1
|
Pressley KR, Schwegman L, De Oca Arena MM, Huizar CC, Zamvil SS, Forsthuber TG. HLA-transgenic mouse models to study autoimmune central nervous system diseases. Autoimmunity 2024; 57:2387414. [PMID: 39167553 PMCID: PMC11470778 DOI: 10.1080/08916934.2024.2387414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 08/23/2024]
Abstract
It is known that certain human leukocyte antigen (HLA) genes are associated with autoimmune central nervous system (CNS) diseases, such as multiple sclerosis (MS), but their exact role in disease susceptibility and etiopathogenesis remains unclear. The best studied HLA-associated autoimmune CNS disease is MS, and thus will be the primary focus of this review. Other HLA-associated autoimmune CNS diseases, such as autoimmune encephalitis and neuromyelitis optica will be discussed. The lack of animal models to accurately capture the complex human autoimmune response remains a major challenge. HLA transgenic (tg) mice provide researchers with powerful tools to investigate the underlying mechanisms promoting susceptibility and progression of HLA-associated autoimmune CNS diseases, as well as for elucidating the myelin epitopes potentially targeted by T cells in autoimmune disease patients. We will discuss the potential role(s) of autoimmune disease-associated HLA alleles in autoimmune CNS diseases and highlight information provided by studies using HLA tg mice to investigate the underlying pathological mechanisms and opportunities to use these models for development of novel therapies.
Collapse
Affiliation(s)
- Kyle R. Pressley
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Lance Schwegman
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| | | | - Carol Chase Huizar
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Scott S. Zamvil
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
2
|
Racine JJ, Bachman JF, Zhang JG, Misherghi A, Khadour R, Kaisar S, Bedard O, Jenkins C, Abbott A, Forte E, Rainer P, Rosenthal N, Sattler S, Serreze DV. Murine MHC-Deficient Nonobese Diabetic Mice Carrying Human HLA-DQ8 Develop Severe Myocarditis and Myositis in Response to Anti-PD-1 Immune Checkpoint Inhibitor Cancer Therapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1287-1306. [PMID: 38426910 PMCID: PMC10984778 DOI: 10.4049/jimmunol.2300841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Myocarditis has emerged as an immune-related adverse event of immune checkpoint inhibitor (ICI) cancer therapy associated with significant mortality. To ensure patients continue to safely benefit from life-saving cancer therapy, an understanding of fundamental immunological phenomena underlying ICI myocarditis is essential. We recently developed the NOD-cMHCI/II-/-.DQ8 mouse model that spontaneously develops myocarditis with lower mortality than observed in previous HLA-DQ8 NOD mouse strains. Our strain was rendered murine MHC class I and II deficient using CRISPR/Cas9 technology, making it a genetically clean platform for dissecting CD4+ T cell-mediated myocarditis in the absence of classically selected CD8+ T cells. These mice are highly susceptible to myocarditis and acute heart failure following anti-PD-1 ICI-induced treatment. Additionally, anti-PD-1 administration accelerates skeletal muscle myositis. Using histology, flow cytometry, adoptive transfers, and RNA sequencing analyses, we performed a thorough characterization of cardiac and skeletal muscle T cells, identifying shared and unique characteristics of both populations. Taken together, this report details a mouse model with features of a rare, but highly lethal clinical presentation of overlapping myocarditis and myositis following ICI therapy. This study sheds light on underlying immunological mechanisms in ICI myocarditis and provides the basis for further detailed analyses of diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Adel Misherghi
- The Jackson Laboratory, Bar Harbor, Maine, USA
- College of the Atlantic, Bar Harbor, Maine, USA
| | - Raheem Khadour
- The Jackson Laboratory, Bar Harbor, Maine, USA
- College of the Atlantic, Bar Harbor, Maine, USA
| | | | | | | | | | | | - Peter Rainer
- Medical University of Graz, Graz, 8053 Austria
- BioTechMed Graz, Graz, Austria
- BKH St. Johann in Tirol, 6380 St. Johann in Tirol, Austria
| | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, Maine, USA
- Imperial College London, London SW7 2AZ, UK
| | - Susanne Sattler
- Imperial College London, London SW7 2AZ, UK
- Medical University of Graz, Graz, 8053 Austria
| | | |
Collapse
|
3
|
Nookala S, Mukundan S, Grove B, Combs C. Concurrent Brain Subregion Microgliosis in an HLA-II Mouse Model of Group A Streptococcal Skin Infection. Microorganisms 2023; 11:2356. [PMID: 37764200 PMCID: PMC10538044 DOI: 10.3390/microorganisms11092356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The broad range of clinical manifestations and life-threatening infections caused by the Gram-positive bacterium, Streptococcus pyogenes or Group A Streptococcus (GAS), remains a significant concern to public health, with a subset of individuals developing neurological complications. Here, we examined the concurrent neuroimmune effects of subcutaneous GAS infections in an HLA-Class II (HLA) transgenic mouse model of subcutaneous GAS infection. To investigate changes in the skin-brain axis, HLA-DQ8 (DQA1*0301/DQB1*0302) mice (DQ8) were randomly divided into three groups: uninfected controls (No Inf), GAS infected and untreated (No Tx), and GAS infected with a resolution by clindamycin (CLN) treatment (CLN Tx) (10 mg/kg/5 days) and were monitored for 16 days post-infection. While the skin GAS burden was significantly reduced by CLN, the cortical and hippocampal GAS burden in the male DQ8 mice was not significantly reduced with CLN. Immunoreactivity to anti-GAS antibody revealed the presence of GAS bacteria in the vicinity of the neuronal nucleus in the neocortex of both No Tx and CLN Tx male DQ8 mice. GAS infection-mediated cortical cytokine changes were modest; however, compared to No Inf or No Tx groups, a significant increase in IL-2, IL-13, IL-22, and IL-10 levels was observed in CLN Tx females despite the lack of GAS burden. Western blot analysis of cortical and hippocampal homogenates showed significantly higher ionized calcium-binding adaptor-1 (Iba-1, microglia marker) protein levels in No Tx females and males and CLN Tx males compared to the No Inf group. Immunohistochemical analysis showed that Iba-1 immunoreactivity in the hippocampal CA3 and CA1 subregions was significantly higher in the CLN Tx males compared to the No Tx group. Our data support the possibility that the subcutaneous GAS infection communicates to the brain and is characterized by intraneuronal GAS sequestration, brain cytokine changes, Iba-1 protein levels, and concurrent CA3 and CA1 subregion-specific microgliosis, even without bacteremia.
Collapse
Affiliation(s)
- Suba Nookala
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.M.); (B.G.); (C.C.)
| | | | | | | |
Collapse
|
4
|
Caminero A, Verdu EF, Galipeau HJ. Elucidating the role of microbes in celiac disease through gnotobiotic modeling. Methods Cell Biol 2023; 179:77-101. [PMID: 37625882 DOI: 10.1016/bs.mcb.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Celiac disease (CeD) is a common immune-mediated disease triggered by the ingestion of gluten in genetically predisposed individuals. CeD is unique in that the trigger (gluten), necessary genes (HLA-DQ2 and DQ8), and the autoantigen (tissue transglutaminase) have been identified, allowing additional environmental co-factors, like the intestinal microbiota, to be studied through relevant in vivo models. Murine models for CeD have come a long way in the past decade and there are now in vitro and in vivo tools available that mimic certain aspects of clinical disease. These models, many of which express the CeD risk genes, have recently been used to study the mechanisms through which the microbiota play a role in CeD pathogenesis through a gnotobiotic approach. Historically, the generation of gnotobiology technology in mid-20th century allowed for the study of immunity and physiology under a complete absence of microbes (axenic) or known colonized status (gnotobiotic). This enabled understanding of mechanisms by which certain bacteria contribute to health and disease. With this perspective, here, we will discuss the various murine models currently being used to study CeD. We will then describe how utilizing axenic and gnotobiotic CeD models has increased our understanding of how microbes influence relevant steps of CeD pathogenesis, and explain key methodology involved in axenic and gnotobiotic modeling.
Collapse
Affiliation(s)
- Alberto Caminero
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Elena F Verdu
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Heather J Galipeau
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
5
|
Luce S, Guinoiseau S, Gadault A, Letourneur F, Nitschke P, Bras M, Vidaud M, Charneau P, Larger E, Colli ML, Eizirik DL, Lemonnier F, Boitard C. A Humanized Mouse Strain That Develops Spontaneously Immune-Mediated Diabetes. Front Immunol 2021; 12:748679. [PMID: 34721418 PMCID: PMC8551915 DOI: 10.3389/fimmu.2021.748679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/22/2021] [Indexed: 12/03/2022] Open
Abstract
To circumvent the limitations of available preclinical models for the study of type 1 diabetes (T1D), we developed a new humanized model, the YES-RIP-hB7.1 mouse. This mouse is deficient of murine major histocompatibility complex class I and class II, the murine insulin genes, and expresses as transgenes the HLA-A*02:01 allele, the diabetes high-susceptibility HLA-DQ8A and B alleles, the human insulin gene, and the human co-stimulatory molecule B7.1 in insulin-secreting cells. It develops spontaneous T1D along with CD4+ and CD8+ T-cell responses to human preproinsulin epitopes. Most of the responses identified in these mice were validated in T1D patients. This model is amenable to characterization of hPPI-specific epitopes involved in T1D and to the identification of factors that may trigger autoimmune response to insulin-secreting cells in human T1D. It will allow evaluating peptide-based immunotherapy that may directly apply to T1D in human and complete preclinical model availability to address the issue of clinical heterogeneity of human disease.
Collapse
Affiliation(s)
- Sandrine Luce
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France.,Medical Faculty, Paris University, Paris, France
| | - Sophie Guinoiseau
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France.,Medical Faculty, Paris University, Paris, France
| | - Alexis Gadault
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France.,Medical Faculty, Paris University, Paris, France
| | - Franck Letourneur
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France
| | | | - Marc Bras
- Medical Faculty, Paris University, Paris, France
| | - Michel Vidaud
- Biochemistry and Molecular Genetics Department, Cochin Hospital, Paris, France
| | - Pierre Charneau
- Molecular Virology and Vaccinology, Pasteur Institute, Paris, France
| | - Etienne Larger
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France.,Diabetology Department, Cochin Hospital, Paris, France
| | - Maikel L Colli
- Université Libre de Bruxelles (ULB) Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Decio L Eizirik
- Université Libre de Bruxelles (ULB) Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium.,Diabetes Center, Indiana Biosciences Research Institute (IBRI), Indianapolis, IN, United States
| | - François Lemonnier
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France.,Medical Faculty, Paris University, Paris, France
| | - Christian Boitard
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France.,Medical Faculty, Paris University, Paris, France.,Diabetology Department, Cochin Hospital, Paris, France
| |
Collapse
|
6
|
Knopick P, Terman D, Riha N, Alvine T, Larson R, Badiou C, Lina G, Ballantyne J, Bradley D. Endogenous HLA-DQ8αβ programs superantigens (SEG/SEI) to silence toxicity and unleash a tumoricidal network with long-term melanoma survival. J Immunother Cancer 2021; 8:jitc-2020-001493. [PMID: 33109631 PMCID: PMC7592263 DOI: 10.1136/jitc-2020-001493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 12/17/2022] Open
Abstract
Background As the most powerful T cell agonists known, superantigens (SAgs) have enormous potential for cancer immunotherapy. Their development has languished due to high incidence (60%–80%) of seroreactive neutralizing antibodies in humans and tumor necrosis factor-α (TNFα)-mediated cardiopulmonary toxicity. Such toxicity has narrowed their therapeutic index while neutralizing antibodies have nullified their therapeutic effects. Methods Female HLA-DQ8 (DQA*0301/DQB*0302) tg mice expressing the human major histocompatibility complex II (MHCII) HLA-DQ8 allele on a high proportion of PBL, spleen and lymph node cells were used. In the established tumor model, staphylococcal enterotoxin G and staphylococcal enterotoxin I (SEG/ SEI) (50 µg each) were injected on days 6 and 9 following tumor inoculation. Lymphoid, myeloid cells and tumor cell digests from tumor tissue were assayed using flow cytometry or quantitated using a cytometric bead array. Tumor density, necrotic and viable areas were quantitated using the ImageJ software. Results In a discovery-driven effort to address these problems we introduce a heretofore unrecognized binary complex comprizing SEG/SEI SAgs linked to the endogenous human MHCII HLA-DQ8 allele in humanized mice. By contrast to staphylococcal enterotoxin A (SEA) and staphylococcal enterotoxin B (SEB) deployed previously in clinical trials, SEG and SEI does not exhibit neutralizing antibodies in humans or TNFα-mediated toxicity in humanized HLA-DQ8 mice. In the latter model wherein SAg behavior is known to be ‘human-like’, SEG/SEI induced a powerful tumoricidal response and long-term survival against established melanoma in 82% of mice. Other SAgs deployed in the same model displayed toxic shock. Initially, HLA-DQ8 mediated melanoma antigen priming, after which SEG/SEI unleashed a broad CD4+ and CD8+ antitumor network marked by expansion of melanoma reactive T cells and interferon-γ (IFNy) in the tumor microenvironment (TME). SEG/SEI further initiated chemotactic recruitment of tumor reactive T cells to the TME converting the tumor from ‘cold’ to a ‘hot’. Long-term survivors displayed remarkable resistance to parental tumor rechallenge along with the appearance of tumor specific memory and tumor reactive T memory cells. Conclusions Collectively, these findings show for the first time that the SEG/SEI-(HLA-DQ8) empowers priming, expansion and recruitment of a population of tumor reactive T cells culminating in tumor specific memory and long-term survival devoid of toxicity. These properties distinguish SEG/SEI from other SAgs used previously in human tumor immunotherapy. Consolidation of these principles within the SEG/SEI-(HLA-DQ8) complex constitutes a conceptually new therapeutic weapon with compelling translational potential.
