1
|
Han XQ, Cui ZW, Ma ZY, Wang J, Hu YZ, Li J, Ye JM, Tafalla C, Zhang YA, Zhang XJ. Phagocytic Plasma Cells in Teleost Fish Provide Insights into the Origin and Evolution of B Cells in Vertebrates. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:730-742. [PMID: 38984862 DOI: 10.4049/jimmunol.2400182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
Teleost IgM+ B cells can phagocytose, like mammalian B1 cells, and secrete Ag-specific IgM, like mammalian B2 cells. Therefore, teleost IgM+ B cells may have the functions of both mammalian B1 and B2 cells. To support this view, we initially found that grass carp (Ctenopharyngodon idella) IgM+ plasma cells (PCs) exhibit robust phagocytic ability, akin to IgM+ naive B cells. Subsequently, we sorted grass carp IgM+ PCs into two subpopulations: nonphagocytic (Pha-IgM+ PCs) and phagocytic IgM+ PCs (Pha+IgM+ PCs), both of which demonstrated the capacity to secrete natural IgM with LPS and peptidoglycan binding capacity. Remarkably, following immunization of grass carp with an Ag, we observed that both Pha-IgM+ PCs and Pha+IgM+ PCs could secrete Ag-specific IgM. Furthermore, in vitro concatenated phagocytosis experiments in which Pha-IgM+ PCs from an initial phagocytosis experiment were sorted and exposed again to beads confirmed that these cells also have phagocytic capabilities, thereby suggesting that all teleost IgM+ B cells have phagocytic potential. Additionally, we found that grass carp IgM+ PCs display classical phenotypic features of macrophages, providing support for the hypothesis that vertebrate B cells evolved from ancient phagocytes. These findings together reveal that teleost B cells are a primitive B cell type with functions reminiscent of both mammalian B1 and B2 cells, providing insights into the origin and evolution of B cells in vertebrates.
Collapse
Affiliation(s)
- Xue-Qing Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zheng-Wei Cui
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zi-You Ma
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jie Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ya-Zhen Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jun Li
- School of Science and Medicine, Lake Superior State University, Sault Sainte Marie, MI
| | - Jian-Min Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Carolina Tafalla
- Animal Health Research Center (CISA), National Institute for Agricultural and Food Research and Technology (INIA), National Research Council (CSIC), Madrid, Spain
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xu-Jie Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
2
|
Ma Y, Jiang T, Zhu X, Xu Y, Wan K, Zhang T, Xie M. Efferocytosis in dendritic cells: an overlooked immunoregulatory process. Front Immunol 2024; 15:1415573. [PMID: 38835772 PMCID: PMC11148234 DOI: 10.3389/fimmu.2024.1415573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
Efferocytosis, the process of engulfing and removing apoptotic cells, plays an essential role in preserving tissue health and averting undue inflammation. While macrophages are primarily known for this task, dendritic cells (DCs) also play a significant role. This review delves into the unique contributions of various DC subsets to efferocytosis, highlighting the distinctions in how DCs and macrophages recognize and handle apoptotic cells. It further explores how efferocytosis influences DC maturation, thereby affecting immune tolerance. This underscores the pivotal role of DCs in orchestrating immune responses and sustaining immune equilibrium, providing new insights into their function in immune regulation.
Collapse
Affiliation(s)
- Yanyan Ma
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tangxing Jiang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xun Zhu
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yizhou Xu
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ke Wan
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tingxuan Zhang
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Miaorong Xie
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Zhang Z, Gaetjens TK, Ou J, Zhou Q, Yu Y, Mallory DP, Abel SM, Yu Y. Propulsive cell entry diverts pathogens from immune degradation by remodeling the phagocytic synapse. Proc Natl Acad Sci U S A 2023; 120:e2306788120. [PMID: 38032935 PMCID: PMC10710034 DOI: 10.1073/pnas.2306788120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Phagocytosis is a critical immune function for infection control and tissue homeostasis. During phagocytosis, pathogens are internalized and degraded in phagolysosomes. For pathogens that evade immune degradation, the prevailing view is that virulence factors are required to disrupt the biogenesis of phagolysosomes. In contrast, we present here that physical forces from motile pathogens during cell entry divert them away from the canonical degradative pathway. This altered fate begins with the force-induced remodeling of the phagocytic synapse formation. We used the parasite Toxoplasma gondii as a model because live Toxoplasma actively invades host cells using gliding motility. To differentiate the effects of physical forces from virulence factors in phagocytosis, we employed magnetic forces to induce propulsive entry of inactivated Toxoplasma into macrophages. Experiments and computer simulations show that large propulsive forces hinder productive activation of receptors by preventing their spatial segregation from phosphatases at the phagocytic synapse. Consequently, the inactivated parasites are engulfed into vacuoles that fail to mature into degradative units, similar to the live motile parasite's intracellular pathway. Using yeast cells and opsonized beads, we confirmed that this mechanism is general, not specific to the parasite used. These results reveal new aspects of immune evasion by demonstrating how physical forces during active cell entry, independent of virulence factors, enable pathogens to circumvent phagolysosomal degradation.
Collapse
Affiliation(s)
- Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, IN47405-7102
| | - Thomas K. Gaetjens
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN37996
| | - Jin Ou
- Department of Chemistry, Indiana University, Bloomington, IN47405-7102
| | - Qiong Zhou
- Department of Chemistry, Indiana University, Bloomington, IN47405-7102
| | - Yanqi Yu
- Department of Chemistry, Indiana University, Bloomington, IN47405-7102
| | - D. Paul Mallory
- Department of Chemistry, Indiana University, Bloomington, IN47405-7102
| | - Steven M. Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN37996
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN47405-7102
| |
Collapse
|
4
|
Mohammad-Rafiei F, Moadab F, Mahmoudi A, Navashenaq JG, Gheibihayat SM. Efferocytosis: a double-edged sword in microbial immunity. Arch Microbiol 2023; 205:370. [PMID: 37925389 DOI: 10.1007/s00203-023-03704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Efferocytosis is characterized as the rapid and efficient process by which dying or dead cells are removed. This type of clearance is initiated via "find-me" signals, and then, carries on by "eat-me" and "don't-eat-me" ones. Efferocytosis has a critical role to play in tissue homeostasis and innate immunity. However, some evidence suggests it as a double-edged sword in microbial immunity. In other words, some pathogens have degraded efferocytosis by employing efferocytic mechanisms to bypass innate immune detection and promote infection, despite the function of this process for the control and clearance of pathogens. In this review, the efferocytosis mechanisms from the recognition of dying cells to phagocytic engulfment are initially presented, and then, its diverse roles in inflammation and immunity are highlighted. In this case, much focus is also laid on some bacterial, viral, and parasitic infections caused by Mycobacterium tuberculosis (M. tb), Mycobacterium marinum (M. marinum), Listeria monocytogenes (L. monocytogenes), Chlamydia pneumoniae (CP), Klebsiella pneumoniae (KP), Influenza A virus (IAV), human immunodeficiency virus (HIV), and Leishmania, respectively.
Collapse
Affiliation(s)
- Fatemeh Mohammad-Rafiei
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Moadab
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, USA
| | - Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | | | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
5
|
Yu Y, Zhang Z, Yu Y. Timing of Phagosome Maturation Depends on Their Transport Switching from Actin to Microtubule Tracks. J Phys Chem B 2023; 127:9312-9322. [PMID: 37871280 PMCID: PMC10759163 DOI: 10.1021/acs.jpcb.3c05647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Phagosomes, specialized membrane compartments responsible for digesting internalized pathogens, undergo sequential dynamic and biochemical changes as they mature from nascent phagosomes to degradative phagolysosomes. Maturation of phagosomes depends on their transport along actin filaments and microtubules. However, the specific quantitative relationship between the biochemical transformation and transport dynamics remains poorly characterized. The autonomous nature of phagosomes, moving and maturing at different rates, makes understanding this relationship challenging. Addressing this challenge, in this study we engineered particle sensors to image and quantify single phagosomes' maturation. We found that as phagosomes move from the actin cortex to microtubule tracks, the timing of their actin-to-microtubule transition governs the duration of the early phagosome stage before acquiring degradative capacities. Prolonged entrapment of phagosomes in the actin cortex extends the early phagosome stage by delaying the dissociation of early endosome markers and phagosome acidification. Conversely, a shortened transition from actin- to microtubule-based movements causes the opposite effect on phagosome maturation. These results suggest that the actin- and microtubule-based transport of phagosomes functions like a "clock" to coordinate the timing of biochemical events during phagosome maturation, which is crucial for effective pathogen degradation.
Collapse
Affiliation(s)
- Yanqi Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
6
|
Zhang Z, Gaetjens TK, Yu Y, Paul Mallory D, Abel SM, Yu Y. Propulsive cell entry diverts pathogens from immune degradation by remodeling the phagocytic synapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538287. [PMID: 37162866 PMCID: PMC10168248 DOI: 10.1101/2023.04.25.538287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phagocytosis is a critical immune function for infection control and tissue homeostasis. This process is typically described as non-moving pathogens being internalized and degraded in phagolysosomes. For pathogens that evade immune degradation, the prevailing view is that virulence factors that biochemically disrupt the biogenesis of phagoslysosomes are required. In contrast, here we report that physical forces exerted by pathogens during cell entry divert them away from the canonical phagolysosomal degradation pathway, and this altered intracellular fate is determined at the time of phagocytic synapse formation. We used the eukaryotic parasite Toxoplasma gondii as a model because live Toxoplasma uses gliding motility to actively invade into host cells. To differentiate the effect of physical forces from that of virulence factors in phagocytosis, we developed a strategy that used magnetic forces to induce propulsive entry of inactivated Toxoplasma into macrophage cells. Experiments and computer simulations collectively reveal that large propulsive forces suppress productive activation of receptors by hindering their spatial segregation from phosphatases at the phagocytic synapse. Consequently, the inactivated parasites, instead of being degraded in phagolysosomes, are engulfed into vacuoles that fail to mature into degradative units, following an intracellular pathway strikingly similar to that of the live motile parasite. Using opsonized beads, we further confirmed that this mechanism is general, not specific to the parasite used. These results reveal previously unknown aspects of immune evasion by demonstrating how physical forces exerted during active cell entry, independent of virulence factors, can help pathogens circumvent phagolysosomal degradation.
Collapse
Affiliation(s)
- Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| | - Thomas K. Gaetjens
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996
| | - Yanqi Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| | - D. Paul Mallory
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| | - Steven M. Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| |
Collapse
|
7
|
Maisonneuve L, Manoury B. In Vitro and In Vivo Assays to Evaluate Dendritic Cell Phagocytic Capacity. Methods Mol Biol 2023; 2618:279-288. [PMID: 36905524 DOI: 10.1007/978-1-0716-2938-3_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Phagocytosis is a process by which specific immune cells such as macrophages or dendritic cells engulf large particles. It is an important innate immune defense mechanism for removing a wide variety of pathogens and apoptotic cells. Following phagocytosis, nascent phagosomes are formed which, when fused to lysosome to become phagolysosome containing acidic proteases, will allow the degradation of ingested material. This chapter describes in vitro and in vivo assays to measure phagocytosis by murine dendritic cells using amine beads coupled with streptavidin Alexa 488. This protocol can also be applied to monitor phagocytosis in human dendritic cells.
