1
|
Temchura V, Wagner JT, Damm D. Immunogenicity of Recombinant Lipid-Based Nanoparticle Vaccines: Danger Signal vs. Helping Hand. Pharmaceutics 2023; 16:24. [PMID: 38258035 PMCID: PMC10818441 DOI: 10.3390/pharmaceutics16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Infectious diseases are a predominant problem in human health. While the incidence of many pathogenic infections is controlled by vaccines, some pathogens still pose a challenging task for vaccine researchers. In order to face these challenges, the field of vaccine development has changed tremendously over the last few years. For non-replicating recombinant antigens, novel vaccine delivery systems that attempt to increase the immunogenicity by mimicking structural properties of pathogens are already approved for clinical applications. Lipid-based nanoparticles (LbNPs) of different natures are vesicles made of lipid layers with aqueous cavities, which may carry antigens and other biomolecules either displayed on the surface or encapsulated in the cavity. However, the efficacy profile of recombinant LbNP vaccines is not as high as that of live-attenuated ones. This review gives a compendious picture of two approaches that affect the immunogenicity of recombinant LbNP vaccines: (i) the incorporation of immunostimulatory agents and (ii) the utilization of pre-existing or promiscuous cellular immunity, which might be beneficial for the development of tailored prophylactic and therapeutic LbNP vaccine candidates.
Collapse
Affiliation(s)
- Vladimir Temchura
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | | | - Dominik Damm
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| |
Collapse
|
2
|
Tsukidate T, Hespen CW, Hang HC. Small molecule modulators of immune pattern recognition receptors. RSC Chem Biol 2023; 4:1014-1036. [PMID: 38033733 PMCID: PMC10685800 DOI: 10.1039/d3cb00096f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/03/2023] [Indexed: 12/02/2023] Open
Abstract
Pattern recognition receptors (PRRs) represent a re-emerging class of therapeutic targets for vaccine adjuvants, inflammatory diseases and cancer. In this review article, we summarize exciting developments in discovery and characterization of small molecule PRR modulators, focusing on Toll-like receptors (TLRs), NOD-like receptors (NLRs) and the cGAS-STING pathway. We also highlight PRRs that are currently lacking small molecule modulators and opportunities for chemical biology and therapeutic discovery.
Collapse
Affiliation(s)
- Taku Tsukidate
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
| | - Charles W Hespen
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
- Department of Immunology and Microbiology and Department of Chemistry, Scripps Research, La Jolla California 92037 USA
| |
Collapse
|
3
|
Pilz M, Cavelius P, Qoura F, Awad D, Brück T. Lipopeptides development in cosmetics and pharmaceutical applications: A comprehensive review. Biotechnol Adv 2023; 67:108210. [PMID: 37460047 DOI: 10.1016/j.biotechadv.2023.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Lipopeptides are surface active, natural products of bacteria, fungi and green-blue algae origin, having diverse structures and functionalities. In analogy, a number of chemical synthesis techniques generated new designer lipopeptides with desirable features and functions. Lipopetides are self-assembly guided, supramolecular compounds which have the capacity of high-density presentation of the functional epitopes at the surface of the nanostructures. This feature contributes to their successful application in several industry sectors, including food, feed, personal care, and pharmaceutics. In this comprehensive review, the novel class of ribosomally synthesized lipopeptides is introduced alongside the more commonly occuring non-ribosomal lipopeptides. We highlight key representatives of the most researched as well as recently described lipopeptide families, with emphasis on structural features, self-assembly and associated functions. The common biological, chemical and hybrid production routes of lipopeptides, including prominent analogues and derivatives are also discussed. Furthermore, genetic engineering strategies aimed at increasing lipopeptide yields, diversity and biological activity are summarized and exemplified. With respect to application, this work mainly details the potential of lipopeptides in personal care and cosmetics industry as cleansing agents, moisturizer, anti-aging/anti-wrinkling, skin whitening and preservative agents as well as the pharmaceutical industry as anitimicrobial agents, vaccines, immunotherapy, and cancer drugs. Given that this review addresses human applications, we conclude on the topic of safety of lipopeptide formulations and their sustainable production.
Collapse
Affiliation(s)
- Melania Pilz
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Philipp Cavelius
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Farah Qoura
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| | - Thomas Brück
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| |
Collapse
|
4
|
Ren H, Jia W, Xie Y, Yu M, Chen Y. Adjuvant physiochemistry and advanced nanotechnology for vaccine development. Chem Soc Rev 2023; 52:5172-5254. [PMID: 37462107 DOI: 10.1039/d2cs00848c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vaccines comprising innovative adjuvants are rapidly reaching advanced translational stages, such as the authorized nanotechnology adjuvants in mRNA vaccines against COVID-19 worldwide, offering new strategies to effectively combat diseases threatening human health. Adjuvants are vital ingredients in vaccines, which can augment the degree, extensiveness, and longevity of antigen specific immune response. The advances in the modulation of physicochemical properties of nanoplatforms elevate the capability of adjuvants in initiating the innate immune system and adaptive immunity, offering immense potential for developing vaccines against hard-to-target infectious diseases and cancer. In this review, we provide an essential introduction of the basic principles of prophylactic and therapeutic vaccination, key roles of adjuvants in augmenting and shaping immunity to achieve desired outcomes and effectiveness, and the physiochemical properties and action mechanisms of clinically approved adjuvants for humans. We particularly focus on the preclinical and clinical progress of highly immunogenic emerging nanotechnology adjuvants formulated in vaccines for cancer treatment or infectious disease prevention. We deliberate on how the immune system can sense and respond to the physicochemical cues (e.g., chirality, deformability, solubility, topology, and chemical structures) of nanotechnology adjuvants incorporated in the vaccines. Finally, we propose possible strategies to accelerate the clinical implementation of nanotechnology adjuvanted vaccines, such as in-depth elucidation of nano-immuno interactions, antigen identification and optimization by the deployment of high-dimensional multiomics analysis approaches, encouraging close collaborations among scientists from different scientific disciplines and aggressive exploration of novel nanotechnologies.
Collapse
Affiliation(s)
- Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yujie Xie
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
5
|
Gu Y, Yang J, He C, Zhao T, Lu R, Liu J, Mo X, Wen F, Shi H. Incorporation of a Toll-like receptor 2/6 agonist potentiates mRNA vaccines against cancer and infectious diseases. Signal Transduct Target Ther 2023; 8:273. [PMID: 37455272 DOI: 10.1038/s41392-023-01479-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/12/2023] [Accepted: 04/27/2023] [Indexed: 07/18/2023] Open
Abstract
mRNA vaccines have emerged rapidly in recent years as a prophylactic and therapeutic agent against various diseases including cancer and infectious diseases. Improvements of mRNA vaccines have been underway, among which boosting of efficacy is of great importance. Pam2Cys, a simple synthetic metabolizable lipoamino acid that signals through Toll-like receptor (TLR) 2/6 pathway, eliciting both humoral and cellular adaptive immune responses, is an interesting candidate adjuvant. To investigate the enhancement of the efficacies of mRNA vaccines by Pam2Cys, the adjuvant was incorporated into mRNA-lipid nanoparticles (LNPs) to achieve co-delivery with mRNA. Immunization with the resulting mRNA-LNPs (Pam2Cys) shaped up the immune milieu in the draining lymph nodes (dLNs) through the induction of IL-12 and IL-17, among other cytokines. Antigen presentation was carried out mainly by migratory and dLN-resident conventional type 2 DCs (cDC2s) and significantly more potent antitumor responses were triggered in both prophylactic and therapeutic tumor models in a CD4+ and CD8+ T cell-dependent fashion. Accompanying memory antitumor immunity was also established. Moreover, the vaccine also stimulated much more robust humoral and cellular immunity in a surrogate COVID-19 prophylactic model. Last but not the least, the new vaccines exhibited good preliminary safety profiles in murine models. These facts warrant future development of Pam2Cys-incorporated mRNA vaccines or relevant mRNA therapeutics for clinical application.
Collapse
Affiliation(s)
- Yangzhuo Gu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China.
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy and Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Jingyun Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Cai He
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Tingmei Zhao
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Ran Lu
- Laboratory of Stem Cell Biology and Department of Pediatric Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Jian Liu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology and Department of Pediatric Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy and Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huashan Shi
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
6
|
Zhang L, Jia M, Wang X, Gao L, Zhang B, Wang L, Kong J, Li L. A novel fluorescence sensor for uranyl ion detection based on a dansyl-modified peptide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122403. [PMID: 36708634 DOI: 10.1016/j.saa.2023.122403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/06/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
It is of great significance to sensitively and selectively detect uranyl ion (UO22+) in environmental and biological samples due to the high risks of UO22+ to human health. However, such suitable sensors are still scarce. A novel fluorescence sensor based on a dansyl-modified peptide, Dansyl-Glu-Glu-Pro-Glu-Trp-COOH (D-P5), was efficiently synthesized by Fmoc solid phase peptide synthesis. As the first linear peptide-based fluorescence sensor for UO22+, D-P5 exhibited high selectivity and sensitivity to UO22+ over 27 metal ions (UO22+, Cr3+, Cu2+, Ba2+, Hg2+, Pb2+, Co2+, Ag+, Fe3+, Ca2+, K+, Mg2+, Mn2+, Na+, Ni2+, Cd2+, Zn2+, Al3+, Dy3+, Er3+, Gd2+, Ho3+, La3+, Lu3+, Pr3+, Sm3+, Tm3+) by a turn-off fluorescence response in 10 mM HEPES buffer (pH 6.3). The effects of anions such as S2-, NO3-, SO42- CO32-, HCOO-, antioxidant ascorbic acid and 4-nitrophenyl acetate on the selectivity for UO22+ detection were also studies. D-P5 sensor could be used for detecting UO22+ in a good linear relationship with concentration in the range of 0-8.0 μM with a low limit of detection of 83.2 nM. Furthermore, the interaction of the sensor with UO22+ was characterized by ESI-MS, IR, XPS and ITC measurements. The 1:1 binding stoichiometry between the sensor and UO22+ was measured by the job's plot and further verified by ESI-MS. The binding constant of the sensor with UO22+ was calculated to be 9.8 × 104 M-1 by modified Benesi-Hildebrand equation. ITC results showed that theΔHθ andΔSθ for the interaction of D-P5 with UO22+ were -(7.167 ± 1.25) kJ·mol-1 and 66.5 J·mol-1·K-1, respectively. Time-resolved fluorescence spectroscopy indicated that the mechanism of fluorescence quenching of D-P5 by UO22+ ion was static quenching process. In addition, this sensor displayed a good practicality for UO22+ detection in lake water sample without tedious sample pretreatment.
Collapse
Affiliation(s)
- Lianshun Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Mengqing Jia
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Xi Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Lei Gao
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, PR China
| | - Bo Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, PR China.
| |
Collapse
|
7
|
Sanchez MV, Ebensen T, Schulze K, Cargnelutti DE, Scodeller EA, Guzmán CA. Protective Efficacy of a Mucosal Influenza Vaccine Formulation Based on the Recombinant Nucleoprotein Co-Administered with a TLR2/6 Agonist BPPcysMPEG. Pharmaceutics 2023; 15:pharmaceutics15030912. [PMID: 36986773 PMCID: PMC10057018 DOI: 10.3390/pharmaceutics15030912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Current influenza vaccines target highly variable surface glycoproteins; thus, mismatches between vaccine strains and circulating strains often diminish vaccine protection. For this reason, there is still a critical need to develop effective influenza vaccines able to protect also against the drift and shift of different variants of influenza viruses. It has been demonstrated that influenza nucleoprotein (NP) is a strong candidate for a universal vaccine, which contributes to providing cross-protection in animal models. In this study, we developed an adjuvanted mucosal vaccine using the recombinant NP (rNP) and the TLR2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxyl-poly-ethylene-glycol (BPPcysMPEG). The vaccine efficacy was compared with that observed following parenteral vaccination of mice with the same formulation. Mice vaccinated with 2 doses of rNP alone or co-administered with BPPcysMPEG by the intranasal (i.n.) route showed enhanced antigen-specific humoral and cellular responses. Moreover, NP-specific humoral immune responses, characterized by significant NP-specific IgG and IgG subclass titers in sera and NP-specific IgA titers in mucosal territories, were remarkably increased in mice vaccinated with the adjuvanted formulation as compared with those of the non-adjuvanted vaccination group. The addition of BPPcysMPEG also improved NP-specific cellular responses in vaccinated mice, characterized by robust lymphoproliferation and mixed Th1/Th2/Th17 immune profiles. Finally, it is notable that the immune responses elicited by the novel formulation administered by the i.n. route were able to confer protection against the influenza H1N1 A/Puerto Rico/8/1934 virus.
