1
|
Dunn JLM, Szep A, Gonzalez Galan E, Zhang S, Marlman J, Caldwell JM, Troutman TD, Rothenberg ME. Eosinophil specialization is regulated by exposure to the esophageal epithelial microenvironment. J Leukoc Biol 2024; 116:1007-1020. [PMID: 38723185 PMCID: PMC11531809 DOI: 10.1093/jleuko/qiae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 08/31/2024] Open
Abstract
Distinct subsets of eosinophils are reported in inflammatory and healthy tissues, yet the functions of uniquely specialized eosinophils and the signals that elicit them, particularly in eosinophilic esophagitis, are not well understood. Herein, we report an ex vivo system wherein freshly isolated human eosinophils were cocultured with esophageal epithelial cells and disease-relevant proinflammatory (IL-13) or profibrotic (TGF-β) cytokines. Compared with untreated cocultures, IL-13 increased expression of CD69 on eosinophils, whereas TGF-β increased expression of CD81, CD62L, and CD25. Eosinophils from IL-13-treated cocultures demonstrated increased secretion of GRO-α, IL-8, and macrophage colony-stimulating factor and also generated increased extracellular peroxidase activity following activation. Eosinophils from TGF-β-treated cocultures secreted increased IL-6 and exhibited increased chemotactic response to CCL11 compared with eosinophils from untreated or IL-13-treated coculture conditions. When eosinophils from TGF-β-treated cocultures were cultured with fibroblasts, they upregulated SERPINE1 expression and fibronectin secretion by fibroblasts compared with eosinophils that were cultured with granulocyte macrophage colony-stimulating factor alone. Translational studies revealed that CD62L was heterogeneously expressed by eosinophils in patient biopsy specimens. Our results demonstrate that disease-relevant proinflammatory and profibrotic signals present in the esophagus of patients with eosinophilic esophagitis cause distinct profiles of eosinophil activation and gene expression.
Collapse
Affiliation(s)
- Julia L M Dunn
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - Andrea Szep
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - Emily Gonzalez Galan
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - Simin Zhang
- Department of Rheumatology, Allergy and Immunology, University of Cincinnati, 3230 Eden Avenue, Cincinnati, OH 45267, United States
| | - Justin Marlman
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - Julie M Caldwell
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - Ty D Troutman
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - Marc E Rothenberg
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| |
Collapse
|
2
|
FitzPatrick RD, Noone JR, Cartwright RA, Gatti DM, Brosschot TP, Lane JM, Jensen EL, Kroker Kimber I, Reynolds LA. Eosinophils respond to, but are not essential for control of an acute Salmonella enterica serovar Typhimurium infection in mice. Infect Immun 2024; 92:e0032524. [PMID: 39248486 PMCID: PMC11475665 DOI: 10.1128/iai.00325-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Eosinophils are a highly abundant cell type in the gastrointestinal tract during homeostatic conditions, where they have recently been reported to take on an activated phenotype following colonization by the bacterial microbiota. To date, there have been few studies investigating whether eosinophils respond to infection with enteric bacterial pathogens and/or investigating the requirements for eosinophils for effective bacterial pathogen control. In this study, we investigated the response of eosinophils to an acute enteric infection of mice with the bacterial pathogen Salmonella enterica serovar Typhimurium. We also assessed whether eosinophil deficiency impacted Salmonella burdens in the intestinal tract or impacted the systemic dissemination of Salmonella following an oral infection of littermate wild-type BALB/cJ and eosinophil-deficient ΔdblGATA BALB/cJ mice. We found comparable Salmonella burdens in the intestinal tract of wild-type and eosinophil-deficient mice and no significant differences in the levels of Salmonella disseminating to systemic organs within 3 days of infection. Despite our evidence suggesting that eosinophils are not an essential cell type for controlling bacterial burdens in this acute infection setting, we found higher levels of eosinophils in gut-draining lymph nodes following infection, indicating that eosinophils do respond to Salmonella infection. Our data contribute to the growing evidence that eosinophils are responsive to bacterial stimuli, yet the influence of and requirements for eosinophils during bacterial infection appear to be highly context-dependent.