Collapse
Affiliation(s)
- Peter Knopick
- Biomedical Sciences, Universtiy of North Dakota School of Medicine, Grand Forks, North Dakota, USA
| | - David Terman
- Biomedical Sciences, Universtiy of North Dakota School of Medicine, Grand Forks, North Dakota, USA
| | - Nathan Riha
- Biomedical Sciences, Universtiy of North Dakota School of Medicine, Grand Forks, North Dakota, USA
| | - Travis Alvine
- Biomedical Sciences, Universtiy of North Dakota School of Medicine, Grand Forks, North Dakota, USA
| | - Riley Larson
- Biomedical Sciences, Universtiy of North Dakota School of Medicine, Grand Forks, North Dakota, USA
| | - Cedric Badiou
- University of Lyon, Lyon, Auvergne-Rhône-Alpes, France
| | - Gerard Lina
- University of Lyon 1 University Institute of Tecnology Lyon 1, Villeurbanne, Auvergne-Rhône-Alpes, France
| | | | - David Bradley
- Biomedical Sciences, Universtiy of North Dakota School of Medicine, Grand Forks, North Dakota, USA
| |
Collapse
|
7
|
Shahi SK, Ali S, Jaime CM, Guseva NV, Mangalam AK. HLA Class II Polymorphisms Modulate Gut Microbiota and Experimental Autoimmune Encephalomyelitis Phenotype. Immunohorizons 2021; 5:627-646. [PMID: 34380664 PMCID: PMC8728531 DOI: 10.4049/immunohorizons.2100024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the CNS in which the interaction between genetic and environmental factors plays an important role in disease pathogenesis. Although environmental factors account for 70% of disease risk, the exact environmental factors associated with MS are unknown. Recently, gut microbiota has emerged as a potential missing environmental factor linked with the pathobiology of MS. Yet, how genetic factors, such as HLA class II gene(s), interact with gut microbiota and influence MS is unclear. In the current study, we investigated whether HLA class II genes that regulate experimental autoimmune encephalomyelitis (EAE) and MS susceptibility also influence gut microbiota. Previously, we have shown that HLA-DR3 transgenic mice lacking endogenous mouse class II genes (AE-KO) were susceptible to myelin proteolipid protein (91-110)-induced EAE, an animal model of MS, whereas AE-KO.HLA-DQ8 transgenic mice were resistant. Surprisingly, HLA-DR3.DQ8 double transgenic mice showed higher disease prevalence and severity compared with HLA-DR3 mice. Gut microbiota analysis showed that HLA-DR3, HLA-DQ8, and HLA-DR3.DQ8 double transgenic mice microbiota are compositionally different from AE-KO mice. Within HLA class II transgenic mice, the microbiota of HLA-DQ8 mice were more similar to HLA-DR3.DQ8 than HLA-DR3. As the presence of DQ8 on an HLA-DR3 background increases disease severity, our data suggests that HLA-DQ8-specific microbiota may contribute to disease severity in HLA-DR3.DQ8 mice. Altogether, our study provides evidence that the HLA-DR and -DQ genes linked to specific gut microbiota contribute to EAE susceptibility or resistance in a transgenic animal model of MS.
Collapse
Affiliation(s)
| | - Soham Ali
- Department of Pathology, University of Iowa, Iowa City, IA
- Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | | | | | - Ashutosh K Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA;
- Graduate Program in Immunology, University of Iowa, Iowa City, IA; and
- Graduate Program in Molecular Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
8
|
Susukida T, Aoki S, Shirayanagi T, Yamada Y, Kuwahara S, Ito K. HLA transgenic mice: application in reproducing idiosyncratic drug toxicity. Drug Metab Rev 2020; 52:540-567. [PMID: 32847422 DOI: 10.1080/03602532.2020.1800725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Various types of transgenic mice carrying either class I or II human leukocyte antigen (HLA) molecules are readily available, and reports describing their use in a variety of studies have been published for more than 30 years. Examples of their use include the discovery of HLA-specific antigens against viral infection as well as the reproduction of HLA-mediated autoimmune diseases for the development of therapeutic strategies. Recently, HLA transgenic mice have been used to reproduce HLA-mediated idiosyncratic drug toxicity (IDT), a rare and unpredictable adverse drug reaction that can result in death. For example, abacavir-induced IDT has successfully been reproduced in HLA-B*57:01 transgenic mice. Several reports using HLA transgenic mice for IDT have proven the utility of this concept for the evaluation of IDT using various HLA allele combinations and drugs. It has become apparent that such models may be a valuable tool to investigate the mechanisms underlying HLA-mediated IDT. This review summarizes the latest findings in the area of HLA transgenic mouse models and discusses the current challenges that must be overcome to maximize the potential of this unique animal model.
Collapse
Affiliation(s)
- Takeshi Susukida
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Laboratory of Cancer Biology and Immunology, Section of Host Defenses, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tomohiro Shirayanagi
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yushiro Yamada
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Saki Kuwahara
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
9
|
Scherm MG, Serr I, Zahm AM, Schug J, Bellusci S, Manfredini R, Salb VK, Gerlach K, Weigmann B, Ziegler AG, Kaestner KH, Daniel C. miRNA142-3p targets Tet2 and impairs Treg differentiation and stability in models of type 1 diabetes. Nat Commun 2019; 10:5697. [PMID: 31836704 PMCID: PMC6910913 DOI: 10.1038/s41467-019-13587-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/14/2019] [Indexed: 12/31/2022] Open
Abstract
In type 1 diabetes, the appearance of islet autoantibodies indicates the onset of islet autoimmunity, often many years before clinical symptoms arise. While T cells play a major role in the destruction of pancreatic beta cells, molecular underpinnings promoting aberrant T cell activation remain poorly understood. Here, we show that during islet autoimmunity an miR142-3p/Tet2/Foxp3 axis interferes with the efficient induction of regulatory T (Treg) cells, resulting in impaired Treg stability in mouse and human. Specifically, we demonstrate that miR142-3p is induced in islet autoimmunity and that its inhibition enhances Treg induction and stability, leading to reduced islet autoimmunity in non-obese diabetic mice. Using various cellular and molecular approaches we identify Tet2 as a direct target of miR142-3p, thereby linking high miR142-3p levels to epigenetic remodeling in Tregs. These findings offer a mechanistic model where during islet autoimmunity miR142-3p/Tet2-mediated Treg instability contributes to autoimmune activation and progression.
Collapse
Affiliation(s)
- Martin G Scherm
- Institute of Diabetes Research, Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939, Munich, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), 85764, Munich-Neuherberg, Germany
| | - Isabelle Serr
- Institute of Diabetes Research, Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939, Munich, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), 85764, Munich-Neuherberg, Germany
| | - Adam M Zahm
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jonathan Schug
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Saverio Bellusci
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, 35390, Giessen, Germany
| | - Rossella Manfredini
- Center for Regenerative Medicine, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Victoria K Salb
- Institute of Diabetes Research, Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939, Munich, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), 85764, Munich-Neuherberg, Germany
| | - Katharina Gerlach
- Department of Medicine 1, University of Erlangen-Nuremberg, 91052, Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, University of Erlangen-Nuremberg, 91052, Erlangen, Germany
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, 80333, Munich, Germany
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Carolin Daniel
- Institute of Diabetes Research, Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939, Munich, Germany.
- Deutsches Zentrum für Diabetesforschung (DZD), 85764, Munich-Neuherberg, Germany.
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig-Maximilians-Universität München, 80337, Munich, Germany.
| |
Collapse
|
10
|
Islam SMS, Kim HA, Choi B, Jung JY, Lee SM, Suh CH, Sohn S. Differences in Expression of Human Leukocyte Antigen Class II Subtypes and T Cell Subsets in Behçet's Disease with Arthritis. Int J Mol Sci 2019; 20:ijms20205044. [PMID: 31614573 PMCID: PMC6829274 DOI: 10.3390/ijms20205044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022] Open
Abstract
It has been reported Human Leukocyte Antigen (HLA) gene polymorphism is a risk factor for the development of Behçet’s disease (BD). In this study, the association of HLA class II subtypes HLA-DP, DQ, DR, and T cell subsets in BD patients with arthritis was evaluated. Frequencies of HLA-DP, DQ, DR positive cells, and T cell subsets in peripheral blood leukocytes (PBL) were measured by flow cytometric analysis in BD, and compared to rheumatoid arthritis as disease controls and healthy controls. Frequencies of HLA-DQ were significantly decreased in whole PBL and granulocytes of BD active patients as compared to healthy controls. In monocytes populations, proportions of HLA-DR positive cells were significantly increased in BD active patients as compared to healthy controls. Proportions of CD4+CCR7+ and CD8+CCR7+ cells were significantly higher in BD active patients than in BD inactive in whole PBL. Frequencies of CD4+CD62L- and CD8+CD62L- cells in lymphocytes were significantly decreased in active BD than those in inactive BD. There were also correlations between disease activity markers and T cell subsets. Our results revealed HLA-DP, DQ, and DR expressing cell frequencies and several T cell subsets were significantly correlated with BD arthritis symptoms.
