1
|
Dowell W, Dearborn J, Languon S, Miller Z, Kirch T, Paige S, Garvin O, Kjendal L, Harby E, Zuchowski AB, Clark E, Lescieur-Garcia C, Vix J, Schumer A, Mistri SK, Snoke DB, Doiron AL, Freeman K, Toth MJ, Poynter ME, Boyson JE, Majumdar D. Distinct Inflammatory Programs Underlie the Intramuscular Lipid Nanoparticle Response. ACS NANO 2024. [PMID: 39563529 DOI: 10.1021/acsnano.4c08490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Developments in mRNA/lipid nanoparticle (LNP) technology have advanced the fields of vaccinology and gene therapy, raising questions about immunogenicity. While some mRNA/LNPs generate an adjuvant-like environment in muscle tissue, other mRNA/LNPs are distinct in their capacity for multiple rounds of therapeutic delivery. We evaluate the adjuvancy of components of mRNA/LNPs by phenotyping cellular infiltrate at injection sites, tracking uptake by immune cells, and assessing the inflammatory state. Delivery of 9 common, but chemically distinct, LNPs to muscle revealed two classes of inflammatory gene expression programs: inflammatory (Class A) and noninflammatory (Class B). We find that intramuscular injection with Class A, but not Class B, empty LNPs (eLNPs) induce robust neutrophil infiltration into muscle within 2 h and a diverse myeloid population within 24 h. Single-cell RNA sequencing revealed SM-102-mediated expression of inflammatory chemokines by myeloid infiltrates within muscle 1 day after injection. Surprisingly, we found direct transfection of muscle infiltrating myeloid cells and splenocytes 24 h after intramuscular mRNA/LNP administration. Transfected myeloid cells within the muscle exhibit an activated phenotype 24 h after injection. Similarly, directly transfected splenic lymphocytes and dendritic cells (DCs) are differentially activated by Class A or Class B containing mRNA/LNP. Within the splenic DC compartment, type II conventional DCs (cDC2s) are directly transfected and activated by Class A mRNA/LNP. Together, we show that mRNA and LNPs work synergistically to provide the necessary innate immune stimuli required for effective vaccination. Importantly, this work provides a design framework for vaccines and therapeutics alike.
Collapse
Affiliation(s)
- William Dowell
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Jacob Dearborn
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Sylvester Languon
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Zachary Miller
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Tylar Kirch
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Stephen Paige
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Olivia Garvin
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Lily Kjendal
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Ethan Harby
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Adam B Zuchowski
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Emily Clark
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Carlos Lescieur-Garcia
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Jesse Vix
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Amy Schumer
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Somen K Mistri
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Deena B Snoke
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Amber L Doiron
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Kalev Freeman
- Department of Emergency Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Michael J Toth
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Matthew E Poynter
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Jonathan E Boyson
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Devdoot Majumdar
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
2
|
Nov P, Zhang Y, Wang D, Sou S, Touch S, Kouy S, Vicheth V, Li L, Liu X, Wang C, Ni P, Kou Q, Li Y, Zheng C, Prasai A, Fu W, Li W, Du K, Li J. The causal relationship between immune cells and hepatocellular carcinoma: a Mendelian randomization (MR). Ecancermedicalscience 2024; 18:1794. [PMID: 39816386 PMCID: PMC11735144 DOI: 10.3332/ecancer.2024.1794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Indexed: 01/18/2025] Open
Abstract
Objective Hepatocellular carcinoma (HCC) is a complex and multifaceted disease that is increasingly prevalent globally. The involvement of immune cells in the tumour microenvironment has been linked to the progression of HCC, but the exact cause-and-effect relationship is not yet clear. In this study, we utilise Mendelian randomization (MR) to investigate the potential causal links between immune factors and the development of HCC. Method We executed a comprehensive MR study, leveraging publicly accessible genetic datasets to explore the potential causal links between 731 types of immune cells and HCC. Our analysis primarily applied inverse variance weighting and weighted median methods. To evaluate the robustness of our findings and probe for the presence of heterogeneity and pleiotropy, we also conducted thorough sensitivity analyses. Results We found 36 immune cells were associated with HCC, CD64 on CD14- CD16+ monocytes (OR = 1.328, 95% CI = 1.116- 1.581, p = 0.001), CD3- lymphocyte %lymphocytes (OR = 1.341, 95% CI = 1.027- 1.750, p = 0.031), HLA DR on CD14+ monocytes (OR = 1.256, 95% CI = 1.089- 1.448, p = 0.002), CD19 on CD19 on Plasma Blast-Plasma Cell (OR = 1.224, 95% CI = 1.073- 1.396, p = 0.003), CCR2 on monocytes (OR = 1.204, 95% CI = 1.073- 1.351, p = 0.002) and Naive CD4+ T cell Absolute Count (OR = 0.797, 95% CI = 0.655- 0.969, p = 0.023) were the most strongly associated with HCC. Among them, CD64 on CD14- CD16+ monocytes, CD3 - lymphocyte %lymphocytes, HLA DR on CD14+ monocytes and CD19 on Plasma Blast-Plasma Cells are the risk factors, while Naive CD4+ T cell Absolute Count are protective factors for HCC. Conclusion Our MR analysis of the role of immune cells and HCC provides a framework for knowledge of circulating immune status. Systematic assays of infiltrating immune cells in HCC can help dissect the immune status of HCC, assess the current use of checkpoint blockers, and most importantly, aid in the development of innovative immunotherapies. Further research is necessary to validate these findings and explore the underlying mechanisms that influence the immune response to HCC.
Collapse
Affiliation(s)
- Pengkhun Nov
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
- These authors contributed equally to this work
| | - Yangfeng Zhang
- Department of Oncology, The People's Hospital of Hezhou, No. 150 Xiyue Street, Babu District, Hezhou City 542800, Guangxi, China
- These authors contributed equally to this work
| | - Duanyu Wang
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Syphanna Sou
- Department of Medical Oncology, The People's Hospital of Hezhou, No. 150 Xiyue Street, Babu District, Hezhou City 542800, Guangxi, China
| | - Socheat Touch
- Department of Medical Oncology, The People's Hospital of Hezhou, No. 150 Xiyue Street, Babu District, Hezhou City 542800, Guangxi, China
| | - Samnang Kouy
- Department of Medical Oncology, The People's Hospital of Hezhou, No. 150 Xiyue Street, Babu District, Hezhou City 542800, Guangxi, China
| | - Virak Vicheth
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Lilin Li
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Xiang Liu
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Changqian Wang
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Peizan Ni
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Qianzi Kou
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Ying Li
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Chongyang Zheng
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Arzoo Prasai
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Wen Fu
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Wandan Li
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Kunpeng Du
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Jiqiang Li
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| |
Collapse
|
3
|
Huang X, Liu G, Chang T, Yang Y, Wang T, Xia D, Qi X, Zhu X, Wei Z, Tian X, Wang H, Tian Z, Cai X, An T. Recombinant characterization and pathogenicity of a novel L1C RFLP-1-4-4 variant of porcine reproductive and respiratory syndrome virus in China. Vet Res 2024; 55:142. [PMID: 39506759 PMCID: PMC11539553 DOI: 10.1186/s13567-024-01401-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/10/2024] [Indexed: 11/08/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most significant diseases affecting the pig industry worldwide and is caused by the PRRS virus (PRRSV), which has complex genetic variation due to frequent mutations, indels, and recombination. The emergence of PRRSV L1C.5 in 2020 in the United States has raised worldwide concerns about PRRSV with the RFLP 1-4-4 pattern and lineage 1C. However, studies on the pathogenic characteristics, epidemiological distribution, and effectiveness of vaccines against PRRSV with L1C and RFLP1-4-4 pattern in China are still insufficient. In this study, a novel recombinant variant of PRRSV with RFLP 1-4-4 and lineage 1C features, different from L1C.5 in the United States, was isolated in China in 2021. In pathogenicity experiments in specific pathogen-free piglets or farm piglets, 60-100% of artificially infected experimental piglets died with high fever and respiratory symptoms. Inflammatory cytokine and chemokine levels were upregulated in infected piglets. A commercially modified live vaccine against highly pathogenic PRRSV did not provide effective protection when the vaccinated piglets were challenged with the novel L1C-1-4-4 variant. Therefore, this strain merits special attention when devising control and vaccine strategies. These findings suggest that extensive joint surveillance is urgently needed and that vaccine strategies should be updated to prevent the disease from spreading further.
Collapse
Affiliation(s)
- Xinyi Huang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Guoqing Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Tong Chang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yongbo Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Dasong Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xinyu Qi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xulong Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Ziyi Wei
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xiaoxiao Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Haiwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zhijun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, 150069, China.
| |
Collapse
|
4
|
Kim JH, Kim K, Kim I, Seong S, Che X, Choi JY, Koh JT, Kim N. The MCP-3/Ccr3 axis contributes to increased bone mass by affecting osteoblast and osteoclast differentiation. Exp Mol Med 2024; 56:2465-2474. [PMID: 39482538 PMCID: PMC11612511 DOI: 10.1038/s12276-024-01344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/04/2024] [Accepted: 08/19/2024] [Indexed: 11/03/2024] Open
Abstract
Several CC subfamily chemokines have been reported to regulate bone metabolism by affecting osteoblast or osteoclast differentiation. However, the role of monocyte chemotactic protein 3 (MCP-3), a CC chemokine, in bone remodeling is not well understood. Here, we show that MCP-3 regulates bone remodeling by promoting osteoblast differentiation and inhibiting osteoclast differentiation. In a Ccr3-dependent manner, MCP-3 promoted osteoblast differentiation by stimulating p38 phosphorylation and suppressed osteoclast differentiation by upregulating interferon beta. MCP-3 increased bone morphogenetic protein 2-induced ectopic bone formation, and mice with MCP-3-overexpressing osteoblast precursor cells presented increased bone mass. Moreover, MCP-3 exhibited therapeutic effects by abrogating receptor activator of nuclear factor kappa-B ligand-induced bone loss. Therefore, MCP-3 has therapeutic potential for diseases involving bone loss due to its positive role in osteoblast differentiation and negative role in osteoclast differentiation.
Collapse
Affiliation(s)
- Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Xiangguo Che
- Korea Mouse Phenotyping Center (KMPC), Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Je-Yong Choi
- Korea Mouse Phenotyping Center (KMPC), Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jeong-Tae Koh
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea.
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
5
|
Han Z, Chen Y, Ye X. The causality between smoking and intervertebral disc degeneration mediated by IL-1β secreted by macrophage: A Mendelian randomization study. Heliyon 2024; 10:e37044. [PMID: 39286222 PMCID: PMC11402911 DOI: 10.1016/j.heliyon.2024.e37044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
There is still a lack of high-level evidence regarding the causal relationship between smoking and intervertebral disc degenerative diseases. This study utilized data from genome wide analysis studies and conducted two-sample Mendelian randomization analyses across multiple heterogeneous datasets. We evaluated the causal relationships between smoking behavior, serum inflammatory factors, serum chemokines, and intervertebral disc degeneration. Sensitivity analysis was performed to examine data heterogeneity and the pleiotropy of causal effects. The results indicated that smokers were liable to develop intervertebral disc degeneration (OR 1.770; 95 % CI, 1.519-2.064; p = 2.992 × 10-13), and long-term smoking behavior increased the risk of intervertebral disc degeneration (OR 1.715; 95 % CI 1.475-1.994; P = 2.220 × 10-12). Additionally, a causal relationship was confirmed between serum IL-1β level and intervertebral disc degeneration (OR 1.087; 95 % CI, 1.023-1.154; p = 0.007). The "smoking index" representing lifelong smoking habit was also found to be causally related to serum MCP-3 level(β = 0.292; SE = 0.093; p = 0.002). All of the causality mentioned above remained stable in sensitivity tests. Based on the analysis results and fundamental medicine theories around macrophage-induced inflammation in degenerative intervertebral discs, we have constructed a new mechanism that long-term smoking could induce an increase in serum MCP-3 level, promoting the gathering and activation of monocyte macrophages. Furthermore, the recruited macrophages led to an increase in local IL-1β within the intervertebral disc, ultimately exacerbating the process of intervertebral disc degeneration. What we have found is expected to accelerate the development of prevention and treatment of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Zhaopu Han
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yicheng Chen
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiaojian Ye
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| |
Collapse
|
6
|
Guo D, Zhu W, Qiu H. C-C Motif Chemokine Ligand 2 and Chemokine Receptor 2 in Cardiovascular and Neural Aging and Aging-Related Diseases. Int J Mol Sci 2024; 25:8794. [PMID: 39201480 PMCID: PMC11355023 DOI: 10.3390/ijms25168794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Aging is a prominent risk factor for numerous chronic diseases. Understanding the shared mechanisms of aging can aid in pinpointing therapeutic targets for age-related disorders. Chronic inflammation has emerged as a pivotal mediator of aging and a determinant in various age-related chronic conditions. Recent findings indicate that C-C motif chemokine ligand 2 and receptor 2 (CCL2-CCR2) signaling, an important physiological modulator in innate immune response and inflammatory defense, plays a crucial role in aging-related disorders and is increasingly recognized as a promising therapeutic target, highlighting its significance. This review summarizes recent advances in the investigation of CCL2-CCR2 signaling in cardiovascular and neural aging, as well as in various aging-related disorders. It also explores the underlying mechanisms and therapeutic potentials in these contexts. These insights aim to deepen our understanding of aging pathophysiology and the development of aging-related diseases.
