1
|
Wang J, Qiao Z, Li Q, Yu X, Zhang L, Ma C. Exploring the oral processing mechanisms for saltiness enhancement with NaCl nanocrystals in oleogel systems based on black pepper oleoresin and sunflower seed oil. Food Chem 2025; 463:141258. [PMID: 39298855 DOI: 10.1016/j.foodchem.2024.141258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Reducing salt content in processed foods while maintaining flavor is crucial for human health. This study investigates the sensory interaction between the pungency of black pepper oleoresin and saltiness within an oleogel matrix by incorporating NaCl nanocrystals into a black pepper oleoresin formulated with glyceryl monostearate and soy lecithin (G-L-P). Psychophysical results revealed that the salt content in the G-L-P and G-L systems (G-L-P without black pepper oleoresin) was reduced by up to 66.77 % and 37.08 % compared to the G system (G-L without soy lecithin), respectively. During oral processing, the G-L and G-L-P systems formed oil-in-water emulsions with smaller and more numerous oil droplets. Within 5 s, the Na+ concentration was lowest in the G system (2.2 g/L), while the G-L and G-L-P systems showed higher concentrations (3.1 g/L and 3.0 g/L, respectively). This research provides a theoretical basis for the food industry to develop low-salt products without compromising flavor.
Collapse
Affiliation(s)
- Jiajie Wang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Zeyao Qiao
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Qianqian Li
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Xinyu Yu
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Lulu Zhang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| | - Chao Ma
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
You Z, Bai Y, Bo D, Feng Y, Shen J, Wang Y, Li J, Bai Y. A review of taste-active compounds in meat: Identification, influencing factors, and taste transduction mechanism. J Food Sci 2024. [PMID: 39468910 DOI: 10.1111/1750-3841.17480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Poultry and livestock meat are important parts of the human diet. As living standards have improved, food taste has become a major influence on consumer quality assessment and meat purchasing choices. There is increasing research interest in meat taste and meat taste-active compounds, which include free amino acids, flavor nucleotides, taste-active peptides, organic acids, soluble sugars, and inorganic ions. Taste component research is also an important part of sensory science. A deeper understanding of the meat taste perception mechanism and interactions among different taste compounds will promote the development of meat science and sensory evaluation. This article reviews the main taste compounds in meat, factors influencing their concentrations, and the identification and measurement of taste-active compounds, as well as summarizing the mechanisms of taste sensing and perception. Finally, the future of scientific taste component evaluation is discussed. This review provides a theoretical basis for research on meat taste and an important reference for the development of the meat industry.
Collapse
Affiliation(s)
- Zerui You
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yilin Bai
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongdong Bo
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuqing Feng
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiameng Shen
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Wang
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Li
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yueyu Bai
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Sternini C, Rozengurt E. Bitter taste receptors as sensors of gut luminal contents. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-01005-z. [PMID: 39468215 DOI: 10.1038/s41575-024-01005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Taste is important in the selection of food and is orchestrated by a group of distinct receptors, the taste G protein-coupled receptors (GPCRs). Taste 1 receptors (Tas1rs in mice and TAS1Rs in humans; also known as T1Rs) detect sweet and umami tastes, and taste 2 receptors (Tas2rs in mice and TAS2Rs in humans; also known as T2Rs) detect bitterness. These receptors are also expressed in extraoral sites, including the gastrointestinal mucosa. Tas2rs/TAS2Rs have gained interest as potential targets to prevent or treat metabolic disorders. These bitter taste receptors are expressed in functionally distinct types of gastrointestinal mucosal cells, including enteroendocrine cells, which, upon stimulation, increase intracellular Ca2+ and release signalling molecules that regulate gut chemosensory processes critical for digestion and absorption of nutrients, for neutralization and expulsion of harmful substances, and for metabolic regulation. Expression of Tas2rs/TAS2Rs in gut mucosa is upregulated by high-fat diets, and intraluminal bitter 'tastants' affect gastrointestinal functions and ingestive behaviour through local and gut-brain axis signalling. Tas2rs/TAS2Rs are also found in Paneth and goblet cells, which release antimicrobial peptides and glycoproteins, and in tuft cells, which trigger type 2 immune response against parasites, thus providing a direct line of defence against pathogens. This Review will focus on gut Tas2r/TAS2R distribution, signalling and regulation in enteroendocrine cells, supporting their role as chemosensors of luminal content that serve distinct functions as regulators of body homeostasis and immune response.
Collapse
Affiliation(s)
- Catia Sternini
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Enrique Rozengurt
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Matera MG, Rogliani P, Page CP, Calzetta L, Cazzola M. The discovery and development of gefapixant as a novel antitussive therapy. Expert Opin Drug Discov 2024; 19:1159-1172. [PMID: 39138872 DOI: 10.1080/17460441.2024.2391902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Gefapixant, a P2X 3 receptor antagonist, shows considerable potential in managing refractory or unexplained chronic cough. Clinical trials have consistently demonstrated its efficacy in significantly reducing cough frequency and alleviating associated symptoms. However, its adverse effect profile, particularly taste disturbances such as dysgeusia and hypogeusia, the incidence of which is dose-dependent, poses a significant challenge to patient compliance and overall treatment satisfaction. AREAS COVERED The authors review the mechanism of action of gefapixant, the dose-dependent nature of its adverse effects and the findings from various clinical trials, including Phase 1, Phase 2, and Phase 3 studies. The authors also cover its regulatory status, post-marketing data, and its main competitors. EXPERT OPINION Gefapixant represents a significant advancement in treating chronic cough. However, balancing efficacy and tolerability is crucial. Lower effective doses and potential combination therapies may mitigate taste disturbances. Patient education and close monitoring during treatment are also important for optimal outcomes. Further research is needed to refine dosing strategies to minimize side effects while maintaining therapeutic efficacy. This research and personalized treatment approaches are key to optimizing gefapixant therapy, ensuring improved management of chronic cough while reducing adverse effects. However, pharmaceutical trials and proposals must be adapted to align with each regulatory body's specific requirements and concerns.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Clive P Page
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Luigino Calzetta
- Unit of Respiratory Disease and Lung Function, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
5
|
Mazurais D, Simon V, Auffret P, Cormier A, Dauvé A, Madec L, Tanguy-Guillo B, Gayet N, Fleury E, Le Luyer J. Mutligenerational chronic exposure to near future ocean acidification in European sea bass (Dicentrarchus labrax): Insights into the regulation of the transcriptome in a sensory organ involved in feed intake, the tongue. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106775. [PMID: 39369654 DOI: 10.1016/j.marenvres.2024.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
In this study, we examined the effect of near future ocean acidification (OA) on the transcriptome of a sensory organ in contact with surrounding water, the tongue in adult European sea bass (Dicentrarchus labrax) by mean of RNAseq experiment. We acquired a total of 14.1 Mb quality-trimmed reads covering 18,703 expressed genes from the tongue of fish reared from two generations at actual (pH 8.0 condition) and predicted near-future seawater pH (pH 7.6 condition). Gene ontologies analyses of expressed genes support the evidence that the tongue exhibits biological processes related to the sensory system, tooth mineralization and immune defences among others. Our data revealed only 295 OA-induced regulated genes with 114 up- and 181 down-regulated by OA. Functions over-represented encompass processes involved in organic substance metabolic process, RNA metabolism and especially RNA methylation which, combined with the regulation of some hsp genes expression, suggest a molecular response to stress which might contribute to lingual cell homeostasis under OA. The immune system process is also found enriched within OA-induced regulated genes. With the exception of one fatty acid receptor, known taste perception effectors were not impacted by OA in the tongue. However, a complementary droplet digital PCR approach dedicated to genes involved in gustatory signal transduction revealed the down regulation by OA of pyrimidinergic receptor (p2ry4) transcript expression in the gills of the fish. Combined with scanning electron microscopy analysis, our RNAseq data revealed that OA has no impact on processes related to teeth development and mineralization. Altogether, our data reveal that multigenerational exposure to OA has not a substantially effect on the tongue transcriptome but emphasis should be placed on investigating the potential physiological consequences related to the regulation of genes related to cell stress, immune system and fatty acid sensitivity to conclude on species resilience in face of OA.
Collapse
Affiliation(s)
- David Mazurais
- Univ Brest, CNRS, IRD, IFREMER, UMR 6539, LEMAR, Plouzane, France.
| | - Victor Simon
- Univ Brest, CNRS, IRD, IFREMER, UMR 6539, LEMAR, Plouzane, France
| | - Pauline Auffret
- Ifremer, IRSI, SEBIMER Service Bioinformatique de l'Ifremer, F-29280, Plouzané, France
| | - Alexandre Cormier
- Ifremer, IRSI, SEBIMER Service Bioinformatique de l'Ifremer, F-29280, Plouzané, France
| | - Alexandra Dauvé
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Lauriane Madec
- Univ Brest, CNRS, IRD, IFREMER, UMR 6539, LEMAR, Plouzane, France
| | | | - Nicolas Gayet
- IFREMER, UBO, BEEP, Biology and Ecology of Deep-Sea Ecosystems, 1625 route de Sainte-Anne, Plouzane, 29280, France
| | - Elodie Fleury
- Univ Brest, CNRS, IRD, IFREMER, UMR 6539, LEMAR, Plouzane, France
| | - Jérémy Le Luyer
- Univ Brest, CNRS, IRD, IFREMER, UMR 6539, LEMAR, Plouzane, France
| |
Collapse
|
6
|
Zamith Cunha R, Grilli E, Piva A, Delprete C, Franciosi C, Caprini M, Chiocchetti R. The Expression of Cannabinoid and Cannabinoid-Related Receptors on the Gustatory Cells of the Piglet Tongue. Molecules 2024; 29:4613. [PMID: 39407543 PMCID: PMC11478043 DOI: 10.3390/molecules29194613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The gustatory system is responsible for detecting and evaluating the palatability of the various chemicals present in food and beverages. Taste bud cells, located primarily on the tongue, communicate with the gustatory sensory neurons by means of neurochemical signals, transmitting taste information to the brain. It has also been found that the endocannabinoid system (ECS) may modulate food intake and palatability, and that taste bud cells express cannabinoid receptors. The purpose of this study was to investigate the expression of cannabinoid and cannabinoid-related receptors in the gustatory cells of the papillae vallatae and foliatae of ten piglets. Specific antibodies against the cannabinoid receptors (CB1R and CB2R), G protein-coupled receptor 55 (GPR55), transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) were applied on cryosections of lingual tissue; the lingual tissue was also processed using Western blot analysis. Cannabinoid and cannabinoid-related receptors were found to be expressed in the taste bud cells and the surrounding epithelial cells. The extra-papillary epithelium also showed strong immunolabeling for these receptors. The results showed that these receptors were present in both the taste bud cells and the extra-gustatory epithelial cells, indicating their potential role in taste perception and chemesthesis. These findings contributed to understanding the complex interactions between cannabinoids and the gustatory system, highlighting the role of the ECS within taste perception and its potential use in animal production in order to enhance food intake.
Collapse
Affiliation(s)
- Rodrigo Zamith Cunha
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (R.Z.C.); (E.G.); (A.P.)
| | - Ester Grilli
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (R.Z.C.); (E.G.); (A.P.)
- R&D Division, Vetagro S.p.A., Via Porro 2, 42124 Reggio Emilia, Italy
- R&D Division, Vetagro, Inc., 17 East Monroe Street, Suite #179, Chicago, IL 60603, USA
| | - Andrea Piva
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (R.Z.C.); (E.G.); (A.P.)
- R&D Division, Vetagro S.p.A., Via Porro 2, 42124 Reggio Emilia, Italy
- R&D Division, Vetagro, Inc., 17 East Monroe Street, Suite #179, Chicago, IL 60603, USA
| | - Cecilia Delprete
- Laboratory of Cellular Physiology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (C.D.); (C.F.); (M.C.)
| | - Cecilia Franciosi
- Laboratory of Cellular Physiology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (C.D.); (C.F.); (M.C.)
| | - Marco Caprini
- Laboratory of Cellular Physiology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (C.D.); (C.F.); (M.C.)
