1
|
Gonçalves M, Warwas KM, Meyer M, Schwartz-Albiez R, Bulbuc N, Zörnig I, Jäger D, Momburg F. Reversal of Endothelial Cell Anergy by T Cell-Engaging Bispecific Antibodies. Cancers (Basel) 2024; 16:4251. [PMID: 39766150 PMCID: PMC11674949 DOI: 10.3390/cancers16244251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Objectives: Reduced expression of adhesion molecules in tumor vasculature can limit infiltration of effector T cells. To improve T cell adhesion to tumor endothelial cell (EC) antigens and enhance transendothelial migration, we developed bispecific, T-cell engaging antibodies (bsAb) that activate T cells after cross-linking with EC cell surface antigens. Methods: Recombinant T-cell stimulatory anti-VEGFR2-anti-CD3 and costimulatory anti-TIE2-anti-CD28 or anti-PD-L1-anti-CD28 bsAb were engineered and expressed. Primary lines of human umbilical vein endothelial cells (HUVEC) that constitutively express VEGFR2 and TIE2 growth factor receptors and PD-L1, but very low levels of adhesion molecules, served as models for anergic tumor EC. Results: In cocultures with HUVEC, anti-VEGFR2-anti-CD3 bsAb increased T cell binding and elicited rapid T cell activation. The release of proinflammatory cytokines TNF-α, IFN-γ, and IL-6 was greatly augmented by the addition of anti-TIE2-anti-CD28 or anti-PD-L1-anti-CD28 costimulatory bsAb. Concomitantly, T cell-released cytokines upregulated E-selectin, ICAM1, and VCAM1 adhesion molecules on HUVEC. HUVEC cultured in breast cancer cell-conditioned medium to mimic the influence of tumor-secreted factors were similarly activated by T cell-engaging bsAb. Migration of T cells in transwell assays was significantly increased by anti-VEGFR2-anti-CD3 bsAb. The combination with costimulatory anti-TIE2-anti-CD28 bsAb augmented activation and proliferation of migrated T cells and their cytotoxic capacity against spheroids of the MCF-7 breast cancer cell line seeded in the lower transwell chamber. Conclusions: T cells activated by anti-VEGFR2-anti-CD3 and costimulatory EC-targeting bsAb can reverse the energy of quiescent EC in vitro, resulting in improved T cell migration through an EC layer.
Collapse
Affiliation(s)
- Márcia Gonçalves
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.G.)
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Karsten M. Warwas
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.G.)
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Marten Meyer
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.G.)
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Reinhard Schwartz-Albiez
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Nadja Bulbuc
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Inka Zörnig
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Dirk Jäger
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.G.)
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Frank Momburg
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.G.)
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Ramirez DE, Dragnev CPC, Searles TG, Spicer N, Chen T, Lines JL, Hawkes AR, Davis WL, Mohamed A, Shirai K, Phillips JD, Rosato PC, Huang YH, Turk MJ. Depletion of conventional CD4 + T cells is required for robust priming and dissemination of tumor antigen-specific CD8 + T cells in the setting of anti-CD4 therapy. J Immunother Cancer 2024; 12:e010170. [PMID: 39521617 PMCID: PMC11552015 DOI: 10.1136/jitc-2024-010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Overcoming immune suppression is a major barrier to eliciting potent CD8+ T cell responses against cancer. Treatment with anti-CD4 monoclonal antibody is an effective means for eliminating CD4+Foxp3+ regulatory (Treg) cells in preclinical models and has also demonstrated efficacy in early clinical trials. However, the underlying basis for treatment efficacy, more specifically the implications of codepleting other CD4-expressing cell compartments in tumor-bearing hosts, is not well understood. METHODS Tumor-bearing mice were treated with anti-CD4 versus other therapies that preserve helper T cell function, and the priming, tissue distribution, and maintenance of tumor antigen-specific CD8 T cells were assessed. Antibody blockade and transgenic mouse models were used to determine the mechanisms of CD8 T cell priming. Single-cell RNA-sequencing (scRNAseq) was used to further characterize CD8 T cells that are primed by anti-CD4 therapy and to identify immunosuppressive CD4 T cell subsets in human melanoma following immune checkpoint blockade (ICB). RESULTS Comparing anti-CD4 to dual ICB therapy, we show that anti-CD4 facilitates more robust priming of TCF-1+, IL-2-producing, tumor-specific CD8+ T cells that disseminate to tissues and form memory. By decoupling priming from homeostatic proliferation and associated cytokines, we find that anti-CD4 functions independently of creating homeostatic space for CD8+ T cells. We also show that depletion of CD4-expressing antigen-presenting cell subsets is not required for anti-CD4 efficacy. Instead, robust tumor-specific CD8+ T cell priming and memory generation required the removal of total antigen-specific CD4+ T cells, including both Tregs and CD4+ Foxp3-negative conventional (Tconv) cells. In particular, the elimination of CD4+ Tconv cells was necessary for the accumulation and maturation of conventional type-1 dendritic cells in tumor-draining LNs, which were required for CD8+ T cell priming. Accordingly, anti-CD4 treatment restored CD8+ T cell responses in mice cotreated with dual ICB. scRNAseq of melanoma tumors from patients who received ICB revealed the presence of Tr1 and Treg subsets, as well as CD4+ Tconv subsets that lacked clear transcriptional evidence of helper differentiation. CONCLUSIONS These findings underscore the underappreciated benefit of depleting CD4+ Tconv cells to promote systemic primary and memory CD8+ T cell responses against cancer.
Collapse
Affiliation(s)
- Delaney E Ramirez
- Department of Microbiology and Immunology, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Christo P C Dragnev
- Dartmouth Cancer Center, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Tyler G Searles
- Dartmouth Cancer Center, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Nathaniel Spicer
- Department of Microbiology and Immunology, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Tiffany Chen
- Department of Microbiology and Immunology, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - J Louise Lines
- Dartmouth Cancer Center, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Aaron R Hawkes
- Dartmouth Cancer Center, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Wilson L Davis
- Dartmouth Cancer Center, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Asmaa Mohamed
- Department of Microbiology and Immunology, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Keisuke Shirai
- Dartmouth Cancer Center, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
- Department of Medicine, Dartmouth Health, Lebanon, New Hampshire, USA
| | - Joseph D Phillips
- Dartmouth Cancer Center, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
- Department of Surgery, Dartmouth Health, Lebanon, New Hampshire, USA
| | - Pamela C Rosato
- Department of Microbiology and Immunology, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Yina H Huang
- Department of Microbiology and Immunology, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Mary Jo Turk
- Department of Microbiology and Immunology, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| |
Collapse
|
3
|
Zebley CC, Zehn D, Gottschalk S, Chi H. T cell dysfunction and therapeutic intervention in cancer. Nat Immunol 2024; 25:1344-1354. [PMID: 39025962 PMCID: PMC11616736 DOI: 10.1038/s41590-024-01896-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024]
Abstract
Recent advances in immunotherapy have affirmed the curative potential of T cell-based approaches for treating relapsed and refractory cancers. However, the therapeutic efficacy is limited in part owing to the ability of cancers to evade immunosurveillance and adapt to immunological pressure. In this Review, we provide a brief overview of cancer-mediated immunosuppressive mechanisms with a specific focus on the repression of the surveillance and effector function of T cells. We discuss CD8+ T cell exhaustion and functional heterogeneity and describe strategies for targeting the molecular checkpoints that restrict T cell differentiation and effector function to bolster immunotherapeutic effects. We also delineate the emerging contributions of the tumor microenvironment to T cell metabolism and conclude by highlighting discovery-based approaches for developing future cellular therapies. Continued exploration of T cell biology and engineering hold great promise for advancing therapeutic interventions for cancer.
Collapse
Affiliation(s)
- Caitlin C Zebley
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan and Center for Infection Prevention (ZIP), Technical University of Munich, Freising, Germany
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
4
|
Ahmadpour S, Habibi MA, Ghazi FS, Molazadeh M, Pashaie MR, Mohammadpour Y. The effects of tumor-derived supernatants (TDS) on cancer cell progression: A review and update on carcinogenesis and immunotherapy. Cancer Treat Res Commun 2024; 40:100823. [PMID: 38875884 DOI: 10.1016/j.ctarc.2024.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024]
Abstract
Tumors can produce bioactive substances called tumor-derived supernatants (TDS) that modify the immune response in the host body. This can result in immunosuppressive effects that promote the growth and spread of cancer. During tumorigenesis, the exudation of these substances can disrupt the function of immune sentinels in the host and reinforce the support for cancer cell growth. Tumor cells produce cytokines, growth factors, and proteins, which contribute to the progression of the tumor and the formation of premetastatic niches. By understanding how cancer cells influence the host immune system through the secretion of these factors, we can gain new insights into cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mikaeil Molazadeh
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Pashaie
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Mohammadpour
- Department of Medical Education, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
5
|
Whiteside SK, Grant FM, Alvisi G, Clarke J, Tang L, Imianowski CJ, Zhang B, Evans AC, Wesolowski AJ, Conti AG, Yang J, Lauder SN, Clement M, Humphreys IR, Dooley J, Burton O, Liston A, Alloisio M, Voulaz E, Langhorne J, Okkenhaug K, Lugli E, Roychoudhuri R. Acquisition of suppressive function by conventional T cells limits antitumor immunity upon T reg depletion. Sci Immunol 2023; 8:eabo5558. [PMID: 38100544 PMCID: PMC7615475 DOI: 10.1126/sciimmunol.abo5558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 01/15/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023]
Abstract
Regulatory T (Treg) cells contribute to immune homeostasis but suppress immune responses to cancer. Strategies to disrupt Treg cell-mediated cancer immunosuppression have been met with limited clinical success, but the underlying mechanisms for treatment failure are poorly understood. By modeling Treg cell-targeted immunotherapy in mice, we find that CD4+ Foxp3- conventional T (Tconv) cells acquire suppressive function upon depletion of Foxp3+ Treg cells, limiting therapeutic efficacy. Foxp3- Tconv cells within tumors adopt a Treg cell-like transcriptional profile upon ablation of Treg cells and acquire the ability to suppress T cell activation and proliferation ex vivo. Suppressive activity is enriched among CD4+ Tconv cells marked by expression of C-C motif receptor 8 (CCR8), which are found in mouse and human tumors. Upon Treg cell depletion, CCR8+ Tconv cells undergo systemic and intratumoral activation and expansion, and mediate IL-10-dependent suppression of antitumor immunity. Consequently, conditional deletion of Il10 within T cells augments antitumor immunity upon Treg cell depletion in mice, and antibody blockade of IL-10 signaling synergizes with Treg cell depletion to overcome treatment resistance. These findings reveal a secondary layer of immunosuppression by Tconv cells released upon therapeutic Treg cell depletion and suggest that broader consideration of suppressive function within the T cell lineage is required for development of effective Treg cell-targeted therapies.
Collapse
Affiliation(s)
- Sarah K Whiteside
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Francis M Grant
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire CB22 3AT, UK
| | - Giorgia Alvisi
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - James Clarke
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Leqi Tang
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Charlotte J Imianowski
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Baojie Zhang
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Alexander C Evans
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Alexander J Wesolowski
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Alberto G Conti
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Jie Yang
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Sarah N Lauder
- Division of Infection and Immunity/System Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Mathew Clement
- Division of Infection and Immunity/System Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Ian R Humphreys
- Division of Infection and Immunity/System Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - James Dooley
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Oliver Burton
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Adrian Liston
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Marco Alloisio
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Emanuele Voulaz
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Jean Langhorne
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Rahul Roychoudhuri
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|
6
|
Standing D, Feess E, Kodiyalam S, Kuehn M, Hamel Z, Johnson J, Thomas SM, Anant S. The Role of STATs in Ovarian Cancer: Exploring Their Potential for Therapy. Cancers (Basel) 2023; 15:cancers15092485. [PMID: 37173951 PMCID: PMC10177275 DOI: 10.3390/cancers15092485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Ovarian cancer (OvCa) is a deadly gynecologic malignancy that presents many clinical challenges due to late-stage diagnoses and the development of acquired resistance to standard-of-care treatment protocols. There is an increasing body of evidence suggesting that STATs may play a critical role in OvCa progression, resistance, and disease recurrence, and thus we sought to compile a comprehensive review to summarize the current state of knowledge on the topic. We have examined peer reviewed literature to delineate the role of STATs in both cancer cells and cells within the tumor microenvironment. In addition to summarizing the current knowledge of STAT biology in OvCa, we have also examined the capacity of small molecule inhibitor development to target specific STATs and progress toward clinical applications. From our research, the best studied and targeted factors are STAT3 and STAT5, which has resulted in the development of several inhibitors that are under current evaluation in clinical trials. There remain gaps in understanding the role of STAT1, STAT2, STAT4, and STAT6, due to limited reports in the current literature; as such, further studies to establish their implications in OvCa are necessitated. Moreover, due to the deficiency in our understanding of these STATs, selective inhibitors also remain elusive, and therefore present opportunities for discovery.
Collapse
Affiliation(s)
- David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Emma Feess
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Satvik Kodiyalam
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Michael Kuehn
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Zachary Hamel
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Jaimie Johnson
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| |
Collapse
|
7
|
Biri-Kovács B, Bánóczi Z, Tummalapally A, Szabó I. Peptide Vaccines in Melanoma: Chemical Approaches towards Improved Immunotherapeutic Efficacy. Pharmaceutics 2023; 15:pharmaceutics15020452. [PMID: 36839774 PMCID: PMC9963291 DOI: 10.3390/pharmaceutics15020452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer of the skin is by far the most common of all cancers. Although the incidence of melanoma is relatively low among skin cancers, it can account for a high number of skin cancer deaths. Since the start of deeper insight into the mechanisms of melanoma tumorigenesis and their strong interaction with the immune system, the development of new therapeutical strategies has been continuously rising. The high number of melanoma cell mutations provides a diverse set of antigens that the immune system can recognize and use to distinguish tumor cells from normal cells. Peptide-based synthetic anti-tumor vaccines are based on tumor antigens that elicit an immune response due to antigen-presenting cells (APCs). Although targeting APCs with peptide antigens is the most important assumption for vaccine development, peptide antigens alone are poorly immunogenic. The immunogenicity of peptide antigens can be improved not only by synthetic modifications but also by the assistance of adjuvants and/or delivery systems. The current review summarizes the different chemical approaches for the development of effective peptide-based vaccines for the immunotherapeutic treatment of advanced melanoma.
Collapse
Affiliation(s)
- Beáta Biri-Kovács
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| | - Zoltán Bánóczi
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
- Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | | | - Ildikó Szabó
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
- Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
- MTA-TTK Lendület “Momentum” Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Correspondence: ; Tel.: +36-13722500
| |
Collapse
|
8
|
Petkov S, Kilpeläinen A, Bayurova E, Latanova A, Mezale D, Fridrihsone I, Starodubova E, Jansons J, Dudorova A, Gordeychuk I, Wahren B, Isaguliants M. HIV-1 Protease as DNA Immunogen against Drug Resistance in HIV-1 Infection: DNA Immunization with Drug Resistant HIV-1 Protease Protects Mice from Challenge with Protease-Expressing Cells. Cancers (Basel) 2022; 15:238. [PMID: 36612231 PMCID: PMC9818955 DOI: 10.3390/cancers15010238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
DNA immunization with HIV-1 protease (PR) is advanced for immunotherapy of HIV-1 infection to reduce the number of infected cells producing drug-resistant virus. A consensus PR of the HIV-1 FSU_A strain was designed, expression-optimized, inactivated (D25N), and supplemented with drug resistance (DR) mutations M46I, I54V, and V82A common for FSU_A. PR variants with D25N/M46I/I54V (PR_Ai2mut) and with D25N/M46I/I54V/V82A (PR_Ai3mut) were cloned into the DNA vaccine vector pVAX1, and PR_Ai3mut, into a lentiviral vector for the transduction of murine mammary adenocarcinoma cells expressing luciferase 4T1luc2. BALB/c mice were DNA-immunized by intradermal injections of PR_Ai, PR_Ai2mut, PR_Ai3mut, vector pVAX1, or PBS with electroporation. All PR variants induced specific CD8+ T-cell responses revealed after splenocyte stimulation with PR-derived peptides. Splenocytes of mice DNA-immunized with PR_Ai and PR_Ai2mut were not activated by peptides carrying V82A, whereas splenocytes of PR_Ai3mut-immunized mice recognized both peptides with and without V82A mutation. Mutations M46I and I54V were immunologically silent. In the challenge study, DNA immunization with PR_Ai3mut protected mice from the outgrowth of subcutaneously implanted adenocarcinoma 4T1luc2 cells expressing PR_Ai3mut; a tumor was formed only in 1/10 implantation sites and no metastases were detected. Immunizations with other PR variants were not protective; all mice formed tumors and multiple metastasis in the lungs, liver, and spleen. CD8+ cells of PR_Ai3mut DNA-immunized mice exhibited strong IFN-γ/IL-2 responses against PR peptides, while the splenocytes of mice in other groups were nonresponsive. Thus, immunization with a DNA plasmid encoding inactive HIV-1 protease with DR mutations suppressed the growth and metastatic activity of tumor cells expressing PR identical to the one encoded by the immunogen. This demonstrates the capacity of T-cell response induced by DNA immunization to recognize single DR mutations, and supports the concept of the development of immunotherapies against drug resistance in HIV-1 infection. It also suggests that HIV-1-infected patients developing drug resistance may have a reduced natural immune response against DR HIV-1 mutations causing an immune escape.
Collapse
Affiliation(s)
- Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Athina Kilpeläinen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Ekaterina Bayurova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Anastasia Latanova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dzeina Mezale
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
| | - Ilse Fridrihsone
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
| | - Elizaveta Starodubova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Juris Jansons
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
- Latvian Research and Study Centre, LV-1067 Riga, Latvia
| | - Alesja Dudorova
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
- Paul Stradins University Hospital, LV-1002 Riga, Latvia
| | - Ilya Gordeychuk
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Maria Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
| |
Collapse
|
9
|
Maruszewska-Cheruiyot M, Stear MJ, Machcińska M, Donskow-Łysoniewska K. Importance of TGFβ in Cancer and Nematode Infection and Their Interaction-Opinion. Biomolecules 2022; 12:1572. [PMID: 36358922 PMCID: PMC9687433 DOI: 10.3390/biom12111572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 09/29/2023] Open
Abstract
Historically, there has been little interaction between parasitologists and oncologists, although some helminth infections predispose to the development of tumours. In addition, both parasites and tumours need to survive immune attack. Recent research suggests that both tumours and parasites suppress the immune response to increase their chances of survival. They both co-opt the transforming growth factor beta (TGFβ) signalling pathway to modulate the immune response to their benefit. In particular, there is concern that suppression of the immune response by nematodes and their products could enhance susceptibility to tumours in both natural and artificial infections.
Collapse
Affiliation(s)
| | - Michael James Stear
- Department of Animal, Plant and Soil Science, Agribio, La Trobe University, Bundoora 3086, Australia
| | - Maja Machcińska
- Department of Experimental Immunotherapy, Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland
| | | |
Collapse
|
10
|
Ding Y, Wang Z, Zhou F, Chen C, Qin Y. Associating resistance to immune checkpoint inhibitors with immunological escape in colorectal cancer. Front Oncol 2022; 12:987302. [PMID: 36248998 PMCID: PMC9561929 DOI: 10.3389/fonc.2022.987302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer is a common malignant tumor that ranks third in incidence and second in mortality worldwide, and surgery in conjunction with chemotherapy and radiotherapy remains the most common treatment option. As a result of radiotherapy’s severe side effects and dismal survival rates, it is anticipated that more alternatives may emerge. Immunotherapy, a breakthrough treatment, has made significant strides in colorectal cancer over the past few years, overcoming specialized therapy, which has more selectivity and a higher survival prognosis than chemoradiotherapy. Among these, immune checkpoint inhibitor therapy has emerged as the primary immunotherapy for colorectal cancer nowadays. Nonetheless, as the use of immune checkpoint inhibitor has expanded, resistance has arisen inevitably. Immune escape is the primary cause of non-response and resistance to immune checkpoint inhibitors. That is the development of primary and secondary drug resistance. In this article, we cover the immune therapy-related colorectal cancer staging, the specific immune checkpoint inhibitors treatment mechanism, and the tumor microenvironment and immune escape routes of immunosuppressive cells that may be associated with immune checkpoint inhibitors resistance reversal. The objective is to provide better therapeutic concepts for clinical results and to increase the number of individuals who can benefit from colorectal cancer immunotherapy.
Collapse
Affiliation(s)
- Yi Ding
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zehua Wang
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fengmei Zhou
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chen Chen
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanru Qin
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yanru Qin,
| |
Collapse
|
11
|
Dwivedi M, Tiwari S, Kemp EH, Begum R. Implications of regulatory T cells in anti-cancer immunity: from pathogenesis to therapeutics. Heliyon 2022; 8:e10450. [PMID: 36082331 PMCID: PMC9445387 DOI: 10.1016/j.heliyon.2022.e10450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/08/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Regulatory T cells (Tregs) play an essential role in maintaining immune tolerance and suppressing inflammation. However, Tregs present major hurdle in eliciting potent anti-cancer immune responses. Therefore, curbing the activity of Tregs represents a novel and efficient way towards successful immunotherapy of cancer. Moreover, there is an emerging interest in harnessing Treg-based strategies for augmenting anti-cancer immunity in different types of the disease. This review summarises the crucial mechanisms of Tregs’ mediated suppression of anti-cancer immunity and strategies to suppress or to alter such Tregs to improve the immune response against tumors. Highlighting important clinical studies, the review also describes current Treg-based therapeutic interventions in cancer, and discusses Treg-suppression by molecular targeting, which may emerge as an effective cancer immunotherapy and as an alternative to detrimental chemotherapeutic agents. Tregs are crucial in maintaining immune tolerance and suppressing inflammation. Tregs present a major obstacle to eliciting potent anti-tumor immune responses. The review summarizes current Treg-based therapeutic interventions in cancer. Treg can be an effective cancer immunotherapy target.
Collapse
Affiliation(s)
- Mitesh Dwivedi
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Tarsadi, Surat, Gujarat, 394350, India
- Corresponding author.
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, 226002, Uttar Pradesh, India
| | - E. Helen Kemp
- Department of Oncology and Metabolism, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, S10 2RX, UK
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| |
Collapse
|
12
|
Sahoo OS, Pethusamy K, Srivastava TP, Talukdar J, Alqahtani MS, Abbas M, Dhar R, Karmakar S. The metabolic addiction of cancer stem cells. Front Oncol 2022; 12:955892. [PMID: 35957877 PMCID: PMC9357939 DOI: 10.3389/fonc.2022.955892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSC) are the minor population of cancer originating cells that have the capacity of self-renewal, differentiation, and tumorigenicity (when transplanted into an immunocompromised animal). These low-copy number cell populations are believed to be resistant to conventional chemo and radiotherapy. It was reported that metabolic adaptation of these elusive cell populations is to a large extent responsible for their survival and distant metastasis. Warburg effect is a hallmark of most cancer in which the cancer cells prefer to metabolize glucose anaerobically, even under normoxic conditions. Warburg's aerobic glycolysis produces ATP efficiently promoting cell proliferation by reprogramming metabolism to increase glucose uptake and stimulating lactate production. This metabolic adaptation also seems to contribute to chemoresistance and immune evasion, a prerequisite for cancer cell survival and proliferation. Though we know a lot about metabolic fine-tuning in cancer, what is still in shadow is the identity of upstream regulators that orchestrates this process. Epigenetic modification of key metabolic enzymes seems to play a decisive role in this. By altering the metabolic flux, cancer cells polarize the biochemical reactions to selectively generate "onco-metabolites" that provide an added advantage for cell proliferation and survival. In this review, we explored the metabolic-epigenetic circuity in relation to cancer growth and proliferation and establish the fact how cancer cells may be addicted to specific metabolic pathways to meet their needs. Interestingly, even the immune system is re-calibrated to adapt to this altered scenario. Knowing the details is crucial for selective targeting of cancer stem cells by choking the rate-limiting stems and crucial branch points, preventing the formation of onco-metabolites.
Collapse
Affiliation(s)
- Om Saswat Sahoo
- Department of Biotechnology, National Institute of technology, Durgapur, India
| | - Karthikeyan Pethusamy
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Joyeeta Talukdar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
- Computers and communications Department, College of Engineering, Delta University for Science and Technology, Gamasa, Egypt
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
13
|
Shi ZY, Zhang SX, Fan D, Li CH, Cheng ZH, Xue Y, Wu LX, Lu KY, Yang SY, Cheng Y, Wu ZF, Gao C, Li XF, Liu HY, Li SJ. Dynamic Immune Function Changes Before and After the First Radioactive Iodine Therapy After Total Resection of Differentiated Thyroid Carcinoma. Front Immunol 2022; 13:901263. [PMID: 35844520 PMCID: PMC9280633 DOI: 10.3389/fimmu.2022.901263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
The effects of total thyroidectomy or radioactive iodine therapy on immune activation and suppression of the tumor microenvironment remain unknown. We aimed to investigate the effects of these treatments on the immune function in patients with differentiated thyroid carcinoma (DTC). Our cohort included 45 patients with DTC treated with total thyroidectomy and radioactive iodine therapy (RAIT). Immune function tests were performed by flow cytometry at 0, 30, and 90 days post-RAIT. Both the percentage and absolute number of circulating regulatory T cells were significantly lower in the postoperative DTC compared to the healthy controls. Notably, the absolute number of multiple lymphocyte subgroups significantly decreased at 30 days post-RAIT compared to those pre-RAIT. The absolute counts of these lymphocytes were recovered at 90 days post-RAIT, but not at pre-RAIT levels. Additionally, the Th17 cell percentage before RAIT was positively correlated with thyroglobulin (Tg) levels after RAIT. The tumor burden might contribute to increased levels of circulating Tregs. In conclusion, RAIT caused transient radiation damage in patients with DTC and the percentage of Th17 cells before RAIT could be a significant predictor of poor prognosis in patients with DTC.
Collapse
Affiliation(s)
- Zhi-Yong Shi
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Di Fan
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Cai-Hong Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhe-Hao Cheng
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Xue
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Li-Xiang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ke-Yi Lu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Su-Yun Yang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Cheng
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhi-Fang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiao-Feng Li
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hai-Yan Liu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Hai-Yan Liu, ; Si-Jin Li,
| | - Si-Jin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
- *Correspondence: Hai-Yan Liu, ; Si-Jin Li,
| |
Collapse
|
14
|
Parakh S, Ernst M, Poh AR. Multicellular Effects of STAT3 in Non-small Cell Lung Cancer: Mechanistic Insights and Therapeutic Opportunities. Cancers (Basel) 2021; 13:6228. [PMID: 34944848 PMCID: PMC8699548 DOI: 10.3390/cancers13246228] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and accounts for 85% of lung cancer cases. Aberrant activation of the Signal Transducer and Activator of Transcription 3 (STAT3) is frequently observed in NSCLC and is associated with a poor prognosis. Pre-clinical studies have revealed an unequivocal role for tumor cell-intrinsic and extrinsic STAT3 signaling in NSCLC by promoting angiogenesis, cell survival, cancer cell stemness, drug resistance, and evasion of anti-tumor immunity. Several STAT3-targeting strategies have also been investigated in pre-clinical models, and include preventing upstream receptor/ligand interactions, promoting the degradation of STAT3 mRNA, and interfering with STAT3 DNA binding. In this review, we discuss the molecular and immunological mechanisms by which persistent STAT3 activation promotes NSCLC development, and the utility of STAT3 as a prognostic and predictive biomarker in NSCLC. We also provide a comprehensive update of STAT3-targeting therapies that are currently undergoing clinical evaluation, and discuss the challenges associated with these treatment modalities in human patients.
Collapse
Affiliation(s)
- Sagun Parakh
- Department of Medical Oncology, The Olivia Newton-John Cancer and Wellness Centre, Austin Health, Heidelberg, VIC 3084, Australia;
- Tumor Targeting Laboratory, The Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Matthias Ernst
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia;
- Cancer and Inflammation Laboratory, The Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Ashleigh R. Poh
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia;
- Cancer and Inflammation Laboratory, The Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| |
Collapse
|
15
|
Fei L, Ren X, Yu H, Zhan Y. Targeting the CCL2/CCR2 Axis in Cancer Immunotherapy: One Stone, Three Birds? Front Immunol 2021; 12:771210. [PMID: 34804061 PMCID: PMC8596464 DOI: 10.3389/fimmu.2021.771210] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
CCR2 is predominantly expressed by monocytes/macrophages with strong proinflammatory functions, prompting the development of CCR2 antagonists to dampen unwanted immune responses in inflammatory and autoimmune diseases. Paradoxically, CCR2-expressing monocytes/macrophages, particularly in tumor microenvironments, can be strongly immunosuppressive. Thus, targeting the recruitment of immunosuppressive monocytes/macrophages to tumors by CCR2 antagonism has recently been investigated as a strategy to modify the tumor microenvironment and enhance anti-tumor immunity. We present here that beneficial effects of CCR2 antagonism in the tumor setting extend beyond blocking chemotaxis of suppressive myeloid cells. Signaling within the CCL2/CCR2 axis shows underappreciated effects on myeloid cell survival and function polarization. Apart from myeloid cells, T cells are also known to express CCR2. Nevertheless, tissue homing of Treg cells among T cell populations is preferentially affected by CCR2 deficiency. Further, CCR2 signaling also directly enhances Treg functional potency. Thus, although Tregs are not the sole type of T cells expressing CCR2, the net outcome of CCR2 antagonism in T cells favors the anti-tumor arm of immune responses. Finally, the CCL2/CCR2 axis directly contributes to survival/growth and invasion/metastasis of many types of tumors bearing CCR2. Together, CCR2 links to two main types of suppressive immune cells by multiple mechanisms. Such a CCR2-assoicated immunosuppressive network is further entangled with paracrine and autocrine CCR2 signaling of tumor cells. Strategies to target CCL2/CCR2 axis as cancer therapy in the view of three types of CCR2-expessing cells in tumor microenvironment are discussed.
Collapse
Affiliation(s)
- Liyang Fei
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| | - Xiaochen Ren
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| | - Haijia Yu
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| | - Yifan Zhan
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| |
Collapse
|
16
|
Role of FoxP3-positive regulatory T-cells in regressive and progressive cervical dysplasia. J Cancer Res Clin Oncol 2021; 148:377-386. [PMID: 34739585 DOI: 10.1007/s00432-021-03838-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE Forkhead Box Protein 3 (FoxP3) is known as a key mediator in the immunosuppressive function of regulatory T-cells (Tregs). The aim of our study was to investigate whether FoxP3-positive Tregs have the potential to act as an independent predictor in progression as well as in regression of cervical intraepithelial neoplasia, especially in patients with intermediate cervical intraepithelial neoplasia (CIN II). METHODS Nuclear FoxP3 expression was immunohistochemically analysed in 169 patient samples (CIN I, CIN II with regressive course, CIN II with progressive course, CIN III). The median numbers were calculated for each slide and correlated with the histological CIN grade. Statistical analysis was performed by SPSS 26 (Mann-Whitney U test, Spearman's rank correlation). RESULTS An increased FoxP3 expression in CIN II with progression could be detected in comparison to CIN II with regression (p = 0.003). Total FoxP3 expression (epithelium and dysplasia-connected stroma) was higher in more advanced CIN grades (p < 0.001 for CIN I vs. CIN II; p = 0.227 for CIN II vs. CIN III). A positive correlation could be detected between FoxP3-positive cells in epithelium and total FoxP3 expression (Spearman's Rho: 0,565; p < 0.01). CONCLUSION Expression of FoxP3 could be a helpful predictive factor to assess the risks of CIN II progression. As a prognosticator for regression and progression in cervical intraepithelial lesions it might thereby help in the decision process regarding surgical treatment vs. watchful waiting strategy to prevent conisation-associated risks for patients in child-bearing age. In addition, the findings support the potential of Tregs as a target for immune therapy in cervical cancer patients.
Collapse
|
17
|
Kosaka A, Ishibashi K, Nagato T, Kitamura H, Fujiwara Y, Yasuda S, Nagata M, Harabuchi S, Hayashi R, Yajima Y, Ohara K, Kumai T, Aoki N, Komohara Y, Oikawa K, Harabuchi Y, Kitada M, Kobayashi H, Ohkuri T. CD47 blockade enhances the efficacy of intratumoral STING-targeting therapy by activating phagocytes. J Exp Med 2021; 218:212661. [PMID: 34559187 PMCID: PMC8480673 DOI: 10.1084/jem.20200792] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/13/2021] [Accepted: 09/03/2021] [Indexed: 01/18/2023] Open
Abstract
Activation of STING signaling plays an important role in anti-tumor immunity, and we previously reported the anti-tumor effects of STING through accumulation of M1-like macrophages in tumor tissue treated with a STING agonist. However, myeloid cells express SIRPα, an inhibitory receptor for phagocytosis, and its receptor, CD47, is overexpressed in various cancer types. Based on our findings that breast cancer patients with highly expressed CD47 have poor survival, we evaluated the therapeutic efficacy and underlying mechanisms of combination therapy with the STING ligand cGAMP and an antagonistic anti-CD47 mAb using E0771 mouse breast cancer cells. Anti-CD47 mAb monotherapy did not suppress tumor growth in our setting, whereas cGAMP and anti-CD47 mAb combination therapy inhibited tumor growth. The combination therapy enhanced phagocytosis of tumor cells and induced systemic anti-tumor immune responses, which rely on STING and type I IFN signaling. Taken together, our findings indicate that coadministration of cGAMP and an antagonistic anti-CD47 mAb may be promising for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Kei Ishibashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Respiratory and Breast Center, Asahikawa Medical University Hospital, Asahikawa, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Hidemitsu Kitamura
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Syunsuke Yasuda
- Respiratory and Breast Center, Asahikawa Medical University Hospital, Asahikawa, Japan
| | - Marino Nagata
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Shohei Harabuchi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Ryusuke Hayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Yuki Yajima
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Kenzo Ohara
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takumi Kumai
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Naoko Aoki
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kensuke Oikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Masahiro Kitada
- Respiratory and Breast Center, Asahikawa Medical University Hospital, Asahikawa, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
18
|
Hariyanto AD, Permata TBM, Gondhowiardjo SA. Role of CD4 +CD25 +FOXP3 + T Reg cells on tumor immunity. Immunol Med 2021; 45:94-107. [PMID: 34495808 DOI: 10.1080/25785826.2021.1975228] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Not all T cells are effector cells of the anti-tumor immune system. One of the subpopulations of CD4+ T cells that express CD25+ and the transcription factor FOXP3, known as Regulator T cells (TReg), plays an essential role in maintaining tolerance and immune homeostasis preventing autoimmune diseases, minimalize chronic inflammatory diseases by enlisting various immunoregulatory mechanisms. The balance between effector T cells (Teff) and regulator T cells is crucial in determining the outcome of an immune response. Regarding tumors, activation or expansion of TReg cells reduces anti-tumor immunity. TReg cells inhibit the activation of CD4+ and CD8+ T cells and suppress anti-tumor activity in the tumor microenvironment. In addition, TReg cells also promote tumor angiogenesis both directly and indirectly to ensure oxygen and nutrient transport to the tumor. There is accumulating evidence showing a positive result that removing or suppressing TReg cells increases anti-tumor immune response. However, depletion of TReg cells will cause autoimmunity. One strategy to improve or restore tumor immunity is targeted therapy on the dominant effector TReg cells in tumor tissue. Various molecules such as CTLA-4, CD4, CD25, GITR, PD-1, OX40, ICOS are in clinical trials to assess their role in attenuating TReg cells' function.
Collapse
Affiliation(s)
- Agustinus Darmadi Hariyanto
- Faculty of Medicine, Department of Radiotherapy, Universitas Indonesia/Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Tiara Bunga Mayang Permata
- Faculty of Medicine, Department of Radiotherapy, Universitas Indonesia/Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | | |
Collapse
|
19
|
Kim SH, Cho E, Kim YI, Han C, Choi BK, Kwon BS. Adoptive immunotherapy with transient anti-CD4 treatment enhances anti-tumor response by increasing IL-18Rα hi CD8 + T cells. Nat Commun 2021; 12:5314. [PMID: 34493727 PMCID: PMC8423719 DOI: 10.1038/s41467-021-25559-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/17/2021] [Indexed: 12/17/2022] Open
Abstract
Adoptive T cell therapy (ACT) requires lymphodepletion preconditioning to eliminate immune-suppressive elements and enable efficient engraftment of adoptively transferred tumor-reactive T cells. As anti-CD4 monoclonal antibody depletes CD4+ immune-suppressive cells, the combination of anti-CD4 treatment and ACT has synergistic potential in cancer therapy. Here, we demonstrate a post-ACT conditioning regimen that involves transient anti-CD4 treatment (CD4post). Using murine melanoma, the combined effect of cyclophosphamide preconditioning (CTXpre), CD4post, and ex vivo primed tumor-reactive CD8+ T-cell infusion is presented. CTXpre/CD4post increases tumor suppression and host survival by accelerating the proliferation and differentiation of ex vivo primed CD8+ T cells and endogenous CD8+ T cells. Endogenous CD8+ T cells enhance effector profile and tumor-reactivity, indicating skewing of the TCR repertoire. Notably, enrichment of polyfunctional IL-18Rαhi CD8+ T cell subset is the key event in CTXpre/CD4post-induced tumor suppression. Mechanistically, the anti-tumor effect of IL-18Rαhi subset is mediated by IL-18 signaling and TCR–MHC I interaction. This study highlights the clinical relevance of CD4post in ACT and provides insights regarding the immunological nature of anti-CD4 treatment, which enhances anti-tumor response of CD8+ T cells. Lymphodepleting preconditioning is generally required prior to adoptive T cell therapy (ACT). Here the authors show in a preclinical melanoma model that anti-CD4 treatment as a post-conditioning regimen enhances the anti-tumor efficacy of ACT by promoting the expansion of IL-18Rαhi CD8+ T cells.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, Republic of Korea.,Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Eunjung Cho
- Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Yu I Kim
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Chungyong Han
- Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, Republic of Korea. .,Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea.
| | - Beom K Choi
- Biomedicine Production Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea.
| | - Byoung S Kwon
- Eutilex Institute for Biomedical Research, Eutilex Co., Ltd, Seoul, Republic of Korea. .,Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
20
|
Tranberg KG. Local Destruction of Tumors and Systemic Immune Effects. Front Oncol 2021; 11:708810. [PMID: 34307177 PMCID: PMC8298109 DOI: 10.3389/fonc.2021.708810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Current immune-based therapies signify a major advancement in cancer therapy; yet, they are not effective in the majority of patients. Physically based local destruction techniques have been shown to induce immunologic effects and are increasingly used in order to improve the outcome of immunotherapies. The various local destruction methods have different modes of action and there is considerable variation between the different techniques with respect to the ability and frequency to create a systemic anti-tumor immunologic effect. Since the abscopal effect is considered to be the best indicator of a relevant immunologic effect, the present review focused on the tissue changes associated with this effect in order to find determinants for a strong immunologic response, both when local destruction is used alone and combined with immunotherapy. In addition to the T cell-inflammation that was induced by all methods, the analysis indicated that it was important for an optimal outcome that the released antigens were not destroyed, tumor cell death was necrotic and tumor tissue perfusion was at least partially preserved allowing for antigen presentation, immune cell trafficking and reduction of hypoxia. Local treatment with controlled low level hyperthermia met these requisites and was especially prone to result in abscopal immune activity on its own.
Collapse
|
21
|
A Comprehensive Pan-Cancer Analysis of RBM8A Based on Data Mining. JOURNAL OF ONCOLOGY 2021; 2021:9983354. [PMID: 34326876 PMCID: PMC8277506 DOI: 10.1155/2021/9983354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/02/2021] [Indexed: 01/01/2023]
Abstract
Background As a member of the exon junction complex (EJC), RNA-binding motif protein 8A (RBM8A) plays a crucial role in the maintenance of mRNA and multiple activities of an organism. Immunotherapy has been proven to be a staple type of cancer treatment. However, the role of RBM8A and immunity across cancer types is unclear. Objective This study aims to visualize the expression, prognosis, mutations, and coexpressed gene results of RBM8A across cancer types and to explore the link between RBM8A expression and immunity. Methods In this study, data were collected from multiple online databases. We analyzed the data using the HPA, UALCAN Database, COSMIC, cBioPortal, Cancer Regulome tools, Kaplan–Meier Plotter, and TIMER website. Results For the expression of RBM8A in normal tissues, higher expression of RBM8A was observed in immune-related cells than in nonimmune organs. The expression level of RBM8A was related to tumor type. Missense mutations in RBM8A were found in most tumors and affected the prognosis of carcinomas with coexpressed genes. RBM8A was strongly associated with immune-infiltrating cells and immune checkpoint inhibitors, especially in LIHC. Conclusions RBM8A is a gene worth exploring and may be a unique immune target in the future.
Collapse
|
22
|
Yao W, Satpathy AT. Repertoire Remodeling through CD4 + T-cell Depletion. Cancer Immunol Res 2021; 9:601. [PMID: 34365414 DOI: 10.1158/2326-6066.cir-21-0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Understanding the cellular regulation of tumor-specific CD8+ T-cell responses is critical to designing improved clinical strategies for cancer immunotherapy. In this issue, Aoki and colleagues deepen our knowledge of this topic by demonstrating that transient depletion of CD4+ T cells in patients with gastrointestinal cancer induces remodeling of the T-cell repertoire, including clonal replacement and expansion of CD8+ T-cell clones shared between the blood and tumor.See article by Aoki et al., p. 624.
Collapse
Affiliation(s)
- Winnie Yao
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
23
|
Li Z, Yu B, Qi F, Li F. KIF11 Serves as an Independent Prognostic Factor and Therapeutic Target for Patients With Lung Adenocarcinoma. Front Oncol 2021; 11:670218. [PMID: 33968780 PMCID: PMC8103954 DOI: 10.3389/fonc.2021.670218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/24/2021] [Indexed: 12/31/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is challenging in clinical practice due to the poor understanding of molecular mechanisms and limited therapeutic targets. Herein, the work aimed to use bioinformatics to identify a promising molecular target for LUAD therapy. Methods Differentially expressed genes (DEGs) from the Cancer Genome Atlas (TCGA) dataset were used for a weighted gene co-expression network analysis (WGCNA) to screen the hub gene. After a prognostic estimation with meta-analysis and COX regression analysis, we performed a function analysis on the corresponding gene. The ESTIMATE and CIBERSORT methods were adopted to analyze the association of the hub gene with the tumor microenvironment (TME). A cohort of functional assays was conducted to establish the functional roles of the hub gene in A549 and PC-9 cells. Results Our screen identified KIF11 as a prognostic factor, which indicated the poor overall survival and the worse progression-free survival in LUAD patients. Additionally, KIF11 was primarily involved in cell cycle, TME alteration and tumor-infiltrating immune cells proportions. KIF11 knockdown exerted inhibitory effects on cell proliferation, migration, and invasion. Results of the flow cytometry analysis revealed that KIF11 knockdown induced a G2/M phase arrest and improved apoptosis in LUAD cells. Conclusions KIF11 is essential for LUAD cell proliferation and metastasis, and it may serve as an independent prognostic factor as well as a promising therapeutic target for LUAD patients.
Collapse
Affiliation(s)
- Zhaodong Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Bingxin Yu
- Department of Ultrasonography, The Third Hospital of Jilin University, Changchun, China
| | - Fangyuan Qi
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China.,The Key Laboratory for Bionics Engineering, Ministry of Education, China, Jilin University, Changchun, China.,Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, China.,Key Laboratory for Biomedical Materials of Jilin Province, Jilin University, Changchun, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| |
Collapse
|
24
|
Aoki H, Ueha S, Shichino S, Ogiwara H, Shitara K, Shimomura M, Suzuki T, Nakatsura T, Yamashita M, Kitano S, Kuroda S, Wakabayashi M, Kurachi M, Ito S, Doi T, Matsushima K. Transient Depletion of CD4 + Cells Induces Remodeling of the TCR Repertoire in Gastrointestinal Cancer. Cancer Immunol Res 2021; 9:624-636. [PMID: 33674357 DOI: 10.1158/2326-6066.cir-20-0989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/20/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
Antibody-mediated transient depletion of CD4+ cells enhances the expansion of tumor-reactive CD8+ T cells and exhibits robust antitumor effects in preclinical and clinical studies. To investigate the clonal T-cell responses following transient CD4+ cell depletion in patients with cancer, we conducted a temporal analysis of the T-cell receptor (TCR) repertoire in the first-in-human clinical trial of IT1208, a defucosylated humanized monoclonal anti-CD4. Transient depletion of CD4+ cells promoted replacement of T-cell clones among CD4+ and CD8+ T cells in the blood. This replacement of the TCR repertoire was associated with the extent of CD4+ T-cell depletion and an increase in CD8+ T-cell count in the blood. Next, we focused on T-cell clones overlapping between the blood and tumor in order to track tumor-associated T-cell clones in the blood. The total frequency of blood-tumor overlapping clones tended to increase in patients receiving a depleting dose of anti-CD4, which was accompanied by the replacement of overlapping clones. The greater expansion of CD8+ overlapping clones was commonly observed in the patients who achieved tumor shrinkage. These results suggested that the clonal replacement of the TCR repertoire induced by transient CD4+ cell depletion was accompanied by the expansion of tumor-reactive T-cell clones that mediated antitumor responses. Our findings propose beneficial remodeling of the TCR repertoire following transient CD4+ cell depletion and provide novel insight into the antitumor effects of monoclonal anti-CD4 treatment in patients with cancer.See related Spotlight on p. 601.
Collapse
Affiliation(s)
- Hiroyasu Aoki
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Satoshi Ueha
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Shigeyuki Shichino
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Haru Ogiwara
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Kohei Shitara
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Manami Shimomura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Toshihiro Suzuki
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Makiko Yamashita
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Shigehisa Kitano
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Sakiko Kuroda
- Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masashi Wakabayashi
- Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Makoto Kurachi
- Department of Molecular Genetics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Satoru Ito
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,IDAC Theranostics, Inc., Tokyo, Japan
| | - Toshihiko Doi
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kouji Matsushima
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
25
|
Cha S, Sin MJ, Kim MJ, Kim HJ, Kim YS, Choi EK, Kim MY. Involvement of Cellular Prion Protein in Invasion and Metastasis of Lung Cancer by Inducing Treg Cell Development. Biomolecules 2021; 11:biom11020285. [PMID: 33671884 PMCID: PMC7918983 DOI: 10.3390/biom11020285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
The cellular prion protein (PrPC) is a cell surface glycoprotein expressed in many cell types that plays an important role in normal cellular processes. However, an increase in PrPC expression has been associated with a variety of human cancers, where it may be involved in resistance to the proliferation and metastasis of cancer cells. PrP-deficient (Prnp0/0) and PrP-overexpressing (Tga20) mice were studied to evaluate the role of PrPC in the invasion and metastasis of cancer. Tga20 mice, with increased PrPC, died more quickly from lung cancer than did the Prnp0/0 mice, and this effect was associated with increased transforming growth factor-beta (TGF-β) and programmed death ligand-1 (PD-L1), which are important for the development and function of regulatory T (Treg) cells. The number of FoxP3+CD25+ Treg cells was increased in Tga20 mice compared to Prnp0/0 mice, but there was no significant difference in either natural killer or cytotoxic T cell numbers. In addition, mice infected with the ME7 scrapie strain had decreased numbers of Treg cells and decreased expression of TGF-β and PD-L1. These results suggest that PrPC plays an important role in invasion and metastasis of cancer cells by inducing Treg cells through upregulation of TGF-β and PD-L1 expression.
Collapse
Affiliation(s)
- Seunghwa Cha
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea; (S.C.); (M.-J.S.)
| | - Mi-Ji Sin
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea; (S.C.); (M.-J.S.)
| | - Mo-Jong Kim
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea; (M.-J.K.); (H.-J.K.); (Y.-S.K.)
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon 24252, Korea
| | - Hee-Jun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea; (M.-J.K.); (H.-J.K.); (Y.-S.K.)
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea; (M.-J.K.); (H.-J.K.); (Y.-S.K.)
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea; (M.-J.K.); (H.-J.K.); (Y.-S.K.)
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon 24252, Korea
- Correspondence: (E.-K.C.); (M.-Y.K.)
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea; (S.C.); (M.-J.S.)
- Correspondence: (E.-K.C.); (M.-Y.K.)
| |
Collapse
|
26
|
Facciabene A, Santoro S, Coukos G. Know thy enemy: Why are tumor-infiltrating regulatory T cells so deleterious? Oncoimmunology 2021; 1:575-577. [PMID: 22754792 PMCID: PMC3382887 DOI: 10.4161/onci.19401] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We recently described hypoxia as one of the leading mechanism for the recruitment of regulatory T cells (Treg) through CCL28 chemokine in ovarian cancer. Treg promote progression of cancer through tumor-specific immune paralysis but also reprogramming of angiogenesis. We review these mechanisms and discuss the challenges and opportunities for therapy targeting Treg.
Collapse
Affiliation(s)
- Andrea Facciabene
- Ovarian Cancer Research Center; Perelman School of Medicine; University of Pennsylvania; Philadelphia, USA
| | | | | |
Collapse
|
27
|
Rajaratinam H, Rasudin NS, Al Astani TAD, Mokhtar NF, Yahya MM, Wan Zain WZ, Asma-Abdullah N, Mohd Fuad WE. Breast cancer therapy affects the expression of antineonatal Nav1.5 antibodies in the serum of patients with breast cancer. Oncol Lett 2021; 21:108. [PMID: 33376541 PMCID: PMC7751336 DOI: 10.3892/ol.2020.12369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/05/2020] [Indexed: 11/06/2022] Open
Abstract
Neonatal Nav1.5 (nNav1.5) is the alternative splice variant of Nav1.5 and it has been widely associated with the progression of breast cancer. The immunological context of nNav1.5 with respect to breast cancer metastases remains unexplored. The presence of antibodies against nNav1.5 may highlight the immunogenicity of nNav1.5. Hence, the aim of the present study was to detect the presence of antineonatal Nav1.5 antibodies (antinNav1.5-Ab) in the serum of patients with breast cancer and to elucidate the effects of breast cancer therapy on its expression. A total of 32 healthy female volunteers and 64 patients with breast cancer were randomly recruited into the present study as the control and breast cancer group, respectively. Patients with breast cancer were divided equally based on their pre- and ongoing-treatment status. Serum samples were tested with in-house indirect enzyme-linked immunosorbent assay (ELISA) to detect antinNav1.5-Ab, CD25 (T regulatory cell marker) using an ELISA kit and Luminex assay to detect the expression of metastasis-associated cytokines, such as vascular endothelial growth factor (VEGF), interleukin (IL)-6, IL-10, IL-8, chemokine (C-C motif) ligand 2 and tumor necrosis factor-alpha (TNF-α) The mean difference in the expression of antinNav1.5-Ab among the three groups (control, pretreatment and ongoing-treatment) was significant (P=0.0005) and the pretreatment breast cancer group exhibited the highest expression. The concentration of CD25 was highest in the pretreatment breast cancer group compared with the control and ongoing-treatment groups. There was a significant positive correlation between antinNav1.5-Ab and IL-6 in the pretreatment group (r=0.7260; P=0.0210) and a significant negative correlation between antinNav1.5-Ab and VEGF in the ongoing-treatment group (r=-0.842; P-value=0.0040). The high expression of antinNav1.5-Ab in the pretreatment group was in accordance with the uninterrupted presence of metastasis and highlighted the immunogenicity of nNav1.5 whereas the low expression of antinNav1.5-Ab in the ongoing-treatment group reflected the efficacy of breast cancer therapy in eliminating metastases. The augmented manifestation of T regulatory cells in the pretreatment group highlighted the functional role of nNav1.5 in promoting metastasis. The parallel expression of antinNav1.5-Ab with the imbalanced expression of cytokines promoting metastasis (IL-8, IL-6 and TNF-α) and cytokines that prevent metastasis (IL-10) indicated the role of nNav1.5 in breast cancer growth. The expression of antinNav1.5-Ab in accordance to the metastatic microenvironment indicates the immunogenicity of the protein and highlights the influence of breast cancer therapy on its expression level.
Collapse
Affiliation(s)
- Harishini Rajaratinam
- School of Health Sciences, Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
| | - Nur Syahmina Rasudin
- School of Health Sciences, Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
| | - Tengku Ahmad Damitri Al Astani
- Department of Chemical Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
- Breast Cancer Awareness and Research (BestARi) Unit, Hospital Universiti Sains Malaysia (HUSM), Kubang Kerian, Kelantan 16150, Malaysia
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
| | - Maya Mazuwin Yahya
- Department of Surgery, School of Medical Sciences, Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
| | - Wan Zainira Wan Zain
- Department of Surgery, School of Medical Sciences, Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
| | - Nurul Asma-Abdullah
- School of Health Sciences, Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
| | - Wan Ezumi Mohd Fuad
- School of Health Sciences, Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
28
|
The role of regulatory T cells in the pathogenesis and treatment of prostate cancer. Life Sci 2021; 284:119132. [PMID: 33513396 DOI: 10.1016/j.lfs.2021.119132] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Despite developments in the treatment of various cancers, prostate cancer is one of the deadliest diseases known to men. Systemic therapies such as androgen deprivation, chemotherapy, and radiation therapy have not been very successful in treating this disease. Numerous studies have shown that there is a direct relationship between cancer progression and inhibition of anti-tumor immune responses that can lead to progression of various malignancies, including prostate cancer. Interestingly, CD4+CD25+FoxP3+ regulatory T cells significantly accumulate and increase in draining lymph nodes and PBMCs of patients with prostate cancer and other solid tumors. In vivo and in vitro studies have shown that Tregs can suppress anti-tumor responses, which is directly related to the increased risk of cancer recurrence. Tregs are essential for preserving self-tolerance and inhibiting extra immune responses harmful to the host. Since the tumor-related antigens are mainly self-antigens, Tregs could play a major role in tumor progression. Accordingly, it has discovered that prostate cancer patients with higher Tregs have poor prognosis and low survival rates. However, anti-tumor responses can be reinforced by suppression of Tregs with using monoclonal antibodies against CD25 and CTLA-4. Therefore, depleting Tregs or suppressing their functions could be one of the effective ways for prostate cancer immunotherapy. The purpose of this review is to investigate the role of Treg cells in the progression of prostate cancer and to evaluate effective strategies for the treatment of prostate cancer by regulating Treg cells.
Collapse
|
29
|
Marrodan M, Farez MF, Balbuena Aguirre ME, Correale J. Obesity and the risk of Multiple Sclerosis. The role of Leptin. Ann Clin Transl Neurol 2020; 8:406-424. [PMID: 33369280 PMCID: PMC7886048 DOI: 10.1002/acn3.51291] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/03/2020] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE To investigate the effects of leptin on different T-cell populations, in order to gain more insight into the link between leptin and obesity. METHODS Three hundred and nine RRMS patients and 322 controls participated in a cross-sectional survey, to confirm whether excess weight/obesity in adolescence or early adulthood increased the risk of MS. Serum leptin levels were determined by ELISA. MBP83-102 , and MOG63-87 peptide-specific T cells lines were expanded from peripheral blood mononuclear cells. Leptin receptor expression was measured by RT-PCR and flow cytometry. Bcl-2, p-STAT3, pERK1/2, and p27kip1 expression were assayed using ELISA, and apoptosis induction was determined by Annexin V detection. Cytokines were assessed by ELISPOT and ELISA, and regulatory T cells (Tregs) by flow cytometry. RESULTS Logistic regression analysis, showed excess weight at age 15, and obesity at 20 years of age increased MS risk (OR = 2.16, P = 0.01 and OR = 3.9, P = 0.01). Leptin levels correlated with BMI in both groups. The addition of Leptin increased autoreactive T-cell proliferation, reduced apoptosis induction, and promoted proinflammatory cytokine secretion. Obese patients produced more proinflammatory cytokines compared to overweight/normal/underweight subjects. Inverse correlation was found between leptin levels and circulating Treg cells (r = -0.97, P < 0.0001). Leptin inhibited Treg proliferation. Effects of leptin on CD4+ CD25- effector T cells were mediated by increased STAT3 and ERK1/2 phosphorylation, and down modulation of the cell cycle inhibitor P27kip1 . In contrast, leptin effects on Tregs resulted from decreased phosphorylation of ERK1/2 and upregulation of p27kip1 . INTERPRETATION Leptin promotes autoreactive T-cell proliferation and proinflammatory cytokine secretion, but inhibits Treg-cell proliferation.
Collapse
|
30
|
Czystowska-Kuzmicz M, Whiteside TL. The potential role of tumor-derived exosomes in diagnosis, prognosis, and response to therapy in cancer. Expert Opin Biol Ther 2020; 21:241-258. [PMID: 32813990 DOI: 10.1080/14712598.2020.1813276] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Small extracellular vesicles (sEV) produced by tumors and called TEX mediate communication and regulate the tumor microenvironment. As a 'liquid tumor biopsy' and with the ability to induce pro-tumor reprogramming, TEX offer a promising approach to monitoring cancer progression or response to therapy. AREAS COVERED TEX isolation from body fluids and separation by immunoaffinity capture from other EVs enables TEX molecular and functional characterization in vitro and in vivo. TEX carry membrane-bound PD-L1 and a rich cargo of other proteins and nucleic acids that reflect the tumor content and activity. TEX transfer this cargo to recipient cells, activating various molecular pathways and inducing pro-tumor transcriptional changes. TEX may interfere with immune therapies, and TEX plasma levels correlate with patients' responses to therapy. TEX induce local and systemic alterations in immune cells which may have a prognostic value. EXPERT OPINION TEX have a special advantage as potential cancer biomarkers. Their cargo emerges as a correlate of developing or progressing malignant disease; their phenotype mimics that of the tumor; and their functional reprogramming of immune cells provides a reading of the patients' immune status prior and post immunotherapy. Validation of TEX and T-cell-derived sEV as cancer biomarkers is an impending future task.