Collapse
Affiliation(s)
- Maria Victoria Sanchez
- Laboratorio de Inmunología y Desarrollo de Vacunas, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET, Universidad Nacional de Cuyo, Mendoza M5500, Argentina; (M.V.S.); (D.E.C.); (E.A.S.)
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (T.E.); (K.S.)
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (T.E.); (K.S.)
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (T.E.); (K.S.)
| | - Diego Esteban Cargnelutti
- Laboratorio de Inmunología y Desarrollo de Vacunas, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET, Universidad Nacional de Cuyo, Mendoza M5500, Argentina; (M.V.S.); (D.E.C.); (E.A.S.)
| | - Eduardo A. Scodeller
- Laboratorio de Inmunología y Desarrollo de Vacunas, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET, Universidad Nacional de Cuyo, Mendoza M5500, Argentina; (M.V.S.); (D.E.C.); (E.A.S.)
| | - Carlos A. Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (T.E.); (K.S.)
- Correspondence: ; Tel.: +49-531-61814600; Fax: +49-531-618414699
| |
Collapse
|
8
|
Liao D, Su X, Wang J, Yu J, Luo H, Tian W, Ye Z, He J. Pushing the envelope: Immune mechanism and application landscape of macrophage-activating lipopeptide-2. Front Immunol 2023; 14:1113715. [PMID: 36761746 PMCID: PMC9902699 DOI: 10.3389/fimmu.2023.1113715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
Mycoplasma fermentans can cause respiratory diseases, arthritis, genitourinary tract infections, and chronic fatigue syndrome and have been linked to the development of the human immunodeficiency virus. Because mycoplasma lacks a cell wall, its outer membrane lipoproteins are one of the main factors that induce inflammation in the organism and contribute to disease development. Macrophage-activating lipopeptide-2 (MALP-2) modulates the inflammatory response of monocytes/macrophages in a bidirectional fashion, indirectly enhances the cytotoxicity of NK cells, promotes oxidative bursts in neutrophils, upregulates surface markers on lymphocytes, enhances antigen presentation on dendritic cells and induces immune inflammatory responses in sebocytes and mesenchymal cells. MALP-2 is a promising vaccine adjuvant for this application. It also promotes vascular healing and regeneration, accelerates wound and bone healing, suppresses tumors and metastasis, and reduces lung infections and inflammation. MALP-2 has a simple structure, is easy to synthesize, and has promising prospects for clinical application. Therefore, this paper reviews the mechanisms of MALP-2 activation in immune cells, focusing on the application of MALP-2 in animals/humans to provide a basis for the study of pathogenesis in Mycoplasma fermentans and the translation of MALP-2 into clinical applications.
Collapse
Affiliation(s)
- Daoyong Liao
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoling Su
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jingyun Wang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jianwei Yu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Haodang Luo
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China,Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Wei Tian
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Zufeng Ye
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun He
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China,*Correspondence: Jun He,
| |
Collapse
|
9
|
Yang MH, Russell JL, Mifune Y, Wang Y, Shi H, Moresco EMY, Siegwart DJ, Beutler B, Boger DL. Next-Generation Diprovocims with Potent Human and Murine TLR1/TLR2 Agonist Activity That Activate the Innate and Adaptive Immune Response. J Med Chem 2022; 65:9230-9252. [PMID: 35767437 DOI: 10.1021/acs.jmedchem.2c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The diprovocims, a new class of toll-like receptor (TLR) agonists, bear no similarity to prior TLR agonists, act through a well-defined mechanism (TLR1/TLR2 agonist), exhibit exquisite structure-activity relationships, and display in vivo adjuvant activity. They possess potent and efficacious agonist activity toward human TLR1/TLR2 but modest agonism toward the murine receptor. A manner by which diprovocims can be functionalized without impacting hTLR1/TLR2 activity is detailed, permitting future linkage to antigenic, targeting, or delivery moieties. Improvements in both potency and its low efficacy in the murine system were also achieved, permitting more effective use in animal models while maintaining the hTLR1/TLR2 activity. The prototypical member diprovocim-X exhibits the excellent potency/efficacy of diprovocim-1 in human cells, displays substantially improved potency/efficacy in mouse macrophages, and serves as an adjuvant in mice when coadministered with a nonimmunogenic antigen, indicating stimulation of the adaptive as well as innate immune response.
Collapse
Affiliation(s)
- Ming-Hsiu Yang
- Department of Chemistry and the Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jamie L Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Yuto Mifune
- Department of Chemistry and the Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Ying Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Hexin Shi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Daniel J Siegwart
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Dale L Boger
- Department of Chemistry and the Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
10
|
Belyavtsev AN, Shastina NS, Kupriyanov VV, Nikolaeva LI, Melnikova MV, Kolesanova EF, Shimchishina MY, Kapustin IV. Effect of Lipid Components on Immunogenicity of Synthetic Fragment of Hepatitis C Virus NS4A Antigen. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Grote K, Nicolai M, Schubert U, Schieffer B, Troidl C, Preissner KT, Bauer S, Fischer S. Extracellular Ribosomal RNA Acts Synergistically with Toll-like Receptor 2 Agonists to Promote Inflammation. Cells 2022; 11:cells11091440. [PMID: 35563745 PMCID: PMC9103112 DOI: 10.3390/cells11091440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Self-extracellular RNA (eRNA), which is released under pathological conditions from damaged tissue, has recently been identified as a new alarmin and synergistic agent together with toll-like receptor (TLR)2 ligands to induce proinflammatory activities of immune cells. In this study, a detailed investigation of these interactions is reported. The macrophage cell line J774 A.1 or C57 BL/6 J wild-type mice were treated with 18S rRNA and different TLR2 agonists. Gene and protein expression of tumor necrosis factor (Tnf)-α; interleukin (Il)-1β, Il-6; or monocyte chemoattractant protein (Mcp)-1 were analyzed and furthermore in vitro binding studies to TLR2 were performed. The TLR2/TLR6-agonist Pam2 CSK4 (Pam2) together with 18S rRNA significantly increased the mRNA expression of inflammatory genes and the release of TNF-α from macrophages in a TLR2- and nuclear factor kappa B (NF-κB)-dependent manner. The injection of 18S rRNA/Pam2 into mice increased the cytokine levels of TNF-α, IL-6, and MCP-1 in the peritoneal lavage. Mechanistically, 18S rRNA built complexes with Pam2 and thus enhanced the affinity of Pam2 to TLR2. These results indicate that the alarmin eRNA, mainly consisting of rRNA, sensitizes TLR2 to enhance the innate immune response under pathological conditions. Thus, rRNA might serve as a new target for the treatments of bacterial and viral infections.
Collapse
Affiliation(s)
- Karsten Grote
- Cardiology & Angiology, Medical School, Philipps-University, 35043 Marburg, Germany; (K.G.); (B.S.)
| | - Marina Nicolai
- Institute of Immunology, Medical School, Philipps-University, 35043 Marburg, Germany; (M.N.); (S.B.)
| | - Uwe Schubert
- Institute of Biochemistry, Medical School, Justus-Liebig-University, 35392 Giessen, Germany;
| | - Bernhard Schieffer
- Cardiology & Angiology, Medical School, Philipps-University, 35043 Marburg, Germany; (K.G.); (B.S.)
| | - Christian Troidl
- Medical Clinic I, Cardiology/Angiology, Campus Kerckhoff, Justus-Liebig-University, 61231 Bad Nauheim, Germany;
- Department Cardiology, Kerckhoff-Heart Research Institute, Medical School, Justus-Liebig-University, 35392 Giessen, Germany;
| | - Klaus T. Preissner
- Department Cardiology, Kerckhoff-Heart Research Institute, Medical School, Justus-Liebig-University, 35392 Giessen, Germany;
| | - Stefan Bauer
- Institute of Immunology, Medical School, Philipps-University, 35043 Marburg, Germany; (M.N.); (S.B.)
| | - Silvia Fischer
- Institute of Biochemistry, Medical School, Justus-Liebig-University, 35392 Giessen, Germany;
- Department Cardiology, Kerckhoff-Heart Research Institute, Medical School, Justus-Liebig-University, 35392 Giessen, Germany;
- Correspondence:
| |
Collapse
|
12
|
Kaur A, Piplani S, Kaushik D, Fung J, Sakala IG, Honda-Okubo Y, Mehta SK, Petrovsky N, Salunke DB. Stereoisomeric Pam2CS Based TLR2 Agonists: Synthesis, Structural Modelling and Activity as Vaccine Adjuvants. RSC Med Chem 2022; 13:622-637. [PMID: 35694694 PMCID: PMC9132229 DOI: 10.1039/d1md00372k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
Lipopeptides including diacylated Pam2CSK4 as well as triacylated Pam3CSK4 act as ligands of Toll-like receptor (TLR)-2, a promising target for the development of vaccine adjuvants. The highly investigated Pam2CSK4 and...
Collapse
Affiliation(s)
- Arshpreet Kaur
- Department of Chemistry and Centre for Advanced Studies, Panjab University Chandigarh India
| | - Sakshi Piplani
- Vaxine Pty Ltd Warradale Australia
- College of Medicine and Public Health, Flinders University Adelaide Australia
| | - Deepender Kaushik
- Department of Chemistry and Centre for Advanced Studies, Panjab University Chandigarh India
| | - Johnson Fung
- Vaxine Pty Ltd Warradale Australia
- College of Medicine and Public Health, Flinders University Adelaide Australia
| | - Isaac G Sakala
- Vaxine Pty Ltd Warradale Australia
- College of Medicine and Public Health, Flinders University Adelaide Australia
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd Warradale Australia
- College of Medicine and Public Health, Flinders University Adelaide Australia
| | - Surinder K Mehta
- Department of Chemistry and Centre for Advanced Studies, Panjab University Chandigarh India
| | - Nikolai Petrovsky
- Vaxine Pty Ltd Warradale Australia
- College of Medicine and Public Health, Flinders University Adelaide Australia
| | - Deepak B Salunke
- Department of Chemistry and Centre for Advanced Studies, Panjab University Chandigarh India
- National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University Chandigarh India
| |
Collapse
|
13
|
Ferreira G, Santander A, Savio F, Guirado M, Sobrevia L, Nicolson GL. SARS-CoV-2, Zika viruses and mycoplasma: Structure, pathogenesis and some treatment options in these emerging viral and bacterial infectious diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166264. [PMID: 34481867 PMCID: PMC8413106 DOI: 10.1016/j.bbadis.2021.166264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/22/2021] [Accepted: 08/30/2021] [Indexed: 01/28/2023]
Abstract
The molecular evolution of life on earth along with changing environmental, conditions has rendered mankind susceptible to endemic and pandemic emerging infectious diseases. The effects of certain systemic viral and bacterial infections on morbidity and mortality are considered as examples of recent emerging infections. Here we will focus on three examples of infections that are important in pregnancy and early childhood: SARS-CoV-2 virus, Zika virus, and Mycoplasma species. The basic structural characteristics of these infectious agents will be examined, along with their general pathogenic mechanisms. Coronavirus infections, such as caused by the SARS-CoV-2 virus, likely evolved from zoonotic bat viruses to infect humans and cause a pandemic that has been the biggest challenge for humanity since the Spanish Flu pandemic of the early 20th century. In contrast, Zika Virus infections represent an expanding infectious threat in the context of global climate change. The relationship of these infections to pregnancy, the vertical transmission and neurological sequels make these viruses highly relevant to the topics of this special issue. Finally, mycoplasmal infections have been present before mankind evolved, but they were rarely identified as human pathogens until recently, and they are now recognized as important coinfections that are able to modify the course and prognosis of various infectious diseases and other chronic illnesses. The infectious processes caused by these intracellular microorganisms are examined as well as some general aspects of their pathogeneses, clinical presentations, and diagnoses. We will finally consider examples of treatments that have been used to reduce morbidity and mortality of these infections and discuss briefly the current status of vaccines, in particular, against the SARS-CoV-2 virus. It is important to understand some of the basic features of these emerging infectious diseases and the pathogens involved in order to better appreciate the contributions of this special issue on how infectious diseases can affect human pregnancy, fetuses and neonates.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay.