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (R.Z.C.); (E.G.); (A.P.)
| |
Collapse
|
7
|
Wilson CE, Lasher RS, Salcedo E, Yang R, Dzowo Y, Kinnamon JC, Finger TE. Death in the taste bud: Morphological features of dying taste cells and engulfment by Type I cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611711. [PMID: 39314340 PMCID: PMC11418956 DOI: 10.1101/2024.09.06.611711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Taste buds comprise 50-100 epithelial derived cells, which are renewed throughout the life of an organism. Immature cells enter the bud at its base, maturing into one of three distinct cell types. How taste cells die and/or exit the bud, however, remains unclear. Here we present morphological data obtained through Serial Blockface Scanning Electron Microscopy of murine circumvallate taste buds, revealing several taste cells at the end of their life (4-6 per bud). Cells we identify as dying share certain morphological features typical of apoptosis: swollen endoplasmic reticulum, large lysosomes, degrading organelles, distended outer nuclear membranes, heterochromatin reorganization, cell shrinkage, and cell and/or nuclear fragmentation. Based on these features, we divide the cells into "early" and "late" stage dying cells. Most early stage dying cells have Type II cell morphologies, while a few display Type III cell features. Many dying cells maintain contacts with nerve fibers, but those fibers often appear detached from the main trunk of an afferent nerve fiber. Dying cells, like mature Type II and Type III taste cells, are surrounded by Type I taste cells, the glial-like cells of the bud. In many instances Type I cells appear to be engulfing their dying neighbors, suggesting a novel, phagocytic role for Type I cells. Surprisingly, virtually no Type I cells, which have the shortest residence time in taste buds, display features of apoptosis. The ultimate fate of Type I cells therefore remains enigmatic.
Collapse
Affiliation(s)
- Courtney E Wilson
- Rocky Mountain Taste & Smell Center, University of Colorado School of Medicine, CU Anschutz Medical Campus, Aurora, CO 80045
| | - Robert S Lasher
- Rocky Mountain Taste & Smell Center, University of Colorado School of Medicine, CU Anschutz Medical Campus, Aurora, CO 80045
| | - Ernesto Salcedo
- Rocky Mountain Taste & Smell Center, University of Colorado School of Medicine, CU Anschutz Medical Campus, Aurora, CO 80045
| | - Ruibiao Yang
- Rocky Mountain Taste & Smell Center, University of Colorado School of Medicine, CU Anschutz Medical Campus, Aurora, CO 80045
| | - Yannick Dzowo
- Rocky Mountain Taste & Smell Center, University of Colorado School of Medicine, CU Anschutz Medical Campus, Aurora, CO 80045
| | - John C Kinnamon
- Rocky Mountain Taste & Smell Center, University of Colorado School of Medicine, CU Anschutz Medical Campus, Aurora, CO 80045
| | - Thomas E Finger
- Rocky Mountain Taste & Smell Center, University of Colorado School of Medicine, CU Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
8
|
Magdy N, Abdelkader NF, Zaki HF, Kamel AS. Potential exacerbation of polycystic ovary syndrome by saccharin sodium Via taste receptors in a letrozole rat model. Food Chem Toxicol 2024; 191:114874. [PMID: 39032681 DOI: 10.1016/j.fct.2024.114874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The most common cause of anovulatory infertility is polycystic ovarian syndrome (PCOS), which is closely associated with obesity and metabolic syndrome. Artificial sweetener, notably saccharin sodium (SS), has been utilized in management of obesity in PCOS. However, accumulating evidence points towards SS deleterious effects on ovarian physiology, potentially through activation of ovarian sweet and bitter taste receptors, culminating in a phenotype reminiscent of PCOS. This research embarked on exploration of SS influence on ovarian functions within a PCOS paradigm. Rats were categorized into six groups: Control, Letrozole-model, two SS groups at 2 dose levels, and two groups receiving 2 doses of SS with Letrozole. The study underscored SS capability to potentiate PCOS-related anomalies. Elevated cystic profile with outer thin granulosa cells, were discernible. This owed to increased apoptotic markers as cleaved CASP-3, mirrored by high BAX and low BCL-2, with enhanced p38-MAPK/ERK1/2 pathway. This manifestation was accompanied by activation of taste receptors and disruption of steroidogenic factors; StAR, CYP11A1, and 17β-HSD. Thus, SS showed an escalation in testosterone, progesterone, estrogen, and LH/FSH ratio, insinuating a perturbation in endocrine regulation. It is found that there is an impact of taste receptor downstream signaling on ovarian steroidogenesis and apoptosis instigating pathophysiological milieu of PCOS.
Collapse
Affiliation(s)
- Nourhan Magdy
- Quality Assurance, National Food Safety Authority, Bab El-Louq, Cairo, Egypt
| | - Noha F Abdelkader
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Hala F Zaki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Ahmed S Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
9
|
Keshavarz M, Ruppert AL, Meiners M, Poharkar K, Liu S, Mahmoud W, Winterberg S, Hartmann P, Mermer P, Perniss A, Offermanns S, Kummer W, Schütz B. Bitter tastants relax the mouse gallbladder smooth muscle independent of signaling through tuft cells and bitter taste receptors. Sci Rep 2024; 14:18447. [PMID: 39117690 PMCID: PMC11310472 DOI: 10.1038/s41598-024-69287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Disorders of gallbladder motility can lead to serious pathology. Bitter tastants acting upon bitter taste receptors (TAS2R family) have been proposed as a novel class of smooth muscle relaxants to combat excessive contraction in the airways and other organs. To explore whether this might also emerge as an option for gallbladder diseases, we here tested bitter tastants for relaxant properties and profiled Tas2r expression in the mouse gallbladder. In organ bath experiments, the bitter tastants denatonium, quinine, dextromethorphan, and noscapine, dose-dependently relaxed the pre-contracted gallbladder. Utilizing gene-deficient mouse strains, neither transient receptor potential family member 5 (TRPM5), nor the Tas2r143/Tas2r135/Tas2r126 gene cluster, nor tuft cells proved to be required for this relaxation, indicating direct action upon smooth muscle cells (SMC). Accordingly, denatonium, quinine and dextromethorphan increased intracellular calcium concentration preferentially in isolated gallbladder SMC and, again, this effect was independent of TRPM5. RT-PCR revealed transcripts of Tas2r108, Tas2r126, Tas2r135, Tas2r137, and Tas2r143, and analysis of gallbladders from mice lacking tuft cells revealed preferential expression of Tas2r108 and Tas2r137 in tuft cells. A TAS2R143-mCherry reporter mouse labeled tuft cells in the gallbladder epithelium. An in silico analysis of a scRNA sequencing data set revealed Tas2r expression in only few cells of different identity, and from in situ hybridization histochemistry, which did not label distinct cells. Our findings demonstrate profound tuft cell- and TRPM5-independent relaxing effects of bitter tastants on gallbladder smooth muscle, but do not support the concept that these effects are mediated by bitter receptors.
Collapse
Affiliation(s)
- Maryam Keshavarz
- Institute for Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University, Giessen, Germany.
- Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University, Giessen, Germany.
- Anatomy and Cell Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.
| | - Anna-Lena Ruppert
- Institute for Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Mirjam Meiners
- Institute for Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University, Giessen, Germany
| | - Krupali Poharkar
- Institute for Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University, Giessen, Germany
| | - Shuya Liu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Wafaa Mahmoud
- Institute for Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University, Giessen, Germany
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Sarah Winterberg
- Institute for Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Petra Hartmann
- Institute for Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University, Giessen, Germany
| | - Petra Mermer
- Institute for Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University, Giessen, Germany
| | - Alexander Perniss
- Institute for Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University, Giessen, Germany
- Division of Allergy and Clinical Immunology, Department of Medicine, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan Offermanns
- Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University, Giessen, Germany
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Wolfgang Kummer
- Institute for Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University, Giessen, Germany.
- Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University, Giessen, Germany.
| | - Burkhard Schütz
- Institute for Anatomy and Cell Biology, Philipps-University, Marburg, Germany.
| |
Collapse
|
10
|
Skapinker E, Aldbai R, Aucoin E, Clarke E, Clark M, Ghokasian D, Kombargi H, Abraham MJ, Li Y, Bunsick DA, Baghaie L, Szewczuk MR. Artificial and Natural Sweeteners Biased T1R2/T1R3 Taste Receptors Transactivate Glycosylated Receptors on Cancer Cells to Induce Epithelial-Mesenchymal Transition of Metastatic Phenotype. Nutrients 2024; 16:1840. [PMID: 38931195 PMCID: PMC11206856 DOI: 10.3390/nu16121840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the role of biased taste T1R2/T1R3 G protein-coupled receptors (GPCR) agonists on glycosylated receptor signaling may provide insights into the opposing effects mediated by artificial and natural sweeteners, particularly in cancer and metastasis. Sweetener-taste GPCRs can be activated by several active states involving either biased agonism, functional selectivity, or ligand-directed signaling. However, there are increasing arrays of sweetener ligands with different degrees of allosteric biased modulation that can vary dramatically in binding- and signaling-specific manners. Here, emerging evidence proposes the involvement of taste GPCRs in a biased GPCR signaling crosstalk involving matrix metalloproteinase-9 (MMP-9) and neuraminidase-1 (Neu-1) activating glycosylated receptors by modifying sialic acids. The findings revealed that most natural and artificial sweeteners significantly activate Neu-1 sialidase in a dose-dependent fashion in RAW-Blue and PANC-1 cells. To confirm this biased GPCR signaling crosstalk, BIM-23127 (neuromedin B receptor inhibitor, MMP-9i (specific MMP-9 inhibitor), and oseltamivir phosphate (specific Neu-1 inhibitor) significantly block sweetener agonist-induced Neu-1 sialidase activity. To assess the effect of artificial and natural sweeteners on the key survival pathways critical for pancreatic cancer progression, we analyzed the expression of epithelial-mesenchymal markers, CD24, ADLH-1, E-cadherin, and N-cadherin in PANC-1 cells, and assess the cellular migration invasiveness in a scratch wound closure assay, and the tunneling nanotubes (TNTs) in staging the migratory intercellular communication. The artificial and natural sweeteners induced metastatic phenotype of PANC-1 pancreatic cancer cells to promote migratory intercellular communication and invasion. The sweeteners also induced the downstream NFκB activation using the secretory alkaline phosphatase (SEAP) assay. These findings elucidate a novel taste T1R2/T1R3 GPCR functional selectivity of a signaling platform in which sweeteners activate downstream signaling, contributing to tumorigenesis and metastasis via a proposed NFκB-induced epigenetic reprogramming modeling.
Collapse
Affiliation(s)
- Elizabeth Skapinker
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (E.S.); (R.A.); (E.C.); (D.G.); (H.K.); (M.J.A.)
| | - Rashelle Aldbai
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (E.S.); (R.A.); (E.C.); (D.G.); (H.K.); (M.J.A.)
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (L.B.)
| | - Emilyn Aucoin
- Faculty of Science, Biology (Biomedical Science), York University, Toronto, ON M3J 1P3, Canada;
| | - Elizabeth Clarke
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (E.S.); (R.A.); (E.C.); (D.G.); (H.K.); (M.J.A.)
| | - Mira Clark
- Faculty of Arts and Science, Queen’s University, Kingston, ON K7L 3N9, Canada; (M.C.); (Y.L.)
| | - Daniella Ghokasian
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (E.S.); (R.A.); (E.C.); (D.G.); (H.K.); (M.J.A.)
| | - Haley Kombargi
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (E.S.); (R.A.); (E.C.); (D.G.); (H.K.); (M.J.A.)
| | - Merlin J. Abraham
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (E.S.); (R.A.); (E.C.); (D.G.); (H.K.); (M.J.A.)
| | - Yunfan Li
- Faculty of Arts and Science, Queen’s University, Kingston, ON K7L 3N9, Canada; (M.C.); (Y.L.)
| | - David A. Bunsick
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (L.B.)
| | - Leili Baghaie
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (L.B.)
| | - Myron R. Szewczuk
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (L.B.)
| |
Collapse
|
11
|
Zuluaga G. Potential of Bitter Medicinal Plants: A Review of Flavor Physiology. Pharmaceuticals (Basel) 2024; 17:722. [PMID: 38931389 PMCID: PMC11206615 DOI: 10.3390/ph17060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The function of the sense of taste is usually confined to the ability to perceive the flavor of food to assess and use the nutrients necessary for healthy survival and to discard those that may be harmful, toxic, or unpleasant. It is almost unanimously agreed that the perception of bitter taste prevents the consumption of toxins from plants, decaying foods, and drugs. Forty years ago, while practicing medicine in a rural area of the Colombian Amazon, I had an unexpected encounter with the Inga Indians. I faced the challenge of accepting that their traditional medicine was effective and that the medicinal plants they used had a real therapeutic effect. Wanting to follow a process of learning about medicinal plants on their terms, I found that, for them, the taste of plants is a primary and fundamental key to understanding their functioning. One of the most exciting results was discovering the therapeutic value of bitter plants. The present review aims to understand whether there is any scientific support for this hypothesis from the traditional world. Can the taste of plants explain their possible therapeutic benefit? In the last 20 years, we have made novel advances in the knowledge of the physiology of taste. Our purpose will be to explore these scientific advances to determine if the bitter taste of medicinal plants benefits human health.
