1
|
Shi Y, Luo Q, Duan J, Tang B, Guan Q. The rules of different B cell subtypes in colorectal cancer: friends or foes? Future Oncol 2025:1-12. [PMID: 40491002 DOI: 10.1080/14796694.2025.2511588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 05/23/2025] [Indexed: 06/11/2025] Open
Abstract
Tumor-infiltrating B cells (TIBs) are the most important cell type involved in the immune response. TIBs display considerable intratumor heterogeneity due to genetic variation, epigenetic differences and transcriptional plasticity in the tumor microenvironment (TME). Owing to the unique anatomical location of CRC, the B cell subpopulation exhibits more extensive heterogeneity. Many studies have shown that TIBs have gradually become a key predictor of immunotherapy for malignant cancers, including CRC. TIBs have essential functions, including antigen presentation and antibody secretion, and they promote T-cell activation and myeloid chemotaxis. However, owing to the complex TME, TIBs not only promote the antitumor immune response but also inhibit the immune response. With the in-depth study of tumor-infiltrating T cells, tumor-associated myeloid cells and the interactions among these cells in the TME, the special role of immune cells in the TME has gradually become clear. However, the influence of TIBs in the TME and their interactions with nonimmune cells in the TME remain unclear. Here, we summarize the current progress in TIBs based on single-cell RNA sequencing in CRC in recent years, focusing on specific effector or regulatory characteristics of different B cell subclusters in the CRC TME.
Collapse
Affiliation(s)
- Yuanchao Shi
- The First Clinical Academy of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery and Gastrointestinal Oncology Surgery, Lanzhou University First Hospital, Lanzhou, Gansu, China
| | - Qianwen Luo
- The First Clinical Academy of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery and Gastrointestinal Oncology Surgery, Lanzhou University First Hospital, Lanzhou, Gansu, China
| | - Jingwei Duan
- Emergency Department, Peking University Third Hospital, Beijing, China
| | - Bo Tang
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Third Military Medical University Southwest Hospital, Chongqing, China
| | - Quanlin Guan
- The First Clinical Academy of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery and Gastrointestinal Oncology Surgery, Lanzhou University First Hospital, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Pascoal Ramos MI, van der Vlist M, Meyaard L. Inhibitory pattern recognition receptors: lessons from LAIR1. Nat Rev Immunol 2025:10.1038/s41577-025-01181-2. [PMID: 40425821 DOI: 10.1038/s41577-025-01181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2025] [Indexed: 05/29/2025]
Abstract
Many inhibitory receptors that regulate immune cell function recognize a limited number of specific ligands. However, a subgroup of so-called inhibitory pattern recognition receptors (iPRRs) can bind a much larger array of ligands of structural similarity. Leukocyte-associated immunoglobulin-like receptor 1 (LAIR1) is one such iPRR that is expressed by most immune cells and recognizes a common structural pattern present in collagens and collagen domain-containing proteins. LAIR1 signalling regulates diverse immune cell populations and is currently the focus of multiple clinical trials for the treatment of cancer. We here review the current literature on LAIR1, as a prototypic example of how inhibitory PRRs contribute to immune balance and of how these receptors are regulated. We discuss the function of LAIR1 in homeostasis, infection, inflammation and cancer, and consider the advantages and potential pitfalls of targeting this receptor in human disease.
Collapse
Affiliation(s)
- M Inês Pascoal Ramos
- Champalimaud Foundation, Champalimaud Centre for the Unknown, Champalimaud Research, Physiology and Cancer Programme, Lisbon, Portugal
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Michiel van der Vlist
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Linde Meyaard
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Schulz MT, Rink L. Zinc deficiency as possible link between immunosenescence and age-related diseases. Immun Ageing 2025; 22:19. [PMID: 40390089 PMCID: PMC12087153 DOI: 10.1186/s12979-025-00511-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/23/2025] [Indexed: 05/21/2025]
Abstract
As global life expectancy increases, research reveals a critical challenge in aging: the progressive deterioration of immune function, termed immunosenescence. This age-related immune decline is characterized by a complex dysregulation of immune responses, which leaves older adults increasingly vulnerable to infections, chronic inflammatory states, and various degenerative diseases. Without intervention, immunosenescence significantly contributes to morbidity and mortality among the elderly, intensifying healthcare burdens and diminishing quality of life on both individual and societal levels. This review explores the essential role of zinc, a trace element critical for immune health, in mitigating the impact of immunosenescence and slowing the cascade of immunological dysfunctions associated with aging. By modulating the activity of key immune cells and pathways, zinc supplementation emerges as a promising approach to strengthen immunity, reduce oxidative stress, and counteract "inflammaging," a state of chronic, low-grade inflammation that accelerates tissue damage and drives disease progression. Zinc's involvement in cellular defense and repair mechanisms across the immune system highlights its ability to enhance immune cell functionality, resilience, and adaptability, strengthening the body's resistance to infection and its ability to manage stressors that contribute to diseases of aging. Indeed, zinc has demonstrated potential to improve immune responses, decrease inflammation, and mitigate the risk of age-related conditions including diabetes, depression, cardiovascular disease, and vision loss. Given the prevalent barriers to adequate zinc intake among older adults, including dietary limitations, decreased absorption, and interactions with medications, this review underscores the urgent need to address zinc deficiency in aging populations. Recent findings on zinc's cellular and molecular effects on immune health present zinc supplementation as a practical, accessible intervention for supporting healthier aging and improving quality of life. By integrating zinc into targeted strategies, public health efforts may not only sustain immunity in the elderly but also extend healthy longevity, reduce healthcare costs, and potentially mitigate the incidence and impact of chronic diseases that strain healthcare systems worldwide.
Collapse
Affiliation(s)
- Michael Tobias Schulz
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
4
|
Fouza A, Fylaktou A, Daoudaki M, Talimtzi P, Tagkouta A, Vagiotas L, Katsanos G, Tsoulfas G, Antoniadis N. Can Double-Negative B Cells and Marginal Zone B Cells Have a Potential Impact on the Outcome of Kidney Transplantation? J Clin Med 2025; 14:3312. [PMID: 40429307 PMCID: PMC12112073 DOI: 10.3390/jcm14103312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 05/03/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Objectives/Background: B lymphocytes are involved in both graft function and rejection. The role of double-negative (DN) and marginal zone B (MZB) lymphocytes in transplantation remains unclear. This study aims to investigate their role one year after transplant. Methods: The frequency and absolute numbers of DN and MZB cells were determined by flow cytometry before transplantation and at 3, 6 and 12 months after transplant. They were correlated with graft function and rejection. Results: Both the frequency and absolute number of MZB and DN cells increased 12 months after transplantation. Variations were observed in the populations studied at different time points. The observed decrease in the frequency of MZB lymphocytes in kidney recipients with rejection at 12 months, the end of follow-up, was associated with rejection episodes. On ROC curve analysis, a cut-off value of <20.6% could be a predictor of rejection risk in the first 12 months after transplantation (sensitivity 72.7%, specificity 69.6%). No relationship was found between the frequencies and absolute numbers of cell populations and graft function at any time point. Conclusions: The kinetics of B cells (DN and MZB) were determined over the course of 12 months after kidney transplantation. The frequency of MZ B cells was associated with rejection episodes.
Collapse
Affiliation(s)
- Ariadni Fouza
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.F.); (L.V.); (G.K.); (G.T.); (N.A.)
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Maria Daoudaki
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Persefoni Talimtzi
- Department of Hygiene, Social-Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anneta Tagkouta
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Lampros Vagiotas
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.F.); (L.V.); (G.K.); (G.T.); (N.A.)
| | - Georgios Katsanos
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.F.); (L.V.); (G.K.); (G.T.); (N.A.)
| | - Georgios Tsoulfas
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.F.); (L.V.); (G.K.); (G.T.); (N.A.)
| | - Nikolaos Antoniadis
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.F.); (L.V.); (G.K.); (G.T.); (N.A.)
| |
Collapse
|
5
|
Bracken SJ, Poe JC, Sarantopoulos S. What's atypical about human B cells after allogeneic stem cell transplantation? J Leukoc Biol 2025; 117:qiaf048. [PMID: 40273381 PMCID: PMC12089796 DOI: 10.1093/jleuko/qiaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/22/2025] [Indexed: 04/26/2025] Open
Abstract
Atypical B cells or age-associated B cells represent an alternative lineage of memory B cells. Emerging evidence suggests that context influences the apparent functional heterogeneity of age-associated B cells. While data support a protective role for age-associated B cells in the setting of infection, multiple other studies suggest that these cells play a pathogenic role in the setting of autoimmunity. After treatment with allogeneic hematopoietic stem cell transplantation, the memory B-cell compartment is altered in patients who develop an autoimmune-like syndrome called chronic graft-versus-host disease. Patients with chronic graft-versus-host disease have significantly increased proportions of CD11c+ age-associated B cells within the peripheral compartment that develop under constant exposure to host alloantigens and persist under conditions when B-cell tolerance is not achieved. Herein, we review what is currently known about the molecular alterations in the heterogeneous memory B-cell compartment of hematopoietic stem cell transplantation patients, especially patients with chronic graft-versus-host disease who have developed autoimmune manifestations. In this mini-review, we summarize intrinsic factors in age-associated B cells found in autoimmune states that likely influence their extrafollicular localization, differentiation potential into autoantibody-secreting cells, and function. We highlight lessons from B-cell studies in chronic graft-versus-host disease to provide unique insights into the molecular underpinnings of the diverse functions of age-associated B cells.
Collapse
Affiliation(s)
- Sonali J Bracken
- Division of Rheumatology and Immunology, Duke University School of Medicine, 40 Duke Medicine Circle, Durham, NC 27710, United States
| | - Jonathan C Poe
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, 2400 Pratt Street, Durham, NC 27705, United States
| | - Stefanie Sarantopoulos
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, 2400 Pratt Street, Durham, NC 27705, United States
- Department of Integrative Immunobiology, Duke University School of Medicine, 207 Research Drive Suite 156, Durham, NC 27706, United States
- Duke Cancer Institute, Duke University School of Medicine, DUMC Box 3917, Durham, NC 27710, United States
| |
Collapse
|
6
|
Sadighi Akha AA, Csomós K, Ujházi B, Walter JE, Kumánovics A. Evolving Approach to Clinical Cytometry for Immunodeficiencies and Other Immune Disorders. Immunol Allergy Clin North Am 2025; 45:205-221. [PMID: 40287169 DOI: 10.1016/j.iac.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Primary immunodeficiencies were initially identified on the basis of recurrent, severe or unusual infections. Subsequently, it was noted that these diseases can also manifest with autoimmunity, autoinflammation, allergy, lymphoproliferation and malignancy, hence a conceptual change and their renaming as inborn errors of immunity. Ongoing advances in flow cytometry provide the opportunity to expand or modify the utility and scope of existing laboratory tests in this field to mirror this conceptual change. Here we have used the B cell subset, variably known as CD21low B cells, age-associated B cells and T-bet+ B cells, as an example to demonstrate this possibility.
Collapse
Affiliation(s)
- Amir A Sadighi Akha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Krisztián Csomós
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Boglárka Ujházi
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Jolán E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Attila Kumánovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
Calôba C, Sturtz AJ, Lyons TA, John L, Ramachandran A, Minns AM, Cannon AM, Whalley JP, Watts TH, Kaplan MH, Lindner SE, Vijay R. Systemic 4-1BB stimulation augments extrafollicular memory B cell formation and recall responses during Plasmodium infection. Cell Rep 2025; 44:115528. [PMID: 40215168 PMCID: PMC12079783 DOI: 10.1016/j.celrep.2025.115528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/21/2025] [Accepted: 03/15/2025] [Indexed: 04/26/2025] Open
Abstract
T-dependent germinal center (GC) output, comprising plasma cells and memory B cells (MBCs), is crucial for clearance of Plasmodium infection and protection against reinfection. In this study, we examine the effect of an agonistic antibody targeting 4-1BB (CD137) during experimental malaria. We show that exogenous 4-1BB stimulation, despite delaying the effector GC response, surprisingly enhances humoral memory recall and protection from reinfection. Single-cell RNA and assay for transposase-accessible chromatin (ATAC) sequencing of MBCs from mice receiving 4-1BB stimulation reveal populations with distinct transcriptional signatures and a chromatin landscape indicative of superior recall and proliferative potential. Importantly, our results indicate that the effects of 4-1BB stimulation are dependent on interleukin (IL)-9R signaling in B cells but independent of parasite load during primary infection. Our study proposes an immunomodulatory approach to enhance the quality of the MBC pool, providing superior protection during infection and vaccination, particularly in the context of malaria.
