1
|
Owens SM, Sifford JM, Li G, Murdock SJ, Salinas E, Oldenburg D, Ghosh D, Stumhofer JS, Nookaew I, Manzano M, Forrest JC. Intrinsic p53 activation restricts gammaherpesvirus driven germinal center B cell expansion during latency establishment. Nat Commun 2025; 16:951. [PMID: 39843898 PMCID: PMC11754798 DOI: 10.1038/s41467-025-56247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Gammaherpesviruses are DNA tumor viruses that establish lifelong latent infections in lymphocytes. For viruses such as Epstein-Barr virus and murine gammaherpesvirus 68, this is accomplished through a viral gene-expression program that promotes cellular proliferation and differentiation, especially of germinal center B cells. Intrinsic host mechanisms that control virus-driven cellular expansion are incompletely defined. Using a small-animal model of gammaherpesvirus pathogenesis, we demonstrate in vivo that the tumor suppressor p53 is activated specifically in B cells latently infected by murine gammaherpesvirus 68. In the absence of p53, the early expansion of murine gammaherpesvirus 68 latency greatly increases, especially in germinal center B cells, a cell type whose proliferation is conversely restricted by p53. We identify the B cell-specific latency gene M2, a viral promoter of germinal center B cell differentiation, as a viral protein sufficient to elicit a p53-dependent anti-proliferative response caused by Src-family kinase activation. We further demonstrate that Epstein-Barr virus-encoded latent membrane protein 1 similarly triggers a p53 response in primary B cells. Our data highlight a model in which gammaherpesvirus latency gene-expression programs that promote B cell proliferation and differentiation to facilitate viral colonization of the host trigger aberrant cellular proliferation that is controlled by p53.
Collapse
Affiliation(s)
- Shana M Owens
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jeffrey M Sifford
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gang Li
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Steven J Murdock
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Eduardo Salinas
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Debopam Ghosh
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jason S Stumhofer
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Intawat Nookaew
- Dept. of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mark Manzano
- Dept. of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Inflammatory Responses, and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - J Craig Forrest
- Dept. of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Inflammatory Responses, and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
2
|
Stanfield BA, Ruiz E, Chouljenko VN, Kousoulas KG. Guinea pig herpes like virus is a gamma herpesvirus. Virus Genes 2024; 60:148-158. [PMID: 38340271 PMCID: PMC10978641 DOI: 10.1007/s11262-024-02054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/21/2024] [Indexed: 02/12/2024]
Abstract
Guinea Pig Herpes-Like Virus (GPHLV) is a virus isolated from leukemic guinea pigs with herpes virus-like morphology described by Hsiung and Kaplow in 1969. GPHLV transformed embryonic cells from Syrian hamsters or rats, which were tumorigenic in adult animals. Herein, we present the genomic sequence of GPHLV strain LK40 as a reference for future molecular analysis. GPHLV has a broad host tropism and replicates efficiently in Guinea pig, Cat, and Green African Monkey-derived cell lines. GPHLV has a GC content of 35.45%. The genome is predicted to encode at least 75 open-reading frames (ORFs) with 84% (63 ORFs) sharing homology to human Kaposi Sarcoma Associated Herpes Virus (KSHV). Importantly, GPHLV encodes homologues of the KSHV oncogenes, vBCL2 (ORF16), vPK (ORF36), viral cyclin (v-cyclin, ORF72), the latency associated nuclear antigen (LANA, ORF73), and vGPCR (ORF74). GPHLV is a Rhadinovirus of Cavia porcellus, and we propose the formal name of Caviid gamma herpesvirus 1 (CaGHV-1). GPHLV can be a novel small animal model of Rhadinovirus pathogenesis with broad host tropism.
Collapse
Affiliation(s)
- Brent A Stanfield
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - Emmanuelle Ruiz
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Vladimir N Chouljenko
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
3
|
Owens SM, Sifford JM, Li G, Murdock SJ, Salinas E, Manzano M, Ghosh D, Stumhofer JS, Forrest JC. Intrinsic p53 Activation Restricts Gammaherpesvirus-Driven Germinal Center B Cell Expansion during Latency Establishment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.563188. [PMID: 37961505 PMCID: PMC10634957 DOI: 10.1101/2023.10.31.563188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Gammaherpesviruses (GHV) are DNA tumor viruses that establish lifelong latent infections in lymphocytes. For viruses such as Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68), this is accomplished through a viral gene-expression program that promotes cellular proliferation and differentiation, especially of germinal center (GC) B cells. Intrinsic host mechanisms that control virus-driven cellular expansion are incompletely defined. Using a small-animal model of GHV pathogenesis, we demonstrate in vivo that tumor suppressor p53 is activated specifically in B cells that are latently infected by MHV68. In the absence of p53, the early expansion of MHV68 latency was greatly increased, especially in GC B cells, a cell-type whose proliferation was conversely restricted by p53. We identify the B cell-specific latency gene M2, a viral promoter of GC B cell differentiation, as a viral protein sufficient to elicit a p53-dependent anti-proliferative response caused by Src-family kinase activation. We further demonstrate that EBV-encoded latent membrane protein 1 (LMP1) similarly triggers a p53 response in primary B cells. Our data highlight a model in which GHV latency gene-expression programs that promote B cell proliferation and differentiation to facilitate viral colonization of the host trigger aberrant cellular proliferation that is controlled by p53. IMPORTANCE Gammaherpesviruses cause lifelong infections of their hosts, commonly referred to as latency, that can lead to cancer. Latency establishment benefits from the functions of viral proteins that augment and amplify B cell activation, proliferation, and differentiation signals. In uninfected cells, off-schedule cellular differentiation would typically trigger anti-proliferative responses by effector proteins known as tumor suppressors. However, tumor suppressor responses to gammaherpesvirus manipulation of cellular processes remain understudied, especially those that occur during latency establishment in a living organism. Here we identify p53, a tumor suppressor commonly mutated in cancer, as a host factor that limits virus-driven B cell proliferation and differentiation, and thus, viral colonization of a host. We demonstrate that p53 activation occurs in response to viral latency proteins that induce B cell activation. This work informs a gap in our understanding of intrinsic cellular defense mechanisms that restrict lifelong GHV infection.
Collapse
|
4
|
Rex V, Zargari R, Stempel M, Halle S, Brinkmann MM. The innate and T-cell mediated immune response during acute and chronic gammaherpesvirus infection. Front Cell Infect Microbiol 2023; 13:1146381. [PMID: 37065193 PMCID: PMC10102517 DOI: 10.3389/fcimb.2023.1146381] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Immediately after entry into host cells, viruses are sensed by the innate immune system, leading to the activation of innate antiviral effector mechanisms including the type I interferon (IFN) response and natural killer (NK) cells. This innate immune response helps to shape an effective adaptive T cell immune response mediated by cytotoxic T cells and CD4+ T helper cells and is also critical for the maintenance of protective T cells during chronic infection. The human gammaherpesvirus Epstein-Barr virus (EBV) is a highly prevalent lymphotropic oncovirus that establishes chronic lifelong infections in the vast majority of the adult population. Although acute EBV infection is controlled in an immunocompetent host, chronic EBV infection can lead to severe complications in immunosuppressed patients. Given that EBV is strictly host-specific, its murine homolog murid herpesvirus 4 or MHV68 is a widely used model to obtain in vivo insights into the interaction between gammaherpesviruses and their host. Despite the fact that EBV and MHV68 have developed strategies to evade the innate and adaptive immune response, innate antiviral effector mechanisms still play a vital role in not only controlling the acute infection but also shaping an efficient long-lasting adaptive immune response. Here, we summarize the current knowledge about the innate immune response mediated by the type I IFN system and NK cells, and the adaptive T cell-mediated response during EBV and MHV68 infection. Investigating the fine-tuned interplay between the innate immune and T cell response will provide valuable insights which may be exploited to design better therapeutic strategies to vanquish chronic herpesviral infection.
Collapse
Affiliation(s)
- Viktoria Rex
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Razieh Zargari
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Stempel
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephan Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
- *Correspondence: Stephan Halle, ; Melanie M. Brinkmann,
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- *Correspondence: Stephan Halle, ; Melanie M. Brinkmann,
| |
Collapse
|
5
|
Age-associated B cells are long-lasting effectors that impede latent γHV68 reactivation. Sci Rep 2022; 12:21189. [PMID: 36477199 PMCID: PMC9729602 DOI: 10.1038/s41598-022-25543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Age-associated B cells (ABCs; CD19+CD11c+T-bet+) are a unique population that are increased in an array of viral infections, though their role during latent infection is largely unexplored. Here, we use murine gammaherpesvirus 68 (γHV68) to demonstrate that ABCs remain elevated long-term during latent infection and express IFNγ and TNF. Using a recombinant γHV68 that is cleared following acute infection, we show that ABCs persist in the absence of latent virus, though their expression of IFNγ and TNF is decreased. With a fluorescent reporter gene-expressing γHV68 we demonstrate that ABCs are infected with γHV68 at similar rates to other previously activated B cells. We find that mice without ABCs display defects in anti-viral IgG2a/c antibodies and are more susceptible to reactivation of γHV68 following virus challenges that typically do not break latency. Together, these results indicate that ABCs are a persistent effector subset during latent viral infection that impedes γHV68 reactivation.
Collapse
|
6
|
Mouat IC, Shanina I, Horwitz MS. Age-associated B cells are long-lasting effectors that impede latent γHV68 reactivation. Sci Rep 2022; 12:21189. [PMID: 36477199 DOI: 10.1101/2021.12.29.474434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/30/2022] [Indexed: 05/28/2023] Open
Abstract
Age-associated B cells (ABCs; CD19+CD11c+T-bet+) are a unique population that are increased in an array of viral infections, though their role during latent infection is largely unexplored. Here, we use murine gammaherpesvirus 68 (γHV68) to demonstrate that ABCs remain elevated long-term during latent infection and express IFNγ and TNF. Using a recombinant γHV68 that is cleared following acute infection, we show that ABCs persist in the absence of latent virus, though their expression of IFNγ and TNF is decreased. With a fluorescent reporter gene-expressing γHV68 we demonstrate that ABCs are infected with γHV68 at similar rates to other previously activated B cells. We find that mice without ABCs display defects in anti-viral IgG2a/c antibodies and are more susceptible to reactivation of γHV68 following virus challenges that typically do not break latency. Together, these results indicate that ABCs are a persistent effector subset during latent viral infection that impedes γHV68 reactivation.