| | - Axel Santander
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Florencia Savio
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Mariana Guirado
- Department of Infectious Diseases, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaeology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), São Paulo State University (UNESP), Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston QLD 4029, Queensland, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), 9713GZ Groningen, the Netherlands
| | - Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
14
|
Yu S, Li Y, Gao L, Zhao P, Wang L, Li L, Lin YW. A highly selective and sensitive Zn 2+ fluorescent sensor based on zinc finger-like peptide and its application in cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120042. [PMID: 34116420 DOI: 10.1016/j.saa.2021.120042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Developing new chemosensors for detection of Zn2+ has attracted great attentions because of the important roles of Zn2+ in biological systems, and it will produce toxic effects with an excessive intake of zinc ion. Metalloproteins are often used as an effective template for the design and development of peptide-based fluorescent sensors. In this study, we designed a new and simple ratiometric fluorescent sensor for Zn2+, which was based on a zinc finger-like peptide and labeled with a dansyl group, i.e., Dansyl-His-Gln-Arg-Thr-His-Trp-NH2 (D-P6), by using solid phase peptide synthesis (SPPS). The dimeric peptide has a high affinity for Zn2+ overothermetalions, as indicated by spectroscopic studies, as well as molecular modeling. Remarkably, the sensor exhibited a highly selective and sensitive ratiometric fluorescent response to Zn2+ by fluorescent resonance energy transfer effect between tryptophan residue and fluorophore dansyl group, with a very low detection limit of 33 nM in aqueous solution. Furthermore, the sensor displayed a very low biotoxicity, which allows successful detection of Zn2+ in living HeLa cells. We believe that the new sensor may have potential applications in biological science.
Collapse
Affiliation(s)
- Shuaibing Yu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Yan Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Lei Gao
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital Affiliated to Shandong University, Liaocheng, China
| | - Peiran Zhao
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital Affiliated to Shandong University, Liaocheng, China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China.
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China.
| |
Collapse
|
15
|
Feng M, Zhuo C, Zhu X. Long Noncoding RNA HOXA Cluster Anti-Sense RNA 2 Inhibits Mycoplasma pneumoniae-Induced Inflammation by Regulating the Nuclear Factor-KappaB Signaling Pathway. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mycoplasma pneumoniae (MP) is the primary cause of community-acquired lung inflammation. The MP-induced manifestations of pneumonia are associated with the release of pro-inflammatory cytokines; however, the mechanisms of MP-induced inflammation have not been fully clarified.
The purpose of the present study was to determine whether long noncoding RNA HOXA cluster anti-sense RNA 2 (lncRNA HOXA-AS2) is involved in MP-induced inflammation. A model of MP-induced cellular inflammation was established using the human BEAS-2B lung epithelial cell line and lncRNA HOXA-AS2
levels were detected using reverse transcription-quantitative (RT-q) PCR. MTT and flow cytometric analysis were used to assess cell viability and apoptosis, respectively. The secretion of pro-inflammatory factors including tumor necrosis factor (TNF)-α, interleukin (IL)-1β
and IL-6 were measured by ELISA, and protein levels of phosho- (p-)p65 and p-NF-κB inhibitor α (p-IκBα) were detected by western blotting. The results suggest that MP infection significantly decreases the level of lncRNA HOXA-AS2 in BEAS-2B
cells. lncRNA HOXA-AS2 overexpression significantly enhanced cell viability, inhibited apoptosis, decreased pro-inflammatory factor expression (TNF-α, IL-β and IL-6) and inhibited NF-κB pathway activation in MP-stimulated BEAS-2B cells. Conversely, lncRNA
HOXA-AS2-knockdown resulted in the opposite effects. In conclusion, lncRNA HOXA-AS2 is involved in MP infection-induced inflammation and regulates the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Mei Feng
- Department of Pediatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P. R.China
| | - Chengjie Zhuo
- Department of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Xuefen Zhu
- Department of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| |
Collapse
|
16
|
Choltus H, Lavergne M, De Sousa Do Outeiro C, Coste K, Belville C, Blanchon L, Sapin V. Pathophysiological Implication of Pattern Recognition Receptors in Fetal Membranes Rupture: RAGE and NLRP Inflammasome. Biomedicines 2021; 9:biomedicines9091123. [PMID: 34572309 PMCID: PMC8466405 DOI: 10.3390/biomedicines9091123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Preterm prelabor ruptures of fetal membranes (pPROM) are a pregnancy complication responsible for 30% of all preterm births. This pathology currently appears more as a consequence of early and uncontrolled process runaway activation, which is usually implicated in the physiologic rupture at term: inflammation. This phenomenon can be septic but also sterile. In this latter case, the inflammation depends on some specific molecules called “alarmins” or “damage-associated molecular patterns” (DAMPs) that are recognized by pattern recognition receptors (PRRs), leading to a microbial-free inflammatory response. Recent data clarify how this activation works and which receptor translates this inflammatory signaling into fetal membranes (FM) to manage a successful rupture after 37 weeks of gestation. In this context, this review focused on two PRRs: the receptor for advanced glycation end-products (RAGE) and the NLRP7 inflammasome.
Collapse
Affiliation(s)
- Helena Choltus
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Marilyne Lavergne
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Coraline De Sousa Do Outeiro
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Karen Coste
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Corinne Belville
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Loïc Blanchon
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Vincent Sapin
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
- CHU de Clermont-Ferrand, Biochemistry and Molecular Genetic Department, 63000 Clermont-Ferrand, France
- Correspondence: ; Tel.: +33-473-178-174
| |
Collapse
|
17
|
The Influence of Macrophage-Activating Lipopeptide-2 in Regard to Liver-Specific Changes Within a Murine Two-Hit Model. Inflammation 2021; 45:143-155. [PMID: 34396465 DOI: 10.1007/s10753-021-01534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/06/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Trauma hemorrhage (TH) and subsequent sepsis are well known to frequently result in severe organ damage. Although macrophage-activating lipopeptide-2 (MALP-2) has been described to exert beneficial effects on organ damage, and further clinical course after both isolated trauma and sepsis, little is known about the impact of MALP-2 in a clinically realistic two-hit scenario of TH and subsequent sepsis. As the liver represents a key organ for the posttraumatic immune response and development of complications, the effects of MALP-2 on the posttraumatic hepatic immunologic response and tissue damage were investigated in a murine "two-hit" model. In C57BL/6 mice, blood pressure-controlled (35 ± 5 mm Hg) TH was induced. Cecal ligation and puncture (CLP) was performed 48 h after TH. Mice were divided into two control groups (control 1, TH and laparotomy without CLP; control 2, TH and CLP) and three experimental groups (TH + CLP) treated with MALP-2 at different timepoints (ETH, end of TH; ECLP, end of CLP; 6CLP, 6 h after CLP). The observation time lasted for 168 h after induction of TH. Kupffer cells (KC) were isolated and cultured, and MPO activity was analyzed. Cell culture supernatants were taken for cytokine analysis (TNF-α, IL-6, MCP-1, GM-CSF, IL-10). Histological analysis was performed using the Hepatic Injury Severity Scoring (HISS). Statistical evaluation was carried out using SPSS (version 24.0.0; IBM, Armonk, NY, USA). MPO activity of control 1 group was lowest compared with all the other groups (p < 0.01). MPO activity of control 2 group was significantly higher than that in all experimental groups (ETH (p < 0.01), ECLP (p < 0.01), and 6CLP (p = 0.03)). Within the experimental groups, MPO activity was significantly reduced in the ETH (p = 0.04) and the ECLP (p < 0.01) groups compared with the 6CLP group. Moreover, ETH was also associated with the most pronounced reduction of cytokine expression by KC (p < 0.05). HISS revealed the largest damage in the group control 2. TH and subsequent sepsis lead to a distinct immunologic reaction in the liver with an increase of cytokine expression of KC and pronounced infiltration of granulocytes with associated severe tissue damage. MALP application decreases the hepatic immune response and liver damage, with the most pronounced effects if applied at the end of TH.
Collapse
|
18
|
Fritz T, Schäfer J, Scheuer C, Stutz J, Histing T, Pohlemann T, Menger MD, Laschke MW, Klein M, Orth M. Macrophage-activating lipoprotein (MALP)-2 impairs the healing of partial tendon injuries in mice. Ann Anat 2021; 239:151818. [PMID: 34391911 DOI: 10.1016/j.aanat.2021.151818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/21/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022]
Abstract
Tendon injuries are accounted for up to 50% of musculoskeletal injuries and often result in poor outcomes. Inflammation is a major hallmark of tendon regeneration. Therefore, we analyzed in this study whether the topical application of the pro-inflammatory mediator macrophage-activating lipoprotein (MALP)-2 improves the healing of partial tendon injuries. C57BL/6 mice underwent a partial tenotomy of the flexor digitorum longus tendon of the left hind limb, which was treated with a solution containing either 0.5 µg MALP-2 or vehicle (control). Repetitive gait analyses were performed prior to the surgical intervention as well as postoperatively on days 1, 3, 7, 14 and 36. The structural stability of the tendons was biomechanically tested on day 7 and 36. In addition, Western blot analyses were performed on isolated tendons that were treated in vitro with MALP-2 or vehicle. In both groups, partial tenotomy resulted in a pathological gait pattern during the initial postoperative phase. On day 7, the gait pattern normalized in vehicle-treated animals, but not in MALP-2-treated mice. Moreover, the tendons of MALP-2-treated mice exhibited a significantly reduced biomechanical stiffness after 7 and 36 days when compared to controls. Western blot analyses revealed a significantly higher expression of heme oxygenase (HO)-1 and lower expression of cyclin D in MALP-2-treated tendons. These findings indicate that MALP-2 delays the healing of injured tendons most likely due to increased intracellular stress and suppressed cell proliferation in this naturally bradytrophic tissue. Hence, the application of MALP-2 cannot be recommended for the treatment of tendon injuries.