Collapse
Affiliation(s)
- David Guo
- Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA;
| | - Wuqiang Zhu
- Department of Cardiovascular Medicine, Physiology and Biomedical Engineering, Center for Regenerative Biotherapeutics, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA;
| | - Hongyu Qiu
- Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA;
- Clinical Translational Sciences (CTS) and Bio5 Institution, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
7
|
Chi HC, Lin YH, Wu YH, Chang CC, Wu CH, Yeh CT, Hsieh CC, Lin KH. CCL16 is a pro-tumor chemokine that recruits monocytes and macrophages to promote hepatocellular carcinoma progression. Am J Cancer Res 2024; 14:3600-3613. [PMID: 39113854 PMCID: PMC11301285 DOI: 10.62347/vctw6889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Intricate signaling cascades involving chemokines and their cognate receptors on neoplastic and immune constituents within tumor microenvironment have garnered substantial research interest. Our investigation delineates the contribution of Chemokine (C-C motif) ligand 16 (CCL16) to the clinico-pathological features and tumorigenesis of hepatocellular carcinoma (HCC). Analysis of 237 pairs of HCC specimens unraveled a significant association between CCL16 expression and vascular invasion, early-stage clinicopathological features, and diminished recurrence-free survival among HCC patients. Immunohistochemical (IHC) assays of the clinical HCC specimens indicated elevated CCL16 in tumorous versus normal hepatic tissues. Our in vivo experiments demonstrated CCL16 overexpression fostered tumor proliferation, whereas in vitro assays elucidated that CCL16-mediated chemotactic recruitment of monocytes and M2 macrophages was orchestrated via CCR1 and CCR5. In contrast to previous claims that CCL16 is physiologically irrelevant and has minimal affinity for its receptors (CCR1, CCR2, CCR5, CCR8), our findings unravel that inhibition of CCL16/CCR1 and CCL16/CCR5 interactions through receptor-specific antagonists markedly impeded CCL16-directed chemotaxis, migration, adhesion, and leukocyte recruitment. Moreover, CCL16-overexpression in HCCs significantly augmented levels of several cytokines implicated in tumor progression, namely IL-6, IL-10 and VEGFA. IHC analysis of CCL16-overexpressing xenografts elicited greatly enhanced levels of VEGFA and IL-6, while assessments of HCC specimens confirmed a positive correlation between CCL16 expression and IL-6 and VEGFA levels. Collectively, our study highlights oncogenic role of CCL16 in hepatocarcinogenesis and provides a foundational basis for novel therapeutic interventions targeting the CCL16/CCR1/CCR5 axis.
Collapse
Affiliation(s)
- Hsiang-Cheng Chi
- Institute of Biochemistry and Molecular Biology, China Medical UniversityTaichung 404, Taiwan
- Chinese Medicine Research Center, China Medical UniversityTaichung 404, Taiwan
| | - Yang-Hsiang Lin
- Liver Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan 333, Taiwan
| | - Yuh-Harn Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung UniversityTainan 70101, Taiwan
| | - Cheng-Chih Chang
- Department of General Surgery, Chang Gung Memorial HospitalChiayi 613016, Taiwan
| | - Cheng-Heng Wu
- Division of Hepatogastroenterology, Department of Internal Medicine, Chang Gung Memorial HospitalLinkou Branch, Taoyuan 333, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan 333, Taiwan
| | - Ching-Chuan Hsieh
- Department of General Surgery, Chang Gung Memorial HospitalChiayi 613016, Taiwan
| | - Kwang-Huei Lin
- Liver Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan 333, Taiwan
- Department of Biochemistry, College of Medicine, Chang-Gung UniversityTaoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung UniversityTaoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and TechnologyTaoyuan 333, Taiwan
| |
Collapse
|
8
|
Bober A, Piotrowska A, Pawlik K, Ciapała K, Maciuszek M, Makuch W, Mika J. A New Application for Cenicriviroc, a Dual CCR2/CCR5 Antagonist, in the Treatment of Painful Diabetic Neuropathy in a Mouse Model. Int J Mol Sci 2024; 25:7410. [PMID: 39000516 PMCID: PMC11242565 DOI: 10.3390/ijms25137410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The ligands of chemokine receptors 2 and 5 (CCR2 and CCR5, respectively) are associated with the pathomechanism of neuropathic pain development, but their role in painful diabetic neuropathy remains unclear. Therefore, the aim of our study was to examine the function of these factors in the hypersensitivity accompanying diabetes. Additionally, we analyzed the analgesic effect of cenicriviroc (CVC), a dual CCR2/CCR5 antagonist, and its influence on the effectiveness of morphine. An increasing number of experimental studies have shown that targeting more than one molecular target is advantageous compared with the coadministration of individual pharmacophores in terms of their analgesic effect. The advantage of using bifunctional compounds is that they gain simultaneous access to two receptors at the same dose, positively affecting their pharmacokinetics and pharmacodynamics and consequently leading to improved analgesia. Experiments were performed on male and female Swiss albino mice with a streptozotocin (STZ, 200 mg/kg, i.p.) model of diabetic neuropathy. We found that the blood glucose level increased, and the mechanical and thermal hypersensitivity developed on the 7th day after STZ administration. In male mice, we observed increased mRNA levels of Ccl2, Ccl5, and Ccl7, while in female mice, we observed additional increases in Ccl8 and Ccl12 levels. We have demonstrated for the first time that a single administration of cenicriviroc relieves pain to a similar extent in male and female mice. Moreover, repeated coadministration of cenicriviroc with morphine delays the development of opioid tolerance, while the best and longest-lasting analgesic effect is achieved by repeated administration of cenicriviroc alone, which reduces pain hypersensitivity in STZ-exposed mice, and unlike morphine, no tolerance to the analgesic effects of CVC is observed until Day 15 of treatment. Based on these results, we suggest that targeting CCR2 and CCR5 with CVC is a potent therapeutic option for novel pain treatments in diabetic neuropathy patients.
Collapse
Affiliation(s)
| | - Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (A.B.); (K.P.); (K.C.); (M.M.); (W.M.)
| | | | | | | | | | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (A.B.); (K.P.); (K.C.); (M.M.); (W.M.)
| |
Collapse
|
9
|
Norgard RJ, Budhani P, O'Brien SA, Xia Y, Egan JN, Flynn B, Tagore JR, Seco J, Peet GW, Mikucka A, Wasti R, Chan LC, Hinkel M, Martinez-Morilla S, Pignatelli J, Trapani F, Corse E, Feng D, Kostyrko K, Hofmann MH, Liu K, Kashyap AS. Reshaping the Tumor Microenvironment of KRASG12D Pancreatic Ductal Adenocarcinoma with Combined SOS1 and MEK Inhibition for Improved Immunotherapy Response. CANCER RESEARCH COMMUNICATIONS 2024; 4:1548-1560. [PMID: 38727236 PMCID: PMC11191876 DOI: 10.1158/2767-9764.crc-24-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/23/2024]
Abstract
KRAS inhibitors have demonstrated exciting preclinical and clinical responses, although resistance occurs rapidly. Here, we investigate the effects of KRAS-targeting therapies on the tumor microenvironment using a library of KrasG12D, p53-mutant, murine pancreatic ductal adenocarcinoma-derived cell lines (KPCY) to leverage immune-oncology combination strategies for long-term tumor efficacy. Our findings show that SOS1 and MEK inhibitors (SOS1i+MEKi) suppressed tumor growth in syngeneic models and increased intratumoral CD8+ T cells without durable responses. Single-cell RNA sequencing revealed an increase in inflammatory cancer-associated fibroblasts (iCAF), M2 macrophages, and a decreased dendritic cell (DC) quality that ultimately resulted in a highly immunosuppressive microenvironment driven by IL6+ iCAFs. Agonist CD40 treatment was effective to revert macrophage polarization and overcome the lack of mature antigen-presenting DCs after SOS1i+MEKi therapy. Treatment increased the overall survival of KPCY tumor-bearing mice. The addition of checkpoint blockade to SOS1i+MEKi combination resulted in tumor-free mice with established immune memory. Our data suggest that KRAS inhibition affects myeloid cell maturation and highlights the need for combining KRAS cancer-targeted therapy with myeloid activation to enhance and prolong antitumor effects. SIGNIFICANCE Combination of SOS1 and MEK inhibitors increase T cell infiltration while blunting pro-immune myeloid cell maturation and highlights the need for combining KRAS cancer-targeted therapy with myeloid activation to enhance and prolong anti-tumor effects.
Collapse
Affiliation(s)
- Robert J. Norgard
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Pratha Budhani
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Sarah A. O'Brien
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Youli Xia
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Jessica N. Egan
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Brianna Flynn
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Joshua R. Tagore
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Joseph Seco
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Gregory W. Peet
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Ania Mikucka
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Ruby Wasti
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Li-Chuan Chan
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Melanie Hinkel
- Late Stage Cancer Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Sandra Martinez-Morilla
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Jeanine Pignatelli
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Francesca Trapani
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Emily Corse
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Di Feng
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Kaja Kostyrko
- Late Stage Cancer Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Marco H. Hofmann
- Cancer Pharmacology and Disease Positioning Department, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Kang Liu
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Abhishek S. Kashyap
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| |
Collapse
|
10
|
Yin J, Gu T, Chaudhry N, Davidson NE, Huang Y. Epigenetic modulation of antitumor immunity and immunotherapy response in breast cancer: biological mechanisms and clinical implications. Front Immunol 2024; 14:1325615. [PMID: 38268926 PMCID: PMC10806158 DOI: 10.3389/fimmu.2023.1325615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
Breast cancer (BC) is the most common non-skin cancer and the second leading cause of cancer death in American women. The initiation and progression of BC can proceed through the accumulation of genetic and epigenetic changes that allow transformed cells to escape the normal cell cycle checkpoint control. Unlike nucleotide mutations, epigenetic changes such as DNA methylation, histone posttranslational modifications (PTMs), nucleosome remodeling and non-coding RNAs are generally reversible and therefore potentially responsive to pharmacological intervention. Epigenetic dysregulations are critical mechanisms for impaired antitumor immunity, evasion of immune surveillance, and resistance to immunotherapy. Compared to highly immunogenic tumor types, such as melanoma or lung cancer, breast cancer has been viewed as an immunologically quiescent tumor which displays a relatively low population of tumor-infiltrating lymphocytes (TIL), low tumor mutational burden (TMB) and modest response rates to immune checkpoint inhibitors (ICI). Emerging evidence suggests that agents targeting aberrant epigenetic modifiers may augment host antitumor immunity in BC via several interrelated mechanisms such as enhancing tumor antigen presentation, activation of cytotoxic T cells, inhibition of immunosuppressive cells, boosting response to ICI, and induction of immunogenic cell death (ICD). These discoveries have established a highly promising basis for using combinatorial approaches of epigenetic drugs with immunotherapy as an innovative paradigm to improve outcomes of BC patients. In this review, we summarize the current understanding of how epigenetic processes regulate immune cell function and antitumor immunogenicity in the context of the breast tumor microenvironment. Moreover, we discuss the therapeutic potential and latest clinical trials of the combination of immune checkpoint blockers with epigenetic agents in breast cancer.
Collapse
Affiliation(s)
- Jun Yin
- The University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tiezheng Gu
- The University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Norin Chaudhry
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Nancy E. Davidson
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, United States
| | - Yi Huang
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
11
|
Cheng D, Wang J, Wang Y, Xue Y, Yang Q, Yang Q, Zhao H, Huang J, Peng X. Chemokines: Function and therapeutic potential in bone metastasis of lung cancer. Cytokine 2023; 172:156403. [PMID: 37871366 DOI: 10.1016/j.cyto.2023.156403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Lung cancer is a rapidly progressing disease with a poor prognosis. Bone metastasis is commonly found in 40.6% of advanced-stage patients. The mortality rate of lung cancer patients with bone metastasis can be significantly decreased by implementing novel diagnostic techniques, improved staging and classification systems, precise surgical interventions, and advanced treatment modalities. However, it is important to note that there is currently a lack of radical procedures available for these patients due to the development of drug resistance. Consequently, palliative care approaches are commonly employed in clinical practice. Therefore, new understandings of the process of bone metastasis of lung cancer are critical for developing better treatment strategies to improve patient's clinical cure rate and quality of life. Chemokines are cell-secreted small signaling proteins in cancer occurrence, proliferation, invasion, and metastasis. In this study, we review the development of bone metastasis in lung cancer and discuss the mechanisms of specific chemokine families (CC, CXC, CX3C, and XC) in regulating the biological activities of tumors and promoting bone metastasis. We also highlight some preclinical studies and clinical trials on chemokines for lung cancer and bone metastasis.