Collapse
Affiliation(s)
- Germán Zuluaga
- Grupo de Estudios en Sistemas Tradicionales de Salud, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111711, Colombia; ; Tel.: +57-311-2179102
- Centro de Estudios Médicos Interculturales, Cota 250010, Colombia
| |
Collapse
|
12
|
Schmidt P, Perniss A, Bodenbenner-Tuerich M, Wiegand S, Briand L, Deckmann K. Tas1R3 Dependent and Independent Recognition of Sugars in the Urethra and the Role of Tuft Cells in this Process. Adv Biol (Weinh) 2024; 8:e2400117. [PMID: 38548667 DOI: 10.1002/adbi.202400117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Indexed: 06/16/2024]
Abstract
Increased sugar concentrations on mucosal surfaces display risk factors for infections. This study aims to clarify sugar monitoring in the urethra. Urethral tuft cells (UTC) are known sentinels monitoring the urethral lumen for potentially harmful substances and initiating protective mechanisms. Next-generation sequencing (NGS), RT-PCR, and immunohistochemistry show expression of the taste receptor Tas1R3 in murine UTC, a crucial component of the classical sweet detection pathway. Isolated UTC respond to various sugars with an increase of intracellular [Ca2+]. The Tas1R3 inhibitor gurmarin and Tas1R3 deletion reduces these responses. Utilizing mice lacking UTC, glibenclamide, a K+-ATP channel antagonist, and phlorizin, a SGLT1 inhibitor, reveal an additional Tas1R3 independent sweet detection pathway. Inhibition of both pathways abrogates the sugar responses. Rat cystometry shows that intraurethral application of sucrose and glucose increases detrusor muscle activity Tas1R3 dependently. Sugar monitoring in the urethra occurs via two distinct pathways. A Tas1R3 dependent pathway, exclusive to UTC, and a Tas1R3 independent sweet detection pathway, which can be found both in UTC and in other urethral epithelial cells.
Collapse
Affiliation(s)
- Patricia Schmidt
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35385, Giessen, Germany
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745, Jena, Germany
| | - Alexander Perniss
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35385, Giessen, Germany
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Silke Wiegand
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35385, Giessen, Germany
| | - Loic Briand
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, F-21000, France
| | - Klaus Deckmann
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35385, Giessen, Germany
| |
Collapse
|
13
|
Niu B, Liu L, Gao Q, Zhu M, Chen L, Peng X, Qin B, Zhou X, Li F. Genetic mutation of Tas2r104/Tas2r105/Tas2r114 cluster leads to a loss of taste perception to denatonium benzoate and cucurbitacin B. Animal Model Exp Med 2024; 7:324-336. [PMID: 38155461 PMCID: PMC11228091 DOI: 10.1002/ame2.12357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/18/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Bitter taste receptors (Tas2rs) are generally considered to sense various bitter compounds to escape the intake of toxic substances. Bitter taste receptors have been found to widely express in extraoral tissues and have important physiological functions outside the gustatory system in vivo. METHODS To investigate the physiological functions of the bitter taste receptor cluster Tas2r106/Tas2r104/Tas2r105/Tas2r114 in lingual and extraoral tissues, multiple Tas2rs mutant mice and Gnat3 were produced using CRISPR/Cas9 gene-editing technique. A mixture containing Cas9 and sgRNA mRNAs for Tas2rs and Gnat3 gene was microinjected into the cytoplasm of the zygotes. Then, T7EN1 assays and sequencing were used to screen genetic mutation at the target sites in founder mice. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunostaining were used to study the expression level of taste signaling cascade and bitter taste receptor in taste buds. Perception to taste substance was also studied using two-bottle preference tests. RESULTS We successfully produced several Tas2rs and Gnat3 mutant mice using the CRISPR/Cas9 technique. Immunostaining results showed that the expression of GNAT3 and PLCB2 was not altered in Tas2rs mutant mice. But qRT-PCR results revealed the changed expression profile of mTas2rs gene in taste buds of these mutant mice. With two-bottle preference tests, these mutant mice eliminate responses to cycloheximide due to genetic mutation of Tas2r105. In addition, these mutant mice showed a loss of taste perception to quinine dihydrochloride, denatonium benzoate, and cucurbitacin B (CuB). Gnat3-mediated taste receptor and its signal pathway contribute to CuB perception. CONCLUSIONS These findings implied that these mutant mice would be a valuable means to understand the biological functions of TAS2Rs in extraoral tissues and investigate bitter compound-induced responses mediated by these TAS2Rs in many extraoral tissues.
Collapse
Affiliation(s)
- Bowen Niu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Lingling Liu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Qian Gao
- Department of Biology, College of Life SciencesShanghai Normal UniversityShanghaiPeople's Republic of China
| | - Meng‐Min Zhu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Lixiang Chen
- Department of Laboratory Animal Science, Shanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Xiu‐Hua Peng
- Department of Laboratory Animal Science, Shanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Boying Qin
- Department of Laboratory Animal Science, Shanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Xiaohui Zhou
- Department of Laboratory Animal Science, Shanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Feng Li
- Department of Laboratory Animal Science, Shanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| |
Collapse
|
14
|
Moribayashi T, Nakao Y, Ohtubo Y. Characteristics of A-type voltage-gated K + currents expressed on sour-sensing type III taste receptor cells in mice. Cell Tissue Res 2024; 396:353-369. [PMID: 38492001 PMCID: PMC11144136 DOI: 10.1007/s00441-024-03887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Sour taste is detected by type III taste receptor cells that generate membrane depolarization with action potentials in response to HCl applied to the apical membranes. The shape of action potentials in type III cells exhibits larger afterhyperpolarization due to activation of transient A-type voltage-gated K+ currents. Although action potentials play an important role in neurotransmitter release, the electrophysiological features of A-type K+ currents in taste buds remain unclear. Here, we examined the electrophysiological properties of A-type K+ currents in mouse fungiform taste bud cells using in-situ whole-cell patch clamping. Type III cells were identified with SNAP-25 immunoreactivity and/or electrophysiological features of voltage-gated currents. Type III cells expressed A-type K+ currents which were completely inhibited by 10 mM TEA, whereas IP3R3-immunoreactive type II cells did not. The half-maximal activation and steady-state inactivation of A-type K+ currents were 17.9 ± 4.5 (n = 17) and - 11.0 ± 5.7 (n = 17) mV, respectively, which are similar to the features of Kv3.3 and Kv3.4 channels (transient and high voltage-activated K+ channels). The recovery from inactivation was well fitted with a double exponential equation; the fast and slow time constants were 6.4 ± 0.6 ms and 0.76 ± 0.26 s (n = 6), respectively. RT-PCR experiments suggest that Kv3.3 and Kv3.4 mRNAs were detected at the taste bud level, but not at single-cell levels. As the phosphorylation of Kv3.3 and Kv3.4 channels generally leads to the modulation of cell excitability, neuromodulator-mediated A-type K+ channel phosphorylation likely affects the signal transduction of taste.
Collapse
Affiliation(s)
- Takeru Moribayashi
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Hibikino 2-4, Kitakyushu, 808-0196, Japan
| | - Yoshiki Nakao
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Hibikino 2-4, Kitakyushu, 808-0196, Japan
| | - Yoshitaka Ohtubo
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Hibikino 2-4, Kitakyushu, 808-0196, Japan.
| |
Collapse
|
15
|
Ye J, Fan M, Zhang X, Liang Q, Zhang Y, Zhao X, Lin CT, Zhang D. A novel biomimetic electrochemical taste-biosensor based on conformational changes of the taste receptor. Biosens Bioelectron 2024; 249:116001. [PMID: 38199084 DOI: 10.1016/j.bios.2024.116001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/06/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Taste sensor, a useful tool which could detect and identify thousands of different chemical substances in liquid environments, has attracted continuous concern from beverage and foodstuff industry and its consumers. Although many taste sensing methods have been extensively developed, the assessment of tastant content remains challenging due to the limitations of sensor selectivity and sensitivity. Here we present a novel biomimetic electrochemical taste-biosensor based on bioactive sensing elements and immune amplification with nanomaterials carrier to address above concerns, while taking sweet taste perception as a model. The proposed biosensor based on ligand binding domain (T1R2 VFT) of human sweet taste receptor protein showed human mimicking character and initiated the application of immune recognition in gustation biosensor, which can precisely and sensitively distinguish sweet substances against other related gustation substances with detection limit of 5.1 pM, far less than that of taste sensors without immune amplification whose detection limit was 0.48 nM. The performance test demonstrated the biosensor has the capacity of monitoring the response of sweet substances in real food environments, which is crucial in practical. This biomimetic electrochemical taste-biosensor can work as a new screening platform for newly developed tastants and disclose sweet perception mechanism.
Collapse
Affiliation(s)
- Jing Ye
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Minzhi Fan
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Xiaoyu Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Qi Liang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China; College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yunshan Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Xiaoyu Zhao
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China; College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Cheng-Te Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China.
| |
Collapse
|
16
|
Şeref B, Yıldıran H. A new perspective on obesity: perception of fat taste and its relationship with obesity. Nutr Rev 2024:nuae028. [PMID: 38497969 DOI: 10.1093/nutrit/nuae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Obesity, which results from a long-term positive energy balance, is affected by many factors, especially nutrition. The sensory properties of foods are associated with increased food intake through hedonic appetite. Taste perception, a component of flavor, is also responsible for increased consumption, through reward and hedonic mechanisms. Foods with high fat and energy content are among the foods that create the reward perception. The perception of fat taste, the primary taste that has recently entered the literature, may also be associated with increased food consumption and body weight. Therefore, in this review, the relationship between fat taste and obesity is examined, using the latest literature. RESULTS Different hypotheses have been proposed regarding the mechanism of the relationship between fat-taste perception and obesity, such as hedonic appetite, microbiota, decreased taste perception, and increased taste threshold level. In addition, some studies examining this relationship reported significant associations between the level of fat-taste perception and obesity, whereas others did not find a significant difference. CONCLUSION Considering the prevalence and contribution to obesity of Western-style nutrition, characterized by high amounts of fat and sugar consumption, elucidating this relationship may be an essential solution for preventing and treating obesity.
Collapse
Affiliation(s)
- Betül Şeref
- Department of Nutrition and Dietetics, Karamanoğlu Mehmetbey University, Karaman, Türkiye
| | - Hilal Yıldıran
- Department of Nutrition and Dietetics, Gazi University, Ankara, Türkiye
| |
Collapse
|
17
|
Shi Q, Xu L, Cai L, Deng S, Qi X. Sucralose regulates postprandial blood glucose in mice through intestinal sweet taste receptors Tas1r2/Tas1r3. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2233-2244. [PMID: 37938171 DOI: 10.1002/jsfa.13110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Non-nutritive sweeteners (such as sucralose) bind to sweet receptors Tas1r2/Tas1r3 on intestinal endocrine L cells after diets to upregulate blood glucose. However, the mechanism by which sucralose regulates postprandial blood glucose (PBG) has not been clarified to date. We hypothesized that the gut sweet taste receptor was one of the targets for sucralose to regulate PBG. The aim of this study was to examine the effect of sucralose on PBG based on the gut sweet taste receptor signaling pathway and to explore the mechanism. Therefore, we examined PBG, genes, and proteins associated with the gut sweet receptor pathway in sucralose-exposed mice. RESULTS The results showed that after 12 weeks of sucralose exposure the PBG of mice increased significantly, and the expression of intestinal sweet taste receptors increased correspondingly. Within the concentration range of this experiment, a significant increase of PBG was observed in mice fed on sucralose with a concentration equal to or higher than 0.33 g L-1 . CONCLUSION Long-term consumption of sucralose may increase body weight and the risk of elevated PBG, resulting in overexpression of sweetness receptors and glucose transporters. The mechanism of these effects might be the result of non-nutritive sweeteners binding to sweetness receptors Tas1r2/Tas1r3 in gut endocrine cells and upregulating Slc5a1 and Slc2a2. But we cannot rule out that the rise in PBG is the result of a combination of sweet receptors and gut microbes. Therefore, the effect of gut microbes on PBG needs to be studied further. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qing Shi
- Zhejiang Provincial Top Discipline of Biological Engineering (Level A), Zhejiang Wanli University, Ningbo, China
| | - Lei Xu
- Zhejiang Provincial Top Discipline of Biological Engineering (Level A), Zhejiang Wanli University, Ningbo, China
| | - Lei Cai
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Shaoping Deng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiangyang Qi
- Zhejiang Provincial Top Discipline of Biological Engineering (Level A), Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
18
|
Meng T, Nielsen DE. TAS2R38 haplotypes, COVID-19 infection, and symptomatology: a cross-sectional analysis of data from the Canadian Longitudinal Study on Aging. Sci Rep 2024; 14:4673. [PMID: 38409357 PMCID: PMC10897136 DOI: 10.1038/s41598-024-55428-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
The TAS2R38 gene is well known for its function in bitter taste sensitivity, but evidence also suggests a role in innate immunity. TAS2R38 may be relevant in coronavirus disease 2019 (COVID-19), but research findings are inconsistent. The objective of this study was to explore whether common TAS2R38 haplotypes are associated with COVID-19 infection and symptomatology in the Canadian Longitudinal Study on Aging (CLSA). Data from the CLSA COVID-19 Questionnaire and Seroprevalence sub-studies were utilized with CLSA genetic data for common TAS2R38 haplotypes related to bitter taste sensitivity. Haplotypes were categorized into three diplotype groups: [P]AV homozygotes, [P]AV/[A]VI heterozygotes, and [A]VI homozygotes. No significant differences were observed between diplotypes and COVID-19 infection frequency. Among self-reported COVID-19 cases (n = 76), and in uncorrected exploratory analyses, heterozygotes were less likely to report experiencing sinus pain compared to [P]AV homozygotes. Among seroprevalence-confirmed cases (n = 177), [A]VI homozygotes were less likely to report experiencing a sore/scratchy throat compared to [P]AV homozygotes. However, both observations were non-significant upon correction for multiple testing. In this study, TAS2R38 haplotypes were not significantly associated with COVID-19 infection or symptomatology. Nevertheless, in light of some exploratory patterns and conflicting evidence, additional research is warranted to evaluate links between TAS2R38 and innate immunity.