Collapse
Affiliation(s)
- Isobel C Mouat
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Iryna Shanina
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Marc S Horwitz
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada.
- Life Sciences Centre, University of British Columbia, Room 3551, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
7
|
Jog NR, James JA. Epstein Barr Virus and Autoimmune Responses in Systemic Lupus Erythematosus. Front Immunol 2021; 11:623944. [PMID: 33613559 PMCID: PMC7886683 DOI: 10.3389/fimmu.2020.623944] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease. Infections or infectious reactivation are potential triggers for initiation of autoimmunity and for SLE flares. Epstein-Barr virus (EBV) is gamma herpes virus that has been associated with several autoimmune diseases such as SLE, multiple sclerosis, Sjogren’s syndrome, and systemic sclerosis. In this review, we will discuss the recent advances regarding how EBV may contribute to immune dysregulation, and how these mechanisms may relate to SLE disease progression.
Collapse
Affiliation(s)
- Neelakshi R Jog
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Judith A James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Departments of Medicine, Pathology, Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
8
|
Brar G, Farhat NA, Sukhina A, Lam AK, Kim YH, Hsu T, Tong L, Lin WW, Ware CF, Blackman MA, Sun R, Wu TT. Deletion of immune evasion genes provides an effective vaccine design for tumor-associated herpesviruses. NPJ Vaccines 2020; 5:102. [PMID: 33298958 PMCID: PMC7644650 DOI: 10.1038/s41541-020-00251-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Vaccines based on live attenuated viruses often induce broad, multifaceted immune responses. However, they also usually sacrifice immunogenicity for attenuation. It is particularly difficult to elicit an effective vaccine for herpesviruses due to an armament of immune evasion genes and a latent phase. Here, to overcome the limitation of attenuation, we developed a rational herpesvirus vaccine in which viral immune evasion genes were deleted to enhance immunogenicity while also attaining safety. To test this vaccine strategy, we utilized murine gammaherpesvirus-68 (MHV-68) as a proof-of-concept model for the cancer-associated human γ-herpesviruses, Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus. We engineered a recombinant MHV-68 virus by targeted inactivation of viral antagonists of type I interferon (IFN-I) pathway and deletion of the latency locus responsible for persistent infection. This recombinant virus is highly attenuated with no measurable capacity for replication, latency, or persistence in immunocompetent hosts. It stimulates robust innate immunity, differentiates virus-specific memory T cells, and elicits neutralizing antibodies. A single vaccination affords durable protection that blocks the establishment of latency following challenge with the wild type MHV-68 for at least six months post-vaccination. These results provide a framework for effective vaccination against cancer-associated herpesviruses through the elimination of latency and key immune evasion mechanisms from the pathogen.
Collapse
Affiliation(s)
- Gurpreet Brar
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Nisar A Farhat
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Alisa Sukhina
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Alex K Lam
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Yong Hoon Kim
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Tiffany Hsu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Leming Tong
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Wai Wai Lin
- Laboratory of Molecular Immunology, Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Carl F Ware
- Laboratory of Molecular Immunology, Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
9
|
Blackman MA. From Superantigens to "Real" Viral Antigens. Viral Immunol 2020; 33:211-214. [PMID: 32286177 PMCID: PMC7185356 DOI: 10.1089/vim.2019.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Studies inspired by Dr. Peter Doherty led to over 16 years of research into the mouse gamma-herpesvirus, γHV68, in the Blackman laboratory. Progress on our understanding of γHV68 biology include insight into the establishment of latency, immune control of the acute and latent stages of infection and experimental vaccines, is described here.
Collapse
|
10
|
Sarawar SR, Shen J, Dias P. Insights into CD8 T Cell Activation and Exhaustion from a Mouse Gammaherpesvirus Model. Viral Immunol 2020; 33:215-224. [PMID: 32286179 PMCID: PMC7185348 DOI: 10.1089/vim.2019.0183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
(S.R.S.) I was introduced to viral immunology while working in Peter Doherty's laboratory in the early stages of my research career, inspiring a lifelong interest in this area. During those early years under Peter's mentorship, we studied a mouse gammaherpesvirus model (murine gammaherpesvirus-68 [MHV-68]) that provided a useful small animal model for investigating the immunological control of gammaherpesvirus infection. Interestingly, while CD4 T cells were not required for acute control of MHV-68 in the lung, CD8 T cell-mediated control was progressively lost in the absence of CD4 T cell help, leading to viral recrudescence. This was one of several early studies showing that CD8 T cell control of persistent viral infections was lost in the absence of CD4 T cell help, preceding the concept of CD8 T cell exhaustion. Further studies showed that MHV-68 infection of mice offered a unique model for comparing the mechanisms of acute and long-term control of a persistent viral infection and developing strategies for reversing T cell exhaustion. Here, we provide a brief review of the literature on CD8 T cell activation and exhaustion in this model, focusing on the role of CD40 and B7 family members and including some previously unpublished data.
Collapse
Affiliation(s)
- Sally R Sarawar
- Viral Immunology, The Biomedical Research Institute of Southern California, San Diego, California
| | - Jadon Shen
- Palo Alto Veterans Institute For Research, Palo Alto, California
| | - Peter Dias
- Viral Immunology, The Biomedical Research Institute of Southern California, San Diego, California
| |
Collapse
|
11
|
Animal Models for Gammaherpesvirus Infections: Recent Development in the Analysis of Virus-Induced Pathogenesis. Pathogens 2020; 9:pathogens9020116. [PMID: 32059472 PMCID: PMC7167833 DOI: 10.3390/pathogens9020116] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr virus (EBV) is involved in the pathogenesis of various lymphomas and carcinomas, whereas Kaposi’s sarcoma-associated herpesvirus (KSHV) participates in the pathogenesis of endothelial sarcoma and lymphomas. EBV and KSHV are responsible for 120,000 and 44,000 annual new cases of cancer, respectively. Despite this clinical importance, no chemotherapies or vaccines have been developed for virus-specific treatment and prevention of these viruses. Humans are the only natural host for both EBV and KSHV, and only a limited species of laboratory animals are susceptible to their experimental infection; this strict host tropism has hampered the development of their animal models and thereby impeded the study of therapeutic and prophylactic strategies. To overcome this difficulty, three main approaches have been used to develop animal models for human gammaherpesvirus infections. The first is experimental infection of laboratory animals with EBV or KSHV. New-world non-human primates (NHPs) and rabbits have been mainly used in this approach. The second is experimental infection of laboratory animals with their own inherent gammaherpesviruses. NHPs and mice have been mainly used here. The third, a recent trend, employs experimental infection of EBV or KSHV or both to immunodeficient mice reconstituted with human immune system components (humanized mice). This review will discuss how these three approaches have been used to reproduce human clinical conditions associated with gammaherpesviruses and to analyze the mechanisms of their pathogenesis.
Collapse
|
12
|
Chen H, Bartee MY, Yaron JR, Liu L, Zhang L, Zheng D, Hogue IB, Bullard WL, Tibbetts S, Lucas AR. Mouse Gamma Herpesvirus MHV-68 Induces Severe Gastrointestinal (GI) Dilatation in Interferon Gamma Receptor-Deficient Mice (IFNγR -/-) That Is Blocked by Interleukin-10. Viruses 2018; 10:E518. [PMID: 30249047 PMCID: PMC6213885 DOI: 10.3390/v10100518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/09/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) and Clostridium difficile infection cause gastrointestinal (GI) distension and, in severe cases, toxic megacolon with risk of perforation and death. Herpesviruses have been linked to severe GI dilatation. MHV-68 is a model for human gamma herpesvirus infection inducing GI dilatation in interleukin-10 (IL-10)-deficient mice but is benign in wildtype mice. MHV-68 also causes lethal vasculitis and pulmonary hemorrhage in interferon gamma receptor-deficient (IFNγR-/-) mice, but GI dilatation has not been reported. In prior work the Myxomavirus-derived anti-inflammatory serpin, Serp-1, improved survival, reducing vasculitis and pulmonary hemorrhage in MHV-68-infected IFNγR-/- mice with significantly increased IL-10. IL-10 has been investigated as treatment for GI dilatation with variable efficacy. We report here that MHV-68 infection produces severe GI dilatation with inflammation and gut wall degradation in 28% of INFγR-/- mice. Macrophage invasion and smooth muscle degradation were accompanied by decreased concentrations of T helper (Th2), B, monocyte, and dendritic cells. Plasma and spleen IL-10 were significantly reduced in mice with GI dilatation, while interleukin-1 beta (IL-1β), IL-6, tumor necrosis factor alpha (TNFα) and INFγ increased. Treatment of gamma herpesvirus-infected mice with exogenous IL-10 prevents severe GI inflammation and dilatation, suggesting benefit for herpesvirus-induced dilatation.
Collapse
Affiliation(s)
- Hao Chen
- Department of Medicine, Divisions of Cardiovascular Medicine and Rheumatology, University of Florida, Gainesville, FL 32610-0277, USA.
| | - Mee Yong Bartee
- Department of Medicine, Divisions of Cardiovascular Medicine and Rheumatology, University of Florida, Gainesville, FL 32610-0277, USA.
| | - Jordan R Yaron
- Centers for Personalized Diagnostics and Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287-6401, USA.
| | - Liying Liu
- Department of Surgery, BIDMC, Harvard Medical School, Boston, MA 02115, USA.
| | - Liqiang Zhang
- Centers for Personalized Diagnostics and Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287-6401, USA.
| | - Donghang Zheng
- Department of Medicine, Divisions of Cardiovascular Medicine and Rheumatology, University of Florida, Gainesville, FL 32610-0277, USA.
| | - Ian B Hogue
- Centers for Personalized Diagnostics and Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287-6401, USA.
| | - Whitney L Bullard
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA.
| | - Scott Tibbetts
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA.
| | - Alexandra R Lucas
- Department of Medicine, Divisions of Cardiovascular Medicine and Rheumatology, University of Florida, Gainesville, FL 32610-0277, USA.
- Centers for Personalized Diagnostics and Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287-6401, USA.
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
13
|
Rahman MM, Badruzzaman ATM, Altaf Hossain FM, Husna A, Bari AM, Eo SK. The promise of 4-1BB (CD137) mediated immunomodulation and immunotherapy for viral diseases. Future Virol 2017. [DOI: 10.2217/fvl-2016-0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The T-cell surface receptor, 4-1BB (CD137), has been of increasing interest to immunologists as a co-stimulatory immune checkpoint molecule over the last two decades. Ligation of 4-1BB can activate signals in CD8+ T cells and NK cells, resulting in increased proinflammatory cytokine secretion, cytolytic function and antibody-dependent cell-mediated cytotoxicity. Targeting 4-1BB, using a 4-1BB ligand (4-1BBL) or agonistic monoclonal antibodies, has delivered a new strategy to fight against cancer, autoimmune diseases and viral infections. In this review, different aspects of 4-1BB mediated antiviral responses, the mechanistic basis of such responses and future directions are discussed.