Collapse
Affiliation(s)
- S M Shamsul Islam
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Hyoun-Ah Kim
- Department of Rheumatology, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Bunsoon Choi
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Sung-Min Lee
- Department of Rheumatology, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Seonghyang Sohn
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Korea.
| |
Collapse
|
11
|
Balakrishnan B, Luckey D, Taneja V. Autoimmunity-Associated Gut Commensals Modulate Gut Permeability and Immunity in Humanized Mice. Mil Med 2019; 184:529-536. [PMID: 30901468 DOI: 10.1093/milmed/usy309] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/18/2018] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Although the etiology of rheumatoid arthritis (RA) is unknown, recent studies have led to the concept that gut dysbiosis may be involved in onset. In this study, we aimed to determine if human gut commensals modulate the immune response and gut epithelial integrity in DQ8 mice. METHODS DQ8 mice were orally gavaged with RA-associated (Eggerthella lenta or Collinsella aerofaciens) and non-associated (Prevotella histicola or Bifidobacterium sp.) on alternate days for 1 week in naïve mice. Some mice were immunized with type II collagen and oral gavage continued for 6 weeks and followed for arthritis. Epithelial integrity was done by FITC-Dextran assay. In addition, cytokines were measured in sera by ELISA and various immune cells were quantified using flow cytometry. RESULTS Gut permeability was increased by the RA-associated bacteria and was sex and age-dependent. In vivo and in vitro observations showed that the RA-non-associated bacteria outgrow the RA-associated bacteria when gavaged or cultured together. Mice gavaged with the RA-non-associated bacteria produced lower levels of pro-inflammatory MCP-1 and MCP-3 and had lower numbers of Inflammatory monocytes CD11c+Ly6c+, when compared to controls. E. lenta treated naïve mice produce Th17 cytokines. CONCLUSIONS Our studies suggest that gut commensals influence immune response in and away from the gut by changing the gut permeability and immunity. Dysbiosis helps the growth of RA-associated bacteria and reduces the beneficial bacteria.
Collapse
Affiliation(s)
| | - David Luckey
- Department of Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN
| | - Veena Taneja
- Department of Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN.,Department of Medicine, Division of Rheumatology, Mayo Clinic, 200 First Street SW, Rochester, MN
| |
Collapse
|
12
|
Schinnerling K, Rosas C, Soto L, Thomas R, Aguillón JC. Humanized Mouse Models of Rheumatoid Arthritis for Studies on Immunopathogenesis and Preclinical Testing of Cell-Based Therapies. Front Immunol 2019; 10:203. [PMID: 30837986 PMCID: PMC6389733 DOI: 10.3389/fimmu.2019.00203] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/23/2019] [Indexed: 01/12/2023] Open
Abstract
Rodent models of rheumatoid arthritis (RA) have been used over decades to study the immunopathogenesis of the disease and to explore intervention strategies. Nevertheless, mouse models of RA reach their limit when it comes to testing of new therapeutic approaches such as cell-based therapies. Differences between the human and the murine immune system make it difficult to draw reliable conclusions about the success of immunotherapies. To overcome this issue, humanized mouse models have been established that mimic components of the human immune system in mice. Two main strategies have been pursued for humanization: the introduction of human transgenes such as human leukocyte antigen molecules or specific T cell receptors, and the generation of mouse/human chimera by transferring human cells or tissues into immunodeficient mice. Recently, both approaches have been combined to achieve more sophisticated humanized models of autoimmune diseases. This review discusses limitations of conventional mouse models of RA-like disease and provides a closer look into studies in humanized mice exploring their usefulness and necessity as preclinical models for testing of cell-based therapies in autoimmune diseases such as RA.
Collapse
Affiliation(s)
- Katina Schinnerling
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Carlos Rosas
- Departamento de Ciencias Morfológicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Ranjeny Thomas
- Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Luce S, Guinoiseau S, Gadault A, Letourneur F, Blondeau B, Nitschke P, Pasmant E, Vidaud M, Lemonnier F, Boitard C. Humanized Mouse Model to Study Type 1 Diabetes. Diabetes 2018; 67:1816-1829. [PMID: 29967002 DOI: 10.2337/db18-0202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022]
Abstract
Key requirements in type 1 diabetes (T1D) are in setting up new assays as diagnostic biomarkers that will apply to prediabetes, likely T-cell assays, and in designing antigen-specific therapies to prevent T1D development. New preclinical models of T1D will be required to help with advancing both aims. By crossing mouse strains that lack either murine MHC class I and class II genes and insulin genes, we developed YES mice that instead express human HLA-A*02:01, HLA-DQ8, and insulin genes as transgenes. The metabolic and immune phenotype of YES mice is basically identical to that of the parental strains. YES mice remain insulitis and diabetes free up to 1 year of follow-up, maintain normoglycemia to an intraperitoneal glucose challenge in the long-term range, have a normal β-cell mass, and show normal immune responses to conventional antigens. This new model has been designed to evaluate adaptive immune responses to human insulin on a genetic background that recapitulates a human high-susceptibility HLA-DQ8 genetic background. Although insulitis free, YES mice develop T1D when challenged with polyinosinic-polycytidylic acid. They allow the characterization of preproinsulin epitopes recognized by CD8+ and CD4+ T cells upon immunization against human preproinsulin or during diabetes development.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Aging
- Animals
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/pathology
- Autoimmune Diseases/physiopathology
- Biomarkers/blood
- Biomarkers/metabolism
- Crosses, Genetic
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/physiopathology
- Disease Models, Animal
- Disease Progression
- Female
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/metabolism
- HLA-DQ Antigens/blood
- HLA-DQ Antigens/genetics
- HLA-DQ Antigens/metabolism
- Humans
- Insulin/blood
- Insulin/genetics
- Insulin/metabolism
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Islets of Langerhans/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, Transgenic
- Poly I-C/toxicity
- Prediabetic State/immunology
- Prediabetic State/metabolism
- Prediabetic State/pathology
- Prediabetic State/physiopathology
- Protein Precursors/blood
- Protein Precursors/genetics
- Protein Precursors/metabolism
- Specific Pathogen-Free Organisms
Collapse
Affiliation(s)
- Sandrine Luce
- INSERM U1016, Institut Cochin, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
| | - Sophie Guinoiseau
- INSERM U1016, Institut Cochin, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
| | - Alexis Gadault
- INSERM U1016, Institut Cochin, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
| | | | | | - Patrick Nitschke
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
| | - Eric Pasmant
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
- Service de Biochimie et Génétique Moléculaire, Hôpital COCHIN, Paris, France
| | - Michel Vidaud
- Service de Biochimie et Génétique Moléculaire, Hôpital COCHIN, Paris, France
| | - François Lemonnier
- INSERM U1016, Institut Cochin, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
| | - Christian Boitard
- INSERM U1016, Institut Cochin, Paris, France
- Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
| |
Collapse
|
14
|
Dudics S, Langan D, Meka RR, Venkatesha SH, Berman BM, Che CT, Moudgil KD. Natural Products for the Treatment of Autoimmune Arthritis: Their Mechanisms of Action, Targeted Delivery, and Interplay with the Host Microbiome. Int J Mol Sci 2018; 19:E2508. [PMID: 30149545 PMCID: PMC6164747 DOI: 10.3390/ijms19092508] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/12/2018] [Accepted: 08/18/2018] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, debilitating illness characterized by painful swelling of the joints, inflammation of the synovial lining of the joints, and damage to cartilage and bone. Several anti-inflammatory and disease-modifying drugs are available for RA therapy. However, the prolonged use of these drugs is associated with severe side effects. Furthermore, these drugs are effective only in a proportion of RA patients. Hence, there is a need to search for new therapeutic agents that are effective yet safe. Interestingly, a variety of herbs and other natural products offer a vast resource for such anti-arthritic agents. We discuss here the basic features of RA pathogenesis; the commonly used animal models of RA; the mainstream drugs used for RA; the use of well-characterized natural products possessing anti-arthritic activity; the application of nanoparticles for efficient delivery of such products; and the interplay between dietary products and the host microbiome for maintenance of health and disease induction. We believe that with several advances in the past decade in the characterization and functional studies of natural products, the stage is set for widespread clinical testing and/or use of these products for the treatment of RA and other diseases.
Collapse
Affiliation(s)
- Steven Dudics
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - David Langan
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Rakeshchandra R Meka
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Shivaprasad H Venkatesha
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Brian M Berman
- Family and Community Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Center for Integrative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Chun-Tao Che
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Kamal D Moudgil
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
15
|
Nandakumar KS. Targeting IgG in Arthritis: Disease Pathways and Therapeutic Avenues. Int J Mol Sci 2018; 19:E677. [PMID: 29495570 PMCID: PMC5877538 DOI: 10.3390/ijms19030677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/25/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a polygenic and multifactorial syndrome. Many complex immunological and genetic interactions are involved in the final outcome of the clinical disease. Autoantibodies (rheumatoid factors, anti-citrullinated peptide/protein antibodies) are present in RA patients' sera for a long time before the onset of clinical disease. Prior to arthritis onset, in the autoantibody response, epitope spreading, avidity maturation, and changes towards a pro-inflammatory Fc glycosylation phenotype occurs. Genetic association of epitope specific autoantibody responses and the induction of inflammation dependent and independent changes in the cartilage by pathogenic autoantibodies emphasize the crucial contribution of antibody-initiated inflammation in RA development. Targeting IgG by glyco-engineering, bacterial enzymes to specifically cleave IgG/alter N-linked Fc-glycans at Asn 297 or blocking the downstream effector pathways offers new avenues to develop novel therapeutics for arthritis treatment.
Collapse
Affiliation(s)
- Kutty Selva Nandakumar
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China.
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|
16
|
Papalardo E, Romay-Penabad Z, Willis R, Christadoss P, Carrera-Marin AL, Reyes-Maldonado E, Rudrangi R, Alfieri-Papalardo S, Garcia-Latorre E, Blank M, Pierangeli S, Brasier AR, Gonzalez EB. Major Histocompatibility Complex Class II Alleles Influence Induction of Pathogenic Antiphospholipid Antibodies in a Mouse Model of Thrombosis. Arthritis Rheumatol 2017; 69:2052-2061. [PMID: 28666081 DOI: 10.1002/art.40195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/27/2017] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Both environmental and genetic factors are important in the development of antiphospholipid antibodies (aPL) in patients with antiphospholipid syndrome (APS). Currently, the only available data on predisposing genetic factors have been obtained from epidemiologic studies, without mechanistic evidence. Therefore, we studied the influence of major histocompatibility complex (MHC) class II alleles on the production of aPL in a mouse model of APS. METHODS Three groups of mice, MHC class II-deficient (MHCII-/- ) mice, MHCII-/- mice transgenic for human HLA-DQ6 (DQ6), DQ8, or DR4 alleles, and the corresponding wild-type (WT) mouse strains were immunized; half were immunized with human β2 -glycoprotein I (β2 GPI), and the other half were immunized with control ovalbumin (OVA) protein. Thrombus formation in vivo, tissue factor activity in carotid and peritoneal macrophages, and serum levels of tumor necrosis factor (TNF), IgG anticardiolipin (aCL), antibodies, and anti-OVA antibodies were determined. RESULTS Immunization with β2 GPI induced significant production of aCL and anti-β2 GPI in WT mice compared with control mice immunized with OVA (P < 0.001) but diminished aCL (P < 0.001) and anti-β2 GPI (P = 0.016) production in MHCII-/- mice. Anti-β2 GPI production was fully restored in DQ6 and DQ8 mice, while levels of anti-β2 GPI in DR4 mice and aCL in all transgenic lines were only partially restored (P < 0.001 to P < 0.046). Thrombus size in WT mice was twice that in MHCII-/- mice (P < 0.001) but similar to that in all transgenic lines. Carotid and peritoneal macrophage tissue factor levels decreased by >50% in MHCII-/- mice compared with wild-type B6 mice and were restored in DQ8 mice but not DR4 mice or DQ6 mice. TNF levels decreased 4-fold in MHCII-/- mice (P < 0.001) and were not restored in transgenic mice. CONCLUSION Our mechanistic study is the first to show that MHC class II alleles influence not only quantitative aPL production but also the pathogenic capacity of induced aPL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Miri Blank
- Sheba Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
17
|
Nasopharyngeal infection by Streptococcus pyogenes requires superantigen-responsive Vβ-specific T cells. Proc Natl Acad Sci U S A 2017; 114:10226-10231. [PMID: 28794279 DOI: 10.1073/pnas.1700858114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The globally prominent pathogen Streptococcus pyogenes secretes potent immunomodulatory proteins known as superantigens (SAgs), which engage lateral surfaces of major histocompatibility class II molecules and T-cell receptor (TCR) β-chain variable domains (Vβs). These interactions result in the activation of numerous Vβ-specific T cells, which is the defining activity of a SAg. Although streptococcal SAgs are known virulence factors in scarlet fever and toxic shock syndrome, mechanisms by how SAgs contribute to the life cycle of S. pyogenes remain poorly understood. Herein, we demonstrate that passive immunization against the Vβ8-targeting SAg streptococcal pyrogenic exotoxin A (SpeA), or active immunization with either wild-type or a nonfunctional SpeA mutant, protects mice from nasopharyngeal infection; however, only passive immunization, or vaccination with inactive SpeA, resulted in high-titer SpeA-specific antibodies in vivo. Mice vaccinated with wild-type SpeA rendered Vβ8+ T cells poorly responsive, which prevented infection. This phenotype was reproduced with staphylococcal enterotoxin B, a heterologous SAg that also targets Vβ8+ T cells, and rendered mice resistant to infection. Furthermore, antibody-mediated depletion of T cells prevented nasopharyngeal infection by S. pyogenes, but not by Streptococcus pneumoniae, a bacterium that does not produce SAgs. Remarkably, these observations suggest that S. pyogenes uses SAgs to manipulate Vβ-specific T cells to establish nasopharyngeal infection.
