1
|
Liu S, Lin M, Zhou X. T4 Phage Displaying Dual Antigen Clusters Against H3N2 Influenza Virus Infection. Vaccines (Basel) 2025; 13:70. [PMID: 39852849 PMCID: PMC11769387 DOI: 10.3390/vaccines13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND The current H3N2 influenza subunit vaccine exhibits weak immunogenicity, which limits its effectiveness in preventing and controlling influenza virus infections. METHODS In this study, we aimed to develop a T4 phage-based nanovaccine designed to enhance the immunogenicity of two antigens by displaying the HA1 and M2e antigens of the H3N2 influenza virus on each phage nanoparticle. Specifically, we fused the Soc protein with the HA1 antigen and the Hoc protein with the M2e antigen, assembling them onto a T4 phage that lacks Soc and Hoc proteins (Soc-Hoc-T4), thereby constructing a nanovaccine that concurrently presents both HA1 and M2e antigens. RESULTS The analysis of the optical density of the target protein bands indicated that each particle could display approximately 179 HA1 and 68 M2e antigen molecules. Additionally, animal experiments demonstrated that this nanoparticle vaccine displaying dual antigen clusters induced a stronger specific immune response, higher antibody titers, a more balanced Th1/Th2 immune response, and enhanced CD4+ and CD8+ T cell effects compared to immunization with HA1 and M2e antigen molecules alone. Importantly, mice immunized with the T4 phage displaying dual antigen clusters achieved full protection (100% protection) against the H3N2 influenza virus, highlighting its robust protective efficacy. CONCLUSIONS In summary, our findings indicate that particles based on a T4 phage displaying antigen clusters exhibit ideal immunogenicity and protective effects, providing a promising strategy for the development of subunit vaccines against various viruses beyond influenza.
Collapse
Affiliation(s)
- Shenglong Liu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; (S.L.); (M.L.)
| | - Mengzhou Lin
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; (S.L.); (M.L.)
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; (S.L.); (M.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
| |
Collapse
|
2
|
Zhang J, Yao Z. Immune cell trafficking: a novel perspective on the gut-skin axis. Inflamm Regen 2024; 44:21. [PMID: 38654394 DOI: 10.1186/s41232-024-00334-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
Immune cell trafficking, an essential mechanism for maintaining immunological homeostasis and mounting effective responses to infections, operates under a stringent regulatory framework. Recent advances have shed light on the perturbation of cell migration patterns, highlighting how such disturbances can propagate inflammatory diseases from their origin to distal organs. This review collates and discusses current evidence that demonstrates atypical communication between the gut and skin, which are conventionally viewed as distinct immunological spheres, in the milieu of inflammation. We focus on the aberrant, reciprocal translocation of immune cells along the gut-skin axis as a pivotal factor linking intestinal and dermatological inflammatory conditions. Recognizing that the translation of these findings into clinical practices is nascent, we suggest that therapeutic strategies aimed at modulating the axis may offer substantial benefits in mitigating the widespread impact of inflammatory diseases.
Collapse
Affiliation(s)
- Jiayan Zhang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhirong Yao
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Finn CM, McKinstry KK. Ex Pluribus Unum: The CD4 T Cell Response against Influenza A Virus. Cells 2024; 13:639. [PMID: 38607077 PMCID: PMC11012043 DOI: 10.3390/cells13070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Current Influenza A virus (IAV) vaccines, which primarily aim to generate neutralizing antibodies against the major surface proteins of specific IAV strains predicted to circulate during the annual 'flu' season, are suboptimal and are characterized by relatively low annual vaccine efficacy. One approach to improve protection is for vaccines to also target the priming of virus-specific T cells that can protect against IAV even in the absence of preexisting neutralizing antibodies. CD4 T cells represent a particularly attractive target as they help to promote responses by other innate and adaptive lymphocyte populations and can also directly mediate potent effector functions. Studies in murine models of IAV infection have been instrumental in moving this goal forward. Here, we will review these findings, focusing on distinct subsets of CD4 T cell effectors that have been shown to impact outcomes. This body of work suggests that a major challenge for next-generation vaccines will be to prime a CD4 T cell population with the same spectrum of functional diversity generated by IAV infection. This goal is encapsulated well by the motto 'ex pluribus unum': that an optimal CD4 T cell response comprises many individual specialized subsets responding together.
Collapse
Affiliation(s)
| | - K. Kai McKinstry
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| |
Collapse
|
4
|
Malamba-Banda C, Mhango C, Benedicto-Matambo P, Mandolo JJ, Chinyama E, Kumwenda O, Barnes KG, Cunliffe NA, Iturriza-Gomara M, Jambo KC, Jere KC. Acute rotavirus infection is associated with the induction of circulating memory CD4 + T cell subsets. Sci Rep 2023; 13:9001. [PMID: 37268634 PMCID: PMC10238530 DOI: 10.1038/s41598-023-35681-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Strong CD4+ T cell-mediated immune protection following rotavirus infection has been observed in animal models, but its relevance in humans remains unclear. Here, we characterized acute and convalescent CD4+ T cell responses in children who were hospitalized with rotavirus-positive and rotavirus-negative diarrhoea in Blantyre, Malawi. Children presenting with laboratory-confirmed rotavirus infection had higher proportions of effector and central memory T helper 2 cells during acute infection i.e., at disease presentation compared to convalescence, 28 days post-infection defined by a follow-up 28 days after acute infection. However, circulating cytokine-producing (IFN-γ and/or TNF-α) rotavirus-specific VP6-specific CD4+ T cells were rarely detectable in children with rotavirus infection at both acute and convalescent stages. Moreover, following whole blood mitogenic stimulation, the responding CD4+ T cells were predominantly non-cytokine producers of IFN-γ and/or TNF-α. Our findings demonstrate limited induction of anti-viral IFN-γ and/or TNF-α-producing CD4+ T cells in rotavirus-vaccinated Malawian children following the development of laboratory-confirmed rotavirus infection.
Collapse
Affiliation(s)
- Chikondi Malamba-Banda
- Biological Sciences Departments, Malawi University of Science and Technology, Thyolo, Malawi
- Malawi Liverpool Wellcome Research Programme (MLW), Blantyre, Malawi
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Profession, Kamuzu University of Health Sciences, Blantyre, Malawi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Chimwemwe Mhango
- Malawi Liverpool Wellcome Research Programme (MLW), Blantyre, Malawi
| | - Prisca Benedicto-Matambo
- Malawi Liverpool Wellcome Research Programme (MLW), Blantyre, Malawi
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Profession, Kamuzu University of Health Sciences, Blantyre, Malawi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jonathan J Mandolo
- Malawi Liverpool Wellcome Research Programme (MLW), Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - End Chinyama
- Malawi Liverpool Wellcome Research Programme (MLW), Blantyre, Malawi
| | - Orpha Kumwenda
- Malawi Liverpool Wellcome Research Programme (MLW), Blantyre, Malawi
| | - Kayla G Barnes
- Malawi Liverpool Wellcome Research Programme (MLW), Blantyre, Malawi
- Harvard TH Chan School of Public Health, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
- University of Glasgow, Glasgow, UK
| | - Nigel A Cunliffe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- National Institute for Health and Care Research, Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | - Miren Iturriza-Gomara
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kondwani C Jambo
- Malawi Liverpool Wellcome Research Programme (MLW), Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Khuzwayo C Jere
- Malawi Liverpool Wellcome Research Programme (MLW), Blantyre, Malawi.
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Profession, Kamuzu University of Health Sciences, Blantyre, Malawi.
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
- National Institute for Health and Care Research, Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK.
| |
Collapse
|
5
|
Pandey A, Madan R, Singh S. Immunology to Immunotherapeutics of SARS-CoV-2: Identification of Immunogenic Epitopes for Vaccine Development. Curr Microbiol 2022; 79:306. [PMID: 36064873 PMCID: PMC9444117 DOI: 10.1007/s00284-022-03003-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/16/2022] [Indexed: 11/21/2022]
Abstract
The emergence of COVID19 pandemic caused by SARS-CoV-2 virus has created a global public health and socio-economic crisis. Immunoinformatics-based approaches to investigate the potential antigens is the fastest way to move towards a multiepitope-based vaccine development. This review encompasses the underlying mechanisms of pathogenesis, innate and adaptive immune signaling along with evasion pathways of SARS-CoV-2. Furthermore, it compiles the promiscuous peptides from in silico studies which are subjected to prediction of cytokine milieu using web-based servers. Out of the 434 peptides retrieved from all studies, we have identified 33 most promising T cell vaccine candidates. This review presents a list of the most potential epitopes from several proteins of the virus based on their immunogenicity, homology, conservancy and population coverage studies. These epitopes can form a basis of second generation of vaccine development as the first generation vaccines in various stages of trials mostly focus only on Spike protein. We therefore, propose them as most potential candidates which can be taken up immediately for confirmation by experimental studies.
Collapse
Affiliation(s)
- Apoorva Pandey
- Indian Council of Medical Research, V. Ramalingaswami Bhawan, Ansari Nagar, P.O. Box No. 4911, New Delhi, 110029 India
| | - Riya Madan
- Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Sahibzada Ajit Singh Nagar, Punjab 140306 India
| | - Swati Singh
- Department of Zoology, University of Delhi, Delhi, 110007 India
| |
Collapse
|
6
|
Wilson KR, Gressier E, McConville MJ, Bedoui S. Microbial Metabolites in the Maturation and Activation of Dendritic Cells and Their Relevance for Respiratory Immunity. Front Immunol 2022; 13:897462. [PMID: 35880171 PMCID: PMC9307905 DOI: 10.3389/fimmu.2022.897462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
The respiratory tract is a gateway for viruses and bacteria from the external environment to invade the human body. Critical to the protection against these invaders are dendritic cells (DCs) - a group of highly specialized myeloid cells that monitors the lung microenvironment and relays contextual and antigenic information to T cells. Following the recognition of danger signals and/or pathogen molecular associated patterns in the lungs, DCs undergo activation. This process arms DCs with the unique ability to induce the proliferation and differentiation of T cells responding to matching antigen in complex with MHC molecules. Depending on how DCs interact with T cells, the ensuing T cell response can be tolerogenic or immunogenic and as such, the susceptibility and severity of respiratory infections is influenced by the signals DCs receive, integrate, and then convey to T cells. It is becoming increasingly clear that these facets of DC biology are heavily influenced by the cellular components and metabolites produced by the lung and gut microbiota. In this review, we discuss the roles of different DC subsets in respiratory infections and outline how microbial metabolites impact the development, propensity for activation and subsequent activation of DCs. In particular, we highlight these concepts in the context of respiratory immunity.
Collapse
Affiliation(s)
- Kayla R. Wilson
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Kayla R. Wilson,
| | - Elise Gressier
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Malcolm J. McConville
- Department of Biochemistry and Pharmacology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, VIC, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Tang J, Cai L, Xu C, Sun S, Liu Y, Rosenecker J, Guan S. Nanotechnologies in Delivery of DNA and mRNA Vaccines to the Nasal and Pulmonary Mucosa. NANOMATERIALS 2022; 12:nano12020226. [PMID: 35055244 PMCID: PMC8777913 DOI: 10.3390/nano12020226] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
Abstract
Recent advancements in the field of in vitro transcribed mRNA (IVT-mRNA) vaccination have attracted considerable attention to such vaccination as a cutting-edge technique against infectious diseases including COVID-19 caused by SARS-CoV-2. While numerous pathogens infect the host through the respiratory mucosa, conventional parenterally administered vaccines are unable to induce protective immunity at mucosal surfaces. Mucosal immunization enables the induction of both mucosal and systemic immunity, efficiently removing pathogens from the mucosa before an infection occurs. Although respiratory mucosal vaccination is highly appealing, successful nasal or pulmonary delivery of nucleic acid-based vaccines is challenging because of several physical and biological barriers at the airway mucosal site, such as a variety of protective enzymes and mucociliary clearance, which remove exogenously inhaled substances. Hence, advanced nanotechnologies enabling delivery of DNA and IVT-mRNA to the nasal and pulmonary mucosa are urgently needed. Ideal nanocarriers for nucleic acid vaccines should be able to efficiently load and protect genetic payloads, overcome physical and biological barriers at the airway mucosal site, facilitate transfection in targeted epithelial or antigen-presenting cells, and incorporate adjuvants. In this review, we discuss recent developments in nucleic acid delivery systems that target airway mucosa for vaccination purposes.
Collapse
Affiliation(s)
- Jie Tang
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia;
| | - Larry Cai
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia;
| | - Chuanfei Xu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China; (C.X.); (S.S.); (Y.L.)
| | - Si Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China; (C.X.); (S.S.); (Y.L.)
| | - Yuheng Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China; (C.X.); (S.S.); (Y.L.)
| | - Joseph Rosenecker
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
- Correspondence: (J.R.); (S.G.); Tel.: +49-89-440057713 (J.R.); +86-23-68771645 (S.G.)
| | - Shan Guan
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China; (C.X.); (S.S.); (Y.L.)
- Correspondence: (J.R.); (S.G.); Tel.: +49-89-440057713 (J.R.); +86-23-68771645 (S.G.)
| |
Collapse
|
8
|
Kozlovski S, Regev O, Sapoznikov A, Kizner M, Achdout H, Petrovich-Kopitman E, Elkahal J, Addadi Y, Silva Castanheira FVE, Feigelson SW, Kubes P, Erez N, Garbi N, Alon R. ICAMs are dispensable for influenza clearance and anti-viral humoral and cellular immunity. Front Immunol 2022; 13:1041552. [PMID: 36895258 PMCID: PMC9988921 DOI: 10.3389/fimmu.2022.1041552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/12/2022] [Indexed: 02/25/2023] Open
Abstract
αLβ2 (LFA-1) mediated interactions with ICAM-1 and ICAM-2 predominate leukocyte-vascular interactions, but their functions in extravascular cell-cell communications is still debated. The roles of these two ligands in leukocyte trafficking, lymphocyte differentiation, and immunity to influenza infections were dissected in the present study. Surprisingly, double ICAM-1 and ICAM-2 knock out mice (herein ICAM-1/2-/- mice) infected with a lab adapted H1N1 influenza A virus fully recovered from infection, elicited potent humoral immunity, and generated normal long lasting anti-viral CD8+ T cell memory. Furthermore, lung capillary ICAMs were dispensable for both NK and neutrophil entry to virus infected lungs. Mediastinal lymph nodes (MedLNs) of ICAM-1/2-/- mice poorly recruited naïve T cells and B lymphocytes but elicited normal humoral immunity critical for viral clearance and effective CD8+ differentiation into IFN-γ producing T cells. Furthermore, whereas reduced numbers of virus specific effector CD8+ T cells accumulated inside infected ICAM-1/2-/- lungs, normal virus-specific TRM CD8+ cells were generated inside these lungs and fully protected ICAM-1/2-/- mice from secondary heterosubtypic infections. B lymphocyte entry to the MedLNs and differentiation into extrafollicular plasmablasts, producing high affinity anti-influenza IgG2a antibodies, were also ICAM-1 and ICAM-2 independent. A potent antiviral humoral response was associated with accumulation of hyper-stimulated cDC2s in ICAM null MedLNs and higher numbers of virus-specific T follicular helper (Tfh) cells generated following lung infection. Mice selectively depleted of cDC ICAM-1 expression supported, however, normal CTL and Tfh differentiation following influenza infection, ruling out essential co-stimulatory functions of DC ICAM-1 in CD8+ and CD4+ T cell differentiation. Collectively our findings suggest that lung ICAMs are dispensable for innate leukocyte trafficking to influenza infected lungs, for the generation of peri-epithelial TRM CD8+ cells, and long term anti-viral cellular immunity. In lung draining LNs, although ICAMs promote lymphocyte homing, these key integrin ligands are not required for influenza-specific humoral immunity or generation of IFN-γ effector CD8+ T cells. In conclusion, our findings suggest unexpected compensatory mechanisms that orchestrate protective anti-influenza immunity in the absence of vascular and extravascular ICAMs.
Collapse
Affiliation(s)
- Stav Kozlovski
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofer Regev
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Marina Kizner
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hagit Achdout
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | | | - Jacob Elkahal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | | | - Sara W Feigelson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Paul Kubes
- Department of Pharmacology and Physiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Noam Erez
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Natalio Garbi
- Department of Cellular Immunology, Institute of Experimental Immunology Medical Faculty, University of Bonn, Bonn, Germany
| | - Ronen Alon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
9
|
Raishan S, Alsabri M, Hanna AM, Brett M. Resolution of pituitary microadenoma after coronavirus disease 2019: a case report. J Med Case Rep 2021; 15:544. [PMID: 34724974 PMCID: PMC8559425 DOI: 10.1186/s13256-021-03127-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/22/2021] [Indexed: 11/26/2022] Open
Abstract
Background This report describes the case of a patient whose pituitary microadenoma resolved after he contracted coronavirus disease 2019. To our knowledge, this is one of the first reported cases of pituitary tumor resolution due to viral illness. We present this case to further investigate the relationship between inflammatory response and tumor remission.
Case presentation A 32-year-old man in Yemen presented to the hospital with fever, low blood oxygen saturation, and shortness of breath. The patient was diagnosed with coronavirus disease 2019. Past medical history included pituitary microadenoma that was diagnosed using magnetic resonance imaging and secondary adrenal insufficiency, which was treated with steroids. Due to the severity of coronavirus disease 2019, he was treated with steroids and supportive care. Three months after his initial presentation to the hospital, brain magnetic resonance imaging was performed and compared with past scans. Magnetic resonance imaging revealed changes in the microadenoma, including the disappearance of the hypointense lesion and hyperintense enhancement observed on the previous scan. Conclusions Pituitary adenomas rarely undergo spontaneous resolution. Therefore, we hypothesized that tumor resolution was secondary to an immune response to coronavirus disease 2019.
Collapse
Affiliation(s)
- Salah Raishan
- Emergency Medicine Department, Al Thawra Modern General Hospital (TMGH), Sana'a City, Yemen
| | - Mohammed Alsabri
- Emergency Medicine Department, Al Thawra Modern General Hospital (TMGH), Sana'a City, Yemen. .,Brookdale University Hospital and Medical center, 1 Brookdale Plaza, Brooklyn, NY, 11212, USA.
| | - Ann Mary Hanna
- College of Osteopathic Medicine, NYIT, Glen Head, New York, USA
| | - Matthew Brett
- College of Osteopathic Medicine, NYIT, Glen Head, New York, USA
| |
Collapse
|
10
|
Wertheim KY, Puniya BL, La Fleur A, Shah AR, Barberis M, Helikar T. A multi-approach and multi-scale platform to model CD4+ T cells responding to infections. PLoS Comput Biol 2021; 17:e1009209. [PMID: 34343169 PMCID: PMC8376204 DOI: 10.1371/journal.pcbi.1009209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/19/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022] Open
Abstract
Immune responses rely on a complex adaptive system in which the body and infections interact at multiple scales and in different compartments. We developed a modular model of CD4+ T cells, which uses four modeling approaches to integrate processes at three spatial scales in different tissues. In each cell, signal transduction and gene regulation are described by a logical model, metabolism by constraint-based models. Cell population dynamics are described by an agent-based model and systemic cytokine concentrations by ordinary differential equations. A Monte Carlo simulation algorithm allows information to flow efficiently between the four modules by separating the time scales. Such modularity improves computational performance and versatility and facilitates data integration. We validated our technology by reproducing known experimental results, including differentiation patterns of CD4+ T cells triggered by different combinations of cytokines, metabolic regulation by IL2 in these cells, and their response to influenza infection. In doing so, we added multi-scale insights to single-scale studies and demonstrated its predictive power by discovering switch-like and oscillatory behaviors of CD4+ T cells that arise from nonlinear dynamics interwoven across three scales. We identified the inflamed lymph node’s ability to retain naive CD4+ T cells as a key mechanism in generating these emergent behaviors. We envision our model and the generic framework encompassing it to serve as a tool for understanding cellular and molecular immunological problems through the lens of systems immunology. CD4+ T cells are a key part of the adaptive immune system. They differentiate into different phenotypes to carry out different functions. They do so by secreting molecules called cytokines to regulate other immune cells. Multi-scale modeling can potentially explain their emergent behaviors by integrating biological phenomena occurring at different spatial (intracellular, cellular, and systemic), temporal, and organizational scales (signal transduction, gene regulation, metabolism, cellular behaviors, and cytokine transport). We built a computational platform by combining disparate modeling frameworks (compartmental ordinary differential equations, agent-based modeling, Boolean network modeling, and constraint-based modeling). We validated the platform’s ability to predict CD4+ T cells’ emergent behaviors by reproducing their differentiation patterns, metabolic regulation, and population dynamics in response to influenza infection. We then used it to predict and explain novel switch-like and oscillatory behaviors for CD4+ T cells. On the basis of these results, we believe that our multi-approach and multi-scale platform will be a valuable addition to the systems immunology toolkit. In addition to its immediate relevance to CD4+ T cells, it also has the potential to become the foundation of a virtual immune system.
Collapse
Affiliation(s)
- Kenneth Y. Wertheim
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
- Department of Computer Science and Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Bhanwar Lal Puniya
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - Alyssa La Fleur
- Department of Biochemistry, Department of Mathematics and Computer Science, Whitworth University, Spokane, Washington, United States of America
| | - Ab Rauf Shah
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - Matteo Barberis
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, United Kingdom
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail: , (MB); (TH)
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
- * E-mail: , (MB); (TH)
| |
Collapse
|
11
|
Pai JA, Satpathy AT. High-throughput and single-cell T cell receptor sequencing technologies. Nat Methods 2021; 18:881-892. [PMID: 34282327 PMCID: PMC9345561 DOI: 10.1038/s41592-021-01201-8] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
T cells express T cell receptors (TCRs) composed of somatically recombined TCRα and TCRβ chains, which mediate recognition of major histocompatibility complex (MHC)-antigen complexes and drive the antigen-specific adaptive immune response to pathogens and cancer. The TCR repertoire in each individual is highly diverse, which allows for recognition of a wide array of foreign antigens, but also presents a challenge in analyzing this response using conventional methods. Recent studies have developed high-throughput sequencing technologies to identify TCR sequences, analyze their antigen specificities using experimental and computational tools, and pair TCRs with transcriptional and epigenetic cell state phenotypes in single cells. In this Review, we highlight these technological advances and describe how they have been applied to discover fundamental insights into T cell-mediated immunity.
Collapse
Affiliation(s)
- Joy A Pai
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ansuman T Satpathy
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Elfaki Y, Yang J, Boehme J, Schultz K, Bruder D, Falk CS, Huehn J, Floess S. Tbx21 and Foxp3 Are Epigenetically Stabilized in T-Bet + Tregs That Transiently Accumulate in Influenza A Virus-Infected Lungs. Int J Mol Sci 2021; 22:ijms22147522. [PMID: 34299148 PMCID: PMC8307036 DOI: 10.3390/ijms22147522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/19/2023] Open
Abstract
During influenza A virus (IAV) infections, CD4+ T cell responses within infected lungs mainly involve T helper 1 (Th1) and regulatory T cells (Tregs). Th1-mediated responses favor the co-expression of T-box transcription factor 21 (T-bet) in Foxp3+ Tregs, enabling the efficient Treg control of Th1 responses in infected tissues. So far, the exact accumulation kinetics of T cell subsets in the lungs and lung-draining lymph nodes (dLN) of IAV-infected mice is incompletely understood, and the epigenetic signature of Tregs accumulating in infected lungs has not been investigated. Here, we report that the total T cell and the two-step Treg accumulation in IAV-infected lungs is transient, whereas the change in the ratio of CD4+ to CD8+ T cells is more durable. Within lungs, the frequency of Tregs co-expressing T-bet is steadily, yet transiently, increasing with a peak at Day 7 post-infection. Interestingly, T-bet+ Tregs accumulating in IAV-infected lungs displayed a strongly demethylated Tbx21 locus, similarly as in T-bet+ conventional T cells, and a fully demethylated Treg-specific demethylated region (TSDR) within the Foxp3 locus. In summary, our data suggest that T-bet+ but not T-bet- Tregs are epigenetically stabilized during IAV-induced infection in the lung.
Collapse
Affiliation(s)
- Yassin Elfaki
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (Y.E.); (J.Y.)
| | - Juhao Yang
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (Y.E.); (J.Y.)
| | - Julia Boehme
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (J.B.); (K.S.); (D.B.)
| | - Kristin Schultz
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (J.B.); (K.S.); (D.B.)
| | - Dunja Bruder
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (J.B.); (K.S.); (D.B.)
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, 30625 Hannover, Germany;
- German Center for Infection Research DZIF, Thematical Translation Unit-Immunocompromized Host (TTU-IICH), Hannover-Braunschweig Site, 30625 Hannover, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (Y.E.); (J.Y.)
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
- Correspondence: (J.H.); (S.F.)
| | - Stefan Floess
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (Y.E.); (J.Y.)
- Correspondence: (J.H.); (S.F.)
| |
Collapse
|
13
|
Antigenic sites in SARS-CoV-2 spike RBD show molecular similarity with pathogenic antigenic determinants and harbors peptides for vaccine development. Immunobiology 2021; 226:152091. [PMID: 34303920 PMCID: PMC8297981 DOI: 10.1016/j.imbio.2021.152091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 03/13/2021] [Accepted: 03/30/2021] [Indexed: 01/22/2023]
Abstract
The spike protein of coronavirus is key target for drug development and other pharmacological interventions. In current study, we performed an integrative approach to predict antigenic sites in SARS-CoV-2 spike receptor binding domain and found nine potential antigenic sites. The predicted antigenic sites were then assessed for possible molecular similarity with other known antigens in different organisms. Out of nine sites, seven sites showed molecular similarity with 54 antigenic determinants found in twelve pathogenic bacterial species (Mycobacterium tuberculosis, Mycobacterium leprae, Bacillus anthracis, Borrelia burgdorferi, Clostridium perfringens, Clostridium tetani, Helicobacter Pylori, Listeria monocytogenes, Staphylococcus aureus, Streptococcus pyogenes, Vibrio cholera and Yersinia pestis), two malarial parasites (Plasmodium falciparum and Plasmodium knowlesi) and influenza virus A. Most of the bacterial antigens that displayed molecular similarity with antigenic sites in SARS-CoV-2 RBD (receptor binding domain) were toxins and virulent factors. Antigens from Mycobacterium that showed similarity were mainly involved in modulating host cell immune response and ensuring persistence and survival of pathogen in host cells. Presence of a large number of antigenic determinants, similar to those in highly pathogenic microorganisms, not merely accounts for complex etiology of the disease but also provides an explanation for observed pathophysiological complications, such as deregulated immune response, unleashed or dysregulated cytokine secretion (cytokine storm), multiple organ failure etc., that are more evident in aged and immune-compromised patients. Over-representation of antigenic determinants from Plasmodium and Mycobacterium in all antigenic sites suggests that anti-malarial and anti-TB drugs can prove to be clinical beneficial for COVID-19 treatment. Besides this, anti-leprosy, anti-lyme, anti-plague, anti-anthrax drugs/vaccine etc. are also expected to be beneficial in COVID-19 treatment. Moreover, individuals previously immunized/vaccinated or had previous history of malaria, tuberculosis or other disease caused by fifteen microorganisms are expected to display a considerable degree of resistance against SARS-CoV-2 infection. Out of the seven antigenic sites predicted in SARS-CoV-2, a part of two antigenic sites were also predicted as potent T-cell epitopes (KVGGNYNYL444-452 and SVLYNSASF366-374) against MHC class I and three (KRISNCVADYSVLYN356-370, DLCFTNVYADSFVI389-402, and YRVVVLSFELLHA508-520) against MHC class II. All epitopes possessed significantly lower predicted IC50 value which is a prerequisite for a preferred vaccine candidate for COVID-19.
Collapse
|
14
|
Rose DL, Reagin KL, Oliva KE, Tompkins SM, Klonowski KD. Enhanced generation of influenza-specific tissue resident memory CD8 T cells in NK-depleted mice. Sci Rep 2021; 11:8969. [PMID: 33903648 PMCID: PMC8076325 DOI: 10.1038/s41598-021-88268-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Natural Killer (NK) cells are among the first effectors to directly contact influenza and influenza-infected cells and their activation affects not only their intrinsic functions, but also subsequent CD8+ T cell responses. We utilized a NK cell depletion model to interrogate the contribution of NK cells to the development of anti-influenza CD8+ T cell memory. NK cell ablation increased the number of influenza-specific memory CD8+ T cells in the respiratory tract and lung-draining lymph node. Interestingly, animals depleted of NK cells during primary influenza infection were protected as well as their NK-intact counterparts despite significantly fewer reactivated CD8+ T cells infiltrating the respiratory tract after lethal, heterosubtypic challenge. Instead, protection in NK-deficient animals seems to be conferred by rapid reactivation of an enlarged pool of lung tissue-resident (TRM) memory cells within two days post challenge. Further interrogation of how NK cell ablation enhances respiratory TRM indicated that TRM development is independent of global and NK cell derived IFN-γ. These data suggest that reduction in NK cell activation after vaccination with live, non-lethal influenza virus increases compartmentalized, broadly protective memory CD8+ T cell generation and decreases the risk of CD8+ T cell-mediated pathology following subsequent influenza infections.
Collapse
Affiliation(s)
- David L Rose
- Department of Shared Resources, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Katie L Reagin
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Kimberly E Oliva
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - S Mark Tompkins
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, 30602, USA
| | | |
Collapse
|
15
|
Aston EJ, Wang Y, Tracy KE, Gallardo RA, Lamont SJ, Zhou H. Comparison of cellular immune responses to avian influenza virus in two genetically distinct, highly inbred chicken lines. Vet Immunol Immunopathol 2021; 235:110233. [PMID: 33823380 DOI: 10.1016/j.vetimm.2021.110233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022]
Abstract
Low pathogenicity avian influenza causes mild disease involving the respiratory, gastrointestinal, and reproductive systems of wild and domestic birds. Avian influenza research often emphasizes the effect of the virus genetics on disease, but the influence of host genetics on resistance to infection is not well understood. The genetic determinants of enhanced resistance to influenza can be explored by using genetically distinct, highly inbred chicken lines that differ in susceptibility to influenza. In this study, we compared the mucosal cellular immune responses between the relatively resistant Fayoumi M43 chicken line and the relatively susceptible Leghorn GB2 chicken line after challenging with low pathogenicity avian influenza virus (LPAIV) H6N2. The birds were inoculated at 21 days of age with 107 50 % egg infective dose (EID50) LPAIV H6N2 via nasal and tracheal routes in two separate experiments. Clinical signs were recorded, tracheal swabs were collected to measure viral titer, and tracheas and lungs were harvested for flow cytometric analysis of macrophage, B cell, and T cell populations at 4 days post-infection (dpi) (Experiments 1 and 2) and 6 dpi (Experiment 2). Blood and tears were also collected at 7 and 14 dpi (Experiment 1) to measure antibody levels. Compared to both the non-challenged Fayoumis and the relatively susceptible Leghorn chickens, relatively resistant Fayoumi chickens challenged with LPAIV demonstrated enhanced MHC class I expression on antigen-presenting cells and increased macrophage, B cell, and T cell frequencies in the trachea, which were associated with reduced tracheal viral titers at 4 dpi. In contrast, MHC class I expression and immune cell frequencies in the trachea were not different between challenged Leghorns and non-challenged Leghorns. Furthermore, Leghorns shed higher virus titers in their trachea compared to Fayoumis. Challenged Fayoumis and Leghorns both produced AIV-specific IgY detected in the serum and tears, but AIV-specific IgA was not detected in the tears. In this study, we provide new insight into immune mechanisms of enhanced resistance to avian influenza in chickens, which may lead to improved vaccination strategies and breeding programs.
Collapse
Affiliation(s)
- Emily J Aston
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA, United States
| | - Ying Wang
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA, United States
| | - Karen E Tracy
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA, United States
| | - Rodrigo A Gallardo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Huaijun Zhou
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA, United States.
| |
Collapse
|
16
|
Karauda T, Kornicki K, Jarri A, Antczak A, Miłkowska-Dymanowska J, Piotrowski WJ, Majewski S, Górski P, Białas AJ. Eosinopenia and neutrophil-to-lymphocyte count ratio as prognostic factors in exacerbation of COPD. Sci Rep 2021; 11:4804. [PMID: 33637803 PMCID: PMC7910289 DOI: 10.1038/s41598-021-84439-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/16/2021] [Indexed: 01/04/2023] Open
Abstract
Exacerbations of Chronic Obstructive Pulmonary Disease (AECOPDs) are one of the most important clinical aspects of the disease, and when requiring hospital admission, they significantly contribute to mortality among COPD patients. Our aim was to assess the role of eosinopenia and neutrophil-to-lymphocyte count (NLR) as markers of in-hospital mortality and length of hospitalization (LoH) among patients with ECOPD requiring hospitalization. We included 275 patients. Eosinopenia was associated with in-hospital deaths only when coexisted with lymphocytopenia, with the specificity of 84.4% (95% CI 79.6-88.6%) and the sensitivity of 100% (95% CI 35.9-100%). Also, survivors presented longer LoH (P < 0.0001). NLR ≥ 13.2 predicted in-hospital death with the sensitivity of 100% (95% CI 35.9-100%) and specificity of 92.6% (95% CI 88.8-95.4%), however, comparison of LoH among survivors did not reach statistical significance (P = 0.05). Additionally, when we assessed the presence of coexistence of eosinopenia and lymphocytopenia first, and then apply NLR, sensitivity and specificity in prediction of in-hospital death was 100% (95% CI 35.9-100) and 93.7% (95% CI 90.1-96.3), respectively. Moreover, among survivors, the occurrence of such pattern was associated with significantly longer LoH: 11 (7-14) vs 7 (5-10) days (P = 0.01). The best profile of sensitivity and specificity in the prediction of in-hospital mortality in ECOPD can be obtained by combined analysis of coexistence of eosinopenia and lymphocytopenia with elevated NLR. The occurrence of a such pattern is also associated with significantly longer LoH among survivors.
Collapse
Affiliation(s)
- Tomasz Karauda
- Department of Pneumology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Kamil Kornicki
- Department of General and Oncological Pulmonology, Medical University of Lodz, Lodz, Poland
| | - Amer Jarri
- Department of Pathobiology of Respiratory Diseases, Medical University of Lodz, 22nd Kopcińskiego Street, 90-153, Lodz, Poland
| | - Adam Antczak
- Department of General and Oncological Pulmonology, Medical University of Lodz, Lodz, Poland
| | | | | | - Sebastian Majewski
- Department of Pneumology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Paweł Górski
- Department of Pneumology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Adam Jerzy Białas
- Department of Pathobiology of Respiratory Diseases, Medical University of Lodz, 22nd Kopcińskiego Street, 90-153, Lodz, Poland.
| |
Collapse
|
17
|
Edmans M, McNee A, Porter E, Vatzia E, Paudyal B, Martini V, Gubbins S, Francis O, Harley R, Thomas A, Burt R, Morgan S, Fuller A, Sewell A, Charleston B, Bailey M, Tchilian E. Magnitude and Kinetics of T Cell and Antibody Responses During H1N1pdm09 Infection in Inbred Babraham Pigs and Outbred Pigs. Front Immunol 2021; 11:604913. [PMID: 33603740 PMCID: PMC7884753 DOI: 10.3389/fimmu.2020.604913] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
We have used the pig, a large natural host animal for influenza with many physiological similarities to humans, to characterize αβ, γδ T cell and antibody (Ab) immune responses to the 2009 pandemic H1N1 virus infection. We evaluated the kinetic of virus infection and associated response in inbred Babraham pigs with identical MHC (Swine Leucocyte Antigen) and compared them to commercial outbred animals. High level of nasal virus shedding continued up to days 4 to 5 post infection followed by a steep decline and clearance of virus by day 9. Adaptive T cell and Ab responses were detectable from days 5 to 6 post infection reaching a peak at 9 to 14 days. γδ T cells produced cytokines ex vivo at day 2 post infection, while virus reactive IFNγ producing γδ T cells were detected from day 7 post infection. Analysis of NP tetramer specific and virus specific CD8 and CD4 T cells in blood, lung, lung draining lymph nodes, and broncho-alveolar lavage (BAL) showed clear differences in cytokine production between these tissues. BAL contained the most highly activated CD8, CD4, and γδ T cells producing large amounts of cytokines, which likely contribute to elimination of virus. The weak response in blood did not reflect the powerful local lung immune responses. The immune response in the Babraham pig following H1N1pdm09 influenza infection was comparable to that of outbred animals. The ability to utilize these two swine models together will provide unparalleled power to analyze immune responses to influenza.
Collapse
Affiliation(s)
- Matthew Edmans
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Adam McNee
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Emily Porter
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Eleni Vatzia
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Basu Paudyal
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Veronica Martini
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Simon Gubbins
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Ore Francis
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Ross Harley
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Amy Thomas
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Rachel Burt
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Sophie Morgan
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Anna Fuller
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Andrew Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Bryan Charleston
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Elma Tchilian
- The Pirbright Institute, Enhanced Host Responses, Pirbright, United Kingdom
| |
Collapse
|
18
|
Prigge AD, Ma R, Coates BM, Singer BD, Ridge KM. Age-Dependent Differences in T-Cell Responses to Influenza A Virus. Am J Respir Cell Mol Biol 2020; 63:415-423. [PMID: 32609537 DOI: 10.1165/rcmb.2020-0169tr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Respiratory infections from influenza A virus (IAV) cause substantial morbidity and mortality in children relative to adults. T cells play a critical role in the host response to IAV by supporting the innate and humoral responses, mediating cytotoxic activity, and promoting recovery. There are age-dependent differences in the number, subsets, and localization of T cells, which impact the host response to pathogens. In this article, we first review how T cells recognize IAV and examine differences in the resting T-cell populations between juveniles and adults. Next, we describe how the juvenile CD4+, CD8+, and regulatory T-cell responses compare with those in adults and discuss the potential physiologic and clinical consequences of the differences. Finally, we explore the roles of two unconventional T-cell types in the juvenile response to influenza, natural-killer T cells and γδ T cells. A clear understanding of age-dependent differences in the T-cell response is essential to developing therapies to prevent or reverse the deleterious effects of IAV in children.
Collapse
Affiliation(s)
- Andrew D Prigge
- Division of Critical Care Medicine, Department of Pediatrics.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Ruihua Ma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Bria M Coates
- Division of Critical Care Medicine, Department of Pediatrics.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine.,Department of Biochemistry and Molecular Genetics.,Simpson Querrey Center for Epigenetics, and
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Department of Medicine.,Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and
| |
Collapse
|
19
|
M R, S S, Jose SP, Rajan S, Thomas S, Jagmag T, Tilwani J. Biochemical and immunological aspects of COVID-19 infection and therapeutical intervention of oral low dose cytokine therapy: a systematic review. Immunopharmacol Immunotoxicol 2020; 43:22-29. [PMID: 33106053 DOI: 10.1080/08923973.2020.1842444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The novel coronavirus (SARS-CoV-2) pandemic has now spread to all corners of the world. It causes severe respiratory syndromes which is one of the leading causes of death. Evidence shows that the novel SARS-CoV-2 has close similarities with other coronaviruses, SARS and MERS. So, SARS-CoV-2 might use the similar mechanisms of these viruses to attack the host cells. The severity of COVID-19 is associated with various factors, one of the major reasons is immune dysregulation or immune suppression. Immunity plays a significant role in maintaining the body in a healthy condition. In order to induce a timely immune response against the invaded pathogens, both innate and adaptive immunity must be in an active state. During the viral infection, there will be an excessive generation of pro-inflammatory cytokines known as cytokine storm and also, the antiviral agents in the body gets inhibited or inactivated through viral mechanisms. Thus, this might be the reason for the transition from mild symptoms to more severe medical conditions which leads to an immediate need for the invention of a new medicine.This review aims to show the host-viral interaction along with immune response, antiviral mechanism and effectiveness of oral low dose cytokines against the virus as a therapeutic approach.
Collapse
Affiliation(s)
- Ratheesh M
- Department of Biochemistry, St. Thomas College, Pala, Kottayam, India
| | - Sheethal S
- Department of Biochemistry, St. Thomas College, Pala, Kottayam, India
| | - Svenia P Jose
- Department of Biochemistry, St. Thomas College, Pala, Kottayam, India
| | - Sony Rajan
- Department of Biochemistry, St. Thomas College, Pala, Kottayam, India
| | - Sulumol Thomas
- Department of Biochemistry, St. Thomas College, Pala, Kottayam, India
| | | | | |
Collapse
|
20
|
Xia J, Kuang Y, Liang J, Jones M, Swain SL. Influenza Vaccine-Induced CD4 Effectors Require Antigen Recognition at an Effector Checkpoint to Generate CD4 Lung Memory and Antibody Production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2077-2090. [PMID: 32929040 PMCID: PMC8525320 DOI: 10.4049/jimmunol.2000597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
Previously, we discovered that influenza-generated CD4 effectors must recognize cognate Ag at a defined effector checkpoint to become memory cells. Ag recognition was also required for efficient protection against lethal influenza infection. To extend these findings, we investigated if vaccine-generated effectors would have the same requirement. We compared live infection with influenza to an inactivated whole influenza vaccine. Live infection provided strong, long-lasting Ag presentation that persisted through the effector phase. It stimulated effector generation, long-lived CD4 memory generation, and robust generation of Ab-producing B cells. In contrast, immunization with an inactivated virus vaccine, even when enhanced by additional Ag-pulsed APC, presented Ag for 3 d or less and generated few CD4 memory cells or long-lived Ab-producing B cells. To test if checkpoint Ag addition would enhance this vaccine response, we immunized mice with inactivated vaccine and injected Ag-pulsed activated APC at the predicted effector checkpoint to provide Ag presentation to the effector CD4 T cells. This enhanced generation of CD4 memory, especially tissue-resident memory in the lung, long-lived bone marrow Ab-secreting cells, and influenza-specific IgG Ab. All responses increased as we increased the density of peptide Ag on the APC to high levels. This suggests that CD4 effectors induced by inactivated vaccine require high levels of cognate Ag recognition at the effector checkpoint to most efficiently become memory cells. Thus, we suggest that nonlive vaccines will need to provide high levels of Ag recognition throughout the effector checkpoint to optimize CD4 memory generation.
Collapse
Affiliation(s)
- Jingya Xia
- Department of Pathology, 368 Plantation Ave, University of Massachusetts Medical School, Worcester, MA 01655
| | - Yi Kuang
- Department of Pathology, 368 Plantation Ave, University of Massachusetts Medical School, Worcester, MA 01655,Merck Exploratory Science Center, Cambridge, MA 02141
| | - Jialing Liang
- Department of Pathology, 368 Plantation Ave, University of Massachusetts Medical School, Worcester, MA 01655
| | - Michael Jones
- Department of Pathology, 368 Plantation Ave, University of Massachusetts Medical School, Worcester, MA 01655
| | - Susan L. Swain
- Department of Pathology, 368 Plantation Ave, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
21
|
Mortaz E, Tabarsi P, Varahram M, Folkerts G, Adcock IM. The Immune Response and Immunopathology of COVID-19. Front Immunol 2020; 11:2037. [PMID: 32983152 PMCID: PMC7479965 DOI: 10.3389/fimmu.2020.02037] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/27/2020] [Indexed: 01/11/2023] Open
Abstract
Coronaviruses were first discovered in the 1960s and are named due to their crown-like shape. Sometimes, but not often, a coronavirus can infect both animals and humans. An acute respiratory disease, caused by a novel coronavirus (severe acute respiratory syndrome coronavirus-2 or SARS-CoV-2 previously known as 2019-nCoV) was identified as the cause of coronavirus disease 2019 (COVID-19) as it spread throughout China and subsequently across the globe. As of 14th July 2020, a total of 13.1 million confirmed cases globally and 572,426 deaths had been reported by the World Health Organization (WHO). SARS-CoV-2 belongs to the β-coronavirus family and shares extensive genomic identity with bat coronavirus suggesting that bats are the natural host. SARS-CoV-2 uses the same receptor, angiotensin-converting enzyme 2 (ACE2), as that for SARS-CoV, the coronavirus associated with the SARS outbreak in 2003. It mainly spreads through the respiratory tract with lymphopenia and cytokine storms occuring in the blood of subjects with severe disease. This suggests the existence of immunological dysregulation as an accompanying event during severe illness caused by this virus. The early recognition of this immunological phenotype could assist prompt recognition of patients who will progress to severe disease. Here we review the data of the immune response during COVID-19 infection. The current review summarizes our understanding of how immune dysregulation and altered cytokine networks contribute to the pathophysiology of COVID-19 patients.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Varahram
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ian M. Adcock
- Respiratory Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
22
|
Ochoa EE, Huda R, Scheibel SF, Nichols JE, Mock DJ, El-Daher N, Domurat FM, Roberts NJ. HLA-associated protection of lymphocytes during influenza virus infection. Virol J 2020; 17:128. [PMID: 32831108 PMCID: PMC7444183 DOI: 10.1186/s12985-020-01406-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/18/2020] [Indexed: 01/18/2023] Open
Abstract
Background Heterozygosity at HLA class I loci is generally considered beneficial for host defense. We report here an element of HLA class I homozygosity that may or may not help preserve its existence in populations but which could indicate a new avenue for antiviral research. Methods Lymphocytes from serologically HLA-homozygous or -heterozygous donors were examined for synthesis of influenza virus proteins and RNA after exposure to virus as peripheral blood mononuclear cells. The virus-exposed lymphocytes were also examined for internalization of the virus after exposure, and for susceptibility to virus-specific cytotoxic T lymphocytes in comparison with virus-exposed monocytes/macrophages and unseparated peripheral blood mononuclear cells. Results were compared using two-tailed Fisher’s exact test. Results Serologically-defined HLA-A2-homozygous lymphocytes, in contrast to heterozygous lymphocytes, did not synthesize detectable influenza virus RNA or protein after exposure to the virus. HLA-A2-homozygous lymphocytes, including both homozygous and heterozygous donors by genetic sequence subtyping, did internalize infectious virus but were not susceptible to lysis by autologous virus-specific cytotoxic T lymphocytes (“fratricide”). Similar intrinsic resistance to influenza virus infection was observed with HLA-A1- and HLA-A11-homozygous lymphocytes and with HLA-B-homozygous lymphocytes. Conclusions A significant proportion of individuals within a population that is characterized by common expression of HLA class I alleles may possess lymphocytes that are not susceptible to influenza virus infection and thus to mutual virus-specific lysis. Further study may identify new approaches to limit influenza virus infection.
Collapse
Affiliation(s)
- Eliana E Ochoa
- Division of Infectious Diseases, Department of Internal Medicine and the Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ruksana Huda
- Division of Infectious Diseases, Department of Internal Medicine and the Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Steven F Scheibel
- Infectious Diseases Unit, University of Rochester School of Medicine, Rochester, NY, USA
| | - Joan E Nichols
- Division of Infectious Diseases, Department of Internal Medicine and the Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - David J Mock
- Infectious Diseases Unit, University of Rochester School of Medicine, Rochester, NY, USA
| | - Nayef El-Daher
- Infectious Diseases Unit, University of Rochester School of Medicine, Rochester, NY, USA
| | - Frank M Domurat
- Infectious Diseases Unit, University of Rochester School of Medicine, Rochester, NY, USA
| | - Norbert J Roberts
- Division of Infectious Diseases, Department of Internal Medicine and the Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA. .,Infectious Diseases Unit, University of Rochester School of Medicine, Rochester, NY, USA. .,Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, 462 First Ave, Room A619, New York, NY, 10016, USA.
| |
Collapse
|
23
|
Frank K, Paust S. Dynamic Natural Killer Cell and T Cell Responses to Influenza Infection. Front Cell Infect Microbiol 2020; 10:425. [PMID: 32974217 PMCID: PMC7461885 DOI: 10.3389/fcimb.2020.00425] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza viruses have perplexed scientists for over a hundred years. Yearly vaccines limit their spread, but they do not prevent all infections. Therapeutic treatments for those experiencing severe infection are limited; further advances are held back by insufficient understanding of the fundamental immune mechanisms responsible for immunopathology. NK cells and T cells are essential in host responses to influenza infection. They produce immunomodulatory cytokines and mediate the cytotoxic response to infection. An imbalance in NK and T cell responses can lead to two outcomes: excessive inflammation and tissue damage or insufficient anti-viral functions and uncontrolled infection. The main cause of death in influenza patients is the former, mediated by hyperinflammatory responses termed “cytokine storm.” NK cells and T cells contribute to cytokine storm, but they are also required for viral clearance. Many studies have attempted to distinguish protective and pathogenic components of the NK cell and T cell influenza response, but it has become clear that they are dynamic and integrated processes. This review will analyze how NK cell and T cell effector functions during influenza infection affect the host response and correlate with morbidity and mortality outcomes.
Collapse
Affiliation(s)
- Kayla Frank
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
24
|
Symonds AL, Zheng W, Miao T, Wang H, Wang T, Kiome R, Hou X, Li S, Wang P. Egr2 and 3 control inflammation, but maintain homeostasis, of PD-1 high memory phenotype CD4 T cells. Life Sci Alliance 2020; 3:3/9/e202000766. [PMID: 32709717 PMCID: PMC7391068 DOI: 10.26508/lsa.202000766] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 01/13/2023] Open
Abstract
PD-1high memory CD4 T cells are pathogenic in autoimmune disease; here they show their expression of Egr2 is defective in rheumatoid arthritis and Egr2 & 3 control their inflammation and homeostasis. The transcription factors Egr2 and 3 are essential for controlling inflammatory autoimmune responses of memory phenotype (MP) CD4 T cells. However, the mechanism is still unclear. We have now found that the Egr2+ subset (PD-1high MP) of MP CD4 T cells expresses high levels of checkpoint molecules (PD-1 and Lag3) and also markers of effector T cells (CXCR3 and ICAM-1). Egr2/3 are not required for PD-1high MP CD4 cell development but mediate a unique transcriptional programme that effectively controls their inflammatory responses, while promoting homeostatic proliferation and adaptive responses. Egr2 negative PD-1high MP CD4 T cells are impaired in homeostatic proliferation and adaptive responses against viral infection but display inflammatory responses to innate stimulation such as IL-12. PD-1high MP CD4 T cells have recently been implicated in rheumatoid arthritis pathogenesis, and we have now found that Egr2 expression is reduced in PD-1high MP CD4 T cells from patients with active rheumatoid arthritis compared with healthy controls. These findings demonstrate that Egr2/3 control the inflammatory responses of PD-1high MP CD4 T cells and maintain their adaptive immune fitness.
Collapse
Affiliation(s)
- Alistair Lj Symonds
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Wei Zheng
- Division of Rheumatology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tizong Miao
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Haiyu Wang
- Division of Rheumatology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - TieShang Wang
- Division of Rheumatology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ruth Kiome
- Bioscience, Brunel University, Uxbridge, UK
| | - Xiujuan Hou
- Division of Rheumatology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Suling Li
- Bioscience, Brunel University, Uxbridge, UK
| | - Ping Wang
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
25
|
Jassim HS. Efficacy of Immune System Challenges with Tiny Enemy COVID-19. THE IRAQI JOURNAL OF VETERINARY MEDICINE 2020. [DOI: 10.30539/ijvm.v44i1.940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The objective of this review article was to discuss the interaction between virus effectiveness and host immune system challenges on the innate and adaptive on how the immune system able to defend against COVID-19 viral infections. Genetically, the COVID-19 is a virus that has genetic material coated by lipid with a crown of protein. The virus that causes COVID-19 is called severe acute respiratory syndrome coronavirus two (SARS-COV-2) and was first detected in humans last December 2019. Primarily, the COVID-19 virus spreads with droplets of saliva or nose discharge when an infected person sneezes or coughs. Most people with a healthy immune system those infected with the COVID-19 virus showed mild to moderate respiratory illness and recovered without needing special treatment. The aged people those had medical problems such as cardiovascular disease, diabetes, chronic respiratory disease, and cancer are most likely to develop serious illness. In-conclusion: Little is known about viral clearance, but regulation innate immune response associated with development of adaptive immunity neutralizing antibodies, memory T and B lymphocytes in convalescent patients raises hope for active immunization.
Collapse
|
26
|
Alam F, Singh A, Flores-Malavet V, Sell S, Cooper AM, Swain SL, McKinstry KK, Strutt TM. CD25-Targeted IL-2 Signals Promote Improved Outcomes of Influenza Infection and Boost Memory CD4 T Cell Formation. THE JOURNAL OF IMMUNOLOGY 2020; 204:3307-3314. [PMID: 32376651 DOI: 10.4049/jimmunol.2000205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
IL-2 is a pleotropic cytokine with potent pro- and anti-inflammatory effects. These divergent impacts can be directed in vivo by forming complexes of IL-2 and anti-IL-2 mAbs (IL-2C) to target IL-2 to distinct subsets of cells based on their expression of subunits of the IL-2R. In this study, we show that treatment of mice with a prototypical anti-inflammatory IL-2C, JES6-1-IL-2C, best known to induce CD25+ regulatory CD4 T cell expansion, surprisingly causes robust induction of a suite of inflammatory factors. However, treating mice infected with influenza A virus with this IL-2C reduces lung immunopathology. We compare the spectrum of inflammatory proteins upregulated by pro- and anti-inflammatory IL-2C treatment and uncover a pattern of expression that reveals potentially beneficial versus detrimental aspects of the influenza-associated cytokine storm. Moreover, we show that anti-inflammatory IL-2C can deliver survival signals to CD4 T cells responding to influenza A virus that improve their memory fitness, indicating a novel application of IL-2 to boost pathogen-specific T cell memory while simultaneously reducing immunopathology.
Collapse
Affiliation(s)
- Fahmida Alam
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827
| | - Ayushi Singh
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827
| | - Valeria Flores-Malavet
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827
| | - Stewart Sell
- Department of Health, Wadsworth Center, Albany, NY 12201
| | | | - Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - K Kai McKinstry
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827.,NanoScience Technology Center, University of Central Florida, Orlando, FL 32826
| | - Tara M Strutt
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827; .,NanoScience Technology Center, University of Central Florida, Orlando, FL 32826
| |
Collapse
|
27
|
Sant AJ. The Way Forward: Potentiating Protective Immunity to Novel and Pandemic Influenza Through Engagement of Memory CD4 T Cells. J Infect Dis 2020; 219:S30-S37. [PMID: 30715376 PMCID: PMC6452298 DOI: 10.1093/infdis/jiy666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Potentially pandemic strains of influenza pose an undeniable threat to human populations. Therefore, it is essential to develop better strategies to enhance vaccine design and predict parameters that identify susceptible humans. CD4 T cells are a central component of protective immunity to influenza, delivering direct effector function and potentiating responses of other lymphoid cells. Humans have highly diverse influenza-specific CD4 T-cell populations that vary in stimulation history, specificity, and functionality. These complexities constitute a formidable obstacle to predicting immune responses to pandemic strains of influenza and derivation of optimal vaccine strategies. We suggest that more precise efforts to identify and enumerate both the positive and negative contributors of immunity in the CD4 T-cell compartment will aid in both predicting susceptible hosts and in development of vaccination strategies that will poise most human subjects to respond to pandemic influenza strains with protective immune responses.
Collapse
Affiliation(s)
- Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, New York
| |
Collapse
|
28
|
Zhu H, Rhee JW, Cheng P, Waliany S, Chang A, Witteles RM, Maecker H, Davis MM, Nguyen PK, Wu SM. Cardiovascular Complications in Patients with COVID-19: Consequences of Viral Toxicities and Host Immune Response. Curr Cardiol Rep 2020; 22:32. [PMID: 32318865 PMCID: PMC7171437 DOI: 10.1007/s11886-020-01292-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Coronavirus disease of 2019 (COVID-19) is a cause of significant morbidity and mortality worldwide. While cardiac injury has been demonstrated in critically ill COVID-19 patients, the mechanism of injury remains unclear. Here, we review our current knowledge of the biology of SARS-CoV-2 and the potential mechanisms of myocardial injury due to viral toxicities and host immune responses. RECENT FINDINGS A number of studies have reported an epidemiological association between history of cardiac disease and worsened outcome during COVID infection. Development of new onset myocardial injury during COVID-19 also increases mortality. While limited data exist, potential mechanisms of cardiac injury include direct viral entry through the angiotensin-converting enzyme 2 (ACE2) receptor and toxicity in host cells, hypoxia-related myocyte injury, and immune-mediated cytokine release syndrome. Potential treatments for reducing viral infection and excessive immune responses are also discussed. COVID patients with cardiac disease history or acquire new cardiac injury are at an increased risk for in-hospital morbidity and mortality. More studies are needed to address the mechanism of cardiotoxicity and the treatments that can minimize permanent damage to the cardiovascular system.
Collapse
Affiliation(s)
- Han Zhu
- Department of Medicine, Stanford University, Room G1120A, Lokey Stem Cell Building, 265 Campus Drive, Stanford, CA 94305 USA
- Stanford Cardiovascular Institute, Stanford, CA USA
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA USA
| | - June-Wha Rhee
- Department of Medicine, Stanford University, Room G1120A, Lokey Stem Cell Building, 265 Campus Drive, Stanford, CA 94305 USA
- Stanford Cardiovascular Institute, Stanford, CA USA
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA USA
| | - Paul Cheng
- Department of Medicine, Stanford University, Room G1120A, Lokey Stem Cell Building, 265 Campus Drive, Stanford, CA 94305 USA
- Stanford Cardiovascular Institute, Stanford, CA USA
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA USA
| | - Sarah Waliany
- Department of Medicine, Stanford University, Room G1120A, Lokey Stem Cell Building, 265 Campus Drive, Stanford, CA 94305 USA
| | - Amy Chang
- Department of Medicine, Stanford University, Room G1120A, Lokey Stem Cell Building, 265 Campus Drive, Stanford, CA 94305 USA
- Division of Infectious Disease, Stanford University, Stanford, CA USA
| | - Ronald M. Witteles
- Department of Medicine, Stanford University, Room G1120A, Lokey Stem Cell Building, 265 Campus Drive, Stanford, CA 94305 USA
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA USA
| | - Holden Maecker
- Department of Microbiology and Immunology, Stanford University, Stanford, CA USA
- Stanford Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA USA
| | - Mark M. Davis
- Department of Microbiology and Immunology, Stanford University, Stanford, CA USA
- Stanford Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA USA
- Howard Hughes Medical Institute, Stanford, CA USA
| | - Patricia K. Nguyen
- Department of Medicine, Stanford University, Room G1120A, Lokey Stem Cell Building, 265 Campus Drive, Stanford, CA 94305 USA
- Stanford Cardiovascular Institute, Stanford, CA USA
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA USA
| | - Sean M. Wu
- Department of Medicine, Stanford University, Room G1120A, Lokey Stem Cell Building, 265 Campus Drive, Stanford, CA 94305 USA
- Stanford Cardiovascular Institute, Stanford, CA USA
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA USA
| |
Collapse
|
29
|
Tavares LP, Garcia CC, Gonçalves APF, Kraemer LR, Melo EM, Oliveira FMS, Freitas CS, Lopes GAO, Reis DC, Cassali GD, Machado AM, Mantovani A, Locati M, Teixeira MM, Russo RC. ACKR2 contributes to pulmonary dysfunction by shaping CCL5:CCR5-dependent recruitment of lymphocytes during influenza A infection in mice. Am J Physiol Lung Cell Mol Physiol 2020; 318:L655-L670. [DOI: 10.1152/ajplung.00134.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammation triggered by influenza A virus (IAV) infection is important for viral clearance, induction of adaptive responses, and return to lung homeostasis. However, an exaggerated immune response, characterized by the overproduction of chemokines, can lead to intense lung injury, contributing to mortality. Chemokine scavenger receptors, such as ACKR2, control the levels of CC chemokines influencing the immune responses. Among the chemokine targets of ACKR2, CCL5 is important to recruit and activate lymphocytes. We investigated the role of ACKR2 during IAV infection in mice. Pulmonary ACKR2 expression was increased acutely after IAV infection preceding the virus-induced lung dysfunction. ACKR2-knockout (ACKR2−/−) mice were protected from IAV, presenting decreased viral burden and lung dysfunction. Mechanistically, the absence of ACKR2 resulted in augmented airway CCL5 levels, secreted by mononuclear and plasma cells in the lung parenchyma. The higher chemokine gradient led to an augmented recruitment of T and B lymphocytes, formation of inducible bronchus-associated lymphoid tissue and production of IgA in the airways of ACKR2−/− mice post-IAV. CCL5 neutralization in ACKR2−/− mice prevented lymphocyte recruitment and increased bronchoalveolar lavage fluid protein levels and pulmonary dysfunction. Finally, CCR5−/− mice presented increased disease severity during IAV infection, displaying increased neutrophils, pulmonary injury and dysfunction, and accentuated lethality. Collectively, our data showed that ACKR2 dampens CCL5 levels and the consequent recruitment of CCR5+ T helper 1 (Th1), T regulatory cells (Tregs), and B lymphocytes during IAV infection, decreasing pathogen control and promoting lung dysfunction in wild type mice. Therefore, ACKR2 is detrimental and CCR5 is protective during IAV infection coordinating innate and adaptive immune responses in mice.
Collapse
Affiliation(s)
- Luciana P. Tavares
- Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristiana C. Garcia
- Laboratório de Vírus Respiratórios e Sarampo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Ana Paula F. Gonçalves
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Lucas R. Kraemer
- Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eliza M. Melo
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício M. S. Oliveira
- Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Patologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila S. Freitas
- Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel A. O. Lopes
- Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Diego C. Reis
- Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Patologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geovanni D. Cassali
- Departamento de Patologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Alberto Mantovani
- Humanitas Clinical and Research Center, Milan, Italy
- Humanitas University, Rozzano, Italy
| | - Massimo Locati
- Humanitas Clinical and Research Center, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Mauro M. Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo C. Russo
- Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
30
|
Wang Y, Deng L, Gonzalez GX, Luthra L, Dong C, Ma Y, Zou J, Kang SM, Wang BZ. Double-Layered M2e-NA Protein Nanoparticle Immunization Induces Broad Cross-Protection against Different Influenza Viruses in Mice. Adv Healthc Mater 2020; 9:e1901176. [PMID: 31840437 PMCID: PMC6980908 DOI: 10.1002/adhm.201901176] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/18/2019] [Indexed: 12/13/2022]
Abstract
The development of a universal influenza vaccine is an ideal strategy to eliminate public health threats from influenza epidemics and pandemics. This ultimate goal is restricted by the low immunogenicity of conserved influenza epitopes. Layered protein nanoparticles composed of well-designed conserved influenza structures have shown improved immunogenicity with new physical and biochemical features. Herein, structure-stabilized influenza matrix protein 2 ectodomain (M2e) and M2e-neuraminidase fusion (M2e-NA) recombinant proteins are generated and M2e protein nanoparticles and double-layered M2e-NA protein nanoparticles are produced by ethanol desolvation and chemical crosslinking. Immunizations with these protein nanoparticles induce immune protection against different viruses of homologous and heterosubtypic NA in mice. Double-layered M2e-NA protein nanoparticles induce higher levels of humoral and cellular responses compared with their comprising protein mixture or M2e nanoparticles. Strong cytotoxic T cell responses are induced in the layered M2e-NA protein nanoparticle groups. Antibody responses contribute to the heterosubtypic NA immune protection. The protective immunity is long lasting. These results demonstrate that double-layered protein nanoparticles containing structure-stabilized M2e and NA can be developed into a universal influenza vaccine or a synergistic component of such vaccines. Layered protein nanoparticles can be a general vaccine platform for different pathogens.
Collapse
Affiliation(s)
- Ye Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | | | - Gilbert X. Gonzalez
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Latika Luthra
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Yao Ma
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Jun Zou
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| |
Collapse
|
31
|
Huang CT, Hung CY, Hseih YC, Chang CS, Velu AB, He YC, Huang YL, Chen TA, Chen TC, Lin CY, Lin YC, Shih SR, Dutta A. Effect of aloin on viral neuraminidase and hemagglutinin-specific T cell immunity in acute influenza. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:152904. [PMID: 31454654 DOI: 10.1016/j.phymed.2019.152904] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Millions of people are infected by the influenza virus worldwide every year. Current selections of anti-influenza agents are limited and their effectiveness and drug resistance are still of concern. PURPOSE Investigation on in vitro and in vivo effect of aloin from Aloe vera leaves against influenza virus infection. METHODS In vitro antiviral property of aloin was measured by plaque reduction assay in which MDCK cells were infected with oseltamivir-sensitive A(H1N1)pdm09, oseltamivir-resistant A(H1N1)pdm09, H1N1 or H3N2 influenza A or with influenza B viruses in the presence of aloin. In vivo activity was tested in H1N1 influenza virus infected mice. Aloin-mediated inhibition of influenza neuraminidase activity was tested by MUNANA assay. Aloin treatment-mediated modulation of anti-influenza immunity was tested by the study of hemagglutinin-specific T cells in vivo. RESULTS Aloin significantly reduced in vitro infection by all the tested strains of influenza viruses, including oseltamivir-resistant A(H1N1)pdm09 influenza viruses, with an average IC50 value 91.83 ± 18.97 μM. In H1N1 influenza virus infected mice, aloin treatment (intraperitoneal, once daily for 5 days) reduced virus load in the lungs and attenuated body weight loss and mortality. Adjuvant aloin treatment also improved the outcome with delayed oseltamivir treatment. Aloin inhibited viral neuraminidase and impeded neuraminidase-mediated TGF-β activation. Viral neuraminidase mediated immune suppression with TGF-β was constrained and influenza hemagglutinin-specific T cell immunity was increased. There was more infiltration of hemagglutinin-specific CD4+ and CD8+ T cells in the lungs and their production of effector cytokines IFN-γ and TNF-α was boosted. CONCLUSION Aloin from Aloe vera leaves is a potent anti-influenza compound that inhibits viral neuraminidase activity, even of the oseltamivir-resistant influenza virus. With suppression of this virus machinery, aloin boosts host immunity with augmented hemagglutinin-specific T cell response to the infection. In addition, in the context of compromised benefit with delayed oseltamivir treatment, adjuvant aloin treatment ameliorates the disease and improves survival. Taken together, aloin has the potential to be further evaluated for clinical applications in human influenza.
Collapse
MESH Headings
- Aloe/chemistry
- Animals
- Antiviral Agents/pharmacology
- Cell Line
- Drug Resistance, Viral
- Emodin/analogs & derivatives
- Emodin/pharmacology
- Hemagglutinins/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/enzymology
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/drug effects
- Influenza A Virus, H3N2 Subtype/enzymology
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza B virus/drug effects
- Influenza B virus/enzymology
- Influenza B virus/immunology
- Influenza, Human/drug therapy
- Influenza, Human/immunology
- Influenza, Human/virology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neuraminidase/antagonists & inhibitors
- Oseltamivir/pharmacology
- Plant Leaves/chemistry
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Viral Proteins/antagonists & inhibitors
Collapse
Affiliation(s)
- Ching-Tai Huang
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan- 33333, Taoyuan City, Taiwan; College of Medicine, Chang Gung University, Guishan-33333, Taoyuan City, Taiwan
| | - Chen-Yiu Hung
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan
| | - Yu-Chia Hseih
- Division of Pediatric Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan- 33333, Taoyuan City, Taiwan
| | - Chia-Shiang Chang
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan- 33333, Taoyuan City, Taiwan
| | - Arul Balaji Velu
- Research Center for Emerging Viral Infections and Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Guishan- 33333, Taoyuan City, Taiwan
| | - Yueh-Chia He
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan- 33333, Taoyuan City, Taiwan
| | - Yu-Lin Huang
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan- 33333, Taoyuan City, Taiwan
| | - Ting-An Chen
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan- 33333, Taoyuan City, Taiwan
| | - Tse-Ching Chen
- College of Medicine, Chang Gung University, Guishan-33333, Taoyuan City, Taiwan; Department of Pathology, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan
| | - Chun-Yen Lin
- College of Medicine, Chang Gung University, Guishan-33333, Taoyuan City, Taiwan; Division of Hepatogastroenterology, Department of Medicine, Chang Gung Memorial Hospital, Guishan- 33333, Taoyuan City, Taiwan
| | - Yung-Chang Lin
- College of Medicine, Chang Gung University, Guishan-33333, Taoyuan City, Taiwan; Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Guishan- 33333, Taoyuan City, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections and Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Guishan- 33333, Taoyuan City, Taiwan
| | - Avijit Dutta
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan- 33333, Taoyuan City, Taiwan.
| |
Collapse
|
32
|
Daniels KA, O'Donnell CL, Castonguay C, Strutt TM, McKinstry KK, Swain SL, Welsh RM. Virus-induced natural killer cell lysis of T cell subsets. Virology 2019; 539:26-37. [PMID: 31670188 DOI: 10.1016/j.virol.2019.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022]
Abstract
In addition to direct anti-viral activity, NK cells regulate viral pathogenesis by virtue of their cytolytic attack on activated CD4 and CD8 T cells. To gain insight into which differentiated T cell subsets are preferred NK targets, transgenic T cells were differentiated in vitro into Th0, Th1, Th2, Th17, Treg, Tc1, and Tc2 effector cells and then tested for lysis by enriched populations of lymphocytic choriomeningitis virus (LCMV)-induced activated NK cells. There was a distinct hierarchy of cytotoxicity in vitro and in vivo, with Treg, Th17, and Th2 cells being more sensitive and Th0 and Th1 cells more resistant. Some distinctions between in vitro vs in vivo generated T cells were explainable by type 1 interferon induction of class 1 histocompatibility antigens on the effector T cell subsets. NK receptor (NKR)-deficient mice and anti-NKR antibody studies identified no one essential NKR for killing, though there could be redundancies.
Collapse
Affiliation(s)
- Keith A Daniels
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Carey L O'Donnell
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Catherine Castonguay
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Tara M Strutt
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA; NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA
| | - K Kai McKinstry
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA; NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA
| | - Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Raymond M Welsh
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
33
|
McKinstry KK, Alam F, Flores-Malavet V, Nagy MZ, Sell S, Cooper AM, Swain SL, Strutt TM. Memory CD4 T cell-derived IL-2 synergizes with viral infection to exacerbate lung inflammation. PLoS Pathog 2019; 15:e1007989. [PMID: 31412088 PMCID: PMC6693742 DOI: 10.1371/journal.ppat.1007989] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Defining the most penetrating correlates of protective memory T cells is key for designing improved vaccines and T cell therapies. Here, we evaluate how interleukin (IL-2) production by memory CD4 T cells, a widely held indicator of their protective potential, impacts immune responses against murine influenza A virus (IAV). Unexpectedly, we show that IL-2-deficient memory CD4 T cells are more effective on a per cell basis at combating IAV than wild-type memory cells that produce IL-2. Improved outcomes orchestrated by IL-2-deficient cells include reduced weight loss and improved respiratory function that correlate with reduced levels of a broad array of inflammatory factors in the infected lung. Blocking CD70-CD27 signals to reduce CD4 T cell IL-2 production tempers the inflammation induced by wild-type memory CD4 T cells and improves the outcome of IAV infection in vaccinated mice. Finally, we show that IL-2 administration drives rapid and extremely potent lung inflammation involving NK cells, which can synergize with sublethal IAV infection to promote acute death. These results suggest that IL-2 production is not necessarily an indicator of protective CD4 T cells, and that the lung environment is particularly sensitive to IL-2-induced inflammation during viral infection.
Collapse
Affiliation(s)
- K. Kai McKinstry
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Fahmida Alam
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Valeria Flores-Malavet
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Mate Z. Nagy
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Stewart Sell
- Department of Health, Wadsworth Center, Albany, New York, United States of America
| | - Andrea M. Cooper
- Trudeau Institute, Saranac Lake, New York, United States of America
| | - Susan L. Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Tara M. Strutt
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
- * E-mail:
| |
Collapse
|
34
|
Calzas C, Chevalier C. Innovative Mucosal Vaccine Formulations Against Influenza A Virus Infections. Front Immunol 2019; 10:1605. [PMID: 31379823 PMCID: PMC6650573 DOI: 10.3389/fimmu.2019.01605] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/27/2019] [Indexed: 12/11/2022] Open
Abstract
Despite efforts made to develop efficient preventive strategies, infections with influenza A viruses (IAV) continue to cause serious clinical and economic problems. Current licensed human vaccines are mainly inactivated whole virus particles or split-virion administered via the parenteral route. These vaccines provide incomplete protection against IAV in high-risk groups and are poorly/not effective against the constant antigenic drift/shift occurring in circulating strains. Advances in mucosal vaccinology and in the understanding of the protective anti-influenza immune mechanisms suggest that intranasal immunization is a promising strategy to fight against IAV. To date, human mucosal anti-influenza vaccines consist of live attenuated strains administered intranasally, which elicit higher local humoral and cellular immune responses than conventional parenteral vaccines. However, because of inconsistent protective efficacy and safety concerns regarding the use of live viral strains, new vaccine candidates are urgently needed. To prime and induce potent and long-lived protective immune responses, mucosal vaccine formulations need to ensure the immunoavailability and the immunostimulating capacity of the vaccine antigen(s) at the mucosal surfaces, while being minimally reactogenic/toxic. The purpose of this review is to compile innovative delivery/adjuvant systems tested for intranasal administration of inactivated influenza vaccines, including micro/nanosized particulate carriers such as lipid-based particles, virus-like particles and polymers associated or not with immunopotentiatory molecules including microorganism-derived toxins, Toll-like receptor ligands and cytokines. The capacity of these vaccines to trigger specific mucosal and systemic humoral and cellular responses against IAV and their (cross)-protective potential are considered.
Collapse
Affiliation(s)
- Cynthia Calzas
- VIM, UR892, Equipe Virus Influenza, INRA, University PARIS-SACLAY, Jouy-en-Josas, France
| | - Christophe Chevalier
- VIM, UR892, Equipe Virus Influenza, INRA, University PARIS-SACLAY, Jouy-en-Josas, France
| |
Collapse
|
35
|
Han X, Liu H, Huang H, Liu X, Jia B, Gao GF, Zhang F. ID2 and ID3 are indispensable for Th1 cell differentiation during influenza virus infection in mice. Eur J Immunol 2018; 49:476-489. [PMID: 30578645 DOI: 10.1002/eji.201847822] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/25/2018] [Accepted: 12/19/2018] [Indexed: 12/21/2022]
Abstract
Antigen-specific Th1 cells could be a passage to the infection sites during infection to execute effector functions, such as help CD8+ T cells to localize in these sites by secretion of anti-viral cytokines-IFN-γ or direct cytotoxicity of antigen-bearing cells. However, the molecular components that modulate Th1 cell differentiation and function in response to viral infection remain incompletely understood. Here, we reported that both inhibitor of DNA binding 3(Id3) protein and inhibitor of DNA binding 2(Id2) protein promoted Th1 cell differentiation. Depletion of Id3 or Id2 led to severe defect of Th1 cell differentiation during influenza virus infection. Whereas depletion of both Id3 and Id2 in CD4+ T cells restrained Th1 cell differentiation to a greater extent, indicating that Id3 and Id2 nonredundantly regulate Th1 cell differentiation. Moreover, deletion of E-proteins, the antagonists of Id proteins, greatly enhanced Th1 cell differentiation. Mechanistic study indicated that E-proteins suppressed Th1 cell differentiation by directly binding to the regulatory elements of Th1 cell master regulator T-bet and regulate T-bet expression. Thus, our findings identified Id-protein's importance for Th1 cells and clarified the nonredundant role of Id3 and Id2 in regulating Th1 cell differentiation, providing novel insight that Id3-Id2-E protein axis are essential for Th1 cell polarization.
Collapse
Affiliation(s)
- Xiaojuan Han
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongtao Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huarong Huang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinyuan Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Baoqian Jia
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,SavaId Medical School, University of Chinese Academy of Sciences, Beijing, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Research Network of Immunity and Health, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Fuping Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,SavaId Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Mock DJ, Frampton MW, Nichols JE, Domurat FM, Signs DJ, Roberts NJ. Influenza Virus Infection of Human Lymphocytes Occurs in the Immune Cell Cluster of the Developing Antiviral Response. Viruses 2018; 10:E420. [PMID: 30103427 PMCID: PMC6115886 DOI: 10.3390/v10080420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 01/03/2023] Open
Abstract
Monocytes-macrophages and lymphocytes are recruited to the respiratory tract in response to influenza virus challenge and are exposed to the virus during the establishment of immune defenses. The susceptibility of human lymphocytes to infection was assessed. The presence of monocytes-macrophages was required to attain infection of both resting and proliferating lymphocytes. Lymphocyte infection occurred in the context of immune cell clusters and was blocked by the addition of anti-intercellular adhesion molecule-1 (ICAM-1) antibody to prevent cell clustering. Both peripheral blood-derived and bronchoalveolar lymphocytes were susceptible to infection. Both CD4⁺ and CD8⁺ T lymphocytes were susceptible to influenza virus infection, and the infected CD4⁺ and CD8⁺ lymphocytes served as infectious foci for other nonpermissive or even virus-permissive cells. These data show that monocytes-macrophages and both CD4⁺ and CD8⁺ lymphocytes can become infected during the course of an immune response to influenza virus challenge. The described leukocyte interactions during infection may play an important role in the development of effective anti-influenza responses.
Collapse
Affiliation(s)
- David J Mock
- Department of Medicine, School of Medicine, University of Rochester, Rochester, NY 14642, USA.
| | - Mark W Frampton
- Department of Medicine, School of Medicine, University of Rochester, Rochester, NY 14642, USA.
| | - Joan E Nichols
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Frank M Domurat
- Department of Medicine, School of Medicine, University of Rochester, Rochester, NY 14642, USA.
| | - Denise J Signs
- Department of Medicine, School of Medicine, University of Rochester, Rochester, NY 14642, USA.
| | - Norbert J Roberts
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
37
|
Richards KA, DiPiazza AT, Rattan A, Knowlden ZAG, Yang H, Sant AJ. Diverse Epitope Specificity, Immunodominance Hierarchy, and Functional Avidity of Effector CD4 T Cells Established During Priming Is Maintained in Lung After Influenza A Virus Infection. Front Immunol 2018; 9:655. [PMID: 29681900 PMCID: PMC5897437 DOI: 10.3389/fimmu.2018.00655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/16/2018] [Indexed: 11/13/2022] Open
Abstract
One of the major contributions to protective immunity to influenza viruses that is provided by virus-specific CD4 T cells is delivery of effector function to the infected lung. However, there is little known about the selection and breadth of viral epitope-specific CD4 T cells that home to the lung after their initial priming. In this study, using a mouse model of influenza A infection and an unbiased method of epitope identification, the viral epitope-specific CD4 T cells elicited after infection were identified and quantified. We found that a very diverse specificity of CD4 T cells is primed by infection, including epitopes from hemagglutinin, neuraminidase, matrix protein, nucleoprotein, and non-structural protein-1. Using peptide-specific cytokine EliSpots, the diversity and immunodominance hierarchies established in the lung-draining lymph node were compared with specificities of CD4 T cells that home to the lung. Our studies revealed that CD4 T cells of all epitope specificities identified in peripheral lymphoid tissue home back to the lung and that most of these lung-homing cells are localized within the tissue rather than the pulmonary vasculature. There is a striking shift of CD4 T cell functionality that enriches for IFN-γ production as cells are primed in the lymph node, enter the lung vasculature, and finally establish residency in the tissue, but with no apparent shifts in their functional avidity. We conclude that CD4 T cells of broad viral epitope specificity are recruited into the lung after influenza infection, where they then have the opportunity to encounter infected or antigen-bearing antigen-presenting cells.
Collapse
Affiliation(s)
- Katherine A. Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Anthony T. DiPiazza
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Viral Pathogenesis Laboratory, Vaccine Research Center NIAID, Bethesda, MD, United States
| | - Ajitanuj Rattan
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Zackery A. G. Knowlden
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Hongmei Yang
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
38
|
Devarajan P, Jones MC, Kugler-Umana O, Vong AM, Xia J, Swain SL. Pathogen Recognition by CD4 Effectors Drives Key Effector and Most Memory Cell Generation Against Respiratory Virus. Front Immunol 2018; 9:596. [PMID: 29632538 PMCID: PMC5879149 DOI: 10.3389/fimmu.2018.00596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/09/2018] [Indexed: 01/14/2023] Open
Abstract
Although much is known about the mechanisms by which pathogen recognition drives the initiation of T cell responses, including those to respiratory viruses, the role of pathogen recognition in fate decisions of T cells once they have become effectors remains poorly defined. Here, we review our recent studies that suggest that the generation of CD4 T cell memory is determined by recognition of virus at an effector “checkpoint.” We propose this is also true of more highly differentiated tissue-restricted effector cells, including cytotoxic “ThCTL” in the site of infection and TFH in secondary lymphoid organs. We point out that ThCTL are key contributors to direct viral clearance and TFH to effective Ab response, suggesting that the most protective immunity to influenza, and by analogy to other respiratory viruses, requires prolonged exposure to antigen and to infection-associated signals. We point out that many vaccines used today do not provide such prolonged signals and suggest this contributes to their limited effectiveness. We also discuss how aging impacts effective CD4 T cell responses and how new insights about the response of aged naive CD4 T cells and B cells might hold implications for effective vaccine design for both the young and aged against respiratory viruses.
Collapse
Affiliation(s)
- Priyadharshini Devarajan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Michael C Jones
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Olivia Kugler-Umana
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Allen M Vong
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jingya Xia
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
39
|
Tinoco R, Carrette F, Henriquez ML, Fujita Y, Bradley LM. Fucosyltransferase Induction during Influenza Virus Infection Is Required for the Generation of Functional Memory CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 200:2690-2702. [PMID: 29491007 DOI: 10.4049/jimmunol.1701251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/04/2018] [Indexed: 11/19/2022]
Abstract
T cells mediating influenza viral control are instructed in lymphoid and nonlymphoid tissues to differentiate into memory T cells that confer protective immunity. The mechanisms by which influenza virus-specific memory CD4+ T cells arise have been attributed to changes in transcription factors, cytokines and cytokine receptors, and metabolic programming. The molecules involved in these biosynthetic pathways, including proteins and lipids, are modified to varying degrees of glycosylation, fucosylation, sialation, and sulfation, which can alter their function. It is currently unknown how the glycome enzymatic machinery regulates CD4+ T cell effector and memory differentiation. In a murine model of influenza virus infection, we found that fucosyltransferase enzymatic activity was induced in effector and memory CD4+ T cells. Using CD4+ T cells deficient in the Fut4/7 enzymes that are expressed only in hematopoietic cells, we found decreased frequencies of effector cells with reduced expression of T-bet and NKG2A/C/E in the lungs during primary infection. Furthermore, Fut4/7-/- effector CD4+ T cells had reduced survival with no difference in proliferation or capacity for effector function. Although Fut4/7-/- CD4+ T cells seeded the memory pool after primary infection, they failed to form tissue-resident cells, were dysfunctional, and were unable to re-expand after secondary infection. Our findings highlight an important regulatory axis mediated by cell-intrinsic fucosyltransferase activity in CD4+ T cell effectors that ensure the development of functional memory CD4+ T cells.
Collapse
Affiliation(s)
- Roberto Tinoco
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Florent Carrette
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Monique L Henriquez
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Yu Fujita
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Linda M Bradley
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| |
Collapse
|
40
|
Innate and adaptive T cells in influenza disease. Front Med 2018; 12:34-47. [DOI: 10.1007/s11684-017-0606-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 10/24/2017] [Indexed: 12/25/2022]
|
41
|
Poston TB, Qu Y, Girardi J, O'Connell CM, Frazer LC, Russell AN, Wall M, Nagarajan UM, Darville T. A Chlamydia-Specific TCR-Transgenic Mouse Demonstrates Th1 Polyfunctionality with Enhanced Effector Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2845-2854. [PMID: 28855311 PMCID: PMC5770186 DOI: 10.4049/jimmunol.1700914] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023]
Abstract
Chlamydia is responsible for millions of new infections annually, and current efforts focus on understanding cellular immunity for targeted vaccine development. The Chlamydia-specific CD4 T cell response is characterized by the production of IFN-γ, and polyfunctional Th1 responses are associated with enhanced protection. A major limitation in studying these responses is the paucity of tools available for detection, quantification, and characterization of polyfunctional Ag-specific T cells. We addressed this problem by developing a TCR-transgenic (Tg) mouse with CD4 T cells that respond to a common Ag in Chlamydia muridarum and Chlamydia trachomatis Using an adoptive-transfer approach, we show that naive Tg CD4 T cells become activated, proliferate, migrate to the infected tissue, and acquire a polyfunctional Th1 phenotype in infected mice. Polyfunctional Tg Th1 effectors demonstrated enhanced IFN-γ production compared with polyclonal cells, protected immune-deficient mice against lethality, mediated bacterial clearance, and orchestrated an anamnestic response. Adoptive transfer of Chlamydia-specific CD4 TCR-Tg T cells with polyfunctional capacity offers a powerful approach for analysis of protective effector and memory responses against chlamydial infection and demonstrates that an effective monoclonal CD4 T cell response may successfully guide subunit vaccination strategies.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Yanyan Qu
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Jenna Girardi
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Catherine M O'Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Lauren C Frazer
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Ali N Russell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - McKensie Wall
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Uma M Nagarajan
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| |
Collapse
|
42
|
Andreeva E, Bobyleva P, Gornostaeva A, Buravkova L. Interaction of multipotent mesenchymal stromal and immune cells: Bidirectional effects. Cytotherapy 2017; 19:1152-1166. [PMID: 28823421 DOI: 10.1016/j.jcyt.2017.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 05/24/2017] [Accepted: 07/02/2017] [Indexed: 12/11/2022]
Abstract
Adult multipotent mesenchymal stromal cells (MSCs) are considered one of the key players in physiological remodeling and tissue reparation. Elucidation of MSC functions is one of the most intriguing issues in modern cell physiology. In the present review, the interaction of MSCs and immune cells is discussed in terms of reciprocal effects, which modifies the properties of "partner" cells with special focus on the contribution of direct cell-to-cell contacts, soluble mediators and local microenvironmental factors, the most important of which is oxygen tension. The immunosuppressive phenomenon of MSCs is considered as the integral part of the response-to-injury mechanism.
Collapse
Affiliation(s)
- Elena Andreeva
- Institute of Biomedical Problems, the Russian Academy of Sciences, Moscow, Russia
| | - Polina Bobyleva
- Institute of Biomedical Problems, the Russian Academy of Sciences, Moscow, Russia
| | | | - Ludmila Buravkova
- Institute of Biomedical Problems, the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
43
|
Swain SL, Kugler-Umana O, Kuang Y, Zhang W. The properties of the unique age-associated B cell subset reveal a shift in strategy of immune response with age. Cell Immunol 2017; 321:52-60. [PMID: 28712455 DOI: 10.1016/j.cellimm.2017.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 01/29/2023]
Abstract
In aged mice, conventional naive B cells decrease and a new population of age-associated B cells (ABC)3 develops. When aged unprimed mice are infected with influenza virus, there is a reduced generation of helper CD4 T cell subsets and germinal center B cells, leading to limited production of IgG Ab and less generation of conventional long-lived plasma cells, compared to young. However, we find an enhanced non-follicular (GL7-) ABC response that is helper T cell-independent, but requires high viral dose and pathogen recognition pathways. The infection-induced ABC (iABC) include IAV-specific Ab-secreting cells, some of which relocate to the bone marrow and lung, and persist for >4wk., suggesting they may provide significant protection. We also speculate there is a shift with increased age to dependence on TLR-mediated pathogen-recognition in both B and CD4 T cell responses.
Collapse
Affiliation(s)
- Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, United States.
| | - Olivia Kugler-Umana
- Department of Pathology, University of Massachusetts Medical School, United States
| | - Yi Kuang
- Department of Pathology, University of Massachusetts Medical School, United States
| | - Wenliang Zhang
- Department of Pathology, University of Massachusetts Medical School, United States
| |
Collapse
|
44
|
Pulmonary immunity to viruses. Clin Sci (Lond) 2017; 131:1737-1762. [PMID: 28667071 DOI: 10.1042/cs20160259] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/28/2022]
Abstract
Mucosal surfaces, such as the respiratory epithelium, are directly exposed to the external environment and therefore, are highly susceptible to viral infection. As a result, the respiratory tract has evolved a variety of innate and adaptive immune defenses in order to prevent viral infection or promote the rapid destruction of infected cells and facilitate the clearance of the infecting virus. Successful adaptive immune responses often lead to a functional state of immune memory, in which memory lymphocytes and circulating antibodies entirely prevent or lessen the severity of subsequent infections with the same virus. This is also the goal of vaccination, although it is difficult to vaccinate in a way that mimics respiratory infection. Consequently, some vaccines lead to robust systemic immune responses, but relatively poor mucosal immune responses that protect the respiratory tract. In addition, adaptive immunity is not without its drawbacks, as overly robust inflammatory responses may lead to lung damage and impair gas exchange or exacerbate other conditions, such as asthma or chronic obstructive pulmonary disease (COPD). Thus, immune responses to respiratory viral infections must be strong enough to eliminate infection, but also have mechanisms to limit damage and promote tissue repair in order to maintain pulmonary homeostasis. Here, we will discuss the components of the adaptive immune system that defend the host against respiratory viral infections.
Collapse
|
45
|
Brahmakshatriya V, Kuang Y, Devarajan P, Xia J, Zhang W, Vong AM, Swain SL. IL-6 Production by TLR-Activated APC Broadly Enhances Aged Cognate CD4 Helper and B Cell Antibody Responses In Vivo. THE JOURNAL OF IMMUNOLOGY 2017; 198:2819-2833. [PMID: 28250157 DOI: 10.4049/jimmunol.1601119] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/29/2017] [Indexed: 12/15/2022]
Abstract
Naive CD4 T cell responses, especially their ability to help B cell responses, become compromised with aging. We find that using APC pretreated ex vivo with TLR agonists, polyinosinic-polycytidylic acid and CpG, to prime naive CD4 T cells in vivo, restores their ability to expand and become germinal center T follicular helpers and enhances B cell IgG Ab production. Enhanced helper responses are dependent on IL-6 production by the activated APC. Aged naive CD4 T cells respond suboptimally to IL-6 compared with young cells, such that higher doses are required to induce comparable signaling. Preactivating APC overcomes this deficiency. Responses of young CD4 T cells are also enhanced by preactivating APC with similar effects but with only partial IL-6 dependency. Strikingly, introducing just the activated APC into aged mice significantly enhances otherwise compromised Ab production to inactivated influenza vaccine. These findings reveal a central role for the production of IL-6 by APC during initial cognate interactions in the generation of effective CD4 T cell help, which becomes greater with age. Without APC activation, aging CD4 T cell responses shift toward IL-6-independent Th1 and CD4 cytotoxic Th cell responses. Thus, strategies that specifically activate and provide Ag to APC could potentially enhance Ab-mediated protection in vaccine responses.
Collapse
Affiliation(s)
| | - Yi Kuang
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | | | - Jingya Xia
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Wenliang Zhang
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Allen Minh Vong
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
46
|
Marshall NB, Vong AM, Devarajan P, Brauner MD, Kuang Y, Nayar R, Schutten EA, Castonguay CH, Berg LJ, Nutt SL, Swain SL. NKG2C/E Marks the Unique Cytotoxic CD4 T Cell Subset, ThCTL, Generated by Influenza Infection. THE JOURNAL OF IMMUNOLOGY 2016; 198:1142-1155. [PMID: 28031335 DOI: 10.4049/jimmunol.1601297] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/05/2016] [Indexed: 01/22/2023]
Abstract
CD4 T cells can differentiate into multiple effector subsets, including ThCTL that mediate MHC class II-restricted cytotoxicity. Although CD4 T cell-mediated cytotoxicity has been reported in multiple viral infections, their characteristics and the factors regulating their generation are unclear, in part due to a lack of a signature marker. We show in this article that, in mice, NKG2C/E identifies the ThCTL that develop in the lung during influenza A virus infection. ThCTL express the NKG2X/CD94 complex, in particular the NKG2C/E isoforms. NKG2C/E+ ThCTL are part of the lung CD4 effector population, and they mediate influenza A virus-specific cytotoxic activity. The phenotype of NKG2C/E+ ThCTL indicates they are highly activated effectors expressing high levels of binding to P-selectin, T-bet, and Blimp-1, and that more of them secrete IFN-γ and readily degranulate than non-ThCTL. ThCTL also express more cytotoxicity-associated genes including perforin and granzymes, and fewer genes associated with recirculation and memory. They are found only at the site of infection and not in other peripheral sites. These data suggest ThCTL are marked by the expression of NKG2C/E and represent a unique CD4 effector population specialized for cytotoxicity.
Collapse
Affiliation(s)
- Nikki B Marshall
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Allen M Vong
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | | | - Matthew D Brauner
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Yi Kuang
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ribhu Nayar
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Elizabeth A Schutten
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Catherine H Castonguay
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; and.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
47
|
Bautista BL, Devarajan P, McKinstry KK, Strutt TM, Vong AM, Jones MC, Kuang Y, Mott D, Swain SL. Short-Lived Antigen Recognition but Not Viral Infection at a Defined Checkpoint Programs Effector CD4 T Cells To Become Protective Memory. THE JOURNAL OF IMMUNOLOGY 2016; 197:3936-3949. [PMID: 27798159 DOI: 10.4049/jimmunol.1600838] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/19/2016] [Indexed: 01/20/2023]
Abstract
Although memory CD4 T cells are critical for effective immunity to pathogens, the mechanisms underlying their generation are still poorly defined. We find that following murine influenza infection, most effector CD4 T cells undergo apoptosis unless they encounter cognate Ag at a defined stage near the peak of effector generation. Ag recognition at this memory checkpoint blocks default apoptosis and programs their transition to long-lived memory. Strikingly, we find that viral infection is not required, because memory formation can be restored by the addition of short-lived, Ag-pulsed APC at this checkpoint. The resulting memory CD4 T cells express an enhanced memory phenotype, have increased cytokine production, and provide protection against lethal influenza infection. Finally, we find that memory CD4 T cell formation following cold-adapted influenza vaccination is boosted when Ag is administered during this checkpoint. These findings imply that persistence of viral Ag presentation into the effector phase is the key factor that determines the efficiency of memory generation. We also suggest that administering Ag at this checkpoint may improve vaccine efficacy.
Collapse
Affiliation(s)
- Bianca L Bautista
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | | | - K Kai McKinstry
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Tara M Strutt
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Allen M Vong
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Michael C Jones
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Yi Kuang
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Daniel Mott
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
48
|
Influenza and Memory T Cells: How to Awake the Force. Vaccines (Basel) 2016; 4:vaccines4040033. [PMID: 27754364 PMCID: PMC5192353 DOI: 10.3390/vaccines4040033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/27/2016] [Indexed: 12/24/2022] Open
Abstract
Annual influenza vaccination is an effective way to prevent human influenza. Current vaccines are mainly focused on eliciting a strain-matched humoral immune response, requiring yearly updates, and do not provide protection for all vaccinated individuals. The past few years, the importance of cellular immunity, and especially memory T cells, in long-lived protection against influenza virus has become clear. To overcome the shortcomings of current influenza vaccines, eliciting both humoral and cellular immunity is imperative. Today, several new vaccines such as infection-permissive and recombinant T cell inducing vaccines, are being developed and show promising results. These vaccines will allow us to stay several steps ahead of the constantly evolving influenza virus.
Collapse
|
49
|
Sterilizing immunity to influenza virus infection requires local antigen-specific T cell response in the lungs. Sci Rep 2016; 6:32973. [PMID: 27596047 PMCID: PMC5011745 DOI: 10.1038/srep32973] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/17/2016] [Indexed: 12/29/2022] Open
Abstract
Sterilizing immunity is a unique immune status, which prevents effective virus infection into the host. It is different from the immunity that allows infection but with subsequent successful eradication of the virus. Pre-infection induces sterilizing immunity to homologous influenza virus challenge in ferret. In our antigen-specific experimental system, mice pre-infected with PR8 influenza virus through nasal route are likewise resistant to reinfection of the same strain of virus. The virus is cleared before establishment of effective infection. Intramuscular influenza virus injection confers protection against re-infection with facilitated virus clearance but not sterilizing immunity. Pre-infection and intramuscular injection generates comparable innate immunity and antibody response, but only pre-infection induces virus receptor reduction and efficient antigen-specific T cell response in the lungs. Pre-infection with nH1N1 influenza virus induces virus receptor reduction but not PR8-specific T cell immune response in the lungs and cannot prevent infection of PR8 influenza virus. Pre-infection with PR8 virus induced PR8-specific T cell response in the lungs but cannot prevent infection of nH1N1 virus either. These results reveal that antigen-specific T cell immunity is required for sterilizing immunity.
Collapse
|
50
|
Gill KS, Fernandes P, O'Donovan TR, McKenna SL, Doddakula KK, Power DG, Soden DM, Forde PF. Glycolysis inhibition as a cancer treatment and its role in an anti-tumour immune response. Biochim Biophys Acta Rev Cancer 2016; 1866:87-105. [PMID: 27373814 DOI: 10.1016/j.bbcan.2016.06.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 12/23/2022]
Abstract
Increased glycolysis is the main source of energy supply in cancer cells that use this metabolic pathway for ATP generation. Altered energy metabolism is a biochemical fingerprint of cancer cells that represents one of the "hallmarks of cancer". The immune system can prevent tumour growth by eliminating cancer cells but this editing process ultimately results in poorly immunogenic cells remaining allowing for unchallenged tumour growth. In this review we look at the glycolysis pathway as a target for cancer treatments. We also examine the interplay between the glycolysis modulation and the immune response as an anti-cancer therapy.
Collapse
Affiliation(s)
- Kheshwant S Gill
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland; Cardiothoracic Surgery Department, Cork University Hospital, Cork, Ireland
| | - Philana Fernandes
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland
| | - Tracey R O'Donovan
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland
| | - Sharon L McKenna
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland
| | | | - Derek G Power
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland; Department of Medical Oncology, Mercy University Hospital, Grenville Place, Cork, Ireland
| | - Declan M Soden
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland
| | - Patrick F Forde
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland.
| |
Collapse
|