagenesis indicated that lysine residues K253/K254/K262/K263 in ezrin's FERM domain and C408 in PALM2's CAAX motif were important for PALM2/ezrin interaction and ezrin activation. Knockout of ezrin prevented enhanced cancer cell migration by PALM2 overexpression. PALM2, depending on its prenylation, increased both ezrin membrane localization and phosphorylation of ezrin at Y146. In summary, prenylated PALM2 enhances the migration of cancer cells by activating ezrin.
Collapse
Affiliation(s)
- Dan-Xia Deng
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Cheng-Yu Li
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China; Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Cancer, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhen-Yuan Zheng
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China; Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Cancer, Shantou University Medical College, Shantou, Guangdong, China
| | - Bing Wen
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
| | - Lian-Di Liao
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiao-Jun Zhang
- Central Laboratory, Shantou University Medical College, Shantou, Guangdong, China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China.
| | - Li-Yan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, China; Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Cancer, Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
10
|
Du Y, Bradshaw WJ, Leisner TM, Annor-Gyamfi JK, Qian K, Bashore FM, Sikdar A, Nwogbo FO, Ivanov AA, Frye SV, Gileadi O, Brennan PE, Levey AI, Emory-Sage-SGC TREAT-AD Center, Axtman AD, Pearce KH, Fu H, Katis VL. Development of FERM domain protein-protein interaction inhibitors for MSN and CD44 as a potential therapeutic strategy for Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541727. [PMID: 37292860 PMCID: PMC10245921 DOI: 10.1101/2023.05.22.541727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent genome-wide association studies have revealed genetic risk factors for Alzheimer's disease (AD) that are exclusively expressed in microglia within the brain. A proteomics approach identified moesin (MSN), a FERM (four-point-one ezrin radixin moesin) domain protein, and the receptor CD44 as hub proteins found within a co-expression module strongly linked to AD clinical and pathological traits as well as microglia. The FERM domain of MSN interacts with the phospholipid PIP2 and the cytoplasmic tails of receptors such as CD44. This study explored the feasibility of developing protein-protein interaction inhibitors that target the MSN-CD44 interaction. Structural and mutational analyses revealed that the FERM domain of MSN binds to CD44 by incorporating a beta strand within the F3 lobe. Phage-display studies identified an allosteric site located close to the PIP2 binding site in the FERM domain that affects CD44 binding within the F3 lobe. These findings support a model in which PIP2 binding to the FERM domain stimulates receptor tail binding through an allosteric mechanism that causes the F3 lobe to adopt an open conformation permissive for binding. High-throughput screening of a chemical library identified two compounds that disrupt the MSN-CD44 interaction, and one compound series was further optimized for biochemical activity, specificity, and solubility. The results suggest that the FERM domain holds potential as a drug development target. The small molecule preliminary leads generated from the study could serve as a foundation for additional medicinal chemistry effort with the goal of controlling microglial activity in AD by modifying the MSN-CD44 interaction.
Collapse
Affiliation(s)
- Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William J. Bradshaw
- Alzheimer’s Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford, OX3 7FZ, UK
| | - Tina M. Leisner
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, Chapel Hill, NC 27599, USA
| | - Joel K. Annor-Gyamfi
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Structural Genomics Consortium, Chapel Hill, NC 27599, USA
| | - Kun Qian
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Current address: Chemical Biology Consortium Sweden, Division of Chemical Biology and Genome Engineering, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 65 Solna, Sweden
| | - Frances M. Bashore
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Structural Genomics Consortium, Chapel Hill, NC 27599, USA
| | - Arunima Sikdar
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, Chapel Hill, NC 27599, USA
| | - Felix O. Nwogbo
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, Chapel Hill, NC 27599, USA
| | - Andrey A. Ivanov
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stephen V. Frye
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, Chapel Hill, NC 27599, USA
| | - Opher Gileadi
- Alzheimer’s Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford, OX3 7FZ, UK
- Current address: Structural Genomics Consortium, Department of Medicine, Karolinska Hospital and Karolinska Institute, 171 76 Stockholm, Sweden
| | - Paul E. Brennan
- Alzheimer’s Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford, OX3 7FZ, UK
| | - Allan I. Levey
- Department of Neurology, Emory Goizueta Alzheimer’s Disease Research Center, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Alison D. Axtman
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Structural Genomics Consortium, Chapel Hill, NC 27599, USA
| | - Kenneth H. Pearce
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, Chapel Hill, NC 27599, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Vittorio L. Katis
- Alzheimer’s Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford, OX3 7FZ, UK
| |
Collapse
|
11
|
Ahandoust S, Li K, Sun X, Li BY, Yokota H, Na S. Intracellular and extracellular moesins differentially regulate Src activity and β-catenin translocation to the nucleus in breast cancer cells. Biochem Biophys Res Commun 2023; 639:62-69. [PMID: 36470073 DOI: 10.1016/j.bbrc.2022.11.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
It is increasingly recognized that a single protein can have multiple, sometimes paradoxical, roles in cell functions as well as pathological conditions depending on its cellular locations. Here we report that moesins (MSNs) in the intracellular and extracellular domains present opposing roles in pro-tumorigenic signaling in breast cancer cells. Using live cell imaging with fluorescence resonance energy transfer (FRET)- and green fluorescent protein (GFP)-based biosensors, we investigated the molecular mechanism underlying the cellular location-dependent effect of MSN on Src and β-catenin signaling in MDA-MB-231 breast cancer cells. Inhibition of intracellular MSN decreased the activities of Src and FAK, whereas overexpression of intracellular MSN increased them. By contrast, extracellular MSN decreased the activities of Src, FAK, and RhoA, as well as β-catenin translocation to the nucleus. Consistently, Western blotting and MTT-based analysis showed that overexpression of intracellular MSN elevated the expression of oncogenic genes, such as p-Src, β-catenin, Lrp5, MMP9, Runx2, and Snail, as well as cell viability, whereas extracellular MSN suppressed them. Conditioned medium derived from MSN-overexpressing mesenchymal stem cells or osteocytes showed the anti-tumor effects by inhibiting the Src activity and β-catenin translocation to the nucleus as well as the activities of FAK and RhoA and MTT-based cell viability. Conditioned medium derived from MSN-inhibited cells increased the Src activity, but it did not affect the activities of FAK and RhoA. Silencing CD44 and/or FN1 in MDA-MB-231 cells blocked the suppression of Src activity and β-catenin accumulation in the nucleus by extracellular MSN. Collectively, the results suggest that cellular location-specific MSN is a strong regulator of Src and β-catenin signaling in breast cancer cells, and that extracellular MSN exerts tumor-suppressive effects via its interaction with CD44 and FN1.
Collapse
Affiliation(s)
- Sina Ahandoust
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Kexin Li
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA; Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xun Sun
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA; Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Sungsoo Na
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
12
|
Wills RC, Hammond GRV. PI(4,5)P2: signaling the plasma membrane. Biochem J 2022; 479:2311-2325. [PMID: 36367756 PMCID: PMC9704524 DOI: 10.1042/bcj20220445] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
Abstract
In the almost 70 years since the first hints of its existence, the phosphoinositide, phosphatidyl-D-myo-inositol 4,5-bisphosphate has been found to be central in the biological regulation of plasma membrane (PM) function. Here, we provide an overview of the signaling, transport and structural roles the lipid plays at the cell surface in animal cells. These include being substrate for second messenger generation, direct modulation of receptors, control of membrane traffic, regulation of ion channels and transporters, and modulation of the cytoskeleton and cell polarity. We conclude by re-evaluating PI(4,5)P2's designation as a signaling molecule, instead proposing a cofactor role, enabling PM-selective function for many proteins.
Collapse
Affiliation(s)
- Rachel C. Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Gerald R. V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| |
Collapse
|
13
|
Palshikar MG, Palli R, Tyrell A, Maggirwar S, Schifitto G, Singh MV, Thakar J. Executable models of immune signaling pathways in HIV-associated atherosclerosis. NPJ Syst Biol Appl 2022; 8:35. [PMID: 36131068 PMCID: PMC9492768 DOI: 10.1038/s41540-022-00246-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022] Open
Abstract
Atherosclerosis (AS)-associated cardiovascular disease is an important cause of mortality in an aging population of people living with HIV (PLWH). This elevated risk has been attributed to viral infection, anti-retroviral therapy, chronic inflammation, and lifestyle factors. However, the rates at which PLWH develop AS vary even after controlling for length of infection, treatment duration, and for lifestyle factors. To investigate the molecular signaling underlying this variation, we sequenced 9368 peripheral blood mononuclear cells (PBMCs) from eight PLWH, four of whom have atherosclerosis (AS+). Additionally, a publicly available dataset of PBMCs from persons before and after HIV infection was used to investigate the effect of acute HIV infection. To characterize dysregulation of pathways rather than just measuring enrichment, we developed the single-cell Boolean Omics Network Invariant Time Analysis (scBONITA) algorithm. scBONITA infers executable dynamic pathway models and performs a perturbation analysis to identify high impact genes. These dynamic models are used for pathway analysis and to map sequenced cells to characteristic signaling states (attractor analysis). scBONITA revealed that lipid signaling regulates cell migration into the vascular endothelium in AS+ PLWH. Pathways implicated included AGE-RAGE and PI3K-AKT signaling in CD8+ T cells, and glucagon and cAMP signaling pathways in monocytes. Attractor analysis with scBONITA facilitated the pathway-based characterization of cellular states in CD8+ T cells and monocytes. In this manner, we identify critical cell-type specific molecular mechanisms underlying HIV-associated atherosclerosis using a novel computational method.