Collapse
Affiliation(s)
- Tongzhu Meng
- School of Human Nutrition, McGill University, 21,111 Lakeshore Rd., Room MS2-035, Saint-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Daiva E Nielsen
- School of Human Nutrition, McGill University, 21,111 Lakeshore Rd., Room MS2-035, Saint-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
19
|
Scharf MM, Humphrys LJ, Berndt S, Di Pizio A, Lehmann J, Liebscher I, Nicoli A, Niv MY, Peri L, Schihada H, Schulte G. The dark sides of the GPCR tree - research progress on understudied GPCRs. Br J Pharmacol 2024. [PMID: 38339984 DOI: 10.1111/bph.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
A large portion of the human GPCRome is still in the dark and understudied, consisting even of entire subfamilies of GPCRs such as odorant receptors, class A and C orphans, adhesion GPCRs, Frizzleds and taste receptors. However, it is undeniable that these GPCRs bring an untapped therapeutic potential that should be explored further. Open questions on these GPCRs span diverse topics such as deorphanisation, the development of tool compounds and tools for studying these GPCRs, as well as understanding basic signalling mechanisms. This review gives an overview of the current state of knowledge for each of the diverse subfamilies of understudied receptors regarding their physiological relevance, molecular mechanisms, endogenous ligands and pharmacological tools. Furthermore, it identifies some of the largest knowledge gaps that should be addressed in the foreseeable future and lists some general strategies that might be helpful in this process.
Collapse
Affiliation(s)
- Magdalena M Scharf
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Stockholm, Sweden
| | - Laura J Humphrys
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Sandra Berndt
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Juliane Lehmann
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lior Peri
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hannes Schihada
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gunnar Schulte
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Stockholm, Sweden
| |
Collapse
|
20
|
Schluterman HM, Linardos CG, Drulia T, Marshall JD, Kearns GL. Evaluating palatability in young children: a mini-review of relevant physiology and assessment techniques. Front Pediatr 2024; 12:1350662. [PMID: 38390280 PMCID: PMC10881860 DOI: 10.3389/fped.2024.1350662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
The palatability of pediatric pharmaceutical products plays a crucial role of influencing medication compliance. Rejection of unpalatable medications can potentially lead to treatment failure which can have immediate and delayed consequences. With advances in both the food and pharmaceutical industries, the systematic assessment of palatability has gained importance. Various methods such as visual analogue scales, facial hedonic scales, and facial recognition software, have been employed to assess palatability. While proven to be useful, these methods have significant limitations and may not be workable for young children. Despite these advancements, a universally accepted "gold standard" for assessing pediatric mediation palatability, recognized by drug regulatory agencies, is yet to be established.
Collapse
Affiliation(s)
- Haley M Schluterman
- Departments of Medical Education, The Anne Marion Burnett School of Medicine, Texas Christian University, Fort Worth, TX, United States
| | - Constance G Linardos
- Departments of Medical Education, The Anne Marion Burnett School of Medicine, Texas Christian University, Fort Worth, TX, United States
| | - Teresa Drulia
- Davies School of Communication Sciences and Disorders, The Harris College of Nursing and Health Sciences, Texas Christian University, Fort Worth, TX, United States
| | - James D Marshall
- Departments of Pediatrics, The Anne Marion Burnett School of Medicine, Texas Christian University, Fort Worth, TX, United States
- The Divisions of Intensive Care Medicine, Cook Children's Medical Center, Fort Worth, TX, United States
- The Divisions of Palliative Care, Cook Children's Medical Center, Fort Worth, TX, United States
| | - Gregory L Kearns
- Departments of Pediatrics, The Anne Marion Burnett School of Medicine, Texas Christian University, Fort Worth, TX, United States
- The Divisions of Intensive Care Medicine, Cook Children's Medical Center, Fort Worth, TX, United States
| |
Collapse
|
21
|
Lu P, Simas TAM, Delpapa E, ZhuGe R. Bitter taste receptors in the reproductive system: Function and therapeutic implications. J Cell Physiol 2024; 239:e31179. [PMID: 38219077 PMCID: PMC10922893 DOI: 10.1002/jcp.31179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 01/15/2024]
Abstract
Type 2 taste receptors (TAS2Rs), traditionally known for their role in bitter taste perception, are present in diverse reproductive tissues of both sexes. This review explores our current understanding of TAS2R functions with a particular focus on reproductive health. In males, TAS2Rs are believed to play potential roles in processes such as sperm chemotaxis and male fertility. Genetic insights from mouse models and human polymorphism studies provide some evidence for their contribution to male infertility. In female reproduction, it is speculated that TAS2Rs influence the ovarian milieu, shaping the functions of granulosa and cumulus cells and their interactions with oocytes. In the uterus, TAS2Rs contribute to uterine relaxation and hold potential as therapeutic targets for preventing preterm birth. In the placenta, they are proposed to function as vigilant sentinels, responding to infection and potentially modulating mechanisms of fetal protection. In the cervix and vagina, their analogous functions to those in other extraoral tissues suggest a potential role in infection defense. In addition, TAS2Rs exhibit altered expression patterns that profoundly affect cancer cell proliferation and apoptosis in reproductive cancers. Notably, TAS2R agonists show promise in inducing apoptosis and overcoming chemoresistance in these malignancies. Despite these advances, challenges remain, including a lack of genetic and functional studies. The application of techniques such as single-cell RNA sequencing and clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated endonuclease 9 gene editing could provide deeper insights into TAS2Rs in reproduction, paving the way for novel therapeutic strategies for reproductive disorders.
Collapse
Affiliation(s)
- Ping Lu
- Department of Microbiology and Physiological System, UMass Chan Medical School, 363 Plantation St., Worcester, MA, USA
| | - Tiffany A. Moore Simas
- Department of Obstetrics and Gynecology, UMass Chan Medical School/UMass Memorial Health, Memorial Campus 119 Belmont St., Worcester, MA, USA
| | - Ellen Delpapa
- Department of Obstetrics and Gynecology, UMass Chan Medical School/UMass Memorial Health, Memorial Campus 119 Belmont St., Worcester, MA, USA
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological System, UMass Chan Medical School, 363 Plantation St., Worcester, MA, USA
| |
Collapse
|
22
|
Baranek E, Heraud C, Larroquet L, Surget A, Lanuque A, Terrier F, Skiba-Cassy S, Jérôme R. Long-term regulation of fat sensing in rainbow trout ( Oncorhynchus mykiss) fed a vegetable diet from the first feeding: focus on free fatty acid receptors and their signalling. Br J Nutr 2024; 131:1-16. [PMID: 37469170 DOI: 10.1017/s0007114523001599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Taste plays a fundamental role in an animal’s ability to detect nutrients and transmits key dietary information to the brain, which is crucial for its growth and survival. Providing alternative terrestrial ingredients early in feeding influences the growth of rainbow trout (RT, Oncorhynchus mykiss). Thus, the present study aimed to assess the influence, via long-term feeding (from the first feeding to 8 months), of alternative plant ingredients (V diet for vegetable diet v. C diet for a control diet) in RT on the mechanism of fat sensing at the gustatory level. After the feeding trial, we studied the pathways of the fat-sensing mechanism in tongue tissue and the integrated response in the brain. To this end, we analysed the expression pattern of free fatty acid receptors (ffar) 1 and 2, markers of calcium-signalling pathways (phospholipase Cβ, Orai, Stim or Serca), the serotonin level (a key neurotransmitter in taste buds) and the expression pattern of appetite-regulating neuropeptides in the hypothalamus (central area of appetite regulation). The results revealed that the V diet modified the expression pattern of ffar1 and paralogs of ffar2 genes in tongue tissue, along with differential regulation of calcium-signalling pathways and a defect in serotonin level and brain turnover, without influencing neuropeptide expression. This study is the first to support that changes in feeding behaviour of RT fed a V diet could be due to the difference in nutrient sensing and a decrease in hedonic sensation. We revealed that RT have similar fat-detection mechanisms as mammals.
Collapse
Affiliation(s)
- Elodie Baranek
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Cécile Heraud
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Laurence Larroquet
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Anne Surget
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Anthony Lanuque
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Frederic Terrier
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Sandrine Skiba-Cassy
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Roy Jérôme
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| |
Collapse
|
23
|
Tanaka U, Mogi K, Fujita N, Moriwake M, Morito K, Takayama K, Morimoto H, Yasukawa T, Uozumi Y, Nagasawa K. Alteration of Sweet and Bitter Taste Sensitivity with Development of Glucose Intolerance in Non-insulin-Dependent Diabetes Mellitus Model OLETF Rats. Biol Pharm Bull 2024; 47:739-749. [PMID: 38556303 DOI: 10.1248/bpb.b23-00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Patients with diabetes exhibit altered taste sensitivity, but its details have not been clarified yet. Here, we examined alteration of sweet taste sensitivity with development of glucose intolerance in Otsuka Long-Evans Tokushima Fatty (OLETF) rats as a model of non-insulin-dependent diabetes mellitus. Compared to the cases of Long Evans Tokushima Otsuka (LETO) rats as a control, glucose tolerance of OLETF rats decreased with aging, resulting in development of diabetes at 36-weeks-old. In brief-access tests with a mixture of sucrose and quinine hydrochloride, OLETF rats at 25 or more-weeks-old seemed to exhibit lower sweet taste sensitivity than age-matched LETO ones, but the lick ratios of LETO, but not OLETF, rats for the mixture and quinine hydrochloride solutions decreased and increased, respectively, aging-dependently. Expression of sweet taste receptors, T1R2 and T1R3, in circumvallate papillae (CP) was almost the same in LETO and OLETF rats at 10- and 40-weeks-old, while expression levels of a bitter taste receptor, T2R16, were greater in 40-weeks-old rats than in 10-weeks-old ones in both strains. There was no apparent morphological alteration in taste buds in CP between 10- and 40-weeks-old LETO and OLETF rats. Metagenomic analysis of gut microbiota revealed strain- and aging-dependent alteration of mucus layer-regulatory microbiota. Collectively, we concluded that the apparent higher sweet taste sensitivity in 25 or more-weeks-old OLETF rats than in age-matched LETO rats was due to the aging-dependent increase of bitter taste sensitivity in LETO rats with alteration of the gut microbiota.
Collapse
Affiliation(s)
- Utano Tanaka
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| | - Keisuke Mogi
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| | - Natsumi Fujita
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| | - Miho Moriwake
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| | - Katsuya Morito
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| | - Kentaro Takayama
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| | | | | | | | - Kazuki Nagasawa
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| |
Collapse
|
24
|
Ikuta R, Kakinohana Y, Hamada S. Ultrastructural localization of calcium homeostasis modulator 1 in mouse taste buds. Chem Senses 2024; 49:bjae019. [PMID: 38761122 DOI: 10.1093/chemse/bjae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Indexed: 05/20/2024] Open
Abstract
Taste receptor cells are morphologically classified as types II and III. Type II cells form a unique type of synapses referred to as channel synapses where calcium homeostasis modulator 1 (CALHM1) together with CALHM3 forms voltage-gated channels that release the neurotransmitter, adenosine triphosphate (ATP). To validate the proposed structural model of channel synapses, the ultrastructural localization of CALHM1 in type II cells of both fungiform and circumvallate taste buds was examined. A monoclonal antibody against CALHM1 was developed and its localization was evaluated via immunofluorescence and immunoelectron microscopy using the immunogold-silver labeling technique. CALHM1 was detected as puncta using immunofluorescence and along the presynaptic membrane of channel synapses facing atypical mitochondria, which provide ATP, by immunoelectron microscopy. In addition, it was detected along the plasma membrane lined by subsurface cisternae at sites apposed to afferent nerve fibers. Our results support the validity of a previously proposed structural model for channel synapses and provide insights into the function of subsurface cisternae whose function in taste receptor cells is unknown. We also examined the localization of CALHM1 in hybrid synapses of type III cells, which are conventional chemical synapses accompanied by mitochondria similar to atypical mitochondria of channel synapses. CALHM1 was not detected in the six hybrid synapses examined using immunoelectron microscopy. We further performed double immunolabeling for CALHM1 and Bassoon, which is detected as puncta corresponding to conventional vesicular synapses in type III cells. Our observations suggest that at least some, and probably most, hybrid synapses are not accompanied by CALHM1.