Collapse
Affiliation(s)
- Dezhou Cheng
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jiancheng Wang
- Department of Radiology, The Second People's Hospital of Jingzhou, China
| | - Yiling Wang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yanfang Xue
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qing Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qun Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Huichuan Zhao
- Department of Pathology of the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jinbai Huang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China; Department of Medical Imaging, the First Affiliated Hospital of Yangtze University, and School of Medicine of Yangtze University, Jingzhou, Hubei, China.
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
12
|
Mi C, Zhao Y, Ren L, Zhang D. HIF1α/CCL7/KIAA1199 axis mediates hypoxia-induced gastric cancer aggravation and glycolysis alteration. J Clin Biochem Nutr 2023; 72:225-233. [PMID: 37251956 PMCID: PMC10209595 DOI: 10.3164/jcbn.22-48] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/03/2022] [Indexed: 09/04/2024] Open
Abstract
Gastric cancer is a common digestion tumor with high malignant severity and prevalence. Emerging studies reported C-C motif chemokine ligand 7 (CCL7) as a regulator of various tumor diseases. Our research explored the function and underlying mechanism of CCL7 during gastric cancer development. RT-qPCR, Western blot and other datasets were employed to evaluate CCL7 expression in tissues and cells. Kaplan-Meier and Cox regression analyses were recruited to evaluate the correlations between CCL7 expression and patients' survival or clinical features. A loss-of-function assay was performed to evaluate the function of CCL7 in gastric cancer. 1% O2 was utilized to mimic hypoxic condition. KIAA1199 and HIF1α were included in the regulatory mechanism. The results showed that CCL7 was up-regulated and its high expression was correlated with poor survival of gastric cancer patients. Depressing CCL7 attenuated proliferation, migration, invasion, and induced apoptosis of gastric cancer cells. Meanwhile, CCL7 inhibition weakened hypoxia-induced gastric cancer aggravation. Besides, KIAA1199 and HIF1α were involved in the mechanism of CCL7-mediated gastric cancer aggravation under hypoxia. Our research identified CCL7 as a novel tumor-activator in gastric cancer pathogenesis and hypoxia-induced tumor aggravation was regulated by HIF1α/CCL7/KIAA1199 axis. The evidence may provide a novel target for gastric cancer treatment.
Collapse
Affiliation(s)
- Chen Mi
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province 710061, China
| | - Yan Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province 710061, China
| | - Li Ren
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province 710061, China
| | - Dan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province 710061, China
| |
Collapse
|
13
|
Zhu LP, Xu ML, Yuan BT, Ma LJ, Gao YJ. Chemokine CCL7 mediates trigeminal neuropathic pain via CCR2/CCR3-ERK pathway in the trigeminal ganglion of mice. Mol Pain 2023; 19:17448069231169373. [PMID: 36998150 PMCID: PMC10413901 DOI: 10.1177/17448069231169373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/11/2023] [Accepted: 03/26/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Chemokine-mediated neuroinflammation plays an important role in the pathogenesis of neuropathic pain. The chemokine CC motif ligand 7 (CCL7) and its receptor CCR2 have been reported to contribute to neuropathic pain via astrocyte-microglial interaction in the spinal cord. Whether CCL7 in the trigeminal ganglion (TG) involves in trigeminal neuropathic pain and the involved mechanism remain largely unknown. METHODS The partial infraorbital nerve transection (pIONT) was used to induce trigeminal neuropathic pain in mice. The expression of Ccl7, Ccr1, Ccr2, and Ccr3 was examined by real-time quantitative polymerase chain reaction. The distribution of CCL7, CCR2, and CCR3 was detected by immunofluorescence double-staining. The activation of extracellular signal-regulated kinase (ERK) was examined by Western blot and immunofluorescence. The effect of CCL7 on neuronal excitability was tested by whole-cell patch clamp recording. The effect of selective antagonists for CCR1, CCR2, and CCR3 on pain hypersensitivity was checked by behavioral testing. RESULTS Ccl7 was persistently increased in neurons of TG after pIONT, and specific inhibition of CCL7 in the TG effectively relieved pIONT-induced orofacial mechanical allodynia. Intra-TG injection of recombinant CCL7 induced mechanical allodynia and increased the phosphorylation of ERK in the TG. Incubation of CCL7 with TG neurons also dose-dependently enhanced the neuronal excitability. Furthermore, pIONT increased the expression of CCL7 receptors Ccr1, Ccr2, and Ccr3. The intra-TG injection of the specific antagonist of CCR2 or CCR3 but not of CCR1 alleviated pIONT-induced orofacial mechanical allodynia and reduced ERK activation. Immunostaining showed that CCR2 and CCR3 are expressed in TG neurons, and CCL7-induced hyperexcitability of TG neurons was decreased by antagonists of CCR2 or CCR3. CONCLUSION CCL7 activates ERK in TG neurons via CCR2 and CCR3 to enhance neuronal excitability, which contributes to the maintenance of trigeminal neuropathic pain. CCL7-CCR2/CCR3-ERK pathway may be potential targets for treating trigeminal neuropathic pain.
Collapse
Affiliation(s)
| | | | - Bao-Tong Yuan
- Institute of Pain Medicine and Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ling-Jie Ma
- Institute of Pain Medicine and Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
14
|
Lee Y, Lee J, Park M, Seo A, Kim KH, Kim S, Kang M, Kang E, Yoo KD, Lee S, Kim DK, Oh KH, Kim YS, Joo KW, Yang SH. Inflammatory chemokine (C-C motif) ligand 8 inhibition ameliorates peritoneal fibrosis. FASEB J 2023; 37:e22632. [PMID: 36468785 DOI: 10.1096/fj.202200784r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 12/12/2022]
Abstract
Peritoneal fibrosis (PF) is an irreversible complication of peritoneal dialysis (PD) that leads to loss of peritoneal membrane function. We investigated PD effluent and serum levels and the tissue expression of chemokine (C-C motif) ligand 8 (CCL8) in patients with PD. Additionally, we investigated their association with PF in a mouse model. Eighty-two end-stage renal disease (ESRD) patients with PD were examined. CCL8 levels were measured via enzyme-linked immunosorbent assays in PD effluents and serum and analyzed with peritoneal transport parameters. Human peritoneal mesothelial cells (hPMCs) were obtained from the PD effluents of 20 patients. Primary cultured hPMCs were treated with recombinant (r) transforming growth factor (TGF)-β, and CCL8 expression was assessed via western blotting. As the duration of PD increased, the concentration of CCL8 in PD effluents significantly increased. Correlations between peritoneal transport parameters and dialysate CCL8 levels were observed. Western blotting analysis showed that CCL8 was upregulated via rTGF-β treatment, accompanied by increases in markers of inflammation, fibrosis, senescence, and apoptosis in hPMCs after induction of fibrosis with rTGF-β. Anti-CCL8 monoclonal antibody (mAb) treatment suppressed the rTGF-β-induced increase in all analyzed markers. Immunohistochemical analysis revealed that CCL8 along with fibrosis- and inflammation-related markers were significantly increased in the PF mouse model. Functional blockade of CCL8 using a CCR8 inhibitor (R243) abrogated peritoneal inflammation and fibrosis in vivo. In conclusion, high CCL8 levels in PD effluents may be associated with an increased risk of PD failure, and the CCL8 pathway is associated with PF. CCL8 blockade can ameliorate peritoneal inflammation and fibrosis.
Collapse
Affiliation(s)
- Yeonhee Lee
- Department of Internal Medicine, Uijeongbu Eulji Medical Center, Eulji University, Gyeonggi-do, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jangwook Lee
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Gyeonggi-do, Republic of Korea
| | - Minkyoung Park
- Kidney Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Areum Seo
- Kidney Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Kyu Hyeon Kim
- Kidney Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Seonmi Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Minjung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eunjeong Kang
- Department of Internal Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Kyung Don Yoo
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Sunhwa Lee
- Department of Internal Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Kidney Research Institute, Seoul National University, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Kidney Research Institute, Seoul National University, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Kidney Research Institute, Seoul National University, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kwon Wook Joo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Kidney Research Institute, Seoul National University, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung Hee Yang
- Kidney Research Institute, Seoul National University, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
15
|
Lin H, Shen J, Zhu Y, Zhou L, Wu F, Liu Z, Zhang S, Zhan R. Elevated Serum CCL23 Levels at Admission Predict Delayed Cerebral Ischemia and Functional Outcome after Aneurysmal Subarachnoid Hemorrhage. J Clin Med 2022; 11:jcm11236879. [PMID: 36498453 PMCID: PMC9737062 DOI: 10.3390/jcm11236879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: CC chemokine ligand 23 (CCL23) is a chemokine implicated in the inflammatory response following brain damage. The aim of this study is to identify the change in serum CCL23 levels within 24 h after aSAH and whether serum CCL23 levels are associated with initial clinical severity, delayed cerebral ischemia (DCI), and functional outcome in patients with aneurysmal subarachnoid hemorrhage (aSAH). (2) Methods: 102 patients with aSAH and 61 controls were included in this prospective observational study. All clinical data were collected prospectively, and their serum CCL23 levels were measured. Initial clinical severity was reflected by the Hunt-Hess score and mFisher score. Functional outcome was evaluated in terms of the Glasgow Outcome Scale (GOS) score at 6-month follow-up. (3) Results: Patients with aSAH had higher serum CCL23 levels than controls. The temporal profile of serum CCL23 levels and neutrophils count exhibited a sustained increase within 24 h after aSAH. Serum CCL23 levels were related to blood neutrophils count, blood CRP levels, and initial clinical severity. Serum CCL23 level was an independent predictor of DCI and 6-month poor outcome in aSAH patients. (4) Conclusions: Serum CCL23 levels emerged as an independent predictor for DCI and poor outcome in patients with aSAH.
Collapse
|
16
|
Chang TT, Chen C, Chen JW. CCL7 as a novel inflammatory mediator in cardiovascular disease, diabetes mellitus, and kidney disease. Cardiovasc Diabetol 2022; 21:185. [PMID: 36109744 PMCID: PMC9479413 DOI: 10.1186/s12933-022-01626-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractChemokines are key components in the pathology of chronic diseases. Chemokine CC motif ligand 7 (CCL7) is believed to be associated with cardiovascular disease, diabetes mellitus, and kidney disease. CCL7 may play a role in inflammatory events by attracting macrophages and monocytes to further amplify inflammatory processes and contribute to disease progression. However, CCL7-specific pathological signaling pathways need to be further confirmed in these chronic diseases. Given the multiple redundancy system among chemokines and their receptors, further experimental and clinical studies are needed to clarify whether direct CCL7 inhibition mechanisms could be a promising therapeutic approach to attenuating the development of cardiovascular disease, diabetes mellitus, and kidney disease.
Collapse
|
17
|
LINC01094/SPI1/CCL7 Axis Promotes Macrophage Accumulation in Lung Adenocarcinoma and Tumor Cell Dissemination. J Immunol Res 2022; 2022:6450721. [PMID: 36118415 PMCID: PMC9481385 DOI: 10.1155/2022/6450721] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Objective Infiltration of tumor-associated macrophages is closely linked to the malignant development of human cancers. This research studies the function of C-C motif chemokine ligand 7 (CCL7) in the macrophage accumulation in lung adenocarcinoma (LUAD) and the underpinning mechanism. Methods The expression profile of CCL7 in LUAD and its correlations with patient's prognosis and macrophage infiltration were predicted via bioinformatics systems. Artificial up- or downregulation of CCL7 was induced in LUAD cells to explore its function in the mobility, EMT of cancer cells, and migration of M2 macrophages. Cancer cells were implanted in NOD/SCID mice to induce xenograft tumors. The CCL7-related transcription factors or factors were predicted by bioinformatic tools, and the molecular interactions were confirmed by immunoprecipitation or luciferase assays. Results CCL7 was highly expressed in LUAD and linked to increased TAM infiltration. Knockdown of CCL7 suppressed the chemotaxis and M2 skewing of macrophages, and it blocked the EMT and mobility of LUAD cells. CCL7 downregulation also suppressed macrophage infiltration in xenograft tumors in mice. Spi-1 proto-oncogene (SPI1) was confirmed as an upstream factor activating CCL7 transcription, and LINC01094 was found to bind to SPI1 to promote its nuclear translocation. Upregulation of SPI1 restored the chemotactic migration and M2 polarization of macrophages in LUAD cells. Conclusion This paper reveals that LINC01094 binds to SPI1 to promote its nuclear translocation, which further activates CCL7 transcription by binding to its promoter, leading to M2 macrophage accumulation and dissemination of tumor cells.