Collapse
Affiliation(s)
- Md Masudur Rahman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - ATM Badruzzaman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Ferdaus Mohd Altaf Hossain
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- College of Veterinary Medicine & Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Asmaul Husna
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Abusaleh Mahfuzul Bari
- Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Seong Kug Eo
- College of Veterinary Medicine & Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
14
|
Dong S, Forrest JC, Liang X. Murine Gammaherpesvirus 68: A Small Animal Model for Gammaherpesvirus-Associated Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:225-236. [DOI: 10.1007/978-981-10-5765-6_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Widman A, Reshef R. Precision in donor selection: Identifying ideal stem-cell donors through their T cells. Exp Hematol 2016; 44:1020-1023. [PMID: 27496363 PMCID: PMC5083192 DOI: 10.1016/j.exphem.2016.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
HLA-identical siblings have always been considered ideal donors for allogeneic hematopoietic stem-cell transplantation (allo-HSCT) in the treatment of hematologic cancers. Recent data suggest that we should rethink this paradigm. In "High Graft CD8+ Cell Dose Predicts Improved Survival and Enables Better Donor Selection in Allogeneic Stem-Cell Transplantation With Reduced-Intensity Conditioning," we identified a group of stem-cell donors whose grafts contain an optimal composition of T-cells, leading to a dramatic decrease in disease relapse risk and an improvement in overall survival following allo-HSCT. To demonstrate this, we analyzed the outcomes of 200 patients with hematologic malignancies who underwent allo-HSCT after reduced-intensity conditioning (RIC). The analysis focused on T-cell content of peripheral blood stem-cell grafts. We found that higher graft CD8+ T-cell dose (CD8hi), a trait found only in grafts collected from young donors, was associated with improved survival due to a reduction in the risk for cancer relapse without a significant increase in graft-versus-host disease (GVHD). Though not all young donors mobilized CD8hi grafts, we found that a low CD4:CD8 ratio in the peripheral blood could identify these ideal donors prior to transplant. The likelihood of finding CD8hi donors correlated inversely with age, and elderly RIC transplant recipients had a low chance of receiving an ideal graft from their similarly aged siblings. Here, we examine these findings and their implications on choosing donors according to age and relatedness. We also explore biological mechanisms that determine the CD4:CD8 ratio in healthy donors.
Collapse
Affiliation(s)
- Adam Widman
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ran Reshef
- Blood and Marrow Transplantation Program and Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
16
|
Cieniewicz B, Santana AL, Minkah N, Krug LT. Interplay of Murine Gammaherpesvirus 68 with NF-kappaB Signaling of the Host. Front Microbiol 2016; 7:1202. [PMID: 27582728 PMCID: PMC4987367 DOI: 10.3389/fmicb.2016.01202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
Herpesviruses establish a chronic infection in the host characterized by intervals of lytic replication, quiescent latency, and reactivation from latency. Murine gammaherpesvirus 68 (MHV68) naturally infects small rodents and has genetic and biologic parallels with the human gammaherpesviruses (gHVs), Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus. The murine gammaherpesvirus model pathogen system provides a platform to apply cutting-edge approaches to dissect the interplay of gammaherpesvirus and host determinants that enable colonization of the host, and that shape the latent or lytic fate of an infected cell. This knowledge is critical for the development of novel therapeutic interventions against the oncogenic gHVs. The nuclear factor kappa B (NF-κB) signaling pathway is well-known for its role in the promotion of inflammation and many aspects of B cell biology. Here, we review key aspects of the virus lifecycle in the host, with an emphasis on the route that the virus takes to gain access to the B cell latency reservoir. We highlight how the murine gammaherpesvirus requires components of the NF-κB signaling pathway to promote replication, latency establishment, and maintenance of latency. These studies emphasize the complexity of gammaherpesvirus interactions with NF-κB signaling components that direct innate and adaptive immune responses of the host. Importantly, multiple facets of NF-κB signaling have been identified that might be targeted to reduce the burden of gammaherpesvirus-associated diseases.
Collapse
Affiliation(s)
- Brandon Cieniewicz
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Alexis L Santana
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Nana Minkah
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| |
Collapse
|
17
|
Abstract
A challenging property of gammaherpesviruses is their ability to establish lifelong persistence. The establishment of latency in B cells is thought to involve active virus engagement of host signaling pathways. Pathogenic effects of these viruses during latency or following reactivation can be devastating to the host. Many cancers, including those associated with members of the gammaherpesvirus family, Kaposi’s sarcoma-associated herpesvirus and Epstein-Barr virus, express elevated levels of active host signal transducer and activator of transcription-3 (STAT3). STAT3 is activated by tyrosine phosphorylation in response to many cytokines and can orchestrate effector responses that include proliferation, inflammation, metastasis, and developmental programming. However, the contribution of STAT3 to gammaherpesvirus pathogenesis remains to be completely understood. This is the first study to have identified STAT3 as a critical host determinant of the ability of gammaherpesvirus to establish long-term latency in an animal model of disease. Following an acute infection, murine gammaherpesvirus 68 (MHV68) established latency in resident B cells, but establishment of latency was dramatically reduced in animals with a B cell-specific STAT3 deletion. The lack of STAT3 in B cells did not impair germinal center responses for immunoglobulin (Ig) class switching in the spleen and did not reduce either total or virus-specific IgG titers. Although ablation of STAT3 in B cells did not have a global effect on these assays of B cell function, it had long-term consequences for the viral load of the host, since virus latency was reduced at 6 to 8 weeks postinfection. Our findings establish host STAT3 as a mediator of gammaherpesvirus persistence. The insidious ability of gammaherpesviruses to establish latent infections can have detrimental consequences for the host. Identification of host factors that promote viral latency is essential for understanding latency mechanisms and for therapeutic interventions. We provide the first evidence that STAT3 expression is needed for murine gammaherpesvirus 68 to establish latency in primary B cells during an active immune response to infection. STAT3 deletion in B cells does not impair adaptive immune control of the virus, but loss of STAT3 in B cells has a long-lasting impact on viral persistence. These results indicate a potential therapeutic benefit of STAT3 inhibitors for combating gammaherpesvirus latency and, thereby, associated pathologies.
Collapse
|
18
|
O’Flaherty BM, Matar CG, Wakeman BS, Garcia A, Wilke CA, Courtney CL, Moore BB, Speck SH. CD8+ T Cell Response to Gammaherpesvirus Infection Mediates Inflammation and Fibrosis in Interferon Gamma Receptor-Deficient Mice. PLoS One 2015; 10:e0135719. [PMID: 26317335 PMCID: PMC4552722 DOI: 10.1371/journal.pone.0135719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/24/2015] [Indexed: 02/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), one of the most severe interstitial lung diseases, is a progressive fibrotic disorder of unknown etiology. However, there is growing appreciation for the role of viral infection in disease induction and/or progression. A small animal model of multi-organ fibrosis, which involves murine gammaherpesvirus (MHV68) infection of interferon gamma receptor deficient (IFNγR-/-) mice, has been utilized to model the association of gammaherpesvirus infections and lung fibrosis. Notably, several MHV68 mutants which fail to induce fibrosis have been identified. Our current study aimed to better define the role of the unique MHV68 gene, M1, in development of pulmonary fibrosis. We have previously shown that the M1 gene encodes a secreted protein which possesses superantigen-like function to drive the expansion and activation of Vβ4+ CD8+ T cells. Here we show that M1-dependent fibrosis is correlated with heightened levels of inflammation in the lung. We observe an M1-dependent cellular infiltrate of innate immune cells with most striking differences at 28 days-post infection. Furthermore, in the absence of M1 protein expression we observed reduced CD8+ T cells and MHV68 epitope specific CD8+ T cells to the lungs-despite equivalent levels of viral replication between M1 null and wild type MHV68. Notably, backcrossing the IFNγR-/- onto the Balb/c background, which has previously been shown to exhibit weak MHV68-driven Vβ4+ CD8+ T cell expansion, eliminated MHV68-induced fibrosis-further implicating the activated Vβ4+ CD8+ T cell population in the induction of fibrosis. We further addressed the role that CD8+ T cells play in the induction of fibrosis by depleting CD8+ T cells, which protected the mice from fibrotic disease. Taken together these findings are consistent with the hypothesized role of Vβ4+ CD8+ T cells as mediators of fibrotic disease in IFNγR-/- mice.
Collapse
Affiliation(s)
- Brigid M. O’Flaherty
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States of America
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Caline G. Matar
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States of America
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Brian S. Wakeman
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States of America
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States of America
| | - AnaPatricia Garcia
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta GA, United States of America
| | - Carol A. Wilke
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Cynthia L. Courtney
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta GA, United States of America
| | - Bethany B. Moore
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Samuel H. Speck
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States of America
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States of America
| |
Collapse
|
19
|
Trammell RA, Toth LA. Effects of Sleep Fragmentation and Chronic Latent Viral Infection on Behavior and Inflammation in Mice. Comp Med 2015; 65:173-185. [PMID: 26141442 PMCID: PMC4485626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/24/2013] [Accepted: 11/02/2013] [Indexed: 06/04/2023]
Abstract
Many chronic diseases are associated with both fatigue and disrupted or nonrestorative sleep. In addition, so-called 'sickness behaviors' (for example, anorexia, anhedonia, reduced social interaction, fatigue) are common during infectious and inflammatory disease and have been linked to facets of the immune response. To study these relationships, we used murine gammaherpesvirus (MuGHV), a natural pathogen of wild rodents that provides an experimental model for studying the pathophysiology of an Epstein-Barr (EBV)-like γ-herpesvirus infection in mice. We exposed male and female C57BL/6J mice that were either uninfected or latently infected with MuGHV to either sleep fragmentation (SF) or control conditions and measured the effects on behavior and markers of inflammation. Exposure of infected male mice to SF during the normal somnolent (light) phase significantly reduced locomotor activity during the subsequent active phase, despite an intervening 6-h rest period. Infection was associated with significant increases in lung IFNγ and CXC motif ligand (CXCL) 10 in both male and female mice. In both infected and uninfected male mice, exposure to SF was associated with lower levels of IL1β and C-C motif ligand (CCL) 3 in lung. Exposure of infected female mice to SF led to reductions in lung IL2, CXCL1, and CCL 3. Thus, compared with control conditions, SF was generally associated with lower concentrations of various cytokines in lung. These findings, together with our previous work, indicate that complex interactions among several host factors likely contribute to the behavioral and inflammatory changes associated with viral infection and sleep disruption even in a well-controlled mouse model.