Collapse
Affiliation(s)
- Rio Ikuta
- International College of Arts and Sciences, Fukuoka Women's University, 1-1-1, Kasumigaoka, Higashi-Ku, Fukuoka 813-8529, Japan
| | - Yuu Kakinohana
- International College of Arts and Sciences, Fukuoka Women's University, 1-1-1, Kasumigaoka, Higashi-Ku, Fukuoka 813-8529, Japan
| | - Shun Hamada
- International College of Arts and Sciences, Fukuoka Women's University, 1-1-1, Kasumigaoka, Higashi-Ku, Fukuoka 813-8529, Japan
| |
Collapse
|
25
|
Hirayama A, Iwata S, Oike A, Kawabata Y, Nagasato Y, Takai S, Sanematsu K, Takahashi I, Shigemura N. Cellular mechanisms of taste disturbance induced by the non-steroidal anti-inflammatory drug, diclofenac, in mice. Front Cell Neurosci 2023; 17:1279059. [PMID: 38164437 PMCID: PMC10757961 DOI: 10.3389/fncel.2023.1279059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Drug-induced taste disorders are a serious problem in an aging society. This study investigated the mechanisms underlying taste disturbances induced by diclofenac, a non-steroidal anti-inflammatory drug that reduces pain and inflammation by inhibiting the synthesis of prostaglandins by cyclooxygenase enzymes (COX-1 and COX-2). RT-PCR analyses demonstrated the expression of genes encoding arachidonic acid pathway components such as COX-1, COX-2 and prostaglandin synthases in a subset of mouse taste bud cells. Double-staining immunohistochemistry revealed that COX-1 and cytosolic prostaglandin E synthase (cPGES) were co-expressed with taste receptor type-1 member-3 (T1R3), a sweet/umami receptor component, or gustducin, a bitter/sweet/umami-related G protein, in a subset of taste bud cells. Long-term administration of diclofenac reduced the expression of genes encoding COX-1, gustducin and cPGES in mouse taste buds and suppressed both the behavioral and taste nerve responses to sweet and umami taste stimuli but not to other tastants. Furthermore, diclofenac also suppressed the responses of both mouse and human sweet taste receptors (T1R2/T1R3, expressed in HEK293 cells) to sweet taste stimuli. These results suggest that diclofenac may suppress the activation of sweet and umami taste cells acutely via a direct action on T1R2/T1R3 and chronically via inhibition of the COX/prostaglandin synthase pathway inducing down-regulated expression of sweet/umami responsive components. This dual inhibition mechanism may underlie diclofenac-induced taste alterations in humans.
Collapse
Affiliation(s)
- Ayaka Hirayama
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University, Fukuoka, Japan
| | - Shusuke Iwata
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Asami Oike
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuko Kawabata
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuki Nagasato
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shingo Takai
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Keisuke Sanematsu
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ichiro Takahashi
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University, Fukuoka, Japan
| | - Noriatsu Shigemura
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan
| |
Collapse
|
26
|
Brewer AA, Barton B. Cortical field maps across human sensory cortex. Front Comput Neurosci 2023; 17:1232005. [PMID: 38164408 PMCID: PMC10758003 DOI: 10.3389/fncom.2023.1232005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2024] Open
Abstract
Cortical processing pathways for sensory information in the mammalian brain tend to be organized into topographical representations that encode various fundamental sensory dimensions. Numerous laboratories have now shown how these representations are organized into numerous cortical field maps (CMFs) across visual and auditory cortex, with each CFM supporting a specialized computation or set of computations that underlie the associated perceptual behaviors. An individual CFM is defined by two orthogonal topographical gradients that reflect two essential aspects of feature space for that sense. Multiple adjacent CFMs are then organized across visual and auditory cortex into macrostructural patterns termed cloverleaf clusters. CFMs within cloverleaf clusters are thought to share properties such as receptive field distribution, cortical magnification, and processing specialization. Recent measurements point to the likely existence of CFMs in the other senses, as well, with topographical representations of at least one sensory dimension demonstrated in somatosensory, gustatory, and possibly olfactory cortical pathways. Here we discuss the evidence for CFM and cloverleaf cluster organization across human sensory cortex as well as approaches used to identify such organizational patterns. Knowledge of how these topographical representations are organized across cortex provides us with insight into how our conscious perceptions are created from our basic sensory inputs. In addition, studying how these representations change during development, trauma, and disease serves as an important tool for developing improvements in clinical therapies and rehabilitation for sensory deficits.
Collapse
Affiliation(s)
- Alyssa A. Brewer
- mindSPACE Laboratory, Departments of Cognitive Sciences and Language Science (by Courtesy), Center for Hearing Research, University of California, Irvine, Irvine, CA, United States
| | - Brian Barton
- mindSPACE Laboratory, Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
27
|
Chiurazzi M, De Conno B, Di Lauro M, Guida B, Nasti G, Schiano E, Stornaiuolo M, Tenore GC, Colantuoni A, Novellino E. The Effects of a Cinchona Supplementation on Satiety, Weight Loss and Body Composition in a Population of Overweight/Obese Adults: A Controlled Randomized Study. Nutrients 2023; 15:5033. [PMID: 38140292 PMCID: PMC10745730 DOI: 10.3390/nu15245033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Obesity is a risk factor for several diseases present worldwide. Currently, dietary changes and physical activity are considered the most effective treatment to reduce obesity and its associated comorbidities. To promote weight loss, hypocaloric diets can be supported by nutraceuticals. The aim of this study was to evaluate the effects of a hypocaloric diet associated with Cinchona succirubra supplementation on satiety, body weight and body composition in obese subjects. Fifty-nine overweight/obese adults, were recruited, randomized into two groups and treated for 2 months. The first group (32 adults) was treated with a hypocaloric diet plus cinchona supplementation (the T-group); the second one (27 adults) was treated with a hypocaloric diet plus a placebo supplementation (the P-group). Anthropometric-measurements as well as bioimpedance analysis, a Zung test and biochemical parameters were evaluated at baseline and after 60 days. T-group adults showed significant improvement in nutritional status and body composition compared to those at the baseline and in the P-group. Moreover, T-group adults did not show a reduction in Cholecystokinin serum levels compared to those of P-group adults. In conclusion, our data demonstrate that a hypocaloric diet associated with cinchona supplementation is effective in inducing more significant weight loss and the re-establishment of metabolic parameters than those obtained with a hypocaloric diet.
Collapse
Affiliation(s)
- Martina Chiurazzi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.C.); (M.D.L.); (B.G.); (G.N.); (A.C.)
- Department of Medical Oncology, AO “A. Cardarelli”, 80131 Naples, Italy
| | - Barbara De Conno
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.C.); (M.D.L.); (B.G.); (G.N.); (A.C.)
- Department of Pharmacy, University of Napoli “Federico II”, 80131 Naples, Italy; (M.S.); (G.C.T.)
| | - Mariastella Di Lauro
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.C.); (M.D.L.); (B.G.); (G.N.); (A.C.)
| | - Bruna Guida
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.C.); (M.D.L.); (B.G.); (G.N.); (A.C.)
| | - Gilda Nasti
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.C.); (M.D.L.); (B.G.); (G.N.); (A.C.)
| | - Elisabetta Schiano
- Inventia Biotech Centro Ricerche Alimentari Healthcare, 81120 Caserta, Italy; (E.S.); (E.N.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Napoli “Federico II”, 80131 Naples, Italy; (M.S.); (G.C.T.)
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Napoli “Federico II”, 80131 Naples, Italy; (M.S.); (G.C.T.)
| | - Antonio Colantuoni
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.C.); (M.D.L.); (B.G.); (G.N.); (A.C.)
| | - Ettore Novellino
- Inventia Biotech Centro Ricerche Alimentari Healthcare, 81120 Caserta, Italy; (E.S.); (E.N.)
- Department of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
28
|
Ren T, Li B, Xu F, Chen Z, Lu M, Tan S. Research on the Effect of Oriental Fruit Moth Feeding on the Quality Degradation of Chestnut Rose Juice Based on Metabolomics. Molecules 2023; 28:7170. [PMID: 37894648 PMCID: PMC10608842 DOI: 10.3390/molecules28207170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
As a native fruit of China, chestnut rose (Rosa roxburghii Tratt) juice is rich in bioactive ingredients. Oriental fruit moth (OFM), Grapholita molesta (Busck), attacks the fruits and shoots of Rosaceae plants, and its feeding affects the quality and yield of chestnut rose. To investigate the effects of OFM feeding on the quality of chestnut rose juice, the bioactive compounds in chestnut rose juice produced from fruits eaten by OFM were measured. The electronic tongue senses, amino acid profile, and untargeted metabolomics assessments were performed to explore changes in the flavour and metabolites. The results showed that OFM feeding reduced the levels of superoxide dismutase (SOD), tannin, vitamin C, flavonoid, and condensed tannin; increased those of polyphenols, soluble solids, total protein, bitterness, and amounts of bitter amino acids; and decreased the total amino acid and umami amino acid levels. Furthermore, untargeted metabolomics annotated a total of 426 differential metabolites (including 55 bitter metabolites), which were mainly enriched in 14 metabolic pathways, such as flavonoid biosynthesis, tryptophan metabolism, tyrosine metabolism, and diterpenoid biosynthesis. In conclusion, the quality of chestnut rose juice deteriorated under OFM feeding stress, the levels of bitter substances were significantly increased, and the bitter taste was subsequently enhanced.
Collapse
Affiliation(s)
- Tingyuan Ren
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (B.L.); (F.X.); (Z.C.); (M.L.); (S.T.)
| | | | | | | | | | | |
Collapse
|
29
|
Rayo-Morales R, Segura-Carretero A, Borras-Linares I, Garcia-Burgos D. Suppression of sweet taste-related responses by plant-derived bioactive compounds and eating. Part I: A systematic review in humans. Heliyon 2023; 9:e19733. [PMID: 37817998 PMCID: PMC10560784 DOI: 10.1016/j.heliyon.2023.e19733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023] Open
Abstract
The taste of food plays a crucial role in determining what and how much we eat. Thus, interventions that temporarily block sweet taste receptors offer a promising approach to addressing unhealthy behaviours associated with sugary foods. However, the relationship between reduced sweet taste response and food consumption remains unclear, with contradictory findings. Certain studies suggest that a diminished perception of sweetness leads to a sense of fullness and results in reduced food intake, while others suggest the opposite effect. To shed some light, our systematic review looked into the relationship between diminished sweet taste response and food consumption by examining the effects of bioactive compounds that experimentally inhibit sweetness in healthy individuals. This review was registered in the International Prospective Register of Systematic Reviews and conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and the Scottish Intercollegiate Guidelines Network, and covered original papers included in Web of Science, PubMed, Scopus, Food Science Source and Food Science and technology abstracts. We identified 33 peer-reviewed English-language studies that fit the topic and met the inclusion criteria. The current literature predominantly focuses on the immediate impact of oral gymnemic acids, failing to provide preliminary evidence in support of the specific threshold hypothesis, above which food consumption decreases and below which the opposite effect occurs. Additionally, there was inconsistency in the findings regarding the short-term desire to eat following sweetness inhibition. Considering the downstream effects on energy intake and their clinical applications, further research is needed to clarify both the acute within-session effects (i.e., not wanting any more now) and the longer-term effects (i.e., deciding not to start eating) linked to oral sweet-taste-suppressing compounds.