Collapse
|
18
|
Saha A, Hamilton-Reeves J, DiGiovanni J. White adipose tissue-derived factors and prostate cancer progression: mechanisms and targets for interventions. Cancer Metastasis Rev 2022; 41:649-671. [PMID: 35927363 PMCID: PMC9474694 DOI: 10.1007/s10555-022-10056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 12/01/2022]
Abstract
Obesity represents an important risk factor for prostate cancer, driving more aggressive disease, chemoresistance, and increased mortality. White adipose tissue (WAT) overgrowth in obesity is central to the mechanisms that lead to these clinical observations. Adipose stromal cells (ASCs), the progenitors to mature adipocytes and other cell types in WAT, play a vital role in driving PCa aggressiveness. ASCs produce numerous factors, especially chemokines, including the chemokine CXCL12, which is involved in driving EMT and chemoresistance in PCa. A greater understanding of the impact of WAT in obesity-induced progression of PCa and the underlying mechanisms has begun to provide opportunities for developing interventional strategies for preventing or offsetting these critical events. These include weight loss regimens, therapeutic targeting of ASCs, use of calorie restriction mimetic compounds, and combinations of compounds as well as specific receptor targeting strategies.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78723, USA
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, 78723, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA
| | - Jill Hamilton-Reeves
- Departments of Urology and Dietetics & Nutrition, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78723, USA.
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, 78723, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA.
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA.
| |
Collapse
|
19
|
Obesity and Bone Health: A Complex Relationship. Int J Mol Sci 2022; 23:ijms23158303. [PMID: 35955431 PMCID: PMC9368241 DOI: 10.3390/ijms23158303] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023] Open
Abstract
Recent scientific evidence has shown an increased risk of fractures in patients with obesity, especially in those with a higher visceral adipose tissue content. This contradicts the old paradigm that obese patients were more protected than those with normal weight. Specifically, in older subjects in whom there is a redistribution of fat from subcutaneous adipose tissue to visceral adipose tissue and an infiltration of other tissues such as muscle with the consequent sarcopenia, obesity can accentuate the changes characteristic of this age group that predisposes to a greater risk of falls and fractures. Other factors that determine a greater risk in older subjects with obesity are chronic proinflammatory status, altered adipokine secretion, vitamin D deficiency, insulin resistance and reduced mobility. On the other hand, diagnostic tests may be influenced by obesity and its comorbidities as well as by body composition, and risk scales may underestimate the risk of fractures in these patients. Weight loss with physical activity programs and cessation of high-fat diets may reduce the risk. Finally, more research is needed on the efficacy of anti-osteoporotic treatments in obese patients.
Collapse
|
20
|
She S, Ren L, Chen P, Wang M, Chen D, Wang Y, Chen H. Functional Roles of Chemokine Receptor CCR2 and Its Ligands in Liver Disease. Front Immunol 2022; 13:812431. [PMID: 35281057 PMCID: PMC8913720 DOI: 10.3389/fimmu.2022.812431] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Chemokines are a family of cytokines that orchestrate the migration and positioning of immune cells within tissues and are critical for the function of the immune system. CCR2 participates in liver pathology, including acute liver injury, chronic hepatitis, fibrosis/cirrhosis, and tumor progression, by mediating the recruitment of immune cells to inflammation and tumor sites. Although a variety of chemokines have been well studied in various diseases, there is no comprehensive review presenting the roles of all known chemokine ligands of CCR2 (CCL2, CCL7, CCL8, CCL12, CCL13, CCL16, and PSMP) in liver disease, and this review aims to fill this gap. The introduction of each chemokine includes its discovery, its corresponding chemotactic receptors, physiological functions and roles in inflammation and tumors, and its impact on different immune cell subgroups.
Collapse
Affiliation(s)
- Shaoping She
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
| | - Liying Ren
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Pu Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Dongbo Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Hongsong Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
- *Correspondence: Hongsong Chen,
| |
Collapse
|
21
|
Kraus RF, Gruber MA. Neutrophils-From Bone Marrow to First-Line Defense of the Innate Immune System. Front Immunol 2022; 12:767175. [PMID: 35003081 PMCID: PMC8732951 DOI: 10.3389/fimmu.2021.767175] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils (polymorphonuclear cells; PMNs) form a first line of defense against pathogens and are therefore an important component of the innate immune response. As a result of poorly controlled activation, however, PMNs can also mediate tissue damage in numerous diseases, often by increasing tissue inflammation and injury. According to current knowledge, PMNs are not only part of the pathogenesis of infectious and autoimmune diseases but also of conditions with disturbed tissue homeostasis such as trauma and shock. Scientific advances in the past two decades have changed the role of neutrophils from that of solely immune defense cells to cells that are responsible for the general integrity of the body, even in the absence of pathogens. To better understand PMN function in the human organism, our review outlines the role of PMNs within the innate immune system. This review provides an overview of the migration of PMNs from the vascular compartment to the target tissue as well as their chemotactic processes and illuminates crucial neutrophil immune properties at the site of the lesion. The review is focused on the formation of chemotactic gradients in interaction with the extracellular matrix (ECM) and the influence of the ECM on PMN function. In addition, our review summarizes current knowledge about the phenomenon of bidirectional and reverse PMN migration, neutrophil microtubules, and the microtubule organizing center in PMN migration. As a conclusive feature, we review and discuss new findings about neutrophil behavior in cancer environment and tumor tissue.
Collapse
Affiliation(s)
- Richard Felix Kraus
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | | |
Collapse
|
22
|
Chemokine (C-C Motif) Ligand 8 and Tubulo-Interstitial Injury in Chronic Kidney Disease. Cells 2022; 11:cells11040658. [PMID: 35203308 PMCID: PMC8869891 DOI: 10.3390/cells11040658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
Kidney fibrosis has been accepted to be a common pathological outcome of chronic kidney disease (CKD). We aimed to examine serum levels and tissue expression of chemokine (C-C motif) ligand 8 (CCL8) in patients with CKD and to investigate their association with kidney fibrosis in CKD model. Serum levels and tissue expression of CCL8 significantly increased with advancing CKD stage, proteinuria level, and pathologic deterioration. In Western blot analysis of primary cultured human tubular epithelial cells after induction of fibrosis with rTGF-β, CCL8 was upregulated by rTGF-β treatment and the simultaneous treatment with anti-CCL8 mAb mitigated the rTGF-β-induced an increase in fibronectin and a decrease E-cadherin and BCL-2 protein levels. The antiapoptotic effect of the anti-CCL8 mAb was also demonstrated by Annexin V/propidium iodide staining assay. In qRT-PCR analysis, mRNA expression levels of the markers for fibrosis and apoptosis showed similar expression patterns to those observed by western blotting. The immunohistochemical analysis revealed CCL8 and fibrosis- and apoptosis-related markers significantly increased in the unilateral ureteral obstruction model, which agrees with our in vitro findings. In conclusion, CCL8 pathway is associated with increased risk of kidney fibrosis and that CCL8 blockade can ameliorate kidney fibrosis and apoptosis.
Collapse
|
23
|
Pre-infection plasma cytokines and chemokines as predictors of HIV disease progression. Sci Rep 2022; 12:2437. [PMID: 35165387 PMCID: PMC8844050 DOI: 10.1038/s41598-022-06532-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/02/2022] [Indexed: 01/13/2023] Open
Abstract
Previous studies have highlighted the role of pre-infection systemic inflammation on HIV acquisition risk, but the extent to which it predicts disease progression outcomes is less studied. Here we examined the relationship between pre-infection plasma cytokine expression and the rate of HIV disease progression in South African women who seroconverted during the CAPRISA 004 tenofovir gel trial. Bio-Plex 200 system was used to measure the expression of 47 cytokines/chemokines in 69 seroconvertors from the CAPRISA 004 trial. Cox proportional hazards regression analyses were used to measure associations between cytokine expression and CD4 decline prior to antiretroviral therapy initiation. Linear regression models were used to assess whether pre-infection cytokine expression were predictors of disease progression outcomes including peak and set-point viral load and CD4:CD8 ratio at less and greater than180 days post infection. Several cytokines were associated with increased peak HIV viral load (including IL-16, SCGFβ, MCP-3, IL-12p40, SCF, IFNα2 and IL-2). The strongest association with peak viral load was observed for SCGFβ, which was also inversely associated with lowest CD4:CD8 ratio < 180 days post infection and faster CD4 decline below 500 cells/µl (adjusted HR 4.537, 95% CI 1.475–13.954; p = 0.008) in multivariable analysis adjusting for age, study site, contraception, baseline HSV-2 status and trial arm allocation. Our results show that pre-infection systemic immune responses could play a role in HIV disease progression, especially in the early stages of infection.
Collapse
|
24
|
Jaggi U, Matundan HH, Yu J, Hirose S, Mueller M, Wormley FL, Ghiasi H. Essential role of M1 macrophages in blocking cytokine storm and pathology associated with murine HSV-1 infection. PLoS Pathog 2021; 17:e1009999. [PMID: 34653236 PMCID: PMC8550391 DOI: 10.1371/journal.ppat.1009999] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/27/2021] [Accepted: 10/01/2021] [Indexed: 12/26/2022] Open
Abstract
Ocular HSV-1 infection is a major cause of eye disease and innate and adaptive immunity both play a role in protection and pathology associated with ocular infection. Previously we have shown that M1-type macrophages are the major and earliest infiltrates into the cornea of infected mice. We also showed that HSV-1 infectivity in the presence and absence of M2-macrophages was similar to wild-type (WT) control mice. However, it is not clear whether the absence of M1 macrophages plays a role in protection and disease in HSV-1 infected mice. To explore the role of M1 macrophages in HSV-1 infection, we used mice lacking M1 activation (M1-/- mice). Our results showed that macrophages from M1-/- mice were more susceptible to HSV-1 infection in vitro than were macrophages from WT mice. M1-/- mice were highly susceptible to ocular infection with virulent HSV-1 strain McKrae, while WT mice were refractory to infection. In addition, M1-/- mice had higher virus titers in the eyes than did WT mice. Adoptive transfer of M1 macrophages from WT mice to M1-/- mice reduced death and rescued virus replication in the eyes of infected mice. Infection of M1-/- mice with avirulent HSV-1 strain KOS also increased ocular virus replication and eye disease but did not affect latency-reactivation seen in WT control mice. Severity of virus replication and eye disease correlated with significantly higher inflammatory responses leading to a cytokine storm in the eyes of M1-/- infected mice that was not seen in WT mice. Thus, for the first time, our study illustrates the importance of M1 macrophages specifically in primary HSV-1 infection, eye disease, and survival but not in latency-reactivation. Macrophages circulating in the blood or present in different tissues constitute an important barrier against infection. We previously showed that the absence of M2 macrophages does not impact HSV-1 infectivity in vivo. However, in this study we demonstrated an essential role of M1 macrophages in protection from primary HSV-1 replication, death, and eye disease but not in latency-reactivation.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Jack Yu
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Satoshi Hirose
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Mathias Mueller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Floyd L. Wormley
- Department of Biology, Texas Christian University, Fort Worth, Texas, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Chen J, Liang T, Cen J, Jiang J, Pan S, Huang S, Chen L, Sun X, Li H, Chen T, Liang W, Liao S, Yu C, Yao Y, Ye Z, Chen W, Guo H, Zhan X, Liu C. A seven-gene signature and the C-C motif chemokine receptor family genes are the sarcoma-related immune genes. Bioengineered 2021; 12:7616-7630. [PMID: 34605725 PMCID: PMC8806857 DOI: 10.1080/21655979.2021.1981797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cells of the tumor microenvironment exert a vital influence on sarcoma prognosis. This study aimed to analyze and identify differentially expressed genes (DEGs) related to immunity and their significance as immune biomarkers for the accurate prediction of overall survival of patients with sarcoma. The Cancer Genome Atlas was adopted for obtaining sarcoma gene microarray and corresponding clinical information. ESTIMATE algorithm was used to calculate tumor immune microenvironment indices. Immune-associated DEGs were identified using the limma packages and were further analyzed using the ClusterProfiler package and STRING website. Based on the results of these analyses, we constructed a prognostic model. Furthermore, we assessed the prognosis prediction model through functional evaluation and analysis of GSE17674. The functional analysis revealed that the upregulated immune DEGs were related to immune-related aspects. Chemokine ligands/receptors and immune-related genes were found to be vital for sarcoma formation and progression. We established a prognostic signature of seven genes, which indicated that high-risk cases exhibit poor prognostic outcome. The prognostic signature constructed in this study can accurately predict the overall prognosis in patients with sarcoma. Moreover, the novel immune gene expression analysis may provide clinical guidance for predicting prognosis in patients with sarcoma.
