1
|
Wang P, Chen L, Mora-Cartin R, McIntosh CM, Sattar H, Chong AS, Alegre ML. Low-affinity CD8 + T cells provide interclonal help to high-affinity CD8 + T cells to augment alloimmunity. Am J Transplant 2024; 24:933-943. [PMID: 38228228 PMCID: PMC11144556 DOI: 10.1016/j.ajt.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
Following solid organ transplantation, small precursor populations of polyclonal CD8+ T cells specific for any graft-expressed antigen preferentially expand their high-affinity clones. This phenomenon, termed "avidity maturation," results in a larger population of CD8+ T cells with increased sensitivity to alloantigen, posing a greater risk for graft rejection. Using a mouse model of minor-mismatched skin transplantation, coupled with the tracking of 2 skin graft-reactive CD8+ T cell receptor-transgenic tracer populations with high and low affinity for the same peptide-major histocompatibility complex, we explored the conventional paradigm that CD8+ T cell avidity maturation occurs through T cell receptor affinity-based competition for cognate antigen. Our data revealed "interclonal CD8-CD8 help," whereby lower/intermediate affinity clones help drive the preferential expansion of their higher affinity counterparts in an interleukin-2/CD25-dependent manner. Consequently, the CD8-helped high-affinity clones exhibit greater expansion and develop augmented effector functions in the presence of their low-affinity counterparts, correlating with more severe graft damage. Finally, interclonal CD8-CD8 help was suppressed by costimulation blockade treatment. Thus, high-affinity CD8+ T cells can leverage help from low-affinity CD8+ T cells of identical specificity to promote graft rejection. Suppressing provision of interclonal CD8-CD8 help may be important to improve transplant outcomes.
Collapse
Affiliation(s)
- Peter Wang
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, Illinois, USA; Medical Scientist Training Program, University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | - Luqiu Chen
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Ricardo Mora-Cartin
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Christine M McIntosh
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Husain Sattar
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Anita S Chong
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, Illinois, USA
| | - Maria-Luisa Alegre
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
2
|
Kellermann G, Leulliot N, Cherfils-Vicini J, Blaud M, Brest P. Activated B-Cells enhance epitope spreading to support successful cancer immunotherapy. Front Immunol 2024; 15:1382236. [PMID: 38571942 PMCID: PMC10989059 DOI: 10.3389/fimmu.2024.1382236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Immune checkpoint therapies (ICT) have transformed the treatment of cancer over the past decade. However, many patients do not respond or suffer relapses. Successful immunotherapy requires epitope spreading, but the slow or inefficient induction of functional antitumoral immunity delays the benefit to patients or causes resistances. Therefore, understanding the key mechanisms that support epitope spreading is essential to improve immunotherapy. In this review, we highlight the major role played by B-cells in breaking immune tolerance by epitope spreading. Activated B-cells are key Antigen-Presenting Cells (APC) that diversify the T-cell response against self-antigens, such as ribonucleoproteins, in autoimmunity but also during successful cancer immunotherapy. This has important implications for the design of future cancer vaccines.
Collapse
Affiliation(s)
| | - Nicolas Leulliot
- Université Paris Cité, Centre national de la recherche scientifique (CNRS), Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), Paris, France
| | - Julien Cherfils-Vicini
- Université Côte d’Azur, Institute for Research on Cancer and Aging, Nice (IRCAN), Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), Centre Antoine Lacassagne, Institut Hospitalo-Universitaire (IHU), RESPIRera, Fédérations Hospitalo-Universitaires (FHU)OncoAge, Nice, France
| | - Magali Blaud
- Université Paris Cité, Centre national de la recherche scientifique (CNRS), Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), Paris, France
| | - Patrick Brest
- Université Côte d’Azur, Institute for Research on Cancer and Aging, Nice (IRCAN), Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), Centre Antoine Lacassagne, Institut Hospitalo-Universitaire (IHU), RESPIRera, Fédérations Hospitalo-Universitaires (FHU)OncoAge, Nice, France
| |
Collapse
|
3
|
Rawat K, Mara AB, King WT, Nnam CF, Jakubzick CV. Immunogenicity Threshold in Allogeneic Cells Impacts CTL Response to Nondominant Congenic Antigens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1623-1629. [PMID: 37850969 PMCID: PMC10656436 DOI: 10.4049/jimmunol.2300548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Transplantation and cancer expose the immune system to neoantigens, including immunogenic (dominant and subdominant) and nonimmunogenic Ags with varying quantities and affinities of immunodominant peptides. Conceptually, immunity is believed to mainly target dominant Ags when subdominant or nondominant Ags are linked within the same cell due to T cell interference. This phenomenon is called immunodominance. However, our previous study in mice showed that linked nonimmunogenic Ags (OVA and GFP) containing immunodominant peptides mount immunity irrespective of the MHC-matched allogeneic cell's immunogenicity. Consequently, we further explored 1) under what circumstances does the congenic marker CD45.1 provoke immunity in CD45.2 mice, and 2) whether linking two dominant or subdominant Ags can instigate an immune response. Our observations showed that CD45.1 (or CD45.2), when connected to low-immunogenic cell types is presented as an immunogen, which contrasts with its outcome when linked to high-immunogenic cell types. Moreover, we found that both dominant and subdominant Ags are presented as immunogens when linked in environments with lower immunogenic thresholds. These findings challenge the existing perception that immunity is predominantly elicited against dominant Ags when linked to subdominant or nondominant Ags. This study takes a fundamental step toward understanding the nuanced relationship between immunogenic and nonimmunogenic Ags, potentially opening new avenues for comprehending cancer immunoediting and enhancing the conversion of cold tumors with low immunogenicity into responsive hot tumors.
Collapse
Affiliation(s)
- Kavita Rawat
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH
| | - Arlind B. Mara
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH
| | - William T. King
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH
| | - Chinaza F. Nnam
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH
| | - Claudia V. Jakubzick
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH
| |
Collapse
|
4
|
Pathogen-specific T Cells: Targeting Old Enemies and New Invaders in Transplantation and Beyond. Hemasphere 2023; 7:e809. [PMID: 36698615 PMCID: PMC9831191 DOI: 10.1097/hs9.0000000000000809] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/07/2022] [Indexed: 01/27/2023] Open
Abstract
Adoptive immunotherapy with virus-specific cytotoxic T cells (VSTs) has evolved over the last three decades as a strategy to rapidly restore virus-specific immunity to prevent or treat viral diseases after solid organ or allogeneic hematopoietic cell-transplantation (allo-HCT). Since the early proof-of-principle studies demonstrating that seropositive donor-derived T cells, specific for the commonest pathogens post transplantation, namely cytomegalovirus or Epstein-Barr virus (EBV) and generated by time- and labor-intensive protocols, could effectively control viral infections, major breakthroughs have then streamlined the manufacturing process of pathogen-specific T cells (pSTs), broadened the breadth of target recognition to even include novel emerging pathogens and enabled off-the-shelf administration or pathogen-naive donor pST production. We herein review the journey of evolution of adoptive immunotherapy with nonengineered, natural pSTs against infections and virus-associated malignancies in the transplant setting and briefly touch upon recent achievements using pSTs outside this context.
Collapse
|
5
|
Swain AC, Borghans JA, de Boer RJ. Effect of cellular aging on memory T-cell homeostasis. Front Immunol 2022; 13:947242. [PMID: 36059495 PMCID: PMC9429809 DOI: 10.3389/fimmu.2022.947242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
The fact that T-cell numbers remain relatively stable throughout life, and that T-cell proliferation rates increase during lymphopenia, has led to the consensus that T-cell numbers are regulated in a density-dependent manner. Competition for resources among memory T cells has been proposed to underlie this ‘homeostatic’ regulation. We first review how two classic models of resource competition affect the T-cell receptor (TCR) diversity of the memory T-cell pool. First, ‘global’ competition for cytokines leads to a skewed repertoire that tends to be dominated by the very first immune response. Second, additional ‘cognate’ competition for specific antigens results in a very diverse and stable memory T-cell pool, allowing every antigen to be remembered, which we therefore define as the ‘gold-standard’. Because there is limited evidence that memory T cells of the same specificity compete more strongly with each other than with memory T cells of different specificities, i.e., for ‘cognate’ competition, we investigate whether cellular aging could account for a similar level of TCR diversity. We define cellular aging as a declining cellular fitness due to reduced proliferation. We find that the gradual erosion of previous T-cell memories due to cellular aging allows for better establishment of novel memories and for a much higher level of TCR diversity compared to global competition. A small continual source (either from stem-cell-like memory T-cells or from naive T-cells due to repeated antigen exposure) improves the diversity of the memory T-cell pool, but remarkably, only in the cellular aging model. We further show that the presence of a source keeps the inflation of chronic memory responses in check by maintaining the immune memories to non-chronic antigens. We conclude that cellular aging along with a small source provides a novel and immunologically realistic mechanism to achieve and maintain the ‘gold-standard’ level of TCR diversity in the memory T-cell pool.
Collapse
Affiliation(s)
- Arpit C. Swain
- Theoretical Biology, Utrecht University, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: Arpit C. Swain,
| | - José A.M. Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rob J. de Boer
- Theoretical Biology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
6
|
Convergent clonal selection of donor- and recipient-derived CMV-specific T cells in hematopoietic stem cell transplant patients. Proc Natl Acad Sci U S A 2022; 119:2117031119. [PMID: 35105810 PMCID: PMC8833188 DOI: 10.1073/pnas.2117031119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 12/04/2022] Open
Abstract
An existing memory T cell population specific for a single epitope is sufficient to effectively curtail responses to any new antigens if the original epitope is present in a vaccination regimen or heterologous infections. We asked if T cell competition precludes recruitment of any new, naïve T cells to an existing memory T cell pool in context of cytomegalovirus-specific T cell responses in a cohort of transplant patients. Our data indicate that competition does not prevent recruitment of naïve T cells into the memory T cell pool but selects for T cells with nearly or fully congruent T cell receptor specificities. We discuss the implications of rejuvenating a memory T cell pool while preserving the T cell receptor repertoire. Competition between antigen-specific T cells for peptide:MHC complexes shapes the ensuing T cell response. Mouse model studies provided compelling evidence that competition is a highly effective mechanism controlling the activation of naïve T cells. However, assessing the effect of T cell competition in the context of a human infection requires defined pathogen kinetics and trackable naïve and memory T cell populations of defined specificity. A unique cohort of nonmyeloablative hematopoietic stem cell transplant patients allowed us to assess T cell competition in response to cytomegalovirus (CMV) reactivation, which was documented with detailed virology data. In our cohort, hematopoietic stem cell transplant donors and recipients were CMV seronegative and positive, respectively, thus providing genetically distinct memory and naïve T cell populations. We used single-cell transcriptomics to track donor versus recipient-derived T cell clones over the course of 90 d. We found that donor-derived T cell clones proliferated and expanded substantially following CMV reactivation. However, for immunodominant CMV epitopes, recipient-derived memory T cells remained the overall dominant population. This dominance was maintained despite more robust clonal expansion of donor-derived T cells in response to CMV reactivation. Interestingly, the donor-derived T cells that were recruited into these immunodominant memory populations shared strikingly similar TCR properties with the recipient-derived memory T cells. This selective recruitment of identical and nearly identical clones from the naïve into the immunodominant memory T cell pool suggests that competition is in place but does not interfere with rejuvenating a memory T cell population. Instead, it results in selection of convergent clones to the memory T cell pool.
Collapse
|
7
|
The Function of Immunoproteasomes-An Immunologists' Perspective. Cells 2021; 10:cells10123360. [PMID: 34943869 PMCID: PMC8699091 DOI: 10.3390/cells10123360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/02/2023] Open
Abstract
Proteasomes are responsible for intracellular proteolysis and play an important role in cellular protein homeostasis. Cells of the immune system assemble a specialized form of proteasomes, known as immunoproteasomes, in which the constitutive catalytic sites are replaced for cytokine-inducible homologues. While immunoproteasomes may fulfill all standard proteasome’ functions, they seem specially adapted for a role in MHC class I antigen processing and CD8+ T-cell activation. In this way, they may contribute to CD8+ T-cell-mediated control of intracellular infections, but also to the immunopathogenesis of autoimmune diseases. Starting at the discovery of its catalytic subunits in the genome, here, we review the observations shaping our current understanding of immunoproteasome function, and the consequential novel opportunities for immune intervention.