Collapse
Affiliation(s)
- Rachael D. FitzPatrick
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Jonathan R. Noone
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Richard A. Cartwright
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Dominique M. Gatti
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Tara P. Brosschot
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Jenna M. Lane
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Erik L. Jensen
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Isabella Kroker Kimber
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Lisa A. Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
3
|
Zhu C, Weng Q, Gao S, Li F, Li Z, Wu Y, Wu Y, Li M, Zhao Y, Han Y, Lu W, Qin Z, Yu F, Lou J, Ying S, Shen H, Chen Z, Li W. TGF-β signaling promotes eosinophil activation in inflammatory responses. Cell Death Dis 2024; 15:637. [PMID: 39214980 PMCID: PMC11364686 DOI: 10.1038/s41419-024-07029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Eosinophils, traditionally associated with allergic phenomena, play a pivotal role in inflammatory responses. Despite accumulating evidence suggesting their pro-inflammatory function upon activation, the underlying mechanisms governing eosinophil activation remain incompletely characterized. In this study, we investigate the local activation of pulmonary and colon eosinophils within the inflammatory microenvironment. Leveraging transcriptional sequencing, we identify TGF-β as a putative regulator of eosinophil activation, leading to the secretion of granule proteins, including peroxidase. Genetic deletion of TGF-β receptors on eosinophils resulted in the inhibition of peroxidase synthesis, affirming the significance of TGF-β signaling in eosinophil activation. Using models of HDM-induced asthma and DSS-induced colitis, we demonstrate the indispensability of TGF-β-driven eosinophil activation in both disease contexts. Notably, while TGF-β signaling did not significantly influence asthmatic inflammation, its knockout conferred protection against experimental colitis. This study delineates a distinct pattern of eosinophil activation within inflammatory responses, highlighting the pivotal role of TGF-β signaling in regulating eosinophil behavior. These findings deepen our comprehension of eosinophil-related pathophysiology and may pave the way for targeted therapeutic approaches in allergic and inflammatory diseases.
Collapse
Affiliation(s)
- Chen Zhu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingyu Weng
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shenwei Gao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhouyang Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yinfang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanping Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Miao Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yun Zhao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yinling Han
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weina Lu
- Surgery Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhongnan Qin
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fangyi Yu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiafei Lou
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Songmin Ying
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- State Key Lab for Respiratory Diseases, Guangzhou, Guangdong, China.
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Migliorisi G, Mastrorocco E, Dal Buono A, Gabbiadini R, Pellegatta G, Spaggiari P, Racca F, Heffler E, Savarino EV, Bezzio C, Repici A, Armuzzi A. Eosinophils, Eosinophilic Gastrointestinal Diseases, and Inflammatory Bowel Disease: A Critical Review. J Clin Med 2024; 13:4119. [PMID: 39064159 PMCID: PMC11278413 DOI: 10.3390/jcm13144119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Inflammatory bowel disease (IBD) and eosinophilic gastrointestinal diseases (EGIDs) are complex, multifactorial chronic inflammatory disorders affecting the gastrointestinal tract. Their epidemiology, particularly for eosinophilic esophagitis (EoE), is increasing worldwide, with a rise in the co-diagnosis of IBD and EGIDs. Both disorders share common risk factors, such as early exposure to antibiotics or specific dietary habits. Moreover, from a molecular perspective, eosinophilic infiltration is crucial in the diagnosis of eosinophilic disorders, and it also plays a pivotal role in IBD histological diagnosis. Indeed, recent evidence highlights the significant role of eosinophils in the health of the intestinal mucosal barrier and as mediators between innate and acquired immunity, even indicating a potential role in IBD pathogenesis. This narrative review aims to summarize the current evidence regarding the common clinical and molecular aspects of EGIDs and IBD and the current state of knowledge regarding overlap conditions and their pathogenesis. METHODS Pubmed was searched until May 2023 to assess relevant studies describing the epidemiology, pathophysiology, and therapy of EGIDs in IBD. RESULTS The immune pathways and mechanisms underlying both EGIDs and IBD remain partially known. An improved understanding of the role of eosinophils in overlapping conditions could lead to enhanced diagnostic precision, the development of more effective future therapeutic strategies, and a more accurate prediction of patient response. Consequently, the identification of red flags indicative of an eosinophilic disorder in IBD patients is of paramount importance and must be evaluated on a case-by-case basis.
Collapse
Affiliation(s)
- Giulia Migliorisi
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (G.M.); (E.M.); (A.D.B.); (R.G.); (C.B.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (G.P.); (F.R.); (E.H.); (A.R.)
| | - Elisabetta Mastrorocco
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (G.M.); (E.M.); (A.D.B.); (R.G.); (C.B.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (G.P.); (F.R.); (E.H.); (A.R.)
| | - Arianna Dal Buono
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (G.M.); (E.M.); (A.D.B.); (R.G.); (C.B.)
| | - Roberto Gabbiadini
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (G.M.); (E.M.); (A.D.B.); (R.G.); (C.B.)
| | - Gaia Pellegatta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (G.P.); (F.R.); (E.H.); (A.R.)
- Endoscopic Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Paola Spaggiari
- Department of Pathology, Humanitas Research Hospital, 20089 Rozzano, Italy;
| | - Francesca Racca
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (G.P.); (F.R.); (E.H.); (A.R.)
- Personalized Medicine, Asthma and Allergy, IRCCS—Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (G.P.); (F.R.); (E.H.); (A.R.)