Collapse
Affiliation(s)
- Jiarui Chen
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Tuo Liang
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jiemei Cen
- Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jie Jiang
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shixin Pan
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shengsheng Huang
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Liyi Chen
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xuhua Sun
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Hao Li
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Tianyou Chen
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wei Liang
- Research Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shian Liao
- Bone and Soft Tissue Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Chaojie Yu
- Bone and Soft Tissue Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Yuanlin Yao
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhen Ye
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wuhua Chen
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Hao Guo
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xinli Zhan
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Chong Liu
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
26
|
Gelzo M, Cacciapuoti S, Pinchera B, De Rosa A, Cernera G, Scialò F, Comegna M, Mormile M, Fabbrocini G, Parrella R, Corso G, Gentile I, Castaldo G. Further Findings Concerning Endothelial Damage in COVID-19 Patients. Biomolecules 2021; 11:1368. [PMID: 34572581 PMCID: PMC8468524 DOI: 10.3390/biom11091368] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
Systemic vascular damage with micro/macro-thrombosis is a typical feature of severe COVID-19. However, the pathogenesis of this damage and its predictive biomarkers remain poorly defined. For this reason, in this study, serum monocyte chemotactic protein (MCP)-2 and P- and E-selectin levels were analyzed in 204 patients with COVID-19. Serum MCP-2 and P-selectin were significantly higher in hospitalized patients compared with asymptomatic patients. Furthermore, MCP-2 increased with the WHO stage in hospitalized patients. After 1 week of hospitalization, MCP-2 levels were significantly reduced, while P-selectin increased in patients in WHO stage 3 and decreased in patients in WHO stages 5-7. Serum E-selectin was not significantly different between asymptomatic and hospitalized patients. The lower MCP-2 levels after 1 week suggest that endothelial damage triggered by monocytes occurs early in COVID-19 disease progression. MCP-2 may also predict COVID-19 severity. The increase in P-selectin levels, which further increased in mild patients and reduced in severe patients after 1 week of hospitalization, suggests that the inactive form of the protein produced by the cleavage of the active protein from the platelet membrane is present. This may be used to identify a subset of patients that would benefit from targeted therapies. The unchanged levels of E-selectin in these patients suggest that endothelial damage is less relevant.
Collapse
Affiliation(s)
- Monica Gelzo
- CEINGE-Biotecnologie Avanzate, scarl, 80145 Naples, Italy; (M.G.); (G.C.); (F.S.); (M.C.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Sara Cacciapuoti
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (S.C.); (B.P.); (M.M.); (G.F.); (I.G.)
| | - Biagio Pinchera
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (S.C.); (B.P.); (M.M.); (G.F.); (I.G.)
| | - Annunziata De Rosa
- Dipartimento di Malattie Infettive e Emergenze Infettive, Divisione di Malattie Infettive Respiratorie, Ospedale Cotugno, AORN dei Colli, 80131 Naples, Italy; (A.D.R.); (R.P.)
| | - Gustavo Cernera
- CEINGE-Biotecnologie Avanzate, scarl, 80145 Naples, Italy; (M.G.); (G.C.); (F.S.); (M.C.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Filippo Scialò
- CEINGE-Biotecnologie Avanzate, scarl, 80145 Naples, Italy; (M.G.); (G.C.); (F.S.); (M.C.); (G.C.)
- Dipartimento di Medicina Traslazionale, Università della Campania L. Vanvitelli, 80131 Naples, Italy
| | - Marika Comegna
- CEINGE-Biotecnologie Avanzate, scarl, 80145 Naples, Italy; (M.G.); (G.C.); (F.S.); (M.C.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Mauro Mormile
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (S.C.); (B.P.); (M.M.); (G.F.); (I.G.)
| | - Gabriella Fabbrocini
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (S.C.); (B.P.); (M.M.); (G.F.); (I.G.)
| | - Roberto Parrella
- Dipartimento di Malattie Infettive e Emergenze Infettive, Divisione di Malattie Infettive Respiratorie, Ospedale Cotugno, AORN dei Colli, 80131 Naples, Italy; (A.D.R.); (R.P.)
| | - Gaetano Corso
- CEINGE-Biotecnologie Avanzate, scarl, 80145 Naples, Italy; (M.G.); (G.C.); (F.S.); (M.C.); (G.C.)
- Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, 71121 Foggia, Italy
| | - Ivan Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (S.C.); (B.P.); (M.M.); (G.F.); (I.G.)
| | - Giuseppe Castaldo
- CEINGE-Biotecnologie Avanzate, scarl, 80145 Naples, Italy; (M.G.); (G.C.); (F.S.); (M.C.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| |
Collapse
|
27
|
De Zutter A, Van Damme J, Struyf S. The Role of Post-Translational Modifications of Chemokines by CD26 in Cancer. Cancers (Basel) 2021; 13:cancers13174247. [PMID: 34503058 PMCID: PMC8428238 DOI: 10.3390/cancers13174247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Chemokines are a large family of small chemotactic cytokines that fulfill a central function in cancer. Both tumor-promoting and -impeding roles have been ascribed to chemokines, which they exert in a direct or indirect manner. An important post-translational modification that regulates chemokine activity is the NH2-terminal truncation by peptidases. CD26 is a dipeptidyl peptidase (DPPIV), which typically clips a NH2-terminal dipeptide from the chemokine. With a certain degree of selectivity in terms of chemokine substrate, CD26 only recognizes chemokines with a penultimate proline or alanine. Chemokines can be protected against CD26 recognition by specific amino acid residues within the chemokine structure, by oligomerization or by binding to cellular glycosaminoglycans (GAGs). Upon truncation, the binding affinity for receptors and GAGs is altered, which influences chemokine function. The consequences of CD26-mediated clipping vary, as unchanged, enhanced, and reduced activities are reported. In tumors, CD26 most likely has the most profound effect on CXCL12 and the interferon (IFN)-inducible CXCR3 ligands, which are converted into receptor antagonists upon truncation. Depending on the tumor type, expression of CD26 is upregulated or downregulated and often results in the preferential generation of the chemokine isoform most favorable for tumor progression. Considering the tight relationship between chemokine sequence and chemokine binding specificity, molecules with the appropriate characteristics can be chemically engineered to provide innovative therapeutic strategies in a cancer setting.
Collapse
|
28
|
Xie C, Ye F, Zhang N, Huang Y, Pan Y, Xie X. CCL7 contributes to angiotensin II-induced abdominal aortic aneurysm by promoting macrophage infiltration and pro-inflammatory phenotype. J Cell Mol Med 2021; 25:7280-7293. [PMID: 34189838 PMCID: PMC8335673 DOI: 10.1111/jcmm.16757] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Chemokine C‐C motif ligand 7 (CCL7), a member of CC chemokine subfamily, plays pivotal roles in numerous inflammatory diseases. Hyper‐activation of inflammation is an important characteristic of abdominal aortic aneurysm (AAA). Therefore, in the present study, we aimed to determine the effect of CCL7 on AAA formation. CCL7 abundance in aortic tissue and macrophage infiltration were both increased in angiotensin II (Ang II)‐induced AAA mice. Ex vivo, CCL7 promoted macrophage polarization towards M1 phenotype. This effect was reversed by the blockage of CCR1, a receptor of CCL7. CCL7 up‐regulated JAK2/STAT1 protein level in macrophage, and CCL7‐induced M1 activation was suppressed by JAK2/STAT1 pathway inhibition. To verify the effect of CCL7 on AAA in vivo, either CCL7‐neutralizing antibody (CCL7‐nAb) or vehicles were intraperitoneally injected 24 hours prior to Ang II infusion and subsequently every three days for 4 weeks. CCL7‐nAb administration significantly attenuated Ang II‐induced luminal and external dilation as well as pathological remodelling. Immunostaining showed that CCL7‐nAb administration significantly decreased aneurysmal macrophage infiltration. In conclusion, CCL7 contributed to Ang II‐induced AAA by promoting M1 phenotype of macrophage through CCR1/JAK2/STAT1 signalling pathway.
Collapse
Affiliation(s)
- Cuiping Xie
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Feiming Ye
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Ning Zhang
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Yuxue Huang
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Yun Pan
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
| | - Xiaojie Xie
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| |
Collapse
|
29
|
Xue S, Tang H, Zhao G, Shen Y, Yang EY, Fu W, Shi Z, Tang X, Guo D. C-C Motif Chemokine 8 promotes angiogenesis in vascular endothelial cells. Vascular 2021; 29:429-441. [PMID: 32972333 DOI: 10.1177/1708538120959972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Angiogenesis is an important progress associated with several pathological situations. Several chemokines have been reported to act as regulators of angiogenesis. The current study aimed to find whether C-C Motif Chemokine 8 is involved in angiogenesis regulation. METHODS To verify whether C-C Motif Chemokine 8 is related to angiogenesis in plaques, carotid plaques were collected from patients with severe carotid stenosis and analysed using CD31 immunohistochemistry and real-time PCR. To further clarify the relation between C-C Motif Chemokine 8 and angiogenesis, human umbilical vein endothelium cells and human dermal microvascular endothelial cells were treated with C-C Motif Chemokine 8 in the presence or absence of C-C motif chemokine receptor 2-Ab and extracellular regulated MAP kinase 1/2 inhibition (FR180204). Proliferation and migration of human umbilical vein endothelium cells and human dermal microvascular endothelial cells were examined with Cell Counting Kit-8 and Transwell chamber assay, respectively. In vitro angiogenesis stimulated by C-C Motif Chemokine 8 was examined using tube formation assay. Ex vivo and in vivo angiogenesis were assessed by mice aortic ring assay and Matrigel plug assay, respectively. C-C motif chemokine receptors of human umbilical vein endothelium cells were examined with real-time PCR, and C-C motif chemokine receptor 1, C-C motif chemokine receptor 2, extracellular regulated MAP kinase 1/2 and phosphorylation-extracellular regulated MAP kinase 1/2 were examined with western blotting assay. RESULTS C-C Motif Chemokine 8 was increased in carotid plaques with severe angiogenesis in both RNA and protein level. C-C Motif Chemokine 8 (5 ng/ml) weakly increased human umbilical vein endothelium cell proliferation, but not on human dermal microvascular endothelial cells. Migration and tube formation could be induced by C-C Motif Chemokine 8 in both human umbilical vein endothelium cells and human dermal microvascular endothelial cells. In mice aortic ring assay and Matrigel plug assay, C-C Motif Chemokine 8 could promote angiogenesis compared to vehicle groups. Phosphorylation of extracellular regulated MAP kinase 1/2 was increased with C-C Motif Chemokine 8 stimulation. The migration and tube formation promoted by C-C Motif Chemokine 8 could be largely blocked by C-C motif chemokine receptor 2-Ab or extracellular regulated MAP kinase 1/2 inhibition (FR180204). CONCLUSIONS C-C Motif Chemokine 8 could promote both in vitro and in vivo angiogenesis. C-C motif chemokine receptor 2 played an important role in the activation of C-C Motif Chemokine 8 and extracellular regulated MAP kinase 1/2 signalling pathway was involved in this mechanism.
Collapse
Affiliation(s)
- Song Xue
- Department of Vascular Surgery, Fudan University, Shanghai, China
| | - Hanfei Tang
- Department of Vascular Surgery, Fudan University, Shanghai, China
| | - Gefei Zhao
- Department of Vascular Surgery, Fudan University, Shanghai, China
| | - Yang Shen
- Department of Vascular Surgery, Fudan University, Shanghai, China
| | - Ethan Yibo Yang
- Department of Vascular Surgery, Fudan University, Shanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Fudan University, Shanghai, China
| | - Zhenyu Shi
- Department of Vascular Surgery, Fudan University, Shanghai, China
| | - Xiao Tang
- Department of Vascular Surgery, Fudan University, Shanghai, China
| | - Daqiao Guo
- Department of Vascular Surgery, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Inhibition of CCL7 derived from Mo-MDSCs prevents metastatic progression from latency in colorectal cancer. Cell Death Dis 2021; 12:484. [PMID: 33986252 PMCID: PMC8119947 DOI: 10.1038/s41419-021-03698-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
In colorectal cancer (CRC), overt metastases often appear after years of latency. But the signals that cause micro-metastatic cells to remain indolent, thereby enabling them to survive for extended periods of time, are unclear. Immunofluorescence and co-immunoprecipitation assays were used to explore the co-localization of CCL7 and CCR2. Immunohistochemical (IHC) assays were employed to detect the characters of metastatic HT29 cells in mice liver. Flow cytometry assays were performed to detect the immune cells. Bruberin vivo MS FX Pro Imager was used to observe the liver metastasis of CRC in mice. Quantitative real-time PCR (qRT-PCR) and western blot were employed to detect the expressions of related proteins. Trace RNA sequencing was employed to identify differentially expressed genes in MDSCs from liver micro-M and macro-M of CRC in mice. Here, we firstly constructed the vitro dormant cell models and metastatic dormant animal models of colorectal cancer. Then we found that myeloid-derived suppressor cells (MDSCs) were increased significantly from liver micro-metastases to macro-metastases of CRC in mice. Moreover, monocytic MDSCs (Mo-MDSC) significantly promoted the dormant activation of micro-metastatic cells compared to polymorphonuclear MDSCs (PMN-MDSC). Mechanistically, CCL7 secreted by Mo-MDSCs bound with membrane protein CCR2 of micro-metastatic cells and then stimulated the JAK/STAT3 pathway to activate the dormant cells. Low-dose administration of CCL7 and MDSCs inhibitors in vivo could significantly maintain the CRC metastatic cells dormant status for a long time to reduce metastasis or recurrence after radical operation. Clinically, the level of CCL7 in blood was positively related to the number of Mo-MDSCs in CCR patients, and highly linked with the short-time recurrence and distant metastasis. CCL7 secreted by Mo-MDSCs plays an important role in initiating the outgrowth of metastatic latent CRC cells. Inhibition of CCL7 might provide a potential therapeutic strategy for the prevention of metastasis recurrence.