Collapse
Affiliation(s)
- Mukta G Palshikar
- Biophysics, Structural, and Computational Biology Program, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Rohith Palli
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Alicia Tyrell
- University of Rochester Clinical & Translational Science Institute, Rochester, USA
| | - Sanjay Maggirwar
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, USA
- Department of Imaging Sciences, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Meera V Singh
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Juilee Thakar
- Biophysics, Structural, and Computational Biology Program, University of Rochester School of Medicine and Dentistry, Rochester, USA.
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, USA.
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, USA.
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, USA.
| |
Collapse
|
14
|
Droubi A, Wallis C, Anderson KE, Rahman S, de Sa A, Rahman T, Stephens LR, Hawkins PT, Lowe M. The inositol 5-phosphatase INPP5B regulates B cell receptor clustering and signaling. J Cell Biol 2022; 221:e202112018. [PMID: 35878408 PMCID: PMC9351708 DOI: 10.1083/jcb.202112018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/27/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022] Open
Abstract
Upon antigen binding, the B cell receptor (BCR) undergoes clustering to form a signalosome that propagates downstream signaling required for normal B cell development and physiology. BCR clustering is dependent on remodeling of the cortical actin network, but the mechanisms that regulate actin remodeling in this context remain poorly defined. In this study, we identify the inositol 5-phosphatase INPP5B as a key regulator of actin remodeling, BCR clustering, and downstream signaling in antigen-stimulated B cells. INPP5B acts via dephosphorylation of the inositol lipid PI(4,5)P2 that in turn is necessary for actin disassembly, BCR mobilization, and cell spreading on immobilized surface antigen. These effects can be explained by increased actin severing by cofilin and loss of actin linking to the plasma membrane by ezrin, both of which are sensitive to INPP5B-dependent PI(4,5)P2 hydrolysis. INPP5B is therefore a new player in BCR signaling and may represent an attractive target for treatment of B cell malignancies caused by aberrant BCR signaling.
Collapse
Affiliation(s)
- Alaa Droubi
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Connor Wallis
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Saifur Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Aloka de Sa
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | | | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
15
|
Wurz AI, Bunner WP, Szatmari EM, Hughes RM. CRY-BARs: Versatile light-gated molecular tools for the remodeling of membrane architectures. J Biol Chem 2022; 298:102388. [PMID: 35987384 PMCID: PMC9530617 DOI: 10.1016/j.jbc.2022.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022] Open
Abstract
BAR (Bin, Amphiphysin and Rvs) protein domains are responsible for the generation of membrane curvature and represent a critical mechanical component of cellular functions. Thus, BAR domains have great potential as components of membrane-remodeling tools for cell biologists. In this work, we describe the design and implementation of a family of versatile light-gated I-BAR (inverse-BAR) domain containing tools derived from the fusion of the A. thaliana Cryptochrome 2 photoreceptor and I-BAR protein domains ('CRY-BARs') with applications in the remodeling of membrane architectures and the control of cellular dynamics. By taking advantage of the intrinsic membrane binding propensity of the I-BAR domain, CRY-BARs can be used for spatial and temporal control of cellular processes that require induction of membrane protrusions. Using cell lines and primary neuron cultures, we demonstrate here that the CRY-BAR optogenetic tool evokes membrane dynamics changes associated with cellular activity. Moreover, we provide evidence that ezrin, an actin and PIP2 binding protein, acts as a relay between the plasma membrane and the actin cytoskeleton and therefore is an important mediator of switch function. Overall, we propose that CRY-BARs hold promise as a useful addition to the optogenetic toolkit to study membrane remodeling in live cells.
Collapse
Affiliation(s)
- Anna I Wurz
- Department of Chemistry, East Carolina University, Greenville, North Carolina, United States
| | - Wyatt Paul Bunner
- Department of Physical Therapy, East Carolina University, Greenville, North Carolina, United States
| | - Erzsebet M Szatmari
- Department of Physical Therapy, East Carolina University, Greenville, North Carolina, United States
| | - Robert M Hughes
- Department of Chemistry, East Carolina University, Greenville, North Carolina, United States.
| |
Collapse
|
16
|
Distel JS, Flores RMO, Bienvenu A, Aguilera MO, Bonazzi M, Berón W. Ezrin and CD44 participate in the internalization process of
Coxiella burnetii
into non‐phagocytic cells. Biol Cell 2022; 114:237-253. [DOI: 10.1111/boc.202100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Jesús S. Distel
- Instituto de Histología y Embriología Facultad de Ciencias Médicas Universidad Nacional de Cuyo ‐ CONICET Mendoza 5500 Argentina
| | - Rodolfo M. Ortiz Flores
- Instituto de Histología y Embriología Facultad de Ciencias Médicas Universidad Nacional de Cuyo ‐ CONICET Mendoza 5500 Argentina
- Cátedra de Microbiología Parasitología e Inmunología Facultad de Odontología Universidad Nacional de Cuyo Mendoza Argentina
| | - Arthur Bienvenu
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004 CNRS Université de Montpellier Montpellier France
| | - Milton O. Aguilera
- Instituto de Histología y Embriología Facultad de Ciencias Médicas Universidad Nacional de Cuyo ‐ CONICET Mendoza 5500 Argentina
- Cátedra de Microbiología Parasitología e Inmunología Facultad de Odontología Universidad Nacional de Cuyo Mendoza Argentina
| | - Matteo Bonazzi
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004 CNRS Université de Montpellier Montpellier France
| | - Walter Berón
- Instituto de Histología y Embriología Facultad de Ciencias Médicas Universidad Nacional de Cuyo ‐ CONICET Mendoza 5500 Argentina
| |
Collapse
|
17
|
O'Callaghan P, Engberg A, Eriksson O, Fatsis-Kavalopoulos N, Stelzl C, Sanchez G, Idevall-Hagren O, Kreuger J. Piezo1 activation attenuates thrombin-induced blebbing in breast cancer cells. J Cell Sci 2022; 135:274949. [PMID: 35274124 PMCID: PMC9016622 DOI: 10.1242/jcs.258809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 02/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer cells exploit a variety of migration modes to leave primary tumors and establish metastases, including amoeboid cell migration, which is typically reliant on bleb formation. Here we demonstrate that thrombin induces dynamic blebbing in the MDA-MB-231 breast cancer cell line and confirm that protease-activated receptor 1 (PAR1) activation is sufficient to induce this effect. Cell confinement has been implicated as a driving force in bleb-based migration. Unexpectedly, we found that gentle contact compression, exerted using a custom built ‘cell press’ to mechanically stimulate cells, reduced thrombin-induced blebbing. Thrombin-induced blebbing was similarly attenuated using the small molecule Yoda1, an agonist of the mechanosensitive Ca2+ channel Piezo1, and this attenuation was impaired in Piezo1-depleted cells. Additionally, Piezo1 activation suppressed thrombin-induced phosphorylation of ezrin, radixin and moesin (ERM) proteins, which are implicated in the blebbing process. Our results provide mechanistic insights into Piezo1 activation as a suppressor of dynamic blebbing, specifically that which is induced by thrombin. Summary: Thrombin and protease-activated receptor agonists induce dynamic blebbing in breast cancer cells, which can be attenuated by contact-mediated compression, and activation of the mechanosensitive ion channel Piezo1.
Collapse
Affiliation(s)
- Paul O'Callaghan
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Adam Engberg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Olle Eriksson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Christina Stelzl
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Gonzalo Sanchez
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Johan Kreuger
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Sepers JJ, Ramalho JJ, Kroll JR, Schmidt R, Boxem M. ERM-1 Phosphorylation and NRFL-1 Redundantly Control Lumen Formation in the C. elegans Intestine. Front Cell Dev Biol 2022; 10:769862. [PMID: 35198555 PMCID: PMC8860247 DOI: 10.3389/fcell.2022.769862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Reorganization of the plasma membrane and underlying actin cytoskeleton into specialized domains is essential for the functioning of most polarized cells in animals. Proteins of the ezrin-radixin-moesin (ERM) and Na+/H+ exchanger 3 regulating factor (NHERF) family are conserved regulators of cortical specialization. ERM proteins function as membrane-actin linkers and as molecular scaffolds that organize the distribution of proteins at the membrane. NHERF proteins are PDZ-domain containing adapters that can bind to ERM proteins and extend their scaffolding capability. Here, we investigate how ERM and NHERF proteins function in regulating intestinal lumen formation in the nematode Caenorhabditis elegans. C. elegans has single ERM and NHERF family proteins, termed ERM-1 and NRFL-1, and ERM-1 was previously shown to be critical for intestinal lumen formation. Using CRISPR/Cas9-generated nrfl-1 alleles we demonstrate that NRFL-1 localizes at the intestinal microvilli, and that this localization is depended on an interaction with ERM-1. However, nrfl-1 loss of function mutants are viable and do not show defects in intestinal development. Interestingly, combining nrfl-1 loss with erm-1 mutants that either block or mimic phosphorylation of a regulatory C-terminal threonine causes severe defects in intestinal lumen formation. These defects are not observed in the phosphorylation mutants alone, and resemble the effects of strong erm-1 loss of function. The loss of NRFL-1 did not affect the localization or activity of ERM-1. Together, these data indicate that ERM-1 and NRFL-1 function together in intestinal lumen formation in C. elegans. We postulate that the functioning of ERM-1 in this tissue involves actin-binding activities that are regulated by the C-terminal threonine residue and the organization of apical domain composition through NRFL-1.