Collapse
Affiliation(s)
- Carolina Calôba
- Discipline of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA; Center for Cancer Biology, Immunology and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Alexandria J Sturtz
- Division of Biology and Biomedical Sciences, Washington University, St. Louis, Missouri, USA
| | - Taylor A Lyons
- Center for Cancer Biology, Immunology and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Lijo John
- Discipline of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA; Deparment of Veterinary Biochemistry, Kerala Veterinary and Animal Sciences University, Thrissur, Kerala, India
| | - Akshaya Ramachandran
- Discipline of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Allen M Minns
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Anthony M Cannon
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Justin P Whalley
- Discipline of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA; Center for Cancer Biology, Immunology and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Tania H Watts
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Scott E Lindner
- Deparment of Veterinary Biochemistry, Kerala Veterinary and Animal Sciences University, Thrissur, Kerala, India
| | - Rahul Vijay
- Discipline of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA; Center for Cancer Biology, Immunology and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
8
|
Guthmiller JJ, Yu-Ling Lan L, Li L, Fu Y, Nelson SA, Henry C, Stamper CT, Utset HA, Freyn AW, Han J, Stovicek O, Wang J, Zheng NY, Huang M, Dugan HL, Tepora ME, Zhu X, Chen YQ, Palm AKE, Shaw DG, Loganathan M, Francis BF, Sun J, Chervin J, Troxell C, Meade P, Leung NHL, Valkenburg SA, Cobey S, Cowling BJ, Wilson IA, García-Sastre A, Nachbagauer R, Ward AB, Coughlan L, Krammer F, Wilson PC. Long-lasting B cell convergence to distinct broadly reactive epitopes following vaccination with chimeric influenza virus hemagglutinins. Immunity 2025; 58:980-996.e7. [PMID: 40132593 PMCID: PMC11981830 DOI: 10.1016/j.immuni.2025.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/18/2024] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
In a phase 1 clinical trial, a chimeric hemagglutinin (cHA) immunogen induced antibody responses against the conserved hemagglutinin (HA) stalk domain as designed. Here, we determined the specificity, function, and subsets of B cells induced by cHA vaccination by pairing single-cell RNA sequencing and B cell receptor repertoire sequencing. We have shown that the cHA-inactivated vaccine with a squalene-based adjuvant induced a robust activated B cell and memory B cell (MBC) phenotype against two broadly neutralizing epitopes in the stalk domain. The overall specificities of the acute plasmablast (PB) and MBC responses clonally overlapped, suggesting B cell convergence to these broadly protective epitopes. At 1 year post immunization, we identified that cHA vaccination reshaped the HA-specific MBC pool to enrich for stalk-binding B cells. Altogether, these data indicate the cHA vaccine induced robust and durable B cell responses against broadly protective epitopes of the HA stalk domain, in line with serological data.
Collapse
Affiliation(s)
- Jenna J Guthmiller
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA; Department on Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Linda Yu-Ling Lan
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Lei Li
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA; Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yanbin Fu
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sean A Nelson
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Carole Henry
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | | | - Henry A Utset
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Alec W Freyn
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Olivia Stovicek
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Jiaolong Wang
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Nai-Ying Zheng
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA; Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Min Huang
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA; Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Haley L Dugan
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Micah E Tepora
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yao-Qing Chen
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Anna-Karin E Palm
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Dustin G Shaw
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Madhumathi Loganathan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin F Francis
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiayi Sun
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jordan Chervin
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Chloe Troxell
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Philip Meade
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nancy H L Leung
- WHO Collaborating Center for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, Hong Kong, China
| | - Sophie A Valkenburg
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Benjamin J Cowling
- WHO Collaborating Center for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrick C Wilson
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
9
|
Ma C, Zhu W, Hu X, Wu D, Zhao X, Du Y, Kong X. Acinar cells modulate the tumor microenvironment through the promotion of M1 macrophage polarization via macrophage endocytosis in pancreatic cancer. Discov Oncol 2025; 16:489. [PMID: 40198509 PMCID: PMC11979042 DOI: 10.1007/s12672-025-02244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDA) is a highly aggressive and fatal cancer. M1 macrophages are generally considered to have anti-tumor properties, capable of suppressing tumor growth and metastasis by secreting pro-inflammatory cytokines and enhancing the immune response. AIMS The objective of this research was to pinpoint crucial genes associated with M1 macrophages and search for a new way to activate the M1 phenotype of macrophages in PDA. METHODS The level of immune cell infiltration was assessed using CIBERSORT in TCGA-PAAD cohort and ICGC-PACA cohort. We performed weighted gene co-expression network analysis (WGCNA) to identify the module most correlated with M1 macrophages and we identified hub genes through protein-protein interaction (PPI) analyse. Through survival analysis, correlation analysis and single cell analysis, we obtained the relationship between hub genes and prognosis, and the relationship between key genes and immune cells, as well as its expression in various cells. RESULTS PRSS1 (Cationic trypsinogen) and CTRB1 (Chymosinogen B) were hub genes of the M1 macrophage-associated WGCNA module (211genes) and are closely related to the extension of survival time, which are also verified as cell growth-related genes by DepMap database. Through single-cell sequencing analysis, we determined that the expression levels of PRSS1 and CTRB1 in the acinar cells of tumor tissues were diminished. PRSS1 and CTRB1 are considered to be the signature genes of acinar cells. The proportion of acinar cells was also correlated with the infiltration of CD8T cells and M1 cells. Immunostaining revealed elevated expression levels of PRSS1 and CTRB1 in adjacent normal tissues. Cell line experiments confirmed that macrophages polarize towards M1 by engulfing pancreatic enzyme granules, thereby inhibiting the malignant phenotype of tumor cells. CONCLUSION Our findings highlight the critical role of acinar cells in modulating the immune microenvironment of pancreatic tumors by influencing macrophage polarization. This insight may provide novel opportunities for therapeutic interventions in cancer treatment.
Collapse
Affiliation(s)
- Congjia Ma
- Department of Gastroenterology, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Wenbo Zhu
- Department of Gastroenterology, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Xiulin Hu
- Department of Gastroenterology, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Deli Wu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Soochow University, Soochow, China
| | - Xintong Zhao
- Department of Gastroenterology, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Yiqi Du
- Department of Gastroenterology, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China.
| | - Xiangyu Kong
- Department of Gastroenterology, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China.
| |
Collapse
|
10
|
Chen D, Xu S, Li S, Wang Q, Li H, He D, Chen Y, Xu H. The multi-organ landscape of B cells highlights dysregulated memory B cell responses in Crohn's disease. Natl Sci Rev 2025; 12:nwaf009. [PMID: 40160682 PMCID: PMC11951101 DOI: 10.1093/nsr/nwaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 04/02/2025] Open
Abstract
Crohn's disease (CD) is a prevalent type of inflammatory bowel disease (IBD) with dysregulated antibody responses. However, there is a lack of comprehensive analysis of B cell responses in CD. Here, we collected B cells from the small intestine, colon and blood of CD patients and control subjects. Through the coupled analysis of transcriptome and immunoglobulin (Ig) gene in individual cells, we characterized the cellular composition, transcriptome and Ig clonotype in different B cell subtypes. We observed shared disruptions in plasma cell (PC) responses between different IBD subtypes. We revealed heterogeneity in memory B cells (MBCs) and showed a positive correlation between gut resident-like MBCs and disease severity. Furthermore, our clonotype analysis demonstrated an increased direct differentiation of MBCs into PCs in CD patients. Overall, this study demonstrates significantly altered B cell responses associated with chronic inflammation during CD and highlights the potential role of mucosal MBCs in CD pathogenesis.
Collapse
Affiliation(s)
- Dianyu Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Song Xu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Shuyan Li
- Department of Nursing, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qiuying Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Hui Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Danyang He
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Yan Chen
- Center for Inflammatory Bowel Diseases, Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Heping Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| |
Collapse
|
11
|
Ma H, Wang Z, Yu M, Zhai Y, Yan J. Aberrations in peripheral B lymphocytes and B lymphocyte subsets levels in Parkinson disease: a systematic review. Front Immunol 2025; 16:1526095. [PMID: 40230858 PMCID: PMC11994702 DOI: 10.3389/fimmu.2025.1526095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
Objective The association of B lymphocytes and B lymphocyte subsets and Parkinson's disease (PD) is increasingly acknowledged. However, there is inconsistence in the alterations of B lymphocytes or B lymphocyte subsets in peripheral blood of PD patients. To comprehensively understand its changes in PD patients,it is necessary to conduct a systematic review on this subject. Methods PubMed, Cochrane Library, and MEDLINE databases were searched until 3rd February 2024. Results We included 20 studies (n=2658) to conduct this systematic review. We conducted a qualitative analysis to assess the alterations of B lymphocytes and B lymphocyte subsets in the peripheral blood of individuals with PD. And studies reviewed demonstrated a significant decrease in the number of B cells, as well as immune dysregulation in the B lymphocyte subsets of these patients' peripheral blood. Conclusion Studies reviewed demonstrated that PD is linked to abnormalities in B lymphocytes and/or B lymphocytes subsets in peripheral blood. This study provides a novel perspective into the pathogenesis of PD, and future investigations into the B lymphocytes and/or B lymphocyte subsets as biomarkers and therapeutic targets for PD is warranted.
Collapse
Affiliation(s)
- Hongxia Ma
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Ziyuan Wang
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Miao Yu
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yibo Zhai
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- Key laboratory of Neuromolecular Biology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
12
|
Winslow GM, Levack R. Know Your ABCs: Discovery, Differentiation, and Targeting of T-Bet+ B Cells. Immunol Rev 2025; 330:e13440. [PMID: 39844597 PMCID: PMC11754996 DOI: 10.1111/imr.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 01/24/2025]
Abstract
Since their first description in 2008, T-bet+ B cells have emerged as a clinically important B cell subset. Now commonly known as ABCs (Age-associated B Cells), they are uniquely characterized by their expression of the transcription factor T-bet. Indeed, this singular factor defines this B cell subset. This review will describe the discovery of T-bet+ B cells, their role in bacterial infection as T cell-independent (TI) plasmablasts, as well as long-term follicular helper T cell-dependent (TD) IgM+ and switched memory cells (i.e., T-bet+ ABCs), and later discoveries of their role(s) in diverse immunological responses. These studies highlight a critical, although limited, role of T-bet in IgG2a class switching, a function central to the cells' role in immunity and autoimmunity. Given their association with autoimmunity, pharmacological targeting is an attractive strategy for reducing or eliminating the B cells. T-bet+ ABCs express a number of characteristic cell surface markers, including CD11c, CD11b, CD73, and the adenosine 2a receptor (A2aR). Accordingly, A2aR agonist administration effectively targeted T-bet+ ABCs in vivo. Moreover, agonist treatment of lupus-prone mice reduced autoantibodies and disease symptoms. This latter work highlights the potential therapeutic use of adenosine agonists for treating autoimmune diseases involving T-bet+ ABCs.
Collapse
Affiliation(s)
- Gary M. Winslow
- Department of Microbiology and ImmunologyUpstate Medical UniversitySyracuseNew YorkUSA
| | - Russell Levack
- Department of ImmunologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
13
|
Claireaux M, Elias G, Kerster G, Kuijper LH, Duurland MC, Paul AGA, Burger JA, Poniman M, Olijhoek W, de Jong N, de Jongh R, Wynberg E, van Willigen HDG, Prins M, De Bree GJ, de Jong MD, Kuijpers TW, Eftimov F, van der Schoot CE, Rispens T, Garcia-Vallejo JJ, ten Brinke A, van Gils MJ, van Ham SM. Deep profiling of B cells responding to various pathogens uncovers compartments in IgG memory B cell and antibody-secreting lineages. SCIENCE ADVANCES 2025; 11:eado1331. [PMID: 39970201 PMCID: PMC11837990 DOI: 10.1126/sciadv.ado1331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Improving our understanding of B cell transition to memory B cells (MBCs) and antibody-secreting cells (ASCs) is crucial for clinical monitoring and vaccine strategies. To explore these dynamics, we compared prepandemic antigen responses (influenza hemagglutinin, respiratory syncytial virus fusion glycoprotein, and tetanus toxoid) with recently encountered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen responses in convalescent COVID-19 patients using spectral flow cytometry. Our analysis revealed the CD43+CD71+IgG+ activated B cell subset, highly enriched for SARS-CoV-2 specificities, as a juncture for ASC and MBC differentiation, with CD86+ phenotypically similar to ASCs and CD86- to IgG+ MBCs. Moreover, subpopulations within IgG+ MBCs were further identified based on CD73 and CD24 expression. Activated MBCs (CD73-/CD24lo) were predominantly SARS-CoV-2-specific, while resting MBCs (CD73+/CD24hi) recognized prepandemic antigens. A CD95- subcluster within resting MBCs accounted for over 40% of prepandemic-specific cells, indicating long-lasting memory. These findings advance our understanding of IgG+ MBC and ASC development stages, shedding light on the decision-making process guiding their differentiation.