Collapse
|
18
|
Type 1 diabetes vaccine candidates promote human Foxp3(+)Treg induction in humanized mice. Nat Commun 2016; 7:10991. [PMID: 26975663 PMCID: PMC4796321 DOI: 10.1038/ncomms10991] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 02/09/2016] [Indexed: 01/13/2023] Open
Abstract
Immune tolerance is executed partly by Foxp3+regulatory T (Treg) cells, which suppress autoreactive T cells. In autoimmune type 1 diabetes (T1D) impaired tolerance promotes destruction of insulin-producing β-cells. The development of autoantigen-specific vaccination strategies for Foxp3+Treg-induction and prevention of islet autoimmunity in patients is still in its infancy. Here, using human haematopoietic stem cell-engrafted NSG-HLA-DQ8 transgenic mice, we provide direct evidence for human autoantigen-specific Foxp3+Treg-induction in vivo. We identify HLA-DQ8-restricted insulin-specific CD4+T cells and demonstrate efficient human insulin-specific Foxp3+Treg-induction upon subimmunogenic vaccination with strong agonistic insulin mimetopes in vivo. Induced human Tregs are stable, show increased expression of Treg signature genes such as Foxp3, CTLA4, IL-2Rα and TIGIT and can efficiently suppress effector T cells. Such Foxp3+Treg-induction does not trigger any effector T cells. These T1D vaccine candidates could therefore represent an expedient improvement in the challenge to induce human Foxp3+Tregs and to develop novel precision medicines for prevention of islet autoimmunity in children at risk of T1D. Type 1 diabetes is associated with the loss of self-tolerance to the insulin-producing β-cells in the pancreas. Here the authors show that vaccination with insulin mimetopes can induce human insulin-specific regulatory T cells to mediate tolerance in a humanized mouse model.
Collapse
|
19
|
David L, Gokhale A, Jois S, Johnson A, Behrens M, Luthra H, Taneja V. CD74/DQA1 dimers predispose to the development of arthritis in humanized mice. Immunology 2015; 147:204-11. [PMID: 26524976 DOI: 10.1111/imm.12551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/12/2015] [Accepted: 10/23/2015] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is associated with the presence of certain HLA class II genes. However, why some individuals carrying RA non-associated alleles develop arthritis is still unexplained. The trans-heterodimer between two RA non-associated HLA genes can render susceptibility to develop arthritis in humanized mice, DQA1*0103/DQB1*0604, suggesting a role for DQ α chains in pathogenesis. In this study we determined the role of DQA1 in arthritis by using mice expressing DQA1*0103 and lacking endogenous class II molecules. Proximity ligation assay showed that DQA1*0103 is expressed on the cell surface as a dimer with CD74. Upon immunization with type II collagen, DQA1*0103 mice generated an antigen-specific cellular and humoral response and developed severe arthritis. Structural modelling suggests that DQA1*0103/CD74 form a pocket with similarity to the antigen binding pocket. DQA1*0103 mice present type II collagen-derived peptides that are not presented by an arthritis-resistant DQA1*0103/DQB1*0601 allele, suggesting that the DQA1*0103/CD74 dimer may result in presentation of unique antigens and susceptibility to develop arthritis. The present data provide a possible explanation by which the DQA1 molecule contributes to susceptibility to develop arthritis.
Collapse
Affiliation(s)
- Luckey David
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Ameya Gokhale
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Seetharama Jois
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Aaron Johnson
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | | | - Harvinder Luthra
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Veena Taneja
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.,Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
20
|
Shattuck WMC, Dyer MC, Desrosiers J, Fast LD, Terry FE, Martin WD, Moise L, De Groot AS, Mather TN. Partial pathogen protection by tick-bite sensitization and epitope recognition in peptide-immunized HLA DR3 transgenic mice. Hum Vaccin Immunother 2015; 10:3048-59. [PMID: 25517089 PMCID: PMC5443055 DOI: 10.4161/21645515.2014.985498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ticks are notorious vectors of disease for humans, and many species of ticks transmit multiple pathogens, sometimes in the same tick bite. Accordingly, a broad-spectrum vaccine that targets vector ticks and pathogen transmission at the tick/host interface, rather than multiple vaccines against every possible tickborne pathogen, could become an important tool for resolving an emerging public health crisis. The concept for such a tick protective vaccine comes from observations of an acquired tick resistance (ATR) that can develop in non-natural hosts of ticks following sensitization to tick salivary components. Mice are commonly used as models to study immune responses to human pathogens but normal mice are natural hosts for many species of ticks and fail to develop ATR. We evaluated HLA DR3 transgenic (tg) "humanized" mice as a potential model of ATR and assessed the possibility of using this animal model for tick protective vaccine discovery studies. Serial tick infestations with pathogen-free Ixodes scapularis ticks were used to tick-bite sensitize HLA DR3 tg mice. Sensitization resulted in a cytokine skew favoring a Th2 bias as well as partial (57%) protection to infection with Lyme disease spirochetes (Borrelia burgdorferi) following infected tick challenge when compared to tick naïve counterparts. I. scapularis salivary gland homogenate (SGH) and a group of immunoinformatic-predicted T cell epitopes identified from the I. scapularis salivary transcriptome were used separately to vaccinate HLA DR3 tg mice, and these mice also were assessed for both pathogen protection and epitope recognition. Reduced pathogen transmission along with a Th2 skew resulted from SGH vaccination, while no significant protection and a possible T regulatory bias was seen in epitope-vaccinated mice. This study provides the first proof-of-concept for using HLA DR tg "humanized" mice for studying the potential tick protective effects of immunoinformatic- or otherwise-derived tick salivary components as tickborne disease vaccines.
Collapse
Key Words
- ATR, Acquired tick resistance
- B6, C57BL/6
- Bb, Borrelia burgdorferi; Mn, Mus musculus
- ConA, Concanavalin A
- EpiMatrix
- HLA DR3, Human leukocyte antigen, D related 3
- IFN-γ, Interferon gamma
- IL-4, Interleukin-4
- Ixodes scapularis
- LPP, Liposomal peptide pool
- Lyme disease
- NPP, Naked peptide pool
- NR, No response
- SFC, Spot forming cells
- SGH, Salivary gland homogenate
- TBD, Tickborne disease
- epitope discovery
- epitope-based vaccine
- immunization
- immunoinformatic
- salivary gland
- tg, Transgenic
- tick protective vaccine
- transgenic mouse model
Collapse
Affiliation(s)
- Wendy M C Shattuck
- a Center for Vector-Borne Disease ; University of Rhode Island ; Kingston , RI USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Synthetic Long Peptide Derived from Mycobacterium tuberculosis Latency Antigen Rv1733c Protects against Tuberculosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015. [PMID: 26202436 DOI: 10.1128/cvi.00271-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Responsible for 9 million new cases of active disease and nearly 2 million deaths each year, tuberculosis (TB) remains a global health threat of overwhelming dimensions. Mycobacterium bovis BCG, the only licensed vaccine available, fails to confer lifelong protection and to prevent reactivation of latent infection. Although 15 new vaccine candidates are now in clinical trials, an effective vaccine against TB remains elusive, and new strategies for vaccination are vital. BCG vaccination fails to induce immunity against Mycobacterium tuberculosis latency antigens. Synthetic long peptides (SLPs) combined with adjuvants have been studied mostly for therapeutic cancer vaccines, yet not for TB, and proved to induce efficient antitumor immunity. This study investigated an SLP derived from Rv1733c, a major M. tuberculosis latency antigen which is highly expressed by "dormant" M. tuberculosis and well recognized by T cells from latently M. tuberculosis-infected individuals. In order to assess its in vivo immunogenicity and protective capacity, Rv1733c SLP in CpG was administered to HLA-DR3 transgenic mice. Immunization with Rv1733c SLP elicited gamma interferon-positive/tumor necrosis factor-positive (IFN-γ(+)/TNF(+)) and IFN-γ(+) CD4(+) T cells and Rv1733c-specific antibodies and led to a significant reduction in the bacterial load in the lungs of M. tuberculosis-challenged mice. This was observed both in a pre- and in a post-M. tuberculosis challenge setting. Moreover, Rv1733c SLP immunization significantly boosted the protective efficacy of BCG, demonstrating the potential of M. tuberculosis latency antigens to improve BCG efficacy. These data suggest a promising role for M. tuberculosis latency antigen Rv1733c-derived SLPs as a novel TB vaccine approach, both in a prophylactic and in a postinfection setting.
Collapse
|
22
|
Korneychuk N, Meresse B, Cerf-Bensussan N. Lessons from rodent models in celiac disease. Mucosal Immunol 2015; 8:18-28. [PMID: 25354320 DOI: 10.1038/mi.2014.102] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/23/2014] [Indexed: 02/04/2023]
Abstract
Over the past 25 years, studies led in humans have considerably improved our understanding of celiac disease, a complex disease that is generally defined as an autoimmune-like enteropathy induced by dietary gluten in genetically predisposed individuals. Recently, large efforts were also invested in the development of mouse models in order to explore pathogenic hypotheses, and also with the goal to design pretherapeutic models that could be used to test innovative therapies. Yet, modeling this complex multifactorial disease has been a very challenging task. Herein, we review how approaches in rodents have provided insight into celiac disease pathophysiology and also highlight the difficulties met to fully recapitulate the human disease.
Collapse
Affiliation(s)
- N Korneychuk
- 1] INSERM UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, Paris, France [2] Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, Paris, France
| | - B Meresse
- 1] INSERM UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, Paris, France [2] Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, Paris, France
| | - N Cerf-Bensussan
- 1] INSERM UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, Paris, France [2] Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, Paris, France
| |
Collapse
|
23
|
Abstract
INTRODUCTION HIV research is limited by the fact that lentiviruses are highly species specific. The need for appropriate models to promote research has led to the development of many elaborate surrogate animal models. AREAS COVERED This review looks at the history of animal models for HIV research. Although natural animal lentivirus infections and chimeric viruses such as chimera between HIV and simian immunodeficiency virus and simian-tropic HIV are briefly discussed, the main focus is on small animal models, including the complex design of the 'humanized' mouse. The review also traces the historic evolution and milestones as well as depicting current models and future prospects for HIV research. EXPERT OPINION HIV research is a complex and challenging task that is highly manpower-, money- and time-consuming. Besides factors such as hypervariability and latency, the lack of appropriate animal models that exhibit and recapitulate the entire infectious process of HIV, is one of the reasons behind the failure to eliminate the lentivirus from the human population. This obstacle has led to the exploitation and further development of many sophisticated surrogate animal models for HIV research. While there is no animal model that perfectly mirrors and mimics HIV infections in humans, there are a variety of host species and viruses that complement each other. Combining the insights from each model, and critically comparing the results obtained with data from human clinical trials should help expand our understanding of HIV pathogenesis and drive future drug development.