Collapse
Affiliation(s)
- Jorian J Sepers
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, Netherlands
| | - João J Ramalho
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, Netherlands.,Laboratory of Biochemistry, Wageningen University and Research, Wageningen, Netherlands
| | - Jason R Kroll
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, Netherlands
| | - Ruben Schmidt
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, Netherlands
| | - Mike Boxem
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
19
|
Inoue H, Takatsu H, Hamamoto A, Takayama M, Nakabuchi R, Muranaka Y, Yagi T, Nakayama K, Shin HW. The interaction of ATP11C-b with ezrin contributes to its polarized localization. J Cell Sci 2021; 134:272204. [PMID: 34528675 DOI: 10.1242/jcs.258523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/09/2021] [Indexed: 02/04/2023] Open
Abstract
ATP11C, a member of the P4-ATPase family, translocates phosphatidylserine and phosphatidylethanolamine at the plasma membrane. We previously revealed that its C-terminal splice variant ATP11C-b exhibits polarized localization in motile cell lines, such as MDA-MB-231 and Ba/F3. In the present study, we found that the C-terminal cytoplasmic region of ATP11C-b interacts specifically with ezrin. Notably, the LLxY motif in the ATP11C-b C-terminal region is crucial for its interaction with ezrin as well as its polarized localization on the plasma membrane. A constitutively active, C-terminal phosphomimetic mutant of ezrin was colocalized with ATP11C-b in polarized motile cells. ATP11C-b was partially mislocalized in cells depleted of ezrin alone, and exhibited greater mislocalization in cells simultaneously depleted of the family members ezrin, radixin and moesin (ERM), suggesting that ERM proteins, particularly ezrin, contribute to the polarized localization of ATP11C-b. Furthermore, Atp11c knockout resulted in C-terminally phosphorylated ERM protein mislocalization, which was restored by exogenous expression of ATP11C-b but not ATP11C-a. These observations together indicate that the polarized localizations of ATP11C-b and the active form of ezrin to the plasma membrane are interdependently stabilized.
Collapse
Affiliation(s)
- Hiroki Inoue
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Takatsu
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Asuka Hamamoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Takayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Riki Nakabuchi
- Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yumeka Muranaka
- Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tsukasa Yagi
- Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hye-Won Shin
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
20
|
Eaton-Fitch N, Cabanas H, du Preez S, Staines D, Marshall-Gradisnik S. The effect of IL-2 stimulation and treatment of TRPM3 on channel co-localisation with PIP 2 and NK cell function in myalgic encephalomyelitis/chronic fatigue syndrome patients. J Transl Med 2021; 19:306. [PMID: 34266470 PMCID: PMC8281618 DOI: 10.1186/s12967-021-02974-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a serious multifactorial disorder. The origin remains ambiguous, however reduced natural killer (NK) cell cytotoxicity is a consistent immunological feature of ME/CFS. Impaired transient receptor potential melastatin 3 (TRPM3), a phosphatidylinositol dependent channel, and impaired calcium mobilisation have been implicated in ME/CFS pathology. This investigation aimed to examine the localisation of TRPM3 at the NK cell plasma membrane and co-localisation with phosphatidylinositol 4,5-bisphosphate (PIP2). The effect of IL-2 priming and treatment using pregnenolone sulfate (PregS) and ononetin on TRPM3 co-localisation and NK cell cytotoxicity in ME/CFS patients and healthy controls (HC) was also investigated. METHODS NK cells were isolated from 15 ME/CFS patients and 15 age- and sex-matched HC. Immunofluorescent technique was used to determine co-localisation of TRPM3 with the NK cell membrane and with PIP2 of ME/CFS patients and HC. Flow cytometry was used to determine NK cell cytotoxicity. Following IL-2 stimulation and treatment with PregS and ononetin changes in co-localisation and NK cell cytotoxicity were measured. RESULTS Overnight treatment of NK cells with PregS and ononetin resulted in reduced co-localisation of TRPM3 with PIP2 and actin in HC. Co-localisation of TRPM3 with PIP2 in NK cells was significantly reduced in ME/CFS patients compared with HC following priming with IL-2. A significant increase in co-localisation of TRPM3 with PIP2 was reported following overnight treatment with ononetin within ME/CFS patients and between groups. Baseline NK cell cytotoxicity was significantly reduced in ME/CFS patients; however, no changes were observed following overnight incubation with IL-2, PregS and ononetin between HC and ME/CFS patients. IL-2 stimulation significantly enhanced NK cell cytotoxicity in HC and ME/CFS patients. CONCLUSION Significant changes in co-localisation suggest PIP2-dependent TRPM3 function may be impaired in ME/CFS patients. Stimulation of NK cells with IL-2 significantly enhanced cytotoxic function in ME/CFS patients demonstrating normal function compared with HC. A crosstalk exists between IL-2 and TRPM3 intracellular signalling pathways which are dependent on Ca2+ influx and PIP2. While IL-2R responds to IL-2 binding in vitro, Ca2+ dysregulation and impaired intracellular signalling pathways impede NK cell function in ME/CFS patients.
Collapse
Affiliation(s)
- Natalie Eaton-Fitch
- School of Medical Sciences, Griffith University, Gold Coast, Australia. .,National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia. .,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia.
| | - Hélène Cabanas
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Stanley du Preez
- School of Medical Sciences, Griffith University, Gold Coast, Australia.,National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| |
Collapse
|
21
|
Gaeta IM, Meenderink LM, Postema MM, Cencer CS, Tyska MJ. Direct visualization of epithelial microvilli biogenesis. Curr Biol 2021; 31:2561-2575.e6. [PMID: 33951456 PMCID: PMC8222192 DOI: 10.1016/j.cub.2021.04.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/12/2021] [Accepted: 04/08/2021] [Indexed: 11/21/2022]
Abstract
Microvilli are actin-bundle-supported surface protrusions that play essential roles in diverse epithelial functions. To develop our understanding of microvilli biogenesis, we used live imaging to directly visualize protrusion growth at early stages of epithelial differentiation. Time-lapse data revealed that specific factors, including epidermal growth factor pathway substrate 8 (EPS8) and insulin-receptor tyrosine kinase substrate (IRTKS) (also known as BAIAP2L1), appear in diffraction-limited puncta at the cell surface and mark future sites of microvillus growth. New core actin bundles elongate from these puncta in parallel with the arrival of ezrin and subsequent plasma membrane encapsulation. In addition to de novo growth, we also observed that new microvilli emerge from pre-existing protrusions. Moreover, we found that nascent microvilli can also collapse, characterized first by loss of membrane wrapping and ezrin enrichment, followed by a sharp decrease in distal tip EPS8 and IRTKS levels, and ultimately disassembly of the core actin bundle itself. These studies are the first to offer a temporally resolved microvillus growth mechanism and highlight factors that participate in this process; they also provide important insights on the growth of apical specializations that will likely apply to diverse epithelial contexts.
Collapse
Affiliation(s)
- Isabella M Gaeta
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Leslie M Meenderink
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Veterans Affairs Tennessee Valley Health Care System, Nashville, TN 37212, USA
| | - Meagan M Postema
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Caroline S Cencer
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
22
|
Neutrophils lacking ERM proteins polarize and crawl directionally but have decreased adhesion strength. Blood Adv 2021; 4:3559-3571. [PMID: 32761234 DOI: 10.1182/bloodadvances.2020002423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/28/2020] [Indexed: 12/19/2022] Open
Abstract
Ezrin/radixin/moesin (ERM) proteins are adaptors that link the actin cytoskeleton to the cytoplasmic domains of membrane proteins. Leukocytes express mostly moesin with lower levels of ezrin but no radixin. When leukocytes are activated, ERMs are postulated to redistribute membrane proteins from microvilli into uropods during polarization and to transduce signals that influence adhesion and other responses. However, these functions have not been tested in leukocytes lacking all ERMs. We used knockout (KO) mice with neutrophils lacking ezrin, moesin, or both proteins (double knockout [DKO]) to probe how ERMs modulate cell shape, adhesion, and signaling in vitro and in vivo. Surprisingly, chemokine-stimulated DKO neutrophils still polarized and redistributed ERM-binding proteins such as PSGL-1 and CD44 to the uropods. Selectin binding to PSGL-1 on moesin KO or DKO neutrophils activated kinases that enable integrin-dependent slow rolling but not those that generate neutrophil extracellular traps. Flowing neutrophils of all genotypes rolled normally on selectins and, upon chemokine stimulation, arrested on integrin ligands. However, moesin KO and DKO neutrophils exhibited defective integrin outside-in signaling and reduced adhesion strength. In vivo, DKO neutrophils displayed normal directional crawling toward a chemotactic gradient, but premature detachment markedly reduced migration from venules into inflamed tissues. Our results demonstrate that stimulated neutrophils do not require ERMs to polarize or to move membrane proteins into uropods. They also reveal an unexpected contribution of moesin to integrin outside-in signaling and adhesion strengthening.
Collapse
|
23
|
Zhu M, Cornwall-Scoones J, Wang P, Handford CE, Na J, Thomson M, Zernicka-Goetz M. Developmental clock and mechanism of de novo polarization of the mouse embryo. Science 2021; 370:370/6522/eabd2703. [PMID: 33303584 DOI: 10.1126/science.abd2703] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/14/2020] [Indexed: 12/31/2022]
Abstract
Embryo polarization is critical for mouse development; however, neither the regulatory clock nor the molecular trigger that it activates is known. Here, we show that the embryo polarization clock reflects the onset of zygotic genome activation, and we identify three factors required to trigger polarization. Advancing the timing of transcription factor AP-2 gamma (Tfap2c) and TEA domain transcription factor 4 (Tead4) expression in the presence of activated Ras homolog family member A (RhoA) induces precocious polarization as well as subsequent cell fate specification and morphogenesis. Tfap2c and Tead4 induce expression of actin regulators that control the recruitment of apical proteins on the membrane, whereas RhoA regulates their lateral mobility, allowing the emergence of the apical domain. Thus, Tfap2c, Tead4, and RhoA are regulators for the onset of polarization and cell fate segregation in the mouse.