Collapse
Affiliation(s)
- Mathieu Claireaux
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - George Elias
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Gius Kerster
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Lisan H. Kuijper
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Mariël C. Duurland
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | | | - Judith A. Burger
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Meliawati Poniman
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Wouter Olijhoek
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Nina de Jong
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Rivka de Jongh
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Elke Wynberg
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, Netherlands
| | - Hugo D. G. van Willigen
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Maria Prins
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Godelieve J. De Bree
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Menno D. de Jong
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Taco W. Kuijpers
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Filip Eftimov
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - C. Ellen van der Schoot
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Juan J. Garcia-Vallejo
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Molecular Cell Biology & Immunology, Amsterdam University Medical Center (VUmc location), Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Anja ten Brinke
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - S. Marieke van Ham
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
Ruffin AT, Casey AN, Kunning SR, MacFawn IP, Liu Z, Arora C, Rohatgi A, Kemp F, Lampenfeld C, Somasundaram A, Rappocciolo G, Kirkwood JM, Duvvuri U, Seethala R, Bao R, Huang Y, Cillo AR, Ferris RL, Bruno TC. Dysfunctional CD11c -CD21 - extrafollicular memory B cells are enriched in the periphery and tumors of patients with cancer. Sci Transl Med 2025; 17:eadh1315. [PMID: 39970232 DOI: 10.1126/scitranslmed.adh1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 02/07/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Many patients with recurrent and metastatic cancer fail to produce a durable response to immunotherapy, highlighting the need for additional therapeutic targets to improve the immune landscape in tumors. Recent studies have highlighted the importance of B cells in the antitumor response, with memory B cells (MBCs) being prognostic in a variety of solid tumors. MBCs are a heterogenous B cell subset and can be generated through both germinal center reactions and extrafollicular (EF) responses. EF-derived MBCs have been recently linked to poor prognosis and treatment resistance in solid tumors and thus may represent candidate biomarkers or immunotherapy targets. EF-derived MBCs, termed "double-negative" (DN) MBCs may be further classified on the basis of surface expression of CD11c and CD21 into DN1, DN2, and DN3 MBCs. CD11c-CD21+ DN1 MBCs and CD11c+CD21- DN2 MBCs have been well studied across inflammatory diseases; however, the biology and clinical relevance of CD11c-CD21- DN3 MBCs remain unknown. Here, we report an accumulation of DN3 MBCs in the blood and tumors of patients with head and neck squamous cell carcinoma (HNSCC) and an increase in DN3 MBCs in locally advanced HNSCC tumors. Circulating and intratumoral DN3 MBCs were hyporesponsive to antigen stimulation, had low antibody production, and failed to differentiate into antibody-secreting cells. Moreover, DN3 MBCs accumulated selectively outside of tertiary lymphoid structures. Last, circulating DN3 MBCs correlated with poor therapeutic response, advanced disease, and worse outcomes in patients with HNSCC and melanoma, supporting further assessment of EF-derived MBCs as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ayana T Ruffin
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Allison N Casey
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- Molecular Genetics and Developmental Biology Graduate Program, Pittsburgh, PA 15213, USA
| | - Sheryl R Kunning
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Ian P MacFawn
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Zhentao Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Charu Arora
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Anjali Rohatgi
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Felicia Kemp
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Caleb Lampenfeld
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Ashwin Somasundaram
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | | | - John M Kirkwood
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Umamaheswar Duvvuri
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Raja Seethala
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Riyue Bao
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yufei Huang
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmaceutical Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anthony R Cillo
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robert L Ferris
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
15
|
Mackie J, Suan D, McNaughton P, Haerynck F, O’Sullivan M, Guerin A, Ma CS, Tangye SG. Functional validation of a novel STAT3 'variant of unknown significance' identifies a new case of STAT3 GOF syndrome and reveals broad immune cell defects. Clin Exp Immunol 2025; 219:uxaf005. [PMID: 39836489 PMCID: PMC11791529 DOI: 10.1093/cei/uxaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/29/2024] [Accepted: 01/20/2025] [Indexed: 01/23/2025] Open
Abstract
INTRODUCTION Signal transducer and activator of transcription 3 (STAT3) orchestrates crucial immune responses through its pleiotropic functions as a transcription factor. Patients with germline monoallelic dominant negative or hypermorphic STAT3 variants, who present with immunodeficiency and/or immune dysregulation, have revealed the importance of balanced STAT3 signaling in lymphocyte differentiation and function, and immune homeostasis. Here, we report a novel missense variant of unknown significance in the DNA-binding domain of STAT3 in a patient who experienced hypogammaglobulinemia, lymphadenopathy, hepatosplenomegaly, immune thrombocytopenia, eczema, and enteropathy over a 35-year period. METHODS In vitro demonstration of prolonged STAT3 activation due to delayed dephosphorylation, and enhanced transcriptional activity, confirmed this to be a novel pathogenic STAT3 gain-of-function variant. Peripheral blood lymphocytes from this patient, and patients with confirmed STAT3 Gain-of-function Syndrome, were collected to investigate mechanisms of disease pathogenesis. RESULTS B cell dysregulation was evidenced by a loss of class-switched memory B cells and a significantly expanded CD19hiCD21lo B cell population, likely influenced by a skewed CXCR3+ TFH population. Interestingly, unlike STAT3 dominant negative variants, cytokine secretion by activated peripheral blood STAT3 GOF CD4+ T cells and frequencies of Treg cells were intact, suggesting CD4+ T cell dysregulation likely occurs at sites of disease rather than the periphery. CONCLUSION This study provides an in-depth case study in confirming a STAT3 gain-of-function variant and identifies lymphocyte dysregulation in the peripheral blood of patients with STAT3 gain-of-function syndrome. Identifying cellular biomarkers of disease provides a flow cytometric-based screen to guide validation of additional novel STAT3 gain-of-function variants as well as provide insights into putative mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Daniel Suan
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Darlinghurst, NSW, Australia
| | - Peter McNaughton
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Darlinghurst, NSW, Australia
- Queensland Paediatric Immunology and Allergy Service, Queensland Children’s Hospital, South Brisbane, Australia
| | - Filomeen Haerynck
- Department of Pediatric Pulmonology, Infectious Diseases and Immunology, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Centre for Primary Immunodeficiency Ghent, Ghent University Hospital, Ghent, Belgium
| | - Michael O’Sullivan
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Darlinghurst, NSW, Australia
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Antoine Guerin
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Darlinghurst, NSW, Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Darlinghurst, NSW, Australia
| |
Collapse
|
16
|
Chayé MAM, van Hengel ORJ, Voskamp AL, Ozir-Fazalalikhan A, König MH, Stam KA, Manurung MD, Mouwenda YD, Aryeetey YA, Kurniawan A, Kruize YCM, Sartono E, Buisman AM, Yazdanbakhsh M, Tak T, Smits HH. Multi-dimensional analysis of B cells reveals the expansion of memory and regulatory B-cell clusters in humans living in rural tropical areas. Clin Exp Immunol 2025; 219:uxae074. [PMID: 39129562 PMCID: PMC11771192 DOI: 10.1093/cei/uxae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/06/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024] Open
Abstract
B-cells play a critical role in the formation of immune responses against pathogens by acting as antigen-presenting cells, by modulating immune responses, and by generating immune memory and antibody responses. Here, we studied B-cell subset distributions between regions with higher and lower microbial exposure, i.e. by comparing peripheral blood B-cells from people living in Indonesia or Ghana to those from healthy Dutch residents using a 36-marker mass cytometry panel. By applying an unbiased multidimensional approach, we observed differences in the balance between the naïve and memory compartments, with higher CD11c+ and double negative (DN-IgDnegCD27neg) memory (M)B-cells in individuals from rural tropical areas, and conversely lower naïve B-cells compared to residents from an area with less pathogen exposure. Furthermore, characterization of total B-cell populations, CD11c+, DN, and Breg cells showed the emergence of specific memory clusters in individuals living in rural tropical areas. Some of these differences were more pronounced in children compared to adults and suggest that a higher microbial exposure accelerates memory B-cell formation, which "normalizes" with age.
Collapse
Affiliation(s)
- Mathilde A M Chayé
- Leiden University Center for Infectious Diseases (LUCID), LUMC, Leiden, The Netherlands
| | - Oscar R J van Hengel
- Leiden University Center for Infectious Diseases (LUCID), LUMC, Leiden, The Netherlands
| | - Astrid L Voskamp
- Leiden University Center for Infectious Diseases (LUCID), LUMC, Leiden, The Netherlands
| | | | - Marion H König
- Leiden University Center for Infectious Diseases (LUCID), LUMC, Leiden, The Netherlands
| | - Koen A Stam
- Leiden University Center for Infectious Diseases (LUCID), LUMC, Leiden, The Netherlands
| | - Mikhael D Manurung
- Leiden University Center for Infectious Diseases (LUCID), LUMC, Leiden, The Netherlands
| | - Yoanne D Mouwenda
- Leiden University Center for Infectious Diseases (LUCID), LUMC, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Yvonne A Aryeetey
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Agnes Kurniawan
- Department of Parasitology, Universitas Indonesia, Jakarta, Indonesia
| | - Yvonne C M Kruize
- Leiden University Center for Infectious Diseases (LUCID), LUMC, Leiden, The Netherlands
| | - Erliyani Sartono
- Leiden University Center for Infectious Diseases (LUCID), LUMC, Leiden, The Netherlands
| | - Anne-Marie Buisman
- Laboratory for Immunology of Infectious Diseases and Vaccines, Center for Infectious Diseases Control, National Institute for Public Health and The Environment, Bilthoven, The Netherlands
| | - Maria Yazdanbakhsh
- Leiden University Center for Infectious Diseases (LUCID), LUMC, Leiden, The Netherlands
| | - Tamar Tak
- Leiden University Center for Infectious Diseases (LUCID), LUMC, Leiden, The Netherlands
| | - Hermelijn H Smits
- Leiden University Center for Infectious Diseases (LUCID), LUMC, Leiden, The Netherlands
| |
Collapse
|
17
|
Geng Z, Cao Y, Zhao L, Wang L, Dong Y, Bi Y, Liu G. Function and Regulation of Age-Associated B Cells in Diseases. J Cell Physiol 2025; 240:e31522. [PMID: 39749652 DOI: 10.1002/jcp.31522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
The aging process often leads to immune-related diseases, including infections, tumors, and autoimmune disorders. Recently, researchers identified a special subpopulation of B cells in elderly female mice that increases with age and accumulates prematurely in mouse models of autoimmune diseases or viral infections; these B cells are known as age-related B cells (ABCs). These cells possess distinctive cell surface phenotypes and transcriptional characteristics, and the cell population is widely recognized as CD11c+CD11b+T-bet+CD21-CD23- cells. Research has shown that ABCs are a heterogeneous group of B cells that originate independently of the germinal center and are insensitive to B-cell receptor (BCR) and CD40 stimulation, differentiating and proliferating in response to toll-like receptor 7 (TLR7) and IL-21 stimulation. Additionally, they secrete self-antibodies and cytokines to regulate the immune response. These issues have aroused widespread interest among researchers in this field. This review summarizes recent research progress on ABCs, including the functions and regulation of ABCs in aging, viral infection, autoimmune diseases, and organ transplantation.
Collapse
Affiliation(s)
- Zi Geng
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Longhao Zhao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Likun Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Yingjie Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
18
|
Wang L, Vulesevic B, Vigano M, As’sadiq A, Kang K, Fernandez C, Samarani S, Anis AH, Ahmad A, Costiniuk CT. The Impact of HIV on B Cell Compartment and Its Implications for COVID-19 Vaccinations in People with HIV. Vaccines (Basel) 2024; 12:1372. [PMID: 39772034 PMCID: PMC11679862 DOI: 10.3390/vaccines12121372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025] Open
Abstract
HIV causes intense polyclonal activation of B cells, resulting in increased numbers of spontaneously antibody-secreting cells in the circulation and hypergammaglobulinemia. It is accompanied by significant perturbations in various B cell subsets, such as increased frequencies of immature/transitional B cells, activated memory B cells, atypical memory B cells, short-lived plasmablasts and regulatory B cells, as well as by decreased frequencies of resting memory and resting naïve B cells. Furthermore, both memory and antigen-inexperienced naïve B cells show exhausted and immune-senescent phenotypes. HIV also drives the expansion and functional impairment of CD4+ T follicular helper cells, which provide help to B cells, crucial for the generation of germinal center reactions and production of long-lived plasma and memory B cells. By suppressing viral replication, anti-retroviral therapy reverses the virus-induced perturbations and functional defects, albeit inadequately. Due to HIV's lingering impact on B cells, immune senescence and residual chronic inflammation, people with HIV (PWH), especially immune non-responders, are immunocompromised and mount suboptimal antibody responses to vaccination for SARS-CoV-2. Here, we review how functionally and phenotypically distinct B cell subsets are induced in response to a vaccine and an infection and how HIV infection and anti-retroviral therapy (ART) impact them. We also review the role played by HIV-induced defects and perturbations in B cells in the induction of humoral immune responses to currently used anti-SARS-CoV-2 vaccines in PWH on ART. We also outline different strategies that could potentially enhance the vaccine-induced antibody responses in PWH. The review will provide guidance and impetus for further research to improve the immunogenicity of these vaccines in this human population.
Collapse
Affiliation(s)
- Lixing Wang
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada; (L.W.); (C.F.)
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
| | - Branka Vulesevic
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
| | - MariaLuisa Vigano
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
| | - Alia As’sadiq
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
| | - Kristina Kang
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
| | - Cristina Fernandez
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada; (L.W.); (C.F.)
| | - Suzanne Samarani
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
| | - Aslam H. Anis
- Centre for Advancing Health Outcomes Centre for Health Evaluation and Outcome Sciences, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada;
| | - Ali Ahmad
- Centre de Recherche, Hôpital Ste Justine, Montréal, QC H3T 1C5, Canada;
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Cecilia T. Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- Division of Infectious Diseases and Chronic Viral Illnesses Service, McGill University Health Centre, Montreal QC H4A 3J1, Canada
| |
Collapse
|
19
|
Liang Y, Chen X, Zhang X, Guo C, Zhang Y. Virus-driven dysregulation of the BCR pathway: a potential mechanism for the high prevalence of HIV related B-cell lymphoma. Ann Hematol 2024; 103:4839-4849. [PMID: 39196379 DOI: 10.1007/s00277-024-05959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
In people living with HIV (PLWH), the susceptibility to malignancies is notably augmented, with lymphoma emerging as a predominant malignancy. Even in the antiretroviral therapy (ART) era, aggressive B-cell lymphoma stands out as a paramount concern. Yet, the pathogenesis of HIV related lymphoma (HRL) largely remains an enigma. Recent insights underscore the pivotal role of the dysregulated B cell receptor (BCR) signaling cascade, evidencing its oncogenic potential across a spectrum of lymphomas. Intricate interplays between HIV and BCR structural-functional integrity have been identified in PLWH. In this review, we elucidated the mechanism by which the BCR signaling pathway is involved in HRL, mainly including the following aspects: HIV can reshape BCR structure by modulating of activation-induced cytidine deaminase (AID) and recombination-activating gene (RAG) dynamics; HIV can act as a chronic antigen to activate the BCR signaling pathway, such as upregulating PI3K and MAPK signaling pathway and reducing the expression of CD300a; HIV co-infection with other oncogenic viruses may also influence tumor formation mediated by the BCR signaling pathway. This review aims to elucidate the intricate regulation of the BCR signaling pathway by HIV in B cell lymphoma, providing a novel perspective on the pathogenesis of lymphoma in HIV-affected environments.