Collapse
Affiliation(s)
- Rita A Trammell
- Department of Internal Medicine, Southern Illinois University School of Medicine, USA
| | - Linda A Toth
- Department of Pharmacology, Southern Illinois University School of Medicine, USA.
| |
Collapse
|
20
|
Murine Gammaherpesvirus 68 Pathogenesis Is Independent of Caspase-1 and Caspase-11 in Mice and Impairs Interleukin-1β Production upon Extrinsic Stimulation in Culture. J Virol 2015; 89:6562-74. [PMID: 25855746 DOI: 10.1128/jvi.00658-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Gammaherpesviruses establish lifelong infections that are associated with the development of cancer. These viruses subvert many aspects of the innate and adaptive immune response of the host. The inflammasome, a macromolecular protein complex that controls inflammatory responses to intracellular danger signals generated by pathogens, is both activated and subverted during human gammaherpesvirus infection in culture. The impact of the inflammasome response on gammaherpesvirus replication and latency in vivo is not known. Caspase-1 is the inflammasome effector protease that cleaves the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18. We infected caspase-1-deficient mice with murine gammaherpesvirus 68 (MHV68) and observed no impact on acute replication in the lung or latency and reactivation from latency in the spleen. This led us to examine the effect of viral infection on inflammasome responses in bone marrow-derived macrophages. We determined that infection of macrophages with MHV68 led to a robust interferon response but failed to activate caspase-1 or induce the secretion of IL-1β. In addition, MHV68 infection led to a reduction in IL-1β production after extrinsic lipopolysaccharide stimulation or upon coinfection with Salmonella enterica serovar Typhimurium. Interestingly, this impairment occurred at the proIL-1β transcript level and was independent of the RTA, the viral lytic replication and transcription activator. Taken together, MHV68 impairs the inflammasome response by inhibiting IL-1β production during the initial stages of infection. IMPORTANCE Gammaherpesviruses persist for the lifetime of the host. To accomplish this, they must evade recognition and clearance by the immune system. The inflammasome consists of proteins that detect foreign molecules in the cell and respond by secreting proinflammatory signaling proteins that recruit immune cells to clear the infection. Unexpectedly, we found that murine gammaherpesvirus pathogenesis was not enhanced in mice lacking caspase-1, a critical inflammasome component. This led us to investigate whether the virus actively impairs the inflammasome response. We found that the inflammasome was not activated upon macrophage cell infection with murine gammaherpesvirus 68. Infection also prevented the host cell inflammasome response to other pathogen-associated molecular patterns, indicated by reduced production of the proinflammatory cytokine IL-1β upon bacterial coinfection. Taken together, murine gammaherpesvirus impairment of the inflammatory cytokine IL-1β in macrophages identifies one mechanism by which the virus may inhibit caspase-1-dependent immune responses in the infected animal.
Collapse
|
21
|
Mou D, Espinosa JE, Stempora L, Iwakoshi NN, Kirk AD. Viral-induced CD28 loss evokes costimulation independent alloimmunity. J Surg Res 2015; 196:241-6. [PMID: 25801976 DOI: 10.1016/j.jss.2015.02.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/21/2015] [Accepted: 02/13/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Belatacept, a B7-specific fusion protein, blocks CD28-B7 costimulation and prevents kidney allograft rejection. However, it is ineffective in a sizable minority of patients. Although T-cell receptor and CD28 engagement are known to initiate T-cell activation, many human antigen-experienced T-cells lose CD28, and can be activated independent of CD28 signals. We posit that these cells are central drivers of costimulation blockade resistant rejection (CoBRR) and propose that CoBRR might relate to an accumulation of CD28(-) T-cells resulting from viral antigen exposure. MATERIALS AND METHODS We infected C57BL/6 mice with polyomavirus (a BK virus analog), murine cytomegalovirus (a human cytomegalovirus analog), and gammaherpesvirus (HV68; an Epstein-Barr virus analog) and assessed for CD28 expression relative to mock infection controls. We then used mixed lymphocyte reaction (MLR) assays to assess the alloreactive response of these mice against major histocompatibility complex-mismatched cells. RESULTS We demonstrated that infection with polyomavirus, murine CMV, and HV68 can induce CD28 downregulation in mice. We showed that these analogs of clinically relevant human viruses enable lymphocytes from infected mice to launch an anamnestic, costimulation blockade resistant, alloreactive response against major histocompatibility complex-mismatched cells without prior alloantigen exposure. Further analysis revealed that gammherpesvirus-induced oligoclonal T-cell expansion is required for the increased alloreactivity. CONCLUSIONS Virus exposure results in reduced T-cell expression of CD28, the target of costimulation blockade therapy. These viruses also contribute to increased alloreactivity. Thus, CD28 downregulation after viral infection may play a seminal role in driving CoBRR.
Collapse
Affiliation(s)
- Danny Mou
- Department of Surgery, Emory University, Atlanta, Georgia.
| | | | - Linda Stempora
- Department of Surgery, Emory University, Atlanta, Georgia
| | | | - Allan D Kirk
- Department of Surgery, Duke University, Durham, North Carolina
| |
Collapse
|
22
|
Lindquester GJ, Greer KA, Stewart JP, Sample JT. Epstein-Barr virus IL-10 gene expression by a recombinant murine gammaherpesvirus in vivo enhances acute pathogenicity but does not affect latency or reactivation. HERPESVIRIDAE 2014; 5:1. [PMID: 25324959 PMCID: PMC4199788 DOI: 10.1186/2042-4280-5-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/21/2014] [Indexed: 11/10/2022]
Abstract
Background Many viral genes affect cytokine function within infected hosts, with interleukin 10 (IL-10) as a commonly targeted mediator. Epstein-Barr virus (EBV) encodes an IL-10 homologue (vIL-10) expressed during productive (lytic) infection and induces expression of cellular IL-10 (cIL-10) during latency. This study explored the role of vIL-10 in a murine gammaherpesvirus (MHV) model of viral infection. Methods The EBV vIL-10 gene was inserted into MHV-76, a strain which lacks the ability to induce cIL-10, by recombination in transfected mouse cells. Mice were infected intranasally with the recombinant, vIL-10-containing MHV-76 or control virus strains and assayed at various days post infection for lung virus titer, spleen cell number, percentage of latently infected spleen cells and ability to reactivate virus from spleen cells. Results Recombinant murine gammaherpesvirus expressing EBV vIL-10 rose to significantly higher titers in lungs and promoted an increase in spleen cell number in infected mice in comparison to MHV strains lacking the vIL-10 gene. However, vIL-10 expression did not alter the quantity of latent virus in the spleen or its ability to reactivate. Conclusions In this mouse model of gammaherpesvirus infection, EBV vIL-10 appears to influence acute-phase pathogenicity. Given that EBV and MHV wild-type strains contain other genes that induce cIL-10 expression in latency (e.g. LMP-1 and M2, respectively), vIL-10 may have evolved to serve the specific role in acute infection of enlarging the permissive host cell population, perhaps to facilitate initial survival and dissemination of viral-infected cells.
Collapse
Affiliation(s)
| | | | - James P Stewart
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | - Jeffery T Sample
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN 38105, USA ; Current Address: Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
23
|
The murine gammaherpesvirus immediate-early Rta synergizes with IRF4, targeting expression of the viral M1 superantigen to plasma cells. PLoS Pathog 2014; 10:e1004302. [PMID: 25101696 PMCID: PMC4125235 DOI: 10.1371/journal.ppat.1004302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/29/2014] [Indexed: 11/19/2022] Open
Abstract
MHV68 is a murine gammaherpesvirus that infects laboratory mice and thus provides a tractable small animal model for characterizing critical aspects of gammaherpesvirus pathogenesis. Having evolved with their natural host, herpesviruses encode numerous gene products that are involved in modulating host immune responses to facilitate the establishment and maintenance of lifelong chronic infection. One such protein, MHV68 M1, is a secreted protein that has no known homologs, but has been shown to play a critical role in controlling virus reactivation from latently infected macrophages. We have previous demonstrated that M1 drives the activation and expansion of Vβ4+ CD8+ T cells, which are thought to be involved in controlling MHV68 reactivation through the secretion of interferon gamma. The mechanism of action and regulation of M1 expression are poorly understood. To gain insights into the function of M1, we set out to evaluate the site of expression and transcriptional regulation of the M1 gene. Here, using a recombinant virus expressing a fluorescent protein driven by the M1 gene promoter, we identify plasma cells as the major cell type expressing M1 at the peak of infection in the spleen. In addition, we show that M1 gene transcription is regulated by both the essential viral immediate-early transcriptional activator Rta and cellular interferon regulatory factor 4 (IRF4), which together potently synergize to drive M1 gene expression. Finally, we show that IRF4, a cellular transcription factor essential for plasma cell differentiation, can directly interact with Rta. The latter observation raises the possibility that the interaction of Rta and IRF4 may be involved in regulating a number of viral and cellular genes during MHV68 reactivation linked to plasma cell differentiation. Through coevolution with their hosts, gammaherpesviruses have acquired unique genes that aid in infection of a particular host. Here we study the regulation of the MHV68 M1 gene, which encodes a protein that modulates the host immune response. Using a strategy that allowed us to identify MHV68 infected cells in mice, we have determined that M1 expression is largely limited to the antibody producing plasma cells. In addition, we show that M1 gene expression is regulated by both cellular and viral factors, which allow the virus to fine-tune gene expression in response to environmental signals. These findings provide insights into M1 function through a better understanding of how M1 expression is regulated.