Collapse
Affiliation(s)
- Lucie Maisonneuve
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Université de Paris, Faculté de Médecine Necker, Paris, France
| | - Bénédicte Manoury
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Université de Paris, Faculté de Médecine Necker, Paris, France.
| |
Collapse
|
8
|
Branco LM, Amaral MP, Boekhoff H, de Lima ABF, Farias IS, Lage SL, Pereira GJS, Franklin BS, Bortoluci KR. Lysosomal cathepsins act in concert with Gasdermin-D during NAIP/NLRC4-dependent IL-1β secretion. Cell Death Dis 2022; 13:1029. [PMID: 36481780 PMCID: PMC9731969 DOI: 10.1038/s41419-022-05476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
The NAIP/NLRC4 inflammasome is classically associated with the detection of bacterial invasion to the cytosol. However, recent studies have demonstrated that NAIP/NLRC4 is also activated in non-bacterial infections, and in sterile inflammation. Moreover, in addition to the well-established model for the detection of bacterial proteins by NAIP proteins, the participation of other cytosolic pathways in the regulation of NAIP/NLRC4-mediated responses has been reported in distinct contexts. Using pharmacological inhibition and genetic deletion, we demonstrate here that cathepsins, well known for their involvement in NLRP3 activation, also regulate NAIP/NLRC4 responses to cytosolic flagellin in murine and human macrophages. In contrast to that observed for NLRP3 agonists, cathepsins inhibition did not reduce ASC speck formation or caspase-1 maturation in response to flagellin, ruling out their participation in the effector phase of NAIP/NLRC4 activation. Moreover, cathepsins had no impact on NF-κB-mediated priming of pro-IL-1β, thus suggesting these proteases act downstream of the NAIP/NLRC4 inflammasome activation. IL-1β levels secreted in response to flagellin were reduced in the absence of either cathepsins or Gasdermin-D (GSDMD), a molecule involved in the induction of pyroptosis and cytokines release. Notably, IL-1β secretion was abrogated in the absence of both GSDMD and cathepsins, demonstrating their non-redundant roles for the optimal IL-1β release in response to cytosolic flagellin. Given the central role of NAIP/NLRC4 inflammasomes in controlling infection and, also, induction of inflammatory pathologies, many efforts have been made to uncover novel molecules involved in their regulation. Thus, our findings bring together a relevant contribution by describing the role of cathepsins as players in the NAIP/NLRC4-mediated responses.
Collapse
Affiliation(s)
- Laura Migliari Branco
- grid.411249.b0000 0001 0514 7202Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Marcelo Pires Amaral
- grid.411249.b0000 0001 0514 7202Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Henning Boekhoff
- grid.411249.b0000 0001 0514 7202Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil ,grid.7497.d0000 0004 0492 0584Present Address: Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana Beatriz Figueiredo de Lima
- grid.411249.b0000 0001 0514 7202Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ingrid Sancho Farias
- grid.411249.b0000 0001 0514 7202Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Silvia Lucena Lage
- grid.94365.3d0000 0001 2297 5165National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, USA
| | - Gustavo José Silva Pereira
- grid.411249.b0000 0001 0514 7202Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Bernardo Simões Franklin
- grid.10388.320000 0001 2240 3300Institute of Innate Immunity, University Hospitals, Bonn, Germany
| | - Karina Ramalho Bortoluci
- grid.411249.b0000 0001 0514 7202Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
9
|
Torres-García D, van de Plassche MAT, van Boven E, van Leeuwen T, Groenewold MGJ, Sarris AJC, Klein L, Overkleeft HS, van Kasteren SI. Methyltetrazine as a small live-cell compatible bioorthogonal handle for imaging enzyme activities in situ. RSC Chem Biol 2022; 3:1325-1330. [PMID: 36349224 PMCID: PMC9627743 DOI: 10.1039/d2cb00120a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/07/2022] [Indexed: 11/04/2024] Open
Abstract
Bioorthogonal chemistry combines well with activity-based protein profiling, as it allows for the introduction of detection tags without significantly influencing the physiochemical and biological functions of the probe. In this work, we introduced methyltetrazinylalanine (MeTz-Ala), a close mimic of phenylalanine, into a dipeptide fluoromethylketone cysteine protease inhibitor. Following covalent and irreversible inhibition, the tetrazine allows vizualisation of the captured cathepsin activity by means of inverse electron demand Diels Alder ligation in cell lysates and live cells, demonstrating that tetrazines can be used as live cell compatible, minimal bioorthogonal tags in activity-based protein profiling.
Collapse
Affiliation(s)
- Diana Torres-García
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Merel A T van de Plassche
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Emma van Boven
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Tyrza van Leeuwen
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Mirjam G J Groenewold
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Alexi J C Sarris
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Luuk Klein
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Sander I van Kasteren
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
10
|
Yu Y, Zhang Z, Walpole GFW, Yu Y. Kinetics of phagosome maturation is coupled to their intracellular motility. Commun Biol 2022; 5:1014. [PMID: 36163370 PMCID: PMC9512794 DOI: 10.1038/s42003-022-03988-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Immune cells degrade internalized pathogens in phagosomes through sequential biochemical changes. The degradation must be fast enough for effective infection control. The presumption is that each phagosome degrades cargos autonomously with a distinct but stochastic kinetic rate. However, here we show that the degradation kinetics of individual phagosomes is not stochastic but coupled to their intracellular motility. By engineering RotSensors that are optically anisotropic, magnetic responsive, and fluorogenic in response to degradation activities in phagosomes, we monitored cargo degradation kinetics in single phagosomes simultaneously with their translational and rotational dynamics. We show that phagosomes that move faster centripetally are more likely to encounter and fuse with lysosomes, thereby acidifying faster and degrading cargos more efficiently. The degradation rates increase nearly linearly with the translational and rotational velocities of phagosomes. Our results indicate that the centripetal motion of phagosomes functions as a clock for controlling the progression of cargo degradation.
Collapse
Affiliation(s)
- Yanqi Yu
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Glenn F W Walpole
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA.
| |
Collapse
|
11
|
Lee W, Suresh M. Vaccine adjuvants to engage the cross-presentation pathway. Front Immunol 2022; 13:940047. [PMID: 35979365 PMCID: PMC9376467 DOI: 10.3389/fimmu.2022.940047] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Adjuvants are indispensable components of vaccines for stimulating optimal immune responses to non-replicating, inactivated and subunit antigens. Eliciting balanced humoral and T cell-mediated immunity is paramount to defend against diseases caused by complex intracellular pathogens, such as tuberculosis, malaria, and AIDS. However, currently used vaccines elicit strong antibody responses, but poorly stimulate CD8 cytotoxic T lymphocyte (CTL) responses. To elicit potent CTL memory, vaccines need to engage the cross-presentation pathway, and this requirement has been a crucial bottleneck in the development of subunit vaccines that engender effective T cell immunity. In this review, we focus on recent insights into DC cross-presentation and the extent to which clinically relevant vaccine adjuvants, such as aluminum-based nanoparticles, water-in oil emulsion (MF59) adjuvants, saponin-based adjuvants, and Toll-like receptor (TLR) ligands modulate DC cross-presentation efficiency. Further, we discuss the feasibility of using carbomer-based adjuvants as next generation of adjuvant platforms to elicit balanced antibody- and T-cell based immunity. Understanding of the molecular mechanism of DC cross-presentation and the mode of action of adjuvants will pave the way for rational design of vaccines for infectious diseases and cancer that require balanced antibody- and T cell-based immunity.
Collapse
|
12
|
Hartmeier PR, Kosanovich JL, Velankar KY, Armen-Luke J, Lipp MA, Gawalt ES, Giannoukakis N, Empey KM, Meng WS. Immune Cells Activating Biotin-Decorated PLGA Protein Carrier. Mol Pharm 2022; 19:2638-2650. [PMID: 35621214 PMCID: PMC10105284 DOI: 10.1021/acs.molpharmaceut.2c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanoparticle formulations have long been proposed as subunit vaccine carriers owing to their ability to entrap proteins and codeliver adjuvants. Poly(lactic-co-glycolic acid) (PLGA) remains one of the most studied polymers for controlled release and nanoparticle drug delivery, and numerous studies exist proposing PLGA particles as subunit vaccine carriers. In this work we report using PLGA nanoparticles modified with biotin (bNPs) to deliver proteins via adsorption and stimulate professional antigen-presenting cells (APCs). We present evidence showing bNPs are capable of retaining proteins through the biotin-avidin interaction. Surface accessible biotin bound both biotinylated catalase (bCAT) through avidin and streptavidin horseradish peroxidase (HRP). Analysis of the HRP found that activity on the bNPs was preserved once captured on the surface of bNP. Further, bNPs were found to have self-adjuvant properties, evidenced by bNP induced IL-1β, IL-18, and IL-12 production in vitro in APCs, thereby licensing the cells to generate Th1-type helper T cell responses. Cytokine production was reduced in avidin precoated bNPs (but not with other proteins), suggesting that the proinflammatory response is due in part to exposed biotin on the surface of bNPs. bNPs injected subcutaneously were localized to draining lymph nodes detectable after 28 days and were internalized by bronchoalveolar lavage dendritic cells and macrophages in mice in a dose-dependent manner when delivered intranasally. Taken together, these data provide evidence that bNPs should be explored further as potential adjuvanting carriers for subunit vaccines.
Collapse
Affiliation(s)
- Paul R Hartmeier
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jessica L Kosanovich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Ketki Y Velankar
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jennifer Armen-Luke
- Department of Chemistry and Biochemistry, Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Madeline A Lipp
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Ellen S Gawalt
- Department of Chemistry and Biochemistry, Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Nick Giannoukakis
- Allegheny-Singer Research Institute, Allegheny Health Network, Pittsburgh, Pennsylvania 15212, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kerry M Empey
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States.,Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
13
|
Zhang Z, Liu F, Chen W, Liao Z, Zhang W, Zhang B, Liang H, Chu L, Zhang Z. The importance of N6-methyladenosine modification in tumor immunity and immunotherapy. Exp Hematol Oncol 2022; 11:30. [PMID: 35590394 PMCID: PMC9118853 DOI: 10.1186/s40164-022-00281-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/16/2022] [Indexed: 12/31/2022] Open
Abstract
As the most common and abundant RNA modification in eukaryotic cells, N6-methyladenosine (m6A) modification plays an important role in different stages of tumor. m6A can participate in the regulation of tumor immune escape, so as to enhance the monitoring of tumor by the immune system and reduce tumorgenesis. m6A can also affect the tumor progression by regulating the immune cell responses to tumor in tumor microenvironment. In addition, immunotherapy has become the most popular method for the treatment of cancer, in which targets such as immune checkpoints are also closely associated with m6A. This review discusses the roles of N6-methyladenosine modification in tumor immune regulation, their regulatory mechanism, and the prospect of immunotherapy.
Collapse
Affiliation(s)
- Ze Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Hubei, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, 430030, Wuhan, Hubei, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Hubei, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, 430030, Wuhan, Hubei, China
| | - Wei Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Hubei, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, 430030, Wuhan, Hubei, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Hubei, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, 430030, Wuhan, Hubei, China
| | - Wanguang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Hubei, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, 430030, Wuhan, Hubei, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Hubei, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, 430030, Wuhan, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Hubei, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, 430030, Wuhan, Hubei, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Hubei, 430030, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, 430030, Wuhan, Hubei, China.
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Hubei, 430030, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, 430030, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense. PLoS Pathog 2021; 17:e1009943. [PMID: 34555129 PMCID: PMC8491875 DOI: 10.1371/journal.ppat.1009943] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/05/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022] Open
Abstract
Regulation of cellular metabolism is now recognized as a crucial mechanism for the activation of innate and adaptive immune cells upon diverse extracellular stimuli. Macrophages, for instance, increase glycolysis upon stimulation with pathogen-associated molecular patterns (PAMPs). Conceivably, pathogens also counteract these metabolic changes for their own survival in the host. Despite this dynamic interplay in host-pathogen interactions, the role of immunometabolism in the context of intracellular bacterial infections is still unclear. Here, employing unbiased metabolomic and transcriptomic approaches, we investigated the role of metabolic adaptations of macrophages upon Salmonella enterica serovar Typhimurium (S. Typhimurium) infections. Importantly, our results suggest that S. Typhimurium abrogates glycolysis and its modulators such as insulin-signaling to impair macrophage defense. Mechanistically, glycolysis facilitates glycolytic enzyme aldolase A mediated v-ATPase assembly and the acidification of phagosomes which is critical for lysosomal degradation. Thus, impairment in the glycolytic machinery eventually leads to decreased bacterial clearance and antigen presentation in murine macrophages (BMDM). Collectively, our results highlight a vital molecular link between metabolic adaptation and phagosome maturation in macrophages, which is targeted by S. Typhimurium to evade cell-autonomous defense.