Collapse
Affiliation(s)
- Raquel Rayo-Morales
- Department of Analytical Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
- Department of Psychobiology, Institute of Neurosciences, Centre for Biomedical Research, University of Granada, 18010, Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Isabel Borras-Linares
- Department of Analytical Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - David Garcia-Burgos
- Department of Psychobiology, Institute of Neurosciences, Centre for Biomedical Research, University of Granada, 18010, Granada, Spain
| |
Collapse
|
30
|
Caremoli F, Huynh J, Lagishetty V, Markovic D, Braun J, Dong TS, Jacobs JP, Sternini C. Microbiota-Dependent Upregulation of Bitter Taste Receptor Subtypes in the Mouse Large Intestine in High-Fat Diet-Induced Obesity. Nutrients 2023; 15:4145. [PMID: 37836428 PMCID: PMC10574285 DOI: 10.3390/nu15194145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Bitter taste receptors (Tas2rs in mice) detect bitterness, a warning signal for toxins and poisons, and are expressed in enteroendocrine cells. We tested the hypothesis that Tas2r138 and Tas2r116 mRNAs are modulated by microbiota alterations induced by a long-term high-fat diet (HFD) and antibiotics (ABX) (ampicillin and neomycin) administered in drinking water. Cecum and colon specimens and luminal contents were collected from C57BL/6 female and male mice for qRT-PCR and microbial luminal 16S sequencing. HFD with/without ABX significantly increased body weight and fat mass at 4, 6, and 8 weeks. Tas2r138 and Tas2r116 mRNAs were significantly increased in mice fed HFD for 8 weeks vs. normal diet, and this increase was prevented by ABX. There was a distinct microbiota separation in each experimental group and significant changes in the composition and diversity of microbiome in mice fed a HFD with/without ABX. Tas2r mRNA expression in HFD was associated with several genera, particularly with Akkermansia, a Gram-negative mucus-resident bacterium. These studies indicate that luminal bacterial composition is affected by sex, diet, and ABX and support a microbial dependent upregulation of Tas2rs in HFD-induced obesity, suggesting an adaptive host response to specific diet-induced dysbiosis.
Collapse
Affiliation(s)
- Filippo Caremoli
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (F.C.); (J.H.); (V.L.); (T.S.D.); (J.P.J.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| | - Jennifer Huynh
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (F.C.); (J.H.); (V.L.); (T.S.D.); (J.P.J.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Venu Lagishetty
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (F.C.); (J.H.); (V.L.); (T.S.D.); (J.P.J.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| | - Daniela Markovic
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| | - Jonathan Braun
- Inflammatory Bowel and Immunobiology Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Tien S. Dong
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (F.C.); (J.H.); (V.L.); (T.S.D.); (J.P.J.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| | - Jonathan P. Jacobs
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (F.C.); (J.H.); (V.L.); (T.S.D.); (J.P.J.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Catia Sternini
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (F.C.); (J.H.); (V.L.); (T.S.D.); (J.P.J.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
31
|
Talmon M, Massara E, Quaregna M, De Battisti M, Boccafoschi F, Lecchi G, Puppo F, Bettega Cajandab MA, Salamone S, Bovio E, Boldorini R, Riva B, Pollastro F, Fresu LG. Bitter taste receptor (TAS2R) 46 in human skeletal muscle: expression and activity. Front Pharmacol 2023; 14:1205651. [PMID: 37771728 PMCID: PMC10522851 DOI: 10.3389/fphar.2023.1205651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/27/2023] [Indexed: 09/30/2023] Open
Abstract
Bitter taste receptors are involved not only in taste perception but in various physiological functions as their anatomical location is not restricted to the gustatory system. We previously demonstrated expression and activity of the subtype hTAS2R46 in human airway smooth muscle and broncho-epithelial cells, and here we show its expression and functionality in human skeletal muscle cells. Three different cellular models were used: micro-dissected human skeletal tissues, human myoblasts/myotubes and human skeletal muscle cells differentiated from urine stem cells of healthy donors. We used qPCR, immunohistochemistry and immunofluorescence analysis to evaluate gene and protein hTAS2R46 expression. In order to explore receptor activity, cells were incubated with the specific bitter ligands absinthin and 3ß-hydroxydihydrocostunolide, and calcium oscillation and relaxation were evaluated by calcium imaging and collagen assay, respectively, after a cholinergic stimulus. We show, for the first time, experimentally the presence and functionality of a type 2 bitter receptor in human skeletal muscle cells. Given the tendentially protective role of the bitter receptors starting from the oral cavity and following also in the other ectopic sites, and given its expression already at the myoblast level, we hypothesize that the bitter receptor can play an important role in the development, maintenance and in the protection of muscle tissue functions.
Collapse
Affiliation(s)
- Maria Talmon
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Erika Massara
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Martina Quaregna
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Marta De Battisti
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Francesca Boccafoschi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Giulia Lecchi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Federico Puppo
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | | | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Enrica Bovio
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Renzo Boldorini
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Beatrice Riva
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Luigia G. Fresu
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
32
|
Niknafs S, Navarro M, Schneider ER, Roura E. The avian taste system. Front Physiol 2023; 14:1235377. [PMID: 37745254 PMCID: PMC10516129 DOI: 10.3389/fphys.2023.1235377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Taste or gustation is the sense evolving from the chemo-sensory system present in the oral cavity of avian species, which evolved to evaluate the nutritional value of foods by detecting relevant compounds including amino acids and peptides, carbohydrates, lipids, calcium, salts, and toxic or anti-nutritional compounds. In birds compared to mammals, due to the relatively low retention time of food in the oral cavity, the lack of taste papillae in the tongue, and an extremely limited secretion of saliva, the relevance of the avian taste system has been historically undermined. However, in recent years, novel data has emerged, facilitated partially by the advent of the genomic era, evidencing that the taste system is as crucial to avian species as is to mammals. Despite many similarities, there are also fundamental differences between avian and mammalian taste systems in terms of anatomy, distribution of taste buds, and the nature and molecular structure of taste receptors. Generally, birds have smaller oral cavities and a lower number of taste buds compared to mammals, and their distribution in the oral cavity appears to follow the swallowing pattern of foods. In addition, differences between bird species in the size, structure and distribution of taste buds seem to be associated with diet type and other ecological adaptations. Birds also seem to have a smaller repertoire of bitter taste receptors (T2Rs) and lack some taste receptors such as the T1R2 involved in sweet taste perception. This has opened new areas of research focusing on taste perception mechanisms independent of GPCR taste receptors and the discovery of evolutionary shifts in the molecular function of taste receptors adapting to ecological niches in birds. For example, recent discoveries have shown that the amino acid taste receptor dimer T1R1-T1R3 have mutated to sense simple sugars in almost half of the living bird species, or SGLT1 has been proposed as a part of a T1R2-independent sweet taste sensing in chicken. The aim of this review is to present the scientific data known to date related to the avian taste system across species and its impact on dietary choices including domestic and wild species.
Collapse
Affiliation(s)
- Shahram Niknafs
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Marta Navarro
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Eve R. Schneider
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
33
|
Xu J, Iyyanar PPR, Lan Y, Jiang R. Sonic hedgehog signaling in craniofacial development. Differentiation 2023; 133:60-76. [PMID: 37481904 PMCID: PMC10529669 DOI: 10.1016/j.diff.2023.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Mutations in SHH and several other genes encoding components of the Hedgehog signaling pathway have been associated with holoprosencephaly syndromes, with craniofacial anomalies ranging in severity from cyclopia to facial cleft to midfacial and mandibular hypoplasia. Studies in animal models have revealed that SHH signaling plays crucial roles at multiple stages of craniofacial morphogenesis, from cranial neural crest cell survival to growth and patterning of the facial primordia to organogenesis of the palate, mandible, tongue, tooth, and taste bud formation and homeostasis. This article provides a summary of the major findings in studies of the roles of SHH signaling in craniofacial development, with emphasis on recent advances in the understanding of the molecular and cellular mechanisms regulating the SHH signaling pathway activity and those involving SHH signaling in the formation and patterning of craniofacial structures.
Collapse
Affiliation(s)
- Jingyue Xu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Paul P R Iyyanar
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
34
|
Naik AQ, Zafar T, Shrivastava VK. The impact of non-caloric artificial sweetener aspartame on female reproductive system in mice model. Reprod Biol Endocrinol 2023; 21:73. [PMID: 37580716 PMCID: PMC10424399 DOI: 10.1186/s12958-023-01115-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Artificial sweeteners, used as sugar substitutes have found their ways into almost all the food items due to the notion that they are non-caloric. Aspartame is used in numerous food products throughout the world. The primary users of aspartame include diabetics and calorie conscious people who intend to limit their calorie intake. METHODS Female Swiss albino mice were divided into three groups (12 mice each) for the duration of 30 and 60 days consecutively. The treatment groups received 40 mg/kg b. w. aspartame orally. Hormone assays using ELISA and tissue histopathology have been performed along with the fertility assay to access the treatment outcomeon the fertility of treated mice in comparison to controls. RESULTS Present study reports that female mice treated with aspartame for 30 and 60 days showed significant reduction in body weight, relative organ weight of (liver and kidney) and gonadosomatic index. These changes were more significantly recorded in 60 days treatment group. Aspartame treated animals for 30 and 60 days showed duration-dependent decrease gonandotropins (follicle stimulating hormone and luteinizing hormone), and steroids (estradiol and progesterone). Moreover, severe histopathological changes, reduction in number of growing follicles, degenerative changes in follicular structure, corona radiata and zonagranulosa were also observed. Besides, histomorphological changes were also observed in the uterine structure including atrophic uterine endometrial glands, contracted endometrial lining, disruption of the endometrial structure and the shapes of blood vessels were also altered. CONCLUSION Non-nutritive artificial sweeteners including aspartame negatively impact the function of ovaries and feedback mechanism of reproductive hormones by affecting the hypothalamic-pituitary-gonadal axis. In light of present findings the aspartame negatively impacted the reproductive system of female mice. More studies are required to identify the molecular mechanism and the pathways involved.
Collapse
Affiliation(s)
- Ab Qayoom Naik
- Department of Zoology, Govt. Degree College, Paloura Mishriwala, Jammu, J & K, 180018, India.
- Laboratory of Endocrinology, Department of Biosciences, Barkatullah University, Bhopal, M. P, 462026, India.
| | - Tabassum Zafar
- Laboratory of Endocrinology, Department of Biosciences, Barkatullah University, Bhopal, M. P, 462026, India.
| | - Vinoy K Shrivastava
- Laboratory of Endocrinology, Department of Biosciences, Barkatullah University, Bhopal, M. P, 462026, India
| |
Collapse
|
35
|
Jiang S, Wang X, Yu M, Tian J, Chang P, Zhu S. Bitter Peptides in Fermented Soybean Foods - A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01077-3. [PMID: 37410257 DOI: 10.1007/s11130-023-01077-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Fermented soybean foods with a long history are popular worldwide because of rich nutrition. However, many traditional fermented soybean foods have unacceptable bitterness, which mostly comes from the bitter peptides produced from the hydrolysis of soybean proteins. In this review, the bitter peptides in fermented soybean foods is briefly reviewed. The structural properties of bitter receptors and bitter peptides were reviewed. Bitterness is perceived through the binding between bitter compounds and specific sites of bitter receptors (25 hTAS2Rs), which further activate the downstream signal pathway mediated by G-protein. And it converts chemical signals into electrical signals, and transmit them to the brain. In addition, the influencing factors of bitter peptides in fermented soybean foods were summarized. The bitterness of fermented soybean foods primarily results from the raw materials, microbial metabolism during fermentation, unique techniques, and interactions of various flavor compounds. Moreover, the structure-bitterness relationship of bitter peptides was also discussed in this review. The bitterness degree of the bitter peptide is related to the polypeptide hydrophobicity, amino acids in the peptide, peptide molecular weight and polypeptide spatial structure. Studying the bitter peptides and their bitter characteristics in fermented soybean foods is beneficial for improving the sensory quality of fermented soybean foods and prompting more consumers accept them.
Collapse
Affiliation(s)
- Shaoping Jiang
- College of Food Science and Engineering, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin, 130062, China
| | - Xiaodan Wang
- College of Food Science and Engineering, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin, 130062, China.
| | - Maosong Yu
- Tianjin haigang steel coil Co.,Ltd, Tianjin, 301600, China
| | - Jiaxue Tian
- College of Food Science and Engineering, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin, 130062, China
| | - Ping Chang
- College of Food Science and Engineering, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin, 130062, China
| | - Shijie Zhu
- Changchun ZhuLaoLiu Food Co., Ltd, Changchun, 130507, China
| |
Collapse
|
36
|
Ma Z, Paudel U, Foskett JK. Effects of temperature on action potentials and ion conductances in type II taste-bud cells. Am J Physiol Cell Physiol 2023; 325:C155-C171. [PMID: 37273235 PMCID: PMC10312327 DOI: 10.1152/ajpcell.00413.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
Temperature strongly influences the intensity of taste, but it remains understudied despite its physiological, hedonic, and commercial implications. The relative roles of the peripheral gustatory and somatosensory systems innervating the oral cavity in mediating thermal effects on taste sensation and perception are poorly understood. Type II taste-bud cells, responsible for sensing sweet, bitter umami, and appetitive NaCl, release neurotransmitters to gustatory neurons by the generation of action potentials, but the effects of temperature on action potentials and the underlying voltage-gated conductances are unknown. Here, we used patch-clamp electrophysiology to explore the effects of temperature on acutely isolated type II taste-bud cell electrical excitability and whole cell conductances. Our data reveal that temperature strongly affects action potential generation, properties, and frequency and suggest that thermal sensitivities of underlying voltage-gated Na+ and K+ channel conductances provide a mechanism for how and whether voltage-gated Na+ and K+ channels in the peripheral gustatory system contribute to the influence of temperature on taste sensitivity and perception.NEW & NOTEWORTHY The temperature of food affects how it tastes. Nevertheless, the mechanisms involved are not well understood, particularly whether the physiology of taste-bud cells in the mouth is involved. Here we show that the electrical activity of type II taste-bud cells that sense sweet, bitter, and umami substances is strongly influenced by temperature. These results suggest a mechanism for the influence of temperature on the intensity of taste perception that resides in taste buds themselves.