Collapse
|
24
|
Antiherpesvirus activities of two novel 4'-thiothymidine derivatives, KAY-2-41 and KAH-39-149, are dependent on viral and cellular thymidine kinases. Antimicrob Agents Chemother 2014; 58:4328-40. [PMID: 24820089 DOI: 10.1128/aac.02825-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The emergence of drug-resistant herpesviruses represents a significant problem in clinical practice, primarily in immunocompromised patients. Furthermore, effective antiviral therapies against gammaherpesvirus-associated diseases are lacking. Here, we present two thiothymidine derivatives, KAY-2-41 and KAH-39-149, with different spectra of antiviral activity from those of the reference antiherpetic drugs, showing inhibitory activities against herpes simplex virus, varicella-zoster virus (VZV), and particularly against Epstein-Barr virus, with high selectivity in vitro. While KAY-2-41- and KAH-39-149-resistant herpesviruses were found to harbor mutations in the viral thymidine kinase (TK), these mutations conferred only low levels of resistance to these drugs but high levels to other TK-dependent drugs. Also, antiviral assays in HeLa TK-deficient cells showed a lack of KAY-2-41 and KAH-39-149 activities against herpes simplex virus 1 (HSV-1) and HSV-2 TK-deficient mutants. Furthermore, enzymatic TK assays showed the ability of HSV-1 TK, VZV TK, and cellular TK1 and TK2 to recognize and phosphorylate KAY-2-41 and KAH-39-149. These results demonstrate that the compounds depend on both viral and host TKs to exert antiviral activity. Additionally, the antiviral efficacy of KAH-39-149 proved to be superior to that of KAY-2-41 in a mouse model of gammaherpesvirus infection, highlighting the potential of this class of antiviral agents for further development as selective therapeutics against Epstein-Barr virus.
Collapse
|
25
|
Cieniewicz B, Carpino N, Krug LT. Enhanced response of T cells from murine gammaherpesvirus 68-infected mice lacking the suppressor of T cell receptor signaling molecules Sts-1 and Sts-2. PLoS One 2014; 9:e90196. [PMID: 24587276 PMCID: PMC3938662 DOI: 10.1371/journal.pone.0090196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/27/2014] [Indexed: 12/17/2022] Open
Abstract
The human gammaherpesviruses establish life-long infections that are associated with the development of lymphomas and neoplasms, especially in immunocompromised individuals. T cells play a crucial role in the control of gammaherpesvirus infection through multiple functions, including the direct killing of infected cells, production of cytokines such as interferon-γ (IFN-γ), and costimulation of B cells. Impaired T cell function in mice infected with murine gammaherpesvirus 68 (MHV68) leads to increased reactivation and pathologies, including a higher incidence of lymphoid hyperplasia. Here we report that the absence of Suppressor of TCR signaling −1 and −2 (Sts-1-/-/2-/-) during MHV68 infection leads to the generation of T cells with significantly heightened responses. Transient differences in the T and B cell response of infected Sts-1-/-/2-/- (Sts dKO) mice were also observed when compared to WT mice. However, these alterations in the immune response and the overall absence of Sts-1 and Sts-2 did not impact viral pathogenesis or lead to pathology. Acute lytic replication in the lungs, establishment of latency in the spleen and reactivation from latency in the spleen in the Sts dKO mice were comparable to WT mice. Our studies indicate that Sts-1 and Sts-2 are not required for the immune control of MHV68 in a normal course of gammaherpesvirus infection, but suggest that interference with negative regulators of T cell responses might be further explored as a safe and efficacious strategy to improve adoptive T cell therapy.
Collapse
Affiliation(s)
- Brandon Cieniewicz
- Molecular and Cellular Biology Program and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Nicholas Carpino
- Molecular and Cellular Biology Program and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Laurie T. Krug
- Molecular and Cellular Biology Program and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Abstract
UNLABELLED Lymphocyte colonization by gammaherpesviruses (γHVs) is an important target for cancer prevention. However, how it works is not clear. Epstein-Barr virus drives autonomous B cell proliferation in vitro but in vivo may more subtly exploit the proliferative pathways provided by lymphoid germinal centers (GCs). Murid herpesvirus 4 (MuHV-4), which realistically infects inbred mice, provides a useful tool with which to understand further how a γHV colonizes B cells in vivo. Not all γHVs necessarily behave the same, but common events can with MuHV-4 be assigned an importance for host colonization and so a potential as therapeutic targets. MuHV-4-driven B cell proliferation depends quantitatively on CD4(+) T cell help. Here we show that it also depends on T cell-independent survival signals provided by the B cell-activating factor (BAFF) receptor (BAFF-R). B cells could be infected in BAFF-R(-/-) mice, but virus loads remained low. This corresponded to a BAFF-R-dependent defect in GC colonization. The close parallels between normal, antigen-driven B cell responses and virus-infected B cell proliferation argue that in vivo, γHVs mostly induce infected B cells into normal GC reactions rather than generating large numbers of autonomously proliferating blasts. IMPORTANCE γHVs cause cancers by driving the proliferation of infected cells. B cells are a particular target. Thus, we need to know how virus-driven B cell proliferation works. Controversy exists as to whether viral genes drive it directly or less directly orchestrate the engagement of normal, host-driven pathways. Here we show that the B cell proliferation driven by a murid γHV requires BAFF-R. This supports the idea that γHVs exploit host proliferation pathways and suggests that interfering with BAFF-R could more generally reduce γHV-associated B cell proliferation.
Collapse
|
27
|
Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AEI, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2013; 66:1-79. [PMID: 24218476 PMCID: PMC3880466 DOI: 10.1124/pr.113.007724] [Citation(s) in RCA: 693] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
Collapse
Affiliation(s)
- Francoise Bachelerie
- Chair, Subcommittee on Chemokine Receptors, Nomenclature Committee-International Union of Pharmacology, Bldg. 10, Room 11N113, NIH, Bethesda, MD 20892.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Trammell RA, Verhulst S, Toth LA. Environmental perturbation, inflammation and behavior in healthy and virus-infected mice. Brain Behav Immun 2013; 33:139-52. [PMID: 23867134 DOI: 10.1016/j.bbi.2013.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 07/06/2013] [Accepted: 07/07/2013] [Indexed: 10/26/2022] Open
Abstract
The development of so-called "sickness behaviors" (e.g., anorexia, anhedonia, reduced social interaction, fatigue) during infectious and inflammatory disease has been linked to facets of the immune response. Such problems can be particularly troublesome during chronic latent infection, as the host immune system must employ continual vigilance to maintain viral latency. Epstein-Barr virus (EBV) is a ubiquitous human gamma-herpesvirus that causes acute disease and establishes life-long latency in people. Murine gammaherpesvirus (MuGHV) is a natural pathogen of wild rodents that provides an experimental model for studying the pathophysiology of an EBV-like gamma-herpesvirus in mice. To evaluate this model with regard to sickness behavior and its exacerbation during a chronic latent viral disease, we exposed uninfected and MuGHV-infected C57BL/6J and BALB/cByJ mice to novel and potentially stressful environmental perturbations and measured the impact of these challenges on behavior and markers of inflammation. The data indicate that exposure of mice to environmental perturbations during the normal somnolent phase is associated with reduced activity during the subsequent active phase, despite an intervening rest period. Effects on inflammatory mediators were complex due to independent and interactive effects of infection status, mouse strain, and exposure to stressful environment. However, GCSF and MCP1 were consistently elevated in lung both immediately after and 12h after exposure to a "dirty" cage containing the resident mouse (DCR); this increase occurred in both C57BL/6J and BALB/cByJ mice and was independent of infection status. At 12h after DCR, IL1β and IP10 were also consistently elevated in lung. In response to DCR, BALB/cByJ mice showed a greater number of significant cytokine effects than did C57BL/6J mice. With regard to infection status, IP10 was consistently elevated in lung at both time points regardless of mouse strain or DCR exposure. Several analytes were affected by mouse strain in serum or lung at one or both time points, with most strain differences present in serum at E18. Taken together, the data show that exposure of mice to environmental perturbations is associated with systemic inflammation that is in part independent of genetic background or latent MuGHV infection and with reduced activity that could represent fatigue, depression, or other facets of sickness behavior.
Collapse
Affiliation(s)
- Rita A Trammell
- Department of Internal Medicine, Southern Illinois University School of Medicine, United States
| | | | | |
Collapse
|
29
|
Wlodarski MW, Schade AE, Maciejewski JP. T-large granular lymphocyte leukemia: current molecular concepts. Hematology 2013; 11:245-56. [PMID: 17178663 DOI: 10.1080/10245330600774793] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
T-large granular lymphocyte (T-LGL) leukemia is a chronic and often indolent T cell lymphoproliferation characterized by extreme expansion of a semi-autonomous cytotoxic T lymphocyte (CTL) clone. Clinically, T-LGL can be associated with various cytopenias; neutropenia constitutes the most frequent manifestation. LGL clone represents a pathologic counterpart of the cytotoxic effector T cell but an abnormal memory CD8 cell seems to provide the supply of the matured LGL population. Analysis of clonal T cell receptor (TCR) rearrangement and complementarity determining region 3 (CDR3) of the TCR beta-chain is a useful tool to investigate clonal expansions, track the frequency of expanded clones and also clinically useful to monitor the response to therapy. The lessons learned from molecular analysis of clonal repertoire support a clinically-derived conclusion that the LGL clone arises in the context of an initially polyclonal immune response or an autoimmune process. Consequently, specific manifestations of T-LGL may be a result of the recognition spectrum of the transformed clone and the cytokines it produces. Due to the often monoclonal manifestation, T-LGL constitutes a suitable model to investigate polyclonal CTL-mediated processes. Application of new technologies, including TCR repertoire analysis by sequencing, clonotypic quantitative PCR and VB flow cytometry facilitate clinical diagnosis and may allow insights into the regulation of TCR repertoire and consequences resulting from the contraction of clonal diversity.
Collapse
MESH Headings
- Adult
- Aged
- Autoimmune Diseases/epidemiology
- CD4-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Viral
- Clone Cells/pathology
- Comorbidity
- Diagnosis, Differential
- Female
- Gene Expression Regulation, Leukemic
- Gene Rearrangement, T-Lymphocyte/genetics
- Herpesviridae Infections/complications
- Humans
- Killer Cells, Natural/pathology
- Leukemia, T-Cell/diagnosis
- Leukemia, T-Cell/epidemiology
- Leukemia, T-Cell/genetics
- Leukemia, T-Cell/pathology
- Leukemia, T-Cell/physiopathology
- Leukemia, T-Cell/virology
- Leukocyte Count
- Leukocytosis/diagnosis
- Lymphocyte Activation
- Lymphoproliferative Disorders/epidemiology
- Male
- Middle Aged
- Receptors, Antigen, T-Cell/genetics
- Retroviridae Infections/complications
- T-Lymphocytes, Cytotoxic/pathology
- Tumor Virus Infections/epidemiology
Collapse
Affiliation(s)
- Marcin W Wlodarski
- Experimental Hematology and Hematopoiesis Section, Taussig Cancer Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | | |
Collapse
|
30
|
Heterologous immunity triggered by a single, latent virus in Mus musculus: combined costimulation- and adhesion- blockade decrease rejection. PLoS One 2013; 8:e71221. [PMID: 23940724 PMCID: PMC3733932 DOI: 10.1371/journal.pone.0071221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/26/2013] [Indexed: 01/11/2023] Open
Abstract
The mechanisms underlying latent-virus-mediated heterologous immunity, and subsequent transplant rejection, especially in the setting of T cell costimulation blockade, remain undetermined. To address this, we have utilized MHV68 to develop a rodent model of latent virus-induced heterologous alloimmunity. MHV68 infection was correlated with multimodal immune deviation, which included increased secretion of CXCL9 and CXCL10, and with the expansion of a CD8(dim) T cell population. CD8(dim) T cells exhibited decreased expression of multiple costimulation molecules and increased expression of two adhesion molecules, LFA-1 and VLA-4. In the setting of MHV68 latency, recipients demonstrated accelerated costimulation blockade-resistant rejection of skin allografts compared to non-infected animals (MST 13.5 d in infected animals vs 22 d in non-infected animals, p<.0001). In contrast, the duration of graft acceptance was equivalent between non-infected and infected animals when treated with combined anti-LFA-1/anti-VLA-4 adhesion blockade (MST 24 d for non-infected and 27 d for infected, p = n.s.). The combination of CTLA-4-Ig/anti-CD154-based costimulation blockade+anti-LFA-1/anti-VLA-4-based adhesion blockade led to prolonged graft acceptance in both non-infected and infected cohorts (MST>100 d for both, p<.0001 versus costimulation blockade for either). While in the non-infected cohort, either CTLA-4-Ig or anti-CD154 alone could effectively pair with adhesion blockade to prolong allograft acceptance, in infected animals, the prolonged acceptance of skin grafts could only be recapitulated when anti-LFA-1 and anti-VLA-4 antibodies were combined with anti-CD154 (without CTLA-4-Ig, MST>100 d). Graft acceptance was significantly impaired when CTLA-4-Ig alone (no anti-CD154) was combined with adhesion blockade (MST 41 d). These results suggest that in the setting of MHV68 infection, synergy occurs predominantly between adhesion pathways and CD154-based costimulation, and that combined targeting of both pathways may be required to overcome the increased risk of rejection that occurs in the setting of latent-virus-mediated immune deviation.
Collapse
|
31
|
Chauhan VS, Nelson DA, Marriott I, Bost KL. Alpha beta-crystallin expression and presentation following infection with murine gammaherpesvirus 68. Autoimmunity 2013; 46:399-408. [PMID: 23586607 DOI: 10.3109/08916934.2013.785535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alpha beta-crystallin (CRYAB) is a small heat shock protein that can function as a molecular chaperone and has protective effects for cells undergoing a variety of stressors. Surprisingly, CRYAB has been identified as one of the dominant autoantigens in multiple sclerosis. It has been suggested that autoimmune mediated destruction of this small heat shock protein may limit its protective effects, thereby exacerbating inflammation and cellular damage during multiple sclerosis. It is not altogether clear how autoimmunity against CRYAB might develop, or whether there are environmental factors which might facilitate the presentation of this autoantigen to CD4+ T lymphocytes. In the present study, we utilized an animal model of an Epstein Barr Virus (EBV)-like infection, murine gammaherpesvirus 68 (HV-68), to question whether such a virus could modulate the expression of CRYAB by antigen presenting cells. Following exposure to HV-68 and several other stimuli, in vitro secretion of CRYAB and subsequent intracellular accumulation were observed in cultured macrophages and dendritic cells. Following infection of mice with this virus, it was possible to track CRYAB expression in the spleen and in antigen presenting cell subpopulations, as well as its secretion into the blood. Mice immunized with human CRYAB mounted a significant immune response against this heat shock protein. Further, dendritic cells that were exposed to HV-68 could stimulate CD4+ T cells from CRYAB immunized mice to secrete interferon gamma. Taken together these studies are consistent with the notion of a gammaherpesvirus-induced CRYAB response in professional antigen presenting cells in this mouse model.
Collapse
Affiliation(s)
- Vinita S Chauhan
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | | | | |
Collapse
|
32
|
Fujiwara S, Matsuda G, Imadome KI. Humanized mouse models of epstein-barr virus infection and associated diseases. Pathogens 2013; 2:153-76. [PMID: 25436886 PMCID: PMC4235711 DOI: 10.3390/pathogens2010153] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 02/26/2013] [Accepted: 03/05/2013] [Indexed: 12/29/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous herpesvirus infecting more than 90% of the adult population of the world. EBV is associated with a variety of diseases including infectious mononucleosis, lymphoproliferative diseases, malignancies such as Burkitt lymphoma and nasopharyngeal carcinoma, and autoimmune diseases including rheumatoid arthritis (RA). EBV in nature infects only humans, but in an experimental setting, a limited species of new-world monkeys can be infected with the virus. Small animal models, suitable for evaluation of novel therapeutics and vaccines, have not been available. Humanized mice, defined here as mice harboring functioning human immune system components, are easily infected with EBV that targets cells of the hematoimmune system. Furthermore, humanized mice can mount both cellular and humoral immune responses to EBV. Thus, many aspects of human EBV infection, including associated diseases (e.g., lymphoproliferative disease, hemophagocytic lymphohistiocytosis and erosive arthritis resembling RA), latent infection, and T-cell-mediated and humoral immune responses have been successfully reproduced in humanized mice. Here we summarize recent achievements in the field of humanized mouse models of EBV infection and show how they have been utilized to analyze EBV pathogenesis and normal and aberrant human immune responses to the virus.
Collapse
Affiliation(s)
- Shigeyoshi Fujiwara
- Department of Infectious Diseases, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
| | - Go Matsuda
- Department of Infectious Diseases, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
| | - Ken-Ichi Imadome
- Department of Infectious Diseases, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
| |
Collapse
|
33
|
Activity and mechanism of action of HDVD, a novel pyrimidine nucleoside derivative with high levels of selectivity and potency against gammaherpesviruses. J Virol 2013; 87:3839-51. [PMID: 23345517 DOI: 10.1128/jvi.03338-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A novel nucleoside analogue, 1-[(2S,4S-2-(hydroxymethyl)-1,3-dioxolan-4-yl]5-vinylpyrimidine-2,4(1H,3H)-dione, or HDVD, was evaluated against a wide variety of herpesviruses and was found to be a highly selective inhibitor of replication of the gammaherpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV). HDVD had also a pronounced inhibitory activity against murine herpesvirus 68 (MHV-68) and herpes simplex virus 1 (HSV-1). In contrast, replication of herpesvirus saimiri (HVS), HSV-2, and varicella-zoster virus (VZV) was weakly inhibited by the compound, and no antiviral activity was determined against human cytomegalovirus (HCMV) and rhesus rhadinovirus (RRV). The HDVD-resistant virus phenotype contained point mutations in the viral thymidine kinase (TK) of HSV-1, MHV-68, and HVS isolates. These mutations conferred cross-resistance to other TK-dependent drugs, with the exception of an MHV-68 mutant (E358D) that exhibited resistance only to HDVD. HSV-1 and HVS TK-mutants isolated under selective pressure with bromovinyldeoxyuridine (BVDU) also showed reduced sensitivity to HDVD. Oral treatment with HDVD and BVDU was assessed in an intranasal model of MHV-68 infection in BALB/c mice. In contrast to BVDU treatment, HDVD-treated animals showed a reduction in viral DNA loads and diminished viral gene expression during acute viral replication in the lungs in comparison to levels in untreated controls. The valyl ester prodrug of HDVD (USS-02-71-44) suppressed the latent infection in the spleen to a greater extent than HDVD. In the present study, HDVD emerged as a highly potent antiviral with a unique spectrum of activity against herpesviruses, in particular, gammaherpesviruses, and may be of interest in the treatment of virus-associated diseases.
Collapse
|
34
|
The absence of M1 leads to increased establishment of murine gammaherpesvirus 68 latency in IgD-negative B cells. J Virol 2013; 87:3597-604. [PMID: 23302876 DOI: 10.1128/jvi.01953-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The secreted M1 protein of murine gammaherpesvirus 68 (MHV68) promotes effector Vβ4(+) CD8(+) T cell expansion to impact virus control and immune-mediated pathologies in C57BL/6 mice, but not BALB/c mice. We report a striking increase in the number of genome-positive, IgD(-) B cells during chronic infection of both mouse strains. This suggests a novel role for M1 in influencing long-term maintenance in a major latency reservoir irrespective of the degree of Vβ4(+) CD8(+) T cell expansion.
Collapse
|
35
|
Freeman ML, Burkum CE, Lanzer KG, Roberts AD, Pinkevych M, Itakura A, Kummer LW, Szaba FM, Davenport MP, McCarty OJT, Woodland DL, Smiley ST, Blackman MA. Gammaherpesvirus latency induces antibody-associated thrombocytopenia in mice. J Autoimmun 2012; 42:71-9. [PMID: 23245703 DOI: 10.1016/j.jaut.2012.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/20/2012] [Accepted: 11/24/2012] [Indexed: 12/13/2022]
Abstract
Human herpesviruses establish lifelong latency. Viral recrudescence can lead to the development of cancers, immunoproliferative disorders, transplantation complications, and thrombocytopenia. Although platelet-specific autoantibodies have been reported in patients infected with the Epstein-Barr virus (EBV), the mechanisms by which thrombocytopenia is induced remain unclear, as do the relative contributions of lytic viral replication and latent viral gene expression. The human gammaherpesviruses are tightly restricted in their ability to infect other mammals, so they are difficult to study in live animal models. Here we show that infection of mice with murine gammaherpesvirus-68 (γHV68), a rodent-specific pathogen closely related to EBV, induces the production of platelet-binding antibodies and causes thrombocytopenia. Infection of antibody-deficient mice does not lead to thrombocytopenia, indicating the platelet decrease is mediated by antibody. Additionally, infection with a latency-null recombinant γHV68 does not induce thrombocytopenia, suggesting factors associated with viral latency drive the infection-induced antibody-mediated thrombocytopenia. These studies describe an important animal model of gammaherpesvirus-induced autoimmune thrombocytopenia and demonstrate that this pathology is mediated by antibody and dependent on viral latency. This model will allow studies of the underlying mechanisms of disease progression and the testing of therapeutic strategies for the alleviation of virus-induced thrombocytopenia.
Collapse
Affiliation(s)
- Michael L Freeman
- Trudeau Institute, 154 Algonquin Avenue, Saranac Lake, NY 12983, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tsai CY, Hu Z, Zhang W, Usherwood EJ. Strain-dependent requirement for IFN-γ for respiratory control and immunotherapy in murine gammaherpesvirus infection. Viral Immunol 2011; 24:273-80. [PMID: 21830899 DOI: 10.1089/vim.2011.0004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interferon-γ (IFN-γ) and perforin (pfp) are important effector mechanisms used by CD8 T cells to clear virus-infected cells. In this study, we used IFN-γ/pfp double knockout mice to address if these two effector molecules play redundant roles in the control of acute infection with murine gammaherpesvirus-68 (MHV-68) in BALB/C mice. Perforin knockout (KO) mice and wild-type mice cleared infectious virus from the lungs, even following high-dose infection. However, the IFN-γ KO and IFN-γ/pfp double knockout (DKO) groups had higher virus titers in the lungs at day 10 post-infection, and both groups had higher mortality rates. In IFN-γ/pfp DKO mice, the virus titer and mortality rate were significant higher than in IFN-γ KO mice, indicating a role for perforin in protection from disease. WT mice given IFN-γ blocking antibody also showed significantly higher viral titers. In contrast, IFN-γ KO mice on a C57BL/6 background controlled respiratory infection comparably to wild-type mice. These data show that perforin plays a redundant role in the control of virus replication, but IFN-γ plays an essential role in BALB/C mice infected with MHV-68. We conclude that there is a marked strain-dependent difference in the effector mechanisms needed to control acute MHV-68 infection between C57BL/6 and BALB/C mice. In addition we show that immune therapy that re-establishes viral control after spontaneous reactivation in CD4-deficient mice depends upon perforin in C57BL/6 mice but IFN-γ in BALB/C mice.
Collapse
Affiliation(s)
- Ching-Yi Tsai
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
37
|
Construction and characterization of an infectious murine gammaherpesivrus-68 bacterial artificial chromosome. J Biomed Biotechnol 2010; 2011:926258. [PMID: 21197474 PMCID: PMC3006494 DOI: 10.1155/2011/926258] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/15/2010] [Indexed: 01/11/2023] Open
Abstract
Here we describe the cloning of a sequenced WUMS isolate of murine gammaherpesvirus-68 (MHV-68, γHV-68, also known as MuHV-4) as a bacterial artificial chromosome (BAC). We engineered the insertion of the BAC sequence flanked by loxP sites into the left end of the viral genome before the M1 open reading frame. The infectious viruses were reconstituted following transfection of the MHV-68 BAC DNA into cells. The MHV-68 BAC-derived virus replicated indistinguishably from the wild-type virus in cultured cells. Excision of the BAC insert was efficiently achieved by coexpressing the Cre recombinase. Although the BAC insertion did not significantly affect acute productive infection in the lung, it severely compromised the ability of MHV-68 to establish splenic latency. Removal of the BAC sequence restored the wild-type level of latency. Site-specific mutagenesis was carried out by RecA-mediated recombination to demonstrate that this infectious BAC clone can be used for genetic studies of MHV-68.
Collapse
|
38
|
Abstract
Due to the oncogenic potential associated with persistent infection of human gamma-herpesviruses, including Epstein-Barr virus (EBV or HHV-4) and Kaposi's sarcoma-associated herpesvirus (KSHV or HHV-8), vaccine development has focused on subunit vaccines. However, the results using an animal model of mouse infection with a related rodent virus, murine gamma-herpesvirus 68 (MHV-68, γHV-68, or MuHV-4), have shown that the only effective vaccination strategy is based on live attenuated viruses, including viruses engineered to be incapable of establishing persistence. Vaccination with a virus lacking persistence would eliminate many potential complications. Progress in understanding persistent infections of EBV and KSHV raises the possibility of engineering a live attenuated virus without persistence. Therefore, we should keep the option open for developing a live EBV or KSHV vaccine.
Collapse
Affiliation(s)
- Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, School of Medicine, University of California at Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
39
|
Mononucleosis and antigen-driven T cell responses have different requirements for interleukin-2 signaling in murine gammaherpesvirus infection. J Virol 2010; 84:10923-7. [PMID: 20686022 DOI: 10.1128/jvi.00856-10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-2 (IL-2) has been implicated as being necessary for the optimal formation of primary CD8(+) T cell responses against various pathogens. Here we have examined the role that IL-2 signaling plays in several aspects of a CD8(+) T cell response against murine gammaherpesvirus 68 (MHV-68). Exposure to MHV-68 causes a persistent infection, along with infectious mononucleosis, providing a model for studying these processes in mice. Our study indicates that CD25 is necessary for optimal expansion of the antigen-specific CD8(+) T cell response but not for the long-term memory response. Contrastingly, IL-2 signaling through CD25 is absolutely required for CD8(+) T cell mononucleosis.
Collapse
|
40
|
The viral latency-associated nuclear antigen augments the B-cell response to antigen in vivo. J Virol 2010; 84:10653-60. [PMID: 20686032 DOI: 10.1128/jvi.00848-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gammaherpesviruses, including Kaposi sarcoma-associated herpesvirus (KSHV), establish latency in B cells. We hypothesized that the KSHV latency-associated nuclear antigen (LANA/orf73) provides a selective advantage to infected B cells by driving proliferation in response to antigen. To test this, we used LANA B-cell transgenic mice. Eight days after immunization with antigen without adjuvant, LANA mice had significantly more activated germinal center (GC) B cells (CD19(+) PNA(+) CD71(+)) than controls. This was dependent upon B-cell receptor since LANA did not restore the GC defect of CD19 knockout mice. However, LANA was able to restore the marginal zone defect in CD19 knockout mice.
Collapse
|
41
|
Abstract
Latency is a state of cryptic viral infection associated with genomic persistence and highly restricted gene expression. Its hallmark is reversibility: under appropriate circumstances, expression of the entire viral genome can be induced, resulting in the production of infectious progeny. Among the small number of virus families capable of authentic latency, the herpesviruses stand out for their ability to produce such infections in every infected individual and for being completely dependent upon latency as a mode of persistence. Here, we review the molecular basis of latency, with special attention to the gamma-herpesviruses, in which the understanding of this process is most advanced.
Collapse
Affiliation(s)
- Samuel H Speck
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
42
|
CD4 T-cell help programs a change in CD8 T-cell function enabling effective long-term control of murine gammaherpesvirus 68: role of PD-1-PD-L1 interactions. J Virol 2010; 84:8241-9. [PMID: 20534854 DOI: 10.1128/jvi.00784-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We previously showed that agonistic antibodies to CD40 could substitute for CD4 T-cell help and prevent reactivation of murine gammaherpesvirus 68 (MHV-68) in the lungs of major histocompatibility complex (MHC) class II(-/-) (CII(-/-)) mice, which are CD4 T cell deficient. Although CD8 T cells were required for this effect, no change in their activity was detected in vitro. A key question was whether anti-CD40 treatment (or CD4 T-cell help) changed the function of CD8 T cells or another cell type in vivo. To address this question, in the present study, we showed that adoptive transfer of CD8 T cells from virus-infected wild-type mice or anti-CD40-treated CII(-/-) mice caused a significant reduction in lung viral titers, in contrast to those from control CII(-/-) mice. Anti-CD40 treatment also greatly prolonged survival of infected CII(-/-) mice. This confirms that costimulatory signals cause a change in CD8 T cells enabling them to maintain effective long-term control of MHV-68. We investigated the nature of this change and found that expression of the inhibitory receptor PD-1 was significantly increased on CD8 T cells in the lungs of MHV-68-infected CII(-/-), CD40(-/-), or CD80/86(-/-) mice, compared with that in wild-type or CD28/CTLA4(-/-) mice, correlating with the level of viral reactivation. Furthermore, blocking PD-1-PD-L1 interactions significantly reduced viral reactivation in CD4 T-cell-deficient mice. In contrast, the absence of another inhibitory receptor, NKG2A, had no effect. These data suggest that CD4 T-cell help programs a change in CD8 T-cell function mediated by altered PD-1 expression, which enables effective long-term control of MHV-68.
Collapse
|
43
|
Blimp-1-dependent plasma cell differentiation is required for efficient maintenance of murine gammaherpesvirus latency and antiviral antibody responses. J Virol 2009; 84:674-85. [PMID: 19889763 DOI: 10.1128/jvi.01306-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent evidence from the study of Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus supports a model in which terminal differentiation of B cells to plasma cells leads to virus reactivation. Here we address the role of Blimp-1, the master transcriptional regulator of plasma cell differentiation, in murine gammaherpesvirus 68 (MHV68) latency and reactivation. Blimp-1 expression in infected cells was dispensable for acute virus replication in the lung following intranasal inoculation and in the spleen following intraperitoneal inoculation with MHV68. However, we observed a role for Blimp-1 in both the establishment of latency and reactivation from latency in vivo. Additionally, plasma cell-deficient mice also exhibited a significant defect in the establishment of latency in the spleen, as well as reactivation from latency, similar to mice that lacked Blimp-1 only in MHV68-infected cells. In the absence of plasma cells, MHV68 infection failed to elicit a strong germinal center response and fewer B cells in the germinal center were MHV68 infected. Notably, the absence of a functional Blimp-1 gene only in MHV68-infected cells led to a decrease in both B-cell and CD4(+) T-cell responses during the establishment of latency. Finally, Blimp-1 expression in infected cells played a critical role in the maintenance of both MHV68 latency in the spleen and antibody responses to MHV68. Together, these studies support a model wherein episodic Blimp-1-mediated plasma cell differentiation leads to MHV68 reactivation, which serves to both renew the latency reservoirs and stimulate long-lived plasma cells to secrete virus-specific antibody.
Collapse
|
44
|
Hoegh-Petersen M, Thomsen AR, Christensen JP, Holst PJ. Mucosal immunization with recombinant adenoviral vectors expressing murine gammaherpesvirus-68 genes M2 and M3 can reduce latent viral load. Vaccine 2009; 27:6723-30. [DOI: 10.1016/j.vaccine.2009.08.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 07/13/2009] [Accepted: 08/26/2009] [Indexed: 12/22/2022]
|
45
|
Kocks JR, Adler H, Danzer H, Hoffmann K, Jonigk D, Lehmann U, Förster R. Chemokine receptor CCR7 contributes to a rapid and efficient clearance of lytic murine gamma-herpes virus 68 from the lung, whereas bronchus-associated lymphoid tissue harbors virus during latency. THE JOURNAL OF IMMUNOLOGY 2009; 182:6861-9. [PMID: 19454682 DOI: 10.4049/jimmunol.0801826] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Murine gamma-herpes virus 68 is a natural rodent pathogen closely related to the human gamma-herpes viruses Kaposi's sarcoma-associated herpes virus and EBV. By intranasally infecting wild-type and CCR7-deficient mice, we investigated whether CCR7 is necessary for viral clearance from the lung and the establishment of latency. We found during the lytic phase of infection that inflammation in lungs of CCR7(-/-) mice was more severe and viral load significantly higher compared with wild-type littermates. In addition, activation of T cells was delayed and clearance of the inflammation was retarded in mutant lungs, demonstrating that CCR7 is necessary for a rapid and efficient immune response. However, for the establishment of splenomegaly and latency, the presence of CCR7 was dispensable. Finally, by microdissecting BALT, we could demonstrate that these ectopic lymphoid structures are a place in the lung where virus resides during latency.
Collapse
Affiliation(s)
- Jessica R Kocks
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Stapler D, Lee ED, Selvaraj SA, Evans AG, Kean LS, Speck SH, Larsen CP, Gangappa S. Expansion of effector memory TCR Vbeta4+ CD8+ T cells is associated with latent infection-mediated resistance to transplantation tolerance. THE JOURNAL OF IMMUNOLOGY 2008; 180:3190-200. [PMID: 18292543 DOI: 10.4049/jimmunol.180.5.3190] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Therapies that control largely T cell-dependent allograft rejection in humans also possess the undesirable effect of impairing T cell function, leaving transplant recipients susceptible to opportunistic viruses. Prime among these opportunists are the ubiquitous herpesviruses. To date, studies are lacking that address the effect of viruses that establish a true latent state on allograft tolerance or the effect of tolerance protocols on the immune control of latent viruses. By using a mixed chimerism-based tolerance-induction protocol, we found that mice undergoing latent infection with gammaHV68, a murine gamma-herpesvirus closely related to human gamma-herpesviruses such as EBV and Kaposi's sarcoma-associated herpesvirus, significantly resist tolerance to allografts. Limiting the degree of virus reactivation or innate immune response did not reconstitute chimerism in latently infected mice. However, gammaHV68-infected mice showed increased frequency of CD8+ T cell alloreactivity and, interestingly, expansion of virus-induced, alloreactive, "effector/effector memory" TCR Vbeta4+CD8+ T cells driven by the gammaHV68-M1 gene was associated with resistance to tolerance induction in studies using gammaHV68-M1 mutant virus. These results define the viral gene and immune cell types involved in latent infection-mediated resistance to allograft tolerance and underscore the influence of latent herpesviruses on allograft survival.
Collapse
Affiliation(s)
- Dale Stapler
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ptaschinski C, Rochford R. Infection of neonates with murine gammaherpesvirus 68 results in enhanced viral persistence in lungs and absence of infectious mononucleosis syndrome. J Gen Virol 2008; 89:1114-1121. [DOI: 10.1099/vir.0.83470-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We used the murine gammaherpesvirus 68 (γHV-68), which serves as a model for human gammaherpesvirus infection, to determine whether age at infection altered the pattern of gammaherpesvirus pathogenesis. We infected mice intranasally at 8 days old (pups) and 6 weeks old (adults) to investigate differences in γHV-68 pathogenesis. There was no difference between adults or pups in acute infection in the lungs at 6 days post-infection (p.i.). However, mice infected as pups exhibited a more disseminated viral infection with viral DNA detected in the spleen, liver and heart as measured by quantitative PCR (Q-PCR). In addition, viral DNA was detected in the lungs of mice infected as pups until 60 days p.i. Three viral transcripts (M2, M3 and M9) were expressed at both 30 and 60 days p.i. In contrast, no viral DNA or mRNA expression was detected in lungs of mice infected as adults at 30 or 60 days p.i. Mice infected as adults experienced a peak in latent infection in the spleen at 16 days p.i., corresponding with an increase in splenic weight and expansion of the Vβ4+ CD8+ T-cell population, similar to infectious mononucleosis observed following infection of young adults with Epstein–Barr virus. However, the increase in splenic weight of infected pups was not as pronounced and no significant increase in Vβ4+ CD8+ T-cell expansion was observed in infected pups. Together, these data suggest that the pathogenesis of murine gammaherpesvirus γHV-68 is age-dependent.
Collapse
Affiliation(s)
- Catherine Ptaschinski
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Rosemary Rochford
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
48
|
Evans AG, Moser JM, Krug LT, Pozharskaya V, Mora AL, Speck SH. A gammaherpesvirus-secreted activator of Vbeta4+ CD8+ T cells regulates chronic infection and immunopathology. J Exp Med 2008; 205:669-84. [PMID: 18332178 PMCID: PMC2275388 DOI: 10.1084/jem.20071135] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 02/07/2008] [Indexed: 11/23/2022] Open
Abstract
Little is known about herpesvirus modulation of T cell activation in latently infected individuals or the implications of such for chronic immune disorders. Murine gammaherpesvirus 68 (MHV68) elicits persistent activation of CD8(+) T cells bearing a Vbeta4(+) T cell receptor (TCR) by a completely unknown mechanism. We show that a novel MHV68 protein encoded by the M1 gene is responsible for Vbeta4(+) CD8(+) T cell stimulation in a manner reminiscent of a viral superantigen. During infection, M1 expression induces a Vbeta4(+) effector T cell response that resists functional exhaustion and appears to suppress virus reactivation from peritoneal cells by means of long-term interferon-gamma (IFNgamma) production. Mice lacking an IFNgamma receptor (IFNgammaR(-/-)) fail to control MHV68 replication, and Vbeta4(+) and CD8(+) T cell activation by M1 instead contributes to severe inflammation and multiorgan fibrotic disease. Thus, M1 manipulates the host CD8(+) T cell response in a manner that facilitates latent infection in an immunocompetent setting, but promotes disease during a dysregulated immune response. Identification of a viral pathogenecity determinant with superantigen-like activity for CD8(+) T cells broadens the known repertoire of viral immunomodulatory molecules, and its function illustrates the delicate balance achieved between persistent viruses and the host immune response.
Collapse
Affiliation(s)
- Andrew G Evans
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
49
|
Cush SS, Anderson KM, Ravneberg DH, Weslow-Schmidt JL, Flaño E. Memory generation and maintenance of CD8+ T cell function during viral persistence. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:141-53. [PMID: 17579032 PMCID: PMC3110076 DOI: 10.4049/jimmunol.179.1.141] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During infection with viruses that establish latency, the immune system needs to maintain lifelong control of the infectious agent in the presence of persistent Ag. By using a gamma-herpesvirus (gammaHV) infection model, we demonstrate that a small number of virus-specific central-memory CD8+ T cells develop early during infection, and that virus-specific CD8+T cells maintain functional and protective capacities during chronic infection despite low-level Ag persistence. During the primary immune response, we show generation of CD8+ memory T cell precursors expressing lymphoid homing molecules (CCR7, L-selectin) and homeostatic cytokine receptors (IL-7alpha, IL-2/IL-15beta). During long-term persistent infection, central-memory cells constitute 20-50% of the virus-specific CD8+ T cell population and maintain the expression of L-selectin, CCR7, and IL-7R molecules. Functional analyses demonstrate that during viral persistence: 1) CD8+ T cells maintain TCR affinity for peptide/MHC complexes, 2) the functional avidity of CD8+ T cells measured as the capacity to produce IFN-gamma is preserved intact, and 3) virus-specific CD8+ T cells have in vivo killing capacity. Next, we demonstrate that at 8 mo post-virus inoculation, long-term CD8+ T cells are capable of mediating a protective recall response against the establishment of gammaHV68 splenic latency. These observations provide evidence that functional CD8+ memory T cells can be generated and maintained during low-load gammaHV68 persistence.
Collapse
Affiliation(s)
- Stephanie S. Cush
- Center for Vaccines and Immunity, Columbus Children’s Research Institute, Columbus, OH 43205
| | - Kathleen M. Anderson
- Center for Vaccines and Immunity, Columbus Children’s Research Institute, Columbus, OH 43205
| | - David H. Ravneberg
- Center for Vaccines and Immunity, Columbus Children’s Research Institute, Columbus, OH 43205
| | - Janet L. Weslow-Schmidt
- Center for Vaccines and Immunity, Columbus Children’s Research Institute, Columbus, OH 43205
| | - Emilio Flaño
- Center for Vaccines and Immunity, Columbus Children’s Research Institute, Columbus, OH 43205
- College of Medicine, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
50
|
Butler JE, Lemke CD, Weber P, Sinkora M, Lager KM. Antibody repertoire development in fetal and neonatal piglets: XIX. Undiversified B cells with hydrophobic HCDR3s preferentially proliferate in the porcine reproductive and respiratory syndrome. THE JOURNAL OF IMMUNOLOGY 2007; 178:6320-31. [PMID: 17475861 DOI: 10.4049/jimmunol.178.10.6320] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Porcine respiratory and reproductive syndrome virus (PRRSV) causes an extraordinary increase in the proportion of B cells resulting in lymphoid hyperplasia, hypergammaglobulinemia, and autoimmunity in neonatal piglets. Spectratypic analysis of B cells from neonatal isolator piglets show a non-Gaussian pattern with preferential expansion of clones bearing certain H chain third complementary region (HCDR3) lengths. However, only in PRRSV-infected isolator piglets was nearly the identical spectratype observed for all lymphoid tissues. This result suggests dissemination of the same dominant B cell clones throughout the body. B cell expansion in PRRS was not associated with preferential VH gene usage or repertoire diversification and these cells appeared to bear a naive phenotype. The B cell population observed during infection comprised those with hydrophobic HCDR3s, especially sequences encoded by reading frame 3 of DHA that generates the AMVLV motif. Thus, the hydropathicity profile of B cells after infection was skewed to favor those with hydrophobic binding sites, whereas the normally dominant region of the hydropathicity profile containing neutral HCDR3s was absent. We believe that the hypergammaglobulinemia results from the products of these cells. We speculate that PRRSV infection generates a product that engages the BCR of naive B cells, displaying the AMVLV and similar motifs in HCDR3 and resulting in their T-independent proliferation without repertoire diversification.
Collapse
Affiliation(s)
- John E Butler
- Department of Microbiology and Interdisciplinary Immunology Program, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|