Collapse
|
31
|
Xue S, Tang H, Zhao G, Fang C, Shen Y, Yan D, Yuan Y, Fu W, Shi Z, Tang X, Guo D. C-C motif ligand 8 promotes atherosclerosis via NADPH oxidase 2/reactive oxygen species-induced endothelial permeability increase. Free Radic Biol Med 2021; 167:181-192. [PMID: 33741452 DOI: 10.1016/j.freeradbiomed.2021.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/29/2021] [Accepted: 02/14/2021] [Indexed: 12/31/2022]
Abstract
Chemokines have been reported to play important roles in atherosclerotic development. Recently, we found C-C motif ligand 8 (CCL8), a rarely studied chemokine in atherosclerosis, was highly expressed in the endothelium of advanced human carotid plaques. We hypothesized whether CCL8 promotes atherosclerosis through endothelial dysfunction. Apolipoprotein E-deficient mice under the Western diet were used to construct atherosclerosis models. Adeno-associated viruses (AAV) with CCL8 and the CCL8-antibody were injected into mice respectively to conduct CCL8 overexpression and suppression. The results showed that atherosclerotic lesions were significantly increased in the AAV-CCL8 group, while, lesions in the aortic sinus were reduced in the CCL8-antibody group. With CCL8 treatment (200 ng/ml, 24 h) in vitro, the permeability of human aortic endothelial cells (HAECs) increased and the expression of junctional proteins Zonula occluden-1, and Vascular endothelial cadherin were decreased. This effect was dependent on reactive oxygen species (ROS) generation, which could be blocked by l-Ascorbic acid and Apocynin. Results showed that NADPH oxidase 2 (NOX2) expression also increased with CCL8 stimulation and the ROS, and permeability increase of HAECs could be inhibited when NOX2 interfered with the specific siRNA. Additionally, we further found ERK1/2, PI3K-AKT, and NF-κB pathways were involved in the activation of CCL8. Our results indicated that CCL8 might also play important roles in atherosclerosis and this effect, at least in part, was caused by NOX2/ROS-induced endothelial permeability increase. This study might contribute to a deeper understanding of the connection between chemokines and atherosclerosis.
Collapse
Affiliation(s)
- Song Xue
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hanfei Tang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gefei Zhao
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiansu, China
| | - Chao Fang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Shen
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dong Yan
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ye Yuan
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenyu Shi
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Tang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Daqiao Guo
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
32
|
Hosseini A, Hashemi V, Shomali N, Asghari F, Gharibi T, Akbari M, Gholizadeh S, Jafari A. Innate and adaptive immune responses against coronavirus. Biomed Pharmacother 2020; 132:110859. [PMID: 33120236 PMCID: PMC7580677 DOI: 10.1016/j.biopha.2020.110859] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023] Open
Abstract
Coronaviruses (CoVs) are a member of the Coronaviridae family with positive-sense single- stranded RNA. In recent years, the CoVs have become a global problem to public health. The immune responses (innate and adaptive immunity) are essential for elimination and clearance of CoVs infections, however, uncontrolled immune responses can result in aggravating acute lung injury and significant immunopathology. Gaining profound understanding about the interaction between CoVs and the innate and adaptive immune systems could be a critical step in the field of treatment. In this review, we present an update on the host innate and adaptive immune responses against SARS-CoV, MERS-CoV and newly appeared SARS-CoV-2.
Collapse
Affiliation(s)
- Arezoo Hosseini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vida Hashemi
- Department of Basic Science, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Asghari
- Department of Immunology, School of Medicine, Tarbiat Modares University of Medical Sciences, Tehran, Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saber Gholizadeh
- Department of Medical Entomology and Vector Control, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Jafari
- Department of Toxicology and Cellular and Molecular Research Center, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
33
|
Zhang M, Yang W, Wang P, Deng Y, Dong YT, Liu FF, Huang R, Zhang P, Duan YQ, Liu XD, Lin D, Chu Q, Zhong B. CCL7 recruits cDC1 to promote antitumor immunity and facilitate checkpoint immunotherapy to non-small cell lung cancer. Nat Commun 2020; 11:6119. [PMID: 33257678 PMCID: PMC7704643 DOI: 10.1038/s41467-020-19973-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 11/06/2020] [Indexed: 01/02/2023] Open
Abstract
The efficacy of checkpoint immunotherapy to non-small cell lung cancer (NSCLC) largely depends on the tumor microenvironment (TME). Here, we demonstrate that CCL7 facilitates anti-PD-1 therapy for the KrasLSL−G12D/+Tp53fl/fl (KP) and the KrasLSL−G12D/+Lkb1fl/fl (KL) NSCLC mouse models by recruiting conventional DC 1 (cDC1) into the TME to promote T cell expansion. CCL7 exhibits high expression in NSCLC tumor tissues and is positively correlated with the infiltration of cDC1 in the TME and the overall survival of NSCLC patients. CCL7 deficiency impairs the infiltration of cDC1 in the TME and the subsequent expansion of CD8+ and CD4+ T cells in bronchial draining lymph nodes and TME, thereby promoting tumor development in the KP mouse model. Administration of CCL7 into lungs alone or in combination with anti-PD-1 significantly inhibits tumor development and prolongs the survival of KP and KL mice. These findings suggest that CCL7 potentially serves as a biomarker and adjuvant for checkpoint immunotherapy of NSCLC. Only a limited proportion of patients with non-small cell lung cancer respond to anti-PD-1/PD-L1 immunotherapy. Here, the authors show that in autochthonous models of KRAS-mutated lung cancer, CCL7 promotes cDC1 infiltration into the lungs, sustaining antitumor immune responses and potentiating anti-PD1 treatment efficacy.
Collapse
Affiliation(s)
- Man Zhang
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China.,Department of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei Yang
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China.,Department of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Peng Wang
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China.,Department of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Deng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Ting Dong
- Institute of Pathology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Pathology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang-Fang Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Huang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 40038, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ya-Qi Duan
- Institute of Pathology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Pathology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin-Dong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 40038, China
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430061, China.
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China. .,Department of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
34
|
Hoffmann C, Vacher S, Sirven P, Lecerf C, Massenet L, Moreira A, Surun A, Schnitzler A, Klijanienko J, Mariani O, Jeannot E, Badois N, Lesnik M, Choussy O, Le Tourneau C, Guillot-Delost M, Kamal M, Bieche I, Soumelis V. MMP2 as an independent prognostic stratifier in oral cavity cancers. Oncoimmunology 2020; 9:1754094. [PMID: 32934875 PMCID: PMC7466851 DOI: 10.1080/2162402x.2020.1754094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Background Around 25% of oral cavity squamous cell carcinoma (OCSCC) are not controlled by the standard of care, but there is currently no validated biomarker to identify those patients. Our objective was to determine a robust biomarker for severe OCSCC, using a biology-driven strategy. Patients and methods Tumor and juxtatumor secretome were analyzed in a prospective discovery cohort of 37 OCSCC treated by primary surgery. Independent biomarker validation was performed by RTqPCR in a retrospective cohort of 145 patients with similar clinical features. An 18-gene signature (18 G) predictive of the response to PD-1 blockade was evaluated in the same cohort. Results Among 29 deregulated molecules identified in a secretome analysis, including chemokines, cytokines, growth factors, and molecules related to tumor growth and tissue remodeling, only soluble MMP2 was a prognostic biomarker. In our validation cohort, high levels of MMP2 and CD276, and low levels of CXCL10 and STAT1 mRNA were associated with poor prognosis in univariate analysis (Kaplan-Meier). MMP2 (p = .001) and extra-nodal extension (ENE) (p = .006) were independent biomarkers of disease-specific survival (DSS) in multivariate analysis and defined prognostic groups with 5-year DSS ranging from 36% (MMP2highENE+) to 88% (MMP2lowENE-). The expression of 18 G was similar in the different prognostic groups, suggesting comparable responsiveness to anti-PD-1. Conclusion High levels of MMP2 were an independent and validated prognostic biomarker, surpassing other molecules of a large panel of the tumor and immune-related processes, which may be used to select poor prognosis patients for intensified neoadjuvant or adjuvant regimens.
Collapse
Affiliation(s)
- Caroline Hoffmann
- Paris Sciences and Letters (PSL) University, Paris, France
- INSERM U932 Research Unit, Immunity and Cancer, Paris, France
- Department of Surgical Oncology, Institut Curie, Paris & Saint-Cloud, France
| | - Sophie Vacher
- Paris Sciences and Letters (PSL) University, Paris, France
- Department of Genetics, Institut Curie, Paris, France
| | - Philémon Sirven
- Paris Sciences and Letters (PSL) University, Paris, France
- INSERM U932 Research Unit, Immunity and Cancer, Paris, France
| | - Charlotte Lecerf
- Paris Sciences and Letters (PSL) University, Paris, France
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris & Saint-Cloud, France
| | - Lucile Massenet
- Paris Sciences and Letters (PSL) University, Paris, France
- INSERM U932 Research Unit, Immunity and Cancer, Paris, France
| | - Aurélie Moreira
- Paris Sciences and Letters (PSL) University, Paris, France
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris & Saint-Cloud, France
| | - Aurore Surun
- SIREDO Cancer Center (Care, Innovation and Research in Pediatric, Adolescents and Young Adults Oncology), Institut Curie, Paris, France
- Paris Descartes University, Paris, France
| | - Anne Schnitzler
- Paris Sciences and Letters (PSL) University, Paris, France
- Department of Genetics, Institut Curie, Paris, France
| | - Jerzy Klijanienko
- Paris Sciences and Letters (PSL) University, Paris, France
- Department of Pathology, Institut Curie, Paris, France
| | - Odette Mariani
- Paris Sciences and Letters (PSL) University, Paris, France
- Department of Pathology, Institut Curie, Paris, France
- Biological Resources Center, Institut Curie, Paris, France
| | - Emmanuelle Jeannot
- Paris Sciences and Letters (PSL) University, Paris, France
- Department of Pathology, Institut Curie, Paris, France
| | - Nathalie Badois
- Paris Sciences and Letters (PSL) University, Paris, France
- Department of Surgical Oncology, Institut Curie, Paris & Saint-Cloud, France
| | - Maria Lesnik
- Paris Sciences and Letters (PSL) University, Paris, France
- Department of Surgical Oncology, Institut Curie, Paris & Saint-Cloud, France
| | - Olivier Choussy
- Paris Sciences and Letters (PSL) University, Paris, France
- Department of Surgical Oncology, Institut Curie, Paris & Saint-Cloud, France
| | - Christophe Le Tourneau
- Paris Sciences and Letters (PSL) University, Paris, France
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris & Saint-Cloud, France
- INSERM U900 Research Unit, Saint-Cloud, France
| | - Maude Guillot-Delost
- Paris Sciences and Letters (PSL) University, Paris, France
- INSERM U932 Research Unit, Immunity and Cancer, Paris, France
- Center of Clinical Investigation, CIC IGR-Curie, Paris, France
| | - Maud Kamal
- Paris Sciences and Letters (PSL) University, Paris, France
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris & Saint-Cloud, France
| | - Ivan Bieche
- Paris Sciences and Letters (PSL) University, Paris, France
- Department of Genetics, Institut Curie, Paris, France
- Faculty of Pharmaceutical and Biological Sciences, INSERM U1016 Research Unit, Paris Descartes University, Paris, France
| | - Vassili Soumelis
- Paris Sciences and Letters (PSL) University, Paris, France
- INSERM U932 Research Unit, Immunity and Cancer, Paris, France
- Clinical Immunology Department, Institut Curie, Paris, France
| |
Collapse
|
35
|
Opdenakker G, Abu El-Asrar A, Van Damme J. Remnant Epitopes Generating Autoimmunity: From Model to Useful Paradigm. Trends Immunol 2020; 41:367-378. [PMID: 32299652 DOI: 10.1016/j.it.2020.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Autoimmune diseases are defined as pathologies of adaptive immunity by the presence of autoantibodies or MHC-restricted autoantigen-reactive T cells. Because autoreactivity is a normal process based on mechanisms producing repertoires of antibodies and T cell receptors, crucial questions about disease mechanisms and key steps for interference have been outstanding. We defined 25 years ago the 'remnant epitopes generate autoimmunity' (REGA)-model in which extracellular proteases from innate immune cells generate autoantigens. Here, we refine the REGA-model, tested in diseases ranging from organ-specific autoimmune diseases to systemic lupus erythematosus. It now constitutes a paradigm in which remnant epitopes generate, maintain, and regulate autoimmunity; are dependent on genetic and epigenetic influences; are produced in a disease phase-specific manner; and have therapeutic implications when targeted.
