1
|
Ahamed MT, Forshed J, Levitsky A, Lehtiö J, Bajalan A, Pernemalm M, Eriksson LE, Andersson B. Multiplex plasma protein assays as a diagnostic tool for lung cancer. Cancer Sci 2024; 115:3439-3454. [PMID: 39080998 PMCID: PMC11447887 DOI: 10.1111/cas.16300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 10/04/2024] Open
Abstract
Lack of the established noninvasive diagnostic biomarkers causes delay in diagnosis of lung cancer (LC). The aim of this study was to explore the association between inflammatory and cancer-associated plasma proteins and LC and thereby discover potential biomarkers. Patients referred for suspected LC and later diagnosed with primary LC, other cancers, or no cancer (NC) were included in this study. Demographic information and plasma samples were collected, and diagnostic information was later retrieved from medical records. Relative quantification of 92 plasma proteins was carried out using the Olink Immuno-Onc-I panel. Association between expression levels of panel of proteins with different diagnoses was assessed using generalized linear model (GLM) with the binomial family and a logit-link function, considering confounder effects of age, gender, smoking, and pulmonary diseases. The analysis showed that the combination of five plasma proteins (CD83, GZMA, GZMB, CD8A, and MMP12) has higher diagnostic performance for primary LC in both early and advanced stages compared with NC. This panel demonstrated lower diagnostic performance for other cancer types. Moreover, inclusion of four proteins (GAL9, PDCD1, CD4, and HO1) to the aforementioned panel significantly increased the diagnostic performance for primary LC in advanced stage as well as for other cancers. Consequently, the collective expression profiles of select plasma proteins, especially when analyzed in conjunction, might have the potential to distinguish individuals with LC from NC. This suggests their utility as predictive biomarkers for identification of LC patients. The synergistic application of these proteins as biomarkers could pave the way for the development of diagnostic tools for early-stage LC detection.
Collapse
Affiliation(s)
- Mohammad Tanvir Ahamed
- Department of Learning, Informatics, Management and Ethics (LIME)Karolinska InstitutetStockholmSweden
| | - Jenny Forshed
- Cancer Proteomics Mass Spectrometry, Department of Oncology‐PathologyKarolinska Institutet, Science for Life LaboratoryStockholmSweden
| | - Adrian Levitsky
- Department of Learning, Informatics, Management and Ethics (LIME)Karolinska InstitutetStockholmSweden
| | - Janne Lehtiö
- Cancer Proteomics Mass Spectrometry, Department of Oncology‐PathologyKarolinska Institutet, Science for Life LaboratoryStockholmSweden
| | - Amanj Bajalan
- Department of Microbiology, Tumor & Cell Biology (MTC)Karolinska InstitutetStockholmSweden
| | - Maria Pernemalm
- Cancer Proteomics Mass Spectrometry, Department of Oncology‐PathologyKarolinska Institutet, Science for Life LaboratoryStockholmSweden
| | - Lars E. Eriksson
- Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
- School of Health and Psychological Sciences, CityUniversity of LondonLondonUK
- Medical Unit Infectious DiseasesKarolinska University HospitalHuddingeSweden
| | - Björn Andersson
- Department of Cell and molecular Biology (CMB)Karolinska InstitutetStockholmSweden
| |
Collapse
|
2
|
Sun Y, Wang H, Wang H, Cai J, Yuan G, Zhang H, Zhao J, Xue Q, Jiang X, Ying H, Zhang Y, Yang Y, Jin J, Zhang W, Lu J, Ai J, Wang S. Aging brought additional immune response alterations after breakthrough infections with the Omicron BA.5/BF.7 variants: Protein immune mechanism. Int J Biol Macromol 2024; 281:136183. [PMID: 39357723 DOI: 10.1016/j.ijbiomac.2024.136183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
The global spread of the Omicron variant strain BA.5/BF.7 has led to an increase in breakthrough infections. The elderly population shows different immune responses after infection due to the aging of the immune system, which has not been fully studied. The aim of this study was to investigate the effect of aging on immune response after breakthrough infection of Omicron BA.5/BF.7 variant, especially the changes of protein immune mechanism. The study analyzed the concentration of antibodies in serum and their ability to neutralize the mutant strain by comparing the immune response of the elderly population and the young population after infection. Proteomics techniques were used to assess differences in the expression of key proteins in immune cells of different age groups. The study found that older subjects produced lower levels of antibodies after infection than younger subjects and showed a significantly reduced ability to neutralize against BA.5/BF.7. In addition, proteomic analysis showed that the expression of proteins related to inflammation and apoptosis significantly increased in the immune cells of the elderly, while the proteins related to antiviral response and cell repair significantly decreased. These findings provide new ideas for immune intervention strategies in the elderly population, and emphasize the targeted research of anti-virus vaccines.
Collapse
Affiliation(s)
- Yuhan Sun
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Hongyu Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Hua Wang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336, China
| | - Jianpeng Cai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Guanmin Yuan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Haocheng Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 20052, China
| | - Jingjing Zhao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Quanlin Xue
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Xiaochun Jiang
- Community Health Service Center of Xianghuaqiao Street, Qingpu District, Shanghai, China
| | - Huang Ying
- Community Health Service Center of Baihe Street, Qingpu District, Shanghai, China
| | - Yeting Zhang
- Community Health Service Center of Chonggu Town, Qingpu District, Shanghai, China
| | - Yongfeng Yang
- Community Health Service Center of Huaxin Town, Qingpu District, Shanghai, China
| | - Jialin Jin
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 20052, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 20052, China; Institute of Infection and Health, Fudan University, Shanghai 200040, China
| | - Jiahuan Lu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336, China.
| | - Jingwen Ai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 20052, China.
| | - Sen Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 20052, China.
| |
Collapse
|
3
|
León-Lara X, Fichtner AS, Willers M, Yang T, Schaper K, Riemann L, Schöning J, Harms A, Almeida V, Schimrock A, Janssen A, Ospina-Quintero L, von Kaisenberg C, Förster R, Eberl M, Richter MF, Pirr S, Viemann D, Ravens S. γδ T cell profiling in a cohort of preterm infants reveals elevated frequencies of CD83+ γδ T cells in sepsis. J Exp Med 2024; 221:e20231987. [PMID: 38753245 PMCID: PMC11098939 DOI: 10.1084/jem.20231987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 05/19/2024] Open
Abstract
Preterm infants are at high risk of developing neonatal sepsis. γδ T cells are thought to be an important set of effector cells in neonates. Here, γδ T cells were investigated in a longitudinal cohort of preterm neonates using next-generation sequencing, flow cytometry, and functional assays. During the first year of life, the Vγ9Vδ2 T cell subset showed dynamic phenotypic changes and elevated levels of fetal-derived Vγ9Vδ2 T cells were evident in infants with sepsis. Single-cell transcriptomics identified HLA-DRhiCD83+ γδ T cells in neonatal sepsis, which expressed genes related to antigen presentation. In vitro assays showed that CD83 was expressed on activated Vγ9Vδ2 T cells in preterm and term neonates, but not in adults. In contrast, activation of adult Vγ9Vδ2 T cells enhanced CD86 expression, which was presumably the key receptor to induce CD4 T cell proliferation. Together, we provide a map of the maturation of γδ T cells after preterm birth and highlight their phenotypic diversity in infections.
Collapse
MESH Headings
- Adult
- Female
- Humans
- Infant
- Infant, Newborn
- Male
- Antigens, CD/metabolism
- Antigens, CD/genetics
- CD83 Antigen
- Cohort Studies
- Infant, Premature/immunology
- Lymphocyte Activation/immunology
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Neonatal Sepsis/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Ximena León-Lara
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Maike Willers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Tao Yang
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Lennart Riemann
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Jennifer Schöning
- Translational Pediatrics, Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Anna Harms
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Vicente Almeida
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Anja Schimrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Constantin von Kaisenberg
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | | | - Sabine Pirr
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Translational Pediatrics, Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- PRIMAL (Priming IMmunity at the Beginning of Life) Consortium, Lübeck, Germany
- Center for Infection Research, University Würzburg, Würzburg, Germany
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Riaz B, Islam SMS, Ryu HM, Sohn S. CD83 Regulates the Immune Responses in Inflammatory Disorders. Int J Mol Sci 2023; 24:ijms24032831. [PMID: 36769151 PMCID: PMC9917562 DOI: 10.3390/ijms24032831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Activating the immune system plays an important role in maintaining physiological homeostasis and defending the body against harmful infections. However, abnormalities in the immune response can lead to various immunopathological responses and severe inflammation. The activation of dendritic cells (DCs) can influence immunological responses by promoting the differentiation of T cells into various functional subtypes crucial for the eradication of pathogens. CD83 is a molecule known to be expressed on mature DCs, activated B cells, and T cells. Two isotypes of CD83, a membrane-bound form and a soluble form, are subjects of extensive scientific research. It has been suggested that CD83 is not only a ubiquitous co-stimulatory molecule but also a crucial player in monitoring and resolving inflammatory reactions. Although CD83 has been involved in immunological responses, its functions in autoimmune diseases and effects on pathogen immune evasion remain unclear. Herein, we outline current immunological findings and the proposed function of CD83 in inflammatory disorders.
Collapse
Affiliation(s)
- Bushra Riaz
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - S. M. Shamsul Islam
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Hye Myung Ryu
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Seonghyang Sohn
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Correspondence:
| |
Collapse
|
5
|
Moyo NA, Westcott D, Simmonds R, Steinbach F. Equine Arteritis Virus in Monocytic Cells Suppresses Differentiation and Function of Dendritic Cells. Viruses 2023; 15:255. [PMID: 36680295 PMCID: PMC9862904 DOI: 10.3390/v15010255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Equine viral arteritis is an infectious disease of equids caused by equine arteritis virus (EAV), an RNA virus of the family Arteriviridae. Dendritic cells (DC) are important modulators of the immune response with the ability to present antigen to naïve T cells and can be generated in vitro from monocytes (MoDC). DC are important targets for many viruses and this interaction is crucial for the establishment-or rather not-of an anti-viral immunity. Little is known of the effect EAV has on host immune cells, particularly DC. To study the interaction of eqDC with EAV in vitro, an optimized eqMoDC system was used, which was established in a previous study. MoDC were infected with strains of different genotypes and pathogenicity. Virus replication was determined through titration and qPCR. The effect of the virus on morphology, phenotype and function of cells was assessed using light microscopy, flow cytometry and in vitro assays. This study confirms that EAV replicates in monocytes and MoDC. The replication was most efficient in mature MoDC, but variable between strains. Only the virulent strain caused a significant down-regulation of certain proteins such as CD14 and CD163 on monocytes and of CD83 on mature MoDC. Functional studies conducted after infection showed that EAV inhibited the endocytic and phagocytic capacity of Mo and mature MoDC with minimal effect on immature MoDC. Infected MoDC showed a reduced ability to stimulate T cells. Ultimately, EAV replication resulted in an apoptosis-mediated cell death. Thus, EAV evades the host anti-viral immunity both by inhibition of antigen presentation early after infection and through killing infected DC during replication.
Collapse
Affiliation(s)
- Nathifa A. Moyo
- Animal and Plant Health Agency, Virology Department, Addlestone KT15 3NB, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Dave Westcott
- Animal and Plant Health Agency, Virology Department, Addlestone KT15 3NB, UK
| | - Rachel Simmonds
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Falko Steinbach
- Animal and Plant Health Agency, Virology Department, Addlestone KT15 3NB, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
6
|
Liu C, Zhu J, Mi Y, Jin T. Impact of disease-modifying therapy on dendritic cells and exploring their immunotherapeutic potential in multiple sclerosis. J Neuroinflammation 2022; 19:298. [PMID: 36510261 PMCID: PMC9743681 DOI: 10.1186/s12974-022-02663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs), which play a pivotal role in inducing either inflammatory or tolerogenic response based on their subtypes and environmental signals. Emerging evidence indicates that DCs are critical for initiation and progression of autoimmune diseases, including multiple sclerosis (MS). Current disease-modifying therapies (DMT) for MS can significantly affect DCs' functions. However, the study on the impact of DMT on DCs is rare, unlike T and B lymphocytes that are the most commonly discussed targets of these therapies. Induction of tolerogenic DCs (tolDCs) with powerful therapeutic potential has been well-established to combat autoimmune responses in laboratory models and early clinical trials. In contrast to in vitro tolDC induction, in vivo elicitation by specifically targeting multiple cell-surface receptors has shown greater promise with more advantages. Here, we summarize the role of DCs in governing immune tolerance and in the process of initiating and perpetuating MS as well as the effects of current DMT drugs on DCs. We then highlight the most promising cell-surface receptors expressed on DCs currently being explored as the viable pharmacological targets through antigen delivery to generate tolDCs in vivo.