Collapse
Affiliation(s)
- Tobias Fritz
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University Medical Center, 66421 Homburg, Germany.
| | - Julia Schäfer
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University Medical Center, 66421 Homburg, Germany
| | - Claudia Scheuer
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Janine Stutz
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University Medical Center, 66421 Homburg, Germany
| | - Tina Histing
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University Medical Center, 66421 Homburg, Germany; BG Trauma Center, Eberhard Karls Universitaet Tuebingen, Tuebingen, Germany
| | - Tim Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University Medical Center, 66421 Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Moritz Klein
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University Medical Center, 66421 Homburg, Germany
| | - Marcel Orth
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University Medical Center, 66421 Homburg, Germany
| |
Collapse
|
19
|
Abstract
![]()
The development of
lipopeptides (lipidated peptides) for vaccines
is discussed, including their role as antigens and/or adjuvants. Distinct
classes of lipopeptide architectures are covered including simple
linear and ligated constructs and lipid core peptides. The design,
synthesis, and immunological responses of the important class of glycerol-based
Toll-like receptor agonist lipopeptides such as Pam3CSK4, which contains three palmitoyl chains and a CSK4 hexapeptide sequence, and many derivatives of this model immunogenic
compound are also reviewed. Self-assembled lipopeptide structures
including spherical and worm-like micelles that have been shown to
act as vaccine agents are also described. The work discussed includes
examples of lipopeptides developed with model antigens, as well as
for immunotherapies to treat many infectious diseases including malaria,
influenza, hepatitis, COVID-19, and many others, as well as cancer
immunotherapies. Some of these have proceeded to clinical development.
The research discussed highlights the huge potential of, and diversity
of roles for, lipopeptides in contemporary and future vaccine development.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| |
Collapse
|
20
|
Franzoni G, Anfossi A, De Ciucis CG, Mecocci S, Carta T, Dei Giudici S, Fruscione F, Zinellu S, Vito G, Graham SP, Oggiano A, Chessa B, Razzuoli E. Targeting Toll-Like Receptor 2: Polarization of Porcine Macrophages by a Mycoplasma-Derived Pam2cys Lipopeptide. Vaccines (Basel) 2021; 9:vaccines9070692. [PMID: 34201691 PMCID: PMC8310132 DOI: 10.3390/vaccines9070692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Toll-like receptor 2 (TLR2) ligands are attracting increasing attention as prophylactic and immunotherapeutic agents against pathogens and tumors. We previously observed that a synthetic diacylated lipopeptide based on a surface protein of Mycoplasma agalactiae (Mag-Pam2Cys) strongly activated innate immune cells, including porcine monocyte-derived macrophages (moMΦ). In this study, we utilized confocal microscopy, flow cytometry, multiplex cytokine ELISA, and RT-qPCR to conduct a comprehensive analysis of the effects of scalar doses of Mag-Pam2Cys on porcine moMΦ. We observed enhanced expression of activation markers (MHC class I, MHC class II DR, CD25), increased phagocytotic activity, and release of IL-12 and proinflammatory cytokines. Mag-Pam2Cys also upregulated the gene expression of several IFN-α subtypes, p65, NOS2, and molecules with antimicrobial activities (CD14, beta defensin 1). Overall, our data showed that Mag-Pam2Cys polarized porcine macrophages towards a proinflammatory antimicrobial phenotype. However, Mag-Pam2Cys downregulated the expression of IFN-α3, six TLRs (TLR3, -4, -5, -7, -8, -9), and did not interfere with macrophage polarization induced by the immunosuppressive IL-10, suggesting that the inflammatory activity evoked by Mag-Pam2Cys could be regulated to avoid potentially harmful consequences. We hope that our in vitro results will lay the foundation for the further evaluation of this diacylated lipopeptide as an immunopotentiator in vivo.
Collapse
Affiliation(s)
- Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (T.C.); (S.D.G.); (S.Z.); (A.O.)
- Correspondence: (G.F.); (B.C.)
| | - Antonio Anfossi
- School of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy;
| | - Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy; (C.G.D.C.); (F.F.); (G.V.); (E.R.)
| | - Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy;
| | - Tania Carta
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (T.C.); (S.D.G.); (S.Z.); (A.O.)
- School of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy;
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (T.C.); (S.D.G.); (S.Z.); (A.O.)
| | - Floriana Fruscione
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy; (C.G.D.C.); (F.F.); (G.V.); (E.R.)
| | - Susanna Zinellu
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (T.C.); (S.D.G.); (S.Z.); (A.O.)
| | - Guendalina Vito
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy; (C.G.D.C.); (F.F.); (G.V.); (E.R.)
| | | | - Annalisa Oggiano
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (T.C.); (S.D.G.); (S.Z.); (A.O.)
| | - Bernardo Chessa
- School of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy;
- Correspondence: (G.F.); (B.C.)
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy; (C.G.D.C.); (F.F.); (G.V.); (E.R.)
| |
Collapse
|
21
|
Yu S, Gao L, Li R, Fu C, Meng W, Wang L, Li L. Ultrasensitive mercury ion and biothiol detection based on Dansyl-His-Pro-Gly-Asp-NH 2 fluorescent sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119246. [PMID: 33281091 DOI: 10.1016/j.saa.2020.119246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Mercury is an environmental contaminant, which is highly toxic even at extremely low concentrations. Long-term accumulation of mercury in human body will damage the central nervous system or digestive tract system. Here, a new fluorescent chemical sensor Dansyl-His-Pro-Gly-Asp-NH2 (D-P4) was synthesized for the determination of Hg2+. The D-P4 sensor exhibits excellent selectivity and sensitivity to Hg2+ in aqueous solution with a 'turn-off' fluorescence response. Furthermore, D-P4-Hg system displays a good 'turn-on' fluorescence response to biothiols. The calculated binding constant for the 1:1 complex of D-P4 with Hg2 + is 1.07 × 105 M-1, which also confirms the high affinity of D-P4 for Hg2+. Results indicate that the detection limit of D-P4 for Hg2+ is 61.0 nM, and that of D-P4-Hg system for Cys is as low as 80.0 nM.
Collapse
Affiliation(s)
- Shuaibing Yu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Lei Gao
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng, China
| | - Rui Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Chen Fu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Wei Meng
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China.
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China.
| |
Collapse
|
22
|
Protein cleavage influences surface protein presentation in Mycoplasma pneumoniae. Sci Rep 2021; 11:6743. [PMID: 33762641 PMCID: PMC7990945 DOI: 10.1038/s41598-021-86217-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/23/2021] [Indexed: 01/31/2023] Open
Abstract
Mycoplasma pneumoniae is a significant cause of pneumonia and post infection sequelae affecting organ sites distant to the respiratory tract are common. It is also a model organism where extensive 'omics' studies have been conducted to gain insight into how minimal genome self-replicating organisms function. An N-terminome study undertaken here identified 4898 unique N-terminal peptides that mapped to 391 (56%) predicted M. pneumoniae proteins. True N-terminal sequences beginning with the initiating methionine (iMet) residue from the predicted Open Reading Frame (ORF) were identified for 163 proteins. Notably, almost half (317; 46%) of the ORFS derived from M. pneumoniae strain M129 are post-translationally modified, presumably by proteolytic processing, because dimethyl labelled neo-N-termini were characterised that mapped beyond the predicted N-terminus. An analysis of the N-terminome describes endoproteolytic processing events predominately targeting tryptic-like sites, though cleavages at negatively charged residues in P1' (D and E) with lysine or serine/alanine in P2' and P3' positions also occurred frequently. Surfaceome studies identified 160 proteins (23% of the proteome) to be exposed on the extracellular surface of M. pneumoniae. The two orthogonal methodologies used to characterise the surfaceome each identified the same 116 proteins, a 72% (116/160) overlap. Apart from lipoproteins, transporters, and adhesins, 93/160 (58%) of the surface proteins lack signal peptides and have well characterised, canonical functions in the cell. Of the 160 surface proteins identified, 134 were also targets of endo-proteolytic processing. These processing events are likely to have profound implications for how the host immune system recognises and responds to M. pneumoniae.
Collapse
|
23
|
Owen AM, Fults JB, Patil NK, Hernandez A, Bohannon JK. TLR Agonists as Mediators of Trained Immunity: Mechanistic Insight and Immunotherapeutic Potential to Combat Infection. Front Immunol 2021; 11:622614. [PMID: 33679711 PMCID: PMC7930332 DOI: 10.3389/fimmu.2020.622614] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
Despite advances in critical care medicine, infection remains a significant problem that continues to be complicated with the challenge of antibiotic resistance. Immunocompromised patients are highly susceptible to development of severe infection which often progresses to the life-threatening condition of sepsis. Thus, immunotherapies aimed at boosting host immune defenses are highly attractive strategies to ward off infection and protect patients. Recently there has been mounting evidence that activation of the innate immune system can confer long-term functional reprogramming whereby innate leukocytes mount more robust responses upon secondary exposure to a pathogen for more efficient clearance and host protection, termed trained immunity. Toll-like receptor (TLR) agonists are a class of agents which have been shown to trigger the phenomenon of trained immunity through metabolic reprogramming and epigenetic modifications which drive profound augmentation of antimicrobial functions. Immunomodulatory TLR agonists are also highly beneficial as vaccine adjuvants. This review provides an overview on TLR signaling and our current understanding of TLR agonists which show promise as immunotherapeutic agents for combating infection. A brief discussion on our current understanding of underlying mechanisms is also provided. Although an evolving field, TLR agonists hold strong therapeutic potential as immunomodulators and merit further investigation for clinical translation.
Collapse
Affiliation(s)
- Allison M Owen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jessica B Fults
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States.,University of Texas Southwestern Medical School, Dallas, TX, United States
| | - Naeem K Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Julia K Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
24
|
Tschernig T, Pabst R. Macrophage activating lipopeptide 2 is effective in mycobacterial lung infection. Ann Anat 2021; 233:151605. [DOI: 10.1016/j.aanat.2020.151605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
|
25
|
Yu S, Wang Z, Gao L, Zhang B, Wang L, Kong J, Li L. A Highly Selective and Sensitive Peptide-Based Fluorescent Ratio Sensor for Ag . J Fluoresc 2020; 31:237-246. [PMID: 33215317 DOI: 10.1007/s10895-020-02653-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/12/2020] [Indexed: 12/28/2022]
Abstract
A fluorescence ratio sensor based on dansyl-peptide, Dansyl-Glu-Cys-Glu-Glu-Trp-NH2 (D-P5), was efficiently synthesized by Fmoc solid phase peptide synthesis. The sensor exhibits high selectivity and sensitivity for Ag+ over 16 metal ions in 100 mM sodium perchlorate and 50 mM 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid buffer solution by fluorescence resonance energy transfer. The 1:1 binding stoichiometry of the sensor and Ag+ is measured by fluorescence ratio response and the job's plot. The dissociation constant of the sensor with Ag+ was calculated to be 6.4 × 10-9 M, which indicates that the sensor has an effective binding affinity for Ag+. In addition, the limit of detection of the sensor for Ag+ was determined to be 80 nM, which also indicates that the sensor has a high sensitivity to Ag+. Result showed that the sensor is an excellent Ag+ sensor under neutral condition. Furthermore, this sensor displays good practicality for Ag+ detection in river water samples without performing tedious sample pretreatment, as well as for silver chloride detection.