- Personalized Medicine, Asthma and Allergy, IRCCS—Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology, Department of Medical and Surgical Specialties, University of Padua, 35122 Padova, Italy;
| | - Cristina Bezzio
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (G.M.); (E.M.); (A.D.B.); (R.G.); (C.B.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (G.P.); (F.R.); (E.H.); (A.R.)
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (G.P.); (F.R.); (E.H.); (A.R.)
- Endoscopic Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Alessandro Armuzzi
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (G.M.); (E.M.); (A.D.B.); (R.G.); (C.B.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (G.P.); (F.R.); (E.H.); (A.R.)
| |
Collapse
|
5
|
Arnold IC, Munitz A. Spatial adaptation of eosinophils and their emerging roles in homeostasis, infection and disease. Nat Rev Immunol 2024:10.1038/s41577-024-01048-y. [PMID: 38982311 DOI: 10.1038/s41577-024-01048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/11/2024]
Abstract
Eosinophils are bone marrow-derived granulocytes that are traditionally associated with type 2 immune responses, such as those that occur during parasite infections and allergy. Emerging evidence demonstrates the remarkable functional plasticity of this elusive cell type and its pleiotropic functions in diverse settings. Eosinophils broadly contribute to tissue homeostasis, host defence and immune regulation, predominantly at mucosal sites. The scope of their activities primarily reflects the breadth of their portfolio of secreted mediators, which range from cytotoxic cationic proteins and reactive oxygen species to multiple cytokines, chemokines and lipid mediators. Here, we comprehensively review basic eosinophil biology that is directly related to their activities in homeostasis, protective immunity, regeneration and cancer. We examine how dysregulation of these functions contributes to the physiopathology of a broad range of inflammatory diseases. Furthermore, we discuss recent findings regarding the tissue compartmentalization and adaptation of eosinophils, shedding light on the factors that likely drive their functional diversification within tissues.
Collapse
Affiliation(s)
- Isabelle C Arnold
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| |
Collapse
|
6
|
Gigon L, Müller P, Haenni B, Iacovache I, Barbo M, Gosheva G, Yousefi S, Soragni A, von Ballmoos C, Zuber B, Simon HU. Membrane damage by MBP-1 is mediated by pore formation and amplified by mtDNA. Cell Rep 2024; 43:114084. [PMID: 38583154 DOI: 10.1016/j.celrep.2024.114084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/28/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Eosinophils play a crucial role in host defense while also contributing to immunopathology through the release of inflammatory mediators. Characterized by distinctive cytoplasmic granules, eosinophils securely store and rapidly release various proteins exhibiting high toxicity upon extracellular release. Among these, major basic protein 1 (MBP-1) emerges as an important mediator in eosinophil function against pathogens and in eosinophil-associated diseases. While MBP-1 targets both microorganisms and host cells, its precise mechanism remains elusive. We demonstrate that formation of small pores by MBP-1 in lipid bilayers induces membrane permeabilization and disrupts potassium balance. Additionally, we reveal that mitochondrial DNA (mtDNA) present in eosinophil extracellular traps (EETs) amplifies MBP-1 toxic effects, underscoring the pivotal role of mtDNA in EETs. Furthermore, we present evidence indicating that absence of CpG methylation in mtDNA contributes to the regulation of MBP-1-mediated toxicity. Taken together, our data suggest that the mtDNA scaffold within extracellular traps promotes MBP-1 toxicity.
Collapse
Affiliation(s)
- Lea Gigon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Philipp Müller
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Beat Haenni
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Ioan Iacovache
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Maruša Barbo
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Gordana Gosheva
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Alice Soragni
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christoph von Ballmoos
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, 16816 Neuruppin, Germany.
| |
Collapse
|
7
|
Ding J, Garber JJ, Uchida A, Lefkovith A, Carter GT, Vimalathas P, Canha L, Dougan M, Staller K, Yarze J, Delorey TM, Rozenblatt-Rosen O, Ashenberg O, Graham DB, Deguine J, Regev A, Xavier RJ. An esophagus cell atlas reveals dynamic rewiring during active eosinophilic esophagitis and remission. Nat Commun 2024; 15:3344. [PMID: 38637492 PMCID: PMC11026436 DOI: 10.1038/s41467-024-47647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Coordinated cell interactions within the esophagus maintain homeostasis, and disruption can lead to eosinophilic esophagitis (EoE), a chronic inflammatory disease with poorly understood pathogenesis. We profile 421,312 individual cells from the esophageal mucosa of 7 healthy and 15 EoE participants, revealing 60 cell subsets and functional alterations in cell states, compositions, and interactions that highlight previously unclear features of EoE. Active disease displays enrichment of ALOX15+ macrophages, PRDM16+ dendritic cells expressing the EoE risk gene ATP10A, and cycling mast cells, with concomitant reduction of TH17 cells. Ligand-receptor expression uncovers eosinophil recruitment programs, increased fibroblast interactions in disease, and IL-9+IL-4+IL-13+ TH2 and endothelial cells as potential mast cell interactors. Resolution of inflammation-associated signatures includes mast and CD4+ TRM cell contraction and cell type-specific downregulation of eosinophil chemoattractant, growth, and survival factors. These cellular alterations in EoE and remission advance our understanding of eosinophilic inflammation and opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jiarui Ding
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Computer Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - John J Garber
- Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Amiko Uchida
- Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ariel Lefkovith
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Grace T Carter
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Praveen Vimalathas
- Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Lauren Canha
- Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Michael Dougan
- Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kyle Staller
- Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Joseph Yarze
- Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Toni M Delorey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Genentech, South San Francisco, CA, 94080, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Daniel B Graham
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Jacques Deguine
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
- Genentech, South San Francisco, CA, 94080, USA.