Collapse
Affiliation(s)
- Ying Liang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
| | - Xue Chen
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
| | - Xiuqun Zhang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Caiping Guo
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China.
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing100069, China.
| |
Collapse
|
20
|
Reis LR, Silva-Moraes V, Teixeira-Carvalho A, Ross TM. B-cell dynamics underlying poor response upon split-inactivated influenza virus vaccination. Front Immunol 2024; 15:1481910. [PMID: 39635527 PMCID: PMC11614812 DOI: 10.3389/fimmu.2024.1481910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024] Open
Abstract
This investigation elucidated the differences in humoral and H1N1 HA-specific memory B-cells response in participants exhibiting distinct immune response patterns prior to and after vaccination with Fluzone, the quadrivalent split-inactivated seasonal influenza virus vaccine. Participants were categorized into persistent non-responders and persistent responders based on their hemagglutination-inhibition (HAI) antibody titers to the H1N1 component from each vaccine administered between the 2019-2020 to 2023-2024 seasons. Persistent responders had higher fold change in H1N1 HA-specific CD21 expressing B-cells, plasmablasts, and plasma cells. A significant increase in H1N1 HA-specific transitional B-cells in persistent non-responders was observed. The frequency and fold change of H1N1-specific IgM-expressing memory B-cells was higher in persistent non-responders. Dimensionality reduction analysis also demonstrated higher IgM expression for persistent non-responders than persistent responders. Furthermore, persistent non-responders had a significant fold change increase in IgA tissue-like memory, IgG exhausted tissue-like memory, and double negative (DN) activated memory cells. In contrast, persistent responders had increased frequency of IgG-activated memory B-cells, IgG resting B-cells and DN resting B-cells. Correlation analysis revealed a positive correlation between HAI titers and DN memory B-cells and a negative correlation between HAI titers and IgG-expressing memory B-cells in persistent non-responders. Conversely, persistent responders had a positive correlation between HAI titers and IgA resting memory B-cells and a negative correlation between IgG memory B-cells and DN memory B-cells. Overall, this study provided valuable insights into the differential immune memory B-cell responses following influenza virus vaccination and paves the way for future research to further unravel the complexities of vaccine-induced memory B-cells and ultimately improve vaccination strategies against influenza virus infection.
Collapse
Affiliation(s)
- Laise Rodrigues Reis
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, United States
| | - Vanessa Silva-Moraes
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, United States
| | | | - Ted M. Ross
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, United States
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| |
Collapse
|
21
|
Zhou R, Zhou J, Deng S, Zhu Y, Muhuitijiang B, Wu J, Tan W. Developing and experimental validating a B cell exhaustion-related gene signature to assess prognosis and immunotherapeutic response in bladder cancer. Gene 2024; 927:148634. [PMID: 38848880 DOI: 10.1016/j.gene.2024.148634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND B cell exhaustion (BEX) refers to the impairment of normal B cell functions and decreased proliferation capability. However, the prognostic value of BEX-related genes in bladder cancer (BLCA) remains unclear. METHODS BLCA cases from TCGA were used for training, while GSE5287, GSE13507, GSE31684, and GSE32894 cohorts from GEO were used for external validation. BEX-related genes were identified through literature retrieval, unsupervised clustering, and genomic difference detection. Gene pairing, LASSO, random forest, and Cox regression were employed to construct a predictive model. B cell samples from scRNAseqDB, GSE111636, and IMvigor210 were utilized to explore immunoprofiles and the predictive ability of the model in immunotherapeutic response. Additionally, 21 pairs of BLCA and paracarcinoma samples from Nanfang Hospital were used to re-confirm our findings through RT-qPCR, immunofluorescence, and flow cytometry. RESULTS 39 BEX-related genes were identified. A 4-gene-pair signature was constructed and served as a reliable prognostic predictor across multiple datasets (pooled HR = 2.32; 95 % CI = 1.81-2.98). The signature reflected the BEX statuses of B cells (FDR < 0.05) and showed promise in evaluating immunotherapeutic sensitivity (P < 0.001). In the local cohort, CD52, TUBB6, and CAV1 were down-regulated in BLCA tissues, while TGFBI, UBE2L6, TINAGL1, and IL32 were up-regulated (all P < 0.05). Furthermore, the infiltration levels of CD19 + CD52 + and CD19 + TUBB6 + B cells in paracarcinoma samples were higher than those in BLCA samples (all P < 0.05). CONCLUSION A BEX-related gene signature was developed to predict prognosis and immunotherapeutic sensitivity in BLCA, providing valuable guidance for personalized treatment.
Collapse
Affiliation(s)
- Ranran Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510080, Guangdong, China; The First Clinical Medical College, Southern Medical University, Guangzhou 510080, Guangdong, China.
| | - Jiawei Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510080, Guangdong, China; The First Clinical Medical College, Southern Medical University, Guangzhou 510080, Guangdong, China
| | - Shikai Deng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510080, Guangdong, China.
| | - Yuanchao Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510080, Guangdong, China; The First Clinical Medical College, Southern Medical University, Guangzhou 510080, Guangdong, China.
| | - Bahaerguli Muhuitijiang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510080, Guangdong, China; The First Clinical Medical College, Southern Medical University, Guangzhou 510080, Guangdong, China.
| | - Jiaxu Wu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510080, Guangdong, China.
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510080, Guangdong, China; The First Clinical Medical College, Southern Medical University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
22
|
Frasca D, Romero M, Blomberg BB. Similarities in B Cell Defects between Aging and Obesity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1407-1413. [PMID: 39495900 DOI: 10.4049/jimmunol.2300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 09/16/2024] [Indexed: 11/06/2024]
Abstract
The aging population is increasing worldwide, and there is also an increase in the aging population living with overweight and obesity, due to changes in lifestyle and in dietary patterns that elderly individuals experience later in life. Both aging and obesity are conditions of accelerated metabolic dysfunction and dysregulated immune responses. In this review, we summarize published findings showing that obesity induces changes in humoral immunity similar to those induced by aging and that the age-associated B cell defects are mainly due to metabolic changes. We discuss the role of the obese adipose tissue in inducing dysfunctional humoral responses and autoimmune Ab secretion.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
23
|
Lam N, Lee Y, Farber DL. A guide to adaptive immune memory. Nat Rev Immunol 2024; 24:810-829. [PMID: 38831162 DOI: 10.1038/s41577-024-01040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Immune memory - comprising T cells, B cells and plasma cells and their secreted antibodies - is crucial for human survival. It enables the rapid and effective clearance of a pathogen after re-exposure, to minimize damage to the host. When antigen-experienced, memory T cells become activated, they proliferate and produce effector molecules at faster rates and in greater magnitudes than antigen-inexperienced, naive cells. Similarly, memory B cells become activated and differentiate into antibody-secreting cells more rapidly than naive B cells, and they undergo processes that increase their affinity for antigen. The ability of T cells and B cells to form memory cells after antigen exposure is the rationale behind vaccination. Understanding immune memory not only is crucial for the design of more-efficacious vaccines but also has important implications for immunotherapies in infectious disease and cancer. This 'guide to' article provides an overview of the current understanding of the phenotype, function, location, and pathways for the generation, maintenance and protective capacity of memory T cells and memory B cells.
Collapse
Affiliation(s)
- Nora Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - YoonSeung Lee
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
24
|
Castro JP, Shindyapina AV, Barbieri A, Ying K, Strelkova OS, Paulo JA, Tyshkovskiy A, Meinl R, Kerepesi C, Petrashen AP, Mariotti M, Meer MV, Hu Y, Karamyshev A, Losyev G, Galhardo M, Logarinho E, Indzhykulian AA, Gygi SP, Sedivy JM, Manis JP, Gladyshev VN. Age-associated clonal B cells drive B cell lymphoma in mice. NATURE AGING 2024; 4:1403-1417. [PMID: 39117982 DOI: 10.1038/s43587-024-00671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/19/2024] [Indexed: 08/10/2024]
Abstract
Although cancer is an age-related disease, how the processes of aging contribute to cancer progression is not well understood. In this study, we uncovered how mouse B cell lymphoma develops as a consequence of a naturally aged system. We show here that this malignancy is associated with an age-associated clonal B cell (ACBC) population that likely originates from age-associated B cells. Driven by c-Myc activation, promoter hypermethylation and somatic mutations, IgM+ ACBCs clonally expand independently of germinal centers and show increased biological age. ACBCs become self-sufficient and support malignancy when transferred into young recipients. Inhibition of mTOR or c-Myc in old mice attenuates pre-malignant changes in B cells during aging. Although the etiology of mouse and human B cell lymphomas is considered distinct, epigenetic changes in transformed mouse B cells are enriched for changes observed in human B cell lymphomas. Together, our findings characterize the spontaneous progression of cancer during aging through both cell-intrinsic and microenvironmental changes and suggest interventions for its prevention.
Collapse
Affiliation(s)
- José P Castro
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Aging and Aneuploidy Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | | - Kejun Ying
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Olga S Strelkova
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - João A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Rico Meinl
- Retro Biosciences, Redwood City, CA, USA
| | - Csaba Kerepesi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Computer Science and Control (SZTAKI), Loránd Eötvös Research Network, Budapest, Hungary
| | - Anna P Petrashen
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Marco Mariotti
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Margarita V Meer
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- San Diego Institute of Sciences, Altos Labs, San Diego, CA, USA
| | - Yan Hu
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Grigoriy Losyev
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mafalda Galhardo
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Elsa Logarinho
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Artur A Indzhykulian
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - John P Manis
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vadim N Gladyshev
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Osmani Z, Villanueva MA, Joseph-Chazan J, Beudeker BJ, de Knegt RJ, Chung RT, Hacohen N, Aerssens J, Bollekens J, Janssen HLA, Gehring AJ, Lauer GM, Shalek AK, van de Werken HJG, Boonstra A. Intrahepatic plasma cells, but not atypical memory B cells, associate with clinical phases of chronic hepatitis B. Eur J Immunol 2024; 54:e2451085. [PMID: 38813721 DOI: 10.1002/eji.202451085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Studies have traditionally focused on the role of T cells in chronic hepatitis B (CHB), but recent evidence supports a role for B cells. The enrichment of so-called atypical memory (AtM) B cells, which show reduced signaling and impaired differentiation, is believed to be a characteristic feature of CHB, potentially contributing to the observed dysfunctional anti-HBsAg B-cell responses. Our study, involving 62 CHB patients across clinical phases, identified AtM B cells expressing IFNLR1 and interferon-stimulated genes. Contrary to previous reports, we found relatively low frequencies of AtM B cells in the liver, comparable to peripheral blood. However, liver plasma cell frequencies were significantly higher, particularly during phases with elevated viral loads and liver enzyme levels. Liver plasma cells exhibited signs of active proliferation, especially in the immune active phase. Our findings suggest a potential role for plasma cells, alongside potential implications and consequences of local proliferation, within the livers of CHB patients. While the significance of AtM B cells remains uncertain, further investigation is warranted to determine their responsiveness to interferons and their role in CHB.
Collapse
Affiliation(s)
- Zgjim Osmani
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Martin Arreola Villanueva
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jasmin Joseph-Chazan
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Boris J Beudeker
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Raymond T Chung
- Liver Center, Division of Gastroenterology and Liver Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeroen Aerssens
- Clinical Translational Science Infectious Diseases, Janssen Research and Development, Beerse, Belgium
| | - Jacques Bollekens
- Clinical Translational Science Infectious Diseases, Janssen Research and Development, Beerse, Belgium
| | - Harry L A Janssen
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Adam J Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Georg M Lauer
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Alex K Shalek
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
26
|
Tarasova O, Petrou A, Ivanov SM, Geronikaki A, Poroikov V. Viral Factors in Modulation of Host Immune Response: A Route to Novel Antiviral Agents and New Therapeutic Approaches. Int J Mol Sci 2024; 25:9408. [PMID: 39273355 PMCID: PMC11395507 DOI: 10.3390/ijms25179408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Viruses utilize host cells at all stages of their life cycle, from the transcription of genes and translation of viral proteins to the release of viral copies. The human immune system counteracts viruses through a variety of complex mechanisms, including both innate and adaptive components. Viruses have an ability to evade different components of the immune system and affect them, leading to disruption. This review covers contemporary knowledge about the virus-induced complex interplay of molecular interactions, including regulation of transcription and translation in host cells resulting in the modulation of immune system functions. Thorough investigation of molecular mechanisms and signaling pathways that are involved in modulating of host immune response to viral infections can help to develop novel approaches for antiviral therapy. In this review, we consider new therapeutic approaches for antiviral treatment. Modern therapeutic strategies for the treatment and cure of human immunodeficiency virus (HIV) are considered in detail because HIV is a unique example of a virus that leads to host T lymphocyte deregulation and significant modulation of the host immune response. Furthermore, peculiarities of some promising novel agents for the treatment of various viral infections are described.