Collapse
Affiliation(s)
- Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium.
| | - Ahmed Abu El-Asrar
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium; Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Zhang X, Chen L, Dang WQ, Cao MF, Xiao JF, Lv SQ, Jiang WJ, Yao XH, Lu HM, Miao JY, Wang Y, Yu SC, Ping YF, Liu XD, Cui YH, Zhang X, Bian XW. CCL8 secreted by tumor-associated macrophages promotes invasion and stemness of glioblastoma cells via ERK1/2 signaling. J Transl Med 2020; 100:619-629. [PMID: 31748682 DOI: 10.1038/s41374-019-0345-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/27/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated macrophages (TAMs) constitute a large population of glioblastoma and facilitate tumor growth and invasion of tumor cells, but the underlying mechanism remains undefined. In this study, we demonstrate that chemokine (C-C motif) ligand 8 (CCL8) is highly expressed by TAMs and contributes to pseudopodia formation by GBM cells. The presence of CCL8 in the glioma microenvironment promotes progression of tumor cells. Moreover, CCL8 induces invasion and stem-like traits of GBM cells, and CCR1 and CCR5 are the main receptors that mediate CCL8-induced biological behavior. Finally, CCL8 dramatically activates ERK1/2 phosphorylation in GBM cells, and blocking TAM-secreted CCL8 by neutralized antibody significantly decreases invasion of glioma cells. Taken together, our data reveal that CCL8 is a TAM-associated factor to mediate invasion and stemness of GBM, and targeting CCL8 may provide an insight strategy for GBM treatment.
Collapse
Affiliation(s)
- Xiang Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lu Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wei-Qi Dang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Mian-Fu Cao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jing-Fang Xiao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wen-Jie Jiang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiao-Hong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hui-Min Lu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jing-Ya Miao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shi-Cang Yu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xin-Dong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
37
|
Abouelasrar Salama S, Gouwy M, De Zutter A, Pörtner N, Vanbrabant L, Berghmans N, De Buck M, Struyf S, Van Damme J. Induction of Chemokines by Hepatitis C Virus Proteins: Synergy of the Core Protein with Interleukin-1β and Interferon-γ in Liver Bystander Cells. J Interferon Cytokine Res 2020; 40:195-206. [PMID: 32031878 DOI: 10.1089/jir.2019.0115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection accounts for a large proportion of hepatic fibrosis and carcinoma cases observed worldwide. Mechanisms involved in HCV-induced hepatic injury have yet to be fully elucidated. Of particular interest is the capacity of HCV to regulate inflammatory responses. Here, we reveal modulation of cytokine activity by the HCV proteins non-structural protein 3 (NS3), glycoprotein E2, and core protein for their ability to induce chemokine expression in various liver bystander cells. Chemokines sustain chronic liver inflammation and relay multiple fibrogenic effects. CCL2, CCL3, CCL20, CXCL8, and CXCL10 were differentially expressed after treatment of monocytes, fibroblasts, or liver sinusoidal microvascular endothelial cells (LSECs) with HCV proteins. In comparison to NS3 and glycoprotein E2, core protein was a stronger inducer of chemokines in liver bystander cells. Interferon-γ (IFN-γ) and interleukin-1β (IL-1β) synergized with core protein to induce CCL2, CCL20, CXCL8, or CXCL10 in fibroblasts or LSECs. These findings reveal new mechanisms of hepatic injury caused by HCV.
Collapse
Affiliation(s)
- Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Alexandra De Zutter
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Noëmie Pörtner
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Lotte Vanbrabant
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mieke De Buck
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Abstract
The tumor microenvironment is the primary location in which tumor cells and the host immune system interact. There are many physiological, biochemical, cellular mechanisms in the neighbor of tumor which is composed of various cell types. Interactions of chemokines and chemokine receptors can recruit immune cell subsets into the tumor microenvironment. These interactions can modulate tumor progression and metastasis. In this chapter, we will focus on chemokine (C-C motif) ligand 7 (CCL7) that is highly expressed in the tumor microenvironment of various cancers, including colorectal cancer, breast cancer, oral cancer, renal cancer, and gastric cancer. We reviewed how CCL7 can affect cancer immunity and tumorigenesis by describing its regulation and roles in immune cell recruitment and stromal cell biology.
Collapse
|
39
|
Computational modeling of therapy on pancreatic cancer in its early stages. Biomech Model Mechanobiol 2019; 19:427-444. [PMID: 31501963 PMCID: PMC7105451 DOI: 10.1007/s10237-019-01219-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/23/2019] [Indexed: 12/18/2022]
Abstract
More than eighty percent of pancreatic cancer involves ductal adenocarcinoma with an abundant desmoplastic extracellular matrix surrounding the solid tumor entity. This aberrant tumor microenvironment facilitates a strong resistance of pancreatic cancer to medication. Although various therapeutic strategies have been reported to be effective in mice with pancreatic cancer, they still need to be tested quantitatively in wider animal-based experiments before being applied as therapies. To aid the design of experiments, we develop a cell-based mathematical model to describe cancer progression under therapy with a specific application to pancreatic cancer. The displacement of cells is simulated by solving a large system of stochastic differential equations with the Euler-Maruyama method. We consider treatment with the PEGylated drug PEGPH20 that breaks down hyaluronan in desmoplastic stroma followed by administration of the chemotherapy drug gemcitabine to inhibit the proliferation of cancer cells. Modeling the effects of PEGPH20 + gemcitabine concentrations is based on Green's fundamental solutions of the reaction-diffusion equation. Moreover, Monte Carlo simulations are performed to quantitatively investigate uncertainties in the input parameters as well as predictions for the likelihood of success of cancer therapy. Our simplified model is able to simulate cancer progression and evaluate treatments to inhibit the progression of cancer.
Collapse
|
40
|
Zhou X, Liao X, Wang X, Huang K, Yang C, Yu T, Liu J, Han C, Zhu G, Su H, Qin W, Han Q, Liu Z, Huang J, Gong Y, Ye X, Peng T. Clinical significance and prospective molecular mechanism of C‑C motif chemokine receptors in patients with early‑stage pancreatic ductal adenocarcinoma after pancreaticoduodenectomy. Oncol Rep 2019; 42:1856-1868. [PMID: 31432181 PMCID: PMC6775805 DOI: 10.3892/or.2019.7277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to determine the clinical significance and potential molecular mechanisms of C‑C motif chemokine receptor (CCR) genes in patients with early‑stage pancreatic ductal adenocarcinoma (PDAC). The transcriptomic, survival and clinical data of 112 patients with early‑stage PDAC who underwent pancreaticoduodenectomy were obtained from The Cancer Genome Atlas. The prognostic values of the CCR genes involved in early‑stage PDAC were evaluated using Kaplan‑Meier analysis and the multivariate Cox proportional risk regression model, and the potential molecular mechanisms were determined using bioinformatics tools. The identified CCRs closely interacted with each other at both the gene and protein levels. High expression levels of CCR5 [adjusted P=0.012; adjusted hazard ration (HR)=0.478, 95% confidence interval (CI)=0.269‑0.852], CCR6 (adjusted P=0.026; adjusted HR=0.527, 95% CI=0.299‑0.927) and CCR9 (adjusted P=0.001; adjusted HR=0.374, 95% CI=0.209‑0.670) were significantly associated with longer overall survival times in patients with early‑stage PDAC. The contribution of CCR5, CCR6 and CCR9 to the outcome of early‑stage PDAC was also demonstrated. Combined survival analysis of CCR5, CCR6 and CCR9 suggested that patients with high expression levels of these CCRs exhibited the most favorable outcomes. A prognostic signature was constructed in terms of the expression level of CC5, CCR6 and CCR9, and time‑dependent receiver operating characteristic curves indicated that this signature was able to effectively predict the outcome of patients with early‑stage PDAC. The potential molecular mechanisms of CCR5, CC6 and CCR9 in PDAC include its intersection of the P53, nuclear factor (NF)‑κB, generic transcription, mitogen‑activated protein kinase and STAT signaling pathways. Collectively, this highlights that CCR5, CCR6 and CCR9 are potential prognostic biomarkers for early‑stage PDAC.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Junqi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Wei Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Quanfa Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Zhengqian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Jianlv Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Yizhen Gong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| |
Collapse
|
41
|
The Formation and Therapeutic Update of Tumor-Associated Macrophages in Cervical Cancer. Int J Mol Sci 2019; 20:ijms20133310. [PMID: 31284453 PMCID: PMC6651300 DOI: 10.3390/ijms20133310] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Both clinicopathological and experimental studies have suggested that tumor-associated macrophages (TAMs) play a key role in cervical cancer progression and are associated with poor prognosis in the respects of tumor cell proliferation, invasion, angiogenesis, and immunosuppression. Therefore, having a clear understanding of TAMs is essential in treating this disease. In this review, we will discuss the origins and categories of macrophages, the molecules responsible for forming and reeducating TAMs in cervical cancer (CC), the biomarkers of macrophages and the therapy development targeting TAMs in CC research.
Collapse
|
42
|
Feehan KT, Gilroy DW. Is Resolution the End of Inflammation? Trends Mol Med 2019; 25:198-214. [DOI: 10.1016/j.molmed.2019.01.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/12/2022]
|
43
|
Kurzejamska E, Sacharczuk M, Landázuri N, Kovtonyuk O, Lazarczyk M, Ananthaseshan S, Gaciong Z, Religa P. Effect of Chemokine (C-C Motif) Ligand 7 (CCL7) and Its Receptor (CCR2) Expression on Colorectal Cancer Behaviors. Int J Mol Sci 2019; 20:ijms20030686. [PMID: 30764543 PMCID: PMC6387027 DOI: 10.3390/ijms20030686] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/16/2019] [Accepted: 01/24/2019] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer is the source of one of the most common cancer-related deaths worldwide, where the main cause of patient mortality remains metastasis. The aim of this study was to determine the role of CCL7 (chemokine (C-C motif) ligand 7) in tumor progression and finding whether it could predict survival of colorectal cancer patients. Initially, our study focused on the crosstalk between mesenchymal stem cells (MSCs) and CT26 colon carcinoma cells and resulted in identifying CCL7 as a chemokine upregulated in CT26 colon cancer cells cocultured with MSCs, compared with CT26 in monoculture in vitro. Moreover, we showed that MSCs enhance CT26 tumor cell proliferation and migration. We analyzed the effect of CCL7 overexpression on tumor progression in a murine CT26 model, where cells overexpressing CCL7 accelerated the early phase of tumor growth and caused higher lung metastasis rates compared with control mice. Microarray analysis revealed that tumors overexpressing CCL7 had lower expression of immunoglobulins produced by B lymphocytes. Additionally, using Jh mutant mice, we confirmed that in the CT26 model, CCL7 has an immunoglobulin-, and thereby, B-cell-dependent effect on metastasis formation. Finally, higher expression of CCL7 receptor CCR2 (C-C chemokine receptor type 2) was associated with shorter overall survival of colorectal cancer patients. Altogether, we showed that CCL7 is essentially involved in the progression of colorectal cancer in a CT26 mouse model and that the expression of its receptor CCR2 could be related to a different outcome pattern of patients with colorectal carcinoma.
Collapse
Affiliation(s)
- Ewa Kurzejamska
- Department of Medicine, Centre for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden.
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, 02 097 Warsaw, Poland.
| | - Mariusz Sacharczuk
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, 02 097 Warsaw, Poland.
- Laboratory of Neurogenomics, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05 552 Jastrzębiec, Poland.
- Institute of Health Sciences, Pope John Paul II State School of Higher Education, 21-500 Biała Podlaska, Poland.
| | - Natalia Landázuri
- Department of Medicine, Centre for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden.
| | - Oksana Kovtonyuk
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, 02 097 Warsaw, Poland.
| | - Marzena Lazarczyk
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, 02 097 Warsaw, Poland.
| | - Sharan Ananthaseshan
- Department of Medicine, Centre for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden.
| | - Zbigniew Gaciong
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, 02 097 Warsaw, Poland.
| | - Piotr Religa
- Department of Medicine, Centre for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden.