Collapse
Affiliation(s)
- Meng Zhu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Jake Cornwall-Scoones
- Division of Biology and Biological Engineering, California Institute of Technology (Caltech), Pasadena, CA 91125, USA
| | - Peizhe Wang
- Centre for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Charlotte E Handford
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Jie Na
- Centre for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology (Caltech), Pasadena, CA 91125, USA
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK. .,Division of Biology and Biological Engineering, California Institute of Technology (Caltech), Pasadena, CA 91125, USA.,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
24
|
Welf ES, Miles CE, Huh J, Sapoznik E, Chi J, Driscoll MK, Isogai T, Noh J, Weems AD, Pohlkamp T, Dean K, Fiolka R, Mogilner A, Danuser G. Actin-Membrane Release Initiates Cell Protrusions. Dev Cell 2020; 55:723-736.e8. [PMID: 33308479 DOI: 10.1016/j.devcel.2020.11.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/08/2020] [Accepted: 11/20/2020] [Indexed: 01/04/2023]
Abstract
Despite the well-established role of actin polymerization as a driving mechanism for cell protrusion, upregulated actin polymerization alone does not initiate protrusions. Using a combination of theoretical modeling and quantitative live-cell imaging experiments, we show that local depletion of actin-membrane links is needed for protrusion initiation. Specifically, we show that the actin-membrane linker ezrin is depleted prior to protrusion onset and that perturbation of ezrin's affinity for actin modulates protrusion frequency and efficiency. We also show how actin-membrane release works in concert with actin polymerization, leading to a comprehensive model for actin-driven shape changes. Actin-membrane release plays a similar role in protrusions driven by intracellular pressure. Thus, our findings suggest that protrusion initiation might be governed by a universal regulatory mechanism, whereas the mechanism of force generation determines the shape and expansion properties of the protrusion.
Collapse
Affiliation(s)
- Erik S Welf
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Christopher E Miles
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA; Department of Biology, New York University, New York, NY 10012, USA
| | - Jaewon Huh
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Etai Sapoznik
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph Chi
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meghan K Driscoll
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jungsik Noh
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew D Weems
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Theresa Pohlkamp
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin Dean
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA; Department of Biology, New York University, New York, NY 10012, USA.
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
25
|
Song Y, Ma X, Zhang M, Wang M, Wang G, Ye Y, Xia W. Ezrin Mediates Invasion and Metastasis in Tumorigenesis: A Review. Front Cell Dev Biol 2020; 8:588801. [PMID: 33240887 PMCID: PMC7683424 DOI: 10.3389/fcell.2020.588801] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Ezrin, as encoded by the EZR gene, is a member of the Ezrin/Radixin/Moesin (ERM) family. The ERM family includes three highly related actin filament binding proteins, Ezrin, Radixin, and Moesin. These three members share similar structural properties containing an N-terminal domain named FERM, a central helical linker region, and a C-terminal domain that mediates the interaction with F-actin. Ezrin protein is highly regulated through the conformational change between a closed, inactivate form and an open, active form. As a membrane-cytoskeleton linker protein, Ezrin facilitates numerous signal transductions in tumorigenesis and mediates diverse essential functions through interactions with a variety of growth factor receptors and adhesion molecules. Emerging evidence has demonstrated that Ezrin is an oncogene protein, as high levels of Ezrin are associated with metastatic behavior in various types of cancer. The diverse functions attributed to Ezrin and the understanding of how Ezrin drives the deadly process of metastasis are complex and often controversial. Here by reviewing recent findings across a wide spectrum of cancer types we will highlight the structures, protein interactions and oncogenic roles of Ezrin as well as the emerging therapeutic agents targeting Ezrin. This review provides a comprehensive framework to guide future studies of Ezrin and other ERM proteins in basic and clinical studies.
Collapse
Affiliation(s)
- Yanan Song
- Central Laboratory, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaokun Ma
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao Zhang
- Central Laboratory, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Menghan Wang
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guoyu Wang
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Ye
- Central Laboratory, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Xia
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Mastrogiovanni M, Juzans M, Alcover A, Di Bartolo V. Coordinating Cytoskeleton and Molecular Traffic in T Cell Migration, Activation, and Effector Functions. Front Cell Dev Biol 2020; 8:591348. [PMID: 33195256 PMCID: PMC7609836 DOI: 10.3389/fcell.2020.591348] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 12/28/2022] Open
Abstract
Dynamic localization of receptors and signaling molecules at the plasma membrane and within intracellular vesicular compartments is crucial for T lymphocyte sensing environmental cues, triggering membrane receptors, recruiting signaling molecules, and fine-tuning of intracellular signals. The orchestrated action of actin and microtubule cytoskeleton and intracellular vesicle traffic plays a key role in all these events that together ensure important steps in T cell physiology. These include extravasation and migration through lymphoid and peripheral tissues, T cell interactions with antigen-presenting cells, T cell receptor (TCR) triggering by cognate antigen-major histocompatibility complex (MHC) complexes, immunological synapse formation, cell activation, and effector functions. Cytoskeletal and vesicle traffic dynamics and their interplay are coordinated by a variety of regulatory molecules. Among them, polarity regulators and membrane-cytoskeleton linkers are master controllers of this interplay. Here, we review the various ways the T cell plasma membrane, receptors, and their signaling machinery interplay with the actin and microtubule cytoskeleton and with intracellular vesicular compartments. We highlight the importance of this fine-tuned crosstalk in three key stages of T cell biology involving cell polarization: T cell migration in response to chemokines, immunological synapse formation in response to antigen cues, and effector functions. Finally, we discuss two examples of perturbation of this interplay in pathological settings, such as HIV-1 infection and mutation of the polarity regulator and tumor suppressor adenomatous polyposis coli (Apc) that leads to familial polyposis and colorectal cancer.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Marie Juzans
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Andrés Alcover
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Vincenzo Di Bartolo
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| |
Collapse
|
27
|
Katan M, Cockcroft S. Phosphatidylinositol(4,5)bisphosphate: diverse functions at the plasma membrane. Essays Biochem 2020; 64:513-531. [PMID: 32844214 PMCID: PMC7517351 DOI: 10.1042/ebc20200041] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Phosphatidylinositol(4,5) bisphosphate (PI(4,5)P2) has become a major focus in biochemistry, cell biology and physiology owing to its diverse functions at the plasma membrane. As a result, the functions of PI(4,5)P2 can be explored in two separate and distinct roles - as a substrate for phospholipase C (PLC) and phosphoinositide 3-kinase (PI3K) and as a primary messenger, each having unique properties. Thus PI(4,5)P2 makes contributions in both signal transduction and cellular processes including actin cytoskeleton dynamics, membrane dynamics and ion channel regulation. Signalling through plasma membrane G-protein coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and immune receptors all use PI(4,5)P2 as a substrate to make second messengers. Activation of PI3K generates PI(3,4,5)P3 (phosphatidylinositol(3,4,5)trisphosphate), a lipid that recruits a plethora of proteins with pleckstrin homology (PH) domains to the plasma membrane to regulate multiple aspects of cellular function. In contrast, PLC activation results in the hydrolysis of PI(4,5)P2 to generate the second messengers, diacylglycerol (DAG), an activator of protein kinase C and inositol(1,4,5)trisphosphate (IP3/I(1,4,5)P3) which facilitates an increase in intracellular Ca2+. Decreases in PI(4,5)P2 by PLC also impact on functions that are dependent on the intact lipid and therefore endocytosis, actin dynamics and ion channel regulation are subject to control. Spatial organisation of PI(4,5)P2 in nanodomains at the membrane allows for these multiple processes to occur concurrently.
Collapse
Affiliation(s)
- Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, 21 University Street, London WC1E 6JJ, U.K
| |
Collapse
|
28
|
Ramalho JJ, Sepers JJ, Nicolle O, Schmidt R, Cravo J, Michaux G, Boxem M. C-terminal phosphorylation modulates ERM-1 localization and dynamics to control cortical actin organization and support lumen formation during Caenorhabditiselegans development. Development 2020; 147:dev188011. [PMID: 32586975 PMCID: PMC10755404 DOI: 10.1242/dev.188011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/13/2020] [Indexed: 12/31/2023]
Abstract
ERM proteins are conserved regulators of cortical membrane specialization that function as membrane-actin linkers and molecular hubs. The activity of ERM proteins requires a conformational switch from an inactive cytoplasmic form into an active membrane- and actin-bound form, which is thought to be mediated by sequential PIP2 binding and phosphorylation of a conserved C-terminal threonine residue. Here, we use the single Caenorhabditiselegans ERM ortholog, ERM-1, to study the contribution of these regulatory events to ERM activity and tissue formation in vivo Using CRISPR/Cas9-generated erm-1 mutant alleles, we demonstrate that a PIP2-binding site is crucially required for ERM-1 function. By contrast, dynamic regulation of C-terminal T544 phosphorylation is not essential but modulates ERM-1 apical localization and dynamics in a tissue-specific manner, to control cortical actin organization and support lumen formation in epithelial tubes. Our work highlights the dynamic nature of ERM protein regulation during tissue morphogenesis and the importance of C-terminal phosphorylation in fine-tuning ERM activity in a tissue-specific context.