Collapse
Affiliation(s)
- Shuaibing Yu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, People's Republic of China
| | - Zhaolu Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, People's Republic of China
| | - Lei Gao
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital Affiliated to Shandong University, Liaocheng, 252000, People's Republic of China
| | - Bo Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, People's Republic of China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, People's Republic of China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, People's Republic of China.
| |
Collapse
|
26
|
Kirtland ME, Tsitoura DC, Durham SR, Shamji MH. Toll-Like Receptor Agonists as Adjuvants for Allergen Immunotherapy. Front Immunol 2020; 11:599083. [PMID: 33281825 PMCID: PMC7688745 DOI: 10.3389/fimmu.2020.599083] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/19/2020] [Indexed: 01/19/2023] Open
Abstract
Toll-like receptors (TLRs) are essential components of innate immunity and provide defensive inflammatory responses to invading pathogens. Located within the plasma membranes of cells and also intracellular endosomes, TLRs can detect a range of pathogen associated molecular patterns from bacteria, viruses and fungi. TLR activation on dendritic cells can propagate to an adaptive immune response, making them attractive targets for the development of both prophylactic and therapeutic vaccines. In contrast to conventional adjuvants such as aluminium salts, TLR agonists have a clear immunomodulatory profile that favours anti-allergic T lymphocyte responses. Consequently, the potential use of TLRs as adjuvants in Allergen Immunotherapy (AIT) for allergic rhinitis and asthma remains of great interest. Allergic Rhinitis is a Th2-driven, IgE-mediated disease that occurs in atopic individuals in response to exposure to otherwise harmless aeroallergens such as pollens, house dust mite and animal dander. AIT is indicated in subjects with allergic rhinitis whose symptoms are inadequately controlled by antihistamines and nasal corticosteroids. Unlike anti-allergic drugs, AIT is disease-modifying and may induce long-term disease remission through mechanisms involving upregulation of IgG and IgG4 antibodies, induction of regulatory T and B cells, and immune deviation in favour of Th1 responses that are maintained after treatment discontinuation. This process takes up to three years however, highlighting an unmet need for a more efficacious therapy with faster onset. Agonists targeting different TLRs to treat allergy are at different stages of development. Synthetic TLR4, and TLR9 agonists have progressed to clinical trials, while TLR2, TLR5 and TLR7 agonists been shown to have potent anti-allergic effects in human in vitro experiments and in vivo in animal studies. The anti-allergic properties of TLRs are broadly characterised by a combination of enhanced Th1 deviation, regulatory responses, and induction of blocking antibodies. While promising, a durable effect in larger clinical trials is yet to be observed and further long-term studies and comparative trials with conventional AIT are required before TLR adjuvants can be considered for inclusion in AIT. Here we critically evaluate experimental and clinical studies investigating TLRs and discuss their potential role in the future of AIT.
Collapse
Affiliation(s)
- Max E Kirtland
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma Imperial College London, London, United Kingdom
| | - Daphne C Tsitoura
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen R Durham
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma Imperial College London, London, United Kingdom
| | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Booth LA, Smith TK. Lipid metabolism in Trypanosoma cruzi: A review. Mol Biochem Parasitol 2020; 240:111324. [PMID: 32961207 DOI: 10.1016/j.molbiopara.2020.111324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 01/08/2023]
Abstract
The cellular membranes of Trypanosoma cruzi, like all eukaryotes, contain varying amounts of phospholipids, sphingolipids, neutral lipids and sterols. A multitude of pathways exist for the de novo synthesis of these lipid families but Trypanosoma cruzi has also become adapted to scavenge some of these lipids from the host. Completion of the TriTryp genomes has led to the identification of many putative genes involved in lipid synthesis, revealing some interesting differences to higher eukaryotes. Although many enzymes involved in lipid synthesis have yet to be characterised, completed experiments have shown the indispensability of some lipid metabolic pathways. Furthermore, the bioactive lipids of Trypanosoma cruzi and their effects on the host are becoming increasingly studied. Further studies on lipid metabolism in Trypanosoma cruzi will no doubt reveal some attractive targets for therapeutic intervention as well as reveal the interplay between parasite lipids, host response and pathogenesis.
Collapse
Affiliation(s)
- Leigh-Ann Booth
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, United Kingdom
| | - Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, United Kingdom.
| |
Collapse
|
28
|
Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics 2020; 12:pharmaceutics12070663. [PMID: 32674488 PMCID: PMC7408110 DOI: 10.3390/pharmaceutics12070663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
The onset of checkpoint inhibition revolutionized the treatment of cancer. However, studies from the last decade suggested that the sole enhancement of T cell functionality might not suffice to fight malignancies in all individuals. Dendritic cells (DCs) are not only part of the innate immune system, but also generals of adaptive immunity and they orchestrate the de novo induction of tolerogenic and immunogenic T cell responses. Thus, combinatorial approaches addressing DCs and T cells in parallel represent an attractive strategy to achieve higher response rates across patients. However, this requires profound knowledge about the dynamic interplay of DCs, T cells, other immune and tumor cells. Here, we summarize the DC subsets present in mice and men and highlight conserved and divergent characteristics between different subsets and species. Thereby, we supply a resource of the molecular players involved in key functional features of DCs ranging from their sentinel function, the translation of the sensed environment at the DC:T cell interface to the resulting specialized T cell effector modules, as well as the influence of the tumor microenvironment on the DC function. As of today, mostly monocyte derived dendritic cells (moDCs) are used in autologous cell therapies after tumor antigen loading. While showing encouraging results in a fraction of patients, the overall clinical response rate is still not optimal. By disentangling the general aspects of DC biology, we provide rationales for the design of next generation DC vaccines enabling to exploit and manipulate the described pathways for the purpose of cancer immunotherapy in vivo. Finally, we discuss how DC-based vaccines might synergize with checkpoint inhibition in the treatment of malignant diseases.
Collapse
|
29
|
Comprehensive RNA-Seq profiling of the lung transcriptome of Bashbay sheep in response to experimental Mycoplasma ovipneumoniae infection. PLoS One 2020; 15:e0214497. [PMID: 32639963 PMCID: PMC7343132 DOI: 10.1371/journal.pone.0214497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 03/14/2019] [Indexed: 01/01/2023] Open
Abstract
The Bashbay sheep (Ovis aries), an indigenous breed of Xinjiang, China, has many excellent characteristics. It is resistant to Mycoplasma ovipneumoniae infection, the causative agent of mycoplasma ovipneumonia, a chronic respiratory disease that is harmful to the sheep industry. To date, knowledge regarding the mechanisms responsible for M. ovipneumoniae pathogenesis in scant. Herein, we report the results of transcriptome profiling of lung tissues from Bashbay sheep experimentally infected with an M. ovipneumoniae strain at 4 and 14 days post-infection, in comparison to mock-infected animals (0 d). Transcriptome profiling was performed by deep RNA sequencing, using the Illumina platform. The analysis of differentially expressed genes was performed to determine concomitant gene-specific temporal patterns of mRNA expression in the lungs after M. ovipneumoniae infection. We found 1048 differentially expressed genes (575 up-regulated, 473 down-regulated) when comparing transcriptomic data at 4 and 0 days post-infection, and 2823 (1362 up-regulated, 1461 down-regulated) when comparing 14 versus 0 days post-infection. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the differentially expressed genes at 4 and 14 versus 0 days post-infection were enriched in 245 and 287 pathways, respectively, and the Toll-like receptor (TLR) signaling pathway was considered most closely related to MO infection (p < 0.01). Two pathways (LAMP-TLR2/TLR6-MyD88-MKK6-AP1-IL1B and LAMP-TLR8MyD88-IRF5-RANTES) were identified based on the TLR signaling pathway from differentially expressed genes related M. ovipneumoniae infection. Gene Ontology analysis showed that differentially expressed genes in different groups were enriched for 1580 and 4561 terms, where those most closely related to M. ovipneumoniae infection are positive regulators of inflammatory responses (p < 0.01). These results could aid in understanding how M. ovipneumoniae infection progresses in the lungs and may provide useful information regarding key regulatory pathways.
Collapse
|
30
|
Cacciotto C, Dessì D, Cubeddu T, Cocco AR, Pisano A, Tore G, Fiori PL, Rappelli P, Pittau M, Alberti A. MHO_0730 as a Surface-Exposed Calcium-Dependent Nuclease of Mycoplasma hominis Promoting Neutrophil Extracellular Trap Formation and Escape. J Infect Dis 2020; 220:1999-2008. [PMID: 31420650 DOI: 10.1093/infdis/jiz406] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/08/2019] [Indexed: 12/22/2022] Open
Abstract
Mycoplasma lipoproteins play a relevant role in pathogenicity and directly interact with the host immune system. Among human mycoplasmas, Mycoplasma hominis is described as a commensal bacterium that can be associated with a number of genital and extragenital conditions. Mechanisms of M. hominis pathogenicity are still largely obscure, and only a limited number of proteins have been associated with virulence. The current study focused on investigating the role of MHO_0730 as a virulence factor and demonstrated that MHO_0730 is a surface lipoprotein, potentially expressed in vivo during natural infection, acting both as a nuclease with its amino acidic portion and as a potent inducer of Neutrophil extracellular trapsosis with its N-terminal lipid moiety. Evidence for M. hominis neutrophil extracellular trap escape is also presented. Results highlight the relevance of MHO_0730 in promoting infection and modulation and evasion of innate immunity and provide additional knowledge on M. hominis virulence and survival in the host.
Collapse
Affiliation(s)
- Carla Cacciotto
- Department of Veterinary Medicine, University of Sassari, Italy
| | - Daniele Dessì
- Department of Biomedical Sciences, University of Sassari, Italy.,Mediterranean Center for Disease Control, University of Sassari, Italy
| | - Tiziana Cubeddu
- Department of Veterinary Medicine, University of Sassari, Italy
| | - Anna Rita Cocco
- Department of Biomedical Sciences, University of Sassari, Italy
| | - Andrea Pisano
- Department of Veterinary Medicine, University of Sassari, Italy
| | - Gessica Tore
- Department of Veterinary Medicine, University of Sassari, Italy
| | - Pier Luigi Fiori
- Department of Biomedical Sciences, University of Sassari, Italy.,Mediterranean Center for Disease Control, University of Sassari, Italy
| | - Paola Rappelli
- Department of Biomedical Sciences, University of Sassari, Italy.,Mediterranean Center for Disease Control, University of Sassari, Italy
| | - Marco Pittau
- Department of Veterinary Medicine, University of Sassari, Italy.,Mediterranean Center for Disease Control, University of Sassari, Italy
| | - Alberto Alberti
- Department of Veterinary Medicine, University of Sassari, Italy.,Mediterranean Center for Disease Control, University of Sassari, Italy
| |
Collapse
|
31
|
Zhao W, Bendickson L, Nilsen-Hamilton M. The Lipocalin2 Gene is Regulated in Mammary Epithelial Cells by NFκB and C/EBP In Response to Mycoplasma. Sci Rep 2020; 10:7641. [PMID: 32376831 PMCID: PMC7203223 DOI: 10.1038/s41598-020-63393-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/25/2020] [Indexed: 02/02/2023] Open
Abstract
Lcn2 gene expression increases in response to cell stress signals, particularly in cells involved in the innate immune response. Human Lcn2 (NGAL) is increased in the blood and tissues in response to many stressors including microbial infection and in response to LPS in myeloid and epithelial cells. Here we extend the microbial activators of Lcn2 to mycoplasma and describe studies in which the mechanism of Lcn2 gene regulation by MALP-2 and mycoplasma infection was investigated in mouse mammary epithelial cells. As for the LPS response of myeloid cells, Lcn2 expression in epithelial cells is preceded by increased TNFα, IL-6 and IκBζ expression and selective reduction of IκBζ reduces Lcn2 promoter activity. Lcn2 promoter activation remains elevated well beyond the period of exposure to MALP-2 and is persistently elevated in mycoplasma infected cells. Activation of either the human or the mouse Lcn2 promoter requires both NFκB and C/EBP for activation. Thus, Lcn2 is strongly and enduringly activated by mycoplasma components that stimulate the innate immune response with the same basic regulatory mechanism for the human and mouse genes.