Collapse
|
8
|
Co DO, Hogan LH, Karman J, Herbath M, Fabry Z, Sandor M. T Cell Interactions in Mycobacterial Granulomas: Non-Specific T Cells Regulate Mycobacteria-Specific T Cells in Granulomatous Lesions. Cells 2021; 10:cells10123285. [PMID: 34943793 PMCID: PMC8699651 DOI: 10.3390/cells10123285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Infections with pathogenic mycobacteria are controlled by the formation of a unique structure known as a granuloma. The granuloma represents a host–pathogen interface where bacteria are killed and confined by the host response, but also where bacteria persist. Previous work has demonstrated that the T cell repertoire is heterogenous even at the single granuloma level. However, further work using pigeon cytochrome C (PCC) epitope-tagged BCG (PCC-BCG) and PCC-specific 5CC7 RAG−/− TCR transgenic (Tg) mice has demonstrated that a monoclonal T cell population is able to control infection. At the chronic stage of infection, granuloma-infiltrating T cells remain highly activated in wild-type mice, while T cells in the monoclonal T cell mice are anergic. We hypothesized that addition of an acutely activated non-specific T cell to the monoclonal T cell system could recapitulate the wild-type phenotype. Here we report that activated non-specific T cells have access to the granuloma and deliver a set of cytokines and chemokines to the lesions. Strikingly, non-specific T cells rescue BCG-specific T cells from anergy and enhance the function of BCG-specific T cells in the granuloma in the chronic phase of infection when bacterial antigen load is low. In addition, we find that these same non-specific T cells have an inhibitory effect on systemic BCG-specific T cells. Taken together, these data suggest that T cells non-specific for granuloma-inducing agents can alter the function of granuloma-specific T cells and have important roles in mycobacterial immunity and other granulomatous disorders.
Collapse
Affiliation(s)
- Dominic O. Co
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Laura H. Hogan
- The Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Jozsef Karman
- Cambridge Research Center, Abbvie, Inc., Cambridge, MA 02139, USA;
| | - Melinda Herbath
- Department of Pathology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.H.); (Z.F.)
| | - Zsuzsanna Fabry
- Department of Pathology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.H.); (Z.F.)
| | - Matyas Sandor
- Department of Pathology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.H.); (Z.F.)
- Correspondence: ; Tel.: +1-(608)-265-8715
| |
Collapse
|
9
|
Reed J, Reichelt M, Wetzel SA. Lymphocytes and Trogocytosis-Mediated Signaling. Cells 2021; 10:1478. [PMID: 34204661 PMCID: PMC8231098 DOI: 10.3390/cells10061478] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
Trogocytosis is the intercellular transfer of membrane and membrane-associated molecules. This underappreciated process has been described in a variety of biological settings including neuronal remodeling, fertilization, viral and bacterial spread, and cancer, but has been most widely studied in cells of the immune system. Trogocytosis is performed by multiple immune cell types, including basophils, macrophages, dendritic cells, neutrophils, natural killer cells, B cells, γδ T cells, and CD4+ and CD8+ αβ T cells. Although not expressed endogenously, the presence of trogocytosed molecules on cells has the potential to significantly impact an immune response and the biology of the individual trogocytosis-positive cell. Many studies have focused on the ability of the trogocytosis-positive cells to interact with other immune cells and modulate the function of responders. Less understood and arguably equally important is the impact of these molecules on the individual trogocytosis-positive cell. Molecules that have been reported to be trogocytosed by cells include cognate ligands for receptors on the individual cell, such as activating NK cell ligands and MHC:peptide. These trogocytosed molecules have been shown to interact with receptors on the trogocytosis-positive cell and mediate intracellular signaling. In this review, we discuss the impact of this trogocytosis-mediated signaling on the biology of the individual trogocytosis-positive cell by focusing on natural killer cells and CD4+ T lymphocytes.
Collapse
Affiliation(s)
- Jim Reed
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (J.R.); (M.R.)
| | - Madison Reichelt
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (J.R.); (M.R.)
| | - Scott A. Wetzel
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (J.R.); (M.R.)
- Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
10
|
Pan YG, Aiamkitsumrit B, Bartolo L, Wang Y, Lavery C, Marc A, Holec PV, Rappazzo CG, Eilola T, Gimotty PA, Hensley SE, Antia R, Zarnitsyna VI, Birnbaum ME, Su LF. Vaccination reshapes the virus-specific T cell repertoire in unexposed adults. Immunity 2021; 54:1245-1256.e5. [PMID: 34004140 PMCID: PMC8192456 DOI: 10.1016/j.immuni.2021.04.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/01/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
We examined how baseline CD4+ T cell repertoire and precursor states impact responses to pathogen infection in humans using primary immunization with yellow fever virus (YFV) vaccine. YFV-specific T cells in unexposed individuals were identified by peptide-MHC tetramer staining and tracked pre- and post-vaccination by tetramers and TCR sequencing. A substantial number of YFV-reactive T cells expressed memory phenotype markers and contained expanded clones in the absence of exposure to YFV. After vaccination, pre-existing YFV-specific T cell populations with low clonal diversity underwent limited expansion, but rare populations with a reservoir of unexpanded TCRs generated robust responses. These altered dynamics reorganized the immunodominance hierarchy and resulted in an overall increase in higher avidity T cells. Thus, instead of further increasing the representation of dominant clones, YFV vaccination recruits rare and more responsive T cells. Our findings illustrate the impact of vaccines in prioritizing T cell responses and reveal repertoire reorganization as a key component of effective vaccination.
Collapse
Affiliation(s)
- Yi-Gen Pan
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamas Aiamkitsumrit
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laurent Bartolo
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yifeng Wang
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Criswell Lavery
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA; Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Adam Marc
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA; Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Patrick V Holec
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - C Garrett Rappazzo
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Theresa Eilola
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Phyllis A Gimotty
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA, USA
| | | | - Michael E Birnbaum
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura F Su
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA; Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Karavalakis G, Yannaki E, Papadopoulou A. Reinforcing the Immunocompromised Host Defense against Fungi: Progress beyond the Current State of the Art. J Fungi (Basel) 2021; 7:jof7060451. [PMID: 34204025 PMCID: PMC8228486 DOI: 10.3390/jof7060451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Despite the availability of a variety of antifungal drugs, opportunistic fungal infections still remain life-threatening for immunocompromised patients, such as those undergoing allogeneic hematopoietic cell transplantation or solid organ transplantation. Suboptimal efficacy, toxicity, development of resistant variants and recurrent episodes are limitations associated with current antifungal drug therapy. Adjunctive immunotherapies reinforcing the host defense against fungi and aiding in clearance of opportunistic pathogens are continuously gaining ground in this battle. Here, we review alternative approaches for the management of fungal infections going beyond the state of the art and placing an emphasis on fungus-specific T cell immunotherapy. Harnessing the power of T cells in the form of adoptive immunotherapy represents the strenuous protagonist of the current immunotherapeutic approaches towards combating invasive fungal infections. The progress that has been made over the last years in this field and remaining challenges as well, will be discussed.
Collapse
Affiliation(s)
- Georgios Karavalakis
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (G.K.); (E.Y.)
| | - Evangelia Yannaki
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (G.K.); (E.Y.)
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Anastasia Papadopoulou
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (G.K.); (E.Y.)
- Correspondence: ; Tel.: +30-2313-307-693; Fax: +30-2313-307-521
| |
Collapse
|
12
|
Broad-Based Influenza-Specific CD8 + T Cell Response without the Typical Immunodominance Hierarchy and Its Potential Implication. Viruses 2021; 13:v13061080. [PMID: 34198851 PMCID: PMC8229067 DOI: 10.3390/v13061080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022] Open
Abstract
Syngeneic murine systems have pre-fixed MHC, making them an imperfect model for investigating the impact of MHC polymorphism on immunodominance in influenza A virus (IAV) infections. To date, there are few studies focusing on MHC allelic differences and its impact on immunodominance even though it is well documented that an individual’s HLA plays a significant role in determining immunodominance hierarchy. Here, we describe a broad-based CD8+ T cell response in a healthy individual to IAV infection rather than a typical immunodominance hierarchy. We used a systematic antigen screen approach combined with epitope prediction to study such a broad CD8+ T cell response to IAV infection. We show CD8+ T cell responses to nine IAV proteins and identify their minimal epitope sequences. These epitopes are restricted to HLA-B*44:03, HLA-A*24:02 and HLA-A*33:03 and seven out of the nine epitopes are novel (NP319–330# (known and demonstrated minimal epitope positions are subscripted; otherwise, amino acid positions are shown as normal text (for example NP 319–330 or NP 313–330)), M1124–134, M27–15, NA337–346, PB239–49, HA445–453 and NS1195–203). Additionally, most of these novel epitopes are highly conserved among H1N1 and H3N2 strains that circulated in Australia and other parts of the world.
Collapse
|
13
|
Pooladvand P, Kim PS, Fazekas de St Groth B. The Role of Antigen-Competitive Dynamics in Regulating the Immune Response. Bull Math Biol 2021; 83:40. [PMID: 33730201 DOI: 10.1007/s11538-021-00867-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/10/2021] [Indexed: 10/21/2022]
Abstract
The clonal expansion of T cells during an infection is tightly regulated to ensure an appropriate immune response against invading pathogens. Although experiments have mapped the trajectory from expansion to contraction, the interplay between mechanisms that control this response is not fully understood. Based on experimental data, we propose a model in which the dynamics of CD4+ T cell expansion is controlled through the interactions between T cells and antigen-presenting cells, where T cell stimulation is proportional to antigen availability, and antigen availability is regulated through downregulation of antigen by T cells. This antigen-dependent-feedback mechanism operates alongside an intrinsic reduction in cell proliferation rate that may also be responsible for slowing expansion. Our model can successfully predict T cell recruitment rates into division, expansion, and clonal burst size per cell when initial precursors are varied or when T cells are introduced late into an ongoing immune response. Importantly, the findings demonstrate that a feedback mechanism between T cells and antigen-presenting cells, along with a reduction in cell proliferation rate, can explain the ability of the immune system to adapt its response to variations in initial conditions or changes that occur later in the response, ensuring a robust yet controlled line of defence against pathogens.