| | - Ramnik J Xavier
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
8
|
Kurihara S, Suzuki K, Yokota M, Ito T, Hayashi Y, Kikuchi R, Kageyama T, Meguro K, Tanaka S, Iwata A, Goto Y, Suto A, Nakajima H. Eosinophils Contribute to Oral Tolerance via Induction of RORγt-Positive Antigen-Presenting Cells and RORγt-Positive Regulatory T Cells. Biomolecules 2024; 14:89. [PMID: 38254689 PMCID: PMC10813120 DOI: 10.3390/biom14010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Oral tolerance has been defined as the specific suppression of immune responses to an antigen by prior oral administration of the antigen. It has been thought to serve to suppress food allergy. Previous studies have shown that dendritic cells (DCs) and regulatory T cells (Tregs) are involved in the induction of oral tolerance. However, the detailed mechanisms of Treg induction in oral tolerance remain largely unknown. Eosinophils have been recognized as effector cells in allergic diseases, but in recent years, the diverse functions of tissue-resident eosinophils have been reported. Eosinophils in the intestine have been reported to induce Tregs by releasing TGF-β, but the role of eosinophils in oral tolerance is still controversial. In this study, we analyzed the roles of eosinophils in oral tolerance using eosinophil-deficient ΔdblGATA mice (mice lacking a high-affinity GATA-binding site in the GATA1 promoter). ΔdblGATA mice showed impaired antigen-induced oral tolerance compared to wild-type mice. The induction of RORγt+ Tregs in mesenteric lymph nodes (MLNs) by oral tolerance induction was impaired in ΔdblGATA mice compared to wild-type mice. An increase in RORγt+ antigen-presenting cells (APCs), which are involved in RORγt+ Treg differentiation, in the intestine and MLNs was not seen in ΔdblGATA mice. Notably, the expansion of group 3 innate lymphoid cells (ILC3s), a subset of RORγt+ APCs, by oral tolerance induction was seen in wild-type mice but not ΔdblGATA mice. These results suggest that eosinophils are crucial in the induction of oral tolerance, possibly via the induction of RORγt+ APCs and RORγt+ Tregs.
Collapse
Affiliation(s)
- Shunjiro Kurihara
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan; (S.K.); (T.I.); (R.K.); (T.K.); (K.M.); (S.T.); (A.I.); (A.S.)
| | - Kotaro Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan; (S.K.); (T.I.); (R.K.); (T.K.); (K.M.); (S.T.); (A.I.); (A.S.)
| | - Masaya Yokota
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan; (S.K.); (T.I.); (R.K.); (T.K.); (K.M.); (S.T.); (A.I.); (A.S.)
| | - Takashi Ito
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan; (S.K.); (T.I.); (R.K.); (T.K.); (K.M.); (S.T.); (A.I.); (A.S.)
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba 260-8670, Japan;
| | - Yuki Hayashi
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan; (S.K.); (T.I.); (R.K.); (T.K.); (K.M.); (S.T.); (A.I.); (A.S.)
| | - Ryo Kikuchi
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan; (S.K.); (T.I.); (R.K.); (T.K.); (K.M.); (S.T.); (A.I.); (A.S.)
| | - Takahiro Kageyama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan; (S.K.); (T.I.); (R.K.); (T.K.); (K.M.); (S.T.); (A.I.); (A.S.)
| | - Kazuyuki Meguro
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan; (S.K.); (T.I.); (R.K.); (T.K.); (K.M.); (S.T.); (A.I.); (A.S.)
| | - Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan; (S.K.); (T.I.); (R.K.); (T.K.); (K.M.); (S.T.); (A.I.); (A.S.)
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan; (S.K.); (T.I.); (R.K.); (T.K.); (K.M.); (S.T.); (A.I.); (A.S.)
| | - Yoshiyuki Goto
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba 260-8670, Japan;
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8670, Japan
- Division of Pandemic and Post-Disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba 260-8670, Japan
- Division of Infectious Disease Vaccine R&D, Research Institute of Disaster Medicine, Chiba University, Chiba 260-8670, Japan
| | - Akira Suto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan; (S.K.); (T.I.); (R.K.); (T.K.); (K.M.); (S.T.); (A.I.); (A.S.)