Collapse
Affiliation(s)
- Zhongming Ma
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Usha Paudel
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
37
|
Kannangara H, Cullen L, Miyashita S, Korkmaz F, Macdonald A, Gumerova A, Witztum R, Moldavski O, Sims S, Burgess J, Frolinger T, Latif R, Ginzburg Y, Lizneva D, Goosens K, Davies TF, Yuen T, Zaidi M, Ryu V. Emerging roles of brain tanycytes in regulating blood-hypothalamus barrier plasticity and energy homeostasis. Ann N Y Acad Sci 2023; 1525:61-69. [PMID: 37199228 PMCID: PMC10524199 DOI: 10.1111/nyas.15009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Seasonal changes in food intake and adiposity in many animal species are triggered by changes in the photoperiod. These latter changes are faithfully transduced into a biochemical signal by melatonin secreted by the pineal gland. Seasonal variations, encoded by melatonin, are integrated by third ventricular tanycytes of the mediobasal hypothalamus through the detection of the thyroid-stimulating hormone (TSH) released from the pars tuberalis. The mediobasal hypothalamus is a critical brain region that maintains energy homeostasis by acting as an interface between the neural networks of the central nervous system and the periphery to control metabolic functions, including ingestive behavior, energy homeostasis, and reproduction. Among the cells involved in the regulation of energy balance and the blood-hypothalamus barrier (BHB) plasticity are tanycytes. Increasing evidence suggests that anterior pituitary hormones, specifically TSH, traditionally considered to have unitary functions in targeting single endocrine sites, display actions on multiple somatic tissues and central neurons. Notably, modulation of tanycytic TSH receptors seems critical for BHB plasticity in relation to energy homeostasis, but this needs to be proven.
Collapse
Affiliation(s)
- Hasni Kannangara
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Liam Cullen
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sari Miyashita
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Funda Korkmaz
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anne Macdonald
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anisa Gumerova
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ronit Witztum
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ofer Moldavski
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Steven Sims
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jocoll Burgess
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tal Frolinger
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rauf Latif
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yelena Ginzburg
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daria Lizneva
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ki Goosens
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Terry F. Davies
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tony Yuen
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mone Zaidi
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vitaly Ryu
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
38
|
Hichami A, Saidi H, Khan AS, Degbeni P, Khan NA. In Vitro Functional Characterization of Type-I Taste Bud Cells as Monocytes/Macrophages-like Which Secrete Proinflammatory Cytokines. Int J Mol Sci 2023; 24:10325. [PMID: 37373472 DOI: 10.3390/ijms241210325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
The sense of taste determines the choice of nutrients and food intake and, consequently, influences feeding behaviors. The taste papillae are primarily composed of three types of taste bud cells (TBC), i.e., type I, type II, and type III. The type I TBC, expressing GLAST (glutamate--aspartate transporter), have been termed as glial-like cells. We hypothesized that these cells could play a role in taste bud immunity as glial cells do in the brain. We purified type I TBC, expressing F4/80, a specific marker of macrophages, from mouse fungiform taste papillae. The purified cells also express CD11b, CD11c, and CD64, generally expressed by glial cells and macrophages. We further assessed whether mouse type I TBC can be polarized toward M1 or M2 macrophages in inflammatory states like lipopolysaccharide (LPS)-triggered inflammation or obesity, known to be associated with low-grade inflammation. Indeed, LPS-treatment and obesity state increased TNFα, IL-1β, and IL-6 expression, both at mRNA and protein levels, in type I TBC. Conversely, purified type I TBC treated with IL-4 showed a significant increase in arginase 1 and IL-4. These findings provide evidence that type I gustatory cells share many features with macrophages and may be involved in oral inflammation.
Collapse
Affiliation(s)
- Aziz Hichami
- Physiologie de la Nutrition & Toxicologie, UMR INSERM U1231 Lipide, Nutrition & Cancer, Université de Bourgogne, 21000 Dijon, France
| | - Hamza Saidi
- Physiologie de la Nutrition & Toxicologie, UMR INSERM U1231 Lipide, Nutrition & Cancer, Université de Bourgogne, 21000 Dijon, France
- Bioenergetics and Intermediary Metabolism Team, Laboratory of Biology and Organisms Physiology, University of Sciences and Technology Houari Boumediene, Algiers 16111, Algeria
| | - Amira Sayed Khan
- Physiologie de la Nutrition & Toxicologie, UMR INSERM U1231 Lipide, Nutrition & Cancer, Université de Bourgogne, 21000 Dijon, France
| | - Pernelle Degbeni
- Physiologie de la Nutrition & Toxicologie, UMR INSERM U1231 Lipide, Nutrition & Cancer, Université de Bourgogne, 21000 Dijon, France
| | - Naim Akhtar Khan
- Physiologie de la Nutrition & Toxicologie, UMR INSERM U1231 Lipide, Nutrition & Cancer, Université de Bourgogne, 21000 Dijon, France
| |
Collapse
|
39
|
Hamed SA, Kamal-Eldeen EB, Ahmed MAAR. Evaluation of children and adults with post-COVID-19 persistent smell, taste and trigeminal chemosensory disorders: A hospital based study. World J Clin Pediatr 2023; 12:133-150. [PMID: 37342446 PMCID: PMC10278074 DOI: 10.5409/wjcp.v12.i3.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 04/20/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Smell disorders are the most frequent persistent coronavirus disease 2019 (COVID-19) complications.
AIM To describe the patterns and characteristics of persistent smell and taste disorders in Egyptian patients.
METHODS Assessment was done to 185 patients (adults = 150, age: 31.41 ± 8.63 years; children = 35; age: 15.66 ± 1.63 years). Otolaryngology and neuropsychiatric evaluations were done. Measurements included: A clinical questionnaire (for smell and taste); sniffin' odor, taste and flavor identification tests and the Questionnaire of Olfactory Disorders-Negative Statements (sQOD-NS).
RESULTS Duration of disorders was 11.53 ± 3.97 ms (6-24 ms). Parosmia (n = 119; 64.32%) was developed months after anosmia (3.05 ± 1.87 ms). Objective testing showed anosmia in all, ageusia and flavor loss in 20% (n = 37) and loss of nasal and oral trigeminal sensations in 18% (n = 33) and 20% (n = 37), respectively. Patients had low scoring of sQOD-NS (11.41 ± 3.66). There were no specific differences in other demographics and clinical variables which could distinguish post-COVID-19 smell and taste disorders in children from adults.
CONCLUSION The course of small and taste disorders are supportive of the nasal and oral neuronal compromises. Post-COVID-19 taste and trigeminal disorders were less frequent compared to smell disorders. Post-COVID-19 flavor disorders were solely dependent on taste and not smell disorders. There were no demographics, clinical variables at onset or specific profile of these disorders in children compared to adults.
Collapse
Affiliation(s)
- Sherifa Ahmed Hamed
- Department of Neurology and Psychiatry, Assiut University, Faculty of Medicine, Assiut 71516, Egypt
| | | | | |
Collapse
|
40
|
Ma J, Lee YK. The effects of cigarette smoking and alcohol drinking on salty taste preferences based on Korean Community Health Survey data. Nutr Res Pract 2023; 17:487-502. [PMID: 37266114 PMCID: PMC10232194 DOI: 10.4162/nrp.2023.17.3.487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/01/2022] [Accepted: 09/01/2022] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES Excessive sodium intake, cigarette smoking, and alcohol consumption are risk factors for a wide range of diseases. This study aimed to determine whether smokers and drinkers are more likely to enjoy their food with more salt, and whether the combination of smoking and drinking is associated with salty taste preferences. SUBJECTS/METHODS This study analyzed the data of over 16 million Koreans from two four-year Korean Community Health Survey cycles (i.e., 2010 to 2013 and 2014 to 2017). The respondents' preferences for salty foods (i.e., their salt intake levels, whether they added salt or soy sauce to foods served on the table, and whether they dipped fried foods in salt or soy sauce), and the odds ratio (OR) of their preference were examined among smokers and drinkers when adjusted for sex, age, body mass index, educational level, household income, marital status, and cigarette smoking or alcohol consumption status. RESULTS Cigarette smoking and alcohol consumption were correlated with the consumption of salty food. Based on the adjusted model, cigarette smokers and alcohol drinkers preferred adding salt or soy sauce or dipping fried foods in soybean more than non-smokers and non-drinkers. In addition, people who smoked and consumed alcohol reported a more significant stacking effect regarding the salty taste preference. CONCLUSION This large population-based study found that both cigarette smoking and alcohol consumption were correlated with salty taste preferences, which may cause excessive sodium intake.
Collapse
Affiliation(s)
- Jian Ma
- Department of Food Science & Nutrition, Kyungpook National University, Daegu 41566, Korea
| | - Yeon-Kyung Lee
- Department of Food Science & Nutrition, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
41
|
Abdali SS, Yokoyama T, Nakamuta N, Saino T, Yamamoto Y. Immunohistochemical analysis of glutamatergic and serotonergic signaling pathways in chemosensory cell clusters in the pharynx and larynx of rats. Tissue Cell 2023; 82:102122. [PMID: 37262979 DOI: 10.1016/j.tice.2023.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
The present study examined cellular components and the localization of vesicular glutamate transporter (VGLUT) 1 and 2 and serotonin (5-HT) in chemosensory cell clusters in the rat pharynx and larynx. Triple immunolabeling for guanine nucleotide-binding protein G (t), subunit ⍺3 (GNAT3) and nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) with synaptotagmin-1 (Syt1) revealed NTPDase2-immunoreactive type I-like cells in addition to GNAT3-immunoreactive type II-like and Syt1-immunoreactive type III-like cells in pharyngolaryngeal chemosensory cell clusters. Therefore, these clusters appear to comprise similar cell types to those in the lingual taste buds with slight morphological modifications. An immunofluorescence analysis of VGLUT1 or VGLUT2 and GNAT3 with P2X3 purinoceptors revealed that VGLUTs co-localized to P2X3-immunoreactive spherical nerve terminals closely associated with GNAT3-immunoreactive type II-like cells. Moreover, triple immunolabeling for Syt1/synaptosomal-associated protein, 25 kDa (SNAP25) and P2X3 with VGLUT1 or VGLUT2 revealed punctate immunoreactive products for VGLUT1 and VGLUT2 within P2X3-immunoreactive flat axon terminals wrapped around Syt1/SNAP25-immunoreactive type III-like cells. The afferent nerve fibers innervating cell clusters may contain glutamate and release it by exocytosis. On the other hand, immunoreactive products for 5-HT and dopa decarboxylase were detected in Syt1-immunoreactive cells, indicating the release of 5-HT by these cells. The present results suggest that chemosensory cell clusters in the pharynx and larynx may be modulated by intrinsic glutamate and 5-HT.
Collapse
Affiliation(s)
- Sayed Sharif Abdali
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan.
| | - Takuya Yokoyama
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Tomoyuki Saino
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| |
Collapse
|
42
|
Hamed SA. Post-COVID-19 persistent olfactory, gustatory, and trigeminal chemosensory disorders: Definitions, mechanisms, and potential treatments. World J Otorhinolaryngol 2023; 10:4-22. [DOI: 10.5319/wjo.v10.i2.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023] Open
Abstract
The nose and the oral cavities are the main sites for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry into the body. Smell and taste deficits are the most common acute viral manifestations. Persistent smell disorders are the most common and bothersome complications after SARS-CoV-2 infection, lasting for months to years. The mechanisms and treatment of persistent post-coronavirus disease 2019 (COVID-19) smell and taste disorders are still challenges. Information sources for the review are PubMed, Centers for Disease Control and Prevention, Ovid Medline, Embase, Scopus, Web of Science, International Prospective Register of Systematic Reviews, Cumulative Index to Nursing and Allied Health Literature, Elton Bryson Stephens Company, Cochrane Effective Practice and Organization of Care, Cooperation in Science and Technology, International Clinical Trials Registry Platform, World Health Organization, Randomized Controlled Trial Number Registry, and MediFind. This review summarizes the up-to-date information about the prevalence, patterns at onset, and prognoses of post-COVID-19 smell and taste disorders, evidence for the neurotropism of SARS-CoV-2 and the overlap between SARS-CoV-1, Middle East respiratory syndrome coronavirus, and SARS-CoV-2 in structure, molecular biology, mode of replication, and host pathogenicity, the suggested cellular and molecular mechanisms for these post-COVID19 chemosensory disorders, and the applied pharmacotherapies and interventions as trials to treat these disorders, and the recommendations for future research to improve understanding of predictors and mechanisms of these disorders. These are crucial for hopeful proper treatment strategies.