Collapse
Affiliation(s)
- Katja Sliva
- Paul-Ehrlich-Institute, Department of Virology, Section 2/2 AIDS, New and Emerging pathogens , Paul-Ehrlich Strasse 51-59, 63225 Langen , Germany +0049 6103 774017 ; +0049 6103 771234 ;
| |
Collapse
|
24
|
Choi YS, Lee DH, Shin EC. Relationship between Poor Immunogenicity of HLA-A2-Restricted Peptide Epitopes and Paucity of Naïve CD8(+) T-Cell Precursors in HLA-A2-Transgenic Mice. Immune Netw 2014; 14:219-25. [PMID: 25177254 PMCID: PMC4148492 DOI: 10.4110/in.2014.14.4.219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 07/26/2014] [Accepted: 08/01/2014] [Indexed: 12/26/2022] Open
Abstract
We examined the immunogenicity of H-2 class I-restricted and HLA-A2-restricted epitopes through peptide immunization of HLA-A2-transgenic mice that also express mouse H-2 class I molecules. All four of the tested epitopes restricted by H-2 class I robustly elicited T-cell responses, but four of seven epitopes restricted by HLA-A2 did not induce T-cell responses, showing that HLA-A2-restricted peptide epitopes tend to be poorly immunogenic in HLA-A2-transgenic mice. This finding was confirmed in HLA-A2-transgenic mice infected with a recombinant vaccinia virus expressing hepatitis C virus proteins. We examined the precursor frequency of epitope-specific naïve CD8(+) T cells in HLA-A2-transgenic and conventional C57BL/6 mice and found that the poor immunogenicity of HLA-A2-restricted peptide epitopes is related to the paucity of naïve CD8(+) T-cell precursors in HLA-A2-transgenic mice. These results provide direction for the improvement of mouse models to study epitope repertoires and the immunodominance of human T-cell responses.
Collapse
Affiliation(s)
- Yoon Seok Choi
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea. ; Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon 301-721, Korea
| | - Dong Ho Lee
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| |
Collapse
|
25
|
Abstract
Collagen-induced arthritis (CIA), the classical animal model for experimental arthritis, resembles human rheumatoid arthritis in several aspects. However, the most widely used method of inducing CIA utilizes Freund's adjuvants, which can skew the elicited immune responses and also pose toxicity problems. This unit describes a new method of inducing CIA using a well defined stimuli-responsive synthetic polymer, poly-N-isopropylacrylamide-based adjuvant, mixed with the joint cartilage protein collagen type II (CII). PNiPAAm as an adjuvant is biodegradable and biocompatible, and does not skew immune responses. Thus, it is helpful in the development of arthritis models for studying antigen and tissue -specific autoimmune responses in an unbiased manner. This model is valuable for analyzing disease pathways, positional identification of genes regulating arthritis, validation of existing therapies, and exploring new therapeutic targets. Furthermore, this newly developed PNiPAAm adjuvant allows investigation of disease induction using specific autoantigens in several autoimmune diseases independently of toll-like receptors, as well as optimization of vaccine delivery systems for infectious diseases.
Collapse
|
26
|
Rowley MJ, Nandakumar KS, Holmdahl R. The role of collagen antibodies in mediating arthritis. Mod Rheumatol 2014. [DOI: 10.3109/s10165-008-0080-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Büchner SM, Sliva K, Bonig H, Völker I, Waibler Z, Kirberg J, Schnierle BS. Delayed onset of graft-versus-host disease in immunodeficent human leucocyte antigen-DQ8 transgenic, murine major histocompatibility complex class II-deficient mice repopulated by human peripheral blood mononuclear cells. Clin Exp Immunol 2013; 173:355-64. [PMID: 23607364 DOI: 10.1111/cei.12121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2013] [Indexed: 01/16/2023] Open
Abstract
Haematopoietic humanization of mice is used frequently to study the human immune system and its reaction upon experimental intervention. Immunocompromised non-obese diabetic (NOD)-Rag1(-/-) mice, additionally deficient for the common gamma chain of cytokine receptors (γc) (NOD-Rag1(-/-) γc(-/-) mice), lack B, T and natural killer (NK) cells and allow for efficient human peripheral mononuclear cell (PBMC) engraftment. However, a major experimental drawback for studies using these mice is the rapid onset of graft-versus-host disease (GVHD). In order to elucidate the contribution of the xenogenic murine major histocompatibility complex (MHC) class II in this context, we generated immunodeficient mice expressing human MHC class II [human leucocyte antigen (HLA)-DQ8] on a mouse class II-deficient background (Aβ(-/-) ). We studied repopulation and onset of GVHD in these mouse strains following transplantation of DQ8 haplotype-matched human PBMCs. The presence of HLA class II promoted the repopulation rates significantly in these mice. Virtually all the engrafted cells were CD3(+) T cells. The presence of HLA class II did not advance B cell engraftment, such that humoral immune responses were undetectable. However, the overall survival of DQ8-expressing mice was prolonged significantly compared to mice expressing mouse MHC class II molecules, and correlated with an increased time span until onset of GVHD. Our data thus demonstrate that this new mouse strain is useful to study GVHD, and the prolonged animal survival and engraftment rates make it superior for experimental intervention following PBMC engraftment.
Collapse
Affiliation(s)
- S M Büchner
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Scheer N, Snaith M, Wolf CR, Seibler J. Generation and utility of genetically humanized mouse models. Drug Discov Today 2013; 18:1200-11. [PMID: 23872278 DOI: 10.1016/j.drudis.2013.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/20/2013] [Accepted: 07/11/2013] [Indexed: 01/15/2023]
Abstract
Identifying in vivo models that are naturally predictive for particular areas of study in humans can be challenging due to the divergence that has occurred during speciation. One solution to this challenge that is gaining increasing traction is the use of genetic engineering to introduce human genes into mice to generate superior models for predicting human responses. This review describes the state-of-the-art for generating such models, provides an overview of the types of genetically humanized mouse models described to date and their applications in basic research, drug discovery and development and to understand clinical drug toxicity. We discuss limitations and explore promising future directions for the use of genetically humanized mice to further improve translational research.
Collapse
Affiliation(s)
- Nico Scheer
- TaconicArtemis, Neurather Ring 1, Koeln 51063, Germany.
| | | | | | | |
Collapse
|
29
|
Aspord C, Yu CI, Banchereau J, Palucka AK. Humanized mice for the development and testing of human vaccines. Expert Opin Drug Discov 2013; 2:949-60. [PMID: 23484815 DOI: 10.1517/17460441.2.7.949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mouse models of human disease form a link between genetics and biology. However, mice and humans differ in many aspects of immune system biology. These differences might explain, in part, why many successful preclinical immunotherapy studies in mice turn out to be unsuccessful when used in clinical trials in humans. Pioneering studies in the late 1980s demonstrated the reconstitution of human lympho-hematopoietic cells in immunodeficient mice. Since this time, immunodeficient mice are being tested as hosts for human hematopoietic organs or cells in an effort to create an in vivo model of the complete human immune system. Such Humouse models could permit us to generate and test novel human vaccines.
Collapse
Affiliation(s)
- Caroline Aspord
- Baylor Institute for Immunology Research and Baylor NIAID Cooperative Center for Translational Research on Human Immunology and Biodefense, Dallas, TX75204, USA +1 214 820 7450 ; +1 214 820 4813 ;
| | | | | | | |
Collapse
|
30
|
Abstract
B cells have been implicated both with pathogenic as well as protective capabilities in induction and regulation of autoimmune diseases. Rheumatoid arthritis (RA) is an autoimmune disease that occurs more often in women than men. A significant role of B cells as antibody producing and antigen-presenting cells has been demonstrated in RA. Predisposition to RA is associated with the presence of certain HLA class II alleles that share sequences with DRB1*0401. To determine the role of HLA genes and B cells in vivo, we have generated transgenic mice carrying HLA genes, DRB1*0401 and DQ8, known to be associated with susceptibility to RA. Humanized mice can be induced to develop arthritis that mimics human disease in clinical, histopathological and sex bias. Effect of hormones on immune cells and their function has been described in humans and mice and has been suggested to be the major reason for female bias of autoimmune diseases. An immune response to an antigen requires presentation by HLA molecules thus suggesting a critical role of MHC in combination with sex hormones in susceptibility to develop rheumatoid arthritis. Based on our observations, we hypothesize that modulation of B cells by estrogen, presentation of modified antigens by DR4 and production of antigen-specific B cell modulating cytokines leads to autoreactivity in females. These data suggest that considering patient's sex may be crucial in selecting the optimal treatment strategy. Humanized mice expressing RA susceptible and resistant haplotype provide a means to investigate mechanism sex-bias of arthritis and future strategies for therapy.
Collapse
Affiliation(s)
- David Luckey
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
31
|
Scotto M, Afonso G, Larger E, Raverdy C, Lemonnier F, Carel J, Dubois-Laforgue D, Baz B, Levy D, Gautier J, Launey O, Bruno G, Boitard C, Sechi L, Hutton J, Davidson H, Mallone R. Zinc transporter (ZnT)8(186-194) is an immunodominant CD8+ T cell epitope in HLA-A2+ type 1 diabetic patients. Diabetologia 2012; 55:2026-31. [PMID: 22526607 PMCID: PMC3740540 DOI: 10.1007/s00125-012-2543-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/06/2012] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS Anti-zinc transporter (ZnT)8 autoantibodies are commonly detected in type 1 diabetic patients. We hypothesised that ZnT8 is also recognised by CD8(+) T cells and aimed to identify HLA-A2 (A*02:01)-restricted epitope targets. METHODS Candidate epitopes were selected by ZnT8 plasmid DNA immunisation of HLA-A2/DQ8 transgenic mice and tested for T cell recognition in peripheral blood mononuclear cells of type 1 diabetic, type 2 diabetic and healthy participants by IFN-γ enzyme-linked immunospot. RESULTS White HLA-A2(+) adults (83%) and children (60%) with type 1 diabetes displayed ZnT8-reactive CD8(+) T cells that recognised a single ZnT8(186-194) (VAANIVLTV) epitope. This ZnT8(186-194)-reactive fraction accounted for 50% to 53% of total ZnT8-specific CD8(+) T cells. Another sequence, ZnT8(153-161) (VVTGVLVYL), was recognised in 20% and 25% of type 1 diabetic adults and children, respectively. Both epitopes were type 1 diabetes-specific, being marginally recognised by type 2 diabetic and healthy participants (7-12% for ZnT8(186-194), 0% for ZnT8(153-161)). CONCLUSIONS/INTERPRETATION ZnT8-reactive CD8(+) T cells are predominantly directed against the ZnT8(186-194) epitope and are detected in a majority of type 1 diabetic patients. The exceptional immunodominance of ZnT8(186-194) may point to common environmental triggers precipitating beta cell autoimmunity.