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan; (S.K.); (T.I.); (R.K.); (T.K.); (K.M.); (S.T.); (A.I.); (A.S.)
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba 260-8670, Japan;
| |
Collapse
|
9
|
Oylumlu E, Uzel G, Durmus L, Ciraci C. IgE Immune Complexes Mitigate Eosinophilic Immune Responses through NLRC4 Inflammasome. Mediators Inflamm 2023; 2023:3224708. [PMID: 37885469 PMCID: PMC10599938 DOI: 10.1155/2023/3224708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Immune complexes (ICs) skew immune responses toward either a pro- or anti-inflammatory direction based on the type of stimulation. Immunoglobulin E (IgE) is associated with Th2 immune responses and known to activate innate immune cells. However, roles of antigen (Ag)-specific-IgE ICs in regulating human eosinophil responses remain elusive; therefore, this study builts upon the mechanism of which ovalbumin (Ova)-IgE ICs affects eosinophilic responses utilizing human EoL-1 cell line as a model. Eosinophils are granulocytes functioning through pattern recognition receptors (PRRs) and destructive granule contents in allergic inflammation and parasitic infections. One of the PRRs that eosinophils express is NLRC4, a member of the CARD domain containing nucleotide-binding oligomerization (NOD)-like receptor (NLR) family. Upon recognition of its specific ligand flagellin, NLRC4 inflammasome is formed and leads to the release of interleukin-1β (IL-1β). We exhibited that Ova-IgE ICs induced the NLRC4-inflammasome components, including NLRC4, caspase-1, intracellular IL-1β, and secretion of IL-1β, as well as the granule contents MMP9, TIMP1, and TIMP2 proteins via TLR2 signaling; these responses were suppressed, when NLRC4 inflammasome got actived in the presence of ICs. Furthermore, Ova-IgE ICs induced mRNA expressions of MMP9, TIMP2, and ECP and protein expressions of MMP9 and TIMP2 in EoL-1 through FcɛRII. Interestingly, TLR2 ligand and Ova-IgE ICs costimulation elevated the number of CD63+ cells, a degranulation marker, as compared to the native IgE. Collectively, our findings provide a mechanism for the impacts of Ova-IgE ICs on eosinophilic responses via NLRC4-inflammasome and may help understand eosinophil-associated diseases, including chronic eosinophilic pneumonia, eosinophilic esophagitis, eosinophilic granulomatosis, parasitic infections, allergy, and asthma.
Collapse
Affiliation(s)
- Ece Oylumlu
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul 34469, Turkey
| | - Goksu Uzel
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul 34469, Turkey
| | - Lubeyne Durmus
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ceren Ciraci
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul 34469, Turkey
| |
Collapse
|
10
|
Li Y, Liu S, Zhou K, Wang Y, Chen Y, Hu W, Li S, Li H, Wang Y, Wang Q, He D, Xu H. Neuromedin U programs eosinophils to promote mucosal immunity of the small intestine. Science 2023; 381:1189-1196. [PMID: 37708282 DOI: 10.1126/science.ade4177] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
Eosinophils are granulocytes that play an essential role in type 2 immunity and regulate multiple homeostatic processes in the small intestine (SI). However, the signals that regulate eosinophil activity in the SI at steady state remain poorly understood. Through transcriptome profiling of eosinophils from various mouse tissues, we found that a subset of SI eosinophils expressed neuromedin U (NMU) receptor 1 (NMUR1). Fate-mapping analyses showed that NMUR1 expression in SI eosinophils was programmed by the local microenvironment and further enhanced by inflammation. Genetic perturbation and eosinophil-organoid coculture experiments revealed that NMU-mediated eosinophil activation promotes goblet cell differentiation. Thus, NMU regulates epithelial cell differentiation and barrier immunity by stimulating NMUR1-expressing eosinophils in the SI, which highlights the importance of neuroimmune-epithelial cross-talk in maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Yu Li
- School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Shaorui Liu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Kewen Zhou
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yinsheng Wang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yan Chen
- Center for Inflammatory Bowel Diseases, Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Wen Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Shuyan Li
- Department of Nursing, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Hui Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yan Wang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Qiuying Wang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Danyang He
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Heping Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
11
|
Wang Y, He C, Xin S, Liu X, Zhang S, Qiao B, Shang H, Gao L, Xu J. A Deep View of the Biological Property of Interleukin-33 and Its Dysfunction in the Gut. Int J Mol Sci 2023; 24:13504. [PMID: 37686309 PMCID: PMC10487440 DOI: 10.3390/ijms241713504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Intestinal diseases have always posed a serious threat to human health, with inflammatory bowel disease (IBD) being one of them. IBD is an autoimmune disease characterized by chronic inflammation, including ulcerative colitis (UC) and Crohn's disease (CD). The "alarm" cytokine IL-33, which is intimately associated with Th2 immunity, is a highly potent inflammatory factor that is considered to have dual functions-operating as both a pro-inflammatory cytokine and a transcriptional regulator. IL-33 has been shown to play a crucial role in both the onset and development of IBD. Therefore, this review focuses on the pathogenesis of IBD, the major receptor cell types, and the activities of IL-33 in innate and adaptive immunity, as well as its underlying mechanisms and conflicting conclusions in IBD. We have also summarized different medicines targeted to IL-33-associated diseases. Furthermore, we have emphasized the role of IL-33 in gastrointestinal cancer and parasitic infections, giving novel prospective therapeutic utility in the future application of IL-33.