Collapse
Affiliation(s)
- João J Ramalho
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Jorian J Sepers
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Ophélie Nicolle
- Univ Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, F-35000 Rennes, France
| | - Ruben Schmidt
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Janine Cravo
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Grégoire Michaux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, F-35000 Rennes, France
| | - Mike Boxem
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
29
|
Xue Y, Bhushan B, Mars WM, Bowen W, Tao J, Orr A, Stoops J, Yu Y, Luo J, Duncan AW, Michalopoulos GK. Phosphorylated Ezrin (Thr567) Regulates Hippo Pathway and Yes-Associated Protein (Yap) in Liver. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1427-1437. [PMID: 32289287 PMCID: PMC10069283 DOI: 10.1016/j.ajpath.2020.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/20/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
The activation of CD81 [the portal of entry of hepatitis C virus (HCV)] by agonistic antibody results in phosphorylation of Ezrin via Syk kinase and is associated with inactivation of the Hippo pathway and increase in yes-associated protein (Yap1). The opposite occurs when glypican-3 or E2 protein of HCV binds to CD81. Hepatocyte-specific glypican-3 transgenic mice have decreased levels of phosphorylated (p)-Ezrin (Thr567) and Yap, increased Hippo activity, and suppressed liver regeneration. The role of Ezrin in these processes has been speculated, but not proved. We show that Ezrin has a direct role in the regulation of Hippo pathway and Yap. Forced expression of plasmids expressing mutant Ezrin (T567D) that mimics p-Ezrin (Thr567) suppressed Hippo activity and activated Yap signaling in hepatocytes in vivo and enhanced activation of pathways of β-catenin and leucine rich repeat containing G protein-coupled receptor 4 (LGR4) and LGR5 receptors. Hepatoma cell lines JM1 and JM2 have decreased CD81 expression and Hippo activity and up-regulated p-Ezrin (T567). NSC668394, a p-Ezrin (Thr567) antagonist, significantly decreased hepatoma cell proliferation. We additionally show that p-Ezrin (T567) is controlled by epidermal growth factor receptor and MET. Ezrin phosphorylation, mediated by CD81-associated Syk kinase, is directly involved in regulation of Hippo pathway, Yap levels, and growth of normal and neoplastic hepatocytes. The finding has mechanistic and potentially therapeutic applications in hepatocyte growth biology, hepatocellular carcinoma, and HCV pathogenesis.
Collapse
Affiliation(s)
- Yuhua Xue
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bharat Bhushan
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wendy M Mars
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William Bowen
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Junyan Tao
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anne Orr
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John Stoops
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yanping Yu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jianhua Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew W Duncan
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | |
Collapse
|
30
|
Bisaria A, Hayer A, Garbett D, Cohen D, Meyer T. Membrane-proximal F-actin restricts local membrane protrusions and directs cell migration. Science 2020; 368:1205-1210. [PMID: 32527825 DOI: 10.1126/science.aay7794] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/24/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022]
Abstract
Cell migration is driven by local membrane protrusion through directed polymerization of F-actin at the front. However, F-actin next to the plasma membrane also tethers the membrane and thus resists outgoing protrusions. Here, we developed a fluorescent reporter to monitor changes in the density of membrane-proximal F-actin (MPA) during membrane protrusion and cell migration. Unlike the total F-actin concentration, which was high in the front of migrating cells, MPA density was low in the front and high in the back. Back-to-front MPA density gradients were controlled by higher cofilin-mediated turnover of F-actin in the front. Furthermore, nascent membrane protrusions selectively extended outward from areas where MPA density was reduced. Thus, locally low MPA density directs local membrane protrusions and stabilizes cell polarization during cell migration.
Collapse
Affiliation(s)
- Anjali Bisaria
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Arnold Hayer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Damien Garbett
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Cohen
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
31
|
Lan S, Zheng X, Hu P, Xing X, Ke K, Wang F, Cheng N, Zhuang Q, Liu X, Liu J, Zhao B, Wang Y. Moesin facilitates metastasis of hepatocellular carcinoma cells by improving invadopodia formation and activating β-catenin/MMP9 axis. Biochem Biophys Res Commun 2020; 524:861-868. [PMID: 32057364 DOI: 10.1016/j.bbrc.2020.01.157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/29/2020] [Indexed: 01/04/2023]
Abstract
Moesin has been proved to be implicated in invasiveness and metastasis in many other cancers, but unclear in HCC. Thus, this study was performed to investigate the clinical significance of moesin and its biological functions in HCC. The results showed that moesin was significantly up-regulated in HCC tissues and was an independent prognostic factor for predicting the recurrence of HCC patients, postoperatively. Furthermore, we also demonstrated that moesin promoted the migration and invasion of HCC cells in vitro and in vivo. And the mechanism studies indicated that moesin overexpression increased the formation of invadopodia and improved the activation of β-catenin/MMP9 axis. Taken together, our findings revealed that moesin acted as an important onco-protein participating in the metastasis of HCC.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Lymphatic Metastasis
- Male
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Mice
- Mice, Inbred NOD
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/mortality
- Neoplasm Recurrence, Local/pathology
- Podosomes/metabolism
- Podosomes/pathology
- Podosomes/ultrastructure
- Signal Transduction
- Survival Analysis
- Tumor Burden
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Shubing Lan
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350025, PR China; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Xiaoyuan Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350025, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, 350025, PR China
| | - Ping Hu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350025, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, 350025, PR China
| | - Xiaohua Xing
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350025, PR China; Mengchao Med-X Center, Fuzhou University, Fuzhou, Fujian, 350116, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, 350025, PR China
| | - Kun Ke
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350025, PR China; Mengchao Med-X Center, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Fei Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350025, PR China; Mengchao Med-X Center, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Niangmei Cheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350025, PR China; Mengchao Med-X Center, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Qiuyu Zhuang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350025, PR China; Mengchao Med-X Center, Fuzhou University, Fuzhou, Fujian, 350116, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, 350025, PR China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350025, PR China; Mengchao Med-X Center, Fuzhou University, Fuzhou, Fujian, 350116, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, 350025, PR China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350025, PR China; Mengchao Med-X Center, Fuzhou University, Fuzhou, Fujian, 350116, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, 350025, PR China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350025, PR China; Mengchao Med-X Center, Fuzhou University, Fuzhou, Fujian, 350116, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, 350025, PR China.
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350025, PR China; Mengchao Med-X Center, Fuzhou University, Fuzhou, Fujian, 350116, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, 350025, PR China.
| |
Collapse
|
32
|
Roberts RE, Martin M, Marion S, Elumalai GL, Lewis K, Hallett MB. Ca 2+-activated cleavage of ezrin visualised dynamically in living myeloid cells during cell surface area expansion. J Cell Sci 2020; 133:jcs236968. [PMID: 31932511 DOI: 10.1242/jcs.236968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
The intracellular events underlying phagocytosis, a crucial event for innate immunity, are still unresolved. In order to test whether the reservoir of membrane required for the formation of the phagocytic pseudopodia is maintained by cortical ezrin, and that its cleavage is a key step in releasing this membrane, the cleavage of cortical ezrin was monitored within living phagocytes (the phagocytically competent cell line RAW264.7) through expressing two ezrin constructs with fluorescent protein tags located either inside the FERM or at the actin-binding domains. When ezrin is cleaved in the linker region by the Ca2+-activated protease calpain, separation of the two fluorophores would result. Experimentally induced Ca2+ influx triggered cleavage of peripherally located ezrin, which was temporally associated with cell expansion. Ezrin cleavage was also observed in the phagocytic pseudopodia during phagocytosis. Thus, our data demonstrates that peripheral ezrin is cleaved during Ca2+-influx-induced membrane expansion and locally within the extending pseudopodia during phagocytosis. This is consistent with a role for intact ezrin in maintaining folded membrane on the cell surface, which then becomes available for cell spreading and phagocytosis.
Collapse
Affiliation(s)
- Rhiannon E Roberts
- Neutrophil Signalling Group, Cardiff University Medical School, Cardiff, CF14 4XN, UK
| | - Marianne Martin
- University of Montpellier, Laboratory of Pathogen Host Interactions, CNRS, UMR 5235, 34059 Montpellier CEDEX 05, France
| | - Sabrina Marion
- University of Lille, CNRS UMR 8204, Institut Pasteur Lille, Centre for Infection and Immunity Lille, 59016 Lille CEDEX, France
| | - Geetha L Elumalai
- Neutrophil Signalling Group, Cardiff University Medical School, Cardiff, CF14 4XN, UK
| | - Kimberly Lewis
- Neutrophil Signalling Group, Cardiff University Medical School, Cardiff, CF14 4XN, UK
| | - Maurice B Hallett
- Neutrophil Signalling Group, Cardiff University Medical School, Cardiff, CF14 4XN, UK
| |
Collapse
|
33
|
Xu C, Wan Z, Shaheen S, Wang J, Yang Z, Liu W. A PI(4,5)P2-derived "gasoline engine model" for the sustained B cell receptor activation. Immunol Rev 2020; 291:75-90. [PMID: 31402506 DOI: 10.1111/imr.12775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022]
Abstract
To efficiently initiate activation responses against rare ligands in the microenvironment, lymphocytes employ sophisticated mechanisms involving signaling amplification. Recently, a signaling amplification mechanism initiated from phosphatidylinositol (PI) 4, 5-biphosphate [PI(4,5)P2] hydrolysis and synthesis for sustained B cell activation has been reported. Antigen and B cell receptor (BCR) recognition triggered the prompt reduction of PI(4,5)P2 density within the BCR microclusters, which led to the positive feedback for the synthesis of PI(4,5)P2 outside of the BCR microclusters. At single molecule level, the diffusion of PI(4,5)P2 was slow, allowing for the maintenance of a PI(4,5)P2 density gradient between the inside and outside of the BCR microclusters and the persistent supply of PI(4,5)P2 from outside to inside of the BCR microclusters. Here, we review studies that have contributed to uncovering the molecular mechanisms of PI(4,5)P2-derived signaling amplification model. Based on these studies, we proposed a "gasoline engine model" in which the activation of B cell signaling inside the microclusters is similar to the working principle of burning gasoline within the engine chamber of a gasoline engine. We also discuss the evidences showing the potential universality of this model and future prospects.