Collapse
Affiliation(s)
- M. Scotto
- INSERM, U986, DeAR Lab Avenir, Cochin-Saint Vincent de Paul Hospital, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - G. Afonso
- INSERM, U986, DeAR Lab Avenir, Cochin-Saint Vincent de Paul Hospital, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - E. Larger
- Paris Descartes University, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Assistance Publique – Hôpitaux de Paris, Cochin-Hôtel Dieu Hospital, Department of Diabetology, Paris, France
| | - C. Raverdy
- Assistance Publique - Hôpitaux de Paris, Robert Debré Hospital, Department of Pediatric Endocrinology and Diabetes, Paris, France
- Paris 7 Denis Diderot University, Paris, France
| | - F.A. Lemonnier
- INSERM, U986, DeAR Lab Avenir, Cochin-Saint Vincent de Paul Hospital, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - J.C. Carel
- Assistance Publique - Hôpitaux de Paris, Robert Debré Hospital, Department of Pediatric Endocrinology and Diabetes, Paris, France
- Paris 7 Denis Diderot University, Paris, France
| | - D. Dubois-Laforgue
- Paris Descartes University, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Assistance Publique – Hôpitaux de Paris, Cochin-Hôtel Dieu Hospital, Department of Diabetology, Paris, France
| | - B. Baz
- Paris 7 Denis Diderot University, Paris, France
- Assistance Publique - Hôpitaux de Paris, Saint Louis Hospital, Department of Diabetology, Paris, France
| | - D. Levy
- Assistance Publique – Hôpitaux de Paris, Cochin-Hôtel Dieu Hospital, Department of Diabetology, Paris, France
| | - J.F. Gautier
- Paris 7 Denis Diderot University, Paris, France
- Assistance Publique - Hôpitaux de Paris, Saint Louis Hospital, Department of Diabetology, Paris, France
| | - O. Launey
- INSERM CIC BT505, Assistance Publique - Hôpitaux de Paris, Cochin-Hôtel Dieu Hospital, Centre d’Investigation Clinique de Vaccinologie Cochin Pasteur, Paris, France
| | - G. Bruno
- University of Turin, Departement of Internal Medicine, Turin, Italy
| | - C. Boitard
- INSERM, U986, DeAR Lab Avenir, Cochin-Saint Vincent de Paul Hospital, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Assistance Publique – Hôpitaux de Paris, Cochin-Hôtel Dieu Hospital, Department of Diabetology, Paris, France
| | - L.A. Sechi
- Università degli Studi di Sassari, Department of Biomedical Sciences, Section of Microbiology and Virology, Sassari, Italy
| | - J.C. Hutton
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, USA
| | - H.W. Davidson
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, USA
| | - R. Mallone
- INSERM, U986, DeAR Lab Avenir, Cochin-Saint Vincent de Paul Hospital, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Assistance Publique – Hôpitaux de Paris, Cochin-Hôtel Dieu Hospital, Department of Diabetology, Paris, France
| |
Collapse
|
32
|
Abstract
Human leukocyte antigen (HLA) genes are the most polymorphic in the human genome. They play a pivotal role in the immune response and have been implicated in numerous human pathologies, especially autoimmunity and infectious diseases. Despite their importance, however, they are rarely characterized comprehensively because of the prohibitive cost of standard technologies and the technical challenges of accurately discriminating between these highly related genes and their many allelles. Here we demonstrate a high-resolution, and cost-effective methodology to type HLA genes by sequencing, which combines the advantage of long-range amplification, the power of high-throughput sequencing platforms, and a unique genotyping algorithm. We calibrated our method for HLA-A, -B, -C, and -DRB1 genes with both reference cell lines and clinical samples and identified several previously undescribed alleles with mismatches, insertions, and deletions. We have further demonstrated the utility of this method in a clinical setting by typing five clinical samples in an Illumina MiSeq instrument with a 5-d turnaround. Overall, this technology has the capacity to deliver low-cost, high-throughput, and accurate HLA typing by multiplexing thousands of samples in a single sequencing run, which will enable comprehensive disease-association studies with large cohorts. Furthermore, this approach can also be extended to include other polymorphic genes.
Collapse
|
33
|
Guerino MT, Postol E, Demarchi LMF, Martins CO, Mundel LR, Kalil J, Guilherme L. HLA class II transgenic mice develop a safe and long lasting immune response against StreptInCor, an anti-group A streptococcus vaccine candidate. Vaccine 2011; 29:8250-6. [PMID: 21907752 DOI: 10.1016/j.vaccine.2011.08.113] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/24/2011] [Accepted: 08/28/2011] [Indexed: 11/19/2022]
Abstract
Streptococcus pyogenes infections remain a health problem in several countries because of post-streptococcal sequelae, such as rheumatic fever and rheumatic heart disease. We developed a vaccine epitope (StreptInCor) composed of 55 amino acid residues of the C-terminal portion of the M protein that encompasses both T and B cell protective epitopes. Recently, by using human blood samples, we showed that the StreptInCor epitope is able to bind to different HLA class II molecules and that it could be considered a universal vaccine epitope. In the present work, we evaluated the immune response of HLA class II transgenic mice against aluminum hydroxide-absorbed StreptInCor. After a period of one year, several organs were analyzed histologically to verify the safety of the candidate vaccine epitope. Our results showed that StreptInCor is able to induce robust and safe and long lasting immune response without deleterious reactions in several organs. In conclusion, the results presented here indicate that StreptInCor could be considered a safe vaccine against severe streptococcus-induced diseases.
Collapse
|
34
|
David C. WITHDRAWN: A brief autobiography. J Autoimmun 2011:S0896-8411(11)00065-5. [PMID: 22196922 DOI: 10.1016/j.jaut.2011.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, doi:10.1016/j.jaut.2011.05.017 The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- Chella David
- Department of Immunology, Mayo Clinic and Medical School, Rochester, MN 55905, USA
| |
Collapse
|
35
|
Behrens M, Papadopoulos GK, Moustakas A, Smart M, Luthra H, David CS, Taneja V. Trans heterodimer between two non-arthritis-associated HLA alleles can predispose to arthritis in humanized mice. ACTA ACUST UNITED AC 2011; 63:1552-61. [PMID: 21305521 DOI: 10.1002/art.30260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Certain HLA class II alleles are associated with susceptibility to the development of arthritis. However, the development of arthritis in some persons carrying non-rheumatoid arthritis (RA)-associated alleles remains unexplained. An individual who is heterozygous for the DQA1 and DQB1 genes can express the DQ molecule in cis or trans heterodimers. In a cis heterodimer, the α-chain interacts with the β-chain coded by the same chromosome, while in a trans heterodimer it interacts with the β-chain on the other chromosome. In this study, we used a humanized mouse model of arthritis in an attempt to determine whether a trans heterodimer of 2 nonassociated alleles, DQB1*0601 and DQB1*0604, can predispose to arthritis. METHODS DQB1*0601 and *0604 occur in linkage with DQA1*0103 and *0102, respectively. To understand the role of trans heterodimers, we generated DQB1*0604/DQA1*0103-transgenic mice lacking endogenous HLA class II molecules. RESULTS Severe arthritis developed in the DQB1*0604/A1*0103-trangenic mice, and an antigen-specific response was generated in vitro. DQB1*0604/DQA1*0103 presented type II collagen-derived peptides that were not presented by the arthritis-resistant DQB1*0601 allele, suggesting that trans heterodimer molecules between 2 DQB1 and DQA1 molecules may result in the presentation of unique antigens and susceptibility to the development of arthritis. Molecular modeling of type II collagen peptides showed that DQB1*0604/DQA1*0103 shares a p4 pocket with the arthritis-susceptible DQB1*0302 allele, suggesting a critical role of the p4 and p9 pockets in susceptibility to arthritis. CONCLUSION These results provide a possible explanation for the parental inheritance of nonsusceptibility alleles in some patients with RA and a mechanism by which they can predispose to the development of arthritis.
Collapse
Affiliation(s)
- Marshall Behrens
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Mattapallil MJ, Silver PB, Mattapallil JJ, Horai R, Karabekian Z, McDowell JH, Chan CC, James EA, Kwok WW, Sen HN, Nussenblatt RB, David CS, Caspi RR. Uveitis-associated epitopes of retinal antigens are pathogenic in the humanized mouse model of uveitis and identify autoaggressive T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:1977-85. [PMID: 21765017 PMCID: PMC3150271 DOI: 10.4049/jimmunol.1101247] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Noninfectious uveitis is a leading cause of blindness and thought to involve autoimmune T cell responses to retinal proteins (e.g., retinal arrestin [soluble-Ag (S-Ag)]). There are no known biomarkers for the disease. Susceptibility is associated with HLA, but little is known about susceptible class II alleles or the potentially pathogenic epitopes that they present. Using a humanized HLA-transgenic mouse model of S-Ag-induced autoimmune uveitis, we identified several susceptible and resistant alleles of HLA-DR and -DQ genes and defined pathogenic epitopes of S-Ag presented by the susceptible alleles. The sequences of these epitopes overlap with some previously identified peptides of S-Ag ("M" and "N"), known to elicit memory responses in lymphocytes of uveitis patients. HLA-DR-restricted, S-Ag-specific CD4(+) T cells could be detected in blood and draining lymph nodes of uveitic mice with HLA class II tetramers and transferred the disease to healthy mice. Importantly, tetramer-positive cells were detected in peripheral blood of a uveitis patient. To our knowledge, these findings provide the first tangible evidence that an autoimmune response to retina is causally involved in pathogenesis of human uveitis, demonstrating the feasibility of identifying and isolating retinal Ag-specific T cells from uveitis patients and may facilitate their development as biomarkers for the disease.
Collapse
Affiliation(s)
- Mary J Mattapallil
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Behrens M, Smart M, Luckey D, Luthra H, Taneja V. To B or not to B: role of B cells in pathogenesis of arthritis in HLA transgenic mice. J Autoimmun 2011; 37:95-103. [PMID: 21665435 DOI: 10.1016/j.jaut.2011.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 05/02/2011] [Indexed: 10/18/2022]
Abstract
Population studies have shown that amongst all the genetic factors linked with autoimmune disease development, MHC class II genes are the most significant. Experimental autoimmune arthritis resembling human rheumatoid arthritis (RA) can be induced in susceptible strains of mice following immunization with type II collagen (CIA). We generated transgenic mice lacking endogenous class II molecules and expressing various HLA genes including RA-associated, HLA-DRB1*0401 and HLA-DQ8, and RA-resistant, DRB1*0402, genes. The HLA molecules in these mice are expressed on the cell surface and can positively select CD4+ T cells expressing various Vβ T cell receptors. Endogenous class II invariant chain is required for proper functioning of the class II transgene. Arthritis development in transgenic mice is CD4+ and B cells dependent. Studies in humanized mice showed that B cells are required as antigen presenting cells in addition to antibody producing cells for the development of CIA. The transgenic mice expressing *0401 and *0401/DQ8 genes developed sex-biased arthritis with predominantly females being affected, similar to that of human RA. Further, the transgenic mice produced autoantibodies like rheumatoid factor and anti-cyclic antibodies. Antigen presentation by B cells leads to a sex-specific immune response in DRB1*0401 mice suggesting a role of B cells and HLA-DR in rendering susceptibility to develop arthritis in females.
Collapse
Affiliation(s)
- Marshall Behrens
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, United States
| | | | | | | | | |
Collapse
|
38
|
Chella David: a lifetime contribution in translational immunology. J Autoimmun 2011; 37:59-62. [PMID: 21621385 DOI: 10.1016/j.jaut.2011.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 05/02/2011] [Indexed: 11/22/2022]
Abstract
Immunology, like most scientific disciplines, is filled with buzz words. One such buzz word or term has been coined "translational immunology". Indeed, translational research is amongst the most popular expressions used to justify the use of basic research in the hopes that such research will lead to solutions to clinical problems. In fact, no such justification is needed and some of the most important observations in clinical medicine have been derived from basic science; basic science that had no idea at its time of its usefulness in clinical medicine. This special issue is devoted to Chella David. Chella's contributions in immunology have been legion. Before inbred mice became popular, long before multi-million dollar companies were developed to develop such models, Chella David was hard at the bench studying the genetics of the murine immune system and the importance of such mouse models in autoimmune diseases. Importantly, Dr. David provided animals without strings, without the burdens of MTAs, that now impede research. Chella has been generous with his time, with his reagents, and has been a caring and devoted mentor to generations of students. This issue is part of our series to recognize autoimmunologists and dedicated themes that include papers in multiple disciplines of immunology, but especially are focused on cutting-edge applications that will improve clinical therapeutics. Chella David, at age 75, is an athlete in immunology and still keeps going with the same enthusiasm as manifest as a young post-doc.