Collapse
Affiliation(s)
- Yi Wang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.W.); (S.Z.); (B.Q.)
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.); (X.L.)
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.); (X.L.)
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.); (X.L.)
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.W.); (S.Z.); (B.Q.)
| | - Boya Qiao
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.W.); (S.Z.); (B.Q.)
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing 100069, China;
| | - Lei Gao
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.); (X.L.)
| |
Collapse
|
12
|
Uzel G, Oylumlu E, Durmus L, Ciraci C. Duality of Valproic Acid Effects on Inflammation, Oxidative Stress and Autophagy in Human Eosinophilic Cells. Int J Mol Sci 2023; 24:13446. [PMID: 37686250 PMCID: PMC10487571 DOI: 10.3390/ijms241713446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Eosinophils function in rapid innate immune responses and allergic reactions. Recent research has raised the possibility that the histone deacetylase inhibitor valproic acid (VPA) may be a promising therapeutic agent for treatment of allergic responses and certain cancers. However, its effects on eosinophils remain unclear. Utilizing the EoL-1 human eosinophil cell line as a model, we investigated the effects of VPA on oxidative stress- and autophagy-mediated immune responses. We found that VPA induced reactive oxidative species (ROS) generation and eosinophil activation without affecting cell viability. Moreover, VPA treatment suppressed the negative regulator of antioxidant transcription factor Nrf2, which is known to activate antioxidant defense. Interestingly, VPA was able to increase autophagic markers, as well as NLRP3 and NLRC4 mRNA activation, in Eol-1 cells in a dose-dependent manner. Collectively, our results indicate that VPA could increase the severity of allergic responses, and if so, it clearly would not be a suitable drug for the treatment of allergic reactions. However, VPA does have the potential to induce autophagy and to regulate the inflammatory responses via inflammasome-driven caspase-1 deactivation in a dose-dependent manner.
Collapse
Affiliation(s)
| | | | | | - Ceren Ciraci
- Molecular Biology and Genetics Department, Istanbul Technical University, 34469 Istanbul, Turkey; (G.U.); (E.O.); (L.D.)
| |
Collapse
|
13
|
Jacobse J, Aziz Z, Sun L, Chaparro J, Pilat JM, Kwag A, Buendia M, Wimbiscus M, Nasu M, Saito T, Mine S, Orita H, Revetta F, Short SP, Kay Washington M, Hiremath G, Gibson MK, Coburn LA, Koyama T, Goettel JA, Williams CS, Choksi YA. Eosinophils Exert Antitumorigenic Effects in the Development of Esophageal Squamous Cell Carcinoma. Cell Mol Gastroenterol Hepatol 2023; 16:961-983. [PMID: 37574015 PMCID: PMC10630122 DOI: 10.1016/j.jcmgh.2023.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND AND AIMS Eosinophils are present in several solid tumors and have context-dependent function. Our aim is to define the contribution of eosinophils in esophageal squamous cell carcinoma (ESCC), as their role in ESCC is unknown. METHODS Eosinophils were enumerated in tissues from 2 ESCC cohorts. Mice were treated with 4-NQO for 8 weeks to induce precancer or 16 weeks to induce carcinoma. The eosinophil number was modified by a monoclonal antibody to interleukin-5 (IL5mAb), recombinant IL-5 (rIL-5), or genetically with eosinophil-deficient (ΔdblGATA) mice or mice deficient in eosinophil chemoattractant eotaxin-1 (Ccl11-/-). Esophageal tissue and eosinophil-specific RNA sequencing was performed to understand eosinophil function. Three-dimensional coculturing of eosinophils with precancer or cancer cells was done to ascertain direct effects of eosinophils. RESULTS Activated eosinophils are present in higher numbers in early-stage vs late-stage ESCC. Mice treated with 4-NQO exhibit more esophageal eosinophils in precancer vs cancer. Correspondingly, epithelial cell Ccl11 expression is higher in mice with precancer. Eosinophil depletion using 3 mouse models (Ccl11-/- mice, ΔdblGATA mice, IL5mAb treatment) all display exacerbated 4-NQO tumorigenesis. Conversely, treatment with rIL-5 increases esophageal eosinophilia and protects against precancer and carcinoma. Tissue and eosinophil RNA sequencing revealed eosinophils drive oxidative stress in precancer. In vitro coculturing of eosinophils with precancer or cancer cells resulted in increased apoptosis in the presence of a degranulating agent, which is reversed with NAC, a reactive oxygen species scavenger. ΔdblGATA mice exhibited increased CD4 T cell infiltration, IL-17, and enrichment of IL-17 protumorigenic pathways. CONCLUSION Eosinophils likely protect against ESCC through reactive oxygen species release during degranulation and suppression of IL-17.