Collapse
Affiliation(s)
- Pantea Pooladvand
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Peter S Kim
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Barbara Fazekas de St Groth
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
14
|
Bonilla WV, Kirchhammer N, Marx AF, Kallert SM, Krzyzaniak MA, Lu M, Darbre S, Schmidt S, Raguz J, Berka U, Vincenti I, Pauzuolis M, Kerber R, Hoepner S, Günther S, Magnus C, Merkler D, Orlinger KK, Zippelius A, Pinschewer DD. Heterologous arenavirus vector prime-boost overrules self-tolerance for efficient tumor-specific CD8 T cell attack. CELL REPORTS MEDICINE 2021; 2:100209. [PMID: 33763654 PMCID: PMC7974551 DOI: 10.1016/j.xcrm.2021.100209] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/16/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
Therapeutic vaccination regimens inducing clinically effective tumor-specific CD8+ T lymphocyte (CTL) responses are an unmet medical need. We engineer two distantly related arenaviruses, Pichinde virus and lymphocytic choriomeningitis virus, for therapeutic cancer vaccination. In mice, life-replicating vector formats of these two viruses delivering a self-antigen in a heterologous prime-boost regimen induce tumor-specific CTL responses up to 50% of the circulating CD8 T cell pool. This CTL attack eliminates established solid tumors in a significant proportion of animals, accompanied by protection against tumor rechallenge. The magnitude of CTL responses is alarmin driven and requires combining two genealogically distantly related arenaviruses. Vector-neutralizing antibodies do not inhibit booster immunizations by the same vector or by closely related vectors. Rather, CTL immunodominance hierarchies favor vector backbone-targeted responses at the expense of self-reactive CTLs. These findings establish an arenavirus-based immunotherapy regimen that allows reshuffling of immunodominance hierarchies and breaking self-directed tolerance for efficient tumor control. Engineered arenaviruses induce potent tumor self-specific CD8 T cell (CTL) response Combinations of distantly but not closely related arenavirus vectors eliminate tumors Vector backbone-targeted CTL responses compete against tumor self-reactive CTLs Optimized vector combinations reshuffle immunodominance to break self-tolerance
Collapse
Affiliation(s)
- Weldy V Bonilla
- University of Basel, Department of Biomedicine, Basel, Switzerland
| | | | | | - Sandra M Kallert
- University of Basel, Department of Biomedicine, Basel, Switzerland
| | | | - Min Lu
- University of Basel, Department of Biomedicine, Basel, Switzerland
| | - Stéphanie Darbre
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | | | | | - Ilena Vincenti
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Mindaugas Pauzuolis
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Romy Kerber
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sabine Hoepner
- Tumor Immunology, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Carsten Magnus
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Division of Clinical Pathology, University Hospitals of Geneva, Geneva, Switzerland
| | | | - Alfred Zippelius
- University of Basel, Department of Biomedicine, Basel, Switzerland.,Medical Oncology, University Hospital Basel, Basel, Switzerland
| | | |
Collapse
|
15
|
Kunz HE, Agha NH, Hussain M, LaVoy EC, Smith KA, Mylabathula P, Diak D, Baker FL, O'Connor DP, Bond RA, Katsanis E, Bollard CM, Simpson RJ. The effects of β 1 and β 1+2 adrenergic receptor blockade on the exercise-induced mobilization and ex vivo expansion of virus-specific T cells: implications for cellular therapy and the anti-viral immune effects of exercise. Cell Stress Chaperones 2020; 25:993-1012. [PMID: 32779001 PMCID: PMC7591642 DOI: 10.1007/s12192-020-01136-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/15/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
The adoptive transfer of donor-derived virus-specific T cells (VSTs) is an effective treatment for infections following allogeneic hematopoietic cell transplantation. Acute exercise mobilizes effector lymphocytes and VSTs to the circulation and augments the ex vivo manufacture of VSTs. This study determined if β2 adrenergic receptor (AR) signaling precipitated the VST response to acute exercise. Healthy participants (n = 12) completed 30 min of steady-state cycling exercise after ingesting a placebo, a β1 + 2 AR antagonist (nadolol) or a β1 AR antagonist (bisoprolol). Circulating VSTs to cytomegalovirus (CMV), Epstein-Barr virus (EBV), and adenovirus (AdV) antigens were enumerated before and after exercise, and peripheral blood mononuclear cells were cultured with viral peptides for 8 days to expand multi-VSTs. Compared with placebo, nadolol blunted the exercise-induced mobilization of CMV-VSTs (Δ VSTs/100,000 CD3+ T cells = 93 ± 104 vs. 22 ± 91 for placebo and nadolol, respectively; p = 0.036), while bisoprolol did not, despite both drugs evoking similar reductions in exercising heart rate and blood pressure. Circulating AdV and EBV VSTs (VSTs/mL blood) only increased after exercise with placebo. Although not significant, nadolol partially mitigated exercise-induced increases in multi-VST expansion, particularly in participants that demonstrated an exercise-induced increase in VST expansion. We conclude that exercise-induced enhancements in VST mobilization and expansion are at least partially β2 AR mediated, thus highlighting a role for the β2 AR in targeted therapy for the augmentation of VST immune cell therapeutics in the allogeneic adoptive transfer setting. Moreover, long-term regular exercise may provide additional viral protection in the host through frequent β2 AR-dependent mobilization and redistribution of VSTs cumulated with each bout of exercise.
Collapse
Affiliation(s)
- Hawley E Kunz
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Nadia H Agha
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Maryam Hussain
- Merced Experimental Social and Health Psychology Laboratory, Stress and Health Laboratory, Department of Psychological Sciences, University of California Merced, Merced, CA, USA
| | - Emily C LaVoy
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Kyle A Smith
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | | | - Douglass Diak
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Forrest L Baker
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Daniel P O'Connor
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Richard A Bond
- College of Pharmacy, Science and Engineering Research Center, The University of Houston, Houston, TX, USA
| | | | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System and The George Washington University, Washington, D.C., USA
| | - Richard J Simpson
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA.
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA.
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA.
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
16
|
Kumbhari A, Egelston CA, Lee PP, Kim PS. Mature Dendritic Cells May Promote High-Avidity Tuning of Vaccine T Cell Responses. Front Immunol 2020; 11:584680. [PMID: 33193401 PMCID: PMC7662095 DOI: 10.3389/fimmu.2020.584680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Therapeutic vaccines can elicit tumor-specific cytotoxic T lymphocytes (CTLs), but durable reductions in tumor burden require vaccines that stimulate high-avidity CTLs. Recent advances in immunotherapy responses have led to renewed interest in vaccine approaches, including dendritic cell vaccine strategies. However, dendritic cell requirements for vaccines that generate potent anti-tumor T-cell responses are unclear. Here we use mathematical modeling to show that, counterintuitively, increasing levels of immature dendritic cells may lead to selective expansion of high-avidity CTLs. This finding is in contrast with traditional dendritic cell vaccine approaches that have sought to harness ex vivo generated mature dendritic cells. We show that the injection of vaccine antigens in the context of increased numbers of immature dendritic cells results in a decreased overall peptide:MHC complex load that favors high-avidity CTL activation and expansion. Overall, our results provide a firm basis for further development of this approach, both alone and in combination with other immunotherapies such as checkpoint blockade.
Collapse
Affiliation(s)
- Adarsh Kumbhari
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| | - Colt A. Egelston
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Peter P. Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Peter S. Kim
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
17
|
Eberlein J, Davenport B, Nguyen TT, Victorino F, Jhun K, van der Heide V, Kuleshov M, Ma'ayan A, Kedl R, Homann D. Chemokine Signatures of Pathogen-Specific T Cells I: Effector T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:2169-2187. [PMID: 32948687 DOI: 10.4049/jimmunol.2000253] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022]
Abstract
The choreography of complex immune responses, including the priming, differentiation, and modulation of specific effector T cell populations generated in the immediate wake of an acute pathogen challenge, is in part controlled by chemokines, a large family of mostly secreted molecules involved in chemotaxis and other patho/physiological processes. T cells are both responsive to various chemokine cues and a relevant source for certain chemokines themselves; yet, the actual range, regulation, and role of effector T cell-derived chemokines remains incompletely understood. In this study, using different in vivo mouse models of viral and bacterial infection as well as protective vaccination, we have defined the entire spectrum of chemokines produced by pathogen-specific CD8+ and CD4+T effector cells and delineated several unique properties pertaining to the temporospatial organization of chemokine expression patterns, synthesis and secretion kinetics, and cooperative regulation. Collectively, our results position the "T cell chemokine response" as a notably prominent, largely invariant, yet distinctive force at the forefront of pathogen-specific effector T cell activities and establish novel practical and conceptual approaches that may serve as a foundation for future investigations into the role of T cell-produced chemokines in infectious and other diseases.
Collapse
Affiliation(s)
- Jens Eberlein
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Bennett Davenport
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tom T Nguyen
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Francisco Victorino
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kevin Jhun
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Verena van der Heide
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maxim Kuleshov
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and.,Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and.,Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ross Kedl
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Dirk Homann
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; .,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
18
|
Kallas EG, Grunenberg NA, Yu C, Manso B, Pantaleo G, Casapia M, Baden LR, Valencia J, Sobieszczyk M, Van Tieu H, Allen M, Hural J, Graham BS, Kublin J, Gilbert PB, Corey L, Goepfert PA, McElrath MJ, Johnson RP, Huang Y, Frahm N. Antigenic competition in CD4 + T cell responses in a randomized, multicenter, double-blind clinical HIV vaccine trial. Sci Transl Med 2020; 11:11/519/eaaw1673. [PMID: 31748227 DOI: 10.1126/scitranslmed.aaw1673] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 10/04/2019] [Indexed: 11/02/2022]
Abstract
T cell responses have been implicated in reduced risk of HIV acquisition in uninfected persons and control of viral replication in HIV-infected individuals. HIV Gag-specific T cells have been predominantly associated with post-infection control, whereas Env antigens are the target for protective antibodies; therefore, inclusion of both antigens is common in HIV vaccine design. However, inclusion of multiple antigens may provoke antigenic competition, reducing the potential effectiveness of the vaccine. HVTN 084 was a randomized, multicenter, double-blind phase 1 trial to investigate whether adding Env to a Gag/Pol vaccine decreases the magnitude or breadth of Gag/Pol-specific T cell responses. Fifty volunteers each received one intramuscular injection of 1 × 1010 particle units (PU) of rAd5 Gag/Pol and EnvA/B/C (3:1:1:1 mixture) or 5 × 109 PU of rAd5 Gag/Pol. CD4+ T cell responses to Gag/Pol measured 4 weeks after vaccination by cytokine expression were significantly higher in the group vaccinated without Env, whereas CD8+ T cell responses did not differ significantly between the two groups. Mapping of individual epitopes revealed greater breadth of the Gag/Pol-specific T cell response in the absence of Env compared to Env coimmunization. Addition of an Env component to a Gag/Pol vaccine led to reduced Gag/Pol CD4+ T cell response rate and magnitude as well as reduced epitope breadth, confirming the presence of antigenic competition. Therefore, T cell-based vaccine strategies should aim at choosing a minimalist set of antigens to reduce interference of individual vaccine components with the induction of the maximally achievable immune response.
Collapse
Affiliation(s)
- Esper G Kallas
- Division of Clinical Immunology and Allergy, University of São Paulo, São Paulo 05508, Brazil
| | - Nicole A Grunenberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Chenchen Yu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Bryce Manso
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | | | - Lindsey R Baden
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Javier Valencia
- Asociación Civil Impacta Salud Y Educación, Lima 15063, Peru
| | - Magdalena Sobieszczyk
- Division of Infectious Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10025, USA
| | - Hong Van Tieu
- Laboratory of Infectious Disease Prevention, New York Blood Center, New York, NY 10065, USA
| | - Mary Allen
- Division of AIDS, National Institute for Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - John Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - James Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Paul A Goepfert
- Division of Infectious Disease and Department of Surgery, Division of Gastroenterology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Global Health, University of Washington, Seattle, WA 98195, USA.,Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA.,Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - R Paul Johnson
- Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. .,Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
19
|
Mondino A, Manzo T. To Remember or to Forget: The Role of Good and Bad Memories in Adoptive T Cell Therapy for Tumors. Front Immunol 2020; 11:1915. [PMID: 32973794 PMCID: PMC7481451 DOI: 10.3389/fimmu.2020.01915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
The generation of immunological memory is a hallmark of adaptive immunity by which the immune system "remembers" a previous encounter with an antigen expressed by pathogens, tumors, or normal tissues; and, upon secondary encounters, mounts faster and more effective recall responses. The establishment of T cell memory is influenced by both cell-intrinsic and cell-extrinsic factors, including genetic, epigenetic and environmental triggers. Our current knowledge of the mechanisms involved in memory T cell differentiation has instructed new opportunities to engineer T cells with enhanced anti-tumor activity. The development of adoptive T cell therapy has emerged as a powerful approach to cure a subset of patients with advanced cancers. Efficacy of this approach often requires long-term persistence of transferred T cell products, which can vary according to their origin and manufacturing conditions. Host preconditioning and post-transfer supporting strategies have shown to promote their engraftment and survival by limiting the competition with a hostile tumor microenvironment and between pre-existing immune cell subsets. Although in the general view pre-existing memory can confer a selective advantage to adoptive T cell therapy, here we propose that also "bad memories"-in the form of antigen-experienced T cell subsets-co-evolve with consequences on newly transferred lymphocytes. In this review, we will first provide an overview of selected features of memory T cell subsets and, then, discuss their putative implications for adoptive T cell therapy.
Collapse
Affiliation(s)
- Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Teresa Manzo
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milan, Italy
| |
Collapse
|
20
|
Ndawula C, Tabor AE. Cocktail Anti-Tick Vaccines: The Unforeseen Constraints and Approaches toward Enhanced Efficacies. Vaccines (Basel) 2020; 8:E457. [PMID: 32824962 PMCID: PMC7564958 DOI: 10.3390/vaccines8030457] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
Ticks are second to mosquitoes as vectors of disease. Ticks affect livestock industries in Asia, Africa and Australia at ~$1.13 billion USD per annum. For instance, 80% of the global cattle population is at risk of infestation by the Rhipicephalus microplus species-complex, which in 2016 was estimated to cause $22-30 billion USD annual losses. Although the management of tick populations mainly relies on the application of acaricides, this raises concerns due to tick resistance and accumulation of chemical residues in milk, meat, and the environment. To counteract acaricide-resistant tick populations, immunological tick control is regarded among the most promising sustainable strategies. Indeed, immense efforts have been devoted toward identifying tick vaccine antigens. Until now, Bm86-based vaccines have been the most effective under field conditions, but they have shown mixed success worldwide. Currently, of the two Bm86 vaccines commercialized in the 1990s (GavacTM in Cuba and TickGARDPLUSTM in Australia), only GavacTM is available. There is thus growing consensus that combining antigens could broaden the protection range and enhance the efficacies of tick vaccines. Yet, the anticipated outcomes have not been achieved under field conditions. Therefore, this review demystifies the potential limitations and proposes ways of sustaining enhanced cocktail tick vaccine efficacy.