Collapse
Affiliation(s)
- Olga Tarasova
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Anthi Petrou
- School of Pharmacy, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | |
Collapse
|
27
|
Yang Y, Chen X, Pan J, Ning H, Zhang Y, Bo Y, Ren X, Li J, Qin S, Wang D, Chen MM, Zhang Z. Pan-cancer single-cell dissection reveals phenotypically distinct B cell subtypes. Cell 2024; 187:4790-4811.e22. [PMID: 39047727 DOI: 10.1016/j.cell.2024.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 04/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Characterizing the compositional and phenotypic characteristics of tumor-infiltrating B cells (TIBs) is important for advancing our understanding of their role in cancer development. Here, we establish a comprehensive resource of human B cells by integrating single-cell RNA sequencing data of B cells from 649 patients across 19 major cancer types. We demonstrate substantial heterogeneity in their total abundance and subtype composition and observe immunoglobulin G (IgG)-skewness of antibody-secreting cell isotypes. Moreover, we identify stress-response memory B cells and tumor-associated atypical B cells (TAABs), two tumor-enriched subpopulations with prognostic potential, shared in a pan-cancer manner. In particular, TAABs, characterized by a high clonal expansion level and proliferative capacity as well as by close interactions with activated CD4 T cells in tumors, are predictive of immunotherapy response. Our integrative resource depicts distinct clinically relevant TIB subsets, laying a foundation for further exploration of functional commonality and diversity of B cells in cancer.
Collapse
Affiliation(s)
- Yu Yang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xueyan Chen
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Jieying Pan
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Huiheng Ning
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yaojun Zhang
- State Key Laboratory of Oncology in South China, Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yufei Bo
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xianwen Ren
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Jiesheng Li
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Shishang Qin
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Dongfang Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China.
| | - Min-Min Chen
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
28
|
McGrath S, Grimstad K, Thorarinsdottir K, Forslind K, Glinatsi D, Leu Agelii M, Aranburu A, Sundell T, Jonsson CA, Camponeschi A, Hultgård Ekwall AK, Tilevik A, Gjertsson I, Mårtensson IL. Correlation of Professional Antigen-Presenting Tbet +CD11c + B Cells With Bone Destruction in Untreated Rheumatoid Arthritis. Arthritis Rheumatol 2024; 76:1263-1277. [PMID: 38570939 DOI: 10.1002/art.42857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/09/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVE Subsets of CD21-/low memory B cells (MBCs), including double-negative (DN, CD27-IgD-) and Tbet+CD11c+ cells, are expanded in chronic inflammatory diseases. In rheumatoid arthritis (RA), CD21-/low MBCs correlate with joint destruction. However, whether this is due to the Tbet+CD11c+ subset, its function and pathogenic contribution to RA are unknown. This study aims to investigate the association between CD21-/lowTbet+CD11c+ MBCs and joint destruction as well as other clinical parameters and to elucidate their functional properties in patients with untreated RA (uRA). METHODS Clinical observations were combined with flow cytometry (n = 36) and single-cell RNA sequencing (scRNA-seq) and V(D)J sequencing (n = 4) of peripheral blood (PB) MBCs from patients with uRA. The transcriptome of circulating Tbet+CD11c+ MBCs was compared with scRNA-seq data of synovial B cells. In vitro coculture of Tbet+CD11c+ B cells with T cells was used to assess costimulatory capacity. RESULTS CD21-/lowTbet+CD11c+ MBCs in PB correlated with bone destruction but no other clinical parameters analyzed. The Tbet+CD11c+ MBCs have undergone clonal expansion and express somatically mutated V genes. Gene expression analysis of these cells identified a unique signature of more than 150 up-regulated genes associated with antigen presentation functions, including B cell receptor activation and clathrin-mediated antigen internalization; regulation of actin filaments, endosomes, and lysosomes; antigen processing, loading, presentation, and costimulation; a transcriptome mirrored in their synovial tissue counterparts. In vitro, Tbet+CD11c+ B cells induced retinoic acid receptor-related orphan nuclear receptor γT expression in CD4+ T cells, thereby polarizing to Th17 cells, a T cell subset critical for osteoclastogenesis and associated with bone destruction. CONCLUSION This study suggests that Tbet+CD11c+ MBCs contribute to the pathogenesis of RA by promoting bone destruction through antigen presentation, T cell activation, and Th17 polarization.
Collapse
Affiliation(s)
- Sarah McGrath
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Grimstad
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, and School of Bioscience, University of Skövde, Skövde, Sweden
| | - Katrin Thorarinsdottir
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Forslind
- Lund University, Lund, Sweden, and Spenshult Research and Development Centre, Halmstad, Sweden
| | | | - Monica Leu Agelii
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alaitz Aranburu
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Timothy Sundell
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Charlotte A Jonsson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alessandro Camponeschi
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna-Karin Hultgård Ekwall
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Inger Gjertsson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Inga-Lill Mårtensson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
29
|
Kleberg L, Courey-Ghaouzi AD, Lautenbach MJ, Färnert A, Sundling C. Regulation of B-cell function and expression of CD11c, T-bet, and FcRL5 in response to different activation signals. Eur J Immunol 2024; 54:e2350736. [PMID: 38700378 DOI: 10.1002/eji.202350736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
CD11c, FcRL5, or T-bet are commonly expressed by B cells expanding during inflammation, where they can make up >30% of mature B cells. However, the association between the proteins and differentiation and function in the host response remains largely unclear. We have assessed the co-expression of CD11c, T-bet, and FcRL5 in an in vitro B-cell culture system to determine how stimulation via the BCR, toll-like receptor 9 (TLR9), and different cytokines influence CD11c, T-bet, and FcRL5 expression. We observed different expression dynamics for all markers, but a largely overlapping regulation of CD11c and FcRL5 in response to BCR and TLR9 activation, while T-bet was strongly dependent on IFN-γ signaling. Investigating plasma cell differentiation and APC functions, there was no association between marker expression and antibody secretion or T-cell help. Rather the functions were associated with TLR9-signalling and B-cell-derived IL-6 production, respectively. These results suggest that the expression of CD11c, FcRL5, and T-bet and plasma cell differentiation and improved APC functions occur in parallel and are regulated by similar activation signals, but they are not interdependent.
Collapse
Affiliation(s)
- Linn Kleberg
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Alan-Dine Courey-Ghaouzi
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Maximilian Julius Lautenbach
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
30
|
Nellore A, Zumaquero E, Seifert M. T-bet + B Cells in Humans: Protective and Pathologic Functions. Transplantation 2024; 108:1709-1714. [PMID: 38051131 PMCID: PMC11150333 DOI: 10.1097/tp.0000000000004889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023]
Abstract
The humoral immune system comprises B cells and plasma cells, which play important roles in organ transplantation, ranging from the production of both protective and injurious antibodies as well as cytokines that can promote operational tolerance. Recent data from conditions outside of transplantation have identified a novel human B-cell subset that expresses the transcription factor T-bet and exerts pleiotropic functions by disease state. Here, we review the generation, activation, and functions of the T-bet + B-cell subset outside of allotransplantation, and consider the relevance of this subset as mediators of allograft injury.
Collapse
Affiliation(s)
- Anoma Nellore
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL
| | - Esther Zumaquero
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Michael Seifert
- Division of Pediatric Nephrology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
31
|
García-Vega M, Llamas-Covarrubias MA, Loza M, Reséndiz-Sandoval M, Hinojosa-Trujillo D, Melgoza-González E, Valenzuela O, Mata-Haro V, Hernández-Oñate M, Soto-Gaxiola A, Chávez-Rueda K, Nakai K, Hernández J. Single-cell transcriptomic analysis of B cells reveals new insights into atypical memory B cells in COVID-19. J Med Virol 2024; 96:e29851. [PMID: 39132689 DOI: 10.1002/jmv.29851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Here, we performed single-cell RNA sequencing of S1 and receptor binding domain protein-specific B cells from convalescent COVID-19 patients with different clinical manifestations. This study aimed to evaluate the role and developmental pathway of atypical memory B cells (MBCs) in response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The results revealed a proinflammatory signature across B cell subsets associated with disease severity, as evidenced by the upregulation of genes such as GADD45B, MAP3K8, and NFKBIA in critical and severe individuals. Furthermore, the analysis of atypical MBCs suggested a developmental pathway similar to that of conventional MBCs through germinal centers, as indicated by the expression of several genes involved in germinal center processes, including CXCR4, CXCR5, BCL2, and MYC. Additionally, the upregulation of genes characteristic of the immune response in COVID-19, such as ZFP36 and DUSP1, suggested that the differentiation and activation of atypical MBCs may be influenced by exposure to SARS-CoV-2 and that these genes may contribute to the immune response for COVID-19 recovery. Our study contributes to a better understanding of atypical MBCs in COVID-19 and the role of other B cell subsets across different clinical manifestations.
Collapse
Affiliation(s)
- Melissa García-Vega
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | | | - Martin Loza
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Mónica Reséndiz-Sandoval
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Diana Hinojosa-Trujillo
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Edgar Melgoza-González
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Olivia Valenzuela
- Departamento de Ciencias Químico Biológicas, División de Ciencias Biológicas y de la Salud, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Verónica Mata-Haro
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Miguel Hernández-Oñate
- CONAHCYT-Laboratorio de Fisiología y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Alan Soto-Gaxiola
- Hospital General del Estado de Sonora "Dr. Ernesto Ramos Bours", Secretaria de Salud del Estado de Sonora, Hermosillo, Sonora, Mexico
| | - Karina Chávez-Rueda
- Unidad de Investigación Médica en Inmunología, UMAE, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Kenta Nakai
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| |
Collapse
|
32
|
Zhu L, Wong YH, Wong SSH, Cheung SCY, Sher JKH, Yam IYL, Yung S, Chan TM, Yap DYH. Alterations in exhausted and classical memory B cells in lupus nephritis - Relationship with disease relapse. Clin Immunol 2024; 265:110284. [PMID: 38878808 DOI: 10.1016/j.clim.2024.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION B cell exhaustion is a functional abnormality of B lymphocytes observed in chronic infections and shows association with autoreactivity. The role of exhausted and classical memory B cells in maintaining disease stability of lupus nephritis (LN) remains unclear. METHODS We measured classical memory (CD19+CD21+CD27+), exhausted B cells (CD19+CD21-CD27-), and related cytokines in LN patients with multiple relapses (MR) (n = 15) and no relapse (NR) (n = 15) during disease remission. The expression of inhibitory/adhesion molecules, cell proliferation and calcium mobilization in classical memory and exhausted B cells were also assessed. RESULTS The MR group had higher proportion of circulating exhausted and classical memory B cells compared to the NR group and healthy controls (HC) (p all <0.05 for MR vs. NR or HC). Blood levels of IL-6, BAFF, IL-21, CD62L, CXCR3 and Siglec-6 were all higher in the MR group (p < 0.05, for all). Exhausted B cells from the MR group showed higher FcRL4, CD22, CD85j and CD183 but lower CD62L expression than NR and HC groups. Exhausted B cells from MR patients exhibited reduced proliferation compared to NR patients and HC, while classical memory B cell proliferation in MR group was higher than the other two groups. Exhausted B cells from both MR and NR patients showed impaired calcium mobilization. CONCLUSION Alterations in exhausted and classical memory B cells are related to disease relapse in LN. These findings may help devise new strategies for monitoring disease activity and preventing relapse in LN.
Collapse
Affiliation(s)
- Litong Zhu
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Yick Hei Wong
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong, China
| | - Sunny S H Wong
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong, China
| | - Simon C Y Cheung
- Department of Medicine, Queen Elizabeth Hospital, Hong Kong, China
| | - Jason K H Sher
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Irene Y L Yam
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Susan Yung
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Tak Mao Chan
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Desmond Y H Yap
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
33
|
Tijani MK, Saleh BH, Lugaajju A, Danielsson L, Persson KEM. Acquisition of anti-phosphatidylserine IgM and IgG antibodies by infants and their mothers over time in Uganda. Front Immunol 2024; 15:1416669. [PMID: 39131160 PMCID: PMC11310174 DOI: 10.3389/fimmu.2024.1416669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Background Production of anti-phosphatidylserine (anti-PS) antibodies has been associated with malaria and can aggravate pathology. How these autoantibodies develop during early childhood in a malaria context is not known. We examined levels of anti-PS IgG and IgM antibodies in a longitudinal cohort of mother-baby pairs during birth, in the infants at 2.5, 6 months, and in mothers and their babies at 9 months postpartum. Results There was no difference between levels of anti-PS IgG in cord blood and the mothers' peripheral blood at birth. However, anti-PS IgM levels were significantly higher in the mothers compared to the infants' cord blood, and IgM levels were steadily increasing during the first 9 months of the infants' life. In infants that had the highest anti-PS IgM levels at birth, there was a decline until 6 months with a rise at 9 months. Infants that possessed high anti-PS IgG at birth also exhibited a progressive decline in levels. When anti-PS were correlated to different fractions of B-cells, there were several correlations with P. falciparum specific atypical B cells both at birth and at 2.5 months for the infants, especially for anti-PS IgM. Anti-PS also correlated strongly to C1q-fixing antibodies at birth. Conclusion These results show that anti-PS IgG acquired by mothers could be transferred transplacentally and that IgM antibodies targeting PS are acquired during the first year of life. These results have increased the knowledge about autoimmune responses associated with infections in early life and is critical for a comprehensive understanding of malaria vaccine functionality in endemic areas.