Collapse
Affiliation(s)
- Chenguang Xu
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhengpeng Wan
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Samina Shaheen
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Jing Wang
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhiyong Yang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - Wanli Liu
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| |
Collapse
|
34
|
ERM Proteins at the Crossroad of Leukocyte Polarization, Migration and Intercellular Adhesion. Int J Mol Sci 2020; 21:ijms21041502. [PMID: 32098334 PMCID: PMC7073024 DOI: 10.3390/ijms21041502] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Ezrin, radixin and moesin proteins (ERMs) are plasma membrane (PM) organizers that link the actin cytoskeleton to the cytoplasmic tail of transmembrane proteins, many of which are adhesion receptors, in order to regulate the formation of F-actin-based structures (e.g., microspikes and microvilli). ERMs also effect transmission of signals from the PM into the cell, an action mainly exerted through the compartmentalized activation of the small Rho GTPases Rho, Rac and Cdc42. Ezrin and moesin are the ERMs more highly expressed in leukocytes, and although they do not always share functions, both are mainly regulated through phosphatidylinositol 4,5-bisphosphate (PIP2) binding to the N-terminal band 4.1 protein-ERM (FERM) domain and phosphorylation of a conserved Thr in the C-terminal ERM association domain (C-ERMAD), exerting their functions through a wide assortment of mechanisms. In this review we will discuss some of these mechanisms, focusing on how they regulate polarization and migration in leukocytes, and formation of actin-based cellular structures like the phagocytic cup-endosome and the immune synapse in macrophages/neutrophils and lymphocytes, respectively, which represent essential aspects of the effector immune response.
Collapse
|
35
|
Tachibana K, Ohnishi H, Ali Haghparast SM, Kihara T, Miyake J. Activation of PKC induces leukocyte adhesion by the dephosphorylation of ERM. Biochem Biophys Res Commun 2019; 523:177-182. [PMID: 31843195 DOI: 10.1016/j.bbrc.2019.12.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/07/2019] [Indexed: 11/19/2022]
Abstract
Although circulating leukocytes are non-adherent cells, they also undergo adhesion in response to external stimuli. To elucidate this switch mechanism, we investigated PMA-induced cell adhesion in myelomonocytic KG-1 cells. PMA induced microvillius collapse, decrease of cell surface rigidity and exclusion of sialomucin from adhesion sites. All these adhesion-contributing events are linked to dephosphorylation of Ezrin/Radixin/Moesin (ERM) proteins. Indeed, PMA-treatment induced quick decrease of phosphorylated ERM proteins, while expression of Moesin-T558D, a phospho-mimetic mutant, inhibited PMA-induced cell adhesion. PMA-induced cell adhesion and ERM-dephophorylation were inhibited by PKC inhibitors or by a phosphatase inhibitor, indicating the involvement of PKC and protein phophatase in these processes. In peripheral T lymphocytes, ERM-dephosphorylation by adhesion-inducing stimuli was inhibited by a PKC inhibitor. Combined, these findings strongly suggest that external stimuli induce ERM-dephosphorylation via the activation of PKC in leukocytes and that ERM-dephosphorylation leads to leukocytes' adhesion.
Collapse
Affiliation(s)
- Kouichi Tachibana
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8562, Japan.
| | - Hiroe Ohnishi
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Seyed Mohammad Ali Haghparast
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Takanori Kihara
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Jun Miyake
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|
36
|
Xie YH, Li LY, He JZ, Xu XE, Liao LD, Zhang Q, Xie JJ, Xu LY, Li EM. Heat shock protein family B member 1 facilitates ezrin activation to control cell migration in esophageal squamous cell carcinoma. Int J Biochem Cell Biol 2019; 112:79-87. [PMID: 31082616 DOI: 10.1016/j.biocel.2019.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 02/05/2023]
Abstract
Ezrin plays an important role in the development and progression of human esophageal squamous cell carcinoma (ESCC), providing a link between the cortical actin cytoskeleton and the plasma membrane to govern membrane structure and protrusions. However, the mechanism by which ezrin is activated still remains unknown in ESCC. Here, we identify a novel interaction between ezrin and heat shock protein family B (small) member 1 (HSPB1) in ESCC cells by mass spectroscopy and co-immunoprecipitation. HSPB1 only interacts with inactive ezrin and binds to the α-helical coiled coil region of ezrin. Knockdown of HSPB1 resulted to the decline of phosphorylation at ezrin Thr567, markedly suppressing the ability of ezrin to bind to the actin cytoskeleton and migration of ESCC cells. Furthermore, neither the constitutively active phosphomimetic ezrin T567D, nor inactivated ezrin T567A could restore cell migration following HSPB1 knockdown. Low HSPB1 expression was associated with favorable overall survival of ESCC patients. Taken together, HSPB1, as an important partner, participates in the activation of ezrin and merits further evaluation as a novel therapeutic target against human ESCC.
Collapse
Affiliation(s)
- Ying-Hua Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Li-Yan Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Jian-Zhong He
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Xiu-E Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Qiang Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Jian-Jun Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| |
Collapse
|
37
|
Abstract
Recently, we showed that synthetic anion transporters DSC4P-1 and SA-3 had activity related to cancer cell death. They were found to increase intracellular chloride and sodium ion concentrations. They were also found to induce apoptosis (DSC4P-1) and both induce apoptosis and inhibit autophagy (SA-3). However, determinants underlying these phenomenological findings were not elucidated. The absence of mechanistic understanding has limited the development of yet-improved systems. Here, we show that three synthetic anion transporters, DSC4P-1, SA-3, and 8FC4P, induce osmotic stress in cells by increasing intracellular ion concentrations. This triggers the generation of reactive oxygen species via a sequential process and promotes caspase-dependent apoptosis. In addition, two of the transporters, SA-3 and 8FC4P, induce autophagy by increasing the cytosolic calcium ion concentration promoted by osmotic stress. However, they eventually inhibit the autophagy process as a result of their ability to disrupt lysosome function through a transporter-mediated decrease in a lysosomal chloride ion concentration and an increase in the lysosomal pH.
Collapse
|
38
|
Michie KA, Bermeister A, Robertson NO, Goodchild SC, Curmi PMG. Two Sides of the Coin: Ezrin/Radixin/Moesin and Merlin Control Membrane Structure and Contact Inhibition. Int J Mol Sci 2019; 20:ijms20081996. [PMID: 31018575 PMCID: PMC6515277 DOI: 10.3390/ijms20081996] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/21/2022] Open
Abstract
The merlin-ERM (ezrin, radixin, moesin) family of proteins plays a central role in linking the cellular membranes to the cortical actin cytoskeleton. Merlin regulates contact inhibition and is an integral part of cell–cell junctions, while ERM proteins, ezrin, radixin and moesin, assist in the formation and maintenance of specialized plasma membrane structures and membrane vesicle structures. These two protein families share a common evolutionary history, having arisen and separated via gene duplication near the origin of metazoa. During approximately 0.5 billion years of evolution, the merlin and ERM family proteins have maintained both sequence and structural conservation to an extraordinary level. Comparing crystal structures of merlin-ERM proteins and their complexes, a picture emerges of the merlin-ERM proteins acting as switchable interaction hubs, assembling protein complexes on cellular membranes and linking them to the actin cytoskeleton. Given the high level of structural conservation between the merlin and ERM family proteins we speculate that they may function together.
Collapse
Affiliation(s)
- Katharine A Michie
- School of Physics, University of New South Wales, Sydney 2052, Australia.
| | - Adam Bermeister
- School of Physics, University of New South Wales, Sydney 2052, Australia.
| | - Neil O Robertson
- School of Physics, University of New South Wales, Sydney 2052, Australia.
| | - Sophia C Goodchild
- Department of Molecular Sciences, Macquarie University, Sydney 2109, Australia.
| | - Paul M G Curmi
- School of Physics, University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
39
|
Gawden-Bone CM, Griffiths GM. Phospholipids: Pulling Back the Actin Curtain for Granule Delivery to the Immune Synapse. Front Immunol 2019; 10:700. [PMID: 31031745 PMCID: PMC6470250 DOI: 10.3389/fimmu.2019.00700] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/14/2019] [Indexed: 12/29/2022] Open
Abstract
Phosphoinositides, together with the phospholipids phosphatidylserine and phosphatidic acid, are important components of the plasma membrane acting as second messengers that, with diacylglycerol, regulate a diverse range of signaling events converting extracellular changes into cellular responses. Local changes in their distribution and membrane charge on the inner leaflet of the plasma membrane play important roles in immune cell function. Here we discuss their distribution and regulators highlighting the importance of membrane changes across the immune synapse on the cytoskeleton and the impact on the function of cytotoxic T lymphocytes.
Collapse
Affiliation(s)
| | - Gillian M Griffiths
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
40
|
Optical approaches for single-cell and subcellular analysis of GPCR-G protein signaling. Anal Bioanal Chem 2019; 411:4481-4508. [PMID: 30927013 DOI: 10.1007/s00216-019-01774-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 01/05/2023]
Abstract
G protein-coupled receptors (GPCRs), G proteins, and their signaling associates are major signal transducers that control the majority of cellular signaling and regulate key biological functions including immune, neurological, cardiovascular, and metabolic processes. These pathways are targeted by over one-third of drugs on the market; however, the current understanding of their function is limited and primarily derived from cell-destructive approaches providing an ensemble of static, multi-cell information about the status and composition of molecules. Spatiotemporal behavior of molecules involved is crucial to understanding in vivo cell behaviors both in health and disease, and the advent of genetically encoded fluorescence proteins and small fluorophore-based biosensors has facilitated the mapping of dynamic signaling in cells with subcellular acuity. Since we and others have developed optogenetic methods to regulate GPCR-G protein signaling in single cells and subcellular regions using dedicated wavelengths, the desire to develop and adopt optogenetically amenable assays to measure signaling has motivated us to take a broader look at the available optical tools and approaches compatible with measuring single-cell and subcellular GPCR-G protein signaling. Here we review such key optical approaches enabling the examination of GPCR, G protein, secondary messenger, and downstream molecules such as kinase and lipid signaling in living cells. The methods reviewed employ both fluorescence and bioluminescence detection. We not only further elaborate the underlying principles of these sensors but also discuss the experimental criteria and limitations to be considered during their use in single-cell and subcellular signal mapping.