Collapse
Affiliation(s)
- Justin Jacobse
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands; Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Research and Development, Veterans Affairs Tennessee Valley Health System, Nashville, Tennessee
| | - Zaryab Aziz
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lili Sun
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jasmine Chaparro
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jennifer M Pilat
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Aaron Kwag
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matthew Buendia
- Division of Gastroenterology, Department of Pediatrics, Hepatology, and Nutrition, Nashville, Tennessee
| | - Mae Wimbiscus
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Motomi Nasu
- Department of Esophageal and Gastroenterological Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan; International Collaborative Research Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinji Mine
- Department of Esophageal and Gastroenterological Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hajime Orita
- Department of Esophageal and Gastroenterological Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan; International Collaborative Research Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Frank Revetta
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sarah P Short
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - M Kay Washington
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Girish Hiremath
- Division of Gastroenterology, Department of Pediatrics, Hepatology, and Nutrition, Nashville, Tennessee
| | - Michael K Gibson
- Department of Internal Medicine, Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Hematology/Oncology, Department of Internal Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lori A Coburn
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Research and Development, Veterans Affairs Tennessee Valley Health System, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tatsuki Koyama
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeremy A Goettel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christopher S Williams
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Research and Development, Veterans Affairs Tennessee Valley Health System, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology and Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville Tennessee
| | - Yash A Choksi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Research and Development, Veterans Affairs Tennessee Valley Health System, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
14
|
Cabrera López C, Sánchez Santos A, Lemes Castellano A, Cazorla Rivero S, Breña Atienza J, González Dávila E, Celli B, Casanova Macario C. Eosinophil Subtypes in Adults with Asthma and Adults with Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2023; 208:155-162. [PMID: 37071848 DOI: 10.1164/rccm.202301-0149oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/18/2023] [Indexed: 04/20/2023] Open
Abstract
Rationale: There is a differential response to eosinophilic modulation between patients with asthma and those with chronic obstructive pulmonary disease (COPD). There is also evidence of different subtypes of eosinophils in murine models. However, no study has compared eosinophil subtypes in individuals with COPD and in those with asthma. Objectives: Study the differences in eosinophils subtypes based in the surface protein expression in COPD patients and asthmatic patients. Methods: We studied 10 stable subjects in each of four groups: subjects with COPD, subjects with asthma, smokers without COPD, and healthy volunteers. Subjects with COPD and those with asthma were matched by age, sex, and FEV1% predicted. The following variables were determined: anthropometrics, smoking, exacerbation history, medication use, lung function, and comorbidities. Using flow cytometry and confocal microscopy from blood samples, we determined differences in eosinophil surface proteins and classified them as 1) resident eosinophils (Siglec-8+CD62L+IL-3Rlo) or 2) inflammatory eosinophils (iEos; Siglec-8+CD62LloIL-3Rhi). IL-5 receptor was also determined. Findings were validated in 59 patients with COPD and in 17 patients with asthma. Measurements and Main Results: Patients with asthma had a higher proportion of iEos (25 ± 15%) compared with those with COPD (0.5 ± 1%), smokers without COPD (0.14 ± 0.24%), and healthy volunteers (0.67 ± 1.72%). In patients with asthma, the proportion of iEos was independent of total eosinophil number. iEos had more IL-5 receptors than resident eosinophils (777.02 ± 124.55 vs. 598.35 ± 318.69; P < 0.01). In patients with COPD, there was no relation between iEos number and inhaled corticosteroid use, disease severity, or exacerbations rate. The findings in patients with COPD and those with asthma were confirmed in validation cohorts. Conclusions: There are differences in the subtypes of circulating eosinophils between patients with asthma and those with COPD. This could have clinical implications in the interpretation of eosinophil significance and the approach to therapy in these patients.