Collapse
|
39
|
Taneja V, David CS. Role of HLA class II genes in susceptibility/resistance to inflammatory arthritis: studies with humanized mice. Immunol Rev 2010; 233:62-78. [PMID: 20192993 DOI: 10.1111/j.0105-2896.2009.00858.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Predisposition to develop rheumatoid arthritis (RA) has been associated with certain human leukocyte antigen (HLA) class II molecules, although the mechanism is still unknown. Various experimental animal models of inflammatory arthritis have been studied to address the role of major histocompatibility complex (MHC) genes in pathogenesis. We have generated transgenic mice expressing HLA class II molecules (DR and DQ) lacking complete endogenous class II molecules to study the interactions involved between class II molecules (DQ and DR) and to define the immunologic mechanisms in inflammatory arthritis. The HLA transgene can positively select CD4(+) T cells expressing various V beta T-cell receptors, and a peripheral tolerance is maintained to transgenic HLA molecules. The expression of HLA molecules on various cells in these mice is similar to that known in humans. In this review, we describe collagen-induced arthritis as a model for human inflammatory arthritis using these transgenic mice. The transgenic mice carrying RA-susceptible haplotype develop gender-biased inflammatory arthritis with clinical and histopathological similarities to RA. Our studies show that polymorphism of HLA class II genes determine the predisposition to rheumatoid/inflammatory arthritis and the epistatic interactions between HLA-DQ and HLA-DR molecules dictate the severity, progression, and modulation of the disease.
Collapse
Affiliation(s)
- Veena Taneja
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
40
|
Jiang C, Deshmukh US, Gaskin F, Bagavant H, Hanson J, David CS, Fu SM. Differential responses to Smith D autoantigen by mice with HLA-DR and HLA-DQ transgenes: dominant responses by HLA-DR3 transgenic mice with diversification of autoantibodies to small nuclear ribonucleoprotein, double-stranded DNA, and nuclear antigens. THE JOURNAL OF IMMUNOLOGY 2009; 184:1085-91. [PMID: 20007529 DOI: 10.4049/jimmunol.0902670] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Anti-Smith (Sm) D autoantibodies are specific for systemic lupus erythematosus. In this investigation, the influence of HLA-D genes on immune responses to SmD was investigated. Mice with HLA-DR3, HLA-DR4, HLA-DQ0601, HLA-DQ0604, or HLA-DQ8 transgenes were immunized with recombinant SmD1, and their Ab responses were analyzed. Analysis by ELISA showed that all strains responded well to SmD. However, when synthetic SmD peptides were used as substrate, DR3 mice had the highest Ab response followed by DQ8, DQ0604, DQ0601, and DR4. A similar trend was observed in Western blot analysis using WEHI 7.1 cell lysate as the substrate, with the exception that DR4 mice did not generate detectable amounts of Abs. Only sera from DR3 and DQ0604 mice immunoprecipitated A-ribonucleoprotein (RNP), SmB, and SmD. Intermolecular epitope spreading to A-RNP and SmB was evident in DR3 and DQ0604 mice, as sera depleted of anti-SmD Abs were reactive with these proteins. DR3 mice also generated an immune response to C-RNP. Anti-nuclear Abs were detected in the majority of the DR3 mice, whereas moderate reactivities were seen in DQ0604 and DQ8 mice. Interestingly, only DR3 mice mounted an anti-dsDNA Ab response. Approximately half of the anti-dsDNA Abs were cross-reactive with SmD. Ab responses correlated with the strength of the T cell responses. Thus, HLA-DR3 appears to be the dominant HLA-D gene that determines the magnitude and quality of the anti-SmD immune response. In addition, our findings provide insights into the origin of the anti-dsDNA Abs often detected in patients with systemic lupus erythematosus.
Collapse
Affiliation(s)
- Chao Jiang
- Division of Rheumatology and Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Most individuals have viral infections at some point in their life, however, only few develop autoreactivity to cardiac myosin following infection suggesting a genetic predisposition. Population studies have shown that among all the genetic factors linked with autoimmune disease development, MHC class II genes are the most significant genetic factors. Experimental autoimmune myocarditis resembling human Dilated cardiomyopathy can be induced in susceptible mice by infection with coxsackie virus as well as immunization with purified foreign and murine cardiac specific a-myosin. We generated transgenic mice lacking endogenous class II molecules, HLA-DR3.Abo and HLA-DQ8.Abo transgenic mice in NOD and HLA-DQ8.Abo in B10 background, to study the role of MHC in spontaneous autoimmunity. The HLA molecules in these mice are expressed on cell surface and can positively select CD4+ T cells expressing various Vb T cell receptors. NOD.DQ8 female mice spontaneously developed myocarditis and dilated cardiomyopathy. Histopathology of heart revealed mononuclear infiltrate consisting of CD4 and Mac-1+ cells and myocyte necrosis. NOD.DQ8 mice showed cellular and humoral autoreactive response to self cardiac myosin.. Depletion of CD8 and CD4 + cells suggested that CD8 T cells may act as regulatory cells while CD4 cells are required as effector cells. NOD.DR3 and B10.DQ8 mice did not develop any cardiac pathology suggesting DQ8 is required for predisposition to the spontaneous autoreactivity while NOD background influences onset and progression of disease. Thus these mice provide powerful tools to understand the role of HLA class II molecules in predisposition and onset of human diseases and to develop immunotherapy.
Collapse
|
42
|
Mix H, Weiler-Normann C, Thimme R, Ahlenstiel G, Shin EC, Herkel J, David CS, Lohse AW, Rehermann B. Identification of CD4 T-cell epitopes in soluble liver antigen/liver pancreas autoantigen in autoimmune hepatitis. Gastroenterology 2008; 135:2107-18. [PMID: 18773898 PMCID: PMC2708941 DOI: 10.1053/j.gastro.2008.07.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 07/14/2008] [Accepted: 07/17/2008] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease associated with autoantibodies and liver-infiltrating lymphocytes. Although autoantibodies are tested routinely to diagnose and classify AIH, liver-infiltrating lymphocytes are regarded as the primary factor for disease pathogenesis. The purpose of this study was to identify and characterize autoantigenic peptides within human AIH-specific soluble liver antigen/liver pancreas antigen (SLA/LP) that are targeted by CD4(+) T cells and restricted by the disease susceptibility gene HLA-DRB1*0301. METHODS HLA-DRB1*0301 transgenic mice were immunized with SLA/LP. Antibody and T-cell responses were analyzed with SLA/LP-overlapping peptides in enzyme immunoassay, proliferation, and enzyme-linked immunospot (ELISpot) assays. Minimal optimal T-cell epitopes were identified, characterized with cloned T-cell hybridomas, and confirmed in tetramer and ELISpot assays with AIH patients' peripheral blood mononuclear cells. RESULTS All mice developed SLA/LP-specific IgG1/IgG2a antibodies against the same SLA/LP peptides as human beings. T cells targeted several peptides within SLA/LP, 2 of which were DR3-restricted and one overlapped the sequence recognized by human autoantibodies. Minimal optimal epitopes were mapped, DRB1*0301/epitope-tetramers were generated, and the frequency and function of HLA-DRB1*0301-restricted autoantigen-specific T cells in AIH patients were analyzed with tetramer and interferon-gamma ELISpot assays. CONCLUSIONS This study identified T-cell epitopes within SLA/LP, restricted by the disease susceptibility gene DRB1*0301 and in close proximity to the human autoantibody epitope. These results and the generated reagents now provide the opportunity to directly monitor autoreactive T cells in AIH patients in clinical studies.
Collapse
Affiliation(s)
- Heiko Mix
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892
| | - Christina Weiler-Normann
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892, I. Medizinische Klinik, Universitätsklinikum Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Robert Thimme
- Abteilung Innere Medizin II, Medizinische Universitätsklinik, 79106 Freiburg, Germany
| | - Golo Ahlenstiel
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892
| | - Eui-Cheol Shin
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892
| | - Johannes Herkel
- I. Medizinische Klinik, Universitätsklinikum Hamburg Eppendorf, 20246 Hamburg, Germany, I. Medizinische Klinik, Johannes Gutenberg Universität, 55101 Mainz, Germany
| | - Chella S. David
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Ansgar W. Lohse
- I. Medizinische Klinik, Universitätsklinikum Hamburg Eppendorf, 20246 Hamburg, Germany, I. Medizinische Klinik, Johannes Gutenberg Universität, 55101 Mainz, Germany
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892
| |
Collapse
|
43
|
Ulrich RG. Vaccine based on a ubiquitous cysteinyl protease and streptococcal pyrogenic exotoxin A protects against Streptococcus pyogenes sepsis and toxic shock. JOURNAL OF IMMUNE BASED THERAPIES AND VACCINES 2008; 6:8. [PMID: 18976486 PMCID: PMC2585077 DOI: 10.1186/1476-8518-6-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Accepted: 10/31/2008] [Indexed: 05/25/2023]
Abstract
Background The gram-positive bacterium Streptococcus pyogenes is a common pathogen of humans that causes invasive infections, toxic-shock syndrome, rheumatic fever, necrotizing fasciitis and other diseases. Detection of antibiotic resistance in clinical isolates has renewed interest in development of new vaccine approaches for control S. pyogenes sepsis. In the study presented, a novel protein vaccine was examined. The vaccine was based on a recombinant protein fusion between streptococcal pyrogenic exotoxin B (SpeB), a cysteinyl protease expressed by all clinical isolates, and streptococcal pyrogenic exotoxin A (SpeA), a superantigen produced by a large subset of isolates. Results A novel protein was produced by mutating the catalytic site of SpeB and the receptor binding surface of SpeA in a fusion of the two polypeptides. Vaccination of HLA-DQ8 transgenic mice with the SpeA-SpeB fusion protein protected against a challenge with the wild-type SpeA that was lethal to naïve controls, and vaccinated mice were protected from an otherwise lethal S. pyogenes infection. Conclusion These results suggest that the genetically attenuated SpeA-SpeB fusion protein may be useful for controlling S. pyogenes infections. Vaccination with the SpeA-SpeB fusion protein described in this study may potentially result in protective immunity against multiple isolates of S. pyogenes due to the extensive antibody cross-reactivity previously observed among all sequence variants of SpeB and the high frequency of SpeA-producing strains.
Collapse
Affiliation(s)
- Robert G Ulrich
- Laboratory of Molecular Immunology, Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, USA.
| |
Collapse
|
44
|
Rowley MJ, Nandakumar KS, Holmdahl R. The role of collagen antibodies in mediating arthritis. Mod Rheumatol 2008; 18:429-41. [PMID: 18521704 DOI: 10.1007/s10165-008-0080-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 04/07/2008] [Indexed: 11/24/2022]
Abstract
This review examines evidence that rheumatoid arthritis (RA) depends on autoimmunity to articular collagen, and mechanisms whereby autoantibodies to type II collagen contribute to disease development. Three major autoantigenic reactants have been identified in RA; the corresponding autoantibodies are rheumatoid factor (RF), antibodies to citrullinated peptide antigens (ACPA), citrullinated peptides (anti-CCP), and anti-type II collagen (anti-CII). Both RF and ACPA are well-validated and predictive markers of severe erosive RA, but cannot be linked to pathogenesis. By contrast, in various animal species immunized with CII there occurs an erosive inflammatory arthritis resembling that seen in human RA, together with antibodies to CII with an epitope specificity similar to that in RA. We discuss the well-known role of immune complexes in the induction of inflammation within the joint, and present recent data showing, additionally, that antibodies to CII cause direct damage to cartilage in vitro. The close resemblances between human RA and collagen-induced arthritis in animals suggest that autoimmunity, and particularly autoantibodies to CII, are important for both the initiation and perpetuation of RA in a dual manner: as contributors to the inflammation associated with immune complex deposition, and as agents with direct degradative effects on cartilage integrity and its repair.