Collapse
|
15
|
Nelson BN, Beakley SG, Posey S, Conn B, Maritz E, Seshu J, Wozniak KL. Antifungal activity of dendritic cell lysosomal proteins against Cryptococcus neoformans. Sci Rep 2021; 11:13619. [PMID: 34193926 PMCID: PMC8245489 DOI: 10.1038/s41598-021-92991-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
Cryptococcal meningitis is a life-threatening disease among immune compromised individuals that is caused by the opportunistic fungal pathogen Cryptococcus neoformans. Previous studies have shown that the fungus is phagocytosed by dendritic cells (DCs) and trafficked to the lysosome where it is killed by both oxidative and non-oxidative mechanisms. While certain molecules from the lysosome are known to kill or inhibit the growth of C. neoformans, the lysosome is an organelle containing many different proteins and enzymes that are designed to degrade phagocytosed material. We hypothesized that multiple lysosomal components, including cysteine proteases and antimicrobial peptides, could inhibit the growth of C. neoformans. Our study identified the contents of the DC lysosome and examined the anti-cryptococcal properties of different proteins found within the lysosome. Results showed several DC lysosomal proteins affected the growth of C. neoformans in vitro. The proteins that killed or inhibited the fungus did so in a dose-dependent manner. Furthermore, the concentration of protein needed for cryptococcal inhibition was found to be non-cytotoxic to mammalian cells. These data show that many DC lysosomal proteins have antifungal activity and have potential as immune-based therapeutics.
Collapse
Affiliation(s)
- Benjamin N Nelson
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Savannah G Beakley
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Sierra Posey
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Brittney Conn
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Emma Maritz
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Janakiram Seshu
- Department of Biology, South Texas Center for Emerging Infectious Diseases, San Antonio, TX, USA
| | - Karen L Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA.
| |
Collapse
|
16
|
van den Biggelaar RHGA, van der Maas L, Meiring HD, Pennings JLA, van Eden W, Rutten VPMG, Jansen CA. Proteomic analysis of chicken bone marrow-derived dendritic cells in response to an inactivated IBV + NDV poultry vaccine. Sci Rep 2021; 11:12666. [PMID: 34135356 PMCID: PMC8209092 DOI: 10.1038/s41598-021-89810-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
Inactivated poultry vaccines are subject to routine potency testing for batch release, requiring large numbers of animals. The replacement of in vivo tests for cell-based alternatives can be facilitated by the identification of biomarkers for vaccine-induced immune responses. In this study, chicken bone marrow-derived dendritic cells were stimulated with an inactivated vaccine for infectious bronchitis virus and Newcastle disease virus, as well as inactivated infectious bronchitis virus only, and lipopolysaccharides as positive control, or left unstimulated for comparison with the stimulated samples. Next, the cells were lysed and subjected to proteomic analysis. Stimulation with the vaccine resulted in 66 differentially expressed proteins associated with mRNA translation, immune responses, lipid metabolism and the proteasome. For the eight most significantly upregulated proteins, mRNA expression levels were assessed. Markers that showed increased expression at both mRNA and protein levels included PLIN2 and PSMB1. Stimulation with infectious bronchitis virus only resulted in 25 differentially expressed proteins, which were mostly proteins containing Src homology 2 domains. Stimulation with lipopolysaccharides resulted in 118 differentially expressed proteins associated with dendritic cell maturation and antimicrobial activity. This study provides leads to a better understanding of the activation of dendritic cells by an inactivated poultry vaccine, and identified PLIN2 and PSMB1 as potential biomarkers for cell-based potency testing.
Collapse
Affiliation(s)
- Robin H G A van den Biggelaar
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Hugo D Meiring
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Utrecht, The Netherlands
| | - Willem van Eden
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Victor P M G Rutten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Christine A Jansen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
17
|
Abstract
When attempting to propagate infections, bacterial pathogens encounter phagocytes that encase them in vacuoles called phagosomes. Within phagosomes, bacteria are bombarded with a plethora of stresses that often lead to their demise. However, pathogens have evolved numerous strategies to counter those host defenses and facilitate survival. Given the importance of phagosome-bacteria interactions to infection outcomes, they represent a collection of targets that are of interest for next-generation antibacterials. To facilitate such therapies, different approaches can be employed to increase understanding of phagosome-bacteria interactions, and these can be classified broadly as top down (starting from intact systems and breaking down the importance of different parts) or bottom up (developing a knowledge base on simplified systems and progressively increasing complexity). Here we review knowledge of phagosomal compositions and bacterial survival tactics useful for bottom-up approaches, which are particularly relevant for the application of reaction engineering to quantify and predict the time evolution of biochemical species in these death-dealing vacuoles. Further, we highlight how understanding in this area can be built up through the combination of immunology, microbiology, and engineering.
Collapse
Affiliation(s)
- Darshan M Sivaloganathan
- Program in Quantitative and Computational Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA;
| |
Collapse
|
18
|
Breyer F, Härtlova A, Thurston T, Flynn HR, Chakravarty P, Janzen J, Peltier J, Heunis T, Snijders AP, Trost M, Ley SC. TPL-2 kinase induces phagosome acidification to promote macrophage killing of bacteria. EMBO J 2021; 40:e106188. [PMID: 33881780 PMCID: PMC8126920 DOI: 10.15252/embj.2020106188] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 02/05/2023] Open
Abstract
Tumour progression locus 2 (TPL‐2) kinase mediates Toll‐like receptor (TLR) activation of ERK1/2 and p38α MAP kinases in myeloid cells to modulate expression of key cytokines in innate immunity. This study identified a novel MAP kinase‐independent regulatory function for TPL‐2 in phagosome maturation, an essential process for killing of phagocytosed microbes. TPL‐2 catalytic activity was demonstrated to induce phagosome acidification and proteolysis in primary mouse and human macrophages following uptake of latex beads. Quantitative proteomics revealed that blocking TPL‐2 catalytic activity significantly altered the protein composition of phagosomes, particularly reducing the abundance of V‐ATPase proton pump subunits. Furthermore, TPL‐2 stimulated the phosphorylation of DMXL1, a regulator of V‐ATPases, to induce V‐ATPase assembly and phagosome acidification. Consistent with these results, TPL‐2 catalytic activity was required for phagosome acidification and the efficient killing of Staphylococcus aureus and Citrobacter rodentium following phagocytic uptake by macrophages. TPL‐2 therefore controls innate immune responses of macrophages to bacteria via V‐ATPase induction of phagosome maturation.
Collapse
Affiliation(s)
| | - Anetta Härtlova
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Teresa Thurston
- Department of Infectious Diseases, MRC Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK
| | | | | | | | - Julien Peltier
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Tiaan Heunis
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Matthias Trost
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Steven C Ley
- The Francis Crick Institute, London, UK.,Department of Immunology & Inflammation, Centre for Molecular Immunology & Inflammation, Imperial College London, London, UK
| |
Collapse
|
19
|
Eld HMS, Nielsen EM, Johnsen PR, Marengo M, Kamper IW, Frederiksen L, Bonomi F, Frees D, Iametti S, Frøkiær H. Cefoxitin treatment of MRSA leads to a shift in the IL-12/IL-23 production pattern in dendritic cells by a mechanism involving changes in the MAPK signaling. Mol Immunol 2021; 134:1-12. [PMID: 33676343 DOI: 10.1016/j.molimm.2021.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022]
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) constitute a serious health care problem worldwide. This study addresses the effect of β-lactam treatment on the ability of clinically relevant MRSA strains to induce IL-12 and IL-23. MRSA strains induced a dose-dependent IL-12 response in murine bone-marrow-derived dendritic cells that was dependent on endocytosis and acidic degradation. Facilitated induction of IL-12 (but not of IL-23) called for activation of the MAP kinase JNK, and was suppressed by p38. Compromised peptidoglycan structure in cefoxitin-treated bacteria - as denoted by increased sensitivity to mutanolysin -caused a shift from IL-12 towards IL-23. Moreover, cefoxitin treatment of MRSA led to a p38 MAPK-dependent early up-regulation of Dual Specificity Phosphatase (DUSP)-1. Compared to common MRSA, characteristics associated with a persister phenotype increased intracellular survival and upon cefoxitin treatment, the peptidoglycan was not equally compromised and the cytokine induction still required phagosomal acidification. Together, these data demonstrate that β-lactam treatment changes the MRSA-induced IL-12/IL-23 pattern determined by the activation of JNK and p38. We suggest that accelerated endosomal degradation of the peptidoglycan in cefoxitin-treated MRSA leads to an early expression of DUSP-1 and accordingly, a reduction in the IL-12/IL-23 ratio in dendritic cells. This may influence the clearance of S. aureus.
Collapse
Affiliation(s)
- Helene M S Eld
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie M Nielsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter R Johnsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mauro Marengo
- Department of Food, Environmental and Nutritional Science, Università degli Studi di Milano, Milan, Italy
| | - Ida W Kamper
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lise Frederiksen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Francesco Bonomi
- Department of Food, Environmental and Nutritional Science, Università degli Studi di Milano, Milan, Italy
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefania Iametti
- Department of Food, Environmental and Nutritional Science, Università degli Studi di Milano, Milan, Italy
| | - Hanne Frøkiær
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
20
|
Agbayani G, Jia Y, Akache B, Chandan V, Iqbal U, Stark FC, Deschatelets L, Lam E, Hemraz UD, Régnier S, Krishnan L, McCluskie MJ. Mechanistic insight into the induction of cellular immune responses by encapsulated and admixed archaeosome-based vaccine formulations. Hum Vaccin Immunother 2020; 16:2183-2195. [PMID: 32755430 PMCID: PMC7553676 DOI: 10.1080/21645515.2020.1788300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Archaeosomes are liposomes formulated using total polar lipids (TPLs) or semi-synthetic glycolipids derived from archaea. Conventional archaeosomes with entrapped antigen exhibit robust adjuvant activity as demonstrated by increased antigen-specific humoral and cell-mediated responses and enhanced protective immunity in various murine infection and cancer models. However, antigen entrapment efficiency can vary greatly resulting in antigen loss during formulation and variable antigen:lipid ratios. In order to circumvent this, we recently developed an admixed archaeosome formulation composed of a single semi-synthetic archaeal lipid (SLA, sulfated lactosylarchaeol) which can induce similarly robust adjuvant activity as an encapsulated formulation. Herein, we evaluate and compare the mechanisms involved in the induction of early innate and antigen-specific responses by both admixed (Adm) and encapsulated (Enc) SLA archaeosomes. We demonstrate that both archaeosome formulations result in increased immune cell infiltration, enhanced antigen retention at injection site and increased antigen uptake by antigen-presenting cells and other immune cell types, including neutrophils and monocytes following intramuscular injection to mice using ovalbumin as a model antigen. In vitro studies demonstrate SLA in either formulation is preferentially taken up by macrophages. Although the encapsulated formulation was better able to induce antigen-specific CD8+ T cell activation by dendritic cells in vitro, both encapsulated and admixed formulations gave equivalently enhanced protection from tumor challenge when tested in vivo using a B16-OVA melanoma model. Despite some differences in the immunostimulatory profile relative to the SLA (Enc) formulation, SLA (Adm) induces strong in vivo immunogenicity and efficacy, while offering an ease of formulation.
Collapse
Affiliation(s)
- Gerard Agbayani
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| | - Yimei Jia
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| | - Bassel Akache
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| | - Vandana Chandan
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| | - Umar Iqbal
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| | - Felicity C Stark
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| | - Lise Deschatelets
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| | - Edmond Lam
- Aquatic and Crop Resource Development, National Research Council Canada , Montreal, QC, Canada
| | - Usha D Hemraz
- Aquatic and Crop Resource Development, National Research Council Canada , Montreal, QC, Canada
| | - Sophie Régnier
- Aquatic and Crop Resource Development, National Research Council Canada , Montreal, QC, Canada
| | - Lakshmi Krishnan
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| | - Michael J McCluskie
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| |
Collapse
|
21
|
New tools to prevent cancer growth and spread: a 'Clever' approach. Br J Cancer 2020; 123:501-509. [PMID: 32595212 PMCID: PMC7434904 DOI: 10.1038/s41416-020-0953-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/19/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Clever-1 (also known as Stabilin-1 and FEEL-1) is a scavenger receptor expressed on lymphatic endothelial cells, sinusoidal endothelial cells and immunosuppressive monocytes and macrophages. Its role in cancer growth and spread first became evident in Stab1–/– knockout mice, which have smaller primary tumours and metastases. Subsequent studies in mice and humans have shown that immunotherapeutic blockade of Clever-1 can activate T-cell responses, and that this response is mainly mediated by a phenotypic change in macrophages and monocytes from immunosuppressive to pro-inflammatory following Clever-1 inhibition. Analyses of human cancer cohorts have revealed marked associations between the number of Clever-1-positive macrophages and patient outcome. As hardly any reports to date have addressed the role of Clever-1 in immunotherapy resistance and T-cell dysfunction, we performed data mining using several published cancer cohorts, and observed a remarkable correlation between Clever-1 positivity and resistance to immune checkpoint therapies. This result provides impetus and potential for the ongoing clinical trial targeting Clever-1 in solid tumours, which has so far shown a shift towards immune activation when a particular epitope of Clever-1 is blocked.
Collapse
|
22
|
Keller CW, Kotur MB, Mundt S, Dokalis N, Ligeon LA, Shah AM, Prinz M, Becher B, Münz C, Lünemann JD. CYBB/NOX2 in conventional DCs controls T cell encephalitogenicity during neuroinflammation. Autophagy 2020; 17:1244-1258. [PMID: 32401602 DOI: 10.1080/15548627.2020.1756678] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Whereas central nervous system (CNS) homeostasis is highly dependent on tissue surveillance by immune cells, dysregulated entry of leukocytes during autoimmune neuroinflammation causes severe immunopathology and neurological deficits. To invade the CNS parenchyma, encephalitogenic T helper (TH) cells must encounter their cognate antigen(s) presented by local major histocompatibility complex (MHC) class II-expressing antigen-presenting cells (APCs). The precise mechanisms by which CNS-associated APCs facilitate autoimmune T cell reactivation remain largely unknown. We previously showed that mice with conditional deletion of the gene encoding the essential autophagy protein ATG5 in dendritic cells (DCs) are resistant to EAE development. Here, we report that the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2, also known as CYBB/NOX2, in conventional DCs (cDCs) regulates endocytosed MOG (myelin oligodendrocyte protein) antigen processing and supports MOG-antigen presentation to CD4+ T cells through LC3-associated phagocytosis (LAP). Genetic ablation of Cybb in cDCs is sufficient to restrain encephalitogenic TH cell recruitment into the CNS and to ameliorate clinical disease development upon the adoptive transfer of MOG-specific CD4+ T cells. These data indicate that CYBB-regulated MOG-antigen processing and LAP in cDCs licenses encephalitogenic TH cells to initiate and sustain autoimmune neuroinflammation.Abbreviations: Ag: antigen; APC: antigen-presenting cell; AT: adoptive transfer; ATG/Atg: autophagy-related; BAMs: border-associated macrophages; BMDC: bone marrow-derived DC; CD: cluster of differentiation; CNS: central nervous system; CSF2/GM-CSF: colony stimulating factor 2 (granulocyte-macrophage); CYBB/NOX2/gp91phox: cytochrome b-245, beta polypeptide; DC: dendritic cell; EAE: experimental autoimmune encephalomyelitis; fl: floxed; FOXP3: forkhead box P3; GFP: green fluorescent protein; H2-Ab: histocompatibility 2, class II antigen A, beta 1; IFN: interferon; IL: interleukin; ITGAX/CD11c: integrin subunit alpha X; LAP: LC3-associated phagocytosis; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFI: median fluorescence intensity; MG: microglia; MHCII: major histocompatibility complex class II; MOG: myelin oligodendrocyte glycoprotein; MS: multiple sclerosis; NADPH: nicotinamide adenine dinucleotide phosphate; ODC: oligodendroglial cell; OVA: ovalbumin; pDC: plasmacytoid DC; Ptd-L-Ser: phosphatidylserine; PTPRC: protein tyrosine phosphatase, receptor type, C; ROS: reactive oxygen species; SLE: systemic lupus erythematosus; TH cells: T helper cells; TLR: toll-like receptor; ZBTB46: zinc finger and BTB domain containing 46.
Collapse
Affiliation(s)
- Christian W Keller
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.,Laboratory of Neuroinflammation, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Monika B Kotur
- Laboratory of Neuroinflammation, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sarah Mundt
- Laboratory of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Nikolaos Dokalis
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Laure-Anne Ligeon
- Laboratory of Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg; Signalling Research Centres BIOSS and CIBSS, Center for Basics in NeuroModulation (Neuromodulbasics), University of Freiburg, Freiburg, Germany
| | - Burkhard Becher
- Laboratory of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Christian Münz
- Laboratory of Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.,Laboratory of Neuroinflammation, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Prota G, Gileadi U, Rei M, Lechuga-Vieco AV, Chen JL, Galiani S, Bedard M, Lau VWC, Fanchi LF, Artibani M, Hu Z, Gordon S, Rehwinkel J, Enríquez JA, Ahmed AA, Schumacher TN, Cerundolo V. Enhanced Immunogenicity of Mitochondrial-Localized Proteins in Cancer Cells. Cancer Immunol Res 2020; 8:685-697. [PMID: 32205315 DOI: 10.1158/2326-6066.cir-19-0467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/05/2019] [Accepted: 03/12/2020] [Indexed: 11/16/2022]
Abstract
Epitopes derived from mutated cancer proteins elicit strong antitumor T-cell responses that correlate with clinical efficacy in a proportion of patients. However, it remains unclear whether the subcellular localization of mutated proteins influences the efficiency of T-cell priming. To address this question, we compared the immunogenicity of NY-ESO-1 and OVA localized either in the cytosol or in mitochondria. We showed that tumors expressing mitochondrial-localized NY-ESO-1 and OVA proteins elicit significantdly higher frequencies of antigen-specific CD8+ T cells in vivo. We also demonstrated that this stronger immune response is dependent on the mitochondrial location of the antigenic proteins, which contributes to their higher steady-state amount, compared with cytosolic localized proteins. Consistent with these findings, we showed that injection of mitochondria purified from B16 melanoma cells can protect mice from a challenge with B16 cells, but not with irrelevant tumors. Finally, we extended these findings to cancer patients by demonstrating the presence of T-cell responses specific for mutated mitochondrial-localized proteins. These findings highlight the utility of prioritizing epitopes derived from mitochondrial-localized mutated proteins as targets for cancer vaccination strategies.
Collapse
Affiliation(s)
- Gennaro Prota
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| | - Uzi Gileadi
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Margarida Rei
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Ana Victoria Lechuga-Vieco
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ji-Li Chen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Silvia Galiani
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Melissa Bedard
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Vivian Wing Chong Lau
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Lorenzo F Fanchi
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mara Artibani
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, United Kingdom
| | - Zhiyuan Hu
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, United Kingdom
| | - Siamon Gordon
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Chang Gung University, Graduate Institute of Biomedical Sciences, College of Medicine, Taoyuan City, Taiwan
| | - Jan Rehwinkel
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Jose A Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Ahmed A Ahmed
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, United Kingdom
| | - Ton N Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Saylor K, Gillam F, Lohneis T, Zhang C. Designs of Antigen Structure and Composition for Improved Protein-Based Vaccine Efficacy. Front Immunol 2020; 11:283. [PMID: 32153587 PMCID: PMC7050619 DOI: 10.3389/fimmu.2020.00283] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/04/2020] [Indexed: 12/19/2022] Open
Abstract
Today, vaccinologists have come to understand that the hallmark of any protective immune response is the antigen. However, it is not the whole antigen that dictates the immune response, but rather the various parts comprising the whole that are capable of influencing immunogenicity. Protein-based antigens hold particular importance within this structural approach to understanding immunity because, though different molecules can serve as antigens, only proteins are capable of inducing both cellular and humoral immunity. This fact, coupled with the versatility and customizability of proteins when considering vaccine design applications, makes protein-based vaccines (PBVs) one of today's most promising technologies for artificially inducing immunity. In this review, we follow the development of PBV technologies through time and discuss the antigen-specific receptors that are most critical to any immune response: pattern recognition receptors, B cell receptors, and T cell receptors. Knowledge of these receptors and their ligands has become exceptionally valuable in the field of vaccinology, where today it is possible to make drastic modifications to PBV structure, from primary to quaternary, in order to promote recognition of target epitopes, potentiate vaccine immunogenicity, and prevent antigen-associated complications. Additionally, these modifications have made it possible to control immune responses by modulating stability and targeting PBV to key immune cells. Consequently, careful consideration should be given to protein structure when designing PBVs in the future in order to potentiate PBV efficacy.
Collapse
Affiliation(s)
- Kyle Saylor
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Frank Gillam
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
- Locus Biosciences, Morrisville, NC, United States
| | - Taylor Lohneis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
- BioPharmaceutical Technology Department, GlaxoSmithKline, Rockville, MD, United States
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
25
|
Patankar YR, Sutiwisesak R, Boyce S, Lai R, Lindestam Arlehamn CS, Sette A, Behar SM. Limited recognition of Mycobacterium tuberculosis-infected macrophages by polyclonal CD4 and CD8 T cells from the lungs of infected mice. Mucosal Immunol 2020; 13:140-148. [PMID: 31636345 PMCID: PMC7161428 DOI: 10.1038/s41385-019-0217-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/23/2019] [Accepted: 09/28/2019] [Indexed: 02/04/2023]
Abstract
Immune responses following Mycobacterium tuberculosis (Mtb) infection or vaccination are frequently assessed by measuring T-cell recognition of crude Mtb antigens, recombinant proteins, or peptide epitopes. We previously showed that not all Mtb-specific T cells recognize Mtb-infected macrophages. Thus, an important question is what proportion of T cells elicited by Mtb infection recognize Mtb-infected macrophages. We address this question by developing a modified elispot assay using viable Mtb-infected macrophages, a low multiplicity of infection and purified T cells. In C57BL/6 mice, CD4 and CD8 T cells were classically MHC restricted. Comparable frequencies of T cells that recognize Mtb-infected macrophages were determined using interferon-γ elispot and intracellular cytokine staining, and lung CD4 T cells more sensitively recognized Mtb-infected macrophages than lung CD8 T cells. Compared to the relatively high frequencies of T cells specific for antigens such as ESAT-6 and TB10.4, low frequencies of total pulmonary T cells elicited by aerosolized Mtb infection recognize Mtb-infected macrophages. Finally, we demonstrate that BCG vaccination elicits T cells that recognize Mtb-infected macrophages. We propose that the frequency of T cells that recognize infected macrophages could correlate with protective immunity and may be an alternative approach to measuring T-cell responses to Mtb antigens.