Collapse
Affiliation(s)
- Charles Ndawula
- Vaccinology Research program, National Livestock Resources Research Institute, P O. Box 5746, Nakyesasa 256, Uganda
| | - Ala E. Tabor
- Centre for Animal Science, Queensland Alliance for Agriculture & Food Innovation, The University of Queensland Australia, St Lucia 4072, Queensland, Australia
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| |
Collapse
|
21
|
Choi EY, Choi K, Nam G, Kim W, Chung M. H60: A Unique Murine Hematopoietic Cell-Restricted Minor Histocompatibility Antigen for Graft-versus-Leukemia Effect. Front Immunol 2020; 11:1163. [PMID: 32587590 PMCID: PMC7297985 DOI: 10.3389/fimmu.2020.01163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an important treatment for many types of hematological malignancies. Matching of donor and recipient for the major histocompatibility complex (MHC) improves the HSCT reconstitution, but donor-derived T cells reactive to non-MHC encoded minor histocompatibility antigens (MiHAs) can induce graft-versus-host disease (GVHD) while also being needed for graft-versus-leukemia (GVL) effects. MiHAs are allelically variant self-peptides presented conventionally on MHC molecules, but are alloantigenic in transplantation settings. Immunodominant MiHAs are most strongly associated with GVHD and GVL. There is need for mouse paradigms to understand these contradictory effects. H60 is a highly immunodominant mouse MiHA with hematopoietic cell-restricted expression. Immunodominance of H60 is tightly associated with its allelic nature (presence vs. absence of the transcripts), and the qualitative (TCR diversity) and quantitative (frequency) traits of the reactive T cells. The identity as a hematopoietic cell-restricted antigen (HRA) of H60 assists the appearance of the immunodominace in allo-HSCT circumstances, and generation of GVL effects without induction of serious GVHD after adoptive T cell transfer. Also it allows the low avidity T cells to escape thymic negative selection and exert GVL effect in the periphery, which is a previously unevaluated finding related to HRAs. In this review, we describe the molecular features and immunobiology in detail through which H60 selectively exerts its potent GVL effect. We further describe how lessons learned can be extrapolated to human allo-HCST.
Collapse
Affiliation(s)
- Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Human Environment Interface Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyungho Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Giri Nam
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Woojin Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Minho Chung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
22
|
Matson CA, Singh NJ. Manipulating the TCR signaling network for cellular immunotherapy: Challenges & opportunities. Mol Immunol 2020; 123:64-73. [PMID: 32422416 DOI: 10.1016/j.molimm.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/24/2020] [Accepted: 04/11/2020] [Indexed: 02/06/2023]
Abstract
T cells can help confer protective immunity by eliminating infections and tumors or drive immunopathology by damaging host cells. Both outcomes require a series of steps from the activation of naïve T cells to their clonal expansion, differentiation and migration to tissue sites. In addition to specific recognition of the antigen via the T cell receptor (TCR), multiple accessory signals from costimulatory molecules, cytokines and metabolites also influence each step along the progression of the T cell response. Current efforts to modify effector T cell function in many clinical contexts focus on the latter - which encompass antigen-independent and broad, contextual regulators. Not surprisingly, such approaches are often accompanied by adverse events, as they also affect T cells not relevant to the specific treatment. In contrast, fine tuning T cell responses by precisely targeting antigen-specific TCR signals has the potential to radically alter therapeutic strategies in a focused manner. Development of such approaches, however, requires a better understanding of functioning of the TCR and the biochemical signaling network coupled to it. In this article, we review some of the recent advances which highlight important roles of TCR signals throughout the activation and differentiation of T cells during an immune response. We discuss how, an appreciation of specific signaling modalities and variant ligands that influence the function of the TCR has the potential to influence design principles for the next generation of pharmacologic and cellular therapies, especially in the context of tumor immunotherapies involving adoptive cell transfers.
Collapse
Affiliation(s)
- Courtney A Matson
- Department of Microbiology & Immunology, University of Maryland School of Medicine, 685 W Baltimore St, HSF1, Room 380, Baltimore, MD 21201, United States
| | - Nevil J Singh
- Department of Microbiology & Immunology, University of Maryland School of Medicine, 685 W Baltimore St, HSF1, Room 380, Baltimore, MD 21201, United States.
| |
Collapse
|
23
|
Bhattacharyya ND, Feng CG. Regulation of T Helper Cell Fate by TCR Signal Strength. Front Immunol 2020; 11:624. [PMID: 32508803 PMCID: PMC7248325 DOI: 10.3389/fimmu.2020.00624] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
T cells are critical in orchestrating protective immune responses to cancer and an array of pathogens. The interaction between a peptide MHC (pMHC) complex on antigen presenting cells (APCs) and T cell receptors (TCRs) on T cells initiates T cell activation, division, and clonal expansion in secondary lymphoid organs. T cells must also integrate multiple T cell-intrinsic and extrinsic signals to acquire the effector functions essential for the defense against invading microbes. In the case of T helper cell differentiation, while innate cytokines have been demonstrated to shape effector CD4+ T lymphocyte function, the contribution of TCR signaling strength to T helper cell differentiation is less understood. In this review, we summarize the signaling cascades regulated by the strength of TCR stimulation. Various mechanisms in which TCR signal strength controls T helper cell expansion and differentiation are also discussed.
Collapse
Affiliation(s)
- Nayan D Bhattacharyya
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Carl G Feng
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
24
|
Abstract
One of the hallmarks of the vertebrate adaptive immune system is the prolific expansion of individual cell clones that encounter their cognate antigen. More recently, however, there is growing evidence for the clonal expansion of innate lymphocytes, particularly in the context of pathogen challenge. Clonal expansion not only serves to amplify the number of specific lymphocytes to mount a robust protective response to the pathogen at hand but also results in selection and differentiation of the responding lymphocytes to generate a multitude of cell fates. Here, we summarize the evidence for clonal expansion in innate lymphocytes, which has primarily been observed in natural killer (NK) cells responding to cytomegalovirus infection, and consider the requirements for such a response in NK cells in light of those for T cells. Furthermore, we discuss multiple aspects of heterogeneity that both contribute to and result from the fundamental immunological process of clonal expansion, highlighting the parallels between innate and adaptive lymphocytes, with a particular focus on NK cells and CD8+ T cells.
Collapse
|
25
|
Saylor K, Gillam F, Lohneis T, Zhang C. Designs of Antigen Structure and Composition for Improved Protein-Based Vaccine Efficacy. Front Immunol 2020; 11:283. [PMID: 32153587 PMCID: PMC7050619 DOI: 10.3389/fimmu.2020.00283] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/04/2020] [Indexed: 12/19/2022] Open
Abstract
Today, vaccinologists have come to understand that the hallmark of any protective immune response is the antigen. However, it is not the whole antigen that dictates the immune response, but rather the various parts comprising the whole that are capable of influencing immunogenicity. Protein-based antigens hold particular importance within this structural approach to understanding immunity because, though different molecules can serve as antigens, only proteins are capable of inducing both cellular and humoral immunity. This fact, coupled with the versatility and customizability of proteins when considering vaccine design applications, makes protein-based vaccines (PBVs) one of today's most promising technologies for artificially inducing immunity. In this review, we follow the development of PBV technologies through time and discuss the antigen-specific receptors that are most critical to any immune response: pattern recognition receptors, B cell receptors, and T cell receptors. Knowledge of these receptors and their ligands has become exceptionally valuable in the field of vaccinology, where today it is possible to make drastic modifications to PBV structure, from primary to quaternary, in order to promote recognition of target epitopes, potentiate vaccine immunogenicity, and prevent antigen-associated complications. Additionally, these modifications have made it possible to control immune responses by modulating stability and targeting PBV to key immune cells. Consequently, careful consideration should be given to protein structure when designing PBVs in the future in order to potentiate PBV efficacy.
Collapse
Affiliation(s)
- Kyle Saylor
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Frank Gillam
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
- Locus Biosciences, Morrisville, NC, United States
| | - Taylor Lohneis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
- BioPharmaceutical Technology Department, GlaxoSmithKline, Rockville, MD, United States
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
26
|
Herpes Simplex Virus 1-Specific CD8 + T Cell Priming and Latent Ganglionic Retention Are Shaped by Viral Epitope Promoter Kinetics. J Virol 2020; 94:JVI.01193-19. [PMID: 31826989 DOI: 10.1128/jvi.01193-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/02/2019] [Indexed: 02/05/2023] Open
Abstract
Reactivation of herpes simplex virus 1 (HSV-1) from neurons in sensory ganglia such as the trigeminal ganglia (TG) is influenced by virus-specific CD8+ T cells that infiltrate the ganglia at the onset of latency and contract to a stable activated tissue-resident memory population. In C57BL/6 mice, half of HSV-specific CD8+ T cells (gB-CD8s) recognize one dominant epitope (residues 498 to 505) on glycoprotein B (gB498-505), while the remainder (non-gB-CD8s) recognize 19 subdominant epitopes from 12 viral proteins. To address how expression by HSV-1 influences the formation and ganglionic retention of CD8+ T cell populations, we developed recombinant HSV-1 with the native immunodominant gB epitope disrupted but then expressed ectopically from different viral promoters. In mice, the epitope expressed from the gB promoter restored full gB-CD8 immunodominance to 50%. Intriguingly, earlier expression from constitutive, immediate-early, and early promoters did not significantly increase immunodominance, indicating that these promoters cannot elicit more than half of the CD8 compartment. Epitope expressed from candidate viral promoters of "true late" HSV-1 genes either delayed or reduced the priming efficiency of gB-CD8s and their levels in the TG at early times. HSV expressing the epitope from the full latency-associated transcript promoter did not efficiently prime gB-CD8s; however, gB-CD8s primed by a concurrent wild-type flank infection infiltrated the TG and were retained long term, suggesting that latent epitope expression is sufficient to retain gB-CD8s. Taken together, the data indicate that viral promoters shape latent HSV-1-specific CD8+ T cell populations and should be an important consideration in future vaccine design.IMPORTANCE Latency of HSV-1 in host neurons enables long-term persistence from which reactivation may occur to cause recurrent diseases, such as blinding herpetic stromal keratitis. Latency is not antigenically silent, and viral proteins are sporadically expressed at low levels without full virion production. This protein expression is recognized by ganglion-resident HSV-1-specific CD8+ T cells that maintain a protective resident population. Since these T cells can influence lytic/latent decisions in reactivating neurons, we argue that improving their ganglionic retention and function may offer a strategy in vaccine design to reduce reactivation and recurrent disease. To understand factors driving the infiltration and retention of ganglionic CD8s, we examined several HSV recombinants that have different viral promoters driving expression of the immunodominant gB epitope. We show that the selection of epitope promoter influences CD8+ T cell population hierarchies and their function.
Collapse
|
27
|
Kumbhari A, Kim PS, Lee PP. Optimisation of anti-cancer peptide vaccines to preferentially elicit high-avidity T cells. J Theor Biol 2020; 486:110067. [DOI: 10.1016/j.jtbi.2019.110067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/24/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
|
28
|
Abstract
The adoptive cell transfer (ACT) of genetically engineered T cell receptor (TCR) T cells is one of the burgeoning fields of immunotherapy, with promising results in current clinical trials. Presently, clinicaltrials.gov has over 200 active trials involving adoptive cell therapy. The ACT of genetically engineered T cells not only allows the ability to select for TCRs with desired properties such as high-affinity receptors and tumor reactivity but to further enhance those receptors allowing for better targeting and killing of cancer cells in patients. Moreover, the addition of genetic material, including cytokines and cytokine receptors, can increase the survival and persistence of the T cell allowing for complete and sustained remission of cancer targets. The potential for improvement in adoptive cell therapy is limitless, with genetic modifications targeting to improve weaknesses of ACT and to thus enhance receptor affinity and functional avidity of the genetically engineered T cells.