Collapse
Affiliation(s)
- Merrill J Rowley
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, VIC, 3800, Australia.
| | | | | |
Collapse
|
45
|
Abstract
Population studies have shown that among all the genetic factors linked with autoimmune disease development, MHC class II genes on chromosome 6 accounts for majority of familial clustering in the common autoimmune diseases. Despite the highly polymorphic nature of HLA class II genes, majority of autoimmune diseases are linked to a limited set of class II-DR or -DQ alleles. Thus a more detailed study of these HLA-DR and -DQ alleles were needed to understand their role in genetic predisposition and pathogenesis of autoimmune diseases. Although in vitro studies using class-II restricted CD4 T cells and purified class II molecules have helped us in understanding some aspects of HLA class-II association with disease, it is difficult to study the role of class II genes in vivo because of heterogeneity of human population, complexity of MHC, and strong linkage disequilibrium among different class II genes. To overcome this problem, we pioneered the generation of HLA-class II transgenic mice to study role of these molecule in inflammatory disease. These HLA class II transgenic mice were used to develop novel in vivo disease model for common autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, insulin-dependent diabetes mellitus, myasthenia gravis, celiac disease, autoimmune relapsing polychondritis, autoimmune myocarditis, thyroiditis, uveitis, as well as other inflammatory disease such as allergy, tuberculosis and toxic shock syndrome. As the T-cell repertoire in these humanized HLA transgenic mice are shaped by human class II molecules, they show the same HLA restriction as humans, implicate potential triggering mechanism and autoantigens, and identify similar antigenic epitopes seen in human. This review describes the value of these humanized transgenic mice in deciphering role of HLA class II molecules in immunopathogenesis of inflammatory diseases.
Collapse
|
46
|
Abstract
There is a growing need for effective animal models to carry out experimental studies on human hematopoietic and immune systems without putting individuals at risk. Progress in development of small animal models for the in vivo investigation of human hematopoiesis and immunity has seen three major breakthroughs over the last three decades. First, CB 17-Prkdc(scid) (abbreviated CB 17-scid) mice were discovered in 1983, and engraftment of these mice with human fetal tissues (SCID-Hu model) and peripheral blood mononuclear cells (Hu-PBL-SCID model) was reported in 1988. Second, NOD-scid mice were developed and their enhanced ability to engraft with human hematolymphoid tissues as compared with CB17-scid mice was reported in 1995. NOD-scid mice have been the "gold standard" for studies of human hematolymphoid engraftment in small animal models over the last 10 years. Third, immunodeficient mice bearing a targeted mutation in the IL-2 receptor common gamma chain (IL2rgamma(null)) were developed independently by four groups between 2002 and 2005, and a major increase in the engraftment and function of human hematolymphoid cells as compared with NOD-scid mice has been reported. These new strains of immunodeficient IL2rgamma(null) mice are now being used for studies in human hematopoiesis, innate and adaptive immunity, autoimmunity, infectious diseases, cancer biology, and regenerative medicine. In this chapter, we discuss the current state of development of these strains of mice, the remaining deficiencies, and how approaches used to increase the engraftment and function of human hematolymphoid cells in CB 17-scid mice and in previous models based on NOD-scid mice may enhance human hematolymphoid engraftment and function in NOD-scid IL2rgamma(null) mice.
Collapse
|
47
|
Koehm S, Slavin RG, Hutcheson PS, Trejo T, David CS, Bellone CJ. HLA-DRB1 alleles control allergic bronchopulmonary aspergillosis-like pulmonary responses in humanized transgenic mice. J Allergy Clin Immunol 2007; 120:570-7. [PMID: 17561243 DOI: 10.1016/j.jaci.2007.04.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 03/23/2007] [Accepted: 04/24/2007] [Indexed: 11/18/2022]
Abstract
BACKGROUND Allergic bronchopulmonary aspergillosis (ABPA) is a lung hypersensitivity disease mediated in part by CD4(+) T(H)2 cells. There is a significant association between ABPA and the HLA-DR2 genotypes DRB1(*)1501 and DRB1(*)1503, whereas resistance might be associated with HLA-DRB1(*)1502. OBJECTIVE We sought to elucidate the role of HLA-DR alleles in allergic inflammation in lungs. METHODS HLA-DR humanized transgenic mice expressing either the susceptible or resistant alleles were analyzed for the nature and extent of pulmonary inflammation after exposure to Aspergillus species antigens. RESULTS Exposed DRB1(*)1501 and DRB1(*)1503 transgenic mice displayed infiltrates made up prominently of eosinophils, which is consistent with the inflammation found in ABPA. The resistant DRB1(*)1502 mice, on the other hand, displayed minimal to moderate inflammation, consisting mainly of T-cell infiltrates. Significantly more mucin was produced in the DRB1(*)1503 and DRB1(*)1501 mice, and their ability to limit the number of Aspergillus species conidia within the lung parenchyma was impaired. Despite their differences, both the DRB1(*)1503 and DRB1(*)1502 strains mounted comparable T cell-proliferative responses to Aspergillus species antigens. CONCLUSION The HLA-DR2 alleles DRB1(*)1501 and DRB1(*)1503 play a major role in the development of allergic pulmonary inflammation. In contrast, the HLA-DR2 allele DRB1(*)1502 mediates a nonallergic T(H)1-like response to the organism, possibly explaining an ABPA resistance factor. These results are in support of our published human studies in patients with cystic fibrosis and asthma. CLINICAL IMPLICATIONS HLA-DR typing in patients with cystic fibrosis and asthma will aid in the identification of individuals at risk for ABPA.
Collapse
Affiliation(s)
- Sherri Koehm
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
48
|
Geluk A, Lin MY, van Meijgaarden KE, Leyten EMS, Franken KLMC, Ottenhoff THM, Klein MR. T-cell recognition of the HspX protein of Mycobacterium tuberculosis correlates with latent M. tuberculosis infection but not with M. bovis BCG vaccination. Infect Immun 2007; 75:2914-21. [PMID: 17387166 PMCID: PMC1932904 DOI: 10.1128/iai.01990-06] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During stationary growth or in vitro conditions mimicking relevant aspects of latency, the HspX protein (Rv2031c) is specifically upregulated by Mycobacterium tuberculosis. In this study we compared T-cell responses against HspX and the secreted M. tuberculosis protein Ag85B (Rv1886c) in tuberculosis (TB) patients, tuberculin skin test-positive individuals, M. bovis BCG-vaccinated individuals, and healthy negative controls. Gamma interferon responses to HspX were significantly higher in M. tuberculosis-exposed individuals than in M. tuberculosis-unexposed BCG vaccinees. In contrast, no such differences were found with respect to T-cell responses against Ag85B. Therefore, BCG-based vaccines containing relevant fragments of HspX may induce improved responses against this TB latency antigen. To identify relevant major histocompatibility complex class I- and class II-restricted HspX-specific T-cell epitopes, we immunized HLA-A2/K(b) and HLA-DR3.Ab(0) transgenic (tg) mice with HspX. Two new T-cell epitopes were identified, p91-105 and p31-50, restricted via HLA-A*0201 and HLA-DRB1*0301, respectively. These epitopes were recognized by human T cells as well, underlining the relevance of HspX T-cell recognition both in vivo and in vitro. In line with the data in humans, BCG immunization of both tg strains did not lead to T-cell responses against HspX-derived epitopes, whereas nonlatency antigens were efficiently recognized. These data support the notion that BCG vaccination per se does not induce T-cell responses against the latency antigen, HspX. Thus, we suggest that subunit vaccines incorporating HspX and/or other latency antigens, as well as recombinant BCG strains expressing latency antigens need to be considered as new vaccines against TB.
Collapse
Affiliation(s)
- Annemieke Geluk
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
49
|
Flynn JC, Meroueh C, Snower DP, David CS, Kong YM. Depletion of CD4+CD25+ regulatory T cells exacerbates sodium iodide-induced experimental autoimmune thyroiditis in human leucocyte antigen DR3 (DRB1*0301) transgenic class II-knock-out non-obese diabetic mice. Clin Exp Immunol 2007; 147:547-54. [PMID: 17302906 PMCID: PMC1810500 DOI: 10.1111/j.1365-2249.2006.03303.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2006] [Indexed: 12/21/2022] Open
Abstract
Both genetic and environmental factors contribute to autoimmune disease development. Previously, we evaluated genetic factors in a humanized mouse model of Hashimoto's thyroiditis (HT) by immunizing human leucocyte antigen DR3 (HLA-DR3) and HLA-DQ8 transgenic class II-knock-out non-obese diabetic (NOD) mice. DR3+ mice were susceptible to experimental autoimmune thyroiditis (EAT) induction by both mouse thyroglobulin (mTg) and human (h) Tg, while DQ8+ mice were weakly susceptible only to hTg. As one environmental factor associated with HT and tested in non-transgenic models is increased sodium iodide (NaI) intake, we examined the susceptibility of DR3+ and/or DQ8+ mice to NaI-induced disease. Mice were treated for 8 weeks with NaI in the drinking water. At 0 x 05% NaI, 23% of DR3+, 0% of DQ8+ and 20% of DR3+DQ8+ mice had thyroid destruction. No spleen cell proliferation to mTg was observed. Most mice had undetectable anti-mTg antibodies, but those with low antibody levels usually had thyroiditis. At 0.3% NaI, a higher percentage of DR3+ and DR3+DQ8+ mice developed destructive thyroiditis, but it was not statistically significant. However, when DR3+ mice had been depleted of CD4+CD25+ regulatory T cells prior to NaI treatment, destructive thyroiditis (68%) and serum anti-mTg antibodies were exacerbated further. The presence of DQ8 molecules does not alter the susceptibility of DR3+DQ8+ mice to NaI-induced thyroiditis, similar to earlier findings with mTg-induced EAT. Susceptibility of DR3+ mice to NaI-induced EAT, in both the presence and absence of regulatory T cells, demonstrates the usefulness of HLA class II transgenic mice in evaluating the roles of environmental factors and immune dysregulation in autoimmune thyroid disease.
Collapse
Affiliation(s)
- J C Flynn
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
50
|
Lamoureux JL, Buckner JH, David CS, Bradley DS. Mice expressing HLA-DQ6alpha8beta transgenes develop polychondritis spontaneously. Arthritis Res Ther 2007; 8:R134. [PMID: 16872515 PMCID: PMC1779388 DOI: 10.1186/ar2023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2006] [Revised: 07/20/2006] [Accepted: 07/27/2006] [Indexed: 12/04/2022] Open
Abstract
Relapsing polychondritis (RP) is a human autoimmune disease of unknown etiology in which cartilaginous sites are destroyed by cyclic inflammatory episodes beginning, most commonly, during the fourth or fifth decade of life. We have previously described collagen-induced polychondritis that closely mirrors RP occurring in young (6–8 weeks old) HLA-DQ6αβ8αβ transgenic Aβ0 mice, following immunization with heterologous type II collagen (CII). We present evidence here that transgenic strains expressing the DQ6α8β transgene develop spontaneous polychondritis (SP) at the mouse equivalent of human middle age (4.5–6 months and 40–50 years old, respectively) and display polyarthritis, auricular chondritis and nasal chondritis – three of the most common sites affected in RP. Auricular chondritis in SP, like RP but unlike CII-induced polychondritis, exhibited a relapsing/remitting phenotype, requiring several inflammatory cycles before the cartilage is destroyed. Elevated serum levels of total IgG corresponded with the onset of disease in SP, as in RP and CII-induced polychondritis. No CII-specific immune response was detected in SP, however – more closely mirroring RP, in which as few as 30% of RP patients have been reported to have CII-specific IgG. CII-induced polychondritis displays a strong CII-specific immune response. SP also demonstrated a strong female preponderance, as some workers have reported in RP but has not observed in CII-induced polychondritis. These characteristics of SP allow for the examination of the immunopathogenesis of polychondritis in the absence of an overwhelming CII-specific immune response and the strong adjuvant-induced immunostimulatory influence in CII-induced polychondritis. This spontaneous model of polychondritis provides a new and unique tool to investigate both the initiatory events as well as the immunopathogenic mechanisms occurring at cartilaginous sites during the cyclic inflammatory assaults of polychondritis.
Collapse
Affiliation(s)
- Jennifer L Lamoureux
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Jane Hoyt Buckner
- Benaroya Research Institute, Virginia Mason Medical Center, Seattle, Washington, USA
| | - Chella S David
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - David S Bradley
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| |
Collapse
|