Collapse
Affiliation(s)
- Caiyun Liu
- grid.430605.40000 0004 1758 4110Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- grid.430605.40000 0004 1758 4110Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China ,grid.24381.3c0000 0000 9241 5705Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Yan Mi
- grid.430605.40000 0004 1758 4110Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Tao Jin
- grid.430605.40000 0004 1758 4110Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Evaluation of Soluble CD90: Potential for Diagnostic Significance in Endometriosis Patients. DISEASE MARKERS 2022; 2022:9345858. [PMID: 35769819 PMCID: PMC9236764 DOI: 10.1155/2022/9345858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/04/2022] [Indexed: 11/25/2022]
Abstract
Background Endometriosis is a chronic and debilitating gynecologic disorder, driven by endocrine and immune dysfunctions, which lead to poor endometrial differentiation and attenuated fertility. Escape from immune surveillance and involvement of inflammatory mechanisms appear to be factors in disease progression. Current diagnostic guidelines for endometriosis still lack an efficient biomarker. Here, we report a study on two previously unexplored factors as potential biomarkers for endometriosis. Methods A case-control study was performed to evaluate the diagnostic potential of serum CD90 and CD83 levels in endometriosis patients (cases validated by surgical and histological examination) compared to healthy controls. Serum was collected from age-matched females and analyzed by ELISA. Results Comparison of endometriosis patients to the control group showed significantly elevated levels of serum CD90 (1160 ± 856 pg/mL vs. 334 ± 228 pg/mL; ∗∗∗∗p < 0.0001). A threshold value of 479.4 pg/mL was defined based on the control results, and the diagnostic efficiency of the test was estimated. The obtained sensitivity (70.4%), specificity (92.9%), positive predictive value (90.5%), and negative predictive value (76.5%) rated the test as one with promising diagnostic potential. In contrast, the analysis of serum CD83 levels showed comparable values in both groups, suggesting no association with patient status. Conclusion Elevated soluble CD90 in human serum is associated with endometriosis, which suggests its putative clinical significance as a biomarker in screening and/or diagnosis of the disease.
Collapse
|
8
|
HSV-1 Infection of Epithelial Dendritic Cells Is a Critical Strategy for Interfering with Antiviral Immunity. Viruses 2022; 14:v14051046. [PMID: 35632787 PMCID: PMC9147763 DOI: 10.3390/v14051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1), an α subgroup member of the human herpesvirus family, infects cells via the binding of its various envelope glycoproteins to cellular membrane receptors, one of which is herpes virus entry mediator (HVEM), expressed on dendritic cells. Here, HVEM gene-deficient mice were used to investigate the immunologic effect elicited by the HSV-1 infection of dendritic cells. Dendritic cells expressing the surface marker CD11c showed an abnormal biological phenotype, including the altered transcription of various immune signaling molecules and inflammatory factors associated with innate immunity after viral replication. Furthermore, the viral infection of dendritic cells interfered with dendritic cell function in the lymph nodes, where these cells normally play roles in activating the T-cell response. Additionally, the mild clinicopathological manifestations observed during the acute phase of HSV-1 infection were associated with viral replication in dendritic cells.
Collapse
|
9
|
Shahgordi S, Oroojalian F, Hashemi E, Hashemi M. Recent advances in development of nano-carriers for immunogene therapy in various complex disorders. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:134-147. [PMID: 35655600 PMCID: PMC9124536 DOI: 10.22038/ijbms.2022.59718.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/01/2022] [Indexed: 01/25/2023]
Abstract
Immunotherapy is a novel preference for the treatment of various complex diseases. Considering the application of varying agents for suppression or activation of the immune system, immunogene therapy was confirmed to stand as a proper alternative for other immunotherapeutic strategies due to its capability in targeting cells with more specificity that leads to controlling the expression of therapeutic genes. This method facilitates the local and single-dose application of most gene therapies that result in the usage of high therapeutic doses with a low risk of systemic side effects while being cost-efficient in long-term administrations. However, the existing barriers between the administration site and cell nucleus limited the clinical uses of genetic materials. These challenges can be overcome through the promising method of exerting non-carriers with high stability, low toxicity/immunogenicity, and simple modifications. In this study, we attempted to review the potential of nanoparticle application throughout the immunogene therapy of different diseases including cancer, microbial diseases, allergies, inflammatory bowel disease, rheumatoid arthritis, and respiratory infections. We included the outline of some challenges and opportunities in regards to the delivery of genetic materials that are based on nano-systems through immunotherapy of these disorders. Next to the promising future of these vectors, more detailed analyses are required to overcome the current limitations in clinical approaches.
Collapse
Affiliation(s)
- Sanaz Shahgordi
- Immunology Department, Faculty of Medicine, Golestan University of Medical Science, Gorgan, Iran, Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ezzat Hashemi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran, Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad, University of Medical Sciences, Mashhad, Iran,Corresponding author: Maryam Hashemi. Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-51-31801219;
| |
Collapse
|
10
|
Peckert-Maier K, Schönberg A, Wild AB, Royzman D, Braun G, Stich L, Hadrian K, Tripal P, Cursiefen C, Steinkasserer A, Zinser E, Bock F. Pre-incubation of corneal donor tissue with sCD83 improves graft survival via the induction of alternatively activated macrophages and tolerogenic dendritic cells. Am J Transplant 2022; 22:438-454. [PMID: 34467638 DOI: 10.1111/ajt.16824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/02/2021] [Accepted: 08/22/2021] [Indexed: 01/25/2023]
Abstract
Immune responses reflect a complex interplay of cellular and extracellular components which define the microenvironment of a tissue. Therefore, factors that locally influence the microenvironment and re-establish tolerance might be beneficial to mitigate immune-mediated reactions, including the rejection of a transplant. In this study, we demonstrate that pre-incubation of donor tissue with the immune modulator soluble CD83 (sCD83) significantly improves graft survival using a high-risk corneal transplantation model. The induction of tolerogenic mechanisms in graft recipients was achieved by a significant upregulation of Tgfb, Foxp3, Il27, and Il10 in the transplant and an increase of regulatory dendritic cells (DCs), macrophages (Mφ), and T cells (Tregs) in eye-draining lymph nodes. The presence of sCD83 during in vitro DC and Mφ generation directed these cells toward a tolerogenic phenotype leading to reduced proliferation-stimulating activity in MLRs. Mechanistically, sCD83 induced a tolerogenic Mφ and DC phenotype, which favors Treg induction and significantly increased transplant survival after adoptive cell transfer. Conclusively, pre-incubation of corneal grafts with sCD83 significantly prolongs graft survival by modulating recipient Mφ and DCs toward tolerance and thereby establishing a tolerogenic microenvironment. This functional strategy of donor graft pre-treatment paves the way for new therapeutic options in the field of transplantation.
Collapse
Affiliation(s)
- Katrin Peckert-Maier
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alfrun Schönberg
- Department of Experimental Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andreas B Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Dmytro Royzman
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Gabriele Braun
- Department of Experimental Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lena Stich
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Karina Hadrian
- Department of Experimental Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Tripal
- Optical Imaging Centre, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Claus Cursiefen
- Department of Experimental Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Elisabeth Zinser
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Felix Bock
- Department of Experimental Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Peckert-Maier K, Royzman D, Langguth P, Marosan A, Strack A, Sadeghi Shermeh A, Steinkasserer A, Zinser E, Wild AB. Tilting the Balance: Therapeutic Prospects of CD83 as a Checkpoint Molecule Controlling Resolution of Inflammation. Int J Mol Sci 2022; 23:732. [PMID: 35054916 PMCID: PMC8775349 DOI: 10.3390/ijms23020732] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammatory diseases and transplant rejection represent major challenges for modern health care. Thus, identification of immune checkpoints that contribute to resolution of inflammation is key to developing novel therapeutic agents for those conditions. In recent years, the CD83 (cluster of differentiation 83) protein has emerged as an interesting potential candidate for such a "pro-resolution" therapy. This molecule occurs in a membrane-bound and a soluble isoform (mCD83 and sCD83, respectively), both of which are involved in resolution of inflammation. Originally described as a maturation marker on dendritic cells (DCs), mCD83 is also expressed by activated B and T cells as well as regulatory T cells (Tregs) and controls turnover of MHC II molecules in the thymus, and thereby positive selection of CD4+ T cells. Additionally, it serves to confine overshooting (auto-)immune responses. Consequently, animals with a conditional deletion of CD83 in DCs or regulatory T cells suffer from impaired resolution of inflammation. Pro-resolving effects of sCD83 became evident in pre-clinical autoimmune and transplantation models, where application of sCD83 reduced disease symptoms and enhanced allograft survival, respectively. Here, we summarize recent advances regarding CD83-mediated resolution of inflammatory responses, its binding partners as well as induced signaling pathways, and emphasize its therapeutic potential for future clinical trials.
Collapse
Affiliation(s)
- Katrin Peckert-Maier
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität—Erlangen-Nürnberg, 91052 Erlangen, Germany; (D.R.); (P.L.); (A.M.); (A.S.); (A.S.S.); (A.S.); (E.Z.)
| | | | | | | | | | | | | | | | - Andreas B. Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität—Erlangen-Nürnberg, 91052 Erlangen, Germany; (D.R.); (P.L.); (A.M.); (A.S.); (A.S.S.); (A.S.); (E.Z.)
| |
Collapse
|
12
|
Machcińska M, Kotur M, Jankowska A, Maruszewska-Cheruiyot M, Łaski A, Kotkowska Z, Bocian K, Korczak-Kowalska G. Cyclosporine A, in Contrast to Rapamycin, Affects the Ability of Dendritic Cells to Induce Immune Tolerance Mechanisms. Arch Immunol Ther Exp (Warsz) 2021; 69:27. [PMID: 34632525 PMCID: PMC8502748 DOI: 10.1007/s00005-021-00632-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/16/2021] [Indexed: 12/25/2022]
Abstract
Following organ transplantation, it is essential that immune tolerance is induced in the graft recipient to reduce the risk of rejection and avoid complications associated with the long-term use of immunosuppressive drugs. Immature dendritic cells (DCs) are considered to promote transplant tolerance and may minimize the risk of graft rejection. The aim of the study was to evaluate the effects of immunosuppressive agents: rapamycin (Rapa) and cyclosporine A (CsA) on generation of human tolerogenic DCs (tolDCs) and also to evaluate the ability of these cells to induce mechanisms of immune tolerance. tolDCs were generated in the environment of Rapa or CsA. Next, we evaluated the effects of these agents on surface phenotypes (CD11c, MHC II, CD40, CD80, CD83, CD86, CCR7, TLR2, TLR4), cytokine production (IL-4, IL-6, IL-10, IL-12p70, TGF-β), phagocytic capacity and resistant to lipopolysaccharide activation of these DCs. Moreover, we assessed ability of such tolDCs to induce T cell activation and apoptosis, Treg differentiation and production of Th1- and Th2-characteristic cytokine profile. Data obtained in this study demonstrate that rapamycin is effective at generating maturation-resistant tolDCs, however, does not change the ability of these cells to induce mechanisms of immune tolerance. In contrast, CsA affects the ability of these cells to induce mechanisms of immune tolerance, but is not efficient at generating maturation-resistant tolDCs.
Collapse
Affiliation(s)
- Maja Machcińska
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland. .,Present address: Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland.
| | - Monika Kotur
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Jankowska
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Maruszewska-Cheruiyot
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Artur Łaski
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Zuzanna Kotkowska
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Bocian
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Grażyna Korczak-Kowalska
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Huo S, Wu F, Zhang J, Wang X, Li W, Cui D, Zuo Y, Hu M, Zhong F. Porcine soluble CD83 alleviates LPS-induced abortion in mice by promoting Th2 cytokine production, Treg cell generation and trophoblast invasion. Theriogenology 2020; 157:149-161. [PMID: 32810792 DOI: 10.1016/j.theriogenology.2020.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/16/2020] [Accepted: 07/25/2020] [Indexed: 01/24/2023]
Abstract
CD83, either in its membrance-bound form (mCD83) or soluble form (sCD83), is an important immunomodulatory molecule in humans and mice. While mCD83 is immunostimulatory, sCD83 exhibits striking immunosuppressive activities, suggesting that sCD83 may be used to combat inflammatory diseases, such as rheumatoid arthritis, graft-versus-host disease and habitual abortion. Although many studies had shed lights on the role of CD83 in humans and mice, little is known about CD83 in other animals. Recently, we showed that porcine CD83 had similar biochemical characteristics and immunoregulatory functions as its human counterpart. However, whether porcine sCD83 (psCD83) is involved in maintaining the immunological tolerance at the maternal-fetal interface and thereby prevents embryo loss and abortion during pregnancy is unclear. In this study, we used LPS-induced animal model to analyze the effect of porcine sCD83 on the mouse abortion. Results showed that psCD83 could significantly alleviate LPS-induced abortion in mice, indicating that the psCD83 had the function of fetal protection. Mechanically, psCD83-mediated fetal protection was related to the promotion on Th2 cytokine production, Treg cell differentiation and trophoblast invasion. This study provides a molecular basis for the fetal protection of psCD83, as well as a potential target for the regulation of maternal-fetal interfacial immune tolerance.
Collapse
Affiliation(s)
- Shanshan Huo
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China; Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, 071001, China.
| | - Fengyang Wu
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China.
| | - Jianlou Zhang
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China; Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, 071001, China.
| | - Xing Wang
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China.
| | - Wenyan Li
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China; Department of Biology, College of Basic Medicine, Hebei University, 180 Wusi Dong Road, Baoding, Hebei, 071000, China.
| | - Dan Cui
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China.
| | - Yuzhu Zuo
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China; Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, 071001, China.
| | - Man Hu
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China; Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, 071001, China.
| | - Fei Zhong
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China; Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, 071001, China.
| |
Collapse
|
14
|
Shrestha B, Walton K, Reff J, Sagatys EM, Tu N, Boucher J, Li G, Ghafoor T, Felices M, Miller JS, Pidala J, Blazar BR, Anasetti C, Betts BC, Davila ML. Human CD83-targeted chimeric antigen receptor T cells prevent and treat graft-versus-host disease. J Clin Invest 2020; 130:4652-4662. [PMID: 32437331 PMCID: PMC7456225 DOI: 10.1172/jci135754] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Graft-versus-host disease (GVHD) remains an important cause of morbidity and mortality after allogeneic hematopoietic cell transplantation (allo-HCT). For decades, GVHD prophylaxis has included calcineurin inhibitors, despite their incomplete efficacy and impairment of graft-versus-leukemia (GVL). Distinct from pharmacologic immune suppression, we have developed what we believe is a novel, human CD83-targeted chimeric antigen receptor (CAR) T cell for GVHD prevention. CD83 is expressed on allo-activated conventional CD4+ T cells (Tconvs) and proinflammatory dendritic cells (DCs), which are both implicated in GVHD pathogenesis. Human CD83 CAR T cells eradicate pathogenic CD83+ target cells, substantially increase the ratio of regulatory T cells (Tregs) to allo-activated Tconvs, and provide durable prevention of xenogeneic GVHD. CD83 CAR T cells are also capable of treating xenogeneic GVHD. We show that human acute myeloid leukemia (AML) expresses CD83 and that myeloid leukemia cell lines are readily killed by CD83 CAR T cells. Human CD83 CAR T cells are a promising cell-based approach to preventing 2 critical complications of allo-HCT - GVHD and relapse. Thus, the use of human CD83 CAR T cells for GVHD prevention and treatment, as well as for targeting CD83+ AML, warrants clinical investigation.
Collapse
Affiliation(s)
- Bishwas Shrestha
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Kelly Walton
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jordan Reff
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Elizabeth M. Sagatys
- Department of Hematopathology and Laboratory Medicine, Moffitt Cancer Center, Tampa, Florida, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
| | - Nhan Tu
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
| | - Justin Boucher
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
| | - Gongbo Li
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
| | - Tayyebb Ghafoor
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
| | - Martin Felices
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey S. Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joseph Pidala
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida, USA
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Claudio Anasetti
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida, USA
| | - Brian C. Betts
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marco L. Davila
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
15
|
Barut GT, Lischer HEL, Bruggmann R, Summerfield A, Talker SC. Transcriptomic profiling of bovine blood dendritic cells and monocytes following TLR stimulation. Eur J Immunol 2020; 50:1691-1711. [PMID: 32592404 DOI: 10.1002/eji.202048643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/11/2020] [Accepted: 06/26/2020] [Indexed: 11/06/2022]
Abstract
Dendritic cells (DC) and monocytes are vital for the initiation of innate and adaptive immune responses. Recently, we identified bona fide DC subsets in blood of cattle, revealing subset- and species-specific transcription of toll-like receptors (TLR). In the present study, we analyzed phenotypic and transcriptional responses of bovine DC subsets and monocytes to in vitro stimulation with four to six different TLR ligands. Bovine DC subsets, especially plasmacytoid DC (pDC), showed a clear increase of CCR7, CD25, CD40, CD80, CD86, and MHC-II expression both on mRNA and protein level. Flow cytometric detection of p38 MAPK phosphorylation 15 min after stimulation confirmed activation of DC subsets and monocytes in accordance with TLR gene expression. Whole-transcriptome sequencing of sorted and TLR-stimulated subsets revealed potential ligand- and subset-specific regulation of genes associated with inflammation, T-cell co-stimulation, migration, metabolic reprogramming, and antiviral activity. Gardiquimod was found to evoke strong responses both in DC subsets and monocytes, while Poly(I:C) and CpG preferentially triggered responses in cDC1 and pDC, respectively. This in-depth analysis of ligand responsiveness is essential for the rational design of vaccine adjuvants in cattle, and provides a solid basis for comparative studies on DC and monocyte biology across species.
Collapse
Affiliation(s)
- G Tuba Barut
- Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Heidi E L Lischer
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Stephanie C Talker
- Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Liedtke K, Alter C, Günther A, Hövelmeyer N, Klopfleisch R, Naumann R, Wunderlich FT, Buer J, Westendorf AM, Hansen W. Endogenous CD83 Expression in CD4 + Conventional T Cells Controls Inflammatory Immune Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:3217-3226. [PMID: 32341061 DOI: 10.4049/jimmunol.2000042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/10/2020] [Indexed: 12/16/2022]
Abstract
The glycoprotein CD83 is known to be expressed by different immune cells including activated CD4+Foxp3+ regulatory T cells (Tregs) and CD4+Foxp3- conventional T cells. However, the physiological function of endogenous CD83 in CD4+ T cell subsets is still unclear. In this study, we have generated a new CD83flox mouse line on BALB/c background, allowing for specific ablation of CD83 in T cells upon breeding with CD4-cre mice. Tregs from CD83flox/flox/CD4-cretg/wt mice had similar suppressive activity as Tregs from CD83flox/flox/CD4-crewt/wt wild-type littermates, suggesting that endogenous CD83 expression is dispensable for the inhibitory capacity of Tregs. However, CD83-deficient CD4+ conventional T cells showed elevated proliferation and IFN-γ secretion as well as an enhanced capacity to differentiate into Th1 cells and Th17 cells upon stimulation in vitro. T cell-specific ablation of CD83 expression resulted in aggravated contact hypersensitivity reaction accompanied by enhanced CD4+ T cell activation. Moreover, adoptive transfer of CD4+CD45RBhigh T cells from CD83flox/flox/CD4-cretg /wt mice into Rag2-deficient mice elicited more severe colitis associated with increased serum concentrations of IL-12 and elevated CD40 expression on CD11c+ dendritic cells (DCs). Strikingly, DCs from BALB/c mice cocultured with CD83-deficient CD4+ conventional T cells showed enhanced CD40 expression and IL-12 secretion compared with DCs cocultured with CD4+ conventional T cells from CD83flox/flox/CD4-crewt/wt wild-type mice. In summary, these results indicate that endogenous CD83 expression in CD4+ conventional T cells plays a crucial role in controlling CD4+ T cell responses, at least in part, by regulating the activity of CD11c+ DCs.
Collapse
Affiliation(s)
- Katarina Liedtke
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Christina Alter
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Anne Günther
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Nadine Hövelmeyer
- Institute for Medical Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Free University of Berlin, 14163 Berlin, Germany
| | - Ronald Naumann
- Transgenic Core Facility, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; and
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| |
Collapse
|
17
|
Schönberg A, Hamdorf M, Bock F. Immunomodulatory Strategies Targeting Dendritic Cells to Improve Corneal Graft Survival. J Clin Med 2020; 9:E1280. [PMID: 32354200 PMCID: PMC7287922 DOI: 10.3390/jcm9051280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
Even though the cornea is regarded as an immune-privileged tissue, transplantation always comes with the risk of rejection due to mismatches between donor and recipient. It is common sense that an alternative to corticosteroids as the current gold standard for treatment of corneal transplantation is needed. Since blood and lymphatic vessels have been identified as a severe risk factor for corneal allograft survival, much research has focused on vessel regression or inhibition of hem- and lymphangiogenesis in general. However, lymphatic vessels have been identified as required for the inflammation's resolution. Therefore, targeting other players of corneal engraftment could reveal new therapeutic strategies. The establishment of a tolerogenic microenvironment at the graft site would leave the recipient with the ability to manage pathogenic conditions independent from transplantation. Dendritic cells (DCs) as the central player of the immune system represent a target that allows the induction of tolerogenic mechanisms by many different strategies. These strategies are reviewed in this article with regard to their success in corneal transplantation.
Collapse
Affiliation(s)
- Alfrun Schönberg
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (A.S.); (M.H.)
| | - Matthias Hamdorf
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (A.S.); (M.H.)
| | - Felix Bock
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (A.S.); (M.H.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
18
|
Grosche L, Knippertz I, König C, Royzman D, Wild AB, Zinser E, Sticht H, Muller YA, Steinkasserer A, Lechmann M. The CD83 Molecule - An Important Immune Checkpoint. Front Immunol 2020; 11:721. [PMID: 32362900 PMCID: PMC7181454 DOI: 10.3389/fimmu.2020.00721] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
The CD83 molecule has been identified to be expressed on numerous activated immune cells, including B and T lymphocytes, monocytes, dendritic cells, microglia, and neutrophils. Both isoforms of CD83, the membrane-bound as well as its soluble form are topic of intensive research investigations. Several studies revealed that CD83 is not a typical co-stimulatory molecule, but rather plays a critical role in controlling and resolving immune responses. Moreover, CD83 is an essential factor during the differentiation of T and B lymphocytes, and the development and maintenance of tolerance. The identification of its interaction partners as well as signaling pathways have been an enigma for the last decades. Here, we report the latest data on the expression, structure, and the signaling partners of CD83. In addition, we review the regulatory functions of CD83, including its striking modulatory potential to maintain the balance between tolerance versus inflammation during homeostasis or pathologies. These immunomodulatory properties of CD83 emphasize its exceptional therapeutic potential, which has been documented in specific preclinical disease models.
Collapse
Affiliation(s)
- Linda Grosche
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ilka Knippertz
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christina König
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dmytro Royzman
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas B. Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Zinser
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yves A. Muller
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Lechmann
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
19
|
Huo S, Zhang J, Liang S, Wu F, Zuo Y, Cui D, Zhang Y, Zhong Z, Zhong F. Membrane-bound and soluble porcine CD83 functions antithetically in T cell activation and dendritic cell differentiation in vitro. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103398. [PMID: 31121186 DOI: 10.1016/j.dci.2019.103398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Emerging evidence suggests that CD83, a dendritic cells (DCs) maturation marker in humans and mice, may prossess immunomodulatory capacities. Although porcine CD83 shares ∼75% sequence homology with its human counterpart, whether it functions as an immunoregulatory molecule remains unknown. To investigate porcine CD83 function, we deleted it in porcine DCs by RNA intereference. Results show that membrane-bound CD83 (mCD83) promotes DC-mediated T cell proliferation and cytokine production, thus confirming its immunoregulatory capacity. Intriguingly, porcine soluble CD83 (sCD83) treatment instead led to inhibition of DC-mediated T cell activation. Moreover, porcine sCD83 also inhibited differentiation of prepheral blood mononuclear cells (PBMCs) into DCs. These results collectively indicate that in addition to being a DC maturation maker, both membrane bound and souble porcine CD83 serve as immunoregulatory molecules with opposite effects on DC-mediated T cell activation and DC differentiation.
Collapse
Affiliation(s)
- Shanshan Huo
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Jianlou Zhang
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Shuang Liang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Fengyang Wu
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Yuzhu Zuo
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Dan Cui
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Yonghong Zhang
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Zhenyu Zhong
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Fei Zhong
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China.
| |
Collapse
|
20
|
Hos D, Matthaei M, Bock F, Maruyama K, Notara M, Clahsen T, Hou Y, Le VNH, Salabarria AC, Horstmann J, Bachmann BO, Cursiefen C. Immune reactions after modern lamellar (DALK, DSAEK, DMEK) versus conventional penetrating corneal transplantation. Prog Retin Eye Res 2019; 73:100768. [PMID: 31279005 DOI: 10.1016/j.preteyeres.2019.07.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
In the past decade, novel lamellar keratoplasty techniques such as Deep Anterior Lamellar Keratoplasty (DALK) for anterior keratoplasty and Descemet stripping automated endothelial keratoplasty (DSAEK)/Descemet membrane endothelial keratoplasty (DMEK) for posterior keratoplasty have been developed. DALK eliminates the possibility of endothelial allograft rejection, which is the main reason for graft failure after penetrating keratoplasty (PK). Compared to PK, the risk of endothelial graft rejection is significantly reduced after DSAEK/DMEK. Thus, with modern lamellar techniques, the clinical problem of endothelial graft rejection seems to be nearly solved in the low-risk situation. However, even with lamellar grafts there are epithelial, subepithelial and stromal immune reactions in DALK and endothelial immune reactions in DSAEK/DMEK, and not all keratoplasties can be performed in a lamellar fashion. Therefore, endothelial graft rejection in PK is still highly relevant, especially in the "high-risk" setting, where the cornea's (lymph)angiogenic and immune privilege is lost due to severe inflammation and pathological neovascularization. For these eyes, currently available treatment options are still unsatisfactory. In this review, we will describe currently used keratoplasty techniques, namely PK, DALK, DSAEK, and DMEK. We will summarize their indications, provide surgical descriptions, and comment on their complications and outcomes. Furthermore, we will give an overview on corneal transplant immunology. A specific focus will be placed on endothelial graft rejection and we will report on its incidence, clinical presentation, and current/future treatment and prevention options. Finally, we will speculate how the field of keratoplasty and prevention of corneal allograft rejection will develop in the future.
Collapse
Affiliation(s)
- Deniz Hos
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Kazuichi Maruyama
- Department of Innovative Visual Science, Graduate School of Medicine, Osaka University, Japan
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Viet Nhat Hung Le
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Department of Ophthalmology, Hue College of Medicine and Pharmacy, Hue University, Viet Nam
| | | | - Jens Horstmann
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Bjoern O Bachmann
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
21
|
Li Z, Ju X, Silveira PA, Abadir E, Hsu WH, Hart DNJ, Clark GJ. CD83: Activation Marker for Antigen Presenting Cells and Its Therapeutic Potential. Front Immunol 2019; 10:1312. [PMID: 31231400 PMCID: PMC6568190 DOI: 10.3389/fimmu.2019.01312] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022] Open
Abstract
CD83 is a member of the immunoglobulin (Ig) superfamily and is expressed in membrane bound or soluble forms. Membrane CD83 (mCD83) can be detected on a variety of activated immune cells, although it is most highly and stably expressed by mature dendritic cells (DC). mCD83 regulates maturation, activation and homeostasis. Soluble CD83 (sCD83), which is elevated in the serum of patients with autoimmune disease and some hematological malignancies is reported to have an immune suppressive function. While CD83 is emerging as a promising immune modulator with therapeutic potential, some important aspects such as its ligand/s, intracellular signaling pathways and modulators of its expression are unclear. In this review we discuss the recent biological findings and the potential clinical value of CD83 based therapeutics in various conditions including autoimmune disease, graft-vs.-host disease, transplantation and hematological malignancies.
Collapse
Affiliation(s)
- Ziduo Li
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Xinsheng Ju
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Pablo A. Silveira
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Edward Abadir
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Wei-Hsun Hsu
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Derek N. J. Hart
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Georgina J. Clark
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
22
|
Royzman D, Andreev D, Stich L, Rauh M, Bäuerle T, Ellmann S, Boon L, Kindermann M, Peckert K, Bozec A, Schett G, Steinkasserer A, Zinser E. Soluble CD83 Triggers Resolution of Arthritis and Sustained Inflammation Control in IDO Dependent Manner. Front Immunol 2019; 10:633. [PMID: 31001257 PMCID: PMC6455294 DOI: 10.3389/fimmu.2019.00633] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/08/2019] [Indexed: 12/29/2022] Open
Abstract
Interference with autoimmune-mediated cytokine production is a key yet poorly developed approach to treat autoimmune and inflammatory diseases such as rheumatoid arthritis. Herein, we show that soluble CD83 (sCD83) enhances the resolution of autoimmune antigen-induced arthritis (AIA) by strongly reducing the expression levels of cytokines such as IL-17A, IFNγ, IL-6, and TNFα within the joints. Noteworthy, also the expression of RANKL, osteoclast differentiation, and joint destruction was significantly inhibited by sCD83. In addition, osteoclasts which were cultured in the presence of synovial T cells, derived from sCD83 treated AIA mice, showed a strongly reduced number of multinuclear large osteoclasts compared to mock controls. Enhanced resolution of arthritis by sCD83 was mechanistically based on IDO, since inhibition of IDO by 1-methyltryptophan completely abrogated sCD83 effects on AIA. Blocking experiments, using anti-TGF-β antibodies further revealed that also TGF-β is mechanistically involved in the sCD83 induced reduction of bone destruction and cartilage damage as well as enhanced resolution of inflammation. Resolution of arthritis was associated with increased numbers of regulatory T cells, which are induced in a sCD83-IDO-TGF-β dependent manner. Taken together, sCD83 represents an interesting approach for downregulating cytokine production, inducing regulatory T cells and inducing resolution of autoimmune arthritis.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/pharmacology
- Antigens, CD/immunology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Cytokines/immunology
- Female
- Immunoglobulins/immunology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Inflammation/drug therapy
- Inflammation/immunology
- Inflammation/pathology
- Joints/immunology
- Joints/pathology
- Membrane Glycoproteins/immunology
- Mice
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Solubility
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/immunology
- Tryptophan/analogs & derivatives
- Tryptophan/pharmacology
- CD83 Antigen
Collapse
Affiliation(s)
- Dmytro Royzman
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Darja Andreev
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tobias Bäuerle
- Institute of Radiology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stephan Ellmann
- Institute of Radiology, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Markus Kindermann
- Department of Internal Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katrin Peckert
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Elisabeth Zinser
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
23
|
Huo S, Zhang J, Wu F, Zuo Y, Cui D, Li X, Zhong Z, Zhong F. Porcine CD83 is a glycosylated dimeric protein existing naturally in membrane-bound and soluble forms. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 90:60-69. [PMID: 30193829 DOI: 10.1016/j.dci.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Human and mouse CD83 have been well characteized, however, the other mammalian CD83 genes have not been cloned and characterized. In this study, the porcine CD83 (pCD83) was cloned, expressed and characterized, and showed that the pCD83 gene has 81% and 74% homologies with humans and mice, respectively, which was identified to be glycosylated when expressed in eukaryotic cells, existing naturally in two forms: membrance-bound CD83 (mCD83) and soluble CD83 (sCD83), the latter was identified to be generated mainly from mCD83 by proteolytic shedding. The pCD83 was a dimmer mediated by intermolecular disulfide bond formed by the fifth cysteine in the exrtracellular domain. Functionally, the recombinant porcine sCD83 was preliminarily tested to have the ability to inhibit DC-mediated T cell activition. This study provided necessary fundation for further investigation on pCD83 functions.
Collapse
Affiliation(s)
- Shanshan Huo
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Jianlou Zhang
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Fengyang Wu
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei, 071000, China
| | - Yuzhu Zuo
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Dan Cui
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Xiujin Li
- Department of Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei, 066004, China
| | - Zhenyu Zhong
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Fei Zhong
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China.
| |
Collapse
|
24
|
Pinho MP, Barbuto JAM. Commentary: Soluble CD83 Alleviates Experimental Autoimmune Uveitis by Inhibiting Filamentous Actin-Dependent Calcium Release in Dendritic Cells. Front Immunol 2018; 9:2659. [PMID: 30498498 PMCID: PMC6249379 DOI: 10.3389/fimmu.2018.02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/29/2018] [Indexed: 11/22/2022] Open
Affiliation(s)
- Mariana Pereira Pinho
- Tumor Immunology Laboratory, Immunology Department, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - José Alexandre Marzagão Barbuto
- Tumor Immunology Laboratory, Immunology Department, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Landi A, Aligodarzi MT, Khodadadi A, Babiuk LA, van Drunen Littel-van den Hurk S. Defining a standard and weighted mathematical index for maturation of dendritic cells. Immunology 2017; 153:532-544. [PMID: 29068058 DOI: 10.1111/imm.12856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/15/2017] [Accepted: 10/18/2017] [Indexed: 11/26/2022] Open
Abstract
The concept of dendritic cell (DC) maturation generally refers to the changes in morphology and function of DCs. Conventionally, DC maturity is based on three criteria: loss of endocytic ability, gain of high-level capacity to present antigens and induce proliferation of T cells, and mobility of DCs toward high concentrations of CCL19. Impairment of DC maturation has been suggested as the main reason for infectivity or chronicity of several infectious agents. In the case of hepatitis C virus, this has been a matter of controversy for the last two decades. However, insufficient attention has been paid to the method of ex vivo maturation as the possible source of such controversies. We previously reported striking differences between DCs matured with different methods, so we propose the use of a standard quantitative index to determine the level of maturity in DCs as an approach to compare results from different studies. We designed and formulated a mathematically calculated index to numerically define the level of maturity based on experimental data from ex vivo assays. This introduces a standard maturation index (SMI) and weighted maturation index (WMI) based on strictly standardized mean differences between different methods of generating mature DCs. By calculating an SMI and a WMI, numerical values were assigned to the level of maturity achieved by DCs matured with different methods. SMI and WMI could be used as a standard tool to compare diversely generated mature DCs and so better interpret outcomes of ex vivo and in vivo studies with mature DCs.
Collapse
Affiliation(s)
- Abdolamir Landi
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.,Department of Virology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Ali Khodadadi
- Cancer Petroleum & Environmental Pollutants Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Sylvia van Drunen Littel-van den Hurk
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.,VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
26
|
Kristensen AM, Stengaard-Pedersen K, Hetland ML, Hørslev-Petersen K, Junker P, Østergaard M, Höllsberg P, Deleuran B, Hvid M. Expression of soluble CD83 in plasma from early-stage rheumatoid arthritis patients is not modified by anti-TNF-α therapy. Cytokine 2017; 96:1-7. [PMID: 28267648 DOI: 10.1016/j.cyto.2017.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/03/2017] [Accepted: 02/17/2017] [Indexed: 01/03/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease which may lead to severe disabilities due to structural joint damage and extraarticular manifestations The dendritic cell marker CD83 belongs to the immunoglobulin superfamily and has previously been associated with autoimmune diseases. In RA the levels of soluble CD83 (sCD83) are elevated in synovial fluid, however little is known about CD83 expression and regulation in RA. Therefore, we studied how CD83 is expressed in RA and further evaluated the effect of anti-TNF-α therapy hereon. Early RA patients were randomized to conventional disease modifying anti-rheumatic drugs with or without additional anti-TNF-α therapy. Rheumatoid arthritis patients had increased levels of sCD83 in plasma compared with healthy volunteers. The increase in sCD83 plasma levels were unaffected by anti-TNF-α therapy. In chronic RA patients the levels of sCD83 were higher in synovial fluid than in plasma, and only a limited amount of membrane bound CD83 expression was detected on the surface of cells from peripheral blood and synovial fluid. Finally, confocal microscopy of RA synovial membranes revealed that CD83 was mainly localized intracellularly in a group of cells with diverse morphology including both antigen-presenting cells and non-antigen-presenting cells. Our findings demonstrate that early-stage RA patients have elevated levels of sCD83 in plasma and that anti-TNF-α treatment has no effect on the sCD83 plasma level. This suggest that in RA patients sCD83 regulation is beyond control of TNF-α.
Collapse
Affiliation(s)
| | - Kristian Stengaard-Pedersen
- Dept. of Rheumatology, Aarhus University Hospital, Denmark; Dept. of Clinical Medicine, Aarhus University, Denmark
| | - Merete Lund Hetland
- The DANBIO Registry and Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Denmark; Dept. of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kim Hørslev-Petersen
- King Christian 10th Hospital for the Rheumatic Diseases, and University of Southern Denmark, Denmark
| | - Peter Junker
- Dept. of Rheumatology, Odense University Hospital, Denmark
| | - Mikkel Østergaard
- The DANBIO Registry and Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Denmark; Dept. of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | - Bent Deleuran
- Dept. of Biomedicine, Aarhus University, Denmark; Dept. of Rheumatology, Aarhus University Hospital, Denmark
| | - Malene Hvid
- Dept. of Biomedicine, Aarhus University, Denmark; Dept. of Clinical Medicine, Aarhus University, Denmark.
| |
Collapse
|
27
|
Mo ZQ, Wang JL, Yang M, Ni LY, Wang HQ, Lao GF, Li YW, Li AX, Luo XC, Dan XM. Characterization and expression analysis of grouper (Epinephelus coioides) co-stimulatory molecules CD83 and CD80/86 post Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2017; 67:467-474. [PMID: 28579524 DOI: 10.1016/j.fsi.2017.05.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/10/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
Co-stimulatory molecules (CD83, CD80 and CD86), belong to immunoglobulin superfamily, are type I membrane glycoprotein, which express on antigen presenting cells and provide the second signal for the activation of T lymphocytes. In the present study, we cloned the grouper's CD83 (675 bp) and CD80/86 (876 bp). Homology analysis showed that both EcCD83 and EcCD80/86 shares the highest amino acid similarity (51% and 47%) for the overall sequence with puffer fish (Takifugu rubripes). Some conserved features and important functional residues in mammalian CD83, CD80 and CD86 were also identified from these molecules of teleosts including grouper, suggesting the function of both molecules may be conserved among vertebrates. In transfected HEK293T cells, both molecules localized on the membrane surface. Tissue distribution analysis showed both EcCD83 and EcCD80/86 mRNAs were mainly expressed in immune organs, and EcCD80/86 was extremely higher expressed in mucosal immune tissues including skin and gill than systematic immune organs, which indicates these co-stimulatory molecules may prime T cell activation in local mucosal tissues. In Cryptocaryon irritans infected groupers, the expression level of EcCD83 and EcCD80/86 were both seen significant up-regulation in the skin at most tested time points.
Collapse
Affiliation(s)
- Ze-Quan Mo
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Jiu-Le Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Man Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Lu-Yun Ni
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Hai-Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Guo-Feng Lao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Yan-Wei Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - An-Xing Li
- State Key Laboratory of Biocontrol/ Key Laboratory of Aquatic Product Safety (Sun Yat-Sen University), Ministry of Education, The School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Xiao-Chun Luo
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou 510006, PR China.
| | - Xue-Ming Dan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China.
| |
Collapse
|
28
|
Stojić-Vukanić Z, Kotur-Stevuljević J, Nacka-Aleksić M, Kosec D, Vujnović I, Pilipović I, Dimitrijević M, Leposavić G. Sex Bias in Pathogenesis of Autoimmune Neuroinflammation: Relevance for Dimethyl Fumarate Immunomodulatory/Anti-oxidant Action. Mol Neurobiol 2017; 55:3755-3774. [PMID: 28534275 DOI: 10.1007/s12035-017-0595-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/02/2017] [Indexed: 01/22/2023]
Abstract
In the present study, upon showing sexual dimorphism in dimethyl fumarate (DMF) efficacy to moderate the clinical severity of experimental autoimmune encephalomyelitis (EAE) in Dark Agouti rats, cellular and molecular substrate of this dimorphism was explored. In rats of both sexes, DMF administration from the day of immunization attenuated EAE severity, but this effect was more prominent in males leading to loss of the sexual dimorphism observed in vehicle-administered controls. Consistently, in male rats, DMF was more efficient in diminishing the number of CD4+ T lymphocytes infiltrating spinal cord (SC) and their reactivation, the number of IL-17+ T lymphocytes and particularly cellularity of their highly pathogenic IFN-γ+GM-CSF+IL-17+ subset. This was linked with changes in SC CD11b+CD45+TCRαβ- microglia/proinflammatory monocyte progeny, substantiated in a more prominent increase in the frequency of anti-inflammatory phygocyting CD163+ cells and the cells expressing high surface levels of immunoregulatory CD83 molecule (associated with apoptotic cells phagocytosis and implicated in downregulation of CD4+ T lymphocyte reactivation) among CD11b+CD45+TCRαβ- cells in male rat SC. These changes were associated with greater increase in the nuclear factor (erythroid-derived 2)-like 2 expression in male rats administered with DMF. In accordance with the previous findings, DMF diminished reactive nitrogen and oxygen species generation and consistently, SC level of advanced oxidation protein products, to the greater extent in male rats. Overall, our study indicates sex-specificity in the sensitivity of DMF cellular and molecular targets and encourages sex-based clinical research to define significance of sex for action of therapeutic agents moderating autoimmune neuroinflammation-/oxidative stress-related nervous tissue damage.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Jelena Kotur-Stevuljević
- Department for Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Mirjana Nacka-Aleksić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Ivana Vujnović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11060, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia.
| |
Collapse
|
29
|
Packhäuser KRH, Roman-Sosa G, Ehrhardt J, Krüger D, Zygmunt M, Muzzio DO. A Kinetic Study of CD83 Reveals an Upregulation and Higher Production of sCD83 in Lymphocytes from Pregnant Mice. Front Immunol 2017; 8:486. [PMID: 28491062 PMCID: PMC5405069 DOI: 10.3389/fimmu.2017.00486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/07/2017] [Indexed: 12/15/2022] Open
Abstract
For the normal development of pregnancy, a balance between immune tolerance and defense is crucial. However, the mechanisms mediating such a balance are not fully understood. CD83 is a transmembrane protein whose expression has been linked to anti-inflammatory functions of T and B cells. The soluble form of CD83, released by cleavage of the membrane-bound protein, has strong anti-inflammatory properties and was successfully tested in different mouse models. It is assumed that this molecule contributes to the establishment of immune tolerance. Therefore, we postulated that the expression of CD83 is crucial for immune tolerance during pregnancy in mice. Here, we demonstrated that the membrane-bound form of CD83 was upregulated in T and B cells during allogeneic murine pregnancies. An upregulation was also evident in the main splenic B cell subtypes: marginal zone, follicular zone, and transitional B cells. We also showed that there was an augmentation in the number of CD83+ cells toward the end of pregnancy within splenic B and CD4+ T cells, while CD83+ dendritic cells were reduced in spleen and inguinal lymph nodes of pregnant mice. Additionally, B lymphocytes in late-pregnancy presented a markedly higher sensitivity to LPS in terms of CD83 expression and sCD83 release. Progesterone induced a dosis-dependent upregulation of CD83 on T cells. Our data suggest that the regulation of CD83 expression represents a novel pathway of fetal tolerance and protection against inflammatory threats during pregnancy.
Collapse
Affiliation(s)
| | - Gleyder Roman-Sosa
- Département de Virologie, Unité de Virologie Structurale, Institut Pasteur, Paris, France
| | - Jens Ehrhardt
- Research Laboratory, Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| | - Diana Krüger
- Research Laboratory, Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| | - Marek Zygmunt
- Research Laboratory, Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| | - Damián Oscar Muzzio
- Research Laboratory, Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
30
|
Heilingloh CS, Klingl S, Egerer-Sieber C, Schmid B, Weiler S, Mühl-Zürbes P, Hofmann J, Stump JD, Sticht H, Kummer M, Steinkasserer A, Muller YA. Crystal Structure of the Extracellular Domain of the Human Dendritic Cell Surface Marker CD83. J Mol Biol 2017; 429:1227-1243. [PMID: 28315353 DOI: 10.1016/j.jmb.2017.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/10/2017] [Accepted: 03/05/2017] [Indexed: 11/27/2022]
Abstract
CD83 is a type-I membrane protein and an efficient marker for identifying mature dendritic cells. Whereas membrane-bound, full-length CD83 co-stimulates the immune system, a soluble variant (sCD83), consisting of the extracellular domain only, displays strong immune-suppressive activities. Besides a prediction that sCD83 adopts a V-set Ig-like fold, however, little is known about the molecular architecture of CD83 and the mechanism by which CD83 exerts its function on dendritic cells and additional immune cells. Here, we report the crystal structure of human sCD83 up to a resolution of 1.7Å solved in three different crystal forms. Interestingly, β-strands C', C″, and D that are typical for V-set Ig-domains could not be traced in sCD83. Mass spectrometry analyses, limited proteolysis experiments, and bioinformatics studies show that the corresponding segment displays enhanced main-chain accessibility, extraordinary low sequence conservation, and a predicted high disorder propensity. Chimeric proteins with amino acid swaps in this segment show unaltered immune-suppressive activities in a TNF-α assay when compared to wild-type sCD83. This strongly indicates that this segment does not participate in the biological activity of CD83. The crystal structure of CD83 shows the recurrent formation of dimers and trimers in the various crystal forms and reveals strong structural similarities between sCD83 and B7 family members and CD48, a signaling lymphocyte activation molecule family member. This suggests that CD83 exerts its immunological activity by mixed homotypic and heterotypic interactions as typically observed for proteins present in the immunological synapse.
Collapse
Affiliation(s)
- Christiane S Heilingloh
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Hartmannstr. 14, D-91052 Erlangen, Germany
| | - Stefan Klingl
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, D-91052 Erlangen, Germany
| | - Claudia Egerer-Sieber
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, D-91052 Erlangen, Germany
| | - Benedikt Schmid
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, D-91052 Erlangen, Germany
| | - Sigrid Weiler
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, D-91052 Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Hartmannstr. 14, D-91052 Erlangen, Germany
| | - Jörg Hofmann
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Joachim D Stump
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstraße 17, D-91054 Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstraße 17, D-91054 Erlangen, Germany
| | - Mirko Kummer
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Hartmannstr. 14, D-91052 Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Hartmannstr. 14, D-91052 Erlangen, Germany
| | - Yves A Muller
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, D-91052 Erlangen, Germany.
| |
Collapse
|
31
|
Horvatinovich JM, Grogan EW, Norris M, Steinkasserer A, Lemos H, Mellor AL, Tcherepanova IY, Nicolette CA, DeBenedette MA. Soluble CD83 Inhibits T Cell Activation by Binding to the TLR4/MD-2 Complex on CD14 + Monocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2286-2301. [PMID: 28193829 PMCID: PMC5337811 DOI: 10.4049/jimmunol.1600802] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 01/13/2017] [Indexed: 12/17/2022]
Abstract
The transmembrane protein CD83, expressed on APCs, B cells, and T cells, can be expressed as a soluble form generated by alternative splice variants and/or by shedding. Soluble CD83 (sCD83) was shown to be involved in negatively regulating the immune response. sCD83 inhibits T cell proliferation in vitro, supports allograft survival in vivo, prevents corneal transplant rejection, and attenuates the progression and severity of autoimmune diseases and experimental colitis. Although sCD83 binds to human PBMCs, the specific molecules that bind sCD83 have not been identified. In this article, we identify myeloid differentiation factor-2 (MD-2), the coreceptor within the TLR4/MD-2 receptor complex, as the high-affinity sCD83 binding partner. TLR4/MD-2 mediates proinflammatory signal delivery following recognition of bacterial LPSs. However, altering TLR4 signaling can attenuate the proinflammatory cascade, leading to LPS tolerance. Our data show that binding of sCD83 to MD-2 alters this signaling cascade by rapidly degrading IL-1R-associated kinase-1, leading to induction of the anti-inflammatory mediators IDO, IL-10, and PGE2 in a COX-2-dependent manner. sCD83 inhibited T cell proliferation, blocked IL-2 secretion, and rendered T cells unresponsive to further downstream differentiation signals mediated by IL-2. Therefore, we propose the tolerogenic mechanism of action of sCD83 to be dependent on initial interaction with APCs, altering early cytokine signal pathways and leading to T cell unresponsiveness.
Collapse
Affiliation(s)
| | | | - Marcus Norris
- Research Department, Argos Therapeutics, Inc., Durham, NC 27704
| | - Alexander Steinkasserer
- Cancer Immunology, Department of Immune Modulation, University Hospital Erlangen, University of Erlangen-Nuremberg, D-91052 Erlangen, Germany; and
| | - Henrique Lemos
- Inflammation and Tolerance Program, Cancer Center, Georgia Regents University, Augusta, GA 30912
| | - Andrew L Mellor
- Inflammation and Tolerance Program, Cancer Center, Georgia Regents University, Augusta, GA 30912
| | | | | | | |
Collapse
|
32
|
Heilingloh CS, Grosche L, Kummer M, Mühl-Zürbes P, Kamm L, Scherer M, Latzko M, Stamminger T, Steinkasserer A. The Major Immediate-Early Protein IE2 of Human Cytomegalovirus Is Sufficient to Induce Proteasomal Degradation of CD83 on Mature Dendritic Cells. Front Microbiol 2017; 8:119. [PMID: 28203230 PMCID: PMC5285329 DOI: 10.3389/fmicb.2017.00119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/17/2017] [Indexed: 01/03/2023] Open
Abstract
Human cytomegalovirus (HCMV) is the prototypic beta-herpesvirus and widespread throughout the human population. While infection is asymptomatic in healthy individuals, it can lead to high morbidity and mortality in immunocompromised persons. Importantly, HCMV evolved multiple strategies to interfere with immune cell function in order to establish latency in infected individuals. As mature DCs (mDCs) are antigen-presenting cells able to activate naïve T cells they play a crucial role during induction of effective antiviral immune responses. Interestingly, earlier studies demonstrated that the functionally important mDC surface molecule CD83 is down-regulated upon HCMV infection resulting in a reduced T cell stimulatory capacity of the infected cells. However, the viral effector protein and the precise mechanism of HCMV-mediated CD83 reduction remain to be discovered. Using flow cytometric analyses, we observed significant down-modulation of CD83 surface expression becoming significant already 12 h after HCMV infection. Moreover, Western bot analyses revealed that, in sharp contrast to previous studies, loss of CD83 is not restricted to the membrane-bound molecule, but also occurs intracellularly. Furthermore, inhibition of the proteasome almost completely restored CD83 surface expression during HCMV infection. Results of infection kinetics and cycloheximide-actinomycin D-chase experiments, strongly suggested that an HCMV immediate early gene product is responsible for the induction of CD83 down-modulation. Consequently, we were able to identify the major immediate early protein IE2 as the viral effector protein that induces proteasomal CD83 degradation.
Collapse
Affiliation(s)
| | - Linda Grosche
- Department of Immune Modulation, University Hospital Erlangen Erlangen, Germany
| | - Mirko Kummer
- Department of Immune Modulation, University Hospital Erlangen Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, University Hospital Erlangen Erlangen, Germany
| | - Lisa Kamm
- Department of Immune Modulation, University Hospital Erlangen Erlangen, Germany
| | - Myriam Scherer
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg Erlangen, Germany
| | - Melanie Latzko
- Department of Immune Modulation, University Hospital Erlangen Erlangen, Germany
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg Erlangen, Germany
| | | |
Collapse
|
33
|
Ju X, Silveira PA, Hsu WH, Elgundi Z, Alingcastre R, Verma ND, Fromm PD, Hsu JL, Bryant C, Li Z, Kupresanin F, Lo TH, Clarke C, Lee K, McGuire H, Fazekas de St Groth B, Larsen SR, Gibson J, Bradstock KF, Clark GJ, Hart DNJ. The Analysis of CD83 Expression on Human Immune Cells Identifies a Unique CD83+-Activated T Cell Population. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4613-4625. [PMID: 27837105 DOI: 10.4049/jimmunol.1600339] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 10/10/2016] [Indexed: 02/02/2023]
Abstract
CD83 is a member of the Ig gene superfamily, first identified in activated lymphocytes. Since then, CD83 has become an important marker for defining activated human dendritic cells (DC). Several potential CD83 mRNA isoforms have been described, including a soluble form detected in human serum, which may have an immunosuppressive function. To further understand the biology of CD83, we examined its expression in different human immune cell types before and after activation using a panel of mouse and human anti-human CD83 mAb. The mouse anti-human CD83 mAbs, HB15a and HB15e, and the human anti-human CD83 mAb, 3C12C, were selected to examine cytoplasmic and surface CD83 expression, based on their different binding characteristics. Glycosylation of CD83, the CD83 mRNA isoforms, and soluble CD83 released differed among blood DC, monocytes, and monocyte-derived DC, and other immune cell types. A small T cell population expressing surface CD83 was identified upon T cell stimulation and during allogeneic MLR. This subpopulation appeared specifically during viral Ag challenge. We did not observe human CD83 on unstimulated human natural regulatory T cells (Treg), in contrast to reports describing expression of CD83 on mouse Treg. CD83 expression was increased on CD4+, CD8+ T, and Treg cells in association with clinical acute graft-versus-host disease in allogeneic hematopoietic cell transplant recipients. The differential expression and function of CD83 on human immune cells reveal potential new roles for this molecule as a target of therapeutic manipulation in transplantation, inflammation, and autoimmune diseases.
Collapse
Affiliation(s)
- Xinsheng Ju
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
| | - Pablo A Silveira
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Wei-Hsun Hsu
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zehra Elgundi
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
| | - Renz Alingcastre
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
| | - Nirupama D Verma
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
| | - Phillip D Fromm
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jennifer L Hsu
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Institute of Haematology, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Christian Bryant
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Institute of Haematology, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Ziduo Li
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Fiona Kupresanin
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
| | - Tsun-Ho Lo
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Candice Clarke
- Anatomical Pathology Department, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia; and
| | - Kenneth Lee
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
- Anatomical Pathology Department, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia; and
| | - Helen McGuire
- Centenary Institute, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| | | | - Stephen R Larsen
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
- Institute of Haematology, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, Australia
| | - John Gibson
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
- Institute of Haematology, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Kenneth F Bradstock
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Georgina J Clark
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Derek N J Hart
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, New South Wales 2139, Australia;
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
34
|
Han H, Liang X, Ekberg M, Kritikou JS, Brunnström Å, Pelcman B, Matl M, Miao X, Andersson M, Yuan X, Schain F, Parvin S, Melin E, Sjöberg J, Xu D, Westerberg LS, Björkholm M, Claesson HE. Human 15-lipoxygenase-1 is a regulator of dendritic-cell spreading and podosome formation. FASEB J 2016; 31:491-504. [PMID: 27825104 DOI: 10.1096/fj.201600679rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/04/2016] [Indexed: 01/20/2023]
Abstract
Dendritic cells (DCs) involved in proinflammatory immune responses derive mainly from peripheral monocytes, and the cells subsequently mature and migrate into the inflammatory micromilieu. Here we report that suppressing of 15-lipoxygenase-1 led to a substantial reduction in DC spreading and podosome formation in vitro. The surface expression of CD83 was significantly lower in both sh-15-lipoxygenase-1 (15-LOX-1)-transduced cells and DCs cultivated in the presence of a novel specific 15-LOX-1 inhibitor. The T-cell response against tetanus-pulsed DCs was only affected to a minor extent on inhibition of 15-LOX-1. In contrast, endocytosis and migration ability of DCs were significantly suppressed on 15-LOX-1 inhibition. The expression of 15-LOX-1 in DCs was also demonstrated in affected human skin in atopic and contact dermatitis, showing that the enzyme is indeed expressed in inflammatory diseases in vivo. This study demonstrated that inhibiting 15-LOX-1 led to an impaired podosome formation in DCs, and consequently suppressed antigen uptake and migration capacity. These results indicated that 15-LOX-1 is a potential target for inhibiting the trafficking of DCs to lymphoid organs and inflamed tissues and decreasing the inflammatory response attenuating symptoms of certain immunologic and inflammatory disorders such as dermatitis.-Han, H., Liang, X., Ekberg, M., Kritikou, J. S., Brunnström, Å., Pelcman, B., Matl, M., Miao, X., Andersson, M., Yuan, X., Schain, F., Parvin, S., Melin, E., Sjöberg, J., Xu, D., Westerberg, L. S., Björkholm, M., Claesson, H.-E. Human 15-lipoxygenase-1 is a regulator of dendritic-cell spreading and podosome formation.
Collapse
Affiliation(s)
- Hongya Han
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden; .,Division of Hematology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Xiuming Liang
- Division of Hematology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Monica Ekberg
- Division of Hematology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Joanna S Kritikou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Brunnström
- Division of Hematology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Benjamin Pelcman
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| | - Maria Matl
- Clinical Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Xinyan Miao
- Clinical Pharmacology Group, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden; and
| | - Margareta Andersson
- Division of Hematology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Xiaotian Yuan
- Division of Hematology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Frida Schain
- Division of Hematology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Selina Parvin
- Division of Hematology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Eva Melin
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Jan Sjöberg
- Division of Hematology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Dawei Xu
- Division of Hematology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Björkholm
- Division of Hematology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Hans-Erik Claesson
- Division of Hematology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
35
|
von Rohrscheidt J, Petrozziello E, Nedjic J, Federle C, Krzyzak L, Ploegh HL, Ishido S, Steinkasserer A, Klein L. Thymic CD4 T cell selection requires attenuation of March8-mediated MHCII turnover in cortical epithelial cells through CD83. J Exp Med 2016; 213:1685-94. [PMID: 27503071 PMCID: PMC4995086 DOI: 10.1084/jem.20160316] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/10/2016] [Indexed: 01/12/2023] Open
Abstract
Deficiency of CD83 in thymic epithelial cells (TECs) dramatically impairs thymic CD4 T cell selection. CD83 can exert cell-intrinsic and -extrinsic functions through discrete protein domains, but it remains unclear how CD83's capacity to operate through these alternative functional modules relates to its crucial role in TECs. In this study, using viral reconstitution of gene function in TECs, we found that CD83's transmembrane domain is necessary and sufficient for thymic CD4 T cell selection. Moreover, a ubiquitination-resistant MHCII variant restored CD4 T cell selection in Cd83(-/-) mice. Although during dendritic cell maturation CD83 is known to stabilize MHCII through opposing the ubiquitin ligase March1, regulation of March1 did not account for CD83's TEC-intrinsic role. Instead, we provide evidence that MHCII in cortical TECs (cTECs) is targeted by March8, an E3 ligase of as yet unknown physiological substrate specificity. Ablating March8 in Cd83(-/-) mice restored CD4 T cell development. Our results identify CD83-mediated MHCII stabilization through antagonism of March8 as a novel functional adaptation of cTECs for T cell selection. Furthermore, these findings suggest an intriguing division of labor between March1 and March8 in controlling inducible versus constitutive MHCII expression in hematopoietic antigen-presenting cells versus TECs.
Collapse
Affiliation(s)
- Julia von Rohrscheidt
- Institute for Immunology, Biomedical Center Munich, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Elisabetta Petrozziello
- Institute for Immunology, Biomedical Center Munich, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Jelena Nedjic
- Institute for Immunology, Biomedical Center Munich, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Christine Federle
- Institute for Immunology, Biomedical Center Munich, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Lena Krzyzak
- Department of Immune Modulation, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Hidde L Ploegh
- Department of Biology, Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | | | - Ludger Klein
- Institute for Immunology, Biomedical Center Munich, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
36
|
Krzyzak L, Seitz C, Urbat A, Hutzler S, Ostalecki C, Gläsner J, Hiergeist A, Gessner A, Winkler TH, Steinkasserer A, Nitschke L. CD83 Modulates B Cell Activation and Germinal Center Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:3581-94. [PMID: 26983787 DOI: 10.4049/jimmunol.1502163] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/18/2016] [Indexed: 12/16/2023]
Abstract
CD83 is a maturation marker for dendritic cells. In the B cell lineage, CD83 is expressed especially on activated B cells and on light zone B cells during the germinal center (GC) reaction. The function of CD83 during GC responses is unclear. CD83(-/-) mice have a strong reduction of CD4(+) T cells, which makes it difficult to analyze a functional role of CD83 on B cells during GC responses. Therefore, in the present study we generated a B cell-specific CD83 conditional knockout (CD83 B-cKO) model. CD83 B-cKO B cells show defective upregulation of MHC class II and CD86 expression and impaired proliferation after different stimuli. Analyses of GC responses after immunization with various Ags revealed a characteristic shift in dark zone and light zone B cell numbers, with an increase of B cells in the dark zone of CD83 B-cKO mice. This effect was not accompanied by alterations in the level of IgG immune responses or by major differences in affinity maturation. However, an enhanced IgE response was observed in CD83 B-cKO mice. Additionally, we observed a strong competitive disadvantage of CD83-cKO B cells in GC responses in mixed bone marrow chimeras. Furthermore, infection of mice with Borrelia burgdorferi revealed a defect in bacterial clearance of CD83 B-cKO mice with a shift toward a Th2 response, indicated by a strong increase in IgE titers. Taken together, our results show that CD83 is important for B cell activation and modulates GC composition and IgE Ab responses in vivo.
Collapse
Affiliation(s)
- Lena Krzyzak
- Department of Immune Modulation, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Christine Seitz
- Department of Immune Modulation, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Anne Urbat
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Stefan Hutzler
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Christian Ostalecki
- Department of Dermatology, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Joachim Gläsner
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; and
| | - Andreas Hiergeist
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; and
| | - André Gessner
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; and
| | - Thomas H Winkler
- Division of Genetics, Nikolaus Fiebiger Center for Molecular Medicine, University of Erlangen, 91058 Erlangen, Germany
| | | | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany;
| |
Collapse
|
37
|
Cho HW, Kim SY, Sohn DH, Lee MJ, Park MY, Sohn HJ, Cho HI, Kim TG. Triple costimulation via CD80, 4-1BB, and CD83 ligand elicits the long-term growth of Vγ9Vδ2 T cells in low levels of IL-2. J Leukoc Biol 2016; 99:521-9. [PMID: 26561569 DOI: 10.1189/jlb.1hi0814-409rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/11/2015] [Indexed: 12/16/2023] Open
Abstract
Human γδ T cells play important roles in the regulation of infection and cancer. To understand the roles of costimulatory signals in activation and expansion ex vivo, Vγ9Vδ2 T cells were grown with artificial APCs that express CD83, 4-1BB ligand, and/or CD32, which allowed a loading of αCD3 and αCD28 antibodies. The costimulatory signals through CD80, 4-1BB, and CD83 ligand in low levels of IL-2 triggered an explosive ex vivo proliferation of Vγ9Vδ2 T cells capable of secreting high levels of IL-2, IFN-γ, and TNF-α. Moreover, the triple-costimulatory signals cause augmented cell viabilities for long-term growth of Vγ9Vδ2 T cells, resulting in phenotypic changes to CD27(-)CD45RA(+) effector memory-like cells. Notably, we observed that CD83 ligand signaling is crucial to promote ex vivo expansion, survival, and cytolytic effector functions of Vγ9Vδ2 T cells. In contrast, 4-1BB signaling is moderately important in up-regulating surface molecules on Vγ9Vδ2 T cells. Consequently, γδ T cells stimulated in the presence of triple-costimulatory signals have diverse cytolytic effector molecules, including perforin, granzyme A, granzyme B, and Fas ligand, eliciting potent cytolytic activities against tumor cells. Overall, our results provide insights into the roles of costimulatory signals in manufacturing long-lived and fully functional Vγ9Vδ2 T cells that could be useful against cancers.
Collapse
Affiliation(s)
- Hyun-Woo Cho
- *Department of Microbiology, Catholic Hematopoietic Stem Cell Bank, and Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Su-Yeon Kim
- *Department of Microbiology, Catholic Hematopoietic Stem Cell Bank, and Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Dae-Hee Sohn
- *Department of Microbiology, Catholic Hematopoietic Stem Cell Bank, and Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Min-Ji Lee
- *Department of Microbiology, Catholic Hematopoietic Stem Cell Bank, and Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-Young Park
- *Department of Microbiology, Catholic Hematopoietic Stem Cell Bank, and Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun-Jung Sohn
- *Department of Microbiology, Catholic Hematopoietic Stem Cell Bank, and Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun-Il Cho
- *Department of Microbiology, Catholic Hematopoietic Stem Cell Bank, and Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tai-Gyu Kim
- *Department of Microbiology, Catholic Hematopoietic Stem Cell Bank, and Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
38
|
Carlsson JA, Wold AE, Sandberg AS, Östman SM. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro. PLoS One 2015; 10:e0143741. [PMID: 26619195 PMCID: PMC4664484 DOI: 10.1371/journal.pone.0143741] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 11/09/2015] [Indexed: 11/25/2022] Open
Abstract
Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells.
Collapse
Affiliation(s)
- Johan A. Carlsson
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Agnes E. Wold
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ann-Sofie Sandberg
- Divisions of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Sofia M. Östman
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
39
|
Kretschmer B, Weber J, Hutloff A, Fleischer B, Breloer M, Osterloh A. Anti-CD83 promotes IgG1 isotype switch in marginal zone B cells in response to TI-2 antigen. Immunobiology 2015; 220:964-75. [PMID: 25766204 DOI: 10.1016/j.imbio.2015.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 12/23/2022]
Abstract
CD83 is a transmembrane glycoprotein that is rapidly up-regulated on activated B cells. Although CD83 itself is incapable to transduce intracellular signaling, it acts as a negative regulator of B cell function. We have recently described that a single application of anti-CD83 antibody results in dramatically enhanced production of antigen-specific IgG1 but not other isotypes upon immunization of mice with the TI-2 model antigen (Ag) NIP-Ficoll. This effect was mediated by the binding of anti-CD83 to CD83 on the surface of B cells themselves. In the current study we show that administration of anti-CD83 enhances IgG1-production independent of IL-4. Application of anti-CD83 does not alter the proliferation and general expansion of NIP-specific B cells. In the presence of anti-CD83, immunized mice develop normal frequencies of plasmablasts in response to NIP-Ficoll of which an increased number produces IgG1. These cells localize in extrafollicular foci in the spleen of immunized mice and originate from the marginal zone B cell pool. Taken together, our results indicate that CD83 engagement in vivo does not generally enhance B cell activation but selectively promotes IgG1 class switch in marginal zone B cells in response to TI-2 Ag.
Collapse
Affiliation(s)
- Birte Kretschmer
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Jan Weber
- Chronic Immune Reactions, German Rheumatism Research Centre (DRFZ), 10117 Berlin, Germany; Molecular Immunology, Robert Koch Institute, 13353 Berlin, Germany
| | - Andreas Hutloff
- Chronic Immune Reactions, German Rheumatism Research Centre (DRFZ), 10117 Berlin, Germany; Molecular Immunology, Robert Koch Institute, 13353 Berlin, Germany
| | - Bernhard Fleischer
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; Institute for Immunology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Minka Breloer
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Anke Osterloh
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
| |
Collapse
|
40
|
Tanaka Y, Mizuguchi M, Takahashi Y, Fujii H, Tanaka R, Fukushima T, Tomoyose T, Ansari AA, Nakamura M. Human T-cell leukemia virus type-I Tax induces the expression of CD83 on T cells. Retrovirology 2015; 12:56. [PMID: 26129803 PMCID: PMC4487981 DOI: 10.1186/s12977-015-0185-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/21/2015] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND CD83, a cell surface glycoprotein that is stably expressed on mature dendritic cells, can be transiently induced on other hematopoietic cell lineages upon cell activation. In contrast to the membrane form of CD83, soluble CD83 appears to be immunosuppressive. In an analysis of the phenotype of leukemic CD4(+) T cells from patients with adult T-cell leukemia (ATL), we found that a number of primary CD4(+) T cells became positive for cell surface CD83 after short-term culture, and that most of these CD83(+) CD4(+) T cells were positive for human T-cell leukemia virus type-I (HTLV-I) Tax (Tax1). We hypothesized that Tax1 is involved in the induction of CD83. RESULT We found that CD83 was expressed selectively on Tax1-expressing human CD4(+) T cells in short-term cultured peripheral blood mononuclear cells (PBMCs) isolated from HTLV-I(+) donors, including ATL patients and HTLV-I carriers. HTLV-I-infected T cell lines expressing Tax1 also expressed cell surface CD83 and released soluble CD83. CD83 can be expressed in the JPX-9 cell line by cadmium-mediated Tax1 induction and in Jurkat cells or PBMCs by Tax1 introduction via infection with a recombinant adenovirus carrying the Tax1 gene. The CD83 promoter was activated by Tax1 in an NF-κB-dependent manner. Based on a previous report showing soluble CD83-mediated prostaglandin E2 (PGE2) production from human monocytes in vitro, we tested if PGE2 affected HTLV-I propagation, and found that PGE2 strongly stimulated expression of Tax1 and viral structural molecules. CONCLUSIONS Our results suggest that HTLV-I induces CD83 expression on T cells via Tax1 -mediated NF-κB activation, which may promote HTLV-I infection in vivo.
Collapse
Affiliation(s)
- Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Mariko Mizuguchi
- Human Gene Sciences Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan.
| | - Yoshiaki Takahashi
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Hideki Fujii
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Reiko Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Takuya Fukushima
- Laboratory of Hematoimmunology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Takeaki Tomoyose
- Division of Endocrinology, Diabetes and Metabolism, Haematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Aftab A Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Masataka Nakamura
- Human Gene Sciences Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
41
|
Stein MF, Blume K, Heilingloh CS, Kummer M, Biesinger B, Sticht H, Steinkasserer A. CD83 and GRASP55 interact in human dendritic cells. Biochem Biophys Res Commun 2015; 459:42-8. [PMID: 25701785 DOI: 10.1016/j.bbrc.2015.02.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 11/23/2022]
Abstract
CD83 is one of the best known surface markers for mature human dendritic cells (DCs). The full-length 45 kDa type-I membrane-bound form (mbCD83) is strongly glycosylated upon DCs maturation. As co-stimulatory properties of CD83 are attributed to mbCD83 surface expression is required for efficient T-cell stimulation by mature DCs. By yeast two-hybrid screening, we were able to identify GRASP55 as interaction partner of CD83. DCs maturation induces endogenous CD83 protein expression with simultaneous regulation of CD83 glycosylation, interaction and co-localization with GRASP55 and CD83 surface exposure. GRASP55 is especially known for its role in maintaining Golgi architecture, but also plays a role in Golgi transport of specific cargo proteins bearing a C-terminal valine residue. Here we additionally demonstrate that binding of CD83 and GRASP55 rely on the C-terminal TELV-motif of CD83. Mutation of this TELV-motif not only disrupted binding to GRASP55, but also altered the glycosylation pattern of CD83 and reduced its membrane expression. Here we show for the first time that GRASP55 interacts with CD83 shortly after induction of DC maturation and that this interaction plays a role in CD83 glycosylation as well as in surface expression of CD83 on DCs.
Collapse
Affiliation(s)
- Marcello F Stein
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katja Blume
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Mirko Kummer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Heinrich Sticht
- Department of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
42
|
Bates JM, Flanagan K, Mo L, Ota N, Ding J, Ho S, Liu S, Roose-Girma M, Warming S, Diehl L. Dendritic cell CD83 homotypic interactions regulate inflammation and promote mucosal homeostasis. Mucosal Immunol 2015; 8:414-28. [PMID: 25204675 PMCID: PMC4326976 DOI: 10.1038/mi.2014.79] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 07/26/2014] [Indexed: 02/04/2023]
Abstract
Dendritic cells (DCs) form an extensive network in the intestinal lamina propria, which orchestrates the mucosal immune response. Alterations in DC function can predispose to inflammatory bowel disease, although by unknown mechanisms. We show that CD83, a highly regulated DC cell surface protein, modulates the immune response to prevent colitis. Mice with a conditional knockout of CD83 in DCs develop exacerbated colitis following dextran sodium sulfate challenge, whereas mucosal overexpression of CD83 inhibits DC inflammatory response and protects against colitis. These CD83 perturbations can be modeled in vitro where we show that CD83 homotypic interaction occurs via cell-cell contact and inhibits pro-inflammatory responses. CD83 knockdown or cytoplasmic truncation abrogates the effects of homotypic binding. We demonstrate that CD83 homotypic interaction regulates DC activation via the mitogen-activated protein kinase pathway by inhibiting p38α phosphorylation. Our findings indicate that CD83 homotypic interactions regulate DC activation and promote mucosal homeostasis.
Collapse
Affiliation(s)
- J M Bates
- Department of Pathology, Genetech, South San Francisco, California, USA
| | - K Flanagan
- Department of Pathology, Genetech, South San Francisco, California, USA
| | - L Mo
- Department of Pathology, Genetech, South San Francisco, California, USA
| | - N Ota
- Department of Immunology, Genetech, South San Francisco, California, USA
| | - J Ding
- Department of Immunology, Genetech, South San Francisco, California, USA
| | - S Ho
- Department of Pathology, Genetech, South San Francisco, California, USA
| | - S Liu
- Department of Pathology, Genetech, South San Francisco, California, USA
| | - M Roose-Girma
- Department of Molecular Biology, Genentech, South San Francisco, California, USA
| | - S Warming
- Department of Molecular Biology, Genentech, South San Francisco, California, USA
| | - L Diehl
- Department of Pathology, Genetech, South San Francisco, California, USA
| |
Collapse
|
43
|
Kreiser S, Eckhardt J, Kuhnt C, Stein M, Krzyzak L, Seitz C, Tucher C, Knippertz I, Becker C, Günther C, Steinkasserer A, Lechmann M. Murine CD83-positive T cells mediate suppressor functions in vitro and in vivo. Immunobiology 2015; 220:270-9. [PMID: 25151500 DOI: 10.1016/j.imbio.2014.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/22/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
Abstract
The CD83 molecule (CD83) is a well-known surface marker present on mature dendritic cells (mDC). In this study, we show that CD83 is also expressed on a subset of T cells which mediate regulatory T cell (Treg)-like suppressor functions in vitro and in vivo. Treg-associated molecules including CD25, cytotoxic T lymphocyte antigen-4 (CTLA-4), glucocorticoid-induced TNFR family-related gene (GITR), Helios and neuropilin-1 (NRP-1) as well as forkhead box protein 3 (FOXP3) were specifically expressed by these CD83(+) T cells. In contrast, CD83(-) T cells showed a naive T cell phenotype with effector T cell properties upon activation. Noteworthy, CD83(-) T cells were not able to upregulate CD83 despite activation. Furthermore, CD83(+) T cells suppressed the proliferation and inflammatory cytokine release of CD83(-) T cells in vitro. Strikingly, stimulated CD83(+) T cells released soluble CD83 (sCD83), which has been reported to possess immunosuppressive properties. In vivo, using the murine transfer colitis model we could show that CD83(+) T cells were able to suppress colitis symptoms while CD83(-) T cells possessed effector functions. In addition, this CD83 expression is also conserved on expanded human Treg. Thus, from these studies we conclude that CD83(+) T cells share important features with regulatory T cells, identifying CD83 as a novel lineage marker to discriminate between different T cell populations.
Collapse
Affiliation(s)
- Simon Kreiser
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen D-91052, Germany
| | - Jenny Eckhardt
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen D-91052, Germany
| | - Christine Kuhnt
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen D-91052, Germany
| | - Marcello Stein
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen D-91052, Germany
| | - Lena Krzyzak
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen D-91052, Germany
| | - Christine Seitz
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen D-91052, Germany
| | - Christine Tucher
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen D-91052, Germany
| | - Ilka Knippertz
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen D-91052, Germany
| | - Christoph Becker
- Department of Medicine 1, University Hospital Erlangen, Erlangen D-91052, Germany
| | - Claudia Günther
- Department of Medicine 1, University Hospital Erlangen, Erlangen D-91052, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen D-91052, Germany
| | - Matthias Lechmann
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen D-91052, Germany; Department of Medicine 1, University Hospital Erlangen, Erlangen D-91052, Germany.
| |
Collapse
|
44
|
Lin H, Liang S, Zhong Z, Wen J, Li W, Wang L, Xu J, Zhong F, Li X. Soluble CD83 inhibits human monocyte differentiation into dendritic cells in vitro. Cell Immunol 2014; 292:25-31. [PMID: 25243645 DOI: 10.1016/j.cellimm.2014.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/19/2014] [Accepted: 08/07/2014] [Indexed: 01/11/2023]
Abstract
Human CD83 is type I transmembrane glycoprotein, mainly expressed on mature dendritic cells (DCs), so it was first described as a molecular marker for mature DC. However, increasing evidence has demonstrated that CD83 is also an immunomodulatory molecule either its membrane-bound CD83 (mCD83) or soluble CD83 (sCD83) released from DCs. Intriguingly, the mCD83 possesses stimulatory effects on immune response, on the contrary, the sCD83 has inhibitory effects. Whether the sCD83 has the inhibitory effects on human monocyte differentiation into DCs is unknown. To this end, we prepared the recombinant human sCD83 in HEK293T cells and treated human monocytes being differentiated into DCs in vitro with the sCD83, and evaluate sCD83 inhibitory effects on immune response by analyzing the surface marker pattern of the cells. The results showed that the sCD83, especially glycosylated sCD83 could bind the monocytes and significantly inhibited the depression of CD14 expressions (P<0.01) and reduced CD1a, CD80, CD86 and MHC II expressions (P<0.01 or P<0.05) during the differentiation, indicating that the sCD83 can inhibit monocyte differentiation into DCs, and suggesting that a negative feedback regulation may exist in monocyte differentiation into DCs based on sCD83 released from the mature DCs.
Collapse
Affiliation(s)
- Hongyu Lin
- Department of Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071001, China
| | - Shuang Liang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhenyu Zhong
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiexia Wen
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071001, China
| | - Wenyan Li
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071001, China
| | - Liyue Wang
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071001, China
| | - Jian Xu
- Department of Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Fei Zhong
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071001, China.
| | - Xiujin Li
- Department of Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
45
|
Eckhardt J, Kreiser S, Döbbeler M, Nicolette C, DeBenedette MA, Tcherepanova IY, Ostalecki C, Pommer AJ, Becker C, Günther C, Zinser E, Mak TW, Steinkasserer A, Lechmann M. Soluble CD83 ameliorates experimental colitis in mice. Mucosal Immunol 2014; 7:1006-18. [PMID: 24424524 DOI: 10.1038/mi.2013.119] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 12/02/2013] [Indexed: 02/04/2023]
Abstract
The physiological balance between pro- and anti-inflammatory processes is dysregulated in inflammatory bowel diseases (IBD) as in Crohn's disease and ulcerative colitis. Conventional therapy uses anti-inflammatory and immunosuppressive corticosteroids to treat acute-phase symptoms. However, low remission rate and strong side effects of these therapies are not satisfying. Thus, there is a high medical need for new therapeutic strategies. Soluble CD83, the extracellular domain of the transmembrane CD83 molecule, has been reported to have interesting therapeutic and immunosuppressive properties by suppressing dendritic cell (DC)-mediated T-cell activation and inducing tolerogenic DCs. However, the expression and function of CD83 in IBD is still unknown. Here, we show that CD83 expression is upregulated by different leukocyte populations in a chemical-induced murine colitis model. Furthermore, in this study the potential of sCD83 to modulate colitis using an experimental murine colitis model was investigated. Strikingly, sCD83 ameliorated the clinical disease symptoms, drastically reduced mortality, and strongly decreased inflammatory cytokine expression in mesenteric lymph nodes and colon. The infiltration of macrophages and granulocytes into colonic tissues was vigorously inhibited. Mechanistically, we could show that sCD83-induced expression of indolamine 2,3-dioxygenase is essential for its protective effects.
Collapse
Affiliation(s)
- J Eckhardt
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - S Kreiser
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - M Döbbeler
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - C Nicolette
- Argos Therapeutics, Durham, North Carolina, USA
| | | | | | - C Ostalecki
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - A J Pommer
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - C Becker
- Department of Medicine 1, University Hospital Erlangen, Erlangen, Germany
| | - C Günther
- Department of Medicine 1, University Hospital Erlangen, Erlangen, Germany
| | - E Zinser
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - T W Mak
- The Campbell Family Institute for Breast Cancer Research at Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| | - A Steinkasserer
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - M Lechmann
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
46
|
Pinho MP, Migliori IK, Flatow EA, Barbuto JAM. Dendritic cell membrane CD83 enhances immune responses by boosting intracellular calcium release in T lymphocytes. J Leukoc Biol 2014; 95:755-762. [PMID: 24436459 DOI: 10.1189/jlb.0413239] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 12/03/2013] [Accepted: 12/27/2013] [Indexed: 12/22/2022] Open
Abstract
CD83 is a marker of mDCs directly related to their lymphostimulatory ability. Some data suggest that it has a central role in the immune system regulation, but how this function is performed remains to be determined. This work aimed to analyze the influence of CD83, present in mDCs, in the modulation of calcium signaling in T lymphocytes. Mo were differentiated into iDCs and activated with TNF-α. iDCs were treated, 4 h before activation, with siRNACD83, to reduce CD83 expression. Purified allogeneic T lymphocytes were labeled with the calcium indicator Fluo-4-AM, and calcium mobilization in the presence of mDCs was analyzed. CD83 knockdown mDCs induced lower calcium signal amplitude in T lymphocytes (29.0±10.0) compared with siRNAscr-treated mDCs (45.5±5.3). In another set of experiments, surface mDC CD83 was blocked with a specific mAb, and again, decreased calcium signaling in T lymphocytes was detected by flow cytometry and microscopy (fluorescence and confocal). In the presence of antibody, the percentage of responding T cells was reduced from 58.14% to 34.29%. As expected, anti-CD83 antibodies also reduced the proliferation of T lymphocytes (as assessed by CFSE dilution). Finally, in the absence of extracellular calcium, CD83 antibodies abrogated T cell signaling induced by allogeneic mDCs, suggesting that the presence of CD83 in mDC membranes enhances T lymphocyte proliferation by boosting calcium release from intracellular stores in these cells.
Collapse
Affiliation(s)
- Mariana Pereira Pinho
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Isabella Katz Migliori
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | | |
Collapse
|
47
|
Guo Y, Li R, Song X, Zhong Y, Wang C, Jia H, Wu L, Wang D, Fang F, Ma J, Kang W, Sun J, Tian Z, Xiao W. The expression and characterization of functionally active soluble CD83 by Pichia pastoris using high-density fermentation. PLoS One 2014; 9:e89264. [PMID: 24586642 PMCID: PMC3930729 DOI: 10.1371/journal.pone.0089264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/17/2014] [Indexed: 11/18/2022] Open
Abstract
CD83 is a highly glycosylated type I transmembrane glycoprotein that belongs to the immunoglobulin superfamily. CD83 is upregulated during dendritic cell (DC) maturation, which is critical for the initiation of adaptive immune responses. The soluble isoform of CD83 (sCD83) is encoded by alternative splicing from full-length CD83 mRNA and inhibits DC maturation, which suggests that sCD83 acts as a potential immune suppressor. In this study, we developed a sound strategy to express functional sCD83 from Pichia pastoris in extremely high-density fermentation. Purified sCD83 was expressed as a monomer at a yield of more than 200 mg/L and contained N-linked glycosylation sites that were characterized by PNGase F digestion. In vitro tests indicated that recombinant sCD83 bound to its putative counterpart on monocytes and specifically blocked the binding of anti-CD83 antibodies to cell surface CD83 on DCs. Moreover, sCD83 from yeast significantly suppressed ConA-stimulated PBMC proliferation. Therefore, sCD83 that was expressed from the P. pastoris was functionally active and may be used for in vivo and in vitro studies as well as future clinical applications.
Collapse
Affiliation(s)
- Yugang Guo
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Center of Medical Biotechnology of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Rui Li
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiaoping Song
- Department of Pharmacy, Anhui Medical College, Hefei, China
| | - Yongjun Zhong
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chenguang Wang
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hao Jia
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Lidan Wu
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Dong Wang
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Fang Fang
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jiajia Ma
- Center of Medical Biotechnology of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Wenyao Kang
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jie Sun
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Center of Medical Biotechnology of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Center of Medical Biotechnology of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Weihua Xiao
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Center of Medical Biotechnology of Anhui Province, University of Science and Technology of China, Hefei, China
| |
Collapse
|
48
|
Yuan Y, Wan L, Chen Y, Shi M, Wang C, Zhao J, Lu X, Wang H, Lu Y, Cheng J. Production and characterization of human soluble CD83 fused with the fragment crystallizable region of human IgG1 in Pichia pastoris. Appl Microbiol Biotechnol 2013; 97:9409-17. [PMID: 23392767 DOI: 10.1007/s00253-013-4732-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/16/2013] [Accepted: 01/19/2013] [Indexed: 02/05/2023]
Abstract
The cell surface protein CD83 belongs to the immunoglobulin superfamily and is highly expressed on mature dendritic cells. The soluble form of CD83, sCD83, is a potential immune suppressor. In a previous study, recombinant soluble CD83 was expressed in Escherichia coli, resulting in a lack of functional glycosylation. Although eukaryotic cell systems for producing sCD83 offer the advantages of protein processing, folding, and posttranslational modification, these systems are complicated, expensive, and produce low levels of protein. To obtain more efficient expression of sCD83, we expressed human sCD83 fused with fragment crystallizable region of human IgG1 (hIgG1 Fc) in Pichia pastoris. Under the optimal conditions (time of induction, 48 h; inoculum density (OD600), 80; concentration of methanol, 3.0 %; pH 7.0-8.0; concentration of casamino acid, 5.0 %), the purified human sCD83-hIgG1 Fc (hsCD83-Ig) fusion protein existed as dimers at 25-30 mg/L culture. Treatment with PNGase F showed that purified hsCD83-Ig was modified by N-linked glycosylation. Moreover, the hsCD83-Ig expressed in the P. pastoris system could suppress lymphocyte proliferation in ConA-stimulated and one-way mixed lymphocyte reaction systems. Thus, hsCD83-Ig expressed in P. pastoris is functional and may be used in experimental therapies for graft rejection, graft-versus-host disease, and autoimmune diseases.
Collapse
Affiliation(s)
- Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Starke C, Steinkasserer A, Voll RE, Zinser E. Soluble human CD83 ameliorates lupus in NZB/W F1 mice. Immunobiology 2013; 218:1411-5. [PMID: 23886695 DOI: 10.1016/j.imbio.2013.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/23/2013] [Accepted: 06/05/2013] [Indexed: 11/28/2022]
Abstract
In the present study we explored the immunomodulatory potential of prokaryotically expressed soluble CD83 in the treatment of murine lupus using the NZB/W F1 mouse model. Therefore female NZB/W F1 lupus mice were treated either with sCD83 or PBS for 4 weeks. sCD83 treated mice showed a significantly delayed onset of anti-dsDNA autoantibody production when compared with the control group. Importantly, during the treatment period with sCD83 none of the mice showed elevated levels of anti-dsDNA autoantibodies. In addition, NZB/W F1 mice which received sCD83 displayed lower concentrations of anti-histone IgG autoantibodies. Furthermore, there was no difference in total IgG antibodies, indicating a modulatory role for sCD83 in the production of self-reactive antibodies without decreasing total IgG. These results indicate that administration of sCD83 has profound immune-modulatory effects on the induction of autoantibodies in NZB/W F1 lupus mice and may thus be a promising approach to interfere with autoimmunity in SLE and other autoantibody-driven diseases.
Collapse
Affiliation(s)
- Charlotte Starke
- Department of Internal Medicine 3 and Institute of Clinical Immunology, Nikolaus-Fiebiger Center, University of Erlangen-Nuremberg, Erlangen, Germany; Department of Internal Medicine 3, University of Technology, Dresden, Germany
| | | | | | | |
Collapse
|
50
|
Bock F, Rössner S, Onderka J, Lechmann M, Pallotta MT, Fallarino F, Boon L, Nicolette C, DeBenedette MA, Tcherepanova IY, Grohmann U, Steinkasserer A, Cursiefen C, Zinser E. Topical application of soluble CD83 induces IDO-mediated immune modulation, increases Foxp3+ T cells, and prolongs allogeneic corneal graft survival. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:1965-75. [PMID: 23851696 DOI: 10.4049/jimmunol.1201531] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Modulation of immune responses is one of the main research aims in transplant immunology. In this study, we investigate the local immunomodulatory properties of soluble CD83 (sCD83) at the graft-host interface using the high-risk corneal transplantation model. In this model, which mimics the inflammatory status and the preexisting vascularization of high-risk patients undergoing corneal transplantation, allogeneic donor corneas are transplanted onto sCD83-treated recipient animals. This model allows the direct and precise application of the immune modulator at the transplantation side. Interestingly, sCD83 was able to prolong graft survival after systemic application as well as after topical application, which is therapeutically more relevant. The therapeutic effect was accompanied by an increase in the frequency of regulatory T cells and was mediated by the immune-regulatory enzyme IDO and TGF-β. In vitro, sCD83 induced long-term IDO expression in both conventional and plasmacytoid dendritic cells via autocrine or paracrine production of TGF-β, a cytokine previously shown to be an essential mediator of IDO-dependent, long-term tolerance. These findings open new treatment avenues for local immune modulation after organ and tissue transplantation.
Collapse
MESH Headings
- Administration, Ophthalmic
- Allografts
- Animals
- Antigens, CD/administration & dosage
- Antigens, CD/immunology
- Antigens, CD/therapeutic use
- Bone Marrow Cells/immunology
- Cells, Cultured
- Coculture Techniques
- Corneal Transplantation
- Dendritic Cells/immunology
- Drug Evaluation, Preclinical
- Enzyme Induction/drug effects
- Female
- Forkhead Transcription Factors/analysis
- Graft Enhancement, Immunologic
- Graft Survival
- Immunoglobulins/administration & dosage
- Immunoglobulins/immunology
- Immunoglobulins/therapeutic use
- Immunologic Factors/administration & dosage
- Immunologic Factors/immunology
- Immunologic Factors/therapeutic use
- Indoleamine-Pyrrole 2,3,-Dioxygenase/biosynthesis
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/physiology
- Injections, Intraperitoneal
- Membrane Glycoproteins/administration & dosage
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/therapeutic use
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Premedication
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/immunology
- Recombinant Proteins/therapeutic use
- Solubility
- T-Lymphocyte Subsets/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Transforming Growth Factor beta/administration & dosage
- Transforming Growth Factor beta/physiology
- Transforming Growth Factor beta/therapeutic use
- Transplantation Tolerance/drug effects
- CD83 Antigen
Collapse
Affiliation(s)
- Felix Bock
- Department of Ophthalmology, University of Cologne, 50931 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|