Collapse
Affiliation(s)
- Wei Zhao
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology and the Interdepartmental Molecular, Cellular and Developmental Biology Program, Iowa State University, Ames, IA, 50011, USA
- Interdepartmental Molecular, Cellular and Developmental Biology Program, Iowa State University, Ames, IA, 50011, USA
- Bayview Physicians Group, Battlefield Medical association, 675 North Battlefield Boulevard, Chesapeake, VA, 23320, USA
| | - Lee Bendickson
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology and the Interdepartmental Molecular, Cellular and Developmental Biology Program, Iowa State University, Ames, IA, 50011, USA
| | - Marit Nilsen-Hamilton
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology and the Interdepartmental Molecular, Cellular and Developmental Biology Program, Iowa State University, Ames, IA, 50011, USA.
- Interdepartmental Molecular, Cellular and Developmental Biology Program, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
32
|
Vlacil AK, Vollmeister E, Bertrams W, Schoesser F, Oberoi R, Schuett J, Schuett H, Huehn S, Bedenbender K, Schmeck BT, Schieffer B, Grote K. Identification of microRNAs involved in NOD-dependent induction of pro-inflammatory genes in pulmonary endothelial cells. PLoS One 2020; 15:e0228764. [PMID: 32353008 PMCID: PMC7192443 DOI: 10.1371/journal.pone.0228764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/16/2020] [Indexed: 01/08/2023] Open
Abstract
The nucleotide-binding oligomerization domain-containing proteins (NOD) 1 and 2 are mammalian cytosolic pattern recognition receptors sensing bacterial peptidoglycan fragments in order to initiate cytokine expression and pathogen host defense. Since endothelial cells are relevant cells for pathogen recognition at the blood/tissue interface, we here analyzed the role of NOD1- and NOD2-dependently expressed microRNAs (miRNAs, miR) for cytokine regulation in murine pulmonary endothelial cells. The induction of inflammatory cytokines in response to NOD1 and NOD2 was confirmed by increased expression of tumour necrosis factor (Tnf)-α and interleukin (Il)-6. MiRNA expression profiling revealed NOD1- and NOD2-dependently regulated miRNA candidates, of which miR-147-3p, miR-200a-3p, and miR-298-5p were subsequently validated in pulmonary endothelial cells isolated from Nod1/2-deficient mice. Analysis of the two down-regulated candidates miR-147-3p and miR-298-5p revealed predicted binding sites in the 3' untranslated region (UTR) of the murine Tnf-α and Il-6 mRNA. Consequently, transfection of endothelial cells with miRNA mimics decreased Tnf-α and Il-6 mRNA levels. Finally, a novel direct interaction of miR-298-5p with the 3' UTR of the Il-6 mRNA was uncovered by luciferase reporter assays. We here identified a mechanism of miRNA-down-regulation by NOD stimulation thereby enabling the induction of inflammatory gene expression in endothelial cells.
Collapse
Affiliation(s)
| | - Evelyn Vollmeister
- Institute for Lung Research/iLung, German Center for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research/iLung, German Center for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| | - Florian Schoesser
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | - Raghav Oberoi
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | - Jutta Schuett
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | - Harald Schuett
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | - Sonja Huehn
- Department of Hematology, Oncology, and Immunology, Philipps-University Marburg, Marburg, Germany
| | - Katrin Bedenbender
- Institute for Lung Research/iLung, German Center for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| | - Bernd T. Schmeck
- Institute for Lung Research/iLung, German Center for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University of Marburg, Marburg, Germany
- German Center for Infection Research (DZIF), partner site Giessen-Marburg-Langen, Marburg, Germany
| | | | - Karsten Grote
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
33
|
Blötz C, Singh N, Dumke R, Stülke J. Characterization of an Immunoglobulin Binding Protein (IbpM) From Mycoplasma pneumoniae. Front Microbiol 2020; 11:685. [PMID: 32373096 PMCID: PMC7176901 DOI: 10.3389/fmicb.2020.00685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/24/2020] [Indexed: 01/30/2023] Open
Abstract
Bacteria evolved many ways to invade, colonize and survive in the host tissue. Such complex infection strategies of other bacteria are not present in the cell-wall less Mycoplasmas. Due to their strongly reduced genomes, these bacteria have only a minimal metabolism. Mycoplasma pneumoniae is a pathogenic bacterium using its virulence repertoire very efficiently, infecting the human lung. M. pneumoniae can cause a variety of conditions including fever, inflammation, atypical pneumoniae, and even death. Due to its strongly reduced metabolism, M. pneumoniae is dependent on nutrients from the host and aims to persist as long as possible, resulting in chronic diseases. Mycoplasmas evolved strategies to subvert the host immune system which involve proteins fending off immunoglobulins (Igs). In this study, we investigated the role of MPN400 as the putative factor responsible for Ig-binding and host immune evasion. MPN400 is a cell-surface localized protein which binds strongly to human IgG, IgA, and IgM. We therefore named the protein MPN400 immunoglobulin binding protein of Mycoplasma (IbpM). A strain devoid of IbpM is slightly compromised in cytotoxicity. Taken together, our study indicates that M. pneumoniae uses a refined mechanism for immune evasion.
Collapse
Affiliation(s)
- Cedric Blötz
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Neil Singh
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Roger Dumke
- Medical Faculty Carl Gustav Carus, Institute of Medical Microbiology and Hygiene, Technical University Dresden, Dresden, Germany
| | - Jörg Stülke
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
34
|
Troidl K, Schubert C, Vlacil AK, Chennupati R, Koch S, Schütt J, Oberoi R, Schaper W, Schmitz-Rixen T, Schieffer B, Grote K. The Lipopeptide MALP-2 Promotes Collateral Growth. Cells 2020; 9:cells9040997. [PMID: 32316253 PMCID: PMC7227808 DOI: 10.3390/cells9040997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Beyond their role in pathogen recognition and the initiation of immune defense, Toll-like receptors (TLRs) are known to be involved in various vascular processes in health and disease. We investigated the potential of the lipopeptide and TLR2/6 ligand macrophage activating protein of 2-kDA (MALP-2) to promote blood flow recovery in mice. Hypercholesterolemic apolipoprotein E (Apoe)-deficient mice were subjected to microsurgical ligation of the femoral artery. MALP-2 significantly improved blood flow recovery at early time points (three and seven days), as assessed by repeated laser speckle imaging, and increased the growth of pre-existing collateral arteries in the upper hind limb, along with intimal endothelial cell proliferation in the collateral wall and pericollateral macrophage accumulation. In addition, MALP-2 increased capillary density in the lower hind limb. MALP-2 enhanced endothelial nitric oxide synthase (eNOS) phosphorylation and nitric oxide (NO) release from endothelial cells and improved the experimental vasorelaxation of mesenteric arteries ex vivo. In vitro, MALP-2 led to the up-regulated expression of major endothelial adhesion molecules as well as their leukocyte integrin receptors and consequently enhanced the endothelial adhesion of leukocytes. Using the experimental approach of femoral artery ligation (FAL), we achieved promising results with MALP-2 to promote peripheral blood flow recovery by collateral artery growth.
Collapse
Affiliation(s)
- Kerstin Troidl
- Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; (R.C.); (W.S.)
- Department of Vascular and Endovascular Surgery, University Hospital Frankfurt, 60488 Frankfurt, Germany; (C.S.); (T.S.-R.)
- Correspondence:
| | - Christian Schubert
- Department of Vascular and Endovascular Surgery, University Hospital Frankfurt, 60488 Frankfurt, Germany; (C.S.); (T.S.-R.)
| | - Ann-Kathrin Vlacil
- Cardiology and Angiology, Philipps-University Marburg, 35043 Marburg, Germany; (A.-K.V.); (S.K.); (J.S.); (R.O.); (B.S.); (K.G.)
| | - Ramesh Chennupati
- Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; (R.C.); (W.S.)
| | - Sören Koch
- Cardiology and Angiology, Philipps-University Marburg, 35043 Marburg, Germany; (A.-K.V.); (S.K.); (J.S.); (R.O.); (B.S.); (K.G.)
| | - Jutta Schütt
- Cardiology and Angiology, Philipps-University Marburg, 35043 Marburg, Germany; (A.-K.V.); (S.K.); (J.S.); (R.O.); (B.S.); (K.G.)
| | - Raghav Oberoi
- Cardiology and Angiology, Philipps-University Marburg, 35043 Marburg, Germany; (A.-K.V.); (S.K.); (J.S.); (R.O.); (B.S.); (K.G.)
| | - Wolfgang Schaper
- Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; (R.C.); (W.S.)
| | - Thomas Schmitz-Rixen
- Department of Vascular and Endovascular Surgery, University Hospital Frankfurt, 60488 Frankfurt, Germany; (C.S.); (T.S.-R.)
| | - Bernhard Schieffer
- Cardiology and Angiology, Philipps-University Marburg, 35043 Marburg, Germany; (A.-K.V.); (S.K.); (J.S.); (R.O.); (B.S.); (K.G.)
| | - Karsten Grote
- Cardiology and Angiology, Philipps-University Marburg, 35043 Marburg, Germany; (A.-K.V.); (S.K.); (J.S.); (R.O.); (B.S.); (K.G.)
| |
Collapse
|
35
|
Widjaja M, Berry IJ, Jarocki VM, Padula MP, Dumke R, Djordjevic SP. Cell surface processing of the P1 adhesin of Mycoplasma pneumoniae identifies novel domains that bind host molecules. Sci Rep 2020; 10:6384. [PMID: 32286369 PMCID: PMC7156367 DOI: 10.1038/s41598-020-63136-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
Mycoplasma pneumoniae is a genome reduced pathogen and causative agent of community acquired pneumonia. The major cellular adhesin, P1, localises to the tip of the attachment organelle forming a complex with P40 and P90, two cleavage fragments derived by processing Mpn142, and other molecules with adhesive and mobility functions. LC-MS/MS analysis of M. pneumoniae M129 proteins derived from whole cell lysates and eluents from affinity matrices coupled with chemically diverse host molecules identified 22 proteoforms of P1. Terminomics was used to characterise 17 cleavage events many of which were independently verified by the identification of semi-tryptic peptides in our proteome studies and by immunoblotting. One cleavage event released 1597TSAAKPGAPRPPVPPKPGAPKPPVQPPKKPA1627 from the C-terminus of P1 and this peptide was shown to bind to a range of host molecules. A smaller synthetic peptide comprising the C-terminal 15 amino acids, 1613PGAPKPPVQPPKKPA1627, selectively bound cytoskeletal intermediate filament proteins cytokeratin 7, cytokeratin 8, cytokeratin 18, and vimentin from a native A549 cell lysate. Collectively, our data suggests that ectodomain shedding occurs on the surface of M. pneumoniae where it may alter the functional diversity of P1, Mpn142 and other surface proteins such as elongation factor Tu via a mechanism similar to that described in Mycoplasma hyopneumoniae.
Collapse
Affiliation(s)
- Michael Widjaja
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Iain James Berry
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Veronica Maria Jarocki
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Matthew Paul Padula
- Proteomics Core Facility and School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Roger Dumke
- Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Institut für Medizinische Mikrobiologie und Hygiene, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Steven Philip Djordjevic
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia. .,Proteomics Core Facility and School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
36
|
Lu BL, Williams GM, Brimble MA. TLR2 agonists and their structure–activity relationships. Org Biomol Chem 2020; 18:5073-5094. [DOI: 10.1039/d0ob00942c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We review the structure–activity relationships and synthetic studies of TLR2 agonists – important chemical targets in immunotherapy.