Collapse
Affiliation(s)
- Muyideen Kolapo Tijani
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bandar Hassan Saleh
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Microbiology and Immunology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Allan Lugaajju
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Lena Danielsson
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristina E. M. Persson
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Chemistry and Pharmacology, Laboratory Medicine, Office for Medical Services, Region Skåne, Lund, Sweden
| |
Collapse
|
34
|
Pérez-Pérez D, Fuentes-Pananá EM, Flores-Hermenegildo JM, Romero-Ramirez H, Santos-Argumedo L, Kilimann MW, Rodríguez-Alba JC, Lopez-Herrera G. Lipopolysaccharide-responsive beige-like anchor is involved in regulating NF-κB activation in B cells. Front Immunol 2024; 15:1409434. [PMID: 39076990 PMCID: PMC11284061 DOI: 10.3389/fimmu.2024.1409434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/21/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Lipopolysaccharide-responsive and beige-like anchor (LRBA) is a scaffolding protein that interacts with proteins such as CTLA-4 and PKA, the importance of which has been determined in various cell types, including T regulatory cells, B cells, and renal cells. LRBA deficiency is associated with an inborn error in immunity characterized by immunodeficiency and autoimmunity. In addition to defects in T regulatory cells, patients with LRBA deficiency also exhibit B cell defects, such as reduced cell number, low memory B cells, hypogammaglobulinemia, impaired B cell proliferation, and increased autophagy. Although Lrba-/- mice do not exhibit the immunodeficiency observed in humans, responses to B cell receptors (BCR) in B cells have not been explored. Therefore, a murine model is for elucidating the mechanism of Lrba mechanism in B cells. Aim To compare and evaluate spleen-derived B cell responses to BCR crosslinking in C57BL6 Lrba-/- and Lrba+/+ mice. Materials and methods Spleen-derived B cells were obtained from 8 to 12-week-old mice. Subpopulations were determined by immunostaining and flow cytometry. BCR crosslinking was assessed by the F(ab')2 anti-μ chain. Activation, proliferation and viability assays were performed using flow cytometry and protein phosphorylation was evaluated by immunoblotting. The nuclear localization of p65 was determined using confocal microscopy. Nur77 expression was evaluated by Western blot. Results Lrba-/- B cells showed an activated phenotype and a decreased proportion of transitional 1 B cells, and both proliferation and survival were affected after BCR crosslinking in the Lrba-/- mice. The NF-κB pathway exhibited a basal activation status of several components, resulting in increased activation of p50, p65, and IκBα, basal p50 activation was reduced by the Plcγ2 inhibitor U73122. BCR crosslinking in Lrba-/ - B cells resulted in poor p50 phosphorylation and p65 nuclear localization. Increased levels of Nur77 were detected. Discussion These results indicate the importance of Lrba in controlling NF-κB activation driven by BCR. Basal activation of NF-κB could impact cellular processes, such as, activation, differentiation, proliferation, and maintenance of B cells after antigen encounter.
Collapse
Affiliation(s)
- Daniela Pérez-Pérez
- Doctorate Program in Biological Sciences, Autonomous National University of Mexico, Mexico City, Mexico
- Immunodeficiency Laboratory, National Institute of Pediatrics, Mexico City, Mexico
| | | | - José Mizael Flores-Hermenegildo
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV IPN, Mexico City, Mexico
| | - Hector Romero-Ramirez
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV IPN, Mexico City, Mexico
| | - Leopoldo Santos-Argumedo
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV IPN, Mexico City, Mexico
| | - Manfred W. Kilimann
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Juan Carlos Rodríguez-Alba
- Medicine and Surgery Faculty, Autonomous University Benito Juarez from Oaxaca, Oaxaca, Mexico
- Neuroimmunology and Neurooncology Unit, The National Institute of Neurology and Neurosurgery (NINN), Mexico City, Mexico
| | | |
Collapse
|
35
|
Hmiel L, Zhang S, Obare LM, Santana MADO, Wanjalla CN, Titanji BK, Hileman CO, Bagchi S. Inflammatory and Immune Mechanisms for Atherosclerotic Cardiovascular Disease in HIV. Int J Mol Sci 2024; 25:7266. [PMID: 39000373 PMCID: PMC11242562 DOI: 10.3390/ijms25137266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Atherosclerotic vascular disease disproportionately affects persons living with HIV (PLWH) compared to those without. The reasons for the excess risk include dysregulated immune response and inflammation related to HIV infection itself, comorbid conditions, and co-infections. Here, we review an updated understanding of immune and inflammatory pathways underlying atherosclerosis in PLWH, including effects of viral products, soluble mediators and chemokines, innate and adaptive immune cells, and important co-infections. We also present potential therapeutic targets which may reduce cardiovascular risk in PLWH.
Collapse
Affiliation(s)
- Laura Hmiel
- Department of Medicine, Division of Infectious Disease, MetroHealth Medical Center and Case Western Reserve University, Cleveland, OH 44109, USA
| | - Suyu Zhang
- Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Boghuma K. Titanji
- Division of Infectious Diseases, Emory University, Atlanta, GA 30322, USA
| | - Corrilynn O. Hileman
- Department of Medicine, Division of Infectious Disease, MetroHealth Medical Center and Case Western Reserve University, Cleveland, OH 44109, USA
| | - Shashwatee Bagchi
- Division of Infectious Diseases, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
36
|
Gehring AJ, Salimzadeh L. Current and future use of antibody-based passive immunity to prevent or control HBV/HDV infections. Antiviral Res 2024; 226:105893. [PMID: 38679166 DOI: 10.1016/j.antiviral.2024.105893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
With the increasing momentum and success of monoclonal antibody therapy in conventional medical practices, there is a revived emphasis on the development of monoclonal antibodies targeting the hepatitis B surface antigen (anti-HBs) for the treatment of chronic hepatitis B (HBV) and hepatitis D (HDV). Combination therapies of anti-HBs monoclonal antibodies, and novel anti-HBV compounds and immunomodulatory drugs presenting a promising avenue to enhanced therapeutic outcomes in HBV/HDV cure regimens. In this review, we will cover the role of antibodies in the protection and clearance of HBV infection, the association of anti-HBV surface antigen antibodies (anti-HBs) in protection against HBV and how antibody effector functions, beyond neutralization, are likely necessary. Lastly, we will review clinical data from previous and ongoing clinical trials of passive antibody therapy to provide a state-of-the-are perspective on passive antibody therapies in combinations with additional novel agents.
Collapse
Affiliation(s)
- Adam J Gehring
- Schwartz-Reisman Liver Research Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada.
| | - Loghman Salimzadeh
- Schwartz-Reisman Liver Research Centre, University Health Network, Toronto, ON, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
37
|
Skinner OP, Asad S, Haque A. Advances and challenges in investigating B-cells via single-cell transcriptomics. Curr Opin Immunol 2024; 88:102443. [PMID: 38968762 DOI: 10.1016/j.coi.2024.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Single-cell RNA sequencing (scRNAseq) and Variable, Diversity, Joining (VDJ) profiling have improved our understanding of B-cells. Recent scRNAseq-based approaches have led to the discovery of intermediate B-cell states, including preplasma cells and pregerminal centre B-cells, as well as unveiling protective roles for B-cells within tertiary lymphoid structures in respiratory infections and cancers. These studies have improved our understanding of transcriptional and epigenetic control of B-cell development and of atypical and memory B-cell differentiation. Advancements in temporal profiling in parallel with transcriptomic and VDJ sequencing have consolidated our understanding of the trajectory of B-cell clones over the course of infection and vaccination. Challenges remain in studying B-cell states across tissues in humans, in relating spatial location with B-cell phenotype and function, in examining antibody isotype switching events, and in unequivocal determination of clonal relationships. Nevertheless, ongoing multiomic assessments and studies of cellular interactions within tissues promise new avenues for improving humoral immunity and combatting autoimmune conditions.
Collapse
Affiliation(s)
- Oliver P Skinner
- Department of Microbiology & Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Parkville, Melbourne, VIC 3000, Australia.
| | - Saba Asad
- Department of Microbiology & Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Parkville, Melbourne, VIC 3000, Australia
| | - Ashraful Haque
- Department of Microbiology & Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Parkville, Melbourne, VIC 3000, Australia.
| |
Collapse
|
38
|
Obare LM, Bonami RH, Doran A, Wanjalla CN. B cells and atherosclerosis: A HIV perspective. J Cell Physiol 2024; 239:e31270. [PMID: 38651687 PMCID: PMC11209796 DOI: 10.1002/jcp.31270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/09/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
Atherosclerosis remains a leading cause of cardiovascular disease (CVD) globally, with the complex interplay of inflammation and lipid metabolism at its core. Recent evidence suggests a role of B cells in the pathogenesis of atherosclerosis; however, this relationship remains poorly understood, particularly in the context of HIV. We review the multifaceted functions of B cells in atherosclerosis, with a specific focus on HIV. Unique to atherosclerosis is the pivotal role of natural antibodies, particularly those targeting oxidized epitopes abundant in modified lipoproteins and cellular debris. B cells can exert control over cellular immune responses within atherosclerotic arteries through antigen presentation, chemokine production, cytokine production, and cell-cell interactions, actively participating in local and systemic immune responses. We explore how HIV, characterized by chronic immune activation and dysregulation, influences B cells in the context of atherosclerosis, potentially exacerbating CVD risk in persons with HIV. By examining the proatherogenic and antiatherogenic properties of B cells, we aim to deepen our understanding of how B cells influence atherosclerotic plaque development, especially within the framework of HIV. This research provides a foundation for novel B cell-targeted interventions, with the potential to mitigate inflammation-driven cardiovascular events, offering new perspectives on CVD risk management in PLWH.
Collapse
Affiliation(s)
- Laventa M. Obare
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel H. Bonami
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amanda Doran
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Celestine N. Wanjalla
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
39
|
Caetano DG, Toledo TS, de Lima ACS, Giacoia-Gripp CBW, de Almeida DV, de Lima SMB, Azevedo ADS, Morata M, Grinsztejn B, Cardoso SW, da Costa MD, Brandão LGP, Bispo de Filippis AM, Scott-Algara D, Coelho LE, Côrtes FH. Impact of HIV-Related Immune Impairment of Yellow Fever Vaccine Immunogenicity in People Living with HIV-ANRS 12403. Vaccines (Basel) 2024; 12:578. [PMID: 38932307 PMCID: PMC11209244 DOI: 10.3390/vaccines12060578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
The yellow fever (YF) vaccine is one of the safest and most effective vaccines currently available. Still, its administration in people living with HIV (PLWH) is limited due to safety concerns and a lack of consensus regarding decreased immunogenicity and long-lasting protection for this population. The mechanisms associated with impaired YF vaccine immunogenicity in PLWH are not fully understood, but the general immune deregulation during HIV infection may play an important role. To assess if HIV infection impacts YF vaccine immunogenicity and if markers of immune deregulation could predict lower immunogenicity, we evaluated the association of YF neutralization antibody (NAb) titers with the pre-vaccination frequency of activated and exhausted T cells, levels of pro-inflammatory cytokines, and frequency of T cells, B cells, and monocyte subsets in PLWH and HIV-negative controls. We observed impaired YF vaccine immunogenicity in PLWH with lower titers of YF-NAbs 30 days after vaccination, mainly in individuals with CD4 count <350 cells/mm3. At the baseline, those individuals were characterized by having a higher frequency of activated and exhausted T cells and tissue-like memory B cells. Elevated levels of those markers were also observed in individuals with CD4 count between 500 and 350 cells/mm3. We observed a negative correlation between the pre-vaccination level of CD8+ T cell exhaustion and CD4+ T cell activation with YF-NAb titers at D365 and the pre-vaccination level of IP-10 with YF-NAb titers at D30 and D365. Our results emphasize the impact of immune activation, exhaustion, and inflammation in YF vaccine immunogenicity in PLWH.
Collapse
Affiliation(s)
- Diogo Gama Caetano
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil; (D.G.C.); (T.S.T.); (A.C.S.d.L.); (C.B.W.G.-G.); (D.V.d.A.)
| | - Thais Stelzer Toledo
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil; (D.G.C.); (T.S.T.); (A.C.S.d.L.); (C.B.W.G.-G.); (D.V.d.A.)
| | - Ana Carolina Souza de Lima
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil; (D.G.C.); (T.S.T.); (A.C.S.d.L.); (C.B.W.G.-G.); (D.V.d.A.)
| | - Carmem Beatriz Wagner Giacoia-Gripp
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil; (D.G.C.); (T.S.T.); (A.C.S.d.L.); (C.B.W.G.-G.); (D.V.d.A.)
| | - Dalziza Victalina de Almeida
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil; (D.G.C.); (T.S.T.); (A.C.S.d.L.); (C.B.W.G.-G.); (D.V.d.A.)
| | - Sheila Maria Barbosa de Lima
- Departamento de Desenvolvimento Experimental e Pré-Clínico (DEDEP), Bio-Manguinhos/Fiocruz, Rio de Janeiro 21040-900, Brazil;
| | - Adriana de Souza Azevedo
- Laboratório de Análise Imunomolecular (LANIM), Bio-Manguinhos/Fiocruz, Rio de Janeiro 21040-900, Brazil;
| | - Michelle Morata
- Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.M.); (B.G.); (S.W.C.); (L.E.C.)