Collapse
|
41
|
Li J, Yin W, Jing Y, Kang D, Yang L, Cheng J, Yu Z, Peng Z, Li X, Wen Y, Sun X, Ren B, Liu C. The Coordination Between B Cell Receptor Signaling and the Actin Cytoskeleton During B Cell Activation. Front Immunol 2019; 9:3096. [PMID: 30687315 PMCID: PMC6333714 DOI: 10.3389/fimmu.2018.03096] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/13/2018] [Indexed: 01/27/2023] Open
Abstract
B-cell activation plays a crucial part in the immune system and is initiated via interaction between the B cell receptor (BCR) and specific antigens. In recent years with the help of modern imaging techniques, it was found that the cortical actin cytoskeleton changes dramatically during B-cell activation. In this review, we discuss how actin-cytoskeleton reorganization regulates BCR signaling in different stages of B-cell activation, specifically when stimulated by antigens, and also how this reorganization is mediated by BCR signaling molecules. Abnormal BCR signaling is associated with the progression of lymphoma and immunological diseases including autoimmune disorders, and recent studies have proved that impaired actin cytoskeleton can devastate the normal activation of B cells. Therefore, to figure out the coordination between the actin cytoskeleton and BCR signaling may reveal an underlying mechanism of B-cell activation, which has potential for new treatments for B-cell associated diseases.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukai Jing
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danqing Kang
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Yang
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Cheng
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Yu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zican Peng
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingbo Li
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Wen
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xizi Sun
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boxu Ren
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Chaohong Liu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Mu L, Tu Z, Miao L, Ruan H, Kang N, Hei Y, Chen J, Wei W, Gong F, Wang B, Du Y, Ma G, Amerein MW, Xia T, Shi Y. A phosphatidylinositol 4,5-bisphosphate redistribution-based sensing mechanism initiates a phagocytosis programing. Nat Commun 2018; 9:4259. [PMID: 30323235 PMCID: PMC6189171 DOI: 10.1038/s41467-018-06744-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/20/2018] [Indexed: 12/30/2022] Open
Abstract
Phagocytosis is one of the earliest cellular functions, developing approximately 2 billion years ago. Although FcR-based phagocytic signaling is well-studied, how it originated from ancient phagocytosis is unknown. Lipid redistribution upregulates a phagocytic program recapitulating FcR-based phagocytosis with complete dependence on Src family kinases, Syk, and phosphoinositide 3-kinases (PI3K). Here we show that in phagocytes, an atypical ITAM sequence in the ancient membrane anchor protein Moesin transduces signal without receptor activation. Plasma membrane deformation created by solid structure binding generates phosphatidylinositol 4,5-bisphosphate (PIP2) accumulation at the contact site, which binds the Moesin FERM domain and relocalizes Syk to the membrane via the ITAM motif. Phylogenic analysis traces this signaling using PI3K and Syk to 0.8 billion years ago, earlier than immune receptor signaling. The proposed general model of solid structure phagocytosis implies a preexisting lipid redistribution-based activation platform collecting intracellular signaling components for the emergence of immune receptors.
Collapse
Affiliation(s)
- Libing Mu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhongyuan Tu
- Department of Microbiology, Immunology & Infectious Diseases and Snyder Institute, University of Calgary, Calgary, T2N 4N1, AB, Canada
| | - Lin Miao
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Hefei Ruan
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ning Kang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yongzhen Hei
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jiahuan Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fangling Gong
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bingjie Wang
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Matthias W Amerein
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, T2N 4N1, AB, Canada
- Snyder Institute of Chronic Diseases, University of Calgary, Calgary, T2N 4N1, AB, Canada
| | - Tie Xia
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yan Shi
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
- Department of Microbiology, Immunology & Infectious Diseases and Snyder Institute, University of Calgary, Calgary, T2N 4N1, AB, Canada.
| |
Collapse
|
43
|
Mylvaganam SM, Grinstein S, Freeman SA. Picket-fences in the plasma membrane: functions in immune cells and phagocytosis. Semin Immunopathol 2018; 40:605-615. [DOI: 10.1007/s00281-018-0705-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022]
|
44
|
Rey-Gallardo A, Tomlins H, Joachim J, Rahman I, Kitscha P, Frudd K, Parsons M, Ivetic A. Sequential binding of ezrin and moesin to L-selectin regulates monocyte protrusive behaviour during transendothelial migration. J Cell Sci 2018; 131:jcs.215541. [PMID: 29777033 PMCID: PMC6051341 DOI: 10.1242/jcs.215541] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/02/2018] [Indexed: 01/21/2023] Open
Abstract
Leukocyte transendothelial migration (TEM) is absolutely fundamental to the inflammatory response, and involves initial pseudopod protrusion and subsequent polarised migration across inflamed endothelium. Ezrin/radixin/moesin (ERM) proteins are expressed in leukocytes and mediate cell shape changes and polarity. The spatio-temporal organisation of ERM proteins with their targets, and their individual contribution to protrusion during TEM, has never been explored. Here, we show that blocking binding of moesin to phosphatidylinositol 4,5-bisphosphate (PIP2) reduces its C-terminal phosphorylation during monocyte TEM, and that on–off cycling of ERM activity is essential for pseudopod protrusion into the subendothelial space. Reactivation of ERM proteins within transmigrated pseudopods re-establishes their binding to targets, such as L-selectin. Knockdown of ezrin, but not moesin, severely impaired the recruitment of monocytes to activated endothelial monolayers under flow, suggesting that this protein plays a unique role in the early recruitment process. Ezrin binds preferentially to L-selectin in resting cells and during early TEM. The moesin–L-selectin interaction increases within transmigrated pseudopods as TEM proceeds, facilitating localised L-selectin ectodomain shedding. In contrast, a non-cleavable L-selectin mutant binds selectively to ezrin, driving multi-pseudopodial extensions. Taken together, these results show that ezrin and moesin play mutually exclusive roles in modulating L-selectin signalling and shedding to control protrusion dynamics and polarity during monocyte TEM. Summary: Ezrin and moesin co-ordinate binding to L-selectin in monocytes to, respectively, regulate pseudopod protrusion and ectodomain shedding during transendothelial migration.
Collapse
Affiliation(s)
- Angela Rey-Gallardo
- School of Cardiovascular Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Hannah Tomlins
- School of Cardiovascular Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Justin Joachim
- School of Cardiovascular Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Izajur Rahman
- School of Cardiovascular Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Phoebe Kitscha
- School of Cardiovascular Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Karen Frudd
- School of Cardiovascular Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Maddy Parsons
- School of Basic & Medical Biosciences, Randall Division of Cell & Molecular Biophysics, New Hunt's House, London, SE1 1UL, UK
| | - Aleksandar Ivetic
- School of Cardiovascular Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| |
Collapse
|
45
|
Bonfim-Melo A, Ferreira ER, Florentino PTV, Mortara RA. Amastigote Synapse: The Tricks of Trypanosoma cruzi Extracellular Amastigotes. Front Microbiol 2018; 9:1341. [PMID: 30013522 PMCID: PMC6036244 DOI: 10.3389/fmicb.2018.01341] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022] Open
Abstract
To complete its life cycle within the mammalian host, Trypanosoma cruzi, the agent of Chagas’ disease, must enter cells. Trypomastigotes originating from the insect vector (metacyclic) or from infected cells (bloodstream/tissue culture-derived) are the classical infective forms of the parasite and enter mammalian cells in an actin-independent manner. By contrast, amastigotes originating from the premature rupture of infected cells or transformed from swimming trypomastigotes (designated extracellular amastigotes, EAs) require functional intact microfilaments to invade non-phagocytic host cells. Earlier work disclosed the key features of EA-HeLa cell interplay: actin-rich protrusions called ‘cups’ are formed at EA invasion sites on the host cell membrane that are also enriched in actin-binding proteins, integrins and extracellular matrix elements. In the past decades we described the participation of membrane components and secreted factors from EAs as well as the actin-regulating proteins of host cells involved in what we propose to be a phagocytic-like mechanism of parasite uptake. Thus, regarding this new perspective herein we present previously described EA-induced ‘cups’ as parasitic synapse since they can play a role beyond its architecture function. In this review, we focus on recent findings that shed light on the intricate interaction between extracellular amastigotes and non-phagocytic HeLa cells.
Collapse
Affiliation(s)
- Alexis Bonfim-Melo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Eden R Ferreira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Pilar T V Florentino
- DNA Repair Lab, Biomedical Sciences Institute II, Universidade de São Paulo, São Paulo, Brazil
| | - Renato A Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Jiao M, Wu D, Wei Q. Myosin II-interacting guanine nucleotide exchange factor promotes bleb retraction via stimulating cortex reassembly at the bleb membrane. Mol Biol Cell 2018; 29:643-656. [PMID: 29321250 PMCID: PMC6004584 DOI: 10.1091/mbc.e17-10-0579] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/11/2017] [Accepted: 01/03/2018] [Indexed: 11/11/2022] Open
Abstract
Blebs are involved in various biological processes such as cell migration, cytokinesis, and apoptosis. While the expansion of blebs is largely an intracellular pressure-driven process, the retraction of blebs is believed to be driven by RhoA activation that leads to the reassembly of the actomyosin cortex at the bleb membrane. However, it is still poorly understood how RhoA is activated at the bleb membrane. Here, we provide evidence demonstrating that myosin II-interacting guanine nucleotide exchange factor (MYOGEF) is implicated in bleb retraction via stimulating RhoA activation and the reassembly of an actomyosin network at the bleb membrane during bleb retraction. Interaction of MYOGEF with ezrin, a well-known regulator of bleb retraction, is required for MYOGEF localization to retracting blebs. Notably, knockout of MYOGEF or ezrin not only disrupts RhoA activation at the bleb membrane, but also interferes with nonmuscle myosin II localization and activation, as well as actin polymerization in retracting blebs. Importantly, MYOGEF knockout slows down bleb retraction. We propose that ezrin interacts with MYOGEF and recruits it to retracting blebs, where MYOGEF activates RhoA and promotes the reassembly of the cortical actomyosin network at the bleb membrane, thus contributing to the regulation of bleb retraction.