Collapse
Affiliation(s)
| | | | - Angelina Lemes Castellano
- Hematology Service, University Hospital of Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Sara Cazorla Rivero
- Research Unit, and
- Research Unit, La Candelaria University Hospital, Santa Cruz de Tenerife, Spain
| | - Joaquín Breña Atienza
- Hematology Service, La Candelaria University Hospital, Santa Cruz de Tenerife, Spain
| | - Enrique González Dávila
- Mathemathics, Statistics and Operations Research Department, IMAULL Institute, La Laguna University, San Cristóbal de La Laguna, Spain
| | - Bartolomé Celli
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts; and
| | - Ciro Casanova Macario
- Pulmonary Department, Research Unit, La Candelaria University Hospital, La Laguna University, Carlos III Health Institute Biomedical Research Center, San Cristóbal de La Laguna, Spain
| |
Collapse
|
15
|
Gurtner A, Crepaz D, Arnold IC. Emerging functions of tissue-resident eosinophils. J Exp Med 2023; 220:e20221435. [PMID: 37326974 PMCID: PMC10276195 DOI: 10.1084/jem.20221435] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
Eosinophils are typically considered tissue-damaging effector cells in type 2 immune-related diseases. However, they are also increasingly recognized as important modulators of various homeostatic processes, suggesting they retain the ability to adapt their function to different tissue contexts. In this review, we discuss recent progress in our understanding of eosinophil activities within tissues, with particular emphasis on the gastrointestinal tract, where a large population of these cells resides under non-inflammatory conditions. We further examine evidence of their transcriptional and functional heterogeneity and highlight environmental signals emerging as key regulators of their activities, beyond classical type 2 cytokines.
Collapse
Affiliation(s)
- Alessandra Gurtner
- Institute of Experimental Immunology, University of Zürich , Zürich, Switzerland
| | - Daniel Crepaz
- Institute of Experimental Immunology, University of Zürich , Zürich, Switzerland
| | - Isabelle C Arnold
- Institute of Experimental Immunology, University of Zürich , Zürich, Switzerland
| |
Collapse
|
16
|
Jacobse J, Aziz Z, Sun L, Chaparro J, Pilat JM, Kwag A, Buendia M, Wimbiscus M, Nasu M, Saito T, Mine S, Orita H, Revetta F, Short SP, Washington MK, Hiremath G, Gibson MK, Coburn L, Koyama T, Goettel JA, Williams CS, Choksi YA. Eosinophils exert direct and indirect anti-tumorigenic effects in the development of esophageal squamous cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543287. [PMID: 37333285 PMCID: PMC10274643 DOI: 10.1101/2023.06.01.543287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background/Aims Eosinophils are present in several solid tumors and have context-dependent function. Our aim is to define the contribution of eosinophils in esophageal squamous cell carcinoma (ESCC), since their role in ESCC is unknown. Methods Eosinophils were enumerated in tissues from two ESCC cohorts. Mice were treated with 4-nitroquinolone-1-oxide (4-NQO) for 8 weeks to induce pre-cancer or 16 weeks to induce carcinoma. Eosinophil number was modified by monoclonal antibody to IL-5 (IL5mAb), recombinant IL-5 (rIL-5), or genetically with eosinophil-deficient (ΔdblGATA) mice or mice deficient in eosinophil chemoattractant eotaxin-1 ( Ccl11 -/- ). Esophageal tissue and eosinophil specific RNA-sequencing was performed to understand eosinophil function. 3-D co-culturing of eosinophils with pre-cancer or cancer cells was done to ascertain direct effects of eosinophils. Results Activated eosinophils are present in higher numbers in early stage versus late stage ESCC. Mice treated with 4-NQO exhibit more esophageal eosinophils in pre-cancer versus cancer. Correspondingly, epithelial cell Ccl11 expression is higher in mice with pre-cancer. Eosinophil depletion using three mouse models ( Ccl11 -/- mice, ΔdblGATA mice, IL5mAb treatment) all display exacerbated 4-NQO tumorigenesis. Conversely, treatment with rIL-5 increases esophageal eosinophilia and protects against pre-cancer and carcinoma. Tissue and eosinophil RNA-sequencing revealed eosinophils drive oxidative stress in pre-cancer. In vitro co-culturing of eosinophils with pre-cancer or cancer cells resulted in increased apoptosis in the presence of a degranulating agent, which is reversed with N-acetylcysteine, a reactive oxygen species (ROS) scavenger. ΔdblGATA mice exhibited increased CD4 T cell infiltration, IL-17, and enrichment of IL-17 pro-tumorigenic pathways. Conclusion Eosinophils likely protect against ESCC through ROS release during degranulation and suppression of IL-17.
Collapse
|
17
|
Larsson H, Albinsson Högberg S, Lind M, Rabe H, Lingblom C. Investigating immune profile by CyTOF in individuals with long-standing type 1 diabetes. Sci Rep 2023; 13:8171. [PMID: 37210405 DOI: 10.1038/s41598-023-35300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by T-cell mediated destruction of pancreatic beta cells. Eosinophils are found in pancreatic tissue from individuals with T1D. Eosinophilic suppression of T cells is dependent of the protein galectin-10. Little is known when it comes to the role of eosinophil granulocytes in type 1 diabetes. Here we show that individuals with long-standing T1D had lower levels of galectin-10hi eosinophils and a subgroup of galectin-10hi eosinophils were entirely absent in all T1D patients. In addition, 7% immature eosinophils were present in the circulