1
|
Yu T, Van der Jeught K, Zhu H, Zhou Z, Sharma S, Liu S, Eyvani H, So KM, Singh N, Wang J, Sandusky GE, Liu Y, Opyrchal M, Cao S, Wan J, Zhang C, Zhang X. Inhibition of Glutamate-to-Glutathione Flux Promotes Tumor Antigen Presentation in Colorectal Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2310308. [PMID: 39482885 DOI: 10.1002/advs.202310308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/10/2024] [Indexed: 11/03/2024]
Abstract
Colorectal cancer (CRC) cells display remarkable adaptability, orchestrating metabolic changes that confer growth advantages, pro-tumor microenvironment, and therapeutic resistance. One such metabolic change occurs in glutamine metabolism. Colorectal tumors with high glutaminase (GLS) expression exhibited reduced T cell infiltration and cytotoxicity, leading to poor clinical outcomes. However, depletion of GLS in CRC cells has minimal effect on tumor growth in immunocompromised mice. By contrast, remarkable inhibition of tumor growth is observed in immunocompetent mice when GLS is knocked down. It is found that GLS knockdown in CRC cells enhanced the cytotoxicity of tumor-specific T cells. Furthermore, the single-cell flux estimation analysis (scFEA) of glutamine metabolism revealed that glutamate-to-glutathione (Glu-GSH) flux, downstream of GLS, rather than Glu-to-2-oxoglutarate flux plays a key role in regulating the immune response of CRC cells in the tumor. Mechanistically, inhibition of the Glu-GSH flux activated reactive oxygen species (ROS)-related signaling pathways in tumor cells, thereby increasing the tumor immunogenicity by promoting the activity of the immunoproteasome. The combinatorial therapy of Glu-GSH flux inhibitor and anti-PD-1 antibody exhibited a superior tumor growth inhibitory effect compared to either monotherapy. Taken together, the study provides the first evidence pointing to Glu-GSH flux as a potential therapeutic target for CRC immunotherapy.
Collapse
Affiliation(s)
- Tao Yu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kevin Van der Jeught
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Haiqi Zhu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Computer Science, Indiana University, Bloomington, IN, 47405, USA
| | - Zhuolong Zhou
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Samantha Sharma
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Haniyeh Eyvani
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ka Man So
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Naresh Singh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jia Wang
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Computer Science, Indiana University, Bloomington, IN, 47405, USA
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Computer Science, Indiana University, Bloomington, IN, 47405, USA
| | - Mateusz Opyrchal
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sha Cao
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biomedical Engineering and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Xinna Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
2
|
Shi S, Ou X, Liu C, Wen H, Jiang K. Immunoproteasome acted as immunotherapy 'coffee companion' in advanced carcinoma therapy. Front Immunol 2024; 15:1464267. [PMID: 39281672 PMCID: PMC11392738 DOI: 10.3389/fimmu.2024.1464267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Immunoproteasome is a specialized form of proteasome which plays a crucial role in antigen processing and presentation, and enhances immune responses against malignant cells. This review explores the role of immunoproteasome in the anti-tumor immune responses, including immune surveillance and modulation of the tumor microenvironment, as well as its potential as a target for cancer immunotherapy. Furthermore, we have also discussed the therapeutic potential of immunoproteasome inhibitors, strategies to enhance antigen presentation and combination therapies. The ongoing trials and case studies in urology, melanoma, lung, colorectal, and breast cancers have also been summarized. Finally, the challenges facing clinical translation of immunoproteasome-targeted therapies, such as toxicity and resistance mechanisms, and the future research directions have been addressed. This review underscores the significance of targeting the immunoproteasome in combination with other immunotherapies for solid tumors and its potential broader applications in other diseases.
Collapse
Affiliation(s)
- Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuehai Ou
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chao Liu
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hao Wen
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ke Jiang
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Schaunaman N, Nichols T, Cervantes D, Hartsoe P, Ferrington DA, Chu HW. The Effect of a TLR3 Agonist on Airway Allergic Inflammation and Viral Infection in Immunoproteasome-Deficient Mice. Viruses 2024; 16:1384. [PMID: 39339860 PMCID: PMC11437510 DOI: 10.3390/v16091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Allergic asthma is characterized by increased type 2 inflammation, including eosinophils. Subjects with allergic asthma have recurrent symptoms due to their constant exposure to environmental allergens, such as house dust mite (HDM), which can be further exacerbated by respiratory infections like rhinovirus. The immunoproteasome (IP) is a proteolytic machinery that is induced by inflammatory mediators during virus infection, but the role of the IP in airway allergic inflammation during rhinovirus infection remains unknown. Wild-type (WT) and IP knockout (KO) mice were challenged with HDM. At 48 h after the last HDM challenge, mice were infected with rhinovirus 1B (RV-A1B) for 24 h. After HDM and RV-A1B treatment, IP KO (vs. WT) mice had significantly more lung eosinophils and neutrophils, as well as a significantly higher viral load, but less IFN-beta expression, compared to WT mice. A TLR3 agonist polyinosinic-polycytidylic acid (Poly I:C) treatment after RV-A1B infection in HDM-challenged IP KO mice significantly increased IFN-beta expression and reduced viral load, with a minimal effect on the number of inflammatory cells. Our data suggest that immunoproteasome is an important mechanism functioning to prevent excessive inflammation and viral infection in allergen-exposed mice, and that Poly I:C could be therapeutically effective in enhancing the antiviral response and lessening the viral burden in lungs with IP deficiency.
Collapse
Affiliation(s)
| | - Taylor Nichols
- National Jewish Health, Denver, CO 80206, USA; (N.S.); (D.C.); (P.H.)
| | - Diana Cervantes
- National Jewish Health, Denver, CO 80206, USA; (N.S.); (D.C.); (P.H.)
| | - Paige Hartsoe
- National Jewish Health, Denver, CO 80206, USA; (N.S.); (D.C.); (P.H.)
| | | | - Hong Wei Chu
- National Jewish Health, Denver, CO 80206, USA; (N.S.); (D.C.); (P.H.)
| |
Collapse
|
4
|
Loy CA, Trader DJ. Primed for Interactions: Investigating the Primed Substrate Channel of the Proteasome for Improved Molecular Engagement. Molecules 2024; 29:3356. [PMID: 39064934 PMCID: PMC11279888 DOI: 10.3390/molecules29143356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Protein homeostasis is a tightly conserved process that is regulated through the ubiquitin proteasome system (UPS) in a ubiquitin-independent or ubiquitin-dependent manner. Over the past two decades, the proteasome has become an excellent therapeutic target through inhibition of the catalytic core particle, inhibition of subunits responsible for recognizing and binding ubiquitinated proteins, and more recently, through targeted protein degradation using proteolysis targeting chimeras (PROTACs). The majority of the developed inhibitors of the proteasome's core particle rely on gaining selectivity through binding interactions within the unprimed substrate channel. Although this has allowed for selective inhibitors and chemical probes to be generated for the different proteasome isoforms, much remains unknown about the interactions that could be harnessed within the primed substrate channel to increase potency or selectivity. Herein, we discuss small molecules that interact with the primed substrate pocket and how their differences may give rise to altered activity. Taking advantage of additional interactions with the primed substrate pocket of the proteasome could allow for the generation of improved chemical tools for perturbing or monitoring proteasome activity.
Collapse
Affiliation(s)
| | - Darci J. Trader
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92617, USA;
| |
Collapse
|
5
|
Nie Y, Ma Z, Zhang B, Sun M, Zhang D, Li HH, Song X. The role of the immunoproteasome in cardiovascular disease. Pharmacol Res 2024; 204:107215. [PMID: 38744399 DOI: 10.1016/j.phrs.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The ubiquitinproteasome system (UPS) is the main mechanism responsible for the intracellular degradation of misfolded or damaged proteins. Under inflammatory conditions, the immunoproteasome, an isoform of the proteasome, can be induced, enhancing the antigen-presenting function of the UPS. Furthermore, the immunoproteasome also serves nonimmune functions, such as maintaining protein homeostasis and regulating signalling pathways, and is involved in the pathophysiological processes of various cardiovascular diseases (CVDs). This review aims to provide a comprehensive summary of the current research on the involvement of the immunoproteasome in cardiovascular diseases, with the ultimate goal of identifying novel strategies for the treatment of these conditions.
Collapse
Affiliation(s)
- Yifei Nie
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Zhao Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Baoen Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Meichen Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Dongfeng Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| |
Collapse
|
6
|
Shaw BC, Williams JL. A novel PSMB8 isoform associated with multiple sclerosis lesions induces P-body formation. Front Cell Neurosci 2024; 18:1379261. [PMID: 38812791 PMCID: PMC11133558 DOI: 10.3389/fncel.2024.1379261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system (CNS). Current therapies primarily target the inflammatory component of the disease and are highly effective in early stages of MS while limited therapies have an effect in the more chronic progressive stages of MS where resident glia have a larger role. MS lesions tend to be inflammatory even after the initial peripheral immune cell invasion has subsided and this inflammation is known to cause alternative splicing events. Methods We used qPCR of normal-appearing white matter and white matter lesions from postmortem MS tissue, in vitro studies, and immunostaining in MS tissue to investigate the alternative splicing of one gene known to be important during recovery in an animal model of MS, PSMB8. Results We found a novel, intron-retained isoform which has not been annotated, upregulated specifically in MS patient white matter lesions. We found that this novel isoform activates the nonsense-mediated decay pathway in primary human astrocytes, the most populous glial cell in the CNS, and is then degraded. Overexpression of this isoform in astrocytes leads to an increased number of processing bodies in vitro, the primary site of mRNA decay. Finally, we demonstrated that MS white matter lesions have a higher burden of processing bodies compared to normal-appearing white matter, predominantly in GFAP-positive astrocytes. Discussion The increase in alternative splicing of the PSMB8 gene, the stress that this alternative splicing causes, and the observation that processing bodies are increased in white matter lesions suggests that the lesion microenvironment may lead to increased alternative splicing of many genes. This alternative splicing may blunt the protective or reparative responses of resident glia in and around white matter lesions in MS patients.
Collapse
Affiliation(s)
- Benjamin C. Shaw
- Department of Neurosciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, United States
| | - Jessica L. Williams
- Department of Neurosciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, United States
- Brain Health Research Institute, Kent State University, Kent, OH, United States
| |
Collapse
|
7
|
Bhattarai D, Lee SO, Joshi N, Jun SR, Lo S, Jiang L, Gokden N, Parajuli N. Cold Storage Followed by Transplantation Induces Immunoproteasome in Rat Kidney Allografts: Inhibition of Immunoproteasome Does Not Improve Function. KIDNEY360 2024; 5:743-752. [PMID: 38303110 PMCID: PMC11146655 DOI: 10.34067/kid.0000000000000368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
Key Points Cold storage (CS) increases the severity of graft dysfunction in a time-dependent manner, and prolonged CS decreases animal survival. CS plus transplant increases iproeasome levels/assembly in renal allografts; IFN-γ is a potential inducer of the iproteasome. Inhibiting iproteasome ex vivo during renal CS did not confer graft protection after transplantation. Background It is a major clinical challenge to ensure the long-term function of transplanted kidneys. Specifically, the injury associated with cold storage (CS) of kidneys compromises the long-term function of the grafts after transplantation. Therefore, the molecular mechanisms underlying CS-related kidney injury are attractive therapeutic targets to prevent injury and improve long-term graft function. Previously, we found that constitutive proteasome function was compromised in rat kidneys after CS followed by transplantation. Here, we evaluated the role of the immunoproteasome (i proteasome), a proteasome variant, during CS followed by transplantation. Methods Established in vivo rat kidney transplant model with or without CS containing vehicle or iproteasome inhibitor (ONX 0914) was used in this study. The i proteasome function was performed using rat kidney homogenates and fluorescent-based peptide substrate specific to β 5i subunit. Western blotting and quantitative RT-PCR were used to assess the subunit expression/level of the i proteasome (β 5i) subunit. Results We demonstrated a decrease in the abundance of the β 5i subunit of the i proteasome in kidneys during CS, but β 5i levels increased in kidneys after CS and transplant. Despite the increase in β 5i levels and its peptidase activity within kidneys, inhibiting β 5i during CS did not improve graft function after transplantation. Summary These results suggest that the pharmacologic inhibition of immunoproteasome function during CS does not improve graft function or outcome. In light of these findings, future studies targeting immunoproteasomes during both CS and transplantation may define the role of immunoproteasomes on short-term and long-term kidney transplant outcomes.
Collapse
Affiliation(s)
- Dinesh Bhattarai
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Seong-Ok Lee
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Neelam Joshi
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Se-Ran Jun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sorena Lo
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Li Jiang
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Neriman Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nirmala Parajuli
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Division of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
8
|
Zhang J, Tao P, Deuitch NT, Yu X, Askentijevich I, Zhou Q. Proteasome-Associated Syndromes: Updates on Genetics, Clinical Manifestations, Pathogenesis, and Treatment. J Clin Immunol 2024; 44:88. [PMID: 38578475 DOI: 10.1007/s10875-024-01692-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
The ubiquitin-proteasome system (UPS) has a critical role in post-translational protein modification that is essential for the maintenance of all cellular functions, including immune responses. The proteasome complex is ubiquitously expressed and is responsible for degradation of short-lived structurally abnormal, misfolded and not-needed proteins that are targeted for degradation via ubiquitin conjugation. Over the last 14 years, an increasing number of human diseases have been linked to pathogenic variants in proteasome subunits and UPS regulators. Defects of the proteasome complex or its chaperons - which have a regulatory role in the assembly of the proteasome - disrupt protein clearance and cellular homeostasis, leading to immune dysregulation, severe inflammation, and neurodevelopmental disorders in humans. Proteasome-associated diseases have complex inheritance, including monogenic, digenic and oligogenic disorders and can be dominantly or recessively inherited. In this review, we summarize the current known genetic causes of proteasomal disease, and discuss the molecular pathogenesis of these conditions based on the function and cellular expression of mutated proteins in the proteasome complex.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Panfeng Tao
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
| | - Natalie T Deuitch
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiaomin Yu
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
| | - Ivona Askentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Qing Zhou
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Xu B, Sun H, Liu S, Liao L, Song X, Wu Y, Hou Y, Jin W. IFI35 limits antitumor immunity in triple-negative breast cancer via CCL2 secretion. Oncogene 2024; 43:693-702. [PMID: 38216673 PMCID: PMC10907302 DOI: 10.1038/s41388-023-02934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/14/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with poor prognosis due to the lack of therapeutic targets. Although immunotherapy brings survival benefits to patients diagnosed with TNBC, it remains limited and treatment resistance is widespread. Here we demonstrate that IFI35 is highly expressed in tumor tissues and can be induced by Interferon-γ in a time-dependent and concentration-dependent manner in breast cancer cells. In xenograft models, we reveal that IFI35 dramatically increases myeloid-derived suppressor cells infiltration in tumors, along with depletion and anergy of CD8+T cells. IFI35 ablation leads to prolonged survival of the mice. Mechanistically, RNA-sequencing reveals that IFI35 promotes CCL2 secretion, resulting in the remodeling of TNBC immune microenvironment. Ablation of IFI35 promotes the infiltration of effector CD8+T cells, and thereby sensitizes TNBC to anti-PD-1 immunotherapy. Our data suggest that IFI35 limits antitumor immunity and may be expected to become a new immunotherapy target in TNBC.
Collapse
Affiliation(s)
- Baojin Xu
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, 110042, China
| | - Hefen Sun
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Simeng Liu
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Li Liao
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoqing Song
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi Wu
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yifeng Hou
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Jin
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Zhou J, Li C, Lu M, Jiang G, Chen S, Li H, Lu K. Pharmacological induction of autophagy reduces inflammation in macrophages by degrading immunoproteasome subunits. PLoS Biol 2024; 22:e3002537. [PMID: 38447109 PMCID: PMC10917451 DOI: 10.1371/journal.pbio.3002537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Defective autophagy is linked to proinflammatory diseases. However, the mechanisms by which autophagy limits inflammation remain elusive. Here, we found that the pan-FGFR inhibitor LY2874455 efficiently activated autophagy and suppressed expression of proinflammatory factors in macrophages stimulated by lipopolysaccharide (LPS). Multiplex proteomic profiling identified the immunoproteasome, which is a specific isoform of the 20s constitutive proteasome, as a substrate that is degraded by selective autophagy. SQSTM1/p62 was found to be a selective autophagy-related receptor that mediated this degradation. Autophagy deficiency or p62 knockdown blocked the effects of LY2874455, leading to the accumulation of immunoproteasomes and increases in inflammatory reactions. Expression of proinflammatory factors in autophagy-deficient macrophages could be reversed by immunoproteasome inhibitors, confirming the pivotal role of immunoproteasome turnover in the autophagy-mediated suppression on the expression of proinflammatory factors. In mice, LY2874455 protected against LPS-induced acute lung injury and dextran sulfate sodium (DSS)-induced colitis and caused low levels of proinflammatory cytokines and immunoproteasomes. These findings suggested that selective autophagy of the immunoproteasome was a key regulator of signaling via the innate immune system.
Collapse
Affiliation(s)
- Jiao Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chunxia Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Meng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Gaoyue Jiang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Shanze Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| | - Huihui Li
- West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
11
|
Shaw BC, Williams JL. A novel PSMB8 isoform associated with multiple sclerosis lesions induces P-body formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582162. [PMID: 38464190 PMCID: PMC10925105 DOI: 10.1101/2024.02.26.582162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system (CNS). Current therapies primarily target the inflammatory component of the disease and are highly effective in early stages of MS while limited therapies have an effect in the more chronic progressive stages of MS where resident glia have a larger role. MS lesions tend to be inflammatory even after the initial peripheral immune cell invasion has subsided and this inflammation is known to cause alternative splicing events. We used qPCR of normal-appearing white matter and white matter lesions from postmortem MS tissue, in vitro studies, and immunostaining in MS tissue to investigate the alternative splicing of one gene known to be important during recovery in an animal model of MS, PSMB8. We found a novel, intron-retained isoform which has not been annotated, upregulated specifically in MS patient white matter lesions. We found that this novel isoform activates the nonsense-mediated decay pathway in primary human astrocytes, the most populous glial cell in the CNS, and is then degraded. Overexpression of this isoform in astrocytes leads to an increased number of processing bodies in vitro, the primary site of mRNA decay. Finally, we demonstrated that MS white matter lesions have a higher burden of processing bodies compared to normal-appearing white matter, predominantly in GFAP-positive astrocytes. The increase in alternative splicing of the PSMB8 gene, the stress that this alternative splicing causes, and the observation that processing bodies are increased in white matter lesions suggests that the lesion microenvironment may lead to increased alternative splicing of many genes. This alternative splicing may blunt the protective or reparative responses of resident glia in and around white matter lesions in MS patients.
Collapse
Affiliation(s)
- Benjamin C. Shaw
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jessica L. Williams
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Brain Health Research Institute, Kent State University, Kent, OH, USA
| |
Collapse
|
12
|
Leister H, Krause FF, Gil B, Prus R, Prus I, Hellhund-Zingel A, Mitra M, Da Rosa Gerbatin R, Delanty N, Beausang A, Brett FM, Farrell MA, Cryan J, O’Brien DF, Henshall DC, Helmprobst F, Pagenstecher A, Steinhoff U, Visekruna A, Engel T. Immunoproteasome deficiency results in age-dependent development of epilepsy. Brain Commun 2024; 6:fcae017. [PMID: 38317856 PMCID: PMC10839634 DOI: 10.1093/braincomms/fcae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/17/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
The immunoproteasome is a central protease complex required for optimal antigen presentation. Immunoproteasome activity is also associated with facilitating the degradation of misfolded and oxidized proteins, which prevents cellular stress. While extensively studied during diseases with increasing evidence suggesting a role for the immunoproteasome during pathological conditions including neurodegenerative diseases, this enzyme complex is believed to be mainly not expressed in the healthy brain. In this study, we show an age-dependent increase in polyubiquitination in the brains of wild-type mice, accompanied by an induction of immunoproteasomes, which was most prominent in neurons and microglia. In contrast, mice completely lacking immunoproteasomes (triple-knockout mice), displayed a strong increase in polyubiquitinated proteins already in the young brain and developed spontaneous epileptic seizures, beginning at the age of 6 months. Injections of kainic acid led to high epilepsy-related mortality of aged triple-knockout mice, confirming increased pathological hyperexcitability states. Notably, the expression of the immunoproteasome was reduced in the brains of patients suffering from epilepsy. In addition, the aged triple-knockout mice showed increased anxiety, tau hyperphosphorylation and degeneration of Purkinje cell population with the resulting ataxic symptoms and locomotion alterations. Collectively, our study suggests a critical role for the immunoproteasome in the maintenance of a healthy brain during ageing.
Collapse
Affiliation(s)
- Hanna Leister
- Institute for Medical Microbiology and Hygiene, Philipps-University, 35043 Marburg, Germany
| | - Felix F Krause
- Institute for Medical Microbiology and Hygiene, Philipps-University, 35043 Marburg, Germany
| | - Beatriz Gil
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Ruslan Prus
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Inna Prus
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Anne Hellhund-Zingel
- Institute for Medical Microbiology and Hygiene, Philipps-University, 35043 Marburg, Germany
| | - Meghma Mitra
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Rogerio Da Rosa Gerbatin
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Norman Delanty
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- Department of Neurology, Beaumont Hospital, D09V2N0 Dublin, Ireland
| | - Alan Beausang
- Department of Neuropathology, Beaumont Hospital, D09V2N0 Dublin, Ireland
| | - Francesca M Brett
- Department of Neuropathology, Beaumont Hospital, D09V2N0 Dublin, Ireland
| | - Michael A Farrell
- Department of Neuropathology, Beaumont Hospital, D09V2N0 Dublin, Ireland
| | - Jane Cryan
- Department of Neuropathology, Beaumont Hospital, D09V2N0 Dublin, Ireland
| | - Donncha F O’Brien
- Department of Neurosurgery, Beaumont Hospital, D09V2N0 Dublin, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Frederik Helmprobst
- Institute of Neuropathology, Philipps-University, 35043 Marburg, Germany
- Core Facility for Mouse Pathology and Electron Microscopy, Philipps-University, 35043 Marburg, Germany
| | - Axel Pagenstecher
- Institute of Neuropathology, Philipps-University, 35043 Marburg, Germany
- Core Facility for Mouse Pathology and Electron Microscopy, Philipps-University, 35043 Marburg, Germany
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, Philipps-University, 35043 Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University, 35043 Marburg, Germany
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| |
Collapse
|
13
|
Canel M, Sławińska AD, Lonergan DW, Kallor AA, Upstill-Goddard R, Davidson C, von Kriegsheim A, Biankin AV, Byron A, Alfaro J, Serrels A. FAK suppresses antigen processing and presentation to promote immune evasion in pancreatic cancer. Gut 2023; 73:131-155. [PMID: 36977556 PMCID: PMC10715489 DOI: 10.1136/gutjnl-2022-327927] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVE Immunotherapy for the treatment of pancreatic ductal adenocarcinoma (PDAC) has shown limited efficacy. Poor CD8 T-cell infiltration, low neoantigen load and a highly immunosuppressive tumour microenvironment contribute to this lack of response. Here, we aimed to further investigate the immunoregulatory function of focal adhesion kinase (FAK) in PDAC, with specific emphasis on regulation of the type-II interferon response that is critical in promoting T-cell tumour recognition and effective immunosurveillance. DESIGN We combined CRISPR, proteogenomics and transcriptomics with mechanistic experiments using a KrasG12Dp53R172H mouse model of pancreatic cancer and validated findings using proteomic analysis of human patient-derived PDAC cell lines and analysis of publicly available human PDAC transcriptomics datasets. RESULTS Loss of PDAC cell-intrinsic FAK signalling promotes expression of the immunoproteasome and Major Histocompatibility Complex class-I (MHC-I), resulting in increased antigen diversity and antigen presentation by FAK-/- PDAC cells. Regulation of the immunoproteasome by FAK is a critical determinant of this response, optimising the physicochemical properties of the peptide repertoire for high affinity binding to MHC-I. Expression of these pathways can be further amplified in a STAT1-dependent manner via co-depletion of FAK and STAT3, resulting in extensive infiltration of tumour-reactive CD8 T-cells and further restraint of tumour growth. FAK-dependent regulation of antigen processing and presentation is conserved between mouse and human PDAC, but is lost in cells/tumours with an extreme squamous phenotype. CONCLUSION Therapies aimed at FAK degradation may unlock additional therapeutic benefit for the treatment of PDAC through increasing antigen diversity and promoting antigen presentation.
Collapse
Affiliation(s)
- Marta Canel
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - David W Lonergan
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ashwin Adrian Kallor
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Rosie Upstill-Goddard
- The Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Catherine Davidson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Alex von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Andrew V Biankin
- The Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Adam Byron
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Javier Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Alan Serrels
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
14
|
Pan Z, Yu CW, Zhao C, Shao M, Yang X, Liang X, Li H, Lu Y, Ye Q, Chern JW, Lu J, Zhou H, Lee SMY. Antagonizing pathological α-synuclein-mediated neurodegeneration by J24335 via the activation of immunoproteasome. Toxicol Appl Pharmacol 2023; 480:116745. [PMID: 37931757 DOI: 10.1016/j.taap.2023.116745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/21/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
The aggregation of misfolded proteins, such as α-synuclein in Parkinson's disease (PD), occurs intracellularly or extracellularly in the majority of neurodegenerative diseases. The immunoproteasome has more potent chymotrypsin-like activity than normal proteasome. Thus, degradation of α-synuclein aggregation via immunoproteasome is an attractive approach for PD drug development. Herein, we aimed to determine if novel compound, 11-Hydroxy-1-(8-methoxy-5-(trifluoromethyl)quinolin-2-yl)undecan-1-one oxime (named as J24335), is a promising candidate for disease-modifying therapy to prevent the pathological progression of neurodegenerative diseases, such as PD. The effects of J24335 on inducible PC12/A53T-α-syn cell viability and cytotoxicity were evaluated by MTT assay and LDH assay, respectively. Evaluation of various proteasome activities was done by measuring the luminescence of enzymatic activity after the addition of different amounts of aminoluciferin. Immunoblotting and real-time PCR were employed to detect the expression of various proteins and genes, respectively. We also used a transgenic mouse model for behavioral testing and immunochemical analysis, to assess the neuroprotective effects of J24335. J24335 inhibited wild-type and mutant α-synuclein aggregation without affecting the growth or death of neuronal cells. The inhibition of α-synuclein aggregation by J24335 was caused by activation of immunoproteasome, as mediated by upregulation of LMP7, and increased cellular chymotrypsin-like activity in 20S proteasome. J24335-enhanced immunoproteasome activity was mediated by PKA/Akt/mTOR pathway activation. Moreover, animal studies revealed that J24335 treatment markedly mitigated both the loss of tyrosine hydroxylase-positive (TH-) neurons and impaired motor skill development. This is the first report to use J24335 as an immunoproteasome enhancing agent to antagonize pathological α-synuclein-mediated neurodegeneration.
Collapse
Affiliation(s)
- Zhijian Pan
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Chao-Wu Yu
- School of Pharmacy, National Taiwan University, Taipei 10050, Taiwan, China
| | - Chen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Min Shao
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Xuanjun Yang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Biology, South University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaonan Liang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Haitao Li
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Yucong Lu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Qingqing Ye
- School of Pharmacy, National Taiwan University, Taipei 10050, Taiwan, China
| | - Ji-Wang Chern
- School of Pharmacy, National Taiwan University, Taipei 10050, Taiwan, China
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hefeng Zhou
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macao.
| |
Collapse
|
15
|
Liu Q, Shen J, Wang J, Xia J, Yin J, Cheng G, Qian X, Jiang Y, Ge X, Wang Q. PR-957 retards rheumatoid arthritis progression and inflammation by inhibiting LMP7-mediated CD4 + T cell imbalance. Int Immunopharmacol 2023; 124:110860. [PMID: 37716163 DOI: 10.1016/j.intimp.2023.110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE Low molecular mass polypeptide 7 (LMP7) is an immunoproteasome subunit that regulates T cell amplification, differentiation, and inflammation and is involved in rheumatoid arthritis (RA) progression. This study intended to apply PR-957 (an anti-LMP7 agent) for RA treatment in vitro and in vivo and evaluate its interaction with LMP7-mediated CD4+ T cell imbalance. METHODS Peripheral blood mononuclear cells (PBMCs) were obtained from 30 RA patients and 30 healthy controls. RA fibroblast-like synoviocytes (RA-FLSs) and CD4+ T cells were isolated from RA patients and then cocultured with PR-957 and/or LMP7 overexpression adenovirus (Ad-LMP7). Collagen-induced arthritis (CIA) mice were constructed and then treated with PR-957 and/or Ad-LMP7. RESULTS LMP7 was higher in RA patients (versus healthy controls) and positively correlated with T helper (Th)1 cells, the Th1/Th2 ratio, Th17 cells, and the Th17/Treg ratio but not with Th2 or T regulatory (Treg) cells. PR-957 reduced Th1 and Th17 cells but increased Th2 and Treg cells in RA-CD4+ T cells, and this effect was partially reversed by Ad-LMP7 transfection. Interestingly, when cocultured with RA-CD4+ T cells, PR-957 increased RA-FLS apoptosis and decreased its invasive ability, viability, and inflammation, as suggested by IL-6, CCL2, MMP1, and MMP3; however, these phenomena were weakened in RA-FLSs without RA-CD4+ T cell coculture. In addition, Ad-LMP7 transfection attenuated the above effects of PR-957. In CIA mice, PR-957 decreased the arthritis score, synovial hyperproliferation and articular injury, inflammation in the synovium and serum, and the imbalance of Th1/Th2 and Th17/Treg in the spleen, and these effects were attenuated by Ad-LMP7. CONCLUSION PR-957 ameliorates RA progression and inflammation by repressing LMP7-mediated CD4+ T cell imbalance.
Collapse
Affiliation(s)
- Qingyang Liu
- Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Jin Shen
- Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Jian Wang
- Department of Joint Surgery, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Jinjun Xia
- Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Jian Yin
- Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Guowei Cheng
- Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Ximing Qian
- Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Yun Jiang
- Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Xin Ge
- Department of Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China.
| | - Qiubo Wang
- Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China.
| |
Collapse
|
16
|
Gressler AE, Leng H, Zinecker H, Simon AK. Proteostasis in T cell aging. Semin Immunol 2023; 70:101838. [PMID: 37708826 PMCID: PMC10804938 DOI: 10.1016/j.smim.2023.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
Aging leads to a decline in immune cell function, which leaves the organism vulnerable to infections and age-related multimorbidities. One major player of the adaptive immune response are T cells, and recent studies argue for a major role of disturbed proteostasis contributing to reduced function of these cells upon aging. Proteostasis refers to the state of a healthy, balanced proteome in the cell and is influenced by synthesis (translation), maintenance and quality control of proteins, as well as degradation of damaged or unwanted proteins by the proteasome, autophagy, lysosome and cytoplasmic enzymes. This review focuses on molecular processes impacting on proteostasis in T cells, and specifically functional or quantitative changes of each of these upon aging. Importantly, we describe the biological consequences of compromised proteostasis in T cells, which range from impaired T cell activation and function to enhancement of inflamm-aging by aged T cells. Finally, approaches to improve proteostasis and thus rejuvenate aged T cells through pharmacological or physical interventions are discussed.
Collapse
Affiliation(s)
- A Elisabeth Gressler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Houfu Leng
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Heidi Zinecker
- Ascenion GmbH, Am Zirkus 1, Bertold-Brecht-Platz 3, 10117 Berlin, Germany
| | - Anna Katharina Simon
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom.
| |
Collapse
|
17
|
Nguyen HD, Kim YE, Nhat Nguyen LT, Kwak IH, Lee YK, Kim YJ, Hai Nguyen TT, Pham HN, Ma HI. Upregulation of immunoproteasome PSMB8 is associated with Parkinson's disease. Parkinsonism Relat Disord 2023; 114:105797. [PMID: 37562243 DOI: 10.1016/j.parkreldis.2023.105797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Immunoproteasome, a part of ubiquitin-proteasome system, is involved in immune response as well as protein degradation. However, the relationship between immunoproteasome and Parkinson's disease (PD) was not evaluated clearly. We hypothesized that the shift of immunoproteasome attributes to PD pathogenesis due to its role in inflammation and protein homeostasis. OBJECTIVE To determine whether immunoproteasome in peripheral blood mononuclear cells (PBMC) and brain is expressed differently between patients with PD and healthy controls (HC). METHODS Blood samples were collected from 19 HC to 40 patients with PD of comparable ages. Peripheral blood mononuclear cells were isolated and followed by RT-qPCR to measure the mRNA levels of three catalytic subunits of immunoproteasome, namely, PSMB8, PSMB9, and PSMB10. Then, the protein levels of each subunit were measured by western blot. Finally, we confirmed the altered immunoproteasome subunit in the post-mortem human brain of PD. RESULTS In PBMCs, PSMB8 mRNA expression of PD group significantly increased compared to HC (p = 0.004), whereas PSMB9 and PSMB10 mRNA were not different between the PD and HC. The ratio of PSMB10 and PSMB8 mRNA (PSMB10/8 ratio) also reflected the significant difference between the PD and HC (p = 0.002). The PSMB10/8 ratio was well correlated with the UPDRS total and Part III score in the early stage of PD (Hoehn and Yahr ≤2.5) or drug-naïve PD subgroups. In terms of the protein level of immunoproteasome subunits in PBMCs, the increase of PSMB8 protein was observed in PD compared to HC (p = 0.0009), while PSMB9 and PSMB10 were not different between groups. Finally, we confirmed that immunoproteasome PSMB8 was expressed abundantly in the postmortem PD brain compared with normal control. CONCLUSION Our novel findings implicate that immunoproteasome PSMB8 is engaged in PD pathomechanism.
Collapse
Affiliation(s)
- Huu Dat Nguyen
- Department of Medical Sciences, Graduate School of Hallym University, Chuncheon, Gangwon, 24252, South Korea; Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, 14068, South Korea
| | - Young Eun Kim
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, 14068, South Korea; Hallym Neurological Institute, Hallym University, Anyang, Gyeonggi, 14068, South Korea.
| | - Linh Thi Nhat Nguyen
- Department of Medical Sciences, Graduate School of Hallym University, Chuncheon, Gangwon, 24252, South Korea; Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, 14068, South Korea
| | - In Hee Kwak
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, 14068, South Korea; Hallym Neurological Institute, Hallym University, Anyang, Gyeonggi, 14068, South Korea
| | - Yoon Kyoung Lee
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, 14068, South Korea
| | - Yun Joong Kim
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi, South Korea
| | - Thanh Thi Hai Nguyen
- Department of Medical Sciences, Graduate School of Hallym University, Chuncheon, Gangwon, 24252, South Korea; Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, 14068, South Korea
| | - Hong Ngoc Pham
- Department of Medical Sciences, Graduate School of Hallym University, Chuncheon, Gangwon, 24252, South Korea; Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, 14068, South Korea
| | - Hyeo-Il Ma
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, 14068, South Korea; Hallym Neurological Institute, Hallym University, Anyang, Gyeonggi, 14068, South Korea
| |
Collapse
|
18
|
Wang M, Liu Y, Dai L, Zhong X, Zhang W, Xie Y, Zeng H, Wang H. ONX0914 inhibition of immunoproteasome subunit LMP7 ameliorates diabetic cardiomyopathy via restraining endothelial-mesenchymal transition. Clin Sci (Lond) 2023; 137:1297-1309. [PMID: 37551616 DOI: 10.1042/cs20230732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a chronic metabolic disease with few effective therapeutic options. Immunoproteasome is an inducible proteasome that plays an important role in the regulation of many cardiovascular diseases, while its role in DCM remains under discussion. The present study aims to demonstrate whether inhibiting immunoproteasome subunit low molecular weight polypeptide 7 (LMP7) could alleviate DCM. Here, we established a type I diabetes mellitus mouse model by streptozotocin (STZ) in 8-week-old male wild-type C57BL/6J mice. We found that immunoproteasome subunit LMP7 was overexpressed in the heart of diabetic mice, while inhibiting LMP7 with pharmacological inhibitor ONX0914 significantly alleviated myocardial fibrosis and improved cardiac function. Besides, compared with diabetic mice, ONX0914 treatment reduced protein levels of mesenchymal markers (Vimentin, α-smooth muscle actin, and SM22α) and increased endothelial markers (VE-cadherin and CD31). In TGFβ1 stimulated HUVECs, we also observed that ONX0914 could inhibit endothelial-mesenchymal transition (EndMT). Mechanistically, we prove that ONX0914 could regulate autophagy activity both in vivo and vitro. Meanwhile, the protective effect of ONX0914 on TGFβ1 stimulated HUVECs could be abolished by 3-methyladenine (3MA) or hydroxychloroquine (CQ). All in all, our data highlight that inhibition of LMP7 with ONX0914 could ameliorate EndMT in diabetic mouse hearts at least in part via autophagy activation. Thus, LMP7 may be a potential therapeutic target for the DCM.
Collapse
Affiliation(s)
- Mengwen Wang
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Yujian Liu
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Lei Dai
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Xiaodan Zhong
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Wenjun Zhang
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Yang Xie
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Hesong Zeng
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Hongjie Wang
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| |
Collapse
|
19
|
Buneeva OA, Kopylov AT, Medvedev AE. Proteasome Interactome and Its Role in the Mechanisms of Brain Plasticity. BIOCHEMISTRY (MOSCOW) 2023; 88:319-336. [PMID: 37076280 DOI: 10.1134/s0006297923030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Abstract
Proteasomes are highly conserved multienzyme complexes responsible for proteolytic degradation of the short-lived, regulatory, misfolded, and damaged proteins. They play an important role in the processes of brain plasticity, and decrease in their function is accompanied by the development of neurodegenerative pathology. Studies performed in different laboratories both on cultured mammalian and human cells and on preparations of the rat and rabbit brain cortex revealed a large number of proteasome-associated proteins. Since the identified proteins belong to certain metabolic pathways, multiple enrichment of the proteasome fraction with these proteins indicates their important role in proteasome functioning. Extrapolation of the experimental data, obtained on various biological objects, to the human brain suggests that the proteasome-associated proteins account for at least 28% of the human brain proteome. The proteasome interactome of the brain contains a large number of proteins involved in the assembly of these supramolecular complexes, regulation of their functioning, and intracellular localization, which could be changed under different conditions (for example, during oxidative stress) or in different phases of the cell cycle. In the context of molecular functions of the Gene Ontology (GO) Pathways, the proteins of the proteasome interactome mediate cross-talk between components of more than 30 metabolic pathways annotated in terms of GO. The main result of these interactions is binding of adenine and guanine nucleotides, crucial for realization of the nucleotide-dependent functions of the 26S and 20S proteasomes. Since the development of neurodegenerative pathology is often associated with regioselective decrease in the functional activity of proteasomes, a positive therapeutic effect would be obviously provided by the factors increasing proteasomal activity. In any case, pharmacological regulation of the brain proteasomes seems to be realized through the changes in composition and/or activity of the proteins associated with proteasomes (deubiquitinase, PKA, CaMKIIα, etc.).
Collapse
Affiliation(s)
- Olga A Buneeva
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | | | | |
Collapse
|
20
|
Li J, Liu N, Zhou H, Xian P, Song Y, Tang X, Li Y, Basler M. Immunoproteasome inhibition prevents progression of castration-resistant prostate cancer. Br J Cancer 2023; 128:1377-1390. [PMID: 36681728 PMCID: PMC10050322 DOI: 10.1038/s41416-022-02129-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) is refractory to hormone treatment. This study aims to explore the effect and underlying mechanisms of immunoproteasome inhibition, a novel immunotherapy, on the progression of CRPC. METHODS The immunoproteasome subunit LMP7 was silenced by using gene knockout or inhibited by the epoxyketone inhibitor ONX 0914 in a mouse CRPC tumour graft model and in interferon-γ-pretreated human CRPC cell lines in vitro. RESULTS CRPC tissues reveal a significant "tumour-elicited" Th17-type inflammatory response which induces immunoproteasome subunit expression. LMP7 deficiency in host mice or in CRPC tumour grafts had no effect on the "tumour-elicited" Th17-type inflammatory response and tumour progression. However, the selective LMP7 inhibitor ONX 0914 strongly suppressed the "tumour-elicited" Th17-type inflammatory response and CRPC tumour progression. Treatment of wild-type mice receiving LMP7-deficient CRPC tumour grafts with ONX 0914 further suggested that immunoproteasome inhibition prevents CRPC progression through suppressing IL-17-induced angiogenesis and epithelial-mesenchymal transition via inactivation of COX-2/VEGF-A signalling and β-catenin/Snail signalling. Treatment of LMP7-deficient mice receiving wild-type CRPC tumour grafts with ONX 0914 and inhibition of LMP7 in PC3 and 22Rv.1 cells with ONX 0914 showed that immunoproteasome inhibition also prevents CRPC progression through inducing CRPC cell apoptosis via activation of the unfolded protein response. CONCLUSIONS We define a critical role of the immunoproteasome in CRPC and propose immunoproteasome inhibition as a promising therapeutic approach to suppress CRPC progression.
Collapse
Affiliation(s)
- Jun Li
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, 400030, Chongqing, China.
| | - Nan Liu
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Hong Zhou
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Peng Xian
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Yanping Song
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Xianli Tang
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Yuan Li
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, D-78457, Konstanz, Germany.
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland.
| |
Collapse
|
21
|
Targeting immunoproteasome in neurodegeneration: A glance to the future. Pharmacol Ther 2023; 241:108329. [PMID: 36526014 DOI: 10.1016/j.pharmthera.2022.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
The immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults. Hence, studying the alterations of immunoproteasome expression and activity is gaining research interest to define the dynamics of neuroinflammation as well as the early and late molecular events that are likely involved in the pathogenesis of a variety of neurological disorders. Furthermore, these novel functions foster the perspective of immunoproteasome as a potential therapeutic target for neurodegeneration. In this review, we provide a brain and retina-wide overview, trying to correlate present knowledge on structure-function relationships of immunoproteasome with the variety of observed neuro-modulatory functions.
Collapse
|
22
|
Sutter PA, Crocker SJ. Glia as antigen-presenting cells in the central nervous system. Curr Opin Neurobiol 2022; 77:102646. [PMID: 36371828 PMCID: PMC10183975 DOI: 10.1016/j.conb.2022.102646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022]
Abstract
The contribution of the cells within the central nervous system (CNS) toward adaptive immune responses is emerging and incompletely understood. Recent findings indicate important functional interactions between T-cells and glial cells within the CNS that may contribute to disease and neuropathology through antigen presentation. Although glia are not classically considered antigen-presenting cell (APC) types, there is growing evidence indicating that glial antigen presentation plays an important role in several neurological diseases. This review discusses these findings which incriminate microglia, astrocytes, and oligodendrocyte lineage cells as CNS-resident APC types with implications for understanding disease.
Collapse
Affiliation(s)
- Pearl A Sutter
- Departments of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Stephen J Crocker
- Departments of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
23
|
Inhibition of the immunoproteasome modulates innate immunity to ameliorate muscle pathology of dysferlin-deficient BlAJ mice. Cell Death Dis 2022; 13:975. [PMID: 36402750 PMCID: PMC9675822 DOI: 10.1038/s41419-022-05416-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
Muscle repair in dysferlinopathies is defective. Although macrophage (Mø)-rich infiltrates are prominent in damaged skeletal muscles of patients with dysferlinopathy, the contribution of the immune system to the disease pathology remains to be fully explored. Numbers of both pro-inflammatory M1 Mø and effector T cells are increased in muscle of dysferlin-deficient BlAJ mice. In addition, symptomatic BlAJ mice have increased muscle production of immunoproteasome. In vitro analyses using bone marrow-derived Mø of BlAJ mice show that immunoproteasome inhibition results in C3aR1 and C5aR1 downregulation and upregulation of M2-associated signaling. Administration of immunoproteasome inhibitor ONX-0914 to BlAJ mice rescues muscle function by reducing muscle infiltrates and fibro-adipogenesis. These findings reveal an important role of immunoproteasome in the progression of muscular dystrophy in BlAJ mouse and suggest that inhibition of immunoproteasome may produce therapeutic benefit in dysferlinopathy.
Collapse
|
24
|
Scalavino V, Piccinno E, Valentini AM, Mastronardi M, Armentano R, Giannelli G, Serino G. A Novel Mechanism of Immunoproteasome Regulation via miR-369-3p in Intestinal Inflammatory Response. Int J Mol Sci 2022; 23:ijms232213771. [PMID: 36430249 PMCID: PMC9691197 DOI: 10.3390/ijms232213771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
The immunoproteasome is a multi-catalytic protein complex expressed in hematopoietic cells. Increased expression of immuno-subunits followed by increased proteasome activities is associated with the pathogenesis of IBD. Therefore, the identification of molecules that could inhibit the activities of this complex has been widely studied. microRNAs are small molecules of non-coding RNA that regulate the expression of target genes. Our purpose was to demonstrate that miR-369-3p is able to reduce the expression of the PSMB9 subunit and consequently modulate the catalytic activities of immunoproteasome. After bioinformatics prediction of the gene target of miR-369-3p, we validated its modulation on PSMB9 expression in the RAW264.7 cell line in vitro. We also found that miR-369-3p indirectly reduced the expression of other immunoproteasome subunits and that this regulation reduced the catalytic functions of the immunoproteasome. Increased levels of PSMB9 were observed in colon samples of acute IBD patients compared to the remission IBD group and control group. Our data suggest that miR-369-3p may be a future alternative therapeutic approach to several compounds currently used for the treatment of inflammatory disorders including IBD.
Collapse
|
25
|
The dichotomous role of immunoproteasome in cancer: Friend or foe? Acta Pharm Sin B 2022; 13:1976-1989. [DOI: 10.1016/j.apsb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/08/2022] Open
|
26
|
Dimasuay KG, Schaunaman N, Berg B, Cervantes D, Kruger E, Heppner FL, Ferrington DA, Chu HW. Airway epithelial immunoproteasome subunit LMP7 protects against rhinovirus infection. Sci Rep 2022; 12:14507. [PMID: 36008456 PMCID: PMC9403975 DOI: 10.1038/s41598-022-18807-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/19/2022] [Indexed: 11/20/2022] Open
Abstract
Immunoproteasomes (IP) serve as an important modulator of immune responses to pathogens and other pathological factors. LMP7/β5i, one of the IP subunits, plays a critical role in autoimmune diseases by downregulating inflammation. Rhinovirus (RV) infection is a major risk factor in the exacerbations of respiratory inflammatory diseases, but whether LMP7 regulates RV-mediated inflammation in the lung particularly in the airway epithelium, the first line of defense against RV infection, remains unclear. In this study, we determined whether airway epithelial LMP7 promotes the resolution of RV-mediated lung inflammation. Inducible airway epithelial-specific LMP7-deficient (conditional knockout, CKO) mice were generated to reveal the in vivo anti-inflammatory and antiviral functions of LMP7. By using LMP7-deficient primary human airway epithelial cells generated by CRISPR-Cas9, we confirmed that airway epithelial LMP7 decreased pro-inflammatory cytokines and viral load during RV infection. Additionally, airway epithelial LMP7 enhanced the expression of a negative immune regulator A20/TNFAIP3 during viral infection that may contribute to the anti-inflammatory function of LMP7. We also discovered that induction of LMP7 by a low dose of polyinosinic:polycytidylic acid (PI:C) reduced RV-mediated inflammation in our CKO mice infected with RV. Our findings suggest that airway epithelial LMP7 has anti-inflammatory and antiviral functions that is critical to the resolution of RV-mediated lung inflammation. Induction of airway epithelial LMP7 may open a novel avenue for therapeutic intervention against RV infection.
Collapse
Affiliation(s)
| | - Niccolette Schaunaman
- grid.240341.00000 0004 0396 0728Department of Medicine, National Jewish Health, Denver, CO USA
| | - Bruce Berg
- grid.240341.00000 0004 0396 0728Department of Medicine, National Jewish Health, Denver, CO USA
| | - Diana Cervantes
- grid.240341.00000 0004 0396 0728Department of Medicine, National Jewish Health, Denver, CO USA
| | - Elke Kruger
- grid.412469.c0000 0000 9116 8976Institute for Medicine Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Frank L. Heppner
- grid.6363.00000 0001 2218 4662Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Deborah A. Ferrington
- grid.19006.3e0000 0000 9632 6718Doheny Eye Institute, University of California Los Angeles, Pasadena, CA USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
27
|
Ferrari V, Stroobant V, Abi Habib J, Naulaerts S, Van den Eynde BJ, Vigneron N. New Insights into the Mechanisms of Proteasome-Mediated Peptide Splicing Learned from Comparing Splicing Efficiency by Different Proteasome Subtypes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2817-2828. [PMID: 35688464 DOI: 10.4049/jimmunol.2101198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
By tying peptide fragments originally distant in parental proteins, the proteasome can generate spliced peptides that are recognized by CTL. This occurs by transpeptidation involving a peptide-acyl-enzyme intermediate and another peptide fragment present in the catalytic chamber. Four main subtypes of proteasomes exist: the standard proteasome (SP), the immunoproteasome, and intermediate proteasomes β1-β2-β5i (single intermediate proteasome) and β1i-β2-β5i (double intermediate proteasome). In this study, we use a tandem mass tag-quantification approach to study the production of six spliced human antigenic peptides by the four proteasome subtypes. Peptides fibroblast growth factor-5172-176/217-220, tyrosinase368-373/336-340, and gp10040-42/47-52 are better produced by the SP than the other proteasome subtypes. The peptides SP110296-301/286-289, gp100195-202/191or192, and gp10047-52/40-42 are better produced by the immunoproteasome and double intermediate proteasome. The current model of proteasome-catalyzed peptide splicing suggests that the production of a spliced peptide depends on the abundance of the peptide splicing partners. Surprisingly, we found that despite the fact that reciprocal peptides RTK_QLYPEW (gp10040-42/47-52) and QLYPEW_RTK (gp10047-52/40-42) are composed of identical splicing partners, their production varies differently according to the proteasome subtype. These differences were maintained after in vitro digestions involving identical amounts of the splicing fragments. Our results indicate that the amount of splicing partner is not the only factor driving peptide splicing and suggest that peptide splicing efficiency also relies on other factors, such as the affinity of the C-terminal splice reactant for the primed binding site of the catalytic subunit.
Collapse
Affiliation(s)
- Violette Ferrari
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Lifesciences and Biotechnology, Brussels, Belgium; and
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Lifesciences and Biotechnology, Brussels, Belgium; and
| | - Joanna Abi Habib
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Lifesciences and Biotechnology, Brussels, Belgium; and
| | - Stefan Naulaerts
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Lifesciences and Biotechnology, Brussels, Belgium; and
| | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium;
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Lifesciences and Biotechnology, Brussels, Belgium; and
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Nathalie Vigneron
- Ludwig Institute for Cancer Research, Brussels, Belgium;
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Lifesciences and Biotechnology, Brussels, Belgium; and
| |
Collapse
|
28
|
Oliveri F, Basler M, Rao TN, Fehling HJ, Groettrup M. Immunoproteasome Inhibition Reduces the T Helper 2 Response in Mouse Models of Allergic Airway Inflammation. Front Immunol 2022; 13:870720. [PMID: 35711460 PMCID: PMC9197384 DOI: 10.3389/fimmu.2022.870720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Allergic asthma is a chronic disease and medical treatment often fails to fully control the disease in the long term, leading to a great need for new therapeutic approaches. Immunoproteasome inhibition impairs T helper cell function and is effective in many (auto-) inflammatory settings but its effect on allergic airway inflammation is unknown. Methods Immunoproteasome expression was analyzed in in vitro polarized T helper cell subsets. To study Th2 cells in vivo acute allergic airway inflammation was induced in GATIR (GATA-3-vYFP reporter) mice using ovalbumin and house dust mite extract. Mice were treated with the immunoproteasome inhibitor ONX 0914 or vehicle during the challenge phase and the induction of airway inflammation was analyzed. Results In vitro polarized T helper cell subsets (Th1, Th2, Th17, and Treg) express high levels of immunoproteasome subunits. GATIR mice proved to be a useful tool for identification of Th2 cells. Immunoproteasome inhibition reduced the Th2 response in both airway inflammation models. Furthermore, T cell activation and antigen-specific cytokine secretion was impaired and a reduced infiltration of eosinophils and professional antigen-presenting cells into the lung and the bronchoalveolar space was observed in the ovalbumin model. Conclusion These results show the importance of the immunoproteasome in Th2 cells and airway inflammation. Our data provides first insight into the potential of using immunoproteasome inhibition to target the aberrant Th2 response, e.g. in allergic airway inflammation.
Collapse
Affiliation(s)
- Franziska Oliveri
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | | | | | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- *Correspondence: Marcus Groettrup,
| |
Collapse
|
29
|
Watanabe A, Yashiroda H, Ishihara S, Lo M, Murata S. The Molecular Mechanisms Governing the Assembly of the Immuno- and Thymoproteasomes in the Presence of Constitutive Proteasomes. Cells 2022; 11:cells11091580. [PMID: 35563886 PMCID: PMC9105311 DOI: 10.3390/cells11091580] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
The proteasome is a large protein complex responsible for proteolysis in cells. Though the proteasome is widely conserved in all eukaryotes, vertebrates additionally possess tissue-specific proteasomes, termed immunoproteasomes and thymoproteasomes. These specialized proteasomes diverge from constitutive proteasomes in the makeup of their catalytic 20S core particle (CP), whereby the constitutive β1, β2, and β5 catalytic subunits are replaced by β1i, β2i, and β5i in immunoproteasomes, or β1i, β2i, and β5t in thymoproteasomes. However, as constitutive β1, β2, and β5 are also present in tissues and cells expressing immuno- and thymoproteasomes, the specialized proteasomes must be able to selectively incorporate their specific subunits. Here, we review the mechanisms governing the assembly of constitutive and specialized proteasomes elucidated thus far. Studies have revealed that β1i and β2i are added onto the α-ring of the CP prior to the other β subunits. Furthermore, β5i and β5t can be incorporated independent of β4, whereas constitutive β5 incorporation is dependent on β4. These mechanisms allow the immuno- and thymoproteasomes to integrate tissue-specific β-subunits without contamination from constitutive β1, β2, and β5. We end the review with a brief discussion on the diseases caused by mutations to the immunoproteasome and the proteins involved with its assembly.
Collapse
|
30
|
Proteasome complexes experience profound structural and functional rearrangements throughout mammalian spermatogenesis. Proc Natl Acad Sci U S A 2022; 119:e2116826119. [PMID: 35377789 PMCID: PMC9169623 DOI: 10.1073/pnas.2116826119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The proteasome is responsible for the homeostasis of intracellular proteins. Here, we describe structural and functional aspects of a poorly characterized proteasome subtype found exclusively in germ cells. The spermatoproteasome was recently shown to be essential for spermatogenesis, a process requiring intense proteolysis. It differs from the constitutive proteasome by only one subunit, α4s, a subunit that replaces its α4 ubiquitous counterpart. In this work, we show how the shift from α4 to α4s regulates proteasome composition, dynamics, interactome, and activity. We reveal a regulation process more complex than previously suggested, which provides the basis for structural and functional studies of the spermatoproteasome. During spermatogenesis, spermatogonia undergo a series of mitotic and meiotic divisions on their path to spermatozoa. To achieve this, a succession of processes requiring high proteolytic activity are in part orchestrated by the proteasome. The spermatoproteasome (s20S) is specific to the developing gametes, in which the gamete-specific α4s subunit replaces the α4 isoform found in the constitutive proteasome (c20S). Although the s20S is conserved across species and was shown to be crucial for germ cell development, its mechanism, function, and structure remain incompletely characterized. Here, we used advanced mass spectrometry (MS) methods to map the composition of proteasome complexes and their interactomes throughout spermatogenesis. We observed that the s20S becomes highly activated as germ cells enter meiosis, mainly through a particularly extensive 19S activation and, to a lesser extent, PA200 binding. Additionally, the proteasome population shifts from c20S (98%) to s20S (>82 to 92%) during differentiation, presumably due to the shift from α4 to α4s expression. We demonstrated that s20S, but not c20S, interacts with components of the meiotic synaptonemal complex, where it may localize via association with the PI31 adaptor protein. In vitro, s20S preferentially binds to 19S and displays higher trypsin- and chymotrypsin-like activities, both with and without PA200 activation. Moreover, using MS methods to monitor protein dynamics, we identified significant differences in domain flexibility between α4 and α4s. We propose that these differences induced by α4s incorporation result in significant changes in the way the s20S interacts with its partners and dictate its role in germ cell differentiation.