Collapse
|
29
|
Personal response to immune checkpoint inhibitors of patients with advanced melanoma explained by a computational model of cellular immunity, tumor growth, and drug. PLoS One 2019; 14:e0226869. [PMID: 31877168 PMCID: PMC6932803 DOI: 10.1371/journal.pone.0226869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/08/2019] [Indexed: 01/22/2023] Open
Abstract
Immune checkpoint inhibitors, such as pembrolizumab, are transforming clinical oncology. Yet, insufficient overall response rate, and accelerated tumor growth rate in some patients, highlight the need for identifying potential responders. To construct a computational model, identifying response predictors, and enabling immunotherapy personalization. The combined dynamics of cellular immunity, pembrolizumab, and the melanoma cancer were modeled by a set of ordinary differential equations. The model relies on a scheme of T memory stem cells, progressively differentiating into effector CD8+ T cells, and additionally includes T cell exhaustion, reinvigoration and senescence. Clinical data of a pembrolizumab-treated patient with advanced melanoma (Patient O’) were used for model calibration and simulations. Virtual patient populations, varying in one parameter or more, were generated for retrieving clinical studies. Simulations captured the major features of Patient O’s disease, displaying a good fit to her clinical data. A temporary increase in tumor burden, as implied by the clinical data, was obtained only when assuming aberrant self-renewal rates. Variation in effector T cell cytotoxicity was sufficient for simulating dynamics that vary from rapid progression to complete cure, while variation in tumor immunogenicity has a delayed and limited effect on response. Simulations of a-specific clinical trial were in good agreement with the clinical results, demonstrating positive correlations between response to pembrolizumab and the ratio of reinvigoration to baseline tumor load. These results were obtained by assuming inter-patient variation in the toxicity of effector CD8+ T cells, and in their intrinsic division rate, as well as by assuming that the intrinsic division rate of cancer cells is correlated with the baseline tumor burden. In conclusion, hyperprogression can result from lower patient-specific effector cytotoxicity, a temporary increase in tumor load is unlikely to result from real tumor growth, and the ratio of reinvigoration to tumor load can predict personal response to pembrolizumab. Upon further validation, the model can serve for immunotherapy personalization.
Collapse
|
30
|
Vaccination of Macaques with DNA Followed by Adenoviral Vectors Encoding Simian Immunodeficiency Virus (SIV) Gag Alone Delays Infection by Repeated Mucosal Challenge with SIV. J Virol 2019; 93:JVI.00606-19. [PMID: 31413132 PMCID: PMC6803269 DOI: 10.1128/jvi.00606-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022] Open
Abstract
The simian immunodeficiency virus (SIV) macaque model represents the best animal model for testing new human immunodeficiency virus type 1 (HIV-1) vaccines. Previous studies employing replication-defective adenovirus (rAd) vectors that transiently express SIV internal proteins induced T cell responses that controlled virus load but did not protect against virus challenge. However, we show for the first time that SIV gag delivered in a DNA prime followed by a boost with an rAd vector confers resistance to SIV intrarectal challenge. Other partially successful SIV/HIV-1 protective vaccines induce antibody to the envelope and neutralize the virus or mediate antibody-dependent cytotoxicity. Induction of CD8 T cells which do not prevent initial infection but eradicate infected cells before infection becomes established has also shown some success. In contrast, the vaccine described here mediates resistance by a different mechanism from that described above, which may reflect CD4 T cell activity. This could indicate an alternative approach for HIV-1 vaccine development. Vaccines aimed at inducing T cell responses to protect against human immunodeficiency virus (HIV) infection have been under development for more than 15 years. Replication-defective adenovirus (rAd) vaccine vectors are at the forefront of this work and have been tested extensively in the simian immunodeficiency virus (SIV) challenge macaque model. Vaccination with rAd vectors coding for SIV Gag or other nonenvelope proteins induces T cell responses that control virus load but disappointingly is unsuccessful so far in preventing infection, and attention has turned to inducing antibodies to the envelope. However, here we report that Mauritian cynomolgus macaques (MCM), Macaca fascicularis, vaccinated with unmodified SIV gag alone in a DNA prime followed by an rAd boost exhibit increased protection from infection by repeated intrarectal challenge with low-dose SIVmac251. There was no evidence of infection followed by eradication. A significant correlation was observed between cytokine expression by CD4 T cells and delayed infection. Vaccination with gag fused to the ubiquitin gene or fragmented, designed to increase CD8 magnitude and breadth, did not confer resistance to challenge or enhance immunity. On infection, a significant reduction in peak virus load was observed in all vaccinated animals, including those vaccinated with modified gag. These findings suggest that a nonpersistent viral vector vaccine coding for internal virus proteins may be able to protect against HIV type 1 (HIV-1) infection. The mechanisms are probably distinct from those of antibody-mediated virus neutralization or cytotoxic CD8 cell killing of virus-infected cells and may be mediated in part by CD4 T cells. IMPORTANCE The simian immunodeficiency virus (SIV) macaque model represents the best animal model for testing new human immunodeficiency virus type 1 (HIV-1) vaccines. Previous studies employing replication-defective adenovirus (rAd) vectors that transiently express SIV internal proteins induced T cell responses that controlled virus load but did not protect against virus challenge. However, we show for the first time that SIV gag delivered in a DNA prime followed by a boost with an rAd vector confers resistance to SIV intrarectal challenge. Other partially successful SIV/HIV-1 protective vaccines induce antibody to the envelope and neutralize the virus or mediate antibody-dependent cytotoxicity. Induction of CD8 T cells which do not prevent initial infection but eradicate infected cells before infection becomes established has also shown some success. In contrast, the vaccine described here mediates resistance by a different mechanism from that described above, which may reflect CD4 T cell activity. This could indicate an alternative approach for HIV-1 vaccine development.
Collapse
|
31
|
Adams NM, Geary CD, Santosa EK, Lumaquin D, Le Luduec JB, Sottile R, van der Ploeg K, Hsu J, Whitlock BM, Jackson BT, Weizman OE, Huse M, Hsu KC, Sun JC. Cytomegalovirus Infection Drives Avidity Selection of Natural Killer Cells. Immunity 2019; 50:1381-1390.e5. [PMID: 31103381 PMCID: PMC6614060 DOI: 10.1016/j.immuni.2019.04.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/08/2019] [Accepted: 04/22/2019] [Indexed: 12/23/2022]
Abstract
The process of affinity maturation, whereby T and B cells bearing antigen receptors with optimal affinity to the relevant antigen undergo preferential expansion, is a key feature of adaptive immunity. Natural killer (NK) cells are innate lymphocytes capable of "adaptive" responses after cytomegalovirus (CMV) infection. However, whether NK cells are similarly selected on the basis of their avidity for cognate ligand is unknown. Here, we showed that NK cells with the highest avidity for the mouse CMV glycoprotein m157 were preferentially selected to expand and comprise the memory NK cell pool, whereas low-avidity NK cells possessed greater capacity for interferon-γ (IFN-γ) production. Moreover, we provide evidence for avidity selection occurring in human NK cells during human CMV infection. These results delineate how heterogeneity in NK cell avidity diversifies NK cell effector function during antiviral immunity, and how avidity selection might serve to produce the most potent memory NK cells.
Collapse
Affiliation(s)
- Nicholas M Adams
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Clair D Geary
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Endi K Santosa
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dianne Lumaquin
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Rosa Sottile
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Joy Hsu
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Benjamin M Whitlock
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Benjamin T Jackson
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Orr-El Weizman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Katharine C Hsu
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
32
|
Keitel WA, Voronca DC, Atmar RL, Paust S, Hill H, Wolff MC, Bellamy AR. Effect of recent seasonal influenza vaccination on serum antibody responses to candidate pandemic influenza A/H5N1 vaccines: A meta-analysis. Vaccine 2019; 37:5535-5543. [PMID: 31160101 DOI: 10.1016/j.vaccine.2019.04.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 01/02/2023]
Abstract
Recent studies have suggested that among those receiving seasonal influenza vaccine (SIV), reduced immunogenicity is observed in recently vaccinated (RV; within the past season or 2) persons when compared with those not recently vaccinated (NRV). We performed a meta-analysis to assess the effect of recent immunization with SIV on serum H5 hemagglutination inhibition (HAI) antibody responses after influenza A/H5N1 vaccination using data from a series of randomized controlled trials. The primary outcome was seroconversion measured by HAI assays following receipt of 2 doses of H5N1 vaccine. The geometric mean titer (GMT) of serum HAI antibody after vaccination was the secondary outcome. Analyses were performed using propensity score (PS) matching. The PS for each individual in the meta-analysis cohort was calculated using logistic regression and covariates included age, gender, race, antigen dose, adjuvant, statin use and vaccine manufacturer. 2015 subjects enrolled in 7 clinical trials were eligible for inclusion in the meta-analysis cohort; among these, 915 (45%) were RV. 901 RV subjects were matched (1:1) with replacement to a subject who was NRV. Subjects who received SIV within the previous season were significantly less likely to seroconvert following H5N1 vaccination (adjusted odds ratio 0.76; 95%CI 0.60-0.96; p = 0.024), and the GMT was 18% higher among NRV subjects (GM ratio of HAI antibody 1.18; 95%CI 1.04-1.33; p = 0.008). Further work is needed to better define the effects of, and mechanisms contributing to, reduced immune responses to H5N1 vaccine among RV subjects.
Collapse
Affiliation(s)
- W A Keitel
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, United States.
| | | | - R L Atmar
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, United States
| | - S Paust
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics-Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States
| | - H Hill
- Emmes, Rockville, MD, United States
| | | | | |
Collapse
|
33
|
Sant AJ, DiPiazza AT, Nayak JL, Rattan A, Richards KA. CD4 T cells in protection from influenza virus: Viral antigen specificity and functional potential. Immunol Rev 2019; 284:91-105. [PMID: 29944766 DOI: 10.1111/imr.12662] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD4 T cells convey a number of discrete functions to protective immunity to influenza, a complexity that distinguishes this arm of adaptive immunity from B cells and CD8 T cells. Although the most well recognized function of CD4 T cells is provision of help for antibody production, CD4 T cells are important in many aspects of protective immunity. Our studies have revealed that viral antigen specificity is a key determinant of CD4 T cell function, as illustrated both by mouse models of infection and human vaccine responses, a factor whose importance is due at least in part to events in viral antigen handling. We discuss research that has provided insight into the diverse viral epitope specificity of CD4 T cells elicited after infection, how this primary response is modified as CD4 T cells home to the lung, establish memory, and after challenge with a secondary and distinct influenza virus strain. Our studies in human subjects point out the challenges facing vaccine efforts to facilitate responses to novel and avian strains of influenza, as well as strategies that enhance the ability of CD4 T cells to promote protective antibody responses to both seasonal and potentially pandemic strains of influenza.
Collapse
Affiliation(s)
- Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Anthony T DiPiazza
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer L Nayak
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.,Division of Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Ajitanuj Rattan
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Katherine A Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
34
|
Yang Y, Ganusov VV. Defining Kinetic Properties of HIV-Specific CD8⁺ T-Cell Responses in Acute Infection. Microorganisms 2019; 7:E69. [PMID: 30836625 PMCID: PMC6462943 DOI: 10.3390/microorganisms7030069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/14/2022] Open
Abstract
Multiple lines of evidence indicate that CD8 + T cells are important in the control of HIV-1 (HIV) replication. However, CD8 + T cells induced by natural infection cannot eliminate the virus or reduce viral loads to acceptably low levels in most infected individuals. Understanding the basic quantitative features of CD8 + T-cell responses induced during HIV infection may therefore inform us about the limits that HIV vaccines, which aim to induce protective CD8 + T-cell responses, must exceed. Using previously published experimental data from a cohort of HIV-infected individuals with sampling times from acute to chronic infection we defined the quantitative properties of CD8 + T-cell responses to the whole HIV proteome. In contrast with a commonly held view, we found that the relative number of HIV-specific CD8 + T-cell responses (response breadth) changed little over the course of infection (first 400 days post-infection), with moderate but statistically significant changes occurring only during the first 35 symptomatic days. This challenges the idea that a change in the T-cell response breadth over time is responsible for the slow speed of viral escape from CD8 + T cells in the chronic infection. The breadth of HIV-specific CD8 + T-cell responses was not correlated with the average viral load for our small cohort of patients. Metrics of relative immunodominance of HIV-specific CD8 + T-cell responses such as Shannon entropy or the Evenness index were also not significantly correlated with the average viral load. Our mathematical-model-driven analysis suggested extremely slow expansion kinetics for the majority of HIV-specific CD8 + T-cell responses and the presence of intra- and interclonal competition between multiple CD8 + T-cell responses; such competition may limit the magnitude of CD8 + T-cell responses, specific to different epitopes, and the overall number of T-cell responses induced by vaccination. Further understanding of mechanisms underlying interactions between the virus and virus-specific CD8 + T-cell response will be instrumental in determining which T-cell-based vaccines will induce T-cell responses providing durable protection against HIV infection.
Collapse
Affiliation(s)
- Yiding Yang
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
| | - Vitaly V Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN 37996, USA.
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
35
|
Schober K, Buchholz VR, Busch DH. TCR repertoire evolution during maintenance of CMV-specific T-cell populations. Immunol Rev 2019; 283:113-128. [PMID: 29664573 DOI: 10.1111/imr.12654] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During infections and cancer, the composition of the T-cell receptor (TCR) repertoire of antigen-specific CD8+ T cells changes over time. TCR avidity is thought to be a major driver of this process, thereby interacting with several additional regulators of T-cell responses to form a composite immune response architecture. Infections with latent viruses, such as cytomegalovirus (CMV), can lead to large T-cell responses characterized by an oligoclonal TCR repertoire. Here, we review the current status of experimental studies and theoretical models of TCR repertoire evolution during CMV infection. We will particularly discuss the degree to which this process may be determined through structural TCR avidity. As engineered TCR-redirected T cells have moved into the spotlight for providing more effective immunotherapies, it is essential to understand how the key features of a given TCR influence T-cell expansion and maintenance in settings of infection or malignancy. Deeper insights into these mechanisms will improve our basic understanding of T-cell immunology and help to identify optimal TCRs for immunotherapy.
Collapse
Affiliation(s)
- Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany.,Focus Group 'Clinical Cell Processing and Purification', Institute for Advanced Study, TUM, Munich, Germany.,National Centre for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
36
|
Christoffersson G, Chodaczek G, Ratliff SS, Coppieters K, von Herrath MG. Suppression of diabetes by accumulation of non-islet-specific CD8 + effector T cells in pancreatic islets. Sci Immunol 2018; 3:3/21/eaam6533. [PMID: 29572238 DOI: 10.1126/sciimmunol.aam6533] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 09/11/2017] [Accepted: 01/30/2018] [Indexed: 12/11/2022]
Abstract
The inflammatory lesion at the pancreatic islet in type 1 diabetes (T1D) contains a heterogeneous infiltrate of T cells. In human and mouse studies, a large majority (98 to 99%) of the cytotoxic CD8+ T cells (CTLs) within islets are not specific to any islet antigen and are thought to passively add to tissue damage. We show by intravital confocal microscopy the opposite, immune-regulatory function of this cohort of CTLs. Diabetes did not develop in mice with islets showing high levels of infiltration of non-islet-specific CTLs not recognizing local antigens. Accumulation of such CTLs resulted in lower activation and proliferation of islet-specific CTLs, leading them to enter a state of unresponsiveness due to limited access to antigens at the inflammatory lesion. This nonspecific suppression by nonautoreactive CTLs was recapitulated in a model of viral meningitis, may explain viral interference in autoimmunity, and provides insight into the regulation of organ-specific autoimmune responses.
Collapse
Affiliation(s)
- Gustaf Christoffersson
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Grzegorz Chodaczek
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.,Wroclaw Research Centre EIT+, Wroclaw, Poland
| | - Sowbarnika S Ratliff
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Ken Coppieters
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.,Novo Nordisk Diabetes Research and Development Center, Seattle, WA 98109, USA
| | - Matthias G von Herrath
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. .,Novo Nordisk Diabetes Research and Development Center, Seattle, WA 98109, USA
| |
Collapse
|
37
|
Palermo B, Franzese O, Donna CD, Panetta M, Quintarelli C, Sperduti I, Gualtieri N, Foddai ML, Proietti E, Ferraresi V, Ciliberto G, Nisticò P. Antigen-specificity and DTIC before peptide-vaccination differently shape immune-checkpoint expression pattern, anti-tumor functionality and TCR repertoire in melanoma patients. Oncoimmunology 2018; 7:e1465163. [PMID: 30524882 PMCID: PMC6279427 DOI: 10.1080/2162402x.2018.1465163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 10/31/2022] Open
Abstract
We have recently described that DNA-damage inducing drug DTIC, administered before peptide (Melan-A and gp100)-vaccination, improves anti-tumor CD8+ Melan-A-specific T-cell functionality, enlarges the Melan-A+ TCR repertoire and impacts the overall survival of melanoma patients. To identify whether the two Ags employed in the vaccination differently shape the anti-tumor response, herein we have carried out a detailed analysis of phenotype, anti-tumor functionality and TCR repertoire in treatment-driven gp100-specific CD8+ T cells, in the same patients previously analyzed for Melan-A. We found that T-cell clones isolated from patients treated with vaccination alone possessed an Early/intermediate differentiated phenotype, whereas T cells isolated after DTIC plus vaccination were late-differentiated. Sequencing analysis of the TCRBV chains of 29 treatment-driven gp100-specific CD8+ T-cell clones revealed an oligoclonal TCR repertoire irrespective of the treatment schedule. The high anti-tumor activity observed in T cells isolated after chemo-immunotherapy was associated with low PD-1 expression. Differently, T-cell clones isolated after peptide-vaccination alone expressed a high level of PD-1, along with LAG-3 and TIM-3, and were neither tumor-reactive nor polyfunctional. Blockade of PD-1 reversed gp100-specific CD8+ T-cell dysfunctionality, confirming the direct role of this co-inhibitory molecule in suppressing anti-tumor activity, differently from what we have previously observed for Melan-A+CD8+ T cells, expressing PD-1 but highly functional. These findings indicate that the functional advantage induced by combined chemo-immunotherapy is determined by the tumor antigen nature, T-cell immune-checkpoints phenotype, TCR repertoire diversity and anti-tumor T-cell quality and highlights the importance of integrating these parameters to develop effective immunotherapeutic strategies.
Collapse
Affiliation(s)
- Belinda Palermo
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Ornella Franzese
- Department of Systems Medicine, School of Medicine, University of Tor Vergata, Rome, Italy
| | - Cosmo Di Donna
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mariangela Panetta
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Concetta Quintarelli
- Department of Pediatric Haematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | - Novella Gualtieri
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Enrico Proietti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome
| | | | | | - Paola Nisticò
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
38
|
Nishiyama-Fujita Y, Kawana-Tachikawa AI, Ono T, Tanaka Y, Kato T, Heslop HE, Morio T, Takahashi S. Generation of multivirus-specific T cells by a single stimulation of peripheral blood mononuclear cells with a peptide mixture using serum-free medium. Cytotherapy 2018; 20:1182-1190. [PMID: 30122653 DOI: 10.1016/j.jcyt.2018.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 05/08/2018] [Accepted: 05/15/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Restoration of virus-specific immunity by virus specific T cells (VSTs) offers an attractive alternative to conventional drugs, and can be highly effective in immunocompromised patients, including hematopoietic stem cell transplant (HSCT) recipients. However, conventional VSTs manufacture requires preparation of specialized antigen-presenting cells (APCs), prolonged ex vivo culture in serum-containing medium and antigen re-stimulation with viruses or viral vectors to provide viral antigens for presentation on APCs. METHODS To simplify this complex process, we developed a method to generate multiple VSTs by direct stimulation of peripheral blood mononuclear cells (PBMCs) with overlapping peptide libraries in serum-free medium. RESULTS We generated VSTs that targeted seven viruses (cytomegalovirus [CMV], Epstein-Barr virus [EBV], adenovirus [AdV], human herpesvirus 6 [HHV-6], BK virus [BKV], JC virus [JCV] and Varicella Zoster virus [VZV]) in a single line. The phenotype, growth and specificity of multiple VSTs produced in serum-free medium were equivalent to those generated in conventional serum-containing medium. DISCUSSION The use of serum-free medium allows this approach to be readily introduced to clinical practice with lower cost, greater reproducibility due to the absence of batch-to-batch variability in serum and without concerns for infectious agents in the serum used. This simplified approach will now be tested in recipients of Human Leukocyte Antigen (HLA)-matched sibling HSCT.
Collapse
Affiliation(s)
- Yuriko Nishiyama-Fujita
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | - Toshiaki Ono
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Yukie Tanaka
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takafumi Kato
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, United States
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Satoshi Takahashi
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
39
|
Kerdidani D, Magkouta S, Chouvardas P, Karavana V, Glynos K, Roumelioti F, Zakynthinos S, Wauters E, Janssens W, Lambrechts D, Kollias G, Tsoumakidou M. Cigarette Smoke-Induced Emphysema Exhausts Early Cytotoxic CD8 + T Cell Responses against Nascent Lung Cancer Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:1558-1569. [PMID: 30037849 DOI: 10.4049/jimmunol.1700700] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/25/2018] [Indexed: 01/08/2023]
Abstract
Chronic obstructive pulmonary disease is a chronic inflammatory disorder with an increased incidence of lung cancer. The emphysema component of chronic obstructive pulmonary disease confers the greatest proportion to lung cancer risk. Although tumors create inflammatory conditions to escape immunity, the immunological responses that control growth of nascent cancer cells in pre-established inflammatory microenvironments are unknown. In this study, we addressed this issue by implanting OVA-expressing cancer cells in the lungs of mice with cigarette smoke-induced emphysema. Emphysema augmented the growth of cancer cells, an effect that was dependent on T cytotoxic cells. OVA-specific OTI T cells showed early signs of exhaustion upon transfer in emphysema tumor hosts that was largely irreversible because sorting, expansion, and adoptive transfer failed to restore their antitumor activity. Increased numbers of PD-L1- and IDO-positive CD11c+ myeloid dendritic cells (DCs) infiltrated emphysema tumors, whereas sorted emphysema tumor DCs poorly stimulated OTI T cells. Upon adoptive transfer in immunocompetent hosts, T cells primed by emphysema tumor DCs were unable to halt tumor growth. DCs exposed to the emphysema tumor microenvironment downregulated MHC class II and costimulatory molecules, whereas they upregulated PD-L1/IDO via oxidative stress-dependent mechanisms. T cell activation increased upon PD-L1 blockade in emphysema DC-T cell cocultures and in emphysema tumor hosts in vivo. Analysis of the transcriptome of primary human lung tumors showed a strong association between computed tomography-based emphysema scoring and downregulation of immunogenic processes. Thus, suppression of adaptive immunity against lung cancer cells links a chronic inflammatory disorder, emphysema, to cancer, with clinical implications for emphysema patients to be considered optimal candidates for cancer immunotherapies.
Collapse
Affiliation(s)
- Dimitra Kerdidani
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming,' 16672 Vari, Athens, Greece.,Department of Intensive Care Medicine, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Sophia Magkouta
- Department of Intensive Care Medicine, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Panagiotis Chouvardas
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming,' 16672 Vari, Athens, Greece.,Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Vassiliki Karavana
- Department of Intensive Care Medicine, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Konstantinos Glynos
- Department of Intensive Care Medicine, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Fani Roumelioti
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming,' 16672 Vari, Athens, Greece
| | - Spyros Zakynthinos
- Department of Intensive Care Medicine, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Els Wauters
- Respiratory Oncology Unit, University Hospitals KU Leuven, 3000 Leuven, Belgium.,Leuven Lung Cancer Group, University Hospitals KU Leuven, 3000 Leuven, Belgium.,Laboratory of Pneumology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium
| | - Wim Janssens
- Respiratory Oncology Unit, University Hospitals KU Leuven, 3000 Leuven, Belgium.,Leuven Lung Cancer Group, University Hospitals KU Leuven, 3000 Leuven, Belgium.,Laboratory of Pneumology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium
| | - Diether Lambrechts
- VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium; and.,Laboratory for Translational Genetics, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - George Kollias
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming,' 16672 Vari, Athens, Greece.,Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Maria Tsoumakidou
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming,' 16672 Vari, Athens, Greece;
| |
Collapse
|
40
|
Hillyer LM, Woodward B. Acutely malnourished weanling mice administered Flt3 ligand can support a cell-mediated inflammatory response. Cytokine 2018; 113:39-49. [PMID: 30539781 DOI: 10.1016/j.cyto.2018.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/20/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022]
Abstract
The main objective of this investigation was to determine whether, despite acute (wasting) deficits of dietary nitrogen and energy, weanling mice could respond to the dendritic cell hematopoietin, Fms-like tyrosine kinase 3 ligand (Flt3L), in terms of an index of cell-mediated inflammatory competence. Male and female C57BL/6J weanlings were used, initially 19 days of age, and malnutrition was produced using a nitrogen-deficient diet. In preliminary work ten daily subcutaneous 1.0 µg doses of murine Flt3L, comparable to a protocol effective in humans, expanded the splenic conventional dendritic cell compartment (CD11c+F4/80-/low) of healthy weanlings without affecting the numbers of lymphocytes, macrophages, or recoverable mononuclear cells. Two subsequent experiments showed that, despite advancing malnutrition, exogenous Flt3L was able both to exert its classic influence on splenic conventional dendritic cell numbers and to invigorate the attenuated primary splenic cell-mediated inflammatory response to sheep erythrocytes. A final experiment showed that the cytokine intervention did not affect dendritic cell maturity according to several phenotypic indices. The findings provide new support for the proposition that dendritic cell numbers are the first limiting factor in the weak cell-mediated immune competence of acute pre-pubescent malnutrition. More substantially, intervention with Flt3L sustained an inflammatory systemic immune character despite progressive weanling malnutrition and weight loss. This outcome provides new support of fundamental character for the Tolerance Model which posits that the cell-mediated inflammatory incompetence of acute pre-pubescent protein and energy deficits is a regulated adaptive attempt, the antithesis of the classic paradigm of unregulated immunological attrition.
Collapse
Affiliation(s)
- Lyn M Hillyer
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| | - Bill Woodward
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
41
|
Martin LK, Hollaus A, Stahuber A, Hübener C, Fraccaroli A, Tischer J, Schub A, Moosmann A. Cross-sectional analysis of CD8 T cell immunity to human herpesvirus 6B. PLoS Pathog 2018; 14:e1006991. [PMID: 29698478 PMCID: PMC5919459 DOI: 10.1371/journal.ppat.1006991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/26/2018] [Indexed: 12/15/2022] Open
Abstract
Human herpesvirus 6 (HHV-6) is prevalent in healthy persons, causes disease in immunosuppressed carriers, and may be involved in autoimmune disease. Cytotoxic CD8 T cells are probably important for effective control of infection. However, the HHV-6-specific CD8 T cell repertoire is largely uncharacterized. Therefore, we undertook a virus-wide analysis of CD8 T cell responses to HHV-6. We used a simple anchor motif-based algorithm (SAMBA) to identify 299 epitope candidates potentially presented by the HLA class I molecule B*08:01. Candidates were found in 77 of 98 unique HHV-6B proteins. From peptide-expanded T cell lines, we obtained CD8 T cell clones against 20 candidates. We tested whether T cell clones recognized HHV-6-infected cells. This was the case for 16 epitopes derived from 12 proteins from all phases of the viral replication cycle. Epitopes were enriched in certain amino acids flanking the peptide. Ex vivo analysis of eight healthy donors with HLA-peptide multimers showed that the strongest responses were directed against an epitope from IE-2, with a median frequency of 0.09% of CD8 T cells. Reconstitution of T cells specific for this and other HHV-6 epitopes was also observed after allogeneic hematopoietic stem cell transplantation. We conclude that HHV-6 induces CD8 T cell responses against multiple antigens of diverse functional classes. Most antigens against which CD8 T cells can be raised are presented by infected cells. Ex vivo multimer staining can directly identify HHV-6-specific T cells. These results will advance development of immune monitoring, adoptive T cell therapy, and vaccines. This paper deals with the immune response to a very common virus, called human herpesvirus 6 (HHV-6). Most people catch HHV-6 in early childhood, which often leads to a disease known as three-day fever. Later in life, the virus stays in the body, and an active immune response is needed to prevent the virus from multiplying and causing damage. It is suspected that HHV-6 contributes to autoimmune diseases and chronic fatigue. Moreover, patients with severely weakened immune responses, for example after some forms of transplantation, clearly have difficulties controlling HHV-6, which puts them at risk of severe disease and shortens their survival. This can potentially be prevented by giving them HHV-6-specific "killer" CD8 T cells, which are cells of the immune system that destroy body cells harboring the virus. However, little is known so far about such T cells. Here, we describe 16 new structures that CD8 T cells can use to recognize and kill HHV-6-infected cells. We show that very different viral proteins can furnish such structures. We also observe that such T cells are regularly present in healthy people and in transplant patients who control the virus. Our results will help develop therapies of disease due to HHV-6.
Collapse
MESH Headings
- Adult
- Anemia, Aplastic/immunology
- Anemia, Aplastic/therapy
- Antigens, Viral/immunology
- CD8-Positive T-Lymphocytes/immunology
- Case-Control Studies
- Cells, Cultured
- Cross-Sectional Studies
- Epitopes, T-Lymphocyte/immunology
- HLA Antigens/immunology
- Hematopoietic Stem Cell Transplantation
- Herpesvirus 6, Human/immunology
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Roseolovirus Infections/immunology
- Roseolovirus Infections/virology
- T-Lymphocytes, Cytotoxic
- Transplantation, Homologous
Collapse
Affiliation(s)
- Larissa K. Martin
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR), Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Alexandra Hollaus
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR), Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Anna Stahuber
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR), Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Christoph Hübener
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Alessia Fraccaroli
- Internal Medicine III, Hematopoietic Stem Cell Transplantation, Klinikum der Universität München (LMU), Grosshadern, Munich, Germany
| | - Johanna Tischer
- Internal Medicine III, Hematopoietic Stem Cell Transplantation, Klinikum der Universität München (LMU), Grosshadern, Munich, Germany
| | - Andrea Schub
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR), Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Andreas Moosmann
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR), Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF–Deutsches Zentrum für Infektionsforschung), Munich, Germany
- * E-mail:
| |
Collapse
|
42
|
Russell SJ, Barber GN. Oncolytic Viruses as Antigen-Agnostic Cancer Vaccines. Cancer Cell 2018; 33:599-605. [PMID: 29634947 PMCID: PMC5918693 DOI: 10.1016/j.ccell.2018.03.011] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023]
Abstract
Selective destruction of neoplastic tissues by oncolytic viruses (OVs) leads to antigen-agnostic boosting of neoantigen-specific cytotoxic T lymphocyte (CTL) responses, making OVs ideal companions for checkpoint blockade therapy. Here we discuss the mechanisms whereby OVs modulate both adjuvanticity and antigenicity of tumor cells. Suppression of antitumor immunity after OV therapy has not been observed, possibly because viral antigen expression diminishes as the antiviral response matures, thereby progressively honing the CTL response to tumor neoantigens. By combining direct in situ tumor destruction with the ability to boost antitumor immunity, OVs also have the potential to be powerful standalone cancer therapies.
Collapse
Affiliation(s)
- Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Glen N Barber
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
43
|
John S, Yuzhakov O, Woods A, Deterling J, Hassett K, Shaw CA, Ciaramella G. Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine 2018; 36:1689-1699. [PMID: 29456015 DOI: 10.1016/j.vaccine.2018.01.029] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 12/13/2022]
Abstract
A cytomegalovirus (CMV) vaccine that is effective at preventing congenital infection and reducing CMV disease in transplant patients remains a high priority as no approved vaccines exist. While the precise correlates of protection are unknown, neutralizing antibodies and antigen-specific T cells have been implicated in controlling infection. We demonstrate that the immunization of mice and nonhuman primates (NHPs) with lipid nanoparticles (LNP) encapsulating modified mRNA encoding CMV glycoproteins gB and pentameric complex (PC) elicit potent and durable neutralizing antibody titers. Since the protective correlates in pregnant women and transplant recipients may differ, we developed an additional mRNA vaccine expressing the immunodominant CMV T cell antigen pp65. Administration of pp65 vaccine with PC and gB elicited robust multi-antigenic T cell responses in mice. Our data demonstrate that mRNA/LNP is a versatile platform that enables the development of vaccination strategies that could prevent CMV infection and consequent disease in different target populations.
Collapse
Affiliation(s)
- Shinu John
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA
| | - Olga Yuzhakov
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA
| | - Angela Woods
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA
| | - Jessica Deterling
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA
| | - Kimberly Hassett
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA
| | - Christine A Shaw
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA
| | - Giuseppe Ciaramella
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA.
| |
Collapse
|
44
|
Lauron EJ, Yang L, Elliott JI, Gainey MD, Fremont DH, Yokoyama WM. Cross-priming induces immunodomination in the presence of viral MHC class I inhibition. PLoS Pathog 2018; 14:e1006883. [PMID: 29444189 PMCID: PMC5812664 DOI: 10.1371/journal.ppat.1006883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/17/2018] [Indexed: 01/07/2023] Open
Abstract
Viruses have evolved mechanisms of MHCI inhibition in order to evade recognition by cytotoxic CD8+ T cells (CTLs), which is well-illustrated by our prior studies on cowpox virus (CPXV) that encodes potent MHCI inhibitors. Deletion of CPXV viral MHCI inhibitors markedly attenuated in vivo infection due to effects on CTL effector function, not priming. However, the CTL response to CPXV in C57BL/6 mice is dominated by a single peptide antigen presented by H-2Kb. Here we evaluated the effect of viral MHCI inhibition on immunodominant (IDE) and subdominant epitopes (SDE) as this has not been thoroughly examined. We found that cross-priming, but not cross-dressing, is the main mechanism driving IDE and SDE CTL responses following CPXV infection. Secretion of the immunodominant antigen was not required for immunodominance. Instead, immunodominance was caused by CTL interference, known as immunodomination. Both immunodomination and cross-priming of SDEs were not affected by MHCI inhibition. SDE-specific CTLs were also capable of exerting immunodomination during primary and secondary responses, which was in part dependent on antigen abundance. Furthermore, CTL responses directed solely against SDEs protected against lethal CPXV infection, but only in the absence of the CPXV MHCI inhibitors. Thus, both SDE and IDE responses can contribute to protective immunity against poxviruses, implying that these principles apply to poxvirus-based vaccines. The use of vaccinia virus (VACV) to eradicate smallpox is the arguably the most successful demonstration of vaccination. The VACV vaccine also provides cross-protection against related zoonotic orthopoxviruses, including monkey poxvirus (MXPV) and CPXV, which circulate between various animal hosts and humans. Interestingly, Edward Jenner first demonstrated the concept of vaccination against smallpox in the late 1700s using CPXV. He also made the curious observation that CPXV vaccination did not always protect against recurrent exposure to CPXV. Jenner’s observations may be explained by the ability for CPXV to evade antiviral CD8+ T cell immune responses. To evade CD8+ T cells, CPXV inhibits MHCI antigen presentation, which is required to prime CD8+ T cells. Importantly, CPXV is the only orthopoxvirus that inhibits MHCI and thus provides a unique opportunity to investigate the effects of viral MHCI inhibition on CD8+ T cell priming. Here, we examine the factors that contribute to priming of CPXV-specific CD8+ T cells and show that viral MHCI inhibition does not affect CD8+ T cell priming, but prior CPXV immunization does inhibit priming during subsequent exposure to CPXV. The effects of pre-existing poxvirus immunity are therefore important to consider if poxvirus-based vaccines against various diseases are to be widely used.
Collapse
Affiliation(s)
- Elvin J. Lauron
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Liping Yang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jabari I. Elliott
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Maria D. Gainey
- Department of Biology, Western Carolina University, Cullowhee, North Carolina, United States of America
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wayne M. Yokoyama
- Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
45
|
Bieling M, Tischer S, Kalinke U, Blasczyk R, Buus S, Maecker-Kolhoff B, Eiz-Vesper B. Personalized adoptive immunotherapy for patients with EBV-associated tumors and complications: Evaluation of novel naturally processed and presented EBV-derived T-cell epitopes. Oncotarget 2017; 9:4737-4757. [PMID: 29435138 PMCID: PMC5797009 DOI: 10.18632/oncotarget.23531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/04/2017] [Indexed: 01/03/2023] Open
Abstract
Morbidity and mortality of immunocompromised patients are increased by primary infection with or reactivation of Epstein-Barr virus (EBV), possibly triggering EBV+ post-transplant lymphoproliferative disease (PTLD). Adoptive transfer of EBV-specific cytotoxic T cells (EBV-CTLs) promises a non-toxic immunotherapy to effectively prevent or treat these complications. To improve immunotherapy and immunomonitoring this study aimed at identifying and evaluating naturally processed and presented HLA-A*03:01-restricted EBV-CTL epitopes as immunodominant targets. More than 15000 peptides were sequenced from EBV-immortalized B cells transduced with soluble HLA-A*03:01, sorted using different epitope prediction tools and eleven candidates were preselected. T2 and Flex-T peptide-binding and dissociation assays confirmed the stability of peptide-MHC complexes. Their immunogenicity and clinical relevance were evaluated by assessing the frequencies and functionality of EBV-CTLs in healthy donors (n > 10) and EBV+ PTLD-patients (n = 5) by multimer staining, Eli- and FluoroSpot assays. All eleven peptides elicited EBV-CTL responses in the donors. Their clinical applicability was determined by small-scale T-cell enrichment using Cytokine Secretion Assay and immunophenotyping. Mixtures of these peptides when added to the EBV Consensus pool revealed enhanced stimulation and enrichment efficacy. These EBV-specific epitopes broadening the repertoire of known targets will improve manufacturing of clinically applicable EBV-CTLs and monitoring of EBV-specific T-cell responses in patients.
Collapse
Affiliation(s)
- Maren Bieling
- Institute for Transfusion Medicine, Hannover Medical School (MHH), Hanover, Germany.,Integrated Research and Treatment Center (IFB-Tx), MHH, Hanover, Germany
| | - Sabine Tischer
- Institute for Transfusion Medicine, Hannover Medical School (MHH), Hanover, Germany.,Integrated Research and Treatment Center (IFB-Tx), MHH, Hanover, Germany
| | - Ulrich Kalinke
- Division of Experimental Infection Research, TWINCORE, Centre of Experimental and Clinical Infection Research, MHH, Hanover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School (MHH), Hanover, Germany.,Integrated Research and Treatment Center (IFB-Tx), MHH, Hanover, Germany
| | - Søren Buus
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Britta Maecker-Kolhoff
- Integrated Research and Treatment Center (IFB-Tx), MHH, Hanover, Germany.,Department of Pediatric Hematology and Oncology, MHH, Hanover, Germany
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School (MHH), Hanover, Germany.,Integrated Research and Treatment Center (IFB-Tx), MHH, Hanover, Germany
| |
Collapse
|
46
|
Kedl RM, Lindsay RS, Finlon JM, Lucas ED, Friedman RS, Tamburini BAJ. Migratory dendritic cells acquire and present lymphatic endothelial cell-archived antigens during lymph node contraction. Nat Commun 2017; 8:2034. [PMID: 29229919 PMCID: PMC5725486 DOI: 10.1038/s41467-017-02247-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/16/2017] [Indexed: 12/20/2022] Open
Abstract
Antigens derived from viral infection or vaccination can persist within a host for many weeks after resolution of the infection or vaccine responses. We previously identified lymphatic endothelial cells (LEC) as the repository for this antigen archival, yet LECs are unable to present their archived antigens to CD8+ T cells, and instead transfer their antigens to CD11c+ antigen-presenting cells (APC). Here we show that the exchange of archived antigens between LECs and APCs is mediated by migratory dendritic cells (DC). After vaccination, both migratory basic leucine zipper ATF-like transcription factor 3 (BatF3)-dependent and BatF3-independent DCs are responsible for antigen exchange and cross-presentation. However, exchange of archived viral antigens is mediated only by BatF3-dependent migratory DCs potentially acquiring apoptotic LECs. In conclusion, LEC-archived antigens are exchanged with migratory DCs, both directly and through LEC apoptosis, to cross-present archived antigens to circulating T cells. Viral infection and vaccination both induce lasting persistence of antigens for protective responses. Here the authors show that migratory dendritic cells, independent of the transcription factor BatF3 for their development, contribute to “archived antigen” exchange with lymphatic endothelial cells.
Collapse
Affiliation(s)
- Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Aurora, CO, 80045, USA.
| | - Robin S Lindsay
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Aurora, CO, 80045, USA.,Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Jeffrey M Finlon
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, School of Medicine, 12700 E. 19th Ave., Aurora, CO, 80045, USA
| | - Erin D Lucas
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Aurora, CO, 80045, USA.,Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, School of Medicine, 12700 E. 19th Ave., Aurora, CO, 80045, USA
| | - Rachel S Friedman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Aurora, CO, 80045, USA.,Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Beth A Jirón Tamburini
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Aurora, CO, 80045, USA. .,Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, School of Medicine, 12700 E. 19th Ave., Aurora, CO, 80045, USA.
| |
Collapse
|
47
|
Treat BR, Bidula SM, Ramachandran S, St Leger AJ, Hendricks RL, Kinchington PR. Influence of an immunodominant herpes simplex virus type 1 CD8+ T cell epitope on the target hierarchy and function of subdominant CD8+ T cells. PLoS Pathog 2017; 13:e1006732. [PMID: 29206240 PMCID: PMC5736228 DOI: 10.1371/journal.ppat.1006732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/19/2017] [Accepted: 11/03/2017] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) latency in sensory ganglia such as trigeminal ganglia (TG) is associated with a persistent immune infiltrate that includes effector memory CD8+ T cells that can influence HSV-1 reactivation. In C57BL/6 mice, HSV-1 induces a highly skewed CD8+ T cell repertoire, in which half of CD8+ T cells (gB-CD8s) recognize a single epitope on glycoprotein B (gB498-505), while the remainder (non-gB-CD8s) recognize, in varying proportions, 19 subdominant epitopes on 12 viral proteins. The gB-CD8s remain functional in TG throughout latency, while non-gB-CD8s exhibit varying degrees of functional compromise. To understand how dominance hierarchies relate to CD8+ T cell function during latency, we characterized the TG-associated CD8+ T cells following corneal infection with a recombinant HSV-1 lacking the immunodominant gB498-505 epitope (S1L). S1L induced a numerically equivalent CD8+ T cell infiltrate in the TG that was HSV-specific, but lacked specificity for gB498-505. Instead, there was a general increase of non-gB-CD8s with specific subdominant epitopes arising to codominance. In a latent S1L infection, non-gB-CD8s in the TG showed a hierarchy targeting different epitopes at latency compared to at acute times, and these cells retained an increased functionality at latency. In a latent S1L infection, these non-gB-CD8s also display an equivalent ability to block HSV reactivation in ex vivo ganglionic cultures compared to TG infected with wild type HSV-1. These data indicate that loss of the immunodominant gB498-505 epitope alters the dominance hierarchy and reduces functional compromise of CD8+ T cells specific for subdominant HSV-1 epitopes during viral latency.
Collapse
Affiliation(s)
- Benjamin R. Treat
- Molecular Virology and Microbiology Graduate Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sarah M. Bidula
- Molecular Virology and Microbiology Graduate Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Srividya Ramachandran
- Molecular Virology and Microbiology Graduate Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anthony J. St Leger
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Immunology Graduate Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robert L. Hendricks
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, United States of America
| | - Paul R. Kinchington
- Molecular Virology and Microbiology Graduate Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
48
|
Epitope-Specific Vaccination Limits Clonal Expansion of Heterologous Naive T Cells during Viral Challenge. Cell Rep 2017; 17:636-644. [PMID: 27732841 DOI: 10.1016/j.celrep.2016.09.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 06/21/2016] [Accepted: 09/06/2016] [Indexed: 11/20/2022] Open
Abstract
Despite robust secondary T cell expansion primed by vaccination, the impact on primary immune responses to heterotypic antigens remains undefined. Here we show that secondary expansion of epitope-specific memory CD8+ T cells primed by prior infection with recombinant pathogens limits the primary expansion of naive CD8+ T cells with specificity to new heterologous antigens, dampening protective immunity against subsequent pathogen challenge. The degree of naive T cell repression directly paralleled the magnitude of the recall response. Suppressed primary T cell priming reflects competition for antigen accessibility, since clonal expansion was not inhibited if the primary and secondary epitopes were expressed on different dendritic cells. Interestingly, robust recall responses did not impact antigen-specific NK cells, suggesting that adaptive and innate lymphocyte responses possess different activation requirements or occur in distinct anatomical locations. These findings have important implications in pathogen vaccination strategies that depend on the targeting of multiple T cell epitopes.
Collapse
|
49
|
Van Braeckel-Budimir N, Gras S, Ladell K, Josephs TM, Pewe L, Urban SL, Miners KL, Farenc C, Price DA, Rossjohn J, Harty JT. A T Cell Receptor Locus Harbors a Malaria-Specific Immune Response Gene. Immunity 2017; 47:835-847.e4. [PMID: 29150238 DOI: 10.1016/j.immuni.2017.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/02/2017] [Accepted: 10/26/2017] [Indexed: 01/05/2023]
Abstract
Immune response (Ir) genes, originally proposed by Baruj Benacerraf to explain differential antigen-specific responses in animal models, have become synonymous with the major histocompatibility complex (MHC). We discovered a non-MHC-linked Ir gene in a T cell receptor (TCR) locus that was required for CD8+ T cell responses to the Plasmodium berghei GAP5040-48 epitope in mice expressing the MHC class I allele H-2Db. GAP5040-48-specific CD8+ T cell responses emerged from a very large pool of naive Vβ8.1+ precursors, which dictated susceptibility to cerebral malaria and conferred protection against recombinant Listeria monocytogenes infection. Structural analysis of a prototypical Vβ8.1+ TCR-H-2Db-GAP5040-48 ternary complex revealed that germline-encoded complementarity-determining region 1β residues present exclusively in the Vβ8.1 segment mediated essential interactions with the GAP5040-48 peptide. Collectively, these findings demonstrated that Vβ8.1 functioned as an Ir gene that was indispensable for immune reactivity against the malaria GAP5040-48 epitope.
Collapse
Affiliation(s)
| | - Stephanie Gras
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Tracy M Josephs
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Lecia Pewe
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | - Stina L Urban
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Carine Farenc
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK; Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Jamie Rossjohn
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| | - John T Harty
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA; Department of Pathology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
50
|
Memarnejadian A, Meilleur CE, Shaler CR, Khazaie K, Bennink JR, Schell TD, Haeryfar SMM. PD-1 Blockade Promotes Epitope Spreading in Anticancer CD8 + T Cell Responses by Preventing Fratricidal Death of Subdominant Clones To Relieve Immunodomination. THE JOURNAL OF IMMUNOLOGY 2017; 199:3348-3359. [PMID: 28939757 DOI: 10.4049/jimmunol.1700643] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/26/2017] [Indexed: 12/15/2022]
Abstract
The interactions between programmed death-1 (PD-1) and its ligands hamper tumor-specific CD8+ T cell (TCD8) responses, and PD-1-based "checkpoint inhibitors" have shown promise in certain cancers, thus revitalizing interest in immunotherapy. PD-1-targeted therapies reverse TCD8 exhaustion/anergy. However, whether they alter the epitope breadth of TCD8 responses remains unclear. This is an important question because subdominant TCD8 are more likely than immunodominant clones to escape tolerance mechanisms and may contribute to protective anticancer immunity. We have addressed this question in an in vivo model of TCD8 responses to well-defined epitopes of a clinically relevant oncoprotein, large T Ag. We found that unlike other coinhibitory molecules (CTLA-4, LAG-3, TIM-3), PD-1 was highly expressed by subdominant TCD8, which correlated with their propensity to favorably respond to PD-1/PD-1 ligand-1 (PD-L1)-blocking Abs. PD-1 blockade increased the size of subdominant TCD8 clones at the peak of their primary response, and it also sustained their presence, thus giving rise to an enlarged memory pool. The expanded population was fully functional as judged by IFN-γ production and MHC class I-restricted cytotoxicity. The selective increase in subdominant TCD8 clonal size was due to their enhanced survival, not proliferation. Further mechanistic studies utilizing peptide-pulsed dendritic cells, recombinant vaccinia viruses encoding full-length T Ag or epitope mingenes, and tumor cells expressing T Ag variants revealed that anti-PD-1 invigorates subdominant TCD8 responses by relieving their lysis-dependent suppression by immunodominant TCD8 To our knowledge, our work constitutes the first report that interfering with PD-1 signaling potentiates epitope spreading in tumor-specific responses, a finding with clear implications for cancer immunotherapy and vaccination.
Collapse
Affiliation(s)
- Arash Memarnejadian
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Courtney E Meilleur
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Christopher R Shaler
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | | | - Jack R Bennink
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Todd D Schell
- Department of Microbiology and Immunology, Pennsylvania State University, Hershey, PA 17033
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada; .,Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario N6G 5W9, Canada.,Centre for Human Immunology, Western University, London, Ontario N6A 5C1, Canada; and.,Lawson Health Research Institute, London, Ontario N6C 2R5, Canada
| |
Collapse
|