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.M.); (B.G.); (S.W.C.); (L.E.C.)
| | - Sandra Wagner Cardoso
- Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.M.); (B.G.); (S.W.C.); (L.E.C.)
| | - Marcellus Dias da Costa
- Laboratório de Pesquisa em Imunização e Vigilância em Saúde (LIVS), Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.D.d.C.); (L.G.P.B.)
| | - Luciana Gomes Pedro Brandão
- Laboratório de Pesquisa em Imunização e Vigilância em Saúde (LIVS), Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.D.d.C.); (L.G.P.B.)
| | | | | | - Lara Esteves Coelho
- Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.M.); (B.G.); (S.W.C.); (L.E.C.)
| | - Fernanda Heloise Côrtes
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil; (D.G.C.); (T.S.T.); (A.C.S.d.L.); (C.B.W.G.-G.); (D.V.d.A.)
| |
Collapse
|
40
|
Gonçalves IV, Pinheiro-Rosa N, Torres L, Oliveira MDA, Rapozo Guimarães G, Leite CDS, Ortega JM, Lopes MTP, Faria AMC, Martins MLB, Felicori LF. Dynamic changes in B cell subpopulations in response to triple-negative breast cancer development. Sci Rep 2024; 14:11576. [PMID: 38773133 PMCID: PMC11109097 DOI: 10.1038/s41598-024-60243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/19/2024] [Indexed: 05/23/2024] Open
Abstract
Despite presenting a worse prognosis and being associated with highly aggressive tumors, triple-negative breast cancer (TNBC) is characterized by the higher frequency of tumor-infiltrating lymphocytes, which have been implicated in better overall survival and response to therapy. Though recent studies have reported the capacity of B lymphocytes to recognize overly-expressed normal proteins, and tumor-associated antigens, how tumor development potentially modifies B cell response is yet to be elucidated. Our findings reveal distinct effects of 4T1 and E0771 murine tumor development on B cells in secondary lymphoid organs. Notably, we observe a significant expansion of total B cells and plasma cells in the tumor-draining lymph nodes (tDLNs) as early as 7 days after tumor challenge in both murine models, whereas changes in the spleen are less pronounced. Surprisingly, within the tumor microenvironment (TME) of both models, we detect distinct B cell subpopulations, but tumor development does not appear to cause major alterations in their frequency over time. Furthermore, our investigation into B cell regulatory phenotypes highlights that the B10 Breg phenotype remains unaffected in the evaluated tissues. Most importantly, we identified an increase in CD19 + LAG-3 + cells in tDLNs of both murine models. Interestingly, although CD19 + LAG-3 + cells represent a minor subset of total B cells (< 3%) in all evaluated tissues, most of these cells exhibit elevated expression of IgD, suggesting that LAG-3 may serve as an activation marker for B cells. Corroborating with these findings, we detected distinct cell cycle and proliferation genes alongside LAG-3 analyzing scRNA-Seq data from a cohort of TNBC patients. More importantly, our study suggests that the presence of LAG-3 B cells in breast tumors could be associated with a good prognosis, as patients with higher levels of LAG-3 B cell transcripts had a longer progression-free interval (PFI). This novel insight could pave the way for targeted therapies that harness the unique properties of LAG-3 + B cells, potentially offering new avenues for improving patient outcomes in TNBC. Further research is warranted to unravel the mechanistic pathways of these cells and to validate their prognostic value in larger, diverse patient cohorts.
Collapse
Affiliation(s)
- Igor Visconte Gonçalves
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Natália Pinheiro-Rosa
- NYU Grossman School of Medicine, NYU Langone Health, New York University, 550 1st Ave, New York, NY, 10016, USA
| | - Lícia Torres
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Mariana de Almeida Oliveira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Gabriela Rapozo Guimarães
- Instituto Nacional de Câncer, Ministério da Saúde, Coordenação de Pesquisa, Laboratório de Bioinformática e Biologia Computacional - Rua André Cavalcanti, 37, 1 Andar, Centro, Rio de Janeiro, RJ, 20231050, Brasil
| | - Christiana da Silva Leite
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - José Miguel Ortega
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Miriam Teresa Paz Lopes
- Department of Pharmacology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana Maria Caetano Faria
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Mariana Lima Boroni Martins
- Instituto Nacional de Câncer, Ministério da Saúde, Coordenação de Pesquisa, Laboratório de Bioinformática e Biologia Computacional - Rua André Cavalcanti, 37, 1 Andar, Centro, Rio de Janeiro, RJ, 20231050, Brasil
| | - Liza Figueiredo Felicori
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
41
|
Cooper L, Xu H, Polmear J, Kealy L, Szeto C, Pang ES, Gupta M, Kirn A, Taylor JJ, Jackson KJL, Broomfield BJ, Nguyen A, Gago da Graça C, La Gruta N, Utzschneider DT, Groom JR, Martelotto L, Parish IA, O'Keeffe M, Scharer CD, Gras S, Good-Jacobson KL. Type I interferons induce an epigenetically distinct memory B cell subset in chronic viral infection. Immunity 2024; 57:1037-1055.e6. [PMID: 38593796 PMCID: PMC11096045 DOI: 10.1016/j.immuni.2024.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/02/2023] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Memory B cells (MBCs) are key providers of long-lived immunity against infectious disease, yet in chronic viral infection, they do not produce effective protection. How chronic viral infection disrupts MBC development and whether such changes are reversible remain unknown. Through single-cell (sc)ATAC-seq and scRNA-seq during acute versus chronic lymphocytic choriomeningitis viral infection, we identified a memory subset enriched for interferon (IFN)-stimulated genes (ISGs) during chronic infection that was distinct from the T-bet+ subset normally associated with chronic infection. Blockade of IFNAR-1 early in infection transformed the chromatin landscape of chronic MBCs, decreasing accessibility at ISG-inducing transcription factor binding motifs and inducing phenotypic changes in the dominating MBC subset, with a decrease in the ISG subset and an increase in CD11c+CD80+ cells. However, timing was critical, with MBCs resistant to intervention at 4 weeks post-infection. Together, our research identifies a key mechanism to instruct MBC identity during viral infection.
Collapse
Affiliation(s)
- Lucy Cooper
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Hui Xu
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jack Polmear
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Liam Kealy
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christopher Szeto
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Ee Shan Pang
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mansi Gupta
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Alana Kirn
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Justin J Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Benjamin J Broomfield
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia; Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Angela Nguyen
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Catarina Gago da Graça
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Nicole La Gruta
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Daniel T Utzschneider
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Luciano Martelotto
- Adelaide Centre for Epigenetics and the South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; University of Melbourne Centre for Cancer Research, Victoria Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Ian A Parish
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; John Curtin School of Medical Research, ANU, Canberra, ACT, Australia
| | - Meredith O'Keeffe
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christopher D Scharer
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
42
|
Azizi A, Mehdipour F, Samadi M, Rasolmali R, Talei AR, Ghaderi A. Atypical memory B cells increase in the peripheral blood of patients with breast cancer regardless of lymph node involvement. BMC Immunol 2024; 25:25. [PMID: 38702630 PMCID: PMC11067195 DOI: 10.1186/s12865-024-00620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Breast cancer is the most common cancer in females. The immune system has a crucial role in the fight against cancer. B and T cells, the two main components of the adaptive immunity, are critical players that specifically target tumor cells. However, B cells, in contrast to T cells, and their role in cancer inhibition or progression is less investigated. Accordingly, in this study, we assessed and compared the frequency of naïve and different subsets of memory B cells in the peripheral blood of patients with breast cancer and healthy women. RESULTS We found no significant differences in the frequencies of peripheral CD19+ B cells between the patients and controls. However, there was a significant decrease in the frequency of CD19+IgM+ B cells in patients compared to the control group (P=0.030). Moreover, the patients exhibited higher percentages of atypical memory B cells (CD19+CD27‒IgM‒, P=0.006) and a non-significant increasing trend in switched memory B cells (CD19+CD27+IgM‒, P=0.074). Further analysis revealed a higher frequency of atypical memory B cells (aMBCs) in the peripheral blood of patients without lymph node involvement as well as those with a tumor size greater than 2cm or with estrogen receptor (ER) negative/progesterone receptor (PR) negative tumors, compared with controls (P=0.030, P=0.040, P=0.031 and P=0.054, respectively). CONCLUSION Atypical memory B cells (CD19+CD27‒IgM‒) showed a significant increase in the peripheral blood of patients with breast cancer compared to the control group. This increase seems to be associated with tumor characteristics. Nevertheless, additional research is necessary to determine the precise role of these cells during breast cancer progression.
Collapse
Affiliation(s)
- Atefeh Azizi
- Department of Immunology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fereshteh Mehdipour
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Morteza Samadi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Reza Rasolmali
- Department of Pathology, Shiraz Central Hospital, Shiraz, Iran
| | - Abdol-Rasoul Talei
- Breast Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
43
|
Yang L, Zeng T, Li Y, Guo Q, Jiang D. Poor immune response to inactivated COVID-19 vaccine in patients with hypertension. Front Med (Lausanne) 2024; 11:1329607. [PMID: 38756945 PMCID: PMC11096495 DOI: 10.3389/fmed.2024.1329607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/03/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose The safety and efficacy of vaccination in people with hypertension (HTN) is important. There are currently a few data on the immunogenicity and safety of inactivated SARS-CoV-2 vaccinations in hypertension patients. Methods After receiving a two-dose immunization, 94 hypertension adult patients and 74 healthy controls (HCs) in this study, the evaluation included looking at antibodies (Abs) against receptor binding domain (RBD) IgG, SARS-CoV-2 neutralizing antibodies (NAbs), RBD-specific B cells, and memory B cells (MBCs). Results There was no discernible difference in the overall adverse events (AEs) over the course of 7 or 30 days between HTN patients and HCs. HTN patients had lower frequencies of RBD-specific memory B cells and the seropositivity rates and titers of Abs compared with HCs (all, p < 0.05). HTN patients with cardiovascular and cerebrovascular conditions (CCVD) have lower titers of CoV-2 NAb than in HCs. The titers of both Abs in HTN declined gradually over time. Conclusion Inactivated COVID-19 vaccinations were safe in hypertension patients; however humoral immune was limited, especially merged CCVD and declined gradually over time.
Collapse
Affiliation(s)
- Lei Yang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - TingTing Zeng
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yang Li
- Department of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qiao Guo
- Department of General and Practice, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - DePeng Jiang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
44
|
Surendar J, Hackenberg RK, Schmitt-Sánchez F, Ossendorff R, Welle K, Stoffel-Wagner B, Sage PT, Burger C, Wirtz DC, Strauss AC, Schildberg FA. Osteomyelitis is associated with increased anti-inflammatory response and immune exhaustion. Front Immunol 2024; 15:1396592. [PMID: 38736874 PMCID: PMC11082283 DOI: 10.3389/fimmu.2024.1396592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Osteomyelitis (OMS) is a bone infection causing bone pain and severe complications. A balanced immune response is critical to eradicate infection without harming the host, yet pathogens manipulate immunity to establish a chronic infection. Understanding OMS-driven inflammation is essential for disease management, but comprehensive data on immune profiles and immune cell activation during OMS are lacking. Methods Using high-dimensional flow cytometry, we investigated the detailed innate and adaptive systemic immune cell populations in OMS and age- and sex-matched controls. Results Our study revealed that OMS is associated with increased levels of immune regulatory cells, namely T regulatory cells, B regulatory cells, and T follicular regulatory cells. In addition, the expression of immune activation markers HLA-DR and CD86 was decreased in OMS, while the expression of immune exhaustion markers TIM-3, PD-1, PD-L1, and VISTA was increased. Members of the T follicular helper (Tfh) cell family as well as classical and typical memory B cells were significantly increased in OMS individuals. We also found a strong correlation between memory B cells and Tfh cells. Discussion We conclude that OMS skews the host immune system towards the immunomodulatory arm and that the Tfh memory B cell axis is evident in OMS. Therefore, immune-directed therapies may be a promising alternative for eradication and recurrence of infection in OMS, particularly in individuals and areas where antibiotic resistance is a major concern.