Collapse
Affiliation(s)
- Sherifa Ahmed Hamed
- Department of Neurology and Psychiatry, Assiut University, Faculty of Medicine, Assiut 71516, Egypt
| |
Collapse
|
43
|
Serirukchutarungsee S, Watari I, Narukawa M, Podyma-Inoue KA, Sangsuriyothai P, Ono T. Two-generation exposure to a high-fat diet induces the change of salty taste preference in rats. Sci Rep 2023; 13:5742. [PMID: 37029190 PMCID: PMC10082214 DOI: 10.1038/s41598-023-31662-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/15/2023] [Indexed: 04/09/2023] Open
Abstract
High-fat diet (HFD) leads to multiple complications, including taste alteration. This study observed the effect of a two-generation exposure to an HFD on the peripheral taste system in offspring. Ten pregnant Wistar rats were assigned a standard diet (SD) (n = 5) or HFD (n = 5) from day 7 of pregnancy through the lactation. Thirty-six male and female 3-week-old offspring were measured for body weight and blood glucose level, and the circumvallate papillae were collected. The other twenty-four 3-week-old offspring were weaned on the same diet as their mothers and raised individually. The taste preference behaviors were studied using the two-bottle taste preference test and analyzed five basic tastes (sweet, bitter, umami, sour, and salty). The expressions of epithelial sodium channel alpha subunit (ENaCα) and angiotensin II receptor type 1 (AT1) in the circumvallate papilla were analyzed by immunohistochemical staining and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We found increased body weight and salty taste preference of offspring from the HFD group in both sexes. Correspondingly, the AT1 level of the taste bud cells significantly increased in 3-week-old female offspring from the HFD group. An increase in AT1 levels may be a risk factor for changes in salty taste preference.
Collapse
Affiliation(s)
- Saranya Serirukchutarungsee
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo City, Tokyo, 113-8510, Japan
- Department of Pedodontics and Preventive Dentistry, Faculty of Dentistry, Srinakharinwirot University, Bangkok, Thailand
| | - Ippei Watari
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo City, Tokyo, 113-8510, Japan.
| | - Masataka Narukawa
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan
| | - Katarzyna Anna Podyma-Inoue
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Pornchanok Sangsuriyothai
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo City, Tokyo, 113-8510, Japan
- Department of Orthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo City, Tokyo, 113-8510, Japan
| |
Collapse
|
44
|
Doyle ME, Premathilake HU, Yao Q, Mazucanti CH, Egan JM. Physiology of the tongue with emphasis on taste transduction. Physiol Rev 2023; 103:1193-1246. [PMID: 36422992 PMCID: PMC9942923 DOI: 10.1152/physrev.00012.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The tongue is a complex multifunctional organ that interacts and senses both interoceptively and exteroceptively. Although it is easily visible to almost all of us, it is relatively understudied and what is in the literature is often contradictory or is not comprehensively reported. The tongue is both a motor and a sensory organ: motor in that it is required for speech and mastication, and sensory in that it receives information to be relayed to the central nervous system pertaining to the safety and quality of the contents of the oral cavity. Additionally, the tongue and its taste apparatus form part of an innate immune surveillance system. For example, loss or alteration in taste perception can be an early indication of infection as became evident during the present global SARS-CoV-2 pandemic. Here, we particularly emphasize the latest updates in the mechanisms of taste perception, taste bud formation and adult taste bud renewal, and the presence and effects of hormones on taste perception, review the understudied lingual immune system with specific reference to SARS-CoV-2, discuss nascent work on tongue microbiome, as well as address the effect of systemic disease on tongue structure and function, especially in relation to taste.
Collapse
Affiliation(s)
- Máire E Doyle
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Hasitha U Premathilake
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Qin Yao
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Caio H Mazucanti
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Josephine M Egan
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
45
|
Nuvoli C, Fillion L, Lacoste Gregorutti C, Labbe D. Comparison of sensitivity to taste and astringency stimuli among vegans and omnivores. Physiol Behav 2023; 262:114092. [PMID: 36682431 DOI: 10.1016/j.physbeh.2023.114092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Taste perception plays a crucial role in determining food choices. It has been described in literature a relationship between diet composition and taste perception. Nowadays, with the rising concern in climate change and animal welfare, the number of people following a vegan diet is increasing to become a real trend. Research about differences in taste perception between vegan and omnivore is lacking. The aim of the study was to compare detection threshold for bitter, sour, umami and astringency stimuli (quinine monohydrochloride dihydrate, citric acid anhydrous, monosodium glutamate and tannic acid, respectively) participants following a vegan diet (n=24) and participants following an omnivore diet (n=30). Participants reported their consumption frequency for main food categories. The mean detection thresholds between the two groups narrowly missed significance with p-values of 0.07, 0.08, 0.06, for bitter, umami and astringency perception, respectively. No differences were found for sour taste (p-value=0.33). Further research is required to validate such findings and to understand the origin of the relationship between diet style and taste sensitivity.
Collapse
Affiliation(s)
| | | | | | - David Labbe
- Société des Produits Nestlé SA, Switzerland.
| |
Collapse
|
46
|
Shimizu T, Fujii T, Hanita K, Shinozaki R, Takamura Y, Suzuki Y, Kageyama T, Kato M, Nishijo H, Tominaga M, Sakai H. Polycystic kidney disease 2-like 1 channel contributes to the bitter aftertaste perception of quinine. Sci Rep 2023; 13:4271. [PMID: 36922541 PMCID: PMC10017821 DOI: 10.1038/s41598-023-31322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Bitterness is an important physiological function in the defense responses to avoid toxic foods. The taste receptor 2 family is well known to mediate bitter taste perception in Type II taste cells. Here, we report that the polycystic kidney disease 2-like 1 (PKD2L1) channel is a novel sensor for the bitter aftertaste in Type III taste cells. The PKD2L1 channel showed rebound activation after the washout of quinine, a bitter tastant, in electrophysiological whole-cell recordings of the PKD2L1-expressing HEK293T cells and Ca2+-imaging analysis of Type III taste cells isolated from wild-type PKD2L1 mice. In the short-term two-bottle preference and lick tests in vivo, the wild-type mice avoided normal water while the PKD2L1-knockout mice preferred normal water after they ingested the quinine-containing water. These results may explain the new mechanism of the quinine-triggered bitter aftertaste perception in Type III taste cells.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| | - Takuto Fujii
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Keisuke Hanita
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Ryo Shinozaki
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Yusaku Takamura
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Yoshiro Suzuki
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences (NIPS), Okazaki, 444-8787, Japan
| | - Teppei Kageyama
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Mizuki Kato
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Hisao Nishijo
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences (NIPS), Okazaki, 444-8787, Japan
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
47
|
Vercauteren Drubbel A, Beck B. Single-cell transcriptomics uncovers the differentiation of a subset of murine esophageal progenitors into taste buds in vivo. SCIENCE ADVANCES 2023; 9:eadd9135. [PMID: 36888721 PMCID: PMC9995038 DOI: 10.1126/sciadv.add9135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Mouse esophagus is lined with a stratified epithelium, which is maintained by the constant renewal of unipotent progenitors. In this study, we profiled mouse esophagus by single-cell RNA sequencing and found taste buds specifically in the cervical segment of the esophagus. These taste buds have the same cellular composition as the ones from the tongue but express fewer taste receptor types. State-of-the-art transcriptional regulatory network analysis allowed the identification of specific transcription factors associated to the differentiation of immature progenitors into the three different taste bud cell types. Lineage tracing experiments revealed that esophageal taste buds arise from squamous bipotent progenitor, thus demonstrating that all esophageal progenitors are not unipotent. Our cell resolution characterization of cervical esophagus epithelium will enable a better understanding of esophageal progenitor potency and insights into the mechanisms involved in the development of taste buds.
Collapse
Affiliation(s)
| | - Benjamin Beck
- IRIBHM, ULB/ Faculty of medicine, 808 Route de Lennik, 1070 Brussels, Belgium
- Welbio/FNRS Principal investigator at IRIBHM, 808 Route de Lennik, 1070 Brussels, Belgium
| |
Collapse
|
48
|
Hepper EC, Patterson JM. Healthcare Professionals' Perceptions of Stabilized Edible Foam with Adults with Severe Dysphagia; an exploratory study: Use of stabilized edible foam with adults with dysphagia: Use of stabilized edible foam with adults with dysphagia. INTERNATIONAL JOURNAL OF LANGUAGE & COMMUNICATION DISORDERS 2023; 58:226-240. [PMID: 36040239 DOI: 10.1111/1460-6984.12769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Improving the quality of life for individuals with severe dysphagia is a priority when considering new areas of dysphagia management, especially if this increases opportunities to participate in social activities associated with eating and drinking. Edible foam is widely researched and available in the food industry; however, the use of edible foam within the field of dysphagia remains unexplored. Despite no research published on effectiveness and safety, a commercial product currently on the market is widely distributed across both Europe and the UK, including 28 NHS Trusts, suggesting that it is increasingly being used in clinical practice. AIMS To explore the perceptions and experiences of healthcare professionals on the use of stabilized edible foam (SEF) with adults with severe dysphagia in order to inform areas for future research in this novel dysphagia intervention. METHODS & PROCEDURES Healthcare professionals were recruited using purposeful sampling and snowballing technique. A total of 56 healthcare professionals were initially approached, of which 10 completed the semi-structured interviews. Interview questions were developed from a topic guide and a pilot questionnaire. OUTCOMES & RESULTS Thematic analysis was used to identify three themes: potential impact, consideration of risk and perceived experiences. Overarching each of these themes was the element of the unknown. CONCLUSIONS & IMPLICATIONS Use of SEF with adults with dysphagia is in its infancy. Whilst results indicate that some clinicians are embracing this novel approach, others express concerns. Therefore, further research is needed, particularly in relation of direct experience of individuals and contra-indications. WHAT THIS PAPER ADDS What is already known on the subject The use of SEF with individuals with swallowing problems is a relatively novel area of dysphagia intervention in the UK. There are currently no published studies on its effectiveness and safety profile. What this paper adds to existing knowledge This study provides valuable preliminary work into the area of SEF and adults with severe dysphagia, capturing the experience and perceptions of healthcare professions who have an awareness of SEF. What are the potential or actual clinical implications of this work? Increasing clinicians and researcher's awareness of this novel area of dysphagia management.
Collapse
Affiliation(s)
- Elizabeth C Hepper
- Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Joanne M Patterson
- School of Health Sciences, Institute of Population Health/Liverpool Head and Neck Centre University of Liverpool, Liverpool, UK
| |
Collapse
|
49
|
Bigiani A, Rhyu M. Effect of kokumi taste-active γ-glutamyl peptides on amiloride-sensitive epithelial Na+ channels in rat fungiform taste cells. Biochem Biophys Rep 2023; 33:101400. [DOI: 10.1016/j.bbrep.2022.101400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/17/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
|
50
|
Costa AR, Duarte AC, Costa-Brito AR, Gonçalves I, Santos CRA. Bitter taste signaling in cancer. Life Sci 2023; 315:121363. [PMID: 36610638 DOI: 10.1016/j.lfs.2022.121363] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Pharmacoresistance of cancer cells to many drugs used in chemotherapy remains a major challenge for the treatment of cancer. Multidrug resistance transporters, especially ATP-binding cassette (ABC) transporters, are a major cause of cancer drug resistance since they translocate a broad range of drug compounds across the cell membrane, extruding them out of the cells. The regulation of ABC transporters by bitter taste receptors (TAS2Rs), which might be activated by specific bitter tasting compounds, was described in several types of cells/organs, becoming a potential target for cancer therapy. TAS2Rs expression has been reported in many organs and several types of cancer, like breast, ovarian, prostate, and colorectal cancers, where their activation was shown to be involved in various biological actions (cell survival, apoptosis, molecular transport, among others). Moreover, many TAS2Rs' ligands, such as flavonoids and alkaloids, with well-recognized beneficial properties, including several anticancer effects, have been reported as potential adjuvants in cancer therapies. In this review, we discuss the potential therapeutic role of TAS2Rs and bitter tasting compounds in different types of cancer as a possible way to circumvent chemoresistance.
Collapse
Affiliation(s)
- Ana R Costa
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana C Duarte
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal; CPIRN-IPG - Centro de Potencial e Inovação de Recursos Naturais, Instituto Politécnico da Guarda, Guarda, Portugal
| | - Ana R Costa-Brito
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal; Research Unit for Inland Development (UDI), Polytechnic of Guarda, Guarda, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|