Collapse
Affiliation(s)
| | - Theresa L Whiteside
- Departments of Pathology, Immunology and Otolaryngology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center , Pittsburgh, PA, USA
| |
Collapse
|
31
|
FoxP3 + T regulatory cells in cancer: Prognostic biomarkers and therapeutic targets. Cancer Lett 2020; 490:174-185. [PMID: 32721551 DOI: 10.1016/j.canlet.2020.07.022] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/28/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022]
Abstract
T Regulatory cells (Tregs) can have both protective and pathological roles. They maintain immune homeostasis and inhibit immune responses in various diseases, including cancer. Proportions of Tregs in the peripheral blood of some cancer patients increase by approximately two-fold, compared to those in healthy individuals. Tregs contribute to cancer development and progression by suppressing T effector cell functions, thereby compromising tumor killing and promoting tumor growth. Highly immunosuppressive Tregs express upregulated levels of the transcription factor, Forkhead box protein P3 (FoxP3). Elevated levels of FoxP3+ Tregs within the tumor microenvironment (TME) showed a positive correlation with poor prognosis in various cancer patients. Despite the success of immunotherapy, including the use of immune checkpoint inhibitors, a significant proportion of patients show low response rates as a result of primary or acquired resistance against therapy. Some of the mechanisms which underlie the development of therapy resistance are associated with Treg suppressive function. In this review, we describe Treg contribution to cancer development/progression, and the mechanisms of Treg-mediated immunosuppression. We discuss the prognostic significance of FoxP3+ Tregs in different cancers and their potential use as prognostic biomarkers. We also describe potential therapeutic strategies to target Tregs in combination with other types of immunotherapies aiming to overcome tumor resistance and improve clinical outcomes in cancer patients. Overall, understanding the prognostic significance of FoxP3+ Tregs in various cancers and their contribution to therapy resistance could help in the development of more effective targeted therapeutic strategies to enhance the clinical outcomes in cancer patients.
Collapse
|
32
|
Padgett LE, Araujo DJ, Hedrick CC, Olingy CE. Functional crosstalk between T cells and monocytes in cancer and atherosclerosis. J Leukoc Biol 2020; 108:297-308. [PMID: 32531833 DOI: 10.1002/jlb.1mir0420-076r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Monocytes and monocyte-derived cells, including Mϕs and dendritic cells, exhibit a diverse array of phenotypic states that are dictated by their surrounding microenvironment. These cells direct T cell activation and function via cues that range from being immunosuppressive to immunostimulatory. Solid tumors and atherosclerotic plaques represent two pathological niches with distinct immune microenvironments. While monocytes and their progeny possess a phenotypic spectrum found within both disease contexts, most within tumors are pro-tumoral and support evasion of host immune responses by tumor cells. In contrast, monocyte-derived cells within atherosclerotic plaques are usually pro-atherogenic, pro-inflammatory, and predominantly directed against self-antigens. Consequently, cancer immunotherapies strive to enhance the immune response against tumor antigens, whereas atherosclerosis treatments seek to dampen the immune response against lipid antigens. Insights into monocyte-T cell interactions within these niches could thus inform therapeutic strategies for two immunologically distinct diseases. Here, we review monocyte diversity, interactions between monocytes and T cells within tumor and plaque microenvironments, how certain therapies have leveraged these interactions, and novel strategies to assay such associations.
Collapse
Affiliation(s)
- Lindsey E Padgett
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Daniel J Araujo
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Claire E Olingy
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California, USA
| |
Collapse
|
33
|
Jacoberger-Foissac C, Saliba H, Wantz M, Seguin C, Flacher V, Frisch B, Heurtault B, Fournel S. Liposomes as tunable platform to decipher the antitumor immune response triggered by TLR and NLR agonists. Eur J Pharm Biopharm 2020; 152:348-357. [PMID: 32479782 DOI: 10.1016/j.ejpb.2020.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/04/2020] [Accepted: 05/25/2020] [Indexed: 01/15/2023]
Abstract
Liposomes are powerful tools for the optimization of peptides and adjuvant composition in cancer vaccines. Here, we take advantage of a liposomal platform versatility to develop three vaccine candidates associating a peptide from HA influenza virus protein as CD4 epitope, a peptide from HPV16 E7 oncoprotein as CD8 epitope and TLR4, TLR2/6 or NOD1 agonists as adjuvant. Liposomal vaccine containing MPLA (TLR4 liposomes), are the most effective treatment against the HPV-transformed orthotopic lung tumor mouse model, TC-1. This vaccine induces a potent Th1-oriented antitumor immunity, which leads to a significant reduction in tumor growth and a prolonged survival of mice, even when injected after tumor appearance. This efficacy is dependent on CD8+ T cells. Subcutaneous injection of this treatment induces the migration of skin DCs to draining lymph nodes. Interestingly, TLR2/6 liposomes trigger a weaker Th1-immune response which is not sufficient for the induction of a prolonged antitumor activity. Although NOD1 liposome treatment results in the control of early tumor growth, it does not extend mice survival. Surprisingly, the antitumor activity of NOD1 vaccine is not associated with a specific adaptive immune response. This study shows that our modulable platform can be used for the strategical development of vaccines.
Collapse
Affiliation(s)
- Célia Jacoberger-Foissac
- Université de Strasbourg, CNRS, 3Bio team, Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Hanadi Saliba
- Université de Strasbourg, CNRS, 3Bio team, Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - May Wantz
- Université de Strasbourg, CNRS, 3Bio team, Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Cendrine Seguin
- Université de Strasbourg, CNRS, 3Bio team, Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Vincent Flacher
- Laboratory I(2)CT - Immunology, Immunopathology and Therapeutic Chemistry, CNRS UPR 3572, Institut de Biologie Moléculaire et Cellulaire, 15 Rue René Descartes, 67084 Strasbourg Cedex, France
| | - Benoît Frisch
- Université de Strasbourg, CNRS, 3Bio team, Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Béatrice Heurtault
- Université de Strasbourg, CNRS, 3Bio team, Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France.
| | - Sylvie Fournel
- Université de Strasbourg, CNRS, 3Bio team, Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France.
| |
Collapse
|
34
|
Gough MJ, Sharon S, Crittenden MR, Young KH. Using Preclinical Data to Design Combination Clinical Trials of Radiation Therapy and Immunotherapy. Semin Radiat Oncol 2020; 30:158-172. [PMID: 32381295 PMCID: PMC7213059 DOI: 10.1016/j.semradonc.2019.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunotherapies are rapidly entering the clinic as approved treatments for diverse cancer pathologies. Radiation therapy is an integral partner in cancer therapy, commonly as part of complicated multimodality approaches that optimize patient outcomes. Preclinical studies have demonstrated that the success of radiation therapy in tumor control is due in part to immune mechanisms, and that outcomes following radiation therapy can be improved through combination with a range of immunotherapies. However, preclinical models of cancer are very different from patient tumors, and the way these preclinical tumors are treated is often very different from standard of care treatment of patients. This review examines the preclinical and clinical data for the role of the immune system in radiation therapy outcomes, and how to integrate preclinical findings into clinical trials, using ongoing studies as examples.
Collapse
Affiliation(s)
- Michael J Gough
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR.
| | - Shay Sharon
- Department of Oral and Maxillofacial Surgery, Hadassah and Hebrew University Medical Center, Jerusalem, ISRAEL
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR; The Oregon Clinic, Portland, OR
| | - Kristina H Young
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR; The Oregon Clinic, Portland, OR
| |
Collapse
|
35
|
Kercher EM, Nath S, Rizvi I, Spring BQ. Cancer Cell-targeted and Activatable Photoimmunotherapy Spares T Cells in a 3D Coculture Model. Photochem Photobiol 2019; 96:295-300. [PMID: 31424560 DOI: 10.1111/php.13153] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022]
Abstract
Photodynamic therapy (PDT) is an established therapeutic modality that uses nonionizing near-infrared light to activate photocytotoxicity of endogenous or exogenous photosensitizers (PSs). An ongoing avenue of cancer research involves leveraging PDT to stimulate antitumor immune responses; however, these effects appear to be best elicited in low-dose regimens that do not provide significant tumor reduction using conventional, nonspecific PSs. The loss of immune enhancement at higher PDT doses may arise in part from indiscriminate damage to local immune cell populations, including tumor-infiltrating T cells. We previously introduced "tumor-targeted, activatable photoimmunotherapy" (taPIT) using molecular-targeted and cell-activatable antibody-PS conjugates to realize precision tumor photodamage with microscale fidelity. Here, we investigate the immune cell sparing effect provided by taPIT in a 3D model of the tumor immune microenvironment. We report that high-dose taPIT spares 25% of the local immune cell population, five times more than the conventional PDT regimen, in a 3D coculture model incorporating epithelial ovarian cancer cells and T cells. These findings suggest that the enhanced selectivity of taPIT may be utilized to achieve local tumor reduction with sparing of intratumor effector immune cells that would otherwise be lost if treated with conventional PDT.
Collapse
Affiliation(s)
- Eric M Kercher
- Translational Biophotonics Cluster, Northeastern University, Boston, MA.,Department of Physics, Northeastern University, Boston, MA
| | - Shubhankar Nath
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Bryan Q Spring
- Translational Biophotonics Cluster, Northeastern University, Boston, MA.,Department of Physics, Northeastern University, Boston, MA.,Department of Bioengineering, Northeastern University, Boston, MA
| |
Collapse
|
36
|
Rota G, Niogret C, Dang AT, Barros CR, Fonta NP, Alfei F, Morgado L, Zehn D, Birchmeier W, Vivier E, Guarda G. Shp-2 Is Dispensable for Establishing T Cell Exhaustion and for PD-1 Signaling In Vivo. Cell Rep 2019; 23:39-49. [PMID: 29617671 DOI: 10.1016/j.celrep.2018.03.026] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/15/2018] [Accepted: 03/07/2018] [Indexed: 12/11/2022] Open
Abstract
In chronic infection and cancer, T cells acquire a dysfunctional state characterized by the expression of inhibitory receptors. In vitro studies implicated the phosphatase Shp-2 downstream of these receptors, including PD-1. However, whether Shp-2 is responsible in vivo for such dysfunctional responses remains elusive. To address this, we generated T cell-specific Shp-2-deficient mice. These mice did not show differences in controlling chronic viral infections. In this context, Shp-2-deleted CD8+ T lymphocytes expanded moderately better but were less polyfunctional than control cells. Mice with Shp-2-deficient T cells also showed no significant improvement in controlling immunogenic tumors and responded similarly to controls to α-PD-1 treatment. We therefore showed that Shp-2 is dispensable in T cells for globally establishing exhaustion and for PD-1 signaling in vivo. These results reveal the existence of redundant mechanisms downstream of inhibitory receptors and represent the foundation for defining these relevant molecular events.
Collapse
Affiliation(s)
- Giorgia Rota
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Charlène Niogret
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Anh Thu Dang
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | | | - Nicolas Pierre Fonta
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland; Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Francesca Alfei
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Leonor Morgado
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Walter Birchmeier
- Cancer Research Program, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125 Berlin, Germany
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288 Marseille, France; Service d'Immunologie, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, 13005 Marseille, France; Innate Pharma Research Labs, Innate Pharma, Marseille, France
| | - Greta Guarda
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland; Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland.
| |
Collapse
|
37
|
Shitara K, Ueha S, Shichino S, Aoki H, Ogiwara H, Nakatsura T, Suzuki T, Shimomura M, Yoshikawa T, Shoda K, Kitano S, Yamashita M, Nakayama T, Sato A, Kuroda S, Wakabayashi M, Nomura S, Yokochi S, Ito S, Matsushima K, Doi T. First-in-human phase 1 study of IT1208, a defucosylated humanized anti-CD4 depleting antibody, in patients with advanced solid tumors. J Immunother Cancer 2019; 7:195. [PMID: 31340866 PMCID: PMC6657210 DOI: 10.1186/s40425-019-0677-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 07/11/2019] [Indexed: 12/26/2022] Open
Abstract
Background Transient CD4+ T cell depletion led to the proliferation of tumor-specific CD8+ T cells in the draining lymph node and increased infiltration of PD-1+CD8+ T cells into the tumor, which resulted in strong anti-tumor effects in tumor-bearing mice. This is a first-in-human study of IT1208, a defucosylated humanized anti-CD4 monoclonal antibody, engineered to exert potent antibody-dependent cellular cytotoxicity. Methods Patients with advanced solid tumors were treated with intravenous IT1208 at doses of 0.1 or 1.0 mg/kg. The first patient in each cohort received a single administration, and the other patients received two administrations of IT1208 on days 1 and 8. Results Eleven patients were enrolled in the 0.1 mg/kg (n = 4) and 1.0 mg/kg cohorts (n = 7). Grade 1 or 2 infusion-related reactions was observed in all patients. Decreased CD4+ T cells in peripheral blood due to IT1208 were observed in all patients and especially in those receiving two administrations of 1.0 mg/kg. CD8+ T cells increased on day 29 compared with baseline in most patients, resulting in remarkably decreased CD4/8 ratios. One microsatellite-stable colon cancer patient achieved durable partial response showing increased infiltration of both CD4+ and CD8+ T cells into tumors after IT1208 administration. Moreover, transcriptomic profiling of the liver metastasis of the patient revealed upregulation of the expression of interferon-stimulated genes, T cell activation-related genes, and antigen presentation-related genes after IT1208 administration. Two additional patients with gastric or esophageal cancer achieved stable disease lasting at least 3 months. Conclusions IT1208 monotherapy successfully depleted CD4+ T cells with a manageable safety profile and encouraging preliminary efficacy signals, which warrants further investigations, especially in combination with immune checkpoint inhibitors. Electronic supplementary material The online version of this article (10.1186/s40425-019-0677-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kohei Shitara
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba, 278-0022, Japan.,Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba, 278-0022, Japan.,Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyasu Aoki
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba, 278-0022, Japan.,Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Haru Ogiwara
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba, 278-0022, Japan.,Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunetherapy, National Cancer Center, Exploratory Oncology Research and Clinical Trial Center (EPOC), Chuo-ku, Tokyo, Japan
| | - Toshihiro Suzuki
- Division of Cancer Immunetherapy, National Cancer Center, Exploratory Oncology Research and Clinical Trial Center (EPOC), Chuo-ku, Tokyo, Japan
| | - Manami Shimomura
- Division of Cancer Immunetherapy, National Cancer Center, Exploratory Oncology Research and Clinical Trial Center (EPOC), Chuo-ku, Tokyo, Japan
| | - Toshiaki Yoshikawa
- Division of Cancer Immunetherapy, National Cancer Center, Exploratory Oncology Research and Clinical Trial Center (EPOC), Chuo-ku, Tokyo, Japan
| | - Kayoko Shoda
- Division of Cancer Immunetherapy, National Cancer Center, Exploratory Oncology Research and Clinical Trial Center (EPOC), Chuo-ku, Tokyo, Japan
| | - Shigehisa Kitano
- Department of Experimental Therapeutics, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Makiko Yamashita
- Department of Experimental Therapeutics, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Takayuki Nakayama
- Department of Experimental Therapeutics, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Akihiro Sato
- Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Sakiko Kuroda
- Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Masashi Wakabayashi
- Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Shogo Nomura
- Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Shoji Yokochi
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba, 278-0022, Japan.,IDAC Theranostics Inc., Bunkyo-ku, Tokyo, Japan
| | - Satoru Ito
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba, 278-0022, Japan.,IDAC Theranostics Inc., Bunkyo-ku, Tokyo, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba, 278-0022, Japan. .,Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Toshihiko Doi
- Department of Experimental Therapeutics, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| |
Collapse
|
38
|
Jackson JJ, Ketcham JM, Younai A, Abraham B, Biannic B, Beck HP, Bui MHT, Chian D, Cutler G, Diokno R, Hu DX, Jacobson S, Karbarz E, Kassner PD, Marshall L, McKinnell J, Meleza C, Okal A, Pookot D, Reilly MK, Robles O, Shunatona HP, Talay O, Walker JR, Wadsworth A, Wustrow DJ, Zibinsky M. Discovery of a Potent and Selective CCR4 Antagonist That Inhibits Treg Trafficking into the Tumor Microenvironment. J Med Chem 2019; 62:6190-6213. [DOI: 10.1021/acs.jmedchem.9b00506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffrey J. Jackson
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - John M. Ketcham
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Ashkaan Younai
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Betty Abraham
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Berenger Biannic
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Hilary P. Beck
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Minna H. T. Bui
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - David Chian
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Gene Cutler
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Raymond Diokno
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Dennis X. Hu
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Scott Jacobson
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Emily Karbarz
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Paul D. Kassner
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Lisa Marshall
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Jenny McKinnell
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Cesar Meleza
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Abood Okal
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Deepa Pookot
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Maureen K. Reilly
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Omar Robles
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Hunter P. Shunatona
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Oezcan Talay
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - James R. Walker
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Angela Wadsworth
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - David J. Wustrow
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| | - Mikhail Zibinsky
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California 94080, United States
| |
Collapse
|
39
|
Yano H, Andrews LP, Workman CJ, Vignali DAA. Intratumoral regulatory T cells: markers, subsets and their impact on anti-tumor immunity. Immunology 2019; 157:232-247. [PMID: 31087644 DOI: 10.1111/imm.13067] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Regulatory T (Treg) cells play a crucial role in maintaining self-tolerance and resolution of immune responses by employing multifaceted immunoregulatory mechanisms. However, Treg cells readily infiltrate into the tumor microenvironment (TME) and dampen anti-tumor immune responses, thereby becoming a barrier to effective cancer immunotherapy. There has been a substantial expansion in the development of novel immunotherapies targeting various inhibitory receptors (IRs), such as CTLA4, PD1 and LAG3, but these approaches have mechanistically focused on the elicitation of anti-tumor responses. However, enhanced inflammation in the TME could also play a detrimental role by facilitating the recruitment, stability and function of Treg cells by up-regulating chemokines that promote Treg cell migration, and/or increasing inhibitory cytokine production. Furthermore, IR blockade may enhance Treg cell function and survival, thereby serving as a resistance mechanism against effective immunotherapy. Given that Treg cells are comprised of functionally and phenotypically heterogeneous sub-populations that may alter their characteristics in a context-dependent manner, it is critical to identify unique molecular pathways that are preferentially used by intratumoral Treg cells. In this review, we discuss markers that serve to identify certain Treg cell subsets, distinguished by chemokine receptors, IRs and cytokines that facilitate their migration, stability and function in the TME. We also discuss how these Treg cell subsets correlate with the clinical outcome of patients with various types of cancer and how they may serve as potential TME-specific targets for novel cancer immunotherapies.
Collapse
Affiliation(s)
- Hiroshi Yano
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Graduate Program in Microbiology and Immunology (PMI), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lawrence P Andrews
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
40
|
Saleh R, Elkord E. Treg-mediated acquired resistance to immune checkpoint inhibitors. Cancer Lett 2019; 457:168-179. [PMID: 31078738 DOI: 10.1016/j.canlet.2019.05.003] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 02/08/2023]
Abstract
T Regulatory cells (Tregs) act as a double-edged sword by regulating immune homeostasis (protective role) and inhibiting immune responses in different disease settings (pathological role). They contribute to cancer development and progression by suppressing T effector cell (Teff) functions. Decreased ratios of intratumoral CD8+ T cells to Tregs have been associated with poor prognosis in most cancer types. Targeting immune checkpoints (ICs), such as cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death-1 (PD-1), by immune checkpoint inhibitors (ICIs) in cancer patients has been beneficial in inducing anti-tumor immune responses and improving clinical outcomes. However, response rates remain relatively low, ranging from 15 to 40% depending on cancer type. Additionally, a significant proportion of patients who initially demonstrates a clinical response can acquire resistance overtime. This acquired resistance could occur due to the emergence of compensatory mechanisms within the tumor microenvironment (TME) to evade the anti-tumor effects of ICIs. In this review, we describe the immunosuppressive role of Tregs in the TME, the effects of currently approved ICIs on Treg phenotype and function, and the mechanisms of acquired resistance to ICIs mediated by Tregs within the TME, such as the over-expression of ICs, the up-regulation of immunosuppressive molecules, and apoptotic Treg-induced immunosuppression. We also describe potential therapeutic strategies to target Tregs in combination with ICIs aiming to overcome such resistance and improve clinical outcomes. Elucidating the Treg-mediated acquired resistance mechanisms should benefit the designing of well-targeted therapeutic strategies to overcome resistance and maximize the therapeutic efficacy in cancer patients.
Collapse
Affiliation(s)
- Reem Saleh
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
| |
Collapse
|
41
|
Interactions between cancer stem cells, immune system and some environmental components: Friends or foes? Immunol Lett 2019; 208:19-29. [DOI: 10.1016/j.imlet.2019.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/02/2019] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
|
42
|
Aoki H, Ueha S, Shichino S, Ogiwara H, Hashimoto SI, Kakimi K, Ito S, Matsushima K. TCR Repertoire Analysis Reveals Mobilization of Novel CD8 + T Cell Clones Into the Cancer-Immunity Cycle Following Anti-CD4 Antibody Administration. Front Immunol 2019; 9:3185. [PMID: 30733724 PMCID: PMC6353793 DOI: 10.3389/fimmu.2018.03185] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/31/2018] [Indexed: 01/05/2023] Open
Abstract
Depletion of CD4+ cells using an anti-CD4 monoclonal antibody (anti-CD4 mAb) induces the expansion of tumor-reactive CD8+ T cells and strong antitumor effects in several murine tumor models. However, it is not known whether the anti-CD4 mAb treatment activates a particular or a broad spectrum of tumor-reactive CD8+ T cell clones. To investigate the changes in the TCR repertoire induced by the anti-CD4 mAb treatment, we performed unbiased high-throughput TCR sequencing in a B16F10 mouse subcutaneous melanoma model. By Inter-Organ Clone Tracking analysis, we demonstrated that anti-CD4 mAb treatment increased the diversity and combined frequency of CD8+ T cell clones that overlapped among the tumor, draining lymph node (dLN), and peripheral blood repertoires. Interestingly, the anti-CD4 mAb treatment-induced expansion of overlapping clones occurred mainly in the dLN rather than in the tumor. Overall, the Inter-Organ Clone Tracking analysis revealed that anti-CD4 mAb treatment enhances the mobilization of a wide variety of tumor-reactive CD8+ T cell clones into the Cancer-Immunity Cycle and thus induces a robust antitumor immune response in mice.
Collapse
Affiliation(s)
- Hiroyasu Aoki
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Satoshi Ueha
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Shigeyuki Shichino
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Haru Ogiwara
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Shin-Ichi Hashimoto
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan.,Division of Nephrology, Department of Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Satoru Ito
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan.,IDAC Theranostics, Inc., Tokyo, Japan
| | - Kouji Matsushima
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| |
Collapse
|
43
|
Wang YA, Li XL, Mo YZ, Fan CM, Tang L, Xiong F, Guo C, Xiang B, Zhou M, Ma J, Huang X, Wu X, Li Y, Li GY, Zeng ZY, Xiong W. Effects of tumor metabolic microenvironment on regulatory T cells. Mol Cancer 2018; 17:168. [PMID: 30477520 PMCID: PMC6260778 DOI: 10.1186/s12943-018-0913-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022] Open
Abstract
Recent studies have shown that on one hand, tumors need to obtain a sufficient energy supply, and on the other hand they must evade the body’s immune surveillance. Because of their metabolic reprogramming characteristics, tumors can modify the physicochemical properties of the microenvironment, which in turn affects the biological characteristics of the cells infiltrating them. Regulatory T cells (Tregs) are a subset of T cells that regulate immune responses in the body. They exist in large quantities in the tumor microenvironment and exert immunosuppressive effects. The main effect of tumor microenvironment on Tregs is to promote their differentiation, proliferation, secretion of immunosuppressive factors, and chemotactic recruitment to play a role in immunosuppression in tumor tissues. This review focuses on cell metabolism reprogramming and the most significant features of the tumor microenvironment relative to the functional effects on Tregs, highlighting our understanding of the mechanisms of tumor immune evasion and providing new directions for tumor immunotherapy.
Collapse
Affiliation(s)
- Yi-An Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Xiao-Ling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Yong-Zhen Mo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Chun-Mei Fan
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Le Tang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Jian Ma
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Xi Huang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Xu Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China.,Department of Chemistry, University of North Dakota, Grand Forks, North Dakota, 58202, USA
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Gui-Yuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Zhao-Yang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China.
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
44
|
Dong S, Harrington BK, Hu EY, Greene JT, Lehman AM, Tran M, Wasmuth RL, Long M, Muthusamy N, Brown JR, Johnson AJ, Byrd JC. PI3K p110δ inactivation antagonizes chronic lymphocytic leukemia and reverses T cell immune suppression. J Clin Invest 2018; 129:122-136. [PMID: 30457982 DOI: 10.1172/jci99386] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022] Open
Abstract
Targeted therapy with small molecules directed at essential survival pathways in leukemia represents a major advance, including the phosphatidylinositol-3'-kinase (PI3K) p110δ inhibitor idelalisib. Here, we found that genetic inactivation of p110δ (p110δD910A/D910A) in the Eμ-TCL1 murine chronic lymphocytic leukemia (CLL) model impaired B cell receptor signaling and B cell migration, and significantly delayed leukemia pathogenesis. Regardless of TCL1 expression, p110δ inactivation led to rectal prolapse in mice resembling autoimmune colitis in patients receiving idelalisib. Moreover, we showed that p110δ inactivation in the microenvironment protected against CLL and acute myeloid leukemia. After receiving higher numbers of TCL1 leukemia cells, half of p110δD910A/D910A mice spontaneously recovered from high disease burden and resisted leukemia rechallenge. Despite disease resistance, p110δD910A/D910A mice exhibited compromised CD4+ and CD8+ T cell response, and depletion of CD4+ or CD8+ T cells restored leukemia. Interestingly, p110δD910A/D910A mice showed significantly impaired Treg expansion that associated with disease clearance. Reconstitution of p110δD910A/D910A mice with p110δWT/WT Tregs reversed leukemia resistance. Our findings suggest that p110δ inhibitors may have direct antileukemic and indirect immune-activating effects, further supporting that p110δ blockade may have a broader immune-modulatory role in types of leukemia that are not sensitive to p110δ inhibition.
Collapse
Affiliation(s)
- Shuai Dong
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy.,Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center
| | - Bonnie K Harrington
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center.,College of Veterinary Medicine
| | - Eileen Y Hu
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center.,Medical Scientist Training Program
| | - Joseph T Greene
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center.,Molecular, Cellular, and Developmental Biology Program, and
| | - Amy M Lehman
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, USA
| | - Minh Tran
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center
| | - Ronni L Wasmuth
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center
| | - Meixiao Long
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center
| | - Natarajan Muthusamy
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center
| | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Amy J Johnson
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center.,Janssen Research and Development LLC, Spring House, Pennsylvania, USA
| | - John C Byrd
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy.,Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center
| |
Collapse
|
45
|
Hwang SM, Sharma G, Verma R, Byun S, Rudra D, Im SH. Inflammation-induced Id2 promotes plasticity in regulatory T cells. Nat Commun 2018; 9:4736. [PMID: 30413714 PMCID: PMC6226514 DOI: 10.1038/s41467-018-07254-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
TH17 cells originating from regulatory T (Treg) cells upon loss of the Treg-specific transcription factor Foxp3 accumulate in sites of inflammation and aggravate autoimmune diseases. Whether an active mechanism drives the generation of these pathogenic 'ex-Foxp3 TH17' cells, remains unclear. Here we show that pro-inflammatory cytokines enhance the expression of transcription regulator Id2, which mediates cellular plasticity of Treg into ex-Foxp3 TH17 cells. Expression of Id2 in in vitro differentiated iTreg cells reduces the expression of Foxp3 by sequestration of the transcription activator E2A, leading to the induction of TH17-related cytokines. Treg-specific ectopic expression of Id2 in mice significantly reduces the Treg compartment and causes immune dysregulation. Cellular fate-mapping experiments reveal enhanced Treg plasticity compared to wild-type, resulting in exacerbated experimental autoimmune encephalomyelitis pathogenesis or enhanced anti-tumor immunity. Our findings suggest that controlling Id2 expression may provide a novel approach for effective Treg cell immunotherapies for both autoimmunity and cancer.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Garima Sharma
- Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Ravi Verma
- Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Seohyun Byun
- Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dipayan Rudra
- Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea.
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Sin-Hyeog Im
- Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea.
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
46
|
Sharabi A, Tsokos MG, Ding Y, Malek TR, Klatzmann D, Tsokos GC. Regulatory T cells in the treatment of disease. Nat Rev Drug Discov 2018; 17:823-844. [DOI: 10.1038/nrd.2018.148] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Ao C, Zeng K. The role of regulatory T cells in pathogenesis and therapy of human papillomavirus-related diseases, especially in cancer. INFECTION GENETICS AND EVOLUTION 2018; 65:406-413. [PMID: 30172014 DOI: 10.1016/j.meegid.2018.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022]
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted agent in the world. It can cause condyloma acuminatum, anogenital malignancies, and head and neck cancers. The host immune responses to HPV involve multiple cell types that have regulatory functions, and HPV-mediated changes to regulatory T cells (Tregs) in both the local lesion tissues and the circulatory system of patients have received considerable attention. The role of Tregs in HPV infections ranges from suppression of effector T cell (Teff) responses to protection of tissues from immune-mediated injury in different anatomic subsites. In this review, we explore the influence of Tregs in the immunopathology of HPV-related diseases and therapies targeting Tregs as novel approaches against HPV.
Collapse
Affiliation(s)
- Chunping Ao
- Department of Dermatology and Venereology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kang Zeng
- Department of Dermatology and Venereology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
48
|
Mostafa AA, Meyers DE, Thirukkumaran CM, Liu PJ, Gratton K, Spurrell J, Shi Q, Thakur S, Morris DG. Oncolytic Reovirus and Immune Checkpoint Inhibition as a Novel Immunotherapeutic Strategy for Breast Cancer. Cancers (Basel) 2018; 10:cancers10060205. [PMID: 29914097 PMCID: PMC6025420 DOI: 10.3390/cancers10060205] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 02/07/2023] Open
Abstract
As the current efficacy of oncolytic viruses (OVs) as monotherapy is limited, exploration of OVs as part of a broader immunotherapeutic treatment strategy for cancer is necessary. Here, we investigated the ability for immune checkpoint blockade to enhance the efficacy of oncolytic reovirus (RV) for the treatment of breast cancer (BrCa). In vitro, oncolysis and cytokine production were assessed in human and murine BrCa cell lines following RV exposure. Furthermore, RV-induced upregulation of tumor cell PD-L1 was evaluated. In vivo, the immunocompetent, syngeneic EMT6 murine model of BrCa was employed to determine therapeutic and tumor-specific immune responses following treatment with RV, anti-PD-1 antibodies or in combination. RV-mediated oncolysis and cytokine production were observed following BrCa cell infection and RV upregulated tumor cell expression of PD-L1. In vivo, RV monotherapy significantly reduced disease burden and enhanced survival in treated mice, and was further enhanced by PD-1 blockade. RV therapy increased the number of intratumoral regulatory T cells, which was reversed by the addition of PD-1 blockade. Finally, dual treatment led to the generation of a systemic adaptive anti-tumor immune response evidenced by an increase in tumor-specific IFN-γ producing CD8+ T cells, and immunity from tumor re-challenge. The combination of PD-1 blockade and RV appears to be an efficacious immunotherapeutic strategy for the treatment of BrCa, and warrants further investigation in early-phase clinical trials.
Collapse
Affiliation(s)
- Ahmed A Mostafa
- Department of Pathology and Laboratory Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
- Histocompatibility and Immunogenetics, Calgary Lab Services, 3535 Research Road NW, Calgary, AB T2L 2K8, Canada.
| | - Daniel E Meyers
- Department of Oncology, University of Calgary, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada.
- Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada.
| | - Chandini M Thirukkumaran
- Department of Oncology, University of Calgary, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada.
- Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada.
| | - Peter J Liu
- Faculty of Medicine, University of Toronto, King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Kathy Gratton
- Department of Oncology, University of Calgary, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada.
| | - Jason Spurrell
- Department of Oncology, University of Calgary, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada.
- Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada.
| | - Qiao Shi
- Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada.
| | - Satbir Thakur
- Department of Oncology, University of Calgary, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada.
- Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada.
| | - Don G Morris
- Department of Oncology, University of Calgary, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada.
- Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada.
| |
Collapse
|
49
|
Ahrends T, Borst J. The opposing roles of CD4 + T cells in anti-tumour immunity. Immunology 2018; 154:582-592. [PMID: 29700809 PMCID: PMC6050207 DOI: 10.1111/imm.12941] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy focuses mainly on anti-tumour activity of CD8+ cytotoxic T lymphocytes (CTLs). CTLs can directly kill all tumour cell types, provided they carry recognizable antigens. However, CD4+ T cells also play important roles in anti-tumour immunity. CD4+ T cells can either suppress or promote the anti-tumour CTL response, either in secondary lymphoid organs or in the tumour. In this review, we highlight opposing mechanisms of conventional and regulatory T cells at both sites. We outline how current cancer immunotherapy strategies affect both subsets and how selective modulation of each subset is important to maximize the clinical response of cancer patients.
Collapse
Affiliation(s)
- Tomasz Ahrends
- Division of Tumour Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jannie Borst
- Division of Tumour Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
50
|
Kumar J, Reccia I, Sodergren MH, Kusano T, Zanellato A, Pai M, Spalding D, Zacharoulis D, Habib N. Radiofrequency assisted pancreaticoduodenectomy for palliative surgical resection of locally advanced pancreatic adenocarcinoma. Oncotarget 2018; 9:15732-15739. [PMID: 29644005 PMCID: PMC5884660 DOI: 10.18632/oncotarget.24596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/21/2018] [Indexed: 02/07/2023] Open
Abstract
Background Despite careful patient selection and preoperative investigations curative resection rate (R0) in pancreaticoduodenectomy ranges from 15% to 87%. Here we describe a new palliative approach for pancreaticoduodenectomy using a radiofrequency energy device to ablate tumor in situ in patients undergoing R1/R2 resections for locally advanced pancreatic ductal adenocarcinoma where vascular reconstruction was not feasible. Results There was neither postoperative mortality nor significant morbidity. Each time the ablation lasted less than 15 minutes. Following radiofrequency ablation it was observed that the tumor remnant attached to the vessel had shrunk significantly. In four patients this allowed easier separation and dissection of the ablated tumor from the adherent vessel leading to R1 resection. In the other two patients, the ablated tumor did not separate from vessel due to true tumor invasion and patients had an R2 resection. The ablated remnant part of the tumor was left in situ. Conclusion Whenever pancreaticoduodenectomy with R0 resection cannot be achieved, this new palliative procedure could be considered in order to facilitate resection and enable maximum destruction in remnant tumors. Method Six patients with suspected tumor infiltration and where vascular reconstruction was not warranted underwent radiofrequency-assisted pancreaticoduodenectomy for locally advanced pancreatic ductal adenocarcinoma. Radiofrequency was applied across the tumor vertically 5–10 mm from the edge of the mesenteric and portal veins. Following ablation, the duodenum and the head of pancreas were removed after knife excision along the ablated line. The remaining ablated tissue was left in situ attached to the vessel.
Collapse
Affiliation(s)
- Jayant Kumar
- Department of Surgery and Cancer, Hammersmith Campus, Imperial College London, London, UK
| | - Isabella Reccia
- Department of Surgery and Cancer, Hammersmith Campus, Imperial College London, London, UK
| | - Mikael H Sodergren
- Department of Surgery and Cancer, Hammersmith Campus, Imperial College London, London, UK
| | - Tomokazu Kusano
- Department of Surgery and Cancer, Hammersmith Campus, Imperial College London, London, UK
| | - Artur Zanellato
- Department of Surgery and Cancer, Hammersmith Campus, Imperial College London, London, UK
| | - Madhava Pai
- Department of Surgery and Cancer, Hammersmith Campus, Imperial College London, London, UK
| | - Duncan Spalding
- Department of Surgery and Cancer, Hammersmith Campus, Imperial College London, London, UK
| | | | - Nagy Habib
- Department of Surgery and Cancer, Hammersmith Campus, Imperial College London, London, UK
| |
Collapse
|