Collapse
Affiliation(s)
- Yash R. Patankar
- 0000 0001 0742 0364grid.168645.8Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA
| | - Rujapak Sutiwisesak
- 0000 0001 0742 0364grid.168645.8Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA
| | - Shayla Boyce
- 0000 0001 0742 0364grid.168645.8Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA
| | - Rocky Lai
- 0000 0001 0742 0364grid.168645.8Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA
| | - Cecilia S. Lindestam Arlehamn
- 0000 0004 0461 3162grid.185006.aDepartment of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Alessandro Sette
- 0000 0004 0461 3162grid.185006.aDepartment of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037 USA ,0000 0001 2107 4242grid.266100.3Department of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Samuel M. Behar
- 0000 0001 0742 0364grid.168645.8Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA
| |
Collapse
|
26
|
Di G, Li Y, Zhao X, Wang N, Fu J, Li M, Huang M, You W, Kong X, Ke C. Differential proteomic profiles and characterizations between hyalinocytes and granulocytes in ivory shell Babylonia areolata. FISH & SHELLFISH IMMUNOLOGY 2019; 92:405-420. [PMID: 31212011 DOI: 10.1016/j.fsi.2019.06.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
The haemocytes of the ivory shell, Babylonia areolata are classified by morphologic observation into the following types: hyalinocytes (H) and granulocytes (G). Haemocytes comprise diverse cell types with morphological and functional heterogene and play indispensable roles in immunological homeostasis of invertebrates. In the present study, two types of haemocytes were morphologically identified and separated as H and G by Percoll density gradient centrifugation. The differentially expressed proteins were investigated between H and G using mass spectrometry. The results showed that total quantitative proteins between H and G samples were 1644, the number of up-regulated proteins in G was 215, and the number of down-regulated proteins in G was 378. Among them, cathepsin, p38 MAPK, toll-interacting protein-like and beta-adrenergic receptor kinase 2-like were up-regulated in G; alpha-2-macroglobulin-like protein, C-type lectin, galectin-2-1, galectin-3, β-1,3-glucan-binding protein, ferritin, mega-hemocyanin, mucin-17-like, mucin-5AC-like and catalytic subunit of protein kinase A were down-regulated in G. The results showed that the most significantly enriched KEGG pathways were the pathways related to ribosome, phagosome, endocytosis, carbon metabolism, protein processing in endoplasmic reticulum and oxidative phosphorylation. For phagosome and endocytosis pathway, the number of down-regulation proteins in G was more than that of up-regulation proteins. For lysosome pathway, the number of up-regulation proteins in G was more than that of down-regulation proteins. These results suggested that two sub-population haemocytes perform the different immune functions in B. areolata.
Collapse
Affiliation(s)
- Guilan Di
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Yanfei Li
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xianliang Zhao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Ning Wang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Jingqiang Fu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Min Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Miaoqin Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xianghui Kong
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
27
|
Kotsias F, Cebrian I, Alloatti A. Antigen processing and presentation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:69-121. [PMID: 31810556 DOI: 10.1016/bs.ircmb.2019.07.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells are at the center of immune responses. They are defined by their ability to sense the environment, take up and process antigen, migrate to secondary lymphoid organs, where they present antigens to the adaptive immune system. In particular, they present lipids and proteins from pathogens, which they encountered in peripheral tissues, to T cells in order to induce a specific effector immune response. These complex antigens need to be broken down into peptides of a certain length in association with Major Histocompatibility Complex (MHC) molecules. Presentation of MHC/antigen complexes alongside costimulatory molecules and secretion of proinflammatory cytokines will induce an appropriate immune response. This interaction between dendritic cells and T cells takes place at defined locations within secondary lymphoid organs. In this review, we discuss the current knowledge and recent advances on the cellular and molecular mechanisms that underlie antigen processing and the subsequent presentation to T lymphocytes.
Collapse
Affiliation(s)
- Fiorella Kotsias
- Cátedra de Virología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Instituto de Investigaciones en Producción Animal (INPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Ignacio Cebrian
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET/Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Andrés Alloatti
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER)-CONICET/Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
28
|
Nam GH, Hong Y, Choi Y, Kim GB, Kim YK, Yang Y, Kim IS. An optimized protocol to determine the engulfment of cancer cells by phagocytes using flow cytometry and fluorescence microscopy. J Immunol Methods 2019; 470:27-32. [PMID: 31034881 DOI: 10.1016/j.jim.2019.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/23/2023]
Abstract
The engulfment of cancer cells by macrophages is an important cellular process in innate cancer immunity. Antitumor immunotherapy that utilizes the enhanced engulfment of cancer cells by phagocytic cells has attracted much attention. Therefore, there is a growing demand for methods of measuring cancer cell phagocytosis. Quantifying the various stages of phagocytosis is invaluable for elucidating cancer-immune responses during this process. Here, we describe two phagocytosis assays, a flow cytometric assay and a fluorescent microscopic assay; the flow cytometric method utilizing CellTracker dye provides a simple, measurable, and highly reproducible functional assay to measure the phagocytosis efficiency of cancer cells by bone marrow-derived macrophages. As an alternative method of evaluating various states of cancer cell phagocytosis, a fluorescent microscopic method that employs a pH-sensitive dye (pHrodo-SE dye) is also described in this paper. Image-based analysis using this labeling approach enables researchers to measure phagocytic indices that indicate the number of cancer cells engulfed by each macrophage. We have highlighted that these assays can be applied to multiple tumor types and used as selection tools for a variety of phagocytosis agonist types. The results of this study may facilitate a better understanding of the interactions between tumor cells and phagocytes, which could lead to the identification of new therapeutic targets against cancer.
Collapse
Affiliation(s)
- Gi-Hoon Nam
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yeonsun Hong
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yoonjeong Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Gi Beom Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yoon Kyoung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yoosoo Yang
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| |
Collapse
|
29
|
Iyoda T, Yamasaki S, Kawamura M, Ueda M, Son K, Ito Y, Shimizu K, Fujii S. Optimal therapeutic strategy using antigen-containing liposomes selectively delivered to antigen-presenting cells. Cancer Sci 2019; 110:875-887. [PMID: 30629329 PMCID: PMC6398898 DOI: 10.1111/cas.13934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/27/2018] [Accepted: 12/29/2018] [Indexed: 01/08/2023] Open
Abstract
Recent immunotherapies have shown clinical success. In particular, vaccines based on particulate antigen (Ag) are expected to be implemented based on their efficacy. In the current study, we describe a strategy entailing Ag-encapsulating PEG-modified liposomes (PGL-Ag) as antigen protein delivery devices and show that the success of the liposome depends on the antigen-presenting cell (APC) capacity; after administration of PGL-Ag, dendritic cells (DCs) in particular take up the Ag and subsequently prime T cells. For the generation of antitumor T cell responses in the lymphoid tissues, the function of encapsulated Ag-capturing DCs in vivo could be a biomarker. We next designed a prime-boost strategy to enhance the antitumor effects of the PGL-Ag. In the tumor sites, we show that Ag retention in nanoparticle-capturing DCs promotes a robust antitumor response. Thus, this efficient particulate Ag-based host antigen-presenting cell delivery strategy provides a bridge between innate and adaptive immune response and offers a novel therapeutic option against tumor cells.
Collapse
Affiliation(s)
- Tomonori Iyoda
- Laboratory for ImmunotherapyRIKEN Center for Integrative Medical Science (IMS)YokohamaJapan
| | - Satoru Yamasaki
- Laboratory for ImmunotherapyRIKEN Center for Integrative Medical Science (IMS)YokohamaJapan
| | - Masami Kawamura
- Laboratory for ImmunotherapyRIKEN Center for Integrative Medical Science (IMS)YokohamaJapan
| | - Motoki Ueda
- Emergent Bioengineering Materials Research TeamRIKEN Center for Emergent Matter Science (CEMS)WakoJapan
- Nano Medical Engineering LaboratoryRIKEN Cluster for Pioneering Research (CPR)WakoJapan
| | - Kon Son
- Emergent Bioengineering Materials Research TeamRIKEN Center for Emergent Matter Science (CEMS)WakoJapan
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research TeamRIKEN Center for Emergent Matter Science (CEMS)WakoJapan
- Nano Medical Engineering LaboratoryRIKEN Cluster for Pioneering Research (CPR)WakoJapan
| | - Kanako Shimizu
- Laboratory for ImmunotherapyRIKEN Center for Integrative Medical Science (IMS)YokohamaJapan
| | - Shin‐ichiro Fujii
- Laboratory for ImmunotherapyRIKEN Center for Integrative Medical Science (IMS)YokohamaJapan
| |
Collapse
|
30
|
Pauwels AM, Härtlova A, Peltier J, Driege Y, Baudelet G, Brodin P, Trost M, Beyaert R, Hoffmann E. Spatiotemporal Changes of the Phagosomal Proteome in Dendritic Cells in Response to LPS Stimulation. Mol Cell Proteomics 2019; 18:909-922. [PMID: 30808727 DOI: 10.1074/mcp.ra119.001316] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/23/2019] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are professional phagocytes that use innate sensing and phagocytosis to internalize and degrade self as well as foreign material, such as pathogenic bacteria, within phagosomes. These intracellular compartments are equipped to generate antigenic peptides that serve as source for antigen presentation to T cells initiating adaptive immune responses. The phagosomal proteome of DCs is only partially studied and is highly dynamic as it changes during phagosome maturation, when phagosomes sequentially interact with endosomes and lysosomes. In addition, the activation status of the phagocyte can modulate the phagosomal composition and is able to shape phagosomal functions.In this study, we determined spatiotemporal changes of the proteome of DC phagosomes during their maturation and compared resting and lipopolysaccharide (LPS)-stimulated bone marrow-derived DCs by label-free, quantitative mass spectrometry. Ovalbumin-coupled latex beads were used as phagocytosis model system and revealed that LPS-treated DCs show decreased recruitment of proteins involved in phagosome maturation, such as subunits of the vacuolar proton ATPase, cathepsin B, D, S, and RAB7. In contrast, those phagosomes were characterized by an increased recruitment of proteins involved in antigen cross-presentation, e.g. different subunits of MHC I molecules, the proteasome and tapasin, confirming the observed increase in cross-presentation efficacy in those cells. Further, several proteins were identified that were not previously associated with phagosomal functions. Hierarchical clustering of phagosomal proteins demonstrated that their acquisition to DC phagosomes is not only dependent on the duration of phagosome maturation but also on the activation state of DCs. Thus, our study provides a comprehensive overview of how DCs alter their phagosome composition in response to LPS, which has profound impact on the initiation of efficient immune responses.
Collapse
Affiliation(s)
- Anne-Marie Pauwels
- From the ‡Unit of Molecular Signal Transduction in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium;; §Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Anetta Härtlova
- ¶Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Julien Peltier
- ¶Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Yasmine Driege
- From the ‡Unit of Molecular Signal Transduction in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium;; §Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Griet Baudelet
- From the ‡Unit of Molecular Signal Transduction in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium;; §Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Priscille Brodin
- ‖Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Matthias Trost
- ¶Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Rudi Beyaert
- From the ‡Unit of Molecular Signal Transduction in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium;; §Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Eik Hoffmann
- From the ‡Unit of Molecular Signal Transduction in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium;; §Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium;; ‖Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
31
|
Abstract
With the rise in novel infectious agents and disease pandemics, a new era of vaccine discovery is necessary. To address this, the new field of immunomics is described, which is synergistically powered by integrating bioinformatics methodologies with technological advances in biology and high-throughput instrumentation. By incorporating biological data from immunology and molecular biology with current genomics and proteomics, immunomics is geared to deliver an insight into immune function, optimal stimulation of immune responses and precise mapping and rational selection of immune targets that cover antigenic diversity. These efforts are expected to contribute towards the development of new generation of vaccines, tailored to both the genetic make-up of the human population and of the pathogen. Vaccine technologies are also being explored for prevention or control of non-communicable diseases.