Collapse
Affiliation(s)
- Meng Jiao
- Department of Biological Sciences, Fordham University, Bronx, NY 10458
| | - Di Wu
- Department of Biological Sciences, Fordham University, Bronx, NY 10458
| | - Qize Wei
- Department of Biological Sciences, Fordham University, Bronx, NY 10458
| |
Collapse
|
47
|
Nevzorov I, Sidorenko E, Wang W, Zhao H, Vartiainen MK. Myosin-1C uses a novel phosphoinositide-dependent pathway for nuclear localization. EMBO Rep 2018; 19:290-304. [PMID: 29330316 PMCID: PMC5797967 DOI: 10.15252/embr.201744296] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 01/07/2023] Open
Abstract
Accurate control of macromolecule transport between nucleus and cytoplasm underlines several essential biological processes, including gene expression. According to the canonical model, nuclear import of soluble proteins is based on nuclear localization signals and transport factors. We challenge this view by showing that nuclear localization of the actin-dependent motor protein Myosin-1C (Myo1C) resembles the diffusion-retention mechanism utilized by inner nuclear membrane proteins. We show that Myo1C constantly shuttles in and out of the nucleus and that its nuclear localization does not require soluble factors, but is dependent on phosphoinositide binding. Nuclear import of Myo1C is preceded by its interaction with the endoplasmic reticulum, and phosphoinositide binding is specifically required for nuclear import, but not nuclear retention, of Myo1C. Our results therefore demonstrate, for the first time, that membrane association and binding to nuclear partners is sufficient to drive nuclear localization of also soluble proteins, opening new perspectives to evolution of cellular protein sorting mechanisms.
Collapse
Affiliation(s)
- Ilja Nevzorov
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ekaterina Sidorenko
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Weihuan Wang
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- College of Life Sciences, Northwest A&F University, Yangling, Shanxi, China
| | - Hongxia Zhao
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Maria K Vartiainen
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
48
|
Lubart Q, Vitet H, Dalonneau F, Le Roy A, Kowalski M, Lourdin M, Ebel C, Weidenhaupt M, Picart C. Role of Phosphorylation in Moesin Interactions with PIP 2-Containing Biomimetic Membranes. Biophys J 2018; 114:98-112. [PMID: 29320700 PMCID: PMC5912500 DOI: 10.1016/j.bpj.2017.10.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/08/2017] [Accepted: 10/17/2017] [Indexed: 12/26/2022] Open
Abstract
Moesin, a protein of the ezrin, radixin, and moesin family, which links the plasma membrane to the cytoskeleton, is involved in multiple physiological and pathological processes, including viral budding and infection. Its interaction with the plasma membrane occurs via a key phosphoinositide, the phosphatidyl(4,5)inositol-bisphosphate (PIP2), and phosphorylation of residue T558, which has been shown to contribute, in cellulo, to a conformationally open protein. We study the impact of a double phosphomimetic mutation of moesin (T235D, T558D), which mimics the phosphorylation state of the protein, on protein/PIP2/microtubule interactions. Analytical ultracentrifugation in the micromolar range showed moesin in the monomer and dimer forms, with wild-type (WT) moesin containing a slightly larger fraction (∼30%) of dimers than DD moesin (10-20%). Only DD moesin was responsive to PIP2 in its micellar form. Quantitative cosedimentation assays using large unilamellar vesicles and quartz crystal microbalance on supported lipid bilayers containing PIP2 reveal a specific cooperative interaction for DD moesin with an ability to bind two PIP2 molecules simultaneously, whereas WT moesin was able to bind only one. In addition, DD moesin could subsequently interact with microtubules, whereas WT moesin was unable to do so. Altogether, our results point to an important role of these two phosphorylation sites in the opening of moesin: since DD moesin is intrinsically in a more open conformation than WT moesin, this intermolecular interaction is reinforced by its binding to PIP2. We also highlight important differences between moesin and ezrin, which appear to be finely regulated and to exhibit distinct molecular behaviors.
Collapse
Affiliation(s)
- Quentin Lubart
- CNRS UMR 5628 (LMGP), University Grenoble Alpes, CEA, CNRS, Grenoble, France; Institut National Polytechnique de Grenoble, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Helene Vitet
- CNRS UMR 5628 (LMGP), University Grenoble Alpes, CEA, CNRS, Grenoble, France; Institut National Polytechnique de Grenoble, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Fabien Dalonneau
- CNRS UMR 5628 (LMGP), University Grenoble Alpes, CEA, CNRS, Grenoble, France; Institut National Polytechnique de Grenoble, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Aline Le Roy
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Mathieu Kowalski
- CNRS UMR 5628 (LMGP), University Grenoble Alpes, CEA, CNRS, Grenoble, France; Institut National Polytechnique de Grenoble, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Morgane Lourdin
- CNRS UMR 5628 (LMGP), University Grenoble Alpes, CEA, CNRS, Grenoble, France; Institut National Polytechnique de Grenoble, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Christine Ebel
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Marianne Weidenhaupt
- CNRS UMR 5628 (LMGP), University Grenoble Alpes, CEA, CNRS, Grenoble, France; Institut National Polytechnique de Grenoble, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Catherine Picart
- CNRS UMR 5628 (LMGP), University Grenoble Alpes, CEA, CNRS, Grenoble, France; Institut National Polytechnique de Grenoble, University Grenoble Alpes, CEA, CNRS, Grenoble, France.
| |
Collapse
|
49
|
Ferreira ÉR, Bonfim-Melo A, Cordero EM, Mortara RA. ERM Proteins Play Distinct Roles in Cell Invasion by Extracellular Amastigotes of Trypanosoma cruzi. Front Microbiol 2017; 8:2230. [PMID: 29209287 PMCID: PMC5702390 DOI: 10.3389/fmicb.2017.02230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/30/2017] [Indexed: 12/03/2022] Open
Abstract
The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas' disease. In mammalian hosts, T. cruzi alternates between trypomastigote and amastigote forms. Additionally, trypomastigotes can differentiate into amastigotes in the extracellular environment generating infective extracellular amastigotes (EAs). Ezrin-radixin-moesin (ERM) are key proteins linking plasma membrane to actin filaments, the major host cell component responsible for EA internalization. Our results revealed that depletion of host ezrin and radixin but not moesin inhibited EAs invasion in HeLa cells. ERM are recruited and colocalize with F-actin at EA invasion sites as shown by confocal microscopy. Invasion assays performed with cells overexpressing ERM showed increased EAs invasion in ezrin and radixin but not moesin overexpressing cells. Finally, time-lapse experiments have shown altered actin dynamics leading to delayed EA internalization in ezrin and radixin depleted cells when compared to control or moesin depleted cells. Altogether, these findings show distinct roles of ERM during EAs invasion, possibly regulating F-actin dynamics and plasma membrane interplay.
Collapse
Affiliation(s)
- Éden R Ferreira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alexis Bonfim-Melo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Esteban M Cordero
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Renato A Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
50
|
Cybulsky AV, Guillemette J, Papillon J, Abouelazm NT. Regulation of Ste20-like kinase, SLK, activity: Dimerization and activation segment phosphorylation. PLoS One 2017; 12:e0177226. [PMID: 28475647 PMCID: PMC5419656 DOI: 10.1371/journal.pone.0177226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022] Open
Abstract
The Ste20-like kinase, SLK, has diverse cellular functions. SLK mediates organ development, cell cycle progression, cytoskeletal remodeling, cytokinesis, and cell survival. Expression and activity of SLK are enhanced in renal ischemia-reperfusion injury, and overexpression of SLK was shown to induce apoptosis in cultured glomerular epithelial cells (GECs) and renal tubular cells, as well as GEC/podocyte injury in vivo. The SLK protein consists of a N-terminal catalytic domain and an extensive C-terminal domain, which contains coiled-coils. The present study addresses the regulation of SLK activity. Controlled dimerization of the SLK catalytic domain enhanced autophosphorylation of SLK at T183 and S189, which are located in the activation segment. The full-length ectopically- and endogenously-expressed SLK was also autophosphorylated at T183 and S189. Using ezrin as a model SLK substrate (to address exogenous kinase activity), we demonstrate that dimerized SLK 1–373 or full-length SLK can effectively induce activation-specific phosphorylation of ezrin. Mutations in SLK, including T183A, S189A or T193A reduced T183 or S189 autophosphorylation, and showed a greater reduction in ezrin phosphorylation. Mutations in the coiled-coil region of full-length SLK that impair dimerization, in particular I848G, significantly reduced ezrin phosphorylation and tended to reduce autophosphorylation of SLK at T183. In experimental membranous nephropathy in rats, proteinuria and GEC/podocyte injury were associated with increased glomerular SLK activity and ezrin phosphorylation. In conclusion, dimerization via coiled-coils and phosphorylation of T183, S189 and T193 play key roles in the activation and signaling of SLK, and provide targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Andrey V. Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
- * E-mail:
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Nihad T. Abouelazm
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|