Collapse
Affiliation(s)
- Jayagopi Surendar
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Roslind K. Hackenberg
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Fabio Schmitt-Sánchez
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Robert Ossendorff
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Kristian Welle
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Birgit Stoffel-Wagner
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Peter T. Sage
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Christof Burger
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Dieter C. Wirtz
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Andreas C. Strauss
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Frank A. Schildberg
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
45
|
Lindeman I, Høydahl LS, Christophersen A, Risnes LF, Jahnsen J, Lundin KEA, Sollid LM, Iversen R. Generation of circulating autoreactive pre-plasma cells fueled by naive B cells in celiac disease. Cell Rep 2024; 43:114045. [PMID: 38578826 DOI: 10.1016/j.celrep.2024.114045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/22/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
Autoantibodies against the enzyme transglutaminase 2 (TG2) are characteristic of celiac disease (CeD), and TG2-specific immunoglobulin (Ig) A plasma cells are abundant in gut biopsies of patients. Here, we describe the corresponding population of autoreactive B cells in blood. Circulating TG2-specific IgA cells are present in untreated patients on a gluten-containing diet but not in controls. They are clonally related to TG2-specific small intestinal plasma cells, and they express gut-homing molecules, indicating that they are plasma cell precursors. Unlike other IgA-switched cells, the TG2-specific cells are negative for CD27, placing them in the double-negative (IgD-CD27-) category. They have a plasmablast or activated memory B cell phenotype, and they harbor fewer variable region mutations than other IgA cells. Based on their similarity to naive B cells, we propose that autoreactive IgA cells in CeD are generated mainly through chronic recruitment of naive B cells via an extrafollicular response involving gluten-specific CD4+ T cells.
Collapse
Affiliation(s)
- Ida Lindeman
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Lene S Høydahl
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Asbjørn Christophersen
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Louise F Risnes
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Jørgen Jahnsen
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Knut E A Lundin
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Gastroenterology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Rasmus Iversen
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
| |
Collapse
|
46
|
Whitehill GD, Joy J, Marino FE, Krause R, Mallick S, Courtney H, Park K, Carey J, Hoh R, Hartig H, Pae V, Sarvadhavabhatla S, Donaire S, Deeks SG, Lynch RM, Lee SA, Bar KJ. Autologous neutralizing antibody responses after antiretroviral therapy in acute and early HIV-1. J Clin Invest 2024; 134:e176673. [PMID: 38652564 PMCID: PMC11142743 DOI: 10.1172/jci176673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUNDEarly antiretroviral therapy initiation (ARTi) in HIV-1 restricts reservoir size and diversity while preserving immune function, potentially improving opportunities for immunotherapeutic cure strategies. For antibody-based cure approaches, the development of autologous neutralizing antibodies (anAbs) after acute/early ARTi is relevant but is poorly understood.METHODSWe characterized antibody responses in a cohort of 23 participants following ARTi in acute HIV (<60 days after acquisition) and early HIV (60-128 days after acquisition).RESULTSPlasma virus sequences at the time of ARTi revealed evidence of escape from anAbs after early, but not acute, ARTi. HIV-1 envelopes representing the transmitted/founder virus(es) (acute ARTi) or escape variants (early ARTi) were tested for sensitivity to longitudinal plasma IgG. After acute ARTi, no anAb responses developed over months to years of suppressive ART. In 2 of the 3 acute ARTi participants who experienced viremia after ARTi, however, anAbs arose shortly thereafter. After early ARTi, anAbs targeting those early variants developed between 12 and 42 weeks of ART and continued to increase in breadth and potency thereafter.CONCLUSIONResults indicate a threshold of virus replication (~60 days) required to induce anAbs, after which they continue to expand on suppressive ART to better target the range of reservoir variants.TRIAL REGISTRATIONClinicalTrials.gov NCT02656511.FUNDINGNIH grants U01AI169767, R01AI162646, UM1AI164570, UM1AI164560, U19AI096109, K23GM112526, T32AI118684, P30AI045008, P30AI027763, R24AI067039; Gilead Sciences grant INUS2361354; Viiv Healthcare grant A126326.
Collapse
Affiliation(s)
| | - Jaimy Joy
- Department of Medicine, Division of Infectious Disease, and
| | | | - Ryan Krause
- Department of Medicine, Division of Infectious Disease, and
| | | | | | - Kyewon Park
- Center for AIDS Research, Virus and Reservoirs Technology Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Carey
- Center for AIDS Research, Virus and Reservoirs Technology Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rebecca Hoh
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, UCSF, San Francisco, California, USA
| | - Heather Hartig
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, UCSF, San Francisco, California, USA
| | - Vivian Pae
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, UCSF, San Francisco, California, USA
| | - Sannidhi Sarvadhavabhatla
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, UCSF, San Francisco, California, USA
| | - Sophia Donaire
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, UCSF, San Francisco, California, USA
| | - Steven G. Deeks
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, UCSF, San Francisco, California, USA
| | - Rebecca M. Lynch
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Sulggi A. Lee
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, UCSF, San Francisco, California, USA
| | - Katharine J. Bar
- Department of Medicine, Division of Infectious Disease, and
- Center for AIDS Research, Virus and Reservoirs Technology Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
47
|
Sharma S, Kumar N, Rouse BT, Sharma K, Chaubey KK, Singh S, Kumar P, Kumar P. The role, relevance and management of immune exhaustion in bovine infectious diseases. Heliyon 2024; 10:e28663. [PMID: 38596123 PMCID: PMC11002068 DOI: 10.1016/j.heliyon.2024.e28663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Immune exhaustion is a state of immune cell dysfunction that occurs most commonly following chronic exposure to an antigen which persists after the immune response fails to remove it. Exhaustion has been studied most thoroughly with several cancers, but has also been observed in several chronic infectious diseases. The topic has mainly been studied with CD8+ T cells, but it can also occur with CD4+ T cells and other immune cell types too. Exhaustion is characterized by a hierarchical loss of effector cell functions, up-regulation of immuno-inhibitory receptors, disruption of metabolic activities, and altered chromatin landscapes. Exhaustion has received minimal attention so far in diseases of veterinary significance and this review's purpose is to describe examples where immune exhaustion is occurring in several bovine disease situations. We also describe methodology to evaluate immune exhaustion as well as the prospects of controlling exhaustion and achieving a more suitable outcome of therapy in some chronic disease scenarios.
Collapse
Affiliation(s)
- Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India
| | - Naveen Kumar
- National Center for Veterinary Type Cultures, ICAR-NRC on Equines, Sirsa Road, Hisar, Haryana, 125001, India
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN, 37996-0845, USA
| | - Khushbu Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India
| | - Kundan Kumar Chaubey
- Department of Biotechnology, School of Basic and Applied Sciences, Sanskriti University, Mathura, Uttar Pradesh, 281 401, India
| | - ShoorVir Singh
- Department of Bio-technology, GLA University, Post-Chaumuhan, Dist. Mathura, Uttar Pradesh, 281 406, India
| | - Praveen Kumar
- Department of Veterinary Medicine, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India
| | - Pradeep Kumar
- Department of Veterinary Medicine, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India
| |
Collapse
|
48
|
Cotugno N, Neri A, Sanna M, Santilli V, Manno EC, Pascucci GR, Morrocchi E, Amodio D, Ruggiero A, Ciofi degl Atti ML, Barneschi I, Grappi S, Cocchi I, Giacomet V, Trabattoni D, Olivieri G, Bernardi S, O’Connor D, Montomoli E, Pollard AJ, Palma P. Children with perinatally acquired HIV exhibit distinct immune responses to 4CMenB vaccine. JCI Insight 2024; 9:e177182. [PMID: 38775152 PMCID: PMC11141905 DOI: 10.1172/jci.insight.177182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/05/2024] [Indexed: 06/02/2024] Open
Abstract
Children with perinatally acquired HIV (PHIV) have special vaccination needs, as they make suboptimal immune responses. Here, we evaluated safety and immunogenicity of 2 doses of 4-component group B meningococcal vaccine in antiretroviral therapy-treated children with PHIV and healthy controls (HCs). Assessments included the standard human serum bactericidal antibody (hSBA) assay and measurement of IgG titers against capsular group B Neisseria meningitidis antigens (fHbp, NHBA, NadA). The B cell compartment and vaccine-induced antigen-specific (fHbp+) B cells were investigated by flow cytometry, and gene expression was investigated by multiplexed real-time PCR. A good safety and immunogenicity profile was shown in both groups; however, PHIV demonstrated a reduced immunogenicity compared with HCs. Additionally, PHIV showed a reduced frequency of fHbp+ and an altered B cell subset distribution, with higher fHbp+ frequency in activated memory and tissue-like memory B cells. Gene expression analyses on these cells revealed distinct mechanisms between PHIV and HC seroconverters. Overall, these data suggest that PHIV presents a diverse immune signature following vaccination. The impact of such perturbation on long-term maintenance of vaccine-induced immunity should be further evaluated in vulnerable populations, such as people with PHIV.
Collapse
Affiliation(s)
- Nicola Cotugno
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine and
| | - Alessia Neri
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome “Tor Vergata,” Rome, Italy
| | - Marco Sanna
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Veronica Santilli
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Emma Concetta Manno
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giuseppe Rubens Pascucci
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome “Tor Vergata,” Rome, Italy
| | - Elena Morrocchi
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Donato Amodio
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine and
| | - Alessandra Ruggiero
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marta Luisa Ciofi degl Atti
- Unit of Epidemiology, Clinical Pathways and Clinical Risk, Medical Direction, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | | | - Ilaria Cocchi
- Paediatric Infectious Disease Unit, “Luigi Sacco” Hospital, and
| | - Vania Giacomet
- Paediatric Infectious Disease Unit, “Luigi Sacco” Hospital, and
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Giulio Olivieri
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome “Tor Vergata,” Rome, Italy
| | - Stefania Bernardi
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Daniel O’Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Emanuele Montomoli
- VisMederi Life Sciences Srl, Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Paolo Palma
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine and
| |
Collapse
|
49
|
Gao X, Shen Q, Roco JA, Dalton B, Frith K, Munier CML, Ballard FD, Wang K, Kelly HG, Nekrasov M, He JS, Jaeger R, Carreira P, Ellyard JI, Beattie L, Enders A, Cook MC, Zaunders JJ, Cockburn IA. Zeb2 drives the formation of CD11c + atypical B cells to sustain germinal centers that control persistent infection. Sci Immunol 2024; 9:eadj4748. [PMID: 38330097 DOI: 10.1126/sciimmunol.adj4748] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
CD11c+ atypical B cells (ABCs) are an alternative memory B cell lineage associated with immunization, infection, and autoimmunity. However, the factors that drive the transcriptional program of ABCs have not been identified, and the function of this population remains incompletely understood. Here, we identified candidate transcription factors associated with the ABC population based on a human tonsillar B cell single-cell dataset. We identified CD11c+ B cells in mice with a similar transcriptomic signature to human ABCs, and using an optimized CRISPR-Cas9 knockdown screen, we observed that loss of zinc finger E-box binding homeobox 2 (Zeb2) impaired ABC formation. Furthermore, ZEB2 haplo-insufficient Mowat-Wilson syndrome (MWS) patients have decreased circulating ABCs in the blood. In Cd23Cre/+Zeb2fl/fl mice with impaired ABC formation, ABCs were dispensable for efficient humoral responses after Plasmodium sporozoite immunization but were required to control recrudescent blood-stage malaria. Immune phenotyping revealed that ABCs drive optimal T follicular helper (TFH) cell formation and germinal center (GC) responses and they reside at the red/white pulp border, likely permitting better access to pathogen antigens for presentation. Collectively, our study shows that ABC formation is dependent on Zeb2, and these cells can limit recrudescent infection by sustaining GC reactions.
Collapse
Affiliation(s)
- Xin Gao
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Qian Shen
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Francis Crick Institute, London, UK
| | - Jonathan A Roco
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Becan Dalton
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Katie Frith
- Sydney Children's Hospital, Randwick, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, Australia
| | | | - Fiona D Ballard
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Ke Wang
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Hannah G Kelly
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Maxim Nekrasov
- Australian Cancer Research Foundation Biomolecular Resource Facility, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Jin-Shu He
- ANU Centre for Therapeutic Discovery, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Rebecca Jaeger
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Patricia Carreira
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Julia I Ellyard
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Anselm Enders
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Matthew C Cook
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - John J Zaunders
- Centre for Applied Medical Research, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Ian A Cockburn
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
50
|
Partey FD, Dowuona JNN, Pobee ANA, Walker MR, Aculley B, Prah DA, Ofori MF, Barfod LK. Atypical memory B cell frequency correlates with antibody breadth and function in malaria immune adults. Sci Rep 2024; 14:4888. [PMID: 38418831 PMCID: PMC10902325 DOI: 10.1038/s41598-024-55206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Clinical immunity to malaria develops slowly after repeated episodes of infection and antibodies are essential in naturally acquired immunity against malaria. However, chronic exposure to malaria has been linked to perturbation in B-cell homeostasis with the accumulation of atypical memory B cells. It is unclear how perturbations in B cell subsets influence antibody breadth, avidity, and function in individuals naturally exposed to malaria. We show that individuals living in high malaria transmission regions in Ghana have higher Plasmodium falciparum merozoite antigen-specific antibodies and an increased antibody breadth score but lower antibody avidities relative to low transmission regions. The frequency of circulating atypical memory B cells is positively associated with an individual's antibody breadth. In vitro growth inhibition is independent of the ability to bind to free merozoites but associated with the breadth of antibody reactivity in an individual. Taken together, our data shows that repeated malaria episodes hamper the development of high avid antibodies which is compensated for by an increase in antibody breadth. Our results provide evidence to reinforce the idea that in regions with high malaria prevalence, repeated malaria infections lead to the broadening of antibody diversity and the continued presence of atypical memory B cell populations.
Collapse
Affiliation(s)
| | | | | | - Melanie Rose Walker
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Belinda Aculley
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Diana Ahu Prah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Michael Fokuo Ofori
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Lea Klingenberg Barfod
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|