Collapse
|
32
|
Ewanchuk BW, Yates RM. The phagosome and redox control of antigen processing. Free Radic Biol Med 2018; 125:53-61. [PMID: 29578071 DOI: 10.1016/j.freeradbiomed.2018.03.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/09/2018] [Accepted: 03/20/2018] [Indexed: 11/22/2022]
Abstract
In addition to debris clearance and antimicrobial function, versatile organelles known as phagosomes play an essential role in the processing of exogenous antigen in antigen presenting cells. While there has been much attention on human leukocyte antigen haplotypes in the determination of antigenic peptide repertoires, the lumenal biochemistries within phagosomes and endosomes are emerging as equally-important determinants of peptide epitope composition and immunodominance. Recently, the lumenal redox microenvironment within these degradative compartments has been shown to impact two key antigenic processing chemistries: proteolysis by lysosomal cysteine proteases and disulfide reduction of protein antigens. Through manipulation of the balance between oxidative and reductive capacities in the phagosome-principally by modulating NADPH oxidase (NOX2) and γ-interferon-inducible lysosomal thiol reductase (GILT) activities-studies have demonstrated changes to antigen processing patterns leading to modified repertoires of antigenic peptides available for presentation, and subsequently, altered disease progression in T cell-driven autoimmunity. This review focuses on the mechanisms and consequences of redox-mediated phagosomal antigen processing, and the potential downstream implications to tolerance and autoimmunity.
Collapse
Affiliation(s)
- Benjamin W Ewanchuk
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Robin M Yates
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1.
| |
Collapse
|
33
|
Embgenbroich M, Burgdorf S. Current Concepts of Antigen Cross-Presentation. Front Immunol 2018; 9:1643. [PMID: 30061897 PMCID: PMC6054923 DOI: 10.3389/fimmu.2018.01643] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/04/2018] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells have the ability to efficiently present internalized antigens on major histocompatibility complex (MHC) I molecules. This process is termed cross-presentation and is important role in the generation of an immune response against viruses and tumors, after vaccinations or in the induction of immune tolerance. The molecular mechanisms enabling cross-presentation have been topic of intense debate since many years. However, a clear view on these mechanisms remains difficult, partially due to important remaining questions, controversial results and discussions. Here, we give an overview of the current concepts of antigen cross-presentation and focus on a description of the major cross-presentation pathways, the role of retarded antigen degradation for efficient cross-presentation, the dislocation of antigens from endosomal compartment into the cytosol, the reverse transport of proteasome-derived peptides for loading on MHC I and the translocation of the cross-presentation machinery from the ER to endosomes. We try to highlight recent advances, discuss some of the controversial data and point out some of the major open questions in the field.
Collapse
Affiliation(s)
- Maria Embgenbroich
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Sven Burgdorf
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
34
|
NADPH oxidase activation regulates apoptotic neutrophil clearance by murine macrophages. Blood 2018; 131:2367-2378. [PMID: 29618478 DOI: 10.1182/blood-2017-09-809004] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/29/2018] [Indexed: 02/07/2023] Open
Abstract
The phagocyte reduced NAD phosphate (NADPH) oxidase generates superoxide, the precursor to reactive oxygen species (ROS) that has both antimicrobial and immunoregulatory functions. Inactivating mutations in NADPH oxidase alleles cause chronic granulomatous disease (CGD), characterized by enhanced susceptibility to life-threatening microbial infections and inflammatory disorders; hypomorphic NADPH oxidase alleles are associated with autoimmunity. Impaired apoptotic cell (AC) clearance is implicated as an important contributing factor in chronic inflammation and autoimmunity, but the role of NADPH oxidase-derived ROS in this process is incompletely understood. Here, we demonstrate that phagocytosis of AC (efferocytosis) potently activated NADPH oxidase in mouse peritoneal exudate macrophages (PEMs). ROS generation was dependent on macrophage CD11b, Toll-like receptor 2 (TLR2), TLR4, and myeloid differentiation primary response 88 (MyD88), and was also regulated by phosphatidylinositol 3-phosphate binding to the p40 phox oxidase subunit. Maturation of efferosomes containing apoptotic neutrophils was significantly delayed in CGD PEMs, including acidification and acquisition of proteolytic activity, and was associated with slower digestion of apoptotic neutrophil proteins. Treatment of wild-type macrophages with the vacuolar-type H+ ATPase inhibitor bafilomycin also delayed proteolysis within efferosomes, showing that luminal acidification was essential for efficient digestion of efferosome proteins. Finally, cross-presentation of AC-associated antigens by CGD PEMs to CD8 T cells was increased. These studies unravel a key role for the NADPH oxidase in the disposal of ACs by inflammatory macrophages. The oxidants generated promote efferosome maturation and acidification that facilitate the degradation of ingested ACs.
Collapse
|
35
|
Tol MJ, van der Lienden MJC, Gabriel TL, Hagen JJ, Scheij S, Veenendaal T, Klumperman J, Donker-Koopman WE, Verhoeven AJ, Overkleeft H, Aerts JM, Argmann CA, van Eijk M. HEPES activates a MiT/TFE-dependent lysosomal-autophagic gene network in cultured cells: A call for caution. Autophagy 2018; 14:437-449. [PMID: 29455584 PMCID: PMC5915011 DOI: 10.1080/15548627.2017.1419118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In recent years, the lysosome has emerged as a highly dynamic, transcriptionally regulated organelle that is integral to nutrient-sensing and metabolic rewiring. This is coordinated by a lysosome-to-nucleus signaling nexus in which MTORC1 controls the subcellular distribution of the microphthalmia-transcription factor E (MiT/TFE) family of “master lysosomal regulators”. Yet, despite the importance of the lysosome in cellular metabolism, the impact of traditional in vitro culture media on lysosomal dynamics and/or MiT/TFE localization has not been fully appreciated. Here, we identify HEPES, a chemical buffering agent that is broadly applied in cell culture, as a potent inducer of lysosome biogenesis. Supplementation of HEPES to cell growth media is sufficient to decouple the MiT/TFE family members–TFEB, TFE3 and MITF–from regulatory mechanisms that control their cytosolic retention. Increased MiT/TFE nuclear import in turn drives the expression of a global network of lysosomal-autophagic and innate host-immune response genes, altering lysosomal dynamics, proteolytic capacity, autophagic flux, and inflammatory signaling. In addition, siRNA-mediated MiT/TFE knockdown effectively blunted HEPES-induced lysosome biogenesis and gene expression profiles. Mechanistically, we show that MiT/TFE activation in response to HEPES requires its macropinocytic ingestion and aberrant lysosomal storage/pH, but is independent of MTORC1 signaling. Altogether, our data underscore the cautionary use of chemical buffering agents in cell culture media due to their potentially confounding effects on experimental results.
Collapse
Affiliation(s)
- Marc J Tol
- a Department of Medical Biochemistry , University of Amsterdam , Academic Medical Centre , The Netherlands.,b Department of Pathology and Laboratory Medicine , UCLA , Los Angeles , CA , USA
| | | | - Tanit L Gabriel
- a Department of Medical Biochemistry , University of Amsterdam , Academic Medical Centre , The Netherlands
| | - Jacob J Hagen
- d Department of Genetics and Genomic Sciences , Icahn Institute for Genomics and Multiscale Biology , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Saskia Scheij
- a Department of Medical Biochemistry , University of Amsterdam , Academic Medical Centre , The Netherlands
| | - Tineke Veenendaal
- e Department of Cell Biology , University Medical Centre Utrecht , The Netherlands
| | - Judith Klumperman
- e Department of Cell Biology , University Medical Centre Utrecht , The Netherlands
| | - Wilma E Donker-Koopman
- a Department of Medical Biochemistry , University of Amsterdam , Academic Medical Centre , The Netherlands
| | - Arthur J Verhoeven
- a Department of Medical Biochemistry , University of Amsterdam , Academic Medical Centre , The Netherlands
| | - Hermen Overkleeft
- c Leiden Institute of Chemistry , Leiden University , The Netherlands
| | - Johannes M Aerts
- c Leiden Institute of Chemistry , Leiden University , The Netherlands
| | - Carmen A Argmann
- a Department of Medical Biochemistry , University of Amsterdam , Academic Medical Centre , The Netherlands.,d Department of Genetics and Genomic Sciences , Icahn Institute for Genomics and Multiscale Biology , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Marco van Eijk
- a Department of Medical Biochemistry , University of Amsterdam , Academic Medical Centre , The Netherlands.,c Leiden Institute of Chemistry , Leiden University , The Netherlands
| |
Collapse
|
36
|
Maschalidi S, Nunes-Hasler P, Nascimento CR, Sallent I, Lannoy V, Garfa-Traore M, Cagnard N, Sepulveda FE, Vargas P, Lennon-Duménil AM, van Endert P, Capiod T, Demaurex N, Darrasse-Jèze G, Manoury B. UNC93B1 interacts with the calcium sensor STIM1 for efficient antigen cross-presentation in dendritic cells. Nat Commun 2017; 8:1640. [PMID: 29158474 PMCID: PMC5696382 DOI: 10.1038/s41467-017-01601-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/02/2017] [Indexed: 11/25/2022] Open
Abstract
Dendritic cells (DC) have the unique ability to present exogenous antigens via the major histocompatibility complex class I pathway to stimulate naive CD8+ T cells. In DCs with a non-functional mutation in Unc93b1 (3d mutation), endosomal acidification, phagosomal maturation, antigen degradation, antigen export to the cytosol and the function of the store-operated-Ca2+-entry regulator STIM1 are impaired. These defects result in compromised antigen cross-presentation and anti-tumor responses in 3d-mutated mice. Here, we show that UNC93B1 interacts with the calcium sensor STIM1 in the endoplasmic reticulum, a critical step for STIM1 oligomerization and activation. Expression of a constitutively active STIM1 mutant, which no longer binds UNC93B1, restores antigen degradation and cross-presentation in 3d-mutated DCs. Furthermore, ablation of STIM1 in mouse and human cells leads to a decrease in cross-presentation. Our data indicate that the UNC93B1 and STIM1 cooperation is important for calcium flux and antigen cross-presentation in DCs. STIM proteins sense Ca2+ depletion in the ER and activate store-operated Ca2+ entry in response, a process associated with dendritic cell (DC) functions. Here, the authors show that optimal antigen cross-presentation in DCs requires the association of the chaperone molecule UNC93B1 with STIM1.
Collapse
Affiliation(s)
- Sophia Maschalidi
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Imagine Institute, 75015, Paris, France.,Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France
| | - Paula Nunes-Hasler
- Department of Cell Physiology and Metabolism, University of Geneva, CH-1211, Geneva, Switzerland
| | - Clarissa R Nascimento
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France.,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France
| | - Ignacio Sallent
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France.,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France
| | - Valérie Lannoy
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France.,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France
| | - Meriem Garfa-Traore
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Cell Imaging and Bioinformatic Platform, INSERM US24 Structure Federative de Recherche Necker, 75015, Paris, France
| | - Nicolas Cagnard
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Cell Imaging and Bioinformatic Platform, INSERM US24 Structure Federative de Recherche Necker, 75015, Paris, France
| | - Fernando E Sepulveda
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Imagine Institute, 75015, Paris, France.,Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France
| | - Pablo Vargas
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France.,Institut Pierre-Gilles de Genes, PSL Research University, 75005, Paris, France
| | - Ana-Maria Lennon-Duménil
- Institut National de la Santé et de la Recherché Médicale, Unité 932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Peter van Endert
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France.,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France
| | - Thierry Capiod
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France.,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, CH-1211, Geneva, Switzerland
| | - Guillaume Darrasse-Jèze
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France.,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France
| | - Bénédicte Manoury
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France. .,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France. .,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France.
| |
Collapse
|
37
|
Endolysosomal Degradation of Allergenic Ole e 1-Like Proteins: Analysis of Proteolytic Cleavage Sites Revealing T Cell Epitope-Containing Peptides. Int J Mol Sci 2017; 18:ijms18081780. [PMID: 28812992 PMCID: PMC5578169 DOI: 10.3390/ijms18081780] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/27/2017] [Accepted: 08/03/2017] [Indexed: 11/20/2022] Open
Abstract
Knowledge of the susceptibility of proteins to endolysosomal proteases provides valuable information on immunogenicity. Though Ole e 1-like proteins are considered relevant allergens, little is known about their immunogenic properties and T cell epitopes. Thus, six representative molecules, i.e., Ole e 1, Fra e 1, Sal k 5, Che a 1, Phl p 11 and Pla l 1, were investigated. Endolysosomal degradation and peptide generation were simulated using microsomal fractions of JAWS II dendritic cells. Kinetics and peptide patterns were evaluated by gel electrophoresis and mass spectrometry. In silico MHC (major histocompatibility complex) class II binding prediction was performed with ProPred. Cleavage sites were assigned to the primary and secondary structure, and in silico docking experiments between the protease cathepsin S and Ole e 1 were performed. Different kinetics during endolysosomal degradation were observed while similar peptide profiles especially at the C-termini were detected. Typically, the identified peptide clusters comprised the previously-reported T cell epitopes of Ole e 1, consistent with an in silico analysis of the T cell epitopes. The results emphasize the importance of the fold on allergen processing, as also reflected by conserved cleavage sites located within the large flexible loop. In silico docking and mass spectrometry results suggest that one of the first Ole e 1 cleavages might occur at positions 107–108. Our results provided kinetic and structural information on endolysosomal processing of Ole e 1-like proteins.