Collapse
|
31
|
Karpov NS, Erokhov PA, Sharova NP, Astakhova TM. How Is the Development of the Rat’s Small Intestine Related to Changes in the Proteasome Pool? Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Harryvan TJ, Visser M, de Bruin L, Plug L, Griffioen L, Mulder A, van Veelen PA, van der Heden van Noort GJ, Jongsma ML, Meeuwsen MH, Wiertz EJ, Santegoets SJ, Hardwick JC, Van Hall T, Neefjes J, Van der Burg SH, Hawinkels LJ, Verdegaal EM. Enhanced antigen cross-presentation in human colorectal cancer-associated fibroblasts through upregulation of the lysosomal protease cathepsin S. J Immunother Cancer 2022; 10:jitc-2021-003591. [PMID: 35264435 PMCID: PMC8915372 DOI: 10.1136/jitc-2021-003591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 12/18/2022] Open
Abstract
Background Cross-presentation of exogenous antigens in HLA-class I molecules by professional antigen presenting cells (APCs) is crucial for CD8+ T cell function. Recent murine studies show that several non-professional APCs, including cancer-associated fibroblasts (CAFs) also possess this capacity. Whether human CAFs are able to cross-present exogenous antigen, which molecular pathways are involved in this process and how this ultimately affects tumor-specific CD8+ T cell function is unknown. Methods In this study, we investigated the ability of human colorectal cancer (CRC)-derived CAFs to cross-present neoantigen-derived synthetic long peptides (SLPs), corresponding to tumor-derived mutant peptides, and how this affects tumor-specific T-cell function. Processing of the SLP was studied by targeting components of the cross-presentation machinery through CRISPR/Cas9 and siRNA-mediated genetic ablation to identify the key molecules involved in fibroblast-mediated cross-presentation. Multispectral flow cytometry and killing assays were performed to study the effect of fibroblast cross-presentation on T cell function. Results Here, we show that human CRC-derived CAFs display an enhanced capacity to cross-present neoantigen-derived SLPs when compared with normal colonic fibroblasts. Cross-presentation of antigens by fibroblasts involved the lysosomal protease cathepsin S. Cathepsin S expression by CAFs was detected in situ in human CRC tissue, was upregulated in ex vivo cultured CRC-derived CAFs and showed increased expression in normal fibroblasts after exposure to CRC-conditioned medium. Cognate interaction between CD8+ T cells and cross-presenting CAFs suppressed T cell function, reflected by decreased cytotoxicity, reduced activation (CD137) and increased exhaustion (TIM3, LAG3 and CD39) marker expression. Conclusion These data indicate that CAFs may directly suppress tumor-specific T cell function in an antigen-dependent fashion in human CRC.
Collapse
Affiliation(s)
- Tom J Harryvan
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marten Visser
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda de Bruin
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Léonie Plug
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa Griffioen
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Arend Mulder
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Marlieke Lm Jongsma
- Department of Cell & Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Miranda H Meeuwsen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emmanuel Jhj Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Saskia J Santegoets
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - James Ch Hardwick
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thorbald Van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell & Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd H Van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Lukas Jac Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Els Me Verdegaal
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
33
|
Targeted inhibition of the immunoproteasome blocks endothelial MHC class II antigen presentation to CD4 + T cells in chronic liver injury. Int Immunopharmacol 2022; 107:108639. [PMID: 35219165 DOI: 10.1016/j.intimp.2022.108639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023]
Abstract
Chronic or overwhelming liver injury is frequently associated with fibrosis, which is the main histological characteristic of non-alcoholic steatohepatitis (NASH). Currently, there is no effective treatment for liver fibrosis. Adaptive immunity is one of the perpetrators of liver inflammation and involves the antigen-specific activation of lymphocytes. Targeting adaptive immunity has been proposed as a novel therapeutic approach for NASH. In this study, we demonstrated that liver endothelial cells contribute to MHC class II (MHC-II) antigen presentation to CD4+ T cells after chronic liver injury. In human cirrhotic liver samples, we observed an increased expression of endothelial MHC-II and of the antigen presentation-associated protein LMP7, which is one of the proteolytically active subunits of the immunoproteasome. In a CCl4-induced chronic injury model or a diet- and chemical-induced NASH model, endothelial MHC-II and LMP7 expression was induced to increase. PR-957, a selective inhibitor of the immunoproteasome, inhibited MHC-II expression in endothelial cells and CD4+ T cell response after chronic liver injury. In vitro experiment demonstrated PR-957 also reversed IFN-γ-induced upregulation of MHC-II in endothelial cells. Furthermore, PR-957 treatment or CD4+ T cell depletion in chronic liver injury alleviated liver fibrosis and reduced inflammation, as indicated by the downregulation of inflammatory response markers (F4/80, IL-1, IL-6 and IL-18). In conclusion, targeted inhibition of the immunoproteasome blocks endothelial MHC-II antigen presentation to CD4+ T cells in chronic liver injury. In this regard, the PR-957 inhibitor is a promising candidate for the development of future therapies against NASH.
Collapse
|
34
|
Davidson S, Yu CH, Steiner A, Ebstein F, Baker PJ, Jarur-Chamy V, Hrovat Schaale K, Laohamonthonkul P, Kong K, Calleja DJ, Harapas CR, Balka KR, Mitchell J, Jackson JT, Geoghegan ND, Moghaddas F, Rogers KL, Mayer-Barber KD, De Jesus AA, De Nardo D, Kile BT, Sadler AJ, Poli MC, Krüger E, Goldbach Mansky R, Masters SL. Protein kinase R is an innate immune sensor of proteotoxic stress via accumulation of cytoplasmic IL-24. Sci Immunol 2022; 7:eabi6763. [PMID: 35148201 PMCID: PMC11036408 DOI: 10.1126/sciimmunol.abi6763] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteasome dysfunction can lead to autoinflammatory disease associated with elevated type I interferon (IFN-αβ) and NF-κB signaling; however, the innate immune pathway driving this is currently unknown. Here, we identified protein kinase R (PKR) as an innate immune sensor for proteotoxic stress. PKR activation was observed in cellular models of decreased proteasome function and in multiple cell types from patients with proteasome-associated autoinflammatory disease (PRAAS). Furthermore, genetic deletion or small-molecule inhibition of PKR in vitro ameliorated inflammation driven by proteasome deficiency. In vivo, proteasome inhibitor-induced inflammatory gene transcription was blunted in PKR-deficient mice compared with littermate controls. PKR also acted as a rheostat for proteotoxic stress by triggering phosphorylation of eIF2α, which can prevent the translation of new proteins to restore homeostasis. Although traditionally known as a sensor of RNA, under conditions of proteasome dysfunction, PKR sensed the cytoplasmic accumulation of a known interactor, interleukin-24 (IL-24). When misfolded IL-24 egress into the cytosol was blocked by inhibition of the endoplasmic reticulum-associated degradation pathway, PKR activation and subsequent inflammatory signaling were blunted. Cytokines such as IL-24 are normally secreted from cells; therefore, cytoplasmic accumulation of IL-24 represents an internal danger-associated molecular pattern. Thus, we have identified a mechanism by which proteotoxic stress is detected, causing inflammation observed in the disease PRAAS.
Collapse
Affiliation(s)
- Sophia Davidson
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Chien-Hsiung Yu
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Annemarie Steiner
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Institute of Structural Biology, University Hospital Bonn, Bonn 53127, Germany
| | - Frédéric Ebstein
- University Medicine Greifswald, Institute of Medical Biochemistry and Molecular Biology, Greifswald 17475, Germany
| | - Paul J. Baker
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Valentina Jarur-Chamy
- Immunogenetics and Translational Immunology Program. Facultad de Medicina, Universidad del Desarrollo Clínica Alemana, Santiago, Chile
| | - Katja Hrovat Schaale
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Pawat Laohamonthonkul
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Klara Kong
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Dale J. Calleja
- Ubiquitin Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Cassandra R. Harapas
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Katherine R. Balka
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jacob Mitchell
- Translational Autoinflammatory Disease Studies (TADS), Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Jacob T. Jackson
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Niall D. Geoghegan
- Centre for Dynamic Imaging, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Fiona Moghaddas
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kelly L. Rogers
- Centre for Dynamic Imaging, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Adriana A. De Jesus
- Translational Autoinflammatory Disease Studies (TADS), Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Dominic De Nardo
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Benjamin T. Kile
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Anthony J. Sadler
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - M. Cecilia Poli
- Immunogenetics and Translational Immunology Program. Facultad de Medicina, Universidad del Desarrollo Clínica Alemana, Santiago, Chile
- Division of Pediatric Immunology, Allergy, and Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elke Krüger
- University Medicine Greifswald, Institute of Medical Biochemistry and Molecular Biology, Greifswald 17475, Germany
| | - Raphaela Goldbach Mansky
- Translational Autoinflammatory Disease Studies (TADS), Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Seth L. Masters
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
35
|
Functional Differences between Proteasome Subtypes. Cells 2022; 11:cells11030421. [PMID: 35159231 PMCID: PMC8834425 DOI: 10.3390/cells11030421] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/30/2022] Open
Abstract
Four proteasome subtypes are commonly present in mammalian tissues: standard proteasomes, which contain the standard catalytic subunits β1, β2 and β5; immunoproteasomes containing the immuno-subunits β1i, β2i and β5i; and two intermediate proteasomes, containing a mix of standard and immuno-subunits. Recent studies revealed the expression of two tissue-specific proteasome subtypes in cortical thymic epithelial cells and in testes: thymoproteasomes and spermatoproteasomes. In this review, we describe the mechanisms that enable the ATP- and ubiquitin-dependent as well as the ATP- and ubiquitin-independent degradation of proteins by the proteasome. We focus on understanding the role of the different proteasome subtypes in maintaining protein homeostasis in normal physiological conditions through the ATP- and ubiquitin-dependent degradation of proteins. Additionally, we discuss the role of each proteasome subtype in the ATP- and ubiquitin-independent degradation of disordered proteins. We also discuss the role of the proteasome in the generation of peptides presented by MHC class I molecules and the implication of having different proteasome subtypes for the peptide repertoire presented at the cell surface. Finally, we discuss the role of the immunoproteasome in immune cells and its modulation as a potential therapy for autoimmune diseases.
Collapse
|
36
|
Tripathi SC, Vedpathak D, Ostrin EJ. The Functional and Mechanistic Roles of Immunoproteasome Subunits in Cancer. Cells 2021; 10:cells10123587. [PMID: 34944095 PMCID: PMC8700164 DOI: 10.3390/cells10123587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cell-mediated immunity is driven by antigenic peptide presentation on major histocompatibility complex (MHC) molecules. Specialized proteasome complexes called immunoproteasomes process viral, bacterial, and tumor antigens for presentation on MHC class I molecules, which can induce CD8 T cells to mount effective immune responses. Immunoproteasomes are distinguished by three subunits that alter the catalytic activity of the proteasome and are inducible by inflammatory stimuli such as interferon-γ (IFN-γ). This inducible activity places them in central roles in cancer, autoimmunity, and inflammation. While accelerated proteasomal degradation is an important tumorigenic mechanism deployed by several cancers, there is some ambiguity regarding the role of immunoproteasome induction in neoplastic transformation. Understanding the mechanistic and functional relevance of the immunoproteasome provides essential insights into developing targeted therapies, including overcoming resistance to standard proteasome inhibition and immunomodulation of the tumor microenvironment. In this review, we discuss the roles of the immunoproteasome in different cancers.
Collapse
Affiliation(s)
- Satyendra Chandra Tripathi
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
- Correspondence: (S.C.T.); (E.J.O.)
| | - Disha Vedpathak
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
| | - Edwin Justin Ostrin
- Department of General Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (S.C.T.); (E.J.O.)
| |
Collapse
|
37
|
Abstract
Proteasomes are compartmentalized, ATP-dependent, N-terminal nucleophile hydrolases that play essentials roles in intracellular protein turnover. They are present in all 3 kingdoms. Pharmacological inhibition of proteasomes is detrimental to cell viability. Proteasome inhibitor rugs revolutionize the treatment of multiple myeloma. Proteasomes in pathogenic microbes such as Mycobacterium tuberculosis (Mtb), Plasmodium falciparum (Pf), and other parasites and worms have been validated as therapeutic targets. Starting with Mtb proteasome, efforts in developing inhibitors selective for microbial proteasomes have made great progress lately. In this review, we describe the strategies and pharmacophores that have been used in developing proteasome inhibitors with potency and selectivity that spare human proteasomes and highlight the development of clinical proteasome inhibitor candidates for treatment of leishmaniasis and Chagas disease. Finally, we discuss the future challenges and therapeutical potentials of the microbial proteasome inhibitors.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York, United States of America
| | - Gang Lin
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
Blood Immunoproteasome Activity Is Regulated by Sex, Age and in Chronic Inflammatory Diseases: A First Population-Based Study. Cells 2021; 10:cells10123336. [PMID: 34943847 PMCID: PMC8699521 DOI: 10.3390/cells10123336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
Dysfunction of the immunoproteasome has been implicated in cardiovascular and pulmonary diseases. Its potential as a biomarker for predicting disease stages, however, has not been investigated so far and population-based analyses on the impact of sex and age are missing. We here analyzed the activity of all six catalytic sites of the proteasome in isolated peripheral blood mononuclear cells obtained from 873 study participants of the KORA FF4 study using activity-based probes. The activity of the immuno- and standard proteasome correlated clearly with elevated leukocyte counts of study participants. Unexpectedly, we observed a strong sex dimorphism for proteasome activity with significantly lower immunoproteasome activity in women. In aging, almost all catalytic activities of the proteasome were activated in aged women while maintained upon aging in men. We also noted distinct sex-related activation patterns of standard and immunoproteasome active sites in chronic inflammatory diseases such as diabetes, cardiovascular diseases, asthma, or chronic obstructive pulmonary disease as determined by multiple linear regression modeling. Our data thus provides a conceptual framework for future analysis of immunoproteasome function as a bio-marker for chronic inflammatory disease development and progression.
Collapse
|
39
|
Martínez-Sabadell A, Arenas EJ, Arribas J. IFNγ Signaling in Natural and Therapy-Induced Antitumor Responses. Clin Cancer Res 2021; 28:1243-1249. [PMID: 34785585 DOI: 10.1158/1078-0432.ccr-21-3226] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/02/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022]
Abstract
IFNγ is a cytokine produced by a restricted number of immune cells that acts on every nucleated cell type. Consistent with this remarkably wide spectrum of targets, the effects of IFNγ are highly pleiotropic. On cells of the immune system, IFNγ signaling has generally a pro-inflammatory effect, coordinating the innate and adaptive responses. On nonimmune cells, IFNγ tends to exert the opposite effect; it inhibits cell proliferation, induces cell death, and, in addition, promotes their recognition by the immune system. These effects on the immune and nonimmune compartments play a crucial role during the immunoediting of tumors and, as shown by recent reports, also determine the efficacy of certain immunotherapies. Different therapeutic interventions to target IFNγ signaling are currently under way, and the emerging picture indicates that rewiring IFNγ signaling, disrupted in some cancer cells, may be an efficacious antitumor therapeutic strategy.
Collapse
Affiliation(s)
- Alex Martínez-Sabadell
- Preclinical and Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Enrique J Arenas
- Preclinical and Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos, Madrid, Spain
| | - Joaquín Arribas
- Preclinical and Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos, Madrid, Spain.,Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Bellaterra, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
40
|
Tundo GR, Sbardella D, Oddone F, Kudriaeva AA, Lacal PM, Belogurov AA, Graziani G, Marini S. At the Cutting Edge against Cancer: A Perspective on Immunoproteasome and Immune Checkpoints Modulation as a Potential Therapeutic Intervention. Cancers (Basel) 2021; 13:4852. [PMID: 34638337 PMCID: PMC8507813 DOI: 10.3390/cancers13194852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023] Open
Abstract
Immunoproteasome is a noncanonical form of proteasome with enzymological properties optimized for the generation of antigenic peptides presented in complex with class I MHC molecules. This enzymatic property makes the modulation of its activity a promising area of research. Nevertheless, immunotherapy has emerged as a front-line treatment of advanced/metastatic tumors providing outstanding improvement of life expectancy, even though not all patients achieve a long-lasting clinical benefit. To enhance the efficacy of the currently available immunotherapies and enable the development of new strategies, a broader knowledge of the dynamics of antigen repertoire processing by cancer cells is needed. Therefore, a better understanding of the role of immunoproteasome in antigen processing and of the therapeutic implication of its modulation is mandatory. Studies on the potential crosstalk between proteasome modulators and immune checkpoint inhibitors could provide novel perspectives and an unexplored treatment option for a variety of cancers.
Collapse
Affiliation(s)
| | | | | | - Anna A. Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
| | - Pedro M. Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
- Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Grazia Graziani
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
41
|
Lee MY, Jeon JW, Sievers C, Allen CT. Antigen processing and presentation in cancer immunotherapy. J Immunother Cancer 2021; 8:jitc-2020-001111. [PMID: 32859742 PMCID: PMC7454179 DOI: 10.1136/jitc-2020-001111] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2020] [Indexed: 12/25/2022] Open
Abstract
Background Knowledge about and identification of T cell tumor antigens may inform the development of T cell receptor-engineered adoptive cell transfer or personalized cancer vaccine immunotherapy. Here, we review antigen processing and presentation and discuss limitations in tumor antigen prediction approaches. Methods Original articles covering antigen processing and presentation, epitope discovery, and in silico T cell epitope prediction were reviewed. Results Natural processing and presentation of antigens is a complex process that involves proteasomal proteolysis of parental proteins, transportation of digested peptides into the endoplasmic reticulum, loading of peptides onto major histocompatibility complex (MHC) class I molecules, and shuttling of peptide:MHC complexes to the cell surface. A number of T cell tumor antigens have been experimentally validated in patients with cancer. Assessment of predicted MHC class I binding and total score for these validated T cell antigens demonstrated a wide range of values, with nearly one-third of validated antigens carrying an IC50 of greater than 500 nM. Conclusions Antigen processing and presentation is a complex, multistep process. In silico epitope prediction techniques can be a useful tool, but comprehensive experimental testing and validation on a patient-by-patient basis may be required to reliably identify T cell tumor antigens.
Collapse
Affiliation(s)
- Maxwell Y Lee
- NIDCD, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun W Jeon
- NIDCD, National Institutes of Health, Bethesda, Maryland, USA
| | - Cem Sievers
- NIDCD, National Institutes of Health, Bethesda, Maryland, USA
| | - Clint T Allen
- NIDCD, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
42
|
Mihalovits LM, Ferenczy GG, Keserű GM. Mechanistic and thermodynamic characterization of oxathiazolones as potent and selective covalent immunoproteasome inhibitors. Comput Struct Biotechnol J 2021; 19:4486-4496. [PMID: 34471494 PMCID: PMC8379283 DOI: 10.1016/j.csbj.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 01/20/2023] Open
Abstract
The ubiquitin–proteasome system is responsible for the degradation of proteins and plays a critical role in key cellular processes. While the constitutive proteasome (cPS) is expressed in all eukaryotic cells, the immunoproteasome (iPS) is primarily induced during disease processes, and its inhibition is beneficial in the treatment of cancer, autoimmune disorders and neurodegenerative diseases. Oxathiazolones were reported to selectively inhibit iPS over cPS, and the inhibitory activity of several oxathiazolones against iPS was experimentally determined. However, the detailed mechanism of the chemical reaction leading to irreversible iPS inhibition and the key selectivity drivers are unknown, and separate characterization of the noncovalent and covalent inhibition steps is not available for several compounds. Here, we investigate the chemical reaction between oxathiazolones and the Thr1 residue of iPS by quantum mechanics/molecular mechanics (QM/MM) simulations to establish a plausible reaction mechanism and to determine the rate-determining step of covalent complex formation. The modelled binding mode and reaction mechanism are in line with the selective inhibition of iPS versus cPS by oxathiazolones. The kinact value of several ligands was estimated by constructing the potential of mean force of the rate-determining step by QM/MM simulations coupled with umbrella sampling. The equilibrium constant Ki of the noncovalent complex formation was evaluated by classical force field-based thermodynamic integration. The calculated Ki and kinact values made it possible to analyse the contribution of the noncovalent and covalent steps to the overall inhibitory activity. Compounds with similar intrinsic reactivities exhibit varying selectivities for iPS versus cPS owing to subtle differences in the binding modes that slightly affect Ki, the noncovalent affinity, and importantly alter kinact, the covalent reactivity of the bound compounds. A detailed understanding of the inhibitory mechanism of oxathiazolones is useful in designing iPS selective inhibitors with improved drug-like properties.
Collapse
Affiliation(s)
- Levente M Mihalovits
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - György G Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest 1117, Hungary
| |
Collapse
|
43
|
Joyce S, Ternette N. Know thy immune self and non-self: Proteomics informs on the expanse of self and non-self, and how and where they arise. Proteomics 2021; 21:e2000143. [PMID: 34310018 PMCID: PMC8865197 DOI: 10.1002/pmic.202000143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022]
Abstract
T cells play an important role in the adaptive immune response to a variety of infections and cancers. Initiation of a T cell mediated immune response requires antigen recognition in a process termed MHC (major histocompatibility complex) restri ction. A T cell antigen is a composite structure made up of a peptide fragment bound within the antigen‐binding groove of an MHC‐encoded class I or class II molecule. Insight into the precise composition and biology of self and non‐self immunopeptidomes is essential to harness T cell mediated immunity to prevent, treat, or cure infectious diseases and cancers. T cell antigen discovery is an arduous task! The pioneering work in the early 1990s has made large‐scale T cell antigen discovery possible. Thus, advancements in mass spectrometry coupled with proteomics and genomics technologies make possible T cell antigen discovery with ease, accuracy, and sensitivity. Yet we have only begun to understand the breadth and the depth of self and non‐self immunopeptidomes because the molecular biology of the cell continues to surprise us with new secrets directly related to the source, and the processing and presentation of MHC ligands. Focused on MHC class I molecules, this review, therefore, provides a brief historic account of T cell antigen discovery and, against a backdrop of key advances in molecular cell biologic processes, elaborates on how proteogenomics approaches have revolutionised the field.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System and the Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nicola Ternette
- Centre for Cellular and Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
44
|
Gatekeepers of the Gut: The Roles of Proteasomes at the Gastrointestinal Barrier. Biomolecules 2021; 11:biom11070989. [PMID: 34356615 PMCID: PMC8301830 DOI: 10.3390/biom11070989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
The gut epithelial barrier provides the first line of defense protecting the internal milieu from the environment. To circumvent the exposure to constant challenges such as pathogenic infections and commensal bacteria, epithelial and immune cells at the gut barrier require rapid and efficient means to dynamically sense and respond to stimuli. Numerous studies have highlighted the importance of proteolysis in maintaining homeostasis and adapting to the dynamic changes of the conditions in the gut environment. Primarily, proteolytic activities that are involved in immune regulation and inflammation have been examined in the context of the lysosome and inflammasome activation. Yet, the key to cellular and tissue proteostasis is the ubiquitin–proteasome system, which tightly regulates fundamental aspects of inflammatory signaling and protein quality control to provide rapid responses and protect from the accumulation of proteotoxic damage. In this review, we discuss proteasome-dependent regulation of the gut and highlight the pathophysiological consequences of the disarray of proteasomal control in the gut, in the context of aberrant inflammatory disorders and tumorigenesis.
Collapse
|
45
|
de Freitas Chama LL, Ebstein F, Wiesrecker B, Wagh PR, Hammer E, Weiss FU, Junker H, Studencka-Turski M, Lerch MM, Krüger E, Sendler M. Immunoproteasome impairment via β5i/LMP7-deletion leads to sustained pancreatic injury from experimental pancreatitis. J Cell Mol Med 2021; 25:6786-6799. [PMID: 34132031 PMCID: PMC8278072 DOI: 10.1111/jcmm.16682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Uncovering potential new targets involved in pancreatitis may permit the development of new therapies and improvement of patient's outcome. Acute pancreatitis is a primarily sterile disease characterized by a severe systemic inflammatory response associated with extensive necrosis and a mortality rate of up to 24%. Considering that one of the reported disease mechanisms comprises the endoplasmic reticulum (ER) stress response and that the immunoproteasome is a key regulator to prevent proteotoxic stress in an inflammatory context, we investigated its role in acute pancreatitis. In this study, we demonstrate that immunoproteasome deficiency by deletion of the β5i/LMP7-subunit leads to persistent pancreatic damage. Interestingly, immunoproteasome-deficient mice unveil increased activity of pancreatic enzymes in the acute disease phase as well as higher secretion of Interleukin-6 and transcript expression of the Interleukin IL-1β, IFN-β cytokines and the CXCL-10 chemokine. Cell death was increased in immunoproteasome-deficient mice, which appears to be due to the increased accumulation of ubiquitin-protein conjugates and prolonged unfolded protein response. Accordingly, our findings suggest that the immunoproteasome plays a protective role in acute pancreatitis via its role in the clearance of damaged proteins and the balance of ER stress responses in pancreatic acini and in macrophages cytokine production.
Collapse
Affiliation(s)
| | - Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Birthe Wiesrecker
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Preshit R Wagh
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Elke Hammer
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,German Center for Cardiovascular Research, Partner Site Greifswald, Greifswald, Germany
| | - Frank U Weiss
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Heike Junker
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Maja Studencka-Turski
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
46
|
Mayer RL, Impens F. Immunopeptidomics for next-generation bacterial vaccine development. Trends Microbiol 2021; 29:1034-1045. [PMID: 34030969 DOI: 10.1016/j.tim.2021.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
Antimicrobial resistance is an increasing global threat and alternative treatments substituting failing antibiotics are urgently needed. Vaccines are recognized as highly effective tools to mitigate antimicrobial resistance; however, the selection of bacterial antigens as vaccine candidates remains challenging. In recent years, advances in mass spectrometry-based proteomics have led to the development of so-called immunopeptidomics approaches that allow the untargeted discovery of bacterial epitopes that are presented on the surface of infected cells. Especially for intracellular bacterial pathogens, immunopeptidomics holds great promise to uncover antigens that can be encoded in viral vector- or nucleic acid-based vaccines. This review provides an overview of immunopeptidomics studies on intracellular bacterial pathogens and considers future directions and challenges in advancing towards next-generation vaccines.
Collapse
Affiliation(s)
- Rupert L Mayer
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Proteomics Core, VIB, Ghent, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Proteomics Core, VIB, Ghent, Belgium.
| |
Collapse
|
47
|
Basler M, Christ M, Goebel H, Groettrup M. Immunoproteasome Upregulation Is Not Required to Control Protein Homeostasis during Viral Infection. THE JOURNAL OF IMMUNOLOGY 2021; 206:1697-1708. [PMID: 33731337 DOI: 10.4049/jimmunol.2000822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/01/2021] [Indexed: 12/28/2022]
Abstract
The prime function of proteasomes is the control of protein homeostasis in cells (i.e., the removal of proteins that are not properly folded, damaged by stress conditions like reactive oxygen species formation, or degraded on the basis of regular protein turnover). During viral infection, the standard proteasome is replaced by the so-called immunoproteasome (IP) in an IFN-γ-dependent manner. It has been proposed that the IP is required to protect cell viability under conditions of IFN-induced oxidative stress. In this study, we investigated the requirement for IP to cope with the enhanced need for protein degradation during lymphocytic choriomeningitis virus (LCMV) infection in mice lacking the IP subunit LMP7. We found that IP are upregulated in the liver but not in the spleen during LCMV infection, although the total proteasome content was not altered. The expression of standard proteasome subunits is not induced in LMP7-deficient mice, indicating that enhanced proteasomal activity is not required during viral infection. Furthermore, ubiquitin accumulation, apoptosis induction, and viral titers were similar in LCMV-infected mice lacking LMP7 compared with wild-type mice. Taken together, these data indicate that the IP is not required to regulate protein homeostasis during LCMV infection.
Collapse
Affiliation(s)
- Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; and .,Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
| | - Marleen Christ
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; and
| | - Heike Goebel
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; and
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; and.,Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
| |
Collapse
|
48
|
Erokhov PA, Kulikov AM, Karpova YD, Rodoman GV, Sumedi IR, Goncharov AL, Razbirin DV, Gorelova VS, Sharova NP, Astakhova TM. Proteasomes in Patient Rectal Cancer and Different Intestine Locations: Where Does Proteasome Pool Change? Cancers (Basel) 2021; 13:1108. [PMID: 33807574 PMCID: PMC7961961 DOI: 10.3390/cancers13051108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/01/2021] [Indexed: 01/12/2023] Open
Abstract
A special problem in the surgery of rectal cancer is connected with a need for appropriate removal of intestine parts, along with the tumor, including the fragment close to the sphincter. To determine the length of fragments to remove, it is necessary to reveal areas without changes in molecule functioning, specific for tumor. The purpose of the present study was to investigate functioning the proteasomes, the main actors in protein hydrolysis, in patient rectal adenocarcinoma and different intestine locations. Chymotrypsin-like and caspase-like activities, open to complex influence of different factors, were analyzed in 43-54 samples by Suc-LLVY-AMC- and Z-LLE-AMC-hydrolysis correspondingly. Both activities may be arranged by the decrease in the location row: cancer→adjacent tissue→proximal (8-20 cm from tumor) and distal (2 and 4 cm from tumor) sides. These activities did not differ noticeably in proximal and distal locations. Similar patterns were detected for the activities and expression of immune subunits LMP2 and LMP7 and expression of 19S and PA28αβ activators. The largest changes in tumor were related to proteasome subtype containing LMP2 and PA28αβ that was demonstrated by native electrophoresis. Thus, the results indicate a significance of subtype LMP2-PA28αβ for tumor and absence of changes in proteasome pool in distal fragments of 2-4 cm from tumor.
Collapse
Affiliation(s)
- Pavel A. Erokhov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (P.A.E.); (A.M.K.); (Y.D.K.); (V.S.G.); (T.M.A.)
| | - Alexey M. Kulikov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (P.A.E.); (A.M.K.); (Y.D.K.); (V.S.G.); (T.M.A.)
| | - Yaroslava D. Karpova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (P.A.E.); (A.M.K.); (Y.D.K.); (V.S.G.); (T.M.A.)
| | - Grigory V. Rodoman
- Pirogov Russian National Research Medical University of Ministry of Health of Russian Federation, 1 Ostrovityanov Street, 117997 Moscow, Russia; (G.V.R.); (I.R.S.); (A.L.G.); (D.V.R.)
| | - Ilia R. Sumedi
- Pirogov Russian National Research Medical University of Ministry of Health of Russian Federation, 1 Ostrovityanov Street, 117997 Moscow, Russia; (G.V.R.); (I.R.S.); (A.L.G.); (D.V.R.)
| | - Artem L. Goncharov
- Pirogov Russian National Research Medical University of Ministry of Health of Russian Federation, 1 Ostrovityanov Street, 117997 Moscow, Russia; (G.V.R.); (I.R.S.); (A.L.G.); (D.V.R.)
| | - Dmitry V. Razbirin
- Pirogov Russian National Research Medical University of Ministry of Health of Russian Federation, 1 Ostrovityanov Street, 117997 Moscow, Russia; (G.V.R.); (I.R.S.); (A.L.G.); (D.V.R.)
| | - Vera S. Gorelova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (P.A.E.); (A.M.K.); (Y.D.K.); (V.S.G.); (T.M.A.)
| | - Natalia P. Sharova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (P.A.E.); (A.M.K.); (Y.D.K.); (V.S.G.); (T.M.A.)
| | - Tatiana M. Astakhova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (P.A.E.); (A.M.K.); (Y.D.K.); (V.S.G.); (T.M.A.)
| |
Collapse
|
49
|
Kasahara M. Role of immunoproteasomes and thymoproteasomes in health and disease. Pathol Int 2021; 71:371-382. [PMID: 33657242 DOI: 10.1111/pin.13088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
The proteasome is a multisubunit protease that degrades intracellular proteins into small peptides. Besides playing a pivotal role in many cellular processes indispensable for survival, it is involved in the production of peptides presented by major histocompatibility complex class I molecules. In addition to the standard proteasome shared in all eukaryotes, jawed vertebrates have two specialized forms of proteasome known as immunoproteasomes and thymoproteasomes. The immunoproteasome, which contains cytokine-inducible catalytic subunits with distinct cleavage specificities, produces peptides presented by class I molecules more efficiently than the standard proteasome. The thymoproteasome, which contains a unique catalytic subunit β5t, is a tissue-specific proteasome expressed exclusively in cortical thymic epithelial cells. It plays a critical role in CD8+ cytotoxic T cell development via positive selection. This review provides a brief overview on the structure and function of these specialized forms of proteasome and their involvement in human disease.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
50
|
Lee HS, Suh JY, Kang BC, Lee E. Lipotoxicity dysregulates the immunoproteasome in podocytes and kidneys in type 2 diabetes. Am J Physiol Renal Physiol 2021; 320:F548-F558. [PMID: 33586497 DOI: 10.1152/ajprenal.00509.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Palmitic acid (PA) leads to lipotoxicity in type 2 diabetes and induces oxidative stress in podocytes. Oxidized cellular proteins are degraded by proteasomes. The role of proteasomes in PA- or oxidative stress-induced podocyte injury and pathogenesis of diabetic nephropathy (DN) is unknown. We investigated the effects of PA on expression of 20S and 26S proteasomes, proteasome activator 28 (PA28) regulators, and the immunoproteasome in cultured podocytes and renal cortical tissues of db/db and db/m mice using Western blot analysis. Glomerular areas and glomerular basement membrane (GBM) widths of db/db and db/m mice were examined using morphometry. Short-term incubation of PA or low levels of H2O2 upregulated only the immunoproteasome in cultured podocytes. Long-term exposure of podocytes to PA ultimately downregulated the immunoproteasome as with other proteasomes, whereas oleic acid (OA) or eicosapentaenoic acid (EPA) restored the PA-induced decreased protein levels. In db/db mice, renal cortical immunoproteasome expression with PA28α was significantly decreased compared with db/m mice, and glomerular areas and GBM widths were significantly increased compared with db/m mice. Feeding of an OA-rich olive oil or EPA-rich fish oil protected db/db mice against the reduced renal cortical immunoproteasome expression, glomerular enlargement, and GBM thickening. These results demonstrate that lipotoxicity downregulates the immunoproteasome in podocytes and kidneys in type 2 diabetes and that OA and EPA protected type 2 diabetic mice against decreased renal cortical immunoproteasome expression and the progression of DN. Given this, lipotoxicity-induced podocyte injury with impaired immunoproteasome expression appears to play an important role in the pathogenesis of DN.NEW & NOTEWORTHY In podocytes, PA rapidly induced immunoproteasome expression but ultimately decreased it, while OA and EPA restored the decreased immunoproteasome levels. In the renal cortex of type 2 diabetic mice, immunoproteasome expression was significantly decreased, whereas feeding of OA-rich olive oil or EPA-rich fish oil diets protected them against the reduced immunoproteasome expression and progression of diabetic nephropathy. Thus, lipotoxicity-induced podocyte injury with impaired immunoproteasome expression may be related to the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Hyun Soon Lee
- Renal Pathology Lab, Hankook Kidney and Diabetes Institute, Seoul, Korea
| | - Ji Yeon Suh
- Renal Pathology Lab, Hankook Kidney and Diabetes Institute, Seoul, Korea
| | - Byeong-Choel Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Eugene Lee
- Renal Pathology Lab, Hankook Kidney and Diabetes Institute, Seoul, Korea
| |
Collapse
|