Collapse
Affiliation(s)
- Benjamin L. Lu
- The School of Biological Sciences
- University of Auckland
- Auckland 1010
- New Zealand
- The School of Chemical Sciences
| | - Geoffrey M. Williams
- The School of Biological Sciences
- University of Auckland
- Auckland 1010
- New Zealand
- The School of Chemical Sciences
| | - Margaret A. Brimble
- The School of Biological Sciences
- University of Auckland
- Auckland 1010
- New Zealand
- The School of Chemical Sciences
| |
Collapse
|
37
|
Du X, Qian J, Wang Y, Zhang M, Chu Y, Li Y. Identification and immunological evaluation of novel TLR2 agonists through structure optimization of Pam 3CSK 4. Bioorg Med Chem 2019; 27:2784-2800. [PMID: 31101493 DOI: 10.1016/j.bmc.2019.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/26/2019] [Accepted: 05/04/2019] [Indexed: 12/22/2022]
Abstract
Toll-like receptor 2 (TLR2) is a bridge between innate immunity and adaptive immunity. TLR2 agonists have been exploited as potential vaccine adjuvants and antitumor agents. However, no TLR2 agonists have been approved by FDA up to now. To discover drug-like TLR2 selective agonists, a novel series of Pam3CSK4 derivatives were designed based on the crystal structure of hTLR2-hTLR1-Pam3CSK4 complex, synthesized and evaluated for their immune-stimulatory activities. Among them, 35c was identified as a murine-specific TLR2 agonist, while 35f was a human-specific TLR2 agonist. Besides, 35d (human and murine TLR2 agonist) showed TLR2 agonistic activity comparable to Pam3CSK4, which included: elevated IL-6 expression level (EC50 = 83.08 ± 5.94 nM), up-regulated TNF-α and IL-6 mRNA expression and promoted maturation of DCs through activating the NF-κB signaling pathway. TLRs antibodies test showed that 35a and 35d were TLR2/1 agonists, while 35f was a TLR2/6 agonist.
Collapse
Affiliation(s)
- Xinming Du
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiawen Qian
- Department of Immunology, School of Basic Medical Sciences and Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yujie Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mingming Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences and Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Yingxia Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
38
|
Lei Y, Zhao F, Shao J, Li Y, Li S, Chang H, Zhang Y. Application of built-in adjuvants for epitope-based vaccines. PeerJ 2019; 6:e6185. [PMID: 30656066 PMCID: PMC6336016 DOI: 10.7717/peerj.6185] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
Several studies have shown that epitope vaccines exhibit substantial advantages over conventional vaccines. However, epitope vaccines are associated with limited immunity, which can be overcome by conjugating antigenic epitopes with built-in adjuvants (e.g., some carrier proteins or new biomaterials) with special properties, including immunologic specificity, good biosecurity and biocompatibility, and the ability to vastly improve the immune response of epitope vaccines. When designing epitope vaccines, the following types of built-in adjuvants are typically considered: (1) pattern recognition receptor ligands (i.e., toll-like receptors); (2) virus-like particle carrier platforms; (3) bacterial toxin proteins; and (4) novel potential delivery systems (e.g., self-assembled peptide nanoparticles, lipid core peptides, and polymeric or inorganic nanoparticles). This review primarily discusses the current and prospective applications of these built-in adjuvants (i.e., biological carriers) to provide some references for the future design of epitope-based vaccines.
Collapse
Affiliation(s)
- Yao Lei
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Furong Zhao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Junjun Shao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yangfan Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifang Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Huiyun Chang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
39
|
Abstract
The Lpp lipoprotein of Escherichia coli is the first identified protein with a covalently linked lipid. It is chemically bound by its C-terminus to murein (peptidoglycan) and inserts by the lipid at the N-terminus into the outer membrane. As the most abundant protein in E. coli (106 molecules per cell) it plays an important role for the integrity of the cell envelope. Lpp represents the type protein of a large variety of lipoproteins found in Gram-negative and Gram-positive bacteria and in archaea that have in common the lipid structure for anchoring the proteins to membranes but otherwise strongly vary in sequence, structure, and function. Predicted lipoproteins in known prokaryotic genomes comprise 2.7% of all proteins. Lipoproteins are modified by a unique phospholipid pathway and transferred from the cytoplasmic membrane into the outer membrane by a special system. They are involved in protein incorporation into the outer membrane, protein secretion across the cytoplasmic membrane, periplasm and outer membrane, signal transduction, conjugation, cell wall metabolism, antibiotic resistance, biofilm formation, and adhesion to host tissues. They are only found in bacteria and function as signal molecules for the innate immune system of vertebrates, where they cause inflammation and elicit innate and adaptive immune response through Toll-like receptors. This review discusses various aspects of Lpp and other lipoproteins of Gram-negative and Gram-positive bacteria and archaea.
Collapse
Affiliation(s)
- Volkmar Braun
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Ring 5, 72076, Tübingen, Germany.
| | - Klaus Hantke
- IMIT, University of Tuebingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| |
Collapse
|
40
|
Morin MD, Wang Y, Jones BT, Mifune Y, Su L, Shi H, Moresco EMY, Zhang H, Beutler B, Boger DL. Diprovocims: A New and Exceptionally Potent Class of Toll-like Receptor Agonists. J Am Chem Soc 2018; 140:14440-14454. [PMID: 30272974 DOI: 10.1021/jacs.8b09223] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A screen conducted with nearly 100000 compounds and a surrogate functional assay for stimulation of an immune response that measured the release of TNF-α from treated human THP-1 myeloid cells differentiated along the macrophage line led to the discovery of the diprovocims. Unique to these efforts and of special interest, the screening leads for this new class of activators of an immune response came from a compound library designed to promote cell-surface receptor dimerization. Subsequent comprehensive structure-activity relationship studies improved the potency 800-fold over that of the screening leads, providing diprovocim-1 and diprovocim-2. The diprovocims act by inducing cell-surface toll-like receptor (TLR)-2 dimerization and activation with TLR1 (TLR1/TLR2 agonist), bear no structural similarity to any known natural or synthetic TLR agonist, and are easy to prepare and synthetically modify, and selected members are active in both human and murine systems. The most potent diprovocim (3, diprovocim-1) elicits full agonist activity at extraordinarily low concentrations (EC50 = 110 pM) in human THP-1 cells, being more potent than the naturally derived TLR1/TLR2 agonist Pam3CSK4 or any other known small molecule TLR agonist.
Collapse
Affiliation(s)
- Matthew D Morin
- Department of Chemistry and the Skaggs Institute of Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 United States
| | - Ying Wang
- Center for the Genetics of Host Defense , University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| | - Brian T Jones
- Department of Chemistry and the Skaggs Institute of Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 United States
| | - Yuto Mifune
- Department of Chemistry and the Skaggs Institute of Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 United States
| | - Lijing Su
- Center for the Genetics of Host Defense , University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| | - Hexin Shi
- Center for the Genetics of Host Defense , University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense , University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| | - Hong Zhang
- Center for the Genetics of Host Defense , University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| | - Bruce Beutler
- Center for the Genetics of Host Defense , University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| | - Dale L Boger
- Department of Chemistry and the Skaggs Institute of Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 United States
| |
Collapse
|
41
|
Christodoulides A, Gupta N, Yacoubian V, Maithel N, Parker J, Kelesidis T. The Role of Lipoproteins in Mycoplasma-Mediated Immunomodulation. Front Microbiol 2018; 9:1682. [PMID: 30108558 PMCID: PMC6080569 DOI: 10.3389/fmicb.2018.01682] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 07/05/2018] [Indexed: 01/16/2023] Open
Abstract
Mycoplasma infections, such as walking pneumonia or pelvic inflammatory diseases, are a major threat to public health. Despite their relatively small physical and genomic size, mycoplasmas are known to elicit strong host immune responses, generally inflammatory, while also being able to evade the immune system. The mycoplasma membrane is composed of approximately two-thirds protein and one-third lipid and contains several lipoproteins that are known to regulate host immune responses. Herein, the immunomodulatory effects of mycoplasma lipoproteins are reviewed. A better understanding of the immunomodulatory effects, both activating and evasive, of Mycoplasma surface lipoproteins will contribute to understanding mechanisms potentially relevant to mycoplasma disease vaccine development and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Theodoros Kelesidis
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
42
|
Takeda Y, Azuma M, Hatsugai R, Fujimoto Y, Hashimoto M, Fukase K, Matsumoto M, Seya T. The second and third amino acids of Pam2 lipopeptides are key for the proliferation of cytotoxic T cells. Innate Immun 2018; 24:323-331. [PMID: 29848176 PMCID: PMC6830919 DOI: 10.1177/1753425918777598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The TLR2 agonist, dipalmitoyl lipopeptide (Pam2LP), has been used as an immune
adjuvant without much success. Pam2LP is recognised by TLR2/6 receptors in
humans and in mice. This study examined the proliferative activity of cytotoxic
T lymphocytes (CTL) using mouse Ag-presenting dendritic cells (DCs) and OT-I
assay system, where a library of synthetic Pam2LP was utilised from the
Staphylococcus aureus database. Ag-specific CTL expansion
and IFN-γ levels largely depended on the Pam2LP peptide sequence. The first Aa
is cysteine (Cys), which has an active SH residue to bridge fatty acids, and the
second and third Aa are hydrophilic or non-polar. The sequence structurally
adapted to the residual constitution of the reported TLR2/6 pocket. The inactive
sequence contained proline or leucine/isoleucine after the first Cys. Notably,
no direct activation of OT-I cells was detected without DCs by stimulation with
the active Pam2LP having the Cys-Ser sequence. MyD88, but not TICAM-1 or IFN
pathways, in DCs participates in DC maturation characterised by upregulation of
CD40, CD80 and CD86. Hence, the active Pam2LPs appear suitable for dimeric
TLR2/6 on DCs, resulting in induction of DC maturation.
Collapse
Affiliation(s)
- Yohei Takeda
- 1 Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University, Japan
| | - Masahiro Azuma
- 1 Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University, Japan
| | - Ryoko Hatsugai
- 1 Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University, Japan
| | - Yukari Fujimoto
- 2 Faculty of Science and Technology, Keio University, Japan.,3 Department of Chemistry, Graduate School of Science, Osaka University, Japan
| | - Masahito Hashimoto
- 4 Department of Nanostructure and Advanced Materials, Kagoshima University, Japan
| | - Koichi Fukase
- 3 Department of Chemistry, Graduate School of Science, Osaka University, Japan
| | - Misako Matsumoto
- 1 Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University, Japan
| | - Tsukasa Seya
- 1 Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University, Japan
| |
Collapse
|
43
|
Akazawa T, Ohashi T, Wijewardana V, Sugiura K, Inoue N. Development of a vaccine based on bacteria-mimicking tumor cells coated with novel engineered toll-like receptor 2 ligands. Cancer Sci 2018; 109:1319-1329. [PMID: 29575556 PMCID: PMC5980365 DOI: 10.1111/cas.13576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 01/02/2023] Open
Abstract
For a successful tumor vaccine, it is necessary to develop effective immuno-adjuvants and identify specific tumor antigens. Tumor cells obtained from surgical or biopsy tissues are a good source of tumor antigens but, unlike bacteria, they do not induce strong immune responses. Here, we designed 2 novel lipopeptides that coat tumor cell surfaces and mimic bacterial components. Tumor cells coated with these lipopeptides (called bacteria-mimicking tumor cells [BMTC]) were prepared and their efficacy as a tumor vaccine examined. Natural bacterial lipopeptides act as ligands for toll-like receptor 2 (TLR2) and activate dendritic cells (DC). To increase the affinity of the developed lipopeptides for the negatively charged plasma membrane, a cationic polypeptide was connected to Pam2Cys (P2C), which is the basic structure of the TLR2 ligand. This increased the non-specific binding affinity of the peptides for the cell surface. Two such lipopeptides, P2CSK11 (containing 1 serine and 11 lysine residues) and P2CSR11 (containing 1 serine and 11 arginine residues) bound to irradiated tumor cells via the long cationic polypeptides more efficiently than the natural lipopeptide MALP2 (P2C-GNNDESNISFKEK) or a synthetic lipopeptide P2CSK4 (a short cationic polypeptide containing 1 serine and 4 lysines). BMTC coated with P2CSR11 or P2CSK11 were efficiently phagocytosed by DC and induced antigen cross-presentation in vitro. They also induced effective tumor-specific cytotoxic T cell responses and inhibited tumor growth in in vivo mouse models. P2CSR11 activated DC but induced less inflammation-inducing cytokines/interferons than other lipopeptides. Thus, P2CSR11 is a strong candidate antigen-specific immuno-adjuvant, with few adverse effects.
Collapse
Affiliation(s)
- Takashi Akazawa
- Department of Tumor Immunology, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Toshimitsu Ohashi
- Department of Tumor Immunology, Research Center, Osaka International Cancer Institute, Osaka, Japan.,Department of Otolaryngology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Viskam Wijewardana
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Kikuya Sugiura
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Norimitsu Inoue
- Department of Tumor Immunology, Research Center, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
44
|
Kowalczyk R, Harris PWR, Williams GM, Yang SH, Brimble MA. Peptide Lipidation - A Synthetic Strategy to Afford Peptide Based Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1030:185-227. [PMID: 29081055 PMCID: PMC7121180 DOI: 10.1007/978-3-319-66095-0_9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peptide and protein aberrant lipidation patterns are often involved in many diseases including cancer and neurological disorders. Peptide lipidation is also a promising strategy to improve pharmacokinetic and pharmacodynamic profiles of peptide-based drugs. Self-adjuvanting peptide-based vaccines commonly utilise the powerful TLR2 agonist PamnCys lipid to stimulate adjuvant activity. The chemical synthesis of lipidated peptides can be challenging hence efficient, flexible and straightforward synthetic routes to access homogeneous lipid-tagged peptides are in high demand. A new technique coined Cysteine Lipidation on a Peptide or Amino acid (CLipPA) uses a 'thiol-ene' reaction between a cysteine and a vinyl ester and offers great promise due to its simplicity, functional group compatibility and selectivity. Herein a brief review of various synthetic strategies to access lipidated peptides, focusing on synthetic methods to incorporate a PamnCys motif into peptides, is provided.
Collapse
Affiliation(s)
- Renata Kowalczyk
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| | - Geoffrey M Williams
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| | - Sung-Hyun Yang
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand. .,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand.
| |
Collapse
|
45
|
Calcutt MJ, Lysnyansky I, Sachse K, Fox LK, Nicholas RAJ, Ayling RD. Gap analysis of Mycoplasma bovis disease, diagnosis and control: An aid to identify future development requirements. Transbound Emerg Dis 2018; 65 Suppl 1:91-109. [PMID: 29582590 DOI: 10.1111/tbed.12860] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Indexed: 01/07/2023]
Abstract
There is a worldwide problem of disease caused by Mycoplasma (M.) bovis in cattle; it has a significant detrimental economic and animal welfare impact on cattle rearing. Infection can manifest as a plethora of clinical signs including mastitis, pneumonia, arthritis, keratoconjunctivitis, otitis media and genital disorders that may result in infertility and abortion. Current diagnosis and control information are reviewed and analysed to identify gaps in knowledge of the causative organism in respect of the disease pathology, diagnosis and control methods. The main considerations are as follows: no vaccines are commercially available; antimicrobial resistance is increasing; diagnostic and antimicrobial sensitivity testing needs to be improved; and a pen-side test would facilitate more rapid diagnosis and implementation of treatment with antimicrobials. More data on host susceptibility, stress factors, immune response and infectious dose levels are required. The impact of asymptomatic carriers, M. bovis survival in the environment and the role of wildlife in transmitting the disease also needs investigation. To facilitate development of vaccines, further analysis of more M. bovis genomes, its pathogenic mechanisms, including variable surface proteins, is required, along with reproducible disease models.
Collapse
Affiliation(s)
| | | | - K Sachse
- Friedrich-Loeffler-Institut, Jena, Germany.,Department of RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich-Schiller-Universität, Jena, Germany
| | - L K Fox
- Washington State University, Pullman, WA, USA
| | | | - R D Ayling
- Animal and Plant Health Agency, Addlestone, UK
| |
Collapse
|
46
|
Takeda Y, Azuma M, Funami K, Shime H, Matsumoto M, Seya T. Type I Interferon-Independent Dendritic Cell Priming and Antitumor T Cell Activation Induced by a Mycoplasma fermentans Lipopeptide. Front Immunol 2018; 9:496. [PMID: 29593736 PMCID: PMC5861346 DOI: 10.3389/fimmu.2018.00496] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Mycoplasma fermentans-derived diacylated lipoprotein M161Ag (MALP404) is recognized by human/mouse toll-like receptor (TLR) 2/TLR6. Short proteolytic products including macrophage-activating lipopeptide 2 (MALP2) have been utilized as antitumor immune-enhancing adjuvants. We have chemically synthesized a short form of MALP2 named MALP2s (S-[2,3-bis(palmitoyloxy)propyl]-CGNNDE). MALP2 and MALP2s provoke natural killer (NK) cell activation in vitro but only poorly induce tumor regression using in vivo mouse models loading NK-sensitive tumors. Here, we identified the functional mechanism of MALP2s on dendritic cell (DC)-priming and cytotoxic T lymphocyte (CTL)-dependent tumor eradication using CTL-sensitive tumor-implant models EG7 and B16-OVA. Programmed death ligand-1 (PD-L1) blockade therapy in combination with MALP2s + ovalbumin (OVA) showed a significant additive effect on tumor growth suppression. MALP2s increased co-stimulators CD80/86 and CD40, which were totally MyD88-dependent, with no participation of toll-IL-1R homology domain-containing adaptor molecule-1 or type I interferon signaling in DC priming. MALP2s + OVA consequently augmented proliferation of OVA-specific CTLs in the spleen and at tumor sites. Chemokines and cytolytic factors were upregulated in the tumor. Strikingly, longer duration and reinvigoration of CTLs in spleen and tumors were accomplished by the addition of MALP2s + OVA to α-PD-L1 antibody (Ab) therapy compared to α-PD-L1 Ab monotherapy. Then, tumors regressed better in the MALP2s/OVA combination than in the α-PD-L1 Ab monotherapy. Hence, MALP2s/tumor-associated antigens combined with α-PD-L1 Ab is a good therapeutic strategy in some mouse models. Unfortunately, numerous patients are still resistant to PD-1/PD-L1 blockade, and good DC-priming adjuvants are desired. Cytokine toxicity by MALP2s remains to be settled, which should be improved by chemical modification in future studies.
Collapse
Affiliation(s)
- Yohei Takeda
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiro Azuma
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kenji Funami
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroaki Shime
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Misako Matsumoto
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tsukasa Seya
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
47
|
Hu J, Chen C, Ou G, You X, Tan T, Hu X, Zeng Y, Yu M, Zhu C. Nrf2 regulates the inflammatory response, including heme oxygenase-1 induction, by mycoplasma pneumoniae lipid-associated membrane proteins in THP-1 cells. Pathog Dis 2018; 75:3738187. [PMID: 28430965 DOI: 10.1093/femspd/ftx044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/15/2017] [Indexed: 11/14/2022] Open
Abstract
A series of inflammatory responses caused by Mycoplasma pneumoniae largely depend on the lipid-associated membrane proteins (LAMPs). Nuclear factor E2-related factor 2 (Nrf2), a transcription factor, is considered to be a critical modulator of inflammatory responses and cellular redox homeostasis. Monocytes play an important role in the invasion and immunity to resist pathogens. Here, we investigated the role of Nrf2 in the anti-inflammatory response stimulated by LAMPs using the human monocyte cell line THP-1. LAMPs were shown to affect the localization of Nrf2, and the levels of reactive oxygen species and inflammatory reactants, including nitric oxide (NO), prostaglandin E2 (PGE2) and cytokines (IL-6, IL-8), were highly elevated in LAMP-stimulated Nrf2-silenced THP-1 cells. Moreover, LAMPs induced the levels of mRNA and the expression of heme oxygenase-1 (HO-1). In summary, our results demonstrated that LAMPs cause nuclear translocation of Nrf2, which further suppresses the expression of inflammatory reactants in THP-1 cells.
Collapse
Affiliation(s)
- Jihong Hu
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Chunyan Chen
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Guangli Ou
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Tianping Tan
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Xinnian Hu
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Yihua Zeng
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Minjun Yu
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| |
Collapse
|
48
|
Recent progress of fully synthetic carbohydrate-based vaccine using TLR agonist as build-in adjuvant. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.09.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
49
|
Kaur A, Poonam P, Patil MT, Mehta SK, Salunke DB. An efficient and scalable synthesis of potent TLR2 agonistic PAM2CSK4. RSC Adv 2018; 8:9587-9596. [PMID: 35540846 PMCID: PMC9078680 DOI: 10.1039/c8ra01387j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 02/26/2018] [Indexed: 11/21/2022] Open
Abstract
Diacylated PAM2CSK4, a highly expensive lipopeptide with desirable aqueous solubility and a broad spectrum of cytokine/chemokine induction is a most potent dual (human and murine) Toll-Like Receptor-2 (TLR2) agonist.
Collapse
Affiliation(s)
- Arshpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry
- Panjab University
- Chandigarh 160014
- India
| | - Poonam Poonam
- Department of Chemistry and Centre of Advanced Studies in Chemistry
- Panjab University
- Chandigarh 160014
- India
| | - Madhuri T. Patil
- Department of Chemistry
- Mehr Chand Mahajan DAV College for Women
- Chandigarh 160036
- India
| | - Surinder K. Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry
- Panjab University
- Chandigarh 160014
- India
| | - Deepak B. Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry
- Panjab University
- Chandigarh 160014
- India
| |
Collapse
|
50
|
Cappelletti M, Lawson MJ, Chan CC, Wilburn AN, Divanovic S. Differential outcomes of TLR2 engagement in inflammation-induced preterm birth. J Leukoc Biol 2017; 103:535-543. [PMID: 29345344 PMCID: PMC6084304 DOI: 10.1002/jlb.3ma0717-274rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 01/06/2023] Open
Abstract
Preterm birth (PTB) is the leading cause of neonatal mortality worldwide. Infection and inflammation are considered main causes of PTB. Among multiple pathogens, Gram‐positive bacteria are commonly linked with induction of PTB. Although activation of innate immune responses, via TLR2 engagement, by Gram‐positive bacteria is a likely cause, whether induction of PTB depends on the potency of specific microbial components to induce Toll‐like receptor (TLR)2‐driven inflammation has not been elucidated. Here, we show that TLR2 activation by synthetic lipopeptides, Pam2Cys, and Pam3Cys specifically, variably influenced inflammation and subsequent induction of PTB. Pam2Cys challenge, compared to Pam3Cys, induced PTB and promoted significantly higher expression of inflammatory cytokines, specifically IL‐6 and IFN‐β, both in vivo and in vitro. Notably, antibody‐mediated neutralization of IL‐6 or genetic deletion of type I IFN receptor (IFNAR) was sufficient to protect from Pam2Cys‐driven PTB and to temper excessive proinflammatory cytokine production. Conversely, IFN‐β or IL‐6 was not sufficient to promote induction of PTB by Pam3Cys. In summary, our data implies a divergent function of TLR2‐activating lipopeptides in the magnitude and type of ligand‐driven inflammatory vigor in induction of PTB.
Collapse
Affiliation(s)
- Monica Cappelletti
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Matthew J Lawson
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Calvin C Chan
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Adrienne N Wilburn
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Senad Divanovic
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|