Collapse
|
38
|
Blander JM. The comings and goings of MHC class I molecules herald a new dawn in cross-presentation. Immunol Rev 2017; 272:65-79. [PMID: 27319343 DOI: 10.1111/imr.12428] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MHC class I (MHC-I) molecules are the centerpieces of cross-presentation. They are loaded with peptides derived from exogenous sources and displayed on the plasma membrane to communicate with CD8 T cells, relaying a message of tolerance or attack. The study of cross-presentation has been focused on the relative contributions of the vacuolar versus cytosolic pathways of antigen processing and the location where MHC-I molecules are loaded. While vacuolar processing generates peptides loaded onto vacuolar MHC-I molecules, how and where exogenous peptides generated by the proteasome and transported by TAP meet MHC-I molecules for loading has been a matter of debate. The source and trafficking of MHC-I molecules in dendritic cells have largely been ignored under the expectation that these molecules came from the Endoplasmic reticulum (ER) or the plasma membrane. New studies reveal a concentrated pool of MHC-I molecules in the endocytic recycling compartment (ERC). These pools are rapidly mobilized to phagosomes carrying microbial antigens, and in a signal-dependent manner under the control of Toll-like receptors. The phagosome becomes a dynamic hub receiving traffic from multiple sources, the ER-Golgi intermediate compartment for delivering the peptide-loading machinery and the ERC for deploying MHC-I molecules that alert CD8 T cells of infection.
Collapse
Affiliation(s)
- J Magarian Blander
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
39
|
Alloatti A, Kotsias F, Magalhaes JG, Amigorena S. Dendritic cell maturation and cross-presentation: timing matters! Immunol Rev 2017; 272:97-108. [PMID: 27319345 PMCID: PMC6680313 DOI: 10.1111/imr.12432] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As a population, dendritic cells (DCs) appear to be the best cross‐presenters of internalized antigens on major histocompatibility complex class I molecules in the mouse. To do this, DCs have developed a number of unique and dedicated means to control their endocytic and phagocytic pathways: among them, the capacity to limit acidification of their phagosomes, to prevent proteolytic degradation, to delay fusion of phagosomes to lysosomes, to recruit ER proteins to phagosomes, and to export phagocytosed antigens to the cytosol. The regulation of phagocytic functions, and thereby of antigen processing and presentation by innate signaling, represents a critical level of integration of adaptive and innate immune responses. Understanding how innate signals control antigen cross‐presentation is critical to define effective vaccination strategies for CD8+ T‐cell responses.
Collapse
Affiliation(s)
- Andrés Alloatti
- Institut Curie, PSL Research University, INSERM U932, Paris Cedex 05, France
| | - Fiorella Kotsias
- Institut Curie, PSL Research University, INSERM U932, Paris Cedex 05, France.,Department of Virology, Faculty of Veterinary Sciences, University of Buenos Aires, Buenos Aires, and CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
| | | | - Sebastian Amigorena
- Institut Curie, PSL Research University, INSERM U932, Paris Cedex 05, France
| |
Collapse
|
40
|
Pauwels AM, Trost M, Beyaert R, Hoffmann E. Patterns, Receptors, and Signals: Regulation of Phagosome Maturation. Trends Immunol 2017; 38:407-422. [PMID: 28416446 PMCID: PMC5455985 DOI: 10.1016/j.it.2017.03.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/18/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
Recognition of microbial pathogens and dead cells and their phagocytic uptake by specialized immune cells are essential to maintain host homeostasis. Phagosomes undergo fusion and fission events with endosomal and lysosomal compartments, a process called ‘phagosome maturation’, which leads to the degradation of the phagosomal content. However, many phagocytic cells also act as antigen-presenting cells and must balance degradation and peptide preservation. Emerging evidence indicates that receptor engagement by phagosomal cargo, as well as inflammatory mediators and cellular activation affect many aspects of phagosome maturation. Unsurprisingly, pathogens have developed strategies to hijack this machinery, thereby interfering with host immunity. Here, we highlight progress in this field, summarize findings on the impact of immune signals, and discuss consequences for pathogen elimination. Self and non-self immune signals are able to delay or accelerate phagosome maturation, and their effects are dependent on the phagocytic cell type, duration of stimulation, and whether the stimulus is particle bound or present in the cellular environment. Acceleration of phagosome maturation enhances pathogen killing, while a delay in phagosome maturation preserves antigenic peptides for presentation to T cells and to initiate adaptive immune responses. Besides its functions in pathogen killing and antigen presentation, the phagosome also functions as a signaling platform and interacts with other cell organelles. Some pathogens are able to arrest phagosome maturation to enhance their intraphagosomal survival and replication or to promote phagosomal escape. The latex bead phagocytosis model system combined with mass spectrometry is a powerful technique to analyze changes in the phagosomal proteome.
Collapse
Affiliation(s)
- Anne-Marie Pauwels
- Unit of Molecular Signal Transduction in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Matthias Trost
- MRC Protein Phosphorylation Unit, University of Dundee, Dundee, UK; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Eik Hoffmann
- Unit of Molecular Signal Transduction in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Current address: Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
41
|
Du F, Liu YG, Scott EA. Immunotheranostic Polymersomes Modularly Assembled from Tetrablock and Diblock Copolymers with Oxidation-Responsive Fluorescence. Cell Mol Bioeng 2017; 10:357-370. [PMID: 28989540 DOI: 10.1007/s12195-017-0486-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Intracellular delivery is a key step for many applications in medicine and for investigations into cellular function. This is particularly true for immunotherapy, which often requires controlled delivery of antigen and adjuvants to the cytoplasm of immune cells. Due to the complex responses generated by the stimulation of diverse immune cell populations, it is critical to monitor which cells are targeted during treatment. To address this issue, we have engineered an immunotheranostic polymersome delivery system that fluorescently marks immune cells following intracellular delivery. METHODS N-(3-bromopropyl)phthalimide end-capped poly(ethylene glycol)-bl-poly(propylene sulfide) (PEG-PPS-PI) was synthesized by anionic ring opening polymerization and linked with PEG-PPS-NH2 via a perylene bisimide (PBI) bridge to form a tetrablock copolymer (PEG-PPS-PBI-PPS-PEG). Block copolymers were assembled into polymersomes by thin film hydration in phosphate buffered saline and characterized by dynamic light scattering, cryogenic electron microscopy and fluorescence spectroscopy. Polymersomes were injected subcutaneously into the backs of mice, and draining lymph nodes were extracted for flow cytometric analysis of cellular uptake and disassembly. RESULTS Modular self-assembly of tetrablock / diblock copolymers in aqueous solutions induced π-π stacking of the PBI linker that both red-shifted and quenched the PBI fluorescence. Reactive oxygen species within the endosomes of phagocytic immune cell populations oxidized the PPS blocks, which disassembled the polymersomes for dequenching and shifting of the PBI fluorescence from 640 nm to 550 nm emission. Lymph node resident macrophages and dendritic cells were found to increase in 550 nm emission over the course of 3 days by flow cytometry. CONCLUSIONS Immunotheranostic polymersomes present a versatile platform to probe the contributions of specific cell populations during the elicitation of controlled immune responses. Flanking PBI with two oxidation-sensitive hydrophobic PPS blocks enhanced π stacking and introduced a mechanism for disrupting π-π interactions to shift PBI fluorescence in response to oxidative conditions. Shifts from red (640 nm) to green (550 nm) fluorescence occurred in the presence of physiologically relevant concentrations of reactive oxygen species and could be observed within phagocytic cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Fanfan Du
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA.,Simpson Querrey Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yu-Gang Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Evan Alexander Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA.,Simpson Querrey Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
42
|
Gao J, Ochyl LJ, Yang E, Moon JJ. Cationic liposomes promote antigen cross-presentation in dendritic cells by alkalizing the lysosomal pH and limiting the degradation of antigens. Int J Nanomedicine 2017; 12:1251-1264. [PMID: 28243087 PMCID: PMC5317250 DOI: 10.2147/ijn.s125866] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cationic liposomes (CLs) have been widely examined as vaccine delivery nanoparticles since they can form complexes with biomacromolecules, promote delivery of antigens and adjuvant molecules to antigen-presenting cells (APCs), and mediate cellular uptake of vaccine components. CLs are also known to trigger antigen cross-presentation - the process by which APCs internalize extracellular protein antigens, degrade them into minimal CD8+ T-cell epitopes, and present them in the context of major histocompatibility complex-I (MHC-I). However, the precise mechanisms behind CL-mediated induction of cross-presentation and cross-priming of CD8+ T-cells remain to be elucidated. In this study, we have developed two distinct CL systems and examined their impact on the lysosomal pH in dendritic cells (DCs), antigen degradation, and presentation of peptide:MHC-I complexes to antigen-specific CD8+ T-cells. To achieve this, we have used 3β-[N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as the prototypical components of CLs with tertiary amine groups and compared the effect of CLs and anionic liposomes on lysosomal pH, antigen degradation, and cross-presentation by DCs. Our results showed that CLs, but not anionic liposomes, elevated the lysosomal pH in DCs and reduced antigen degradation, thereby promoting cross-presentation and cross-priming of CD8+ T-cell responses. These studies shed new light on CL-mediated cross-presentation and suggest that intracellular fate of vaccine components and subsequent immunological responses can be controlled by rational design of nanomaterials.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Pharmaceutical Sciences, School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China; Biointerfaces Institute
| | - Lukasz J Ochyl
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute
| | | | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
43
|
Patel VI, Booth JL, Duggan ES, Cate S, White VL, Hutchings D, Kovats S, Burian DM, Dozmorov M, Metcalf JP. Transcriptional Classification and Functional Characterization of Human Airway Macrophage and Dendritic Cell Subsets. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:1183-1201. [PMID: 28031342 PMCID: PMC5262539 DOI: 10.4049/jimmunol.1600777] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022]
Abstract
The respiratory system is a complex network of many cell types, including subsets of macrophages and dendritic cells that work together to maintain steady-state respiration. Owing to limitations in acquiring cells from healthy human lung, these subsets remain poorly characterized transcriptionally and phenotypically. We set out to systematically identify these subsets in human airways by developing a schema of isolating large numbers of cells by whole-lung bronchoalveolar lavage. Six subsets of phagocytic APC (HLA-DR+) were consistently observed. Aside from alveolar macrophages, subsets of Langerin+, BDCA1-CD14+, BDCA1+CD14+, BDCA1+CD14-, and BDCA1-CD14- cells were identified. These subsets varied in their ability to internalize Escherichia coli, Staphylococcus aureus, and Bacillus anthracis particles. All subsets were more efficient at internalizing S. aureus and B. anthracis compared with E. coli Alveolar macrophages and CD14+ cells were overall more efficient at particle internalization compared with the four other populations. Subsets were further separated into two groups based on their inherent capacities to upregulate surface CD83, CD86, and CCR7 expression levels. Whole-genome transcriptional profiling revealed a clade of "true dendritic cells" consisting of Langerin+, BDCA1+CD14+, and BDCA1+CD14- cells. The dendritic cell clade was distinct from a macrophage/monocyte clade, as supported by higher mRNA expression levels of several dendritic cell-associated genes, including CD1, FLT3, CX3CR1, and CCR6 Each clade, and each member of both clades, was discerned by specific upregulated genes, which can serve as markers for future studies in healthy and diseased states.
Collapse
Affiliation(s)
- Vineet I Patel
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - J Leland Booth
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Elizabeth S Duggan
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Steven Cate
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Vicky L White
- Office of Aviation Medicine, Federal Aviation Administration, Oklahoma City, OK 73169
| | | | - Susan Kovats
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; and
| | - Dennis M Burian
- Office of Aviation Medicine, Federal Aviation Administration, Oklahoma City, OK 73169
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298
| | - Jordan P Metcalf
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104;
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
44
|
El-Awady AR, Arce RM, Cutler CW. Dendritic cells: microbial clearance via autophagy and potential immunobiological consequences for periodontal disease. Periodontol 2000 2017; 69:160-80. [PMID: 26252408 PMCID: PMC4530502 DOI: 10.1111/prd.12096] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2015] [Indexed: 12/15/2022]
Abstract
Dendritic cells are potent antigen‐capture and antigen‐presenting cells that play a key role in the initiation and regulation of the adaptive immune response. This process of immune homeostasis, as maintained by dendritic cells, is susceptible to dysregulation by certain pathogens during chronic infections. Such dysregulation may lead to disease perpetuation with potentially severe systemic consequences. Here we discuss in detail how intracellular pathogens exploit dendritic cells and escape degradation by altering or evading autophagy. This novel mechanism explains, in part, the chronic, persistent nature observed in several immuno‐inflammatory diseases, including periodontal disease. We also propose a hypothetical model of the plausible role of autophagy in the context of periodontal disease. Promotion of autophagy may open new therapeutic strategies in the search of a ‘cure’ for periodontal disease in humans.
Collapse
|
45
|
Jessop F, Hamilton RF, Rhoderick JF, Fletcher P, Holian A. Phagolysosome acidification is required for silica and engineered nanoparticle-induced lysosome membrane permeabilization and resultant NLRP3 inflammasome activity. Toxicol Appl Pharmacol 2017; 318:58-68. [PMID: 28126413 DOI: 10.1016/j.taap.2017.01.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 01/03/2023]
Abstract
NLRP3 inflammasome activation occurs in response to hazardous particle exposures and is critical for the development of particle-induced lung disease. Mechanisms of Lysosome Membrane Permeabilization (LMP), a central pathway for activation of the NLRP3 inflammasome by inhaled particles, are not fully understood. We demonstrate that the lysosomal vATPases inhibitor Bafilomycin A1 blocked LMP in vitro and ex vivo in primary murine macrophages following exposure to silica, multi-walled carbon nanotubes, and titanium nanobelts. Bafilomycin A1 treatment of particle-exposed macrophages also resulted in decreased active cathepsin L in the cytosol, a surrogate measure for leaked cathepsin B, which was associated with less NLRP3 inflammasome activity. Silica-induced LMP was partially dependent upon lysosomal cathepsins B and L, whereas nanoparticle-induced LMP occurred independent of cathepsin activity. Furthermore, inhibition of lysosomal cathepsin activity with CA-074-Me decreased the release of High Mobility Group Box 1. Together, these data support the notion that lysosome acidification is a prerequisite for particle-induced LMP, and the resultant leak of lysosome cathepsins is a primary regulator of ongoing NLRP3 inflammasome activity and release of HMGB1.
Collapse
Affiliation(s)
- Forrest Jessop
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Raymond F Hamilton
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Joseph F Rhoderick
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Paige Fletcher
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Andrij Holian
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States.
| |
Collapse
|
46
|
Devi KSP, Anandasabapathy N. The origin of DCs and capacity for immunologic tolerance in central and peripheral tissues. Semin Immunopathol 2016; 39:137-152. [PMID: 27888331 DOI: 10.1007/s00281-016-0602-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 12/20/2022]
Abstract
Dendritic cells (DCs) are specialized immune sentinels that play key role in maintaining immune homeostasis by efficiently regulating the delicate balance between protective immunity and tolerance to self. Although DCs respond to maturation signals present in the surrounding milieu, multiple layers of suppression also co-exist that reduce the infringement of tolerance against self-antigens. These tolerance inducing properties of DCs are governed by their origin and a range of other factors including distribution, cytokines, growth factors, and transcriptional programing, that collectively impart suppressive functions to these cells. DCs directing tolerance secrete anti-inflammatory cytokines and induce naïve T cells or B cells to differentiate into regulatory T cells (Tregs) or B cells. In this review, we provide a detailed outlook on the molecular mechanisms that induce functional specialization to govern central or peripheral tolerance. The tolerance-inducing nature of DCs can be exploited to overcome autoimmunity and rejection in graft transplantation.
Collapse
Affiliation(s)
- K Sanjana P Devi
- Department of Dermatology/Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Niroshana Anandasabapathy
- Department of Dermatology/Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
47
|
Bretou M, Kumari A, Malbec O, Moreau HD, Obino D, Pierobon P, Randrian V, Sáez PJ, Lennon-Duménil AM. Dynamics of the membrane-cytoskeleton interface in MHC class II-restricted antigen presentation. Immunol Rev 2016; 272:39-51. [DOI: 10.1111/imr.12429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Marine Bretou
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Anita Kumari
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Odile Malbec
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Hélène D. Moreau
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Dorian Obino
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Paolo Pierobon
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Violaine Randrian
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Pablo J. Sáez
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | | |
Collapse
|
48
|
Rasid O, Mériaux V, Khan EM, Borde C, Ciulean IS, Fitting C, Manoury B, Cavaillon JM, Doyen N. Cathepsin B-Deficient Mice Resolve Leishmania major Inflammation Faster in a T Cell-Dependent Manner. PLoS Negl Trop Dis 2016; 10:e0004716. [PMID: 27182703 PMCID: PMC4868322 DOI: 10.1371/journal.pntd.0004716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/27/2016] [Indexed: 11/18/2022] Open
Abstract
A critical role for intracellular TLR9 has been described in recognition and host resistance to Leishmania parasites. As TLR9 requires endolysosomal proteolytic cleavage to achieve signaling functionality, we investigated the contribution of different proteases like asparagine endopeptidase (AEP) or cysteine protease cathepsins B (CatB), L (CatL) and S (CatS) to host resistance during Leishmania major (L. major) infection in C57BL/6 (WT) mice and whether they would impact on TLR9 signaling. Unlike TLR9-/-, which are more susceptible to infection, AEP-/-, CatL-/- and CatS-/- mice are as resistant to L. major infection as WT mice, suggesting that these proteases are not individually involved in TLR9 processing. Interestingly, we observed that CatB-/- mice resolve L. major lesions significantly faster than WT mice, however we did not find evidence for an involvement of CatB on either TLR9-dependent or independent cytokine responses of dendritic cells and macrophages or in the innate immune response to L. major infection. We also found no difference in antigen presenting capacity. We observed a more precocious development of T helper 1 responses accompanied by a faster decline of inflammation, resulting in resolution of footpad inflammation, reduced IFNγ levels and decreased parasite burden. Adoptive transfer experiments into alymphoid RAG2-/-γc-/- mice allowed us to identify CD3+ T cells as responsible for the immune advantage of CatB-/- mice towards L. major. In vitro data confirmed the T cell intrinsic differences between CatB-/- mice and WT. Our study brings forth a yet unappreciated role for CatB in regulating T cell responses during L. major infection.
Collapse
Affiliation(s)
- Orhan Rasid
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
- * E-mail: (OR); (ND)
| | - Véronique Mériaux
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
| | - Erin M. Khan
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
| | - Chloé Borde
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
| | - Ioana S. Ciulean
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
- Cantacuzino National Research Institute, Bucharest, Romania
| | - Catherine Fitting
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
| | - Bénédicte Manoury
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Jean-Marc Cavaillon
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
| | - Noëlle Doyen
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
- * E-mail: (OR); (ND)
| |
Collapse
|
49
|
Balce DR, Rybicka JM, Greene CJ, Ewanchuk BW, Yates RM. Ligation of FcγR Alters Phagosomal Processing of Protein via Augmentation of NADPH Oxidase Activity. Traffic 2016; 17:786-802. [PMID: 27020146 DOI: 10.1111/tra.12396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/24/2016] [Accepted: 03/24/2016] [Indexed: 01/01/2023]
Abstract
Proteolysis and the reduction of disulfides, both major components of protein degradation, are profoundly influenced by phagosomal redox conditions in macrophages. We evaluated the activation of phagocytic receptors that are known to influence activation of the phagocyte NADPH oxidase (NOX2), and its effect on phagosomal protein degradation. Population-based and single phagosome analyses of phagosomal chemistries in murine macrophages revealed that activation of NOX2 via the Fcγ receptor (FcγR) during phagocytosis decreased rates of proteolysis and disulfide reduction. Immunoglobulin G (IgG)-stimulated reactive oxygen species (ROS) production and the inhibition of phagosomal proteolysis and disulfide reduction were dependent on NOX2, FcγR and protein kinase C (PKC)/spleen tyrosine kinase (Syk) signaling. In contrast, low levels of ROS production were observed following the phagocytosis of unopsonized beads, which resulted in higher rates of phagosomal proteolysis and disulfide reduction. Phagosomes displayed autonomy with respect to FcγR-mediated differences in NOX2 activation and proteolysis, as phagosomes containing unopsonized cargo retained low NOX2 activation and high proteolysis even in the presence of phagosomes containing IgG-opsonized cargo in the same macrophage. These results show that opsonization of phagocytic cargo results in vastly different phagosomal processing of proteins through the FcγR-triggered, PKC/Syk-dependent local assembly and activation of NOX2.
Collapse
Affiliation(s)
- Dale R Balce
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Calgary, Canada
| | - Joanna M Rybicka
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Calgary, Canada
| | - Catherine J Greene
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Benjamin W Ewanchuk
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Robin M Yates
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Calgary, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
50
|
Toll-like Receptor 4 Engagement on Dendritic Cells Restrains Phago-Lysosome Fusion and Promotes Cross-Presentation of Antigens. Immunity 2016; 43:1087-100. [PMID: 26682983 DOI: 10.1016/j.immuni.2015.11.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 08/15/2015] [Accepted: 11/05/2015] [Indexed: 01/16/2023]
Abstract
The initiation of cytotoxic immune responses by dendritic cells (DCs) requires the presentation of antigenic peptides derived from phagocytosed microbes and infected or dead cells to CD8(+) T cells, a process called cross-presentation. Antigen cross-presentation by non-activated DCs, however, is not sufficient for the effective induction of immune responses. Additionally, DCs need to be activated through innate receptors, like Toll-like receptors (TLRs). During DC maturation, cross-presentation efficiency is first upregulated and then turned off. Here we show that during this transient phase of enhanced cross-presentation, phago-lysosome fusion was blocked by the topological re-organization of lysosomes into perinuclear clusters. LPS-induced lysosomal clustering, inhibition of phago-lysosome fusion and enhanced cross-presentation, all required expression of the GTPase Rab34. We conclude that TLR4 engagement induces a Rab34-dependent re-organization of lysosomal distribution that delays antigen degradation to transiently enhance cross-presentation, thereby optimizing the priming of CD8(+) T cell responses against pathogens.
Collapse
|