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, 02 097 Warsaw, Poland.
| |
Collapse
|
44
|
Abu El-Asrar AM, Berghmans N, Al-Obeidan SA, Gikandi PW, Opdenakker G, Van Damme J, Struyf S. The CC chemokines CCL8, CCL13 and CCL20 are local inflammatory biomarkers of HLA-B27-associated uveitis. Acta Ophthalmol 2019; 97:e122-e128. [PMID: 30242977 DOI: 10.1111/aos.13835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 05/01/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE To determine the concentrations of the CC chemokines CCL2, CCL7, CCL8, CCL11, CCL13, CCL20, CCL24 and CCL26 in aqueous humour (AH) samples from patients with specific uveitic entities. METHODS Aqueous humour samples from patients with active uveitis associated with Behçet's disease (BD) (n = 13), sarcoidosis (n = 8), HLA-B27-related inflammation (n = 12), Vogt-Koyanagi-Harada (VKH) disease (n = 12) and control patients (n = 9) were assayed with the use of a multiplex assay. RESULTS When considering all uveitis patients as one group, all chemokine levels except CCL2 were significantly increased compared to controls. CCL8, CCL13 and CCL20 were the most strongly upregulated, 48-fold, 118-fold and 173-fold, respectively, above control AH levels. CCL8 and CCL13 levels were significantly higher in HLA-B27-associated uveitis than in sarcoidosis and VKH disease. CCL20 levels were significantly higher in HLA-B27-associated uveitis than in BD, sarcoidosis and VKH disease. In addition, CCL20 levels were significantly higher in BD than in VKH disease. In HLA-B27-associated uveitis, CCL8, CCL13 and CCL20 were upregulated 111-fold, 255-fold and 465-fold, respectively, compared with controls. CCL8, CCL13 and CCL20 levels were significantly higher in nongranulomatous uveitis (BD and HLA-B27-associated uveitis) than in granulomatous uveitis (sarcoidosis and VKH disease). CONCLUSION Immune responses mediated by CCL8, CCL13 and CCL20 appear to be more potent in nongranulomatous uveitis, particularly in HLA-B27-associated uveitis.
Collapse
Affiliation(s)
- Ahmed M. Abu El-Asrar
- Department of Ophthalmology; College of Medicine; King Saud University; Riyadh Saudi Arabia
- Dr. Nasser Al-Rashid Research Chair in Ophthalmology; College of Medicine; King Saud University; Riyadh Saudi Arabia
| | - Nele Berghmans
- Rega Institute for Medical Research; Department of Microbiology and Immunology; University of Leuven; KU Leuven; Leuven Belgium
| | - Saleh A. Al-Obeidan
- Department of Ophthalmology; College of Medicine; King Saud University; Riyadh Saudi Arabia
| | - Priscilla W. Gikandi
- Department of Ophthalmology; College of Medicine; King Saud University; Riyadh Saudi Arabia
| | - Ghislain Opdenakker
- Rega Institute for Medical Research; Department of Microbiology and Immunology; University of Leuven; KU Leuven; Leuven Belgium
| | - Jo Van Damme
- Rega Institute for Medical Research; Department of Microbiology and Immunology; University of Leuven; KU Leuven; Leuven Belgium
| | - Sofie Struyf
- Rega Institute for Medical Research; Department of Microbiology and Immunology; University of Leuven; KU Leuven; Leuven Belgium
| |
Collapse
|
45
|
Faienza MF, D'Amato G, Chiarito M, Colaianni G, Colucci S, Grano M, Corbo F, Brunetti G. Mechanisms Involved in Childhood Obesity-Related Bone Fragility. Front Endocrinol (Lausanne) 2019; 10:269. [PMID: 31130918 PMCID: PMC6509993 DOI: 10.3389/fendo.2019.00269] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/11/2019] [Indexed: 01/11/2023] Open
Abstract
Childhood obesity is one of the major health problems in western countries. The excessive accumulation of adipose tissue causes inflammation, oxidative stress, apoptosis, and mitochondrial dysfunctions. Thus, obesity leads to the development of severe co-morbidities including type 2 diabetes mellitus, liver steatosis, cardiovascular, and neurodegenerative diseases which can develop early in life. Furthermore, obese children have low bone mineral density and a greater risk of osteoporosis and fractures. The knowledge about the interplay bone tissue and between adipose is still growing, although recent findings suggest that adipose tissue activity on bone can be fat-depot specific. Obesity is associated to a low-grade inflammation that alters the expression of adiponectin, leptin, IL-6, Monocyte Chemotactic Protein 1 (MCP1), TRAIL, LIGHT/TNFSF14, OPG, and TNFα. These molecules can affect bone metabolism, thus resulting in osteoporosis. The purpose of this review was to deepen the cellular mechanisms by which obesity may facilitate osteoporosis and bone fractures.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | | | - Mariangela Chiarito
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Graziana Colaianni
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Silvia Colucci
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Filomena Corbo
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Giacomina Brunetti
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Giacomina Brunetti
| |
Collapse
|
46
|
Liu Y, Cai Y, Liu L, Wu Y, Xiong X. Crucial biological functions of CCL7 in cancer. PeerJ 2018; 6:e4928. [PMID: 29915688 PMCID: PMC6004300 DOI: 10.7717/peerj.4928] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023] Open
Abstract
Chemokine (C-C motif) ligand 7 (CCL7), a CC chemokine, is a chemotactic factor and attractant for various kinds of leukocytes, including monocytes and neutrophils. CCL7 is widely expressed in multiple cell types and can participate in anti-inflammatory responses through binding to its receptors to mediate the recruitment of immune cells. Abnormal CCL7 expression is associated with certain immune diseases. Furthermore, CCL7 plays a pivotal role in tumorigenesis. CCL7 promotes tumor progression by supporting the formation of the tumor microenvironment and facilitating tumor invasion and metastasis, although some studies have suggested that CCL7 has tumor suppressor effects. In this review, we summarize the currently available information regarding the influence of CCL7 on tumors.
Collapse
Affiliation(s)
- Yangyang Liu
- First Clinical Medical College, School of Medicine, Nanchang University, Nanchang, People's Republic of China
| | - Yadi Cai
- First Clinical Medical College, School of Medicine, Nanchang University, Nanchang, People's Republic of China
| | - Li Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, People's Republic of China
| | - Yudong Wu
- Department of Breast Surgery, Jiangxi Provincial Cancer Hospital, Nanchang, People's Republic of China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
47
|
Farajzadeh Valilou S, Keshavarz-Fathi M, Silvestris N, Argentiero A, Rezaei N. The role of inflammatory cytokines and tumor associated macrophages (TAMs) in microenvironment of pancreatic cancer. Cytokine Growth Factor Rev 2018; 39:46-61. [PMID: 29373197 DOI: 10.1016/j.cytogfr.2018.01.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/24/2017] [Accepted: 01/11/2018] [Indexed: 02/07/2023]
|
48
|
Chang M, Guo F, Zhou Z, Huang X, Yi L, Dou Y, Huan J. HBP induces the expression of monocyte chemoattractant protein-1 via the FAK/PI3K/AKT and p38 MAPK/NF-κB pathways in vascular endothelial cells. Cell Signal 2017; 43:85-94. [PMID: 29288710 DOI: 10.1016/j.cellsig.2017.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 12/24/2017] [Indexed: 02/07/2023]
Abstract
Inflammation is characterized by early influx of polymorphonuclear neutrophils (PMNs), followed by a second wave of monocyte recruitment. PMNs mediate monocyte recruitment via their release of heparin binding protein (HBP), which activates CCR2 (CC-chemokine receptor 2) on monocytes. However, the pathways for such signal transmission remain unknown. Accumulating evidences have highlighted the importance of leukocyte-endothelial cell interactions in the initiation of inflammation. In this study, an interesting finding is that HBP enhances the secretion of monocyte chemotactic protein 1(MCP-1), ligand of CCR2, from a third party, the endothelial cells (ECs). HBP-induced increase in MCP-1 production was demonstrated at the protein, mRNA and secretion levels. Exposure of ECs to HBP elicited rapid phosphorylation of FAK/PI3K/AKT and p38 MAPK/NF-κB signaling. MCP-1 levels were attenuated during the response to HBP stimulation by pretreatment with a FAK inhibitor (or siRNA), a PI3K inhibitor, an AKT inhibitor, a p38 inhibitor (or siRNA) and two NF-κB inhibitors. Additionally, pretreatment with inhibitors to FAK, PI3K and AKT led to a decrease in HBP-induced phosphorylation of p38/NF-κB axis. These results showed that HBP induced MCP-1 expression via a sequential activation of the FAK/PI3K/AKT pathway and p38 MAPK/NF-κB axis. Interestingly, the patterns of HBP regulation of the expression of the adhesion molecular VCAM-1 were similar to those seen in MCP-1 after pretreatment with inhibitors (or not). These findings may help to determine key pharmacological points of intervention, thus slowing the progress of inflammatory-mediated responses in certain diseases where inflammation is detrimental to the host.
Collapse
Affiliation(s)
- Mengling Chang
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University, School of Medicine, Rui Jin Hospital, Shanghai, China
| | - Feng Guo
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University, School of Medicine, Rui Jin Hospital, Shanghai, China
| | - Zengding Zhou
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University, School of Medicine, Rui Jin Hospital, Shanghai, China
| | - Xiaoqin Huang
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University, School of Medicine, Rui Jin Hospital, Shanghai, China
| | - Lei Yi
- Department of Orthopaedic Surgery, Fudan University, School of Medicine, Zhongshan Hospital, Shanghai, China
| | - Yi Dou
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University, School of Medicine, Rui Jin Hospital, Shanghai, China
| | - Jingning Huan
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University, School of Medicine, Rui Jin Hospital, Shanghai, China.
| |
Collapse
|
49
|
Menicucci AR, Versteeg K, Woolsey C, Mire CE, Geisbert JB, Cross RW, Agans KN, Jankeel A, Geisbert TW, Messaoudi I. Transcriptome Analysis of Circulating Immune Cell Subsets Highlight the Role of Monocytes in Zaire Ebola Virus Makona Pathogenesis. Front Immunol 2017; 8:1372. [PMID: 29123522 PMCID: PMC5662559 DOI: 10.3389/fimmu.2017.01372] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 10/05/2017] [Indexed: 12/27/2022] Open
Abstract
Existing models of Ebola virus disease (EVD) suggest antigen-presenting cells are initial targets of Zaire ebolavirus (ZEBOV). In vitro studies have shown that ZEBOV infection of monocytes and macrophages results in the production of inflammatory mediators, which may cause lymphocyte apoptosis. However, these findings have not been corroborated by in vivo studies. In this study, we report the first longitudinal analysis of transcriptional changes in purified monocytes, T-cells, and B-cells isolated from cynomolgus macaques following infection with ZEBOV-Makona. Our data reveal monocytes as one of the major immune cell subsets that supports ZEBOV replication in vivo. In addition, we report a marked increase in the transcription of genes involved in inflammation, coagulation, and vascular disease within monocytes, suggesting that monocytes contribute to EVD manifestations. Further, genes important for antigen presentation and regulation of immunity were downregulated, potentially subverting development of adaptive immunity. In contrast, lymphocytes, which do not support ZEBOV replication, showed transcriptional changes limited to a small number of interferon-stimulated genes (ISGs) and a failure to upregulate genes associated with an antiviral effector immune response. Collectively, these data suggest that ZEBOV-infected monocytes play a significant role in ZEBOV-Makona pathogenesis and strategies to suppress virus replication or modify innate responses to infection in these cells should be a priority for therapeutic intervention.
Collapse
Affiliation(s)
- Andrea R Menicucci
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States
| | - Krista Versteeg
- Galveston National Laboratory, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Courtney Woolsey
- Galveston National Laboratory, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Chad E Mire
- Galveston National Laboratory, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Joan B Geisbert
- Galveston National Laboratory, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Robert W Cross
- Galveston National Laboratory, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Krystle N Agans
- Galveston National Laboratory, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Allen Jankeel
- Department of Molecular Biology and Biochemistry, College of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Thomas W Geisbert
- Galveston National Laboratory, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, College of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
50
|
Chen J, Weihs D, Vermolen FJ. A model for cell migration in non-isotropic fibrin networks with an application to pancreatic tumor islets. Biomech Model Mechanobiol 2017; 17:367-386. [PMID: 28993948 PMCID: PMC5845079 DOI: 10.1007/s10237-017-0966-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 09/21/2017] [Indexed: 11/23/2022]
Abstract
Cell migration, known as an orchestrated movement of cells, is crucially important for wound healing, tumor growth, immune response as well as other biomedical processes. This paper presents a cell-based model to describe cell migration in non-isotropic fibrin networks around pancreatic tumor islets. This migration is determined by the mechanical strain energy density as well as cytokines-driven chemotaxis. Cell displacement is modeled by solving a large system of ordinary stochastic differential equations where the stochastic parts result from random walk. The stochastic differential equations are solved by the use of the classical Euler–Maruyama method. In this paper, the influence of anisotropic stromal extracellular matrix in pancreatic tumor islets on T-lymphocytes migration in different immune systems is investigated. As a result, tumor peripheral stromal extracellular matrix impedes the immune response of T-lymphocytes through changing direction of their migration.
Collapse
Affiliation(s)
- Jiao Chen
- Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands.
| | - Daphne Weihs
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Fred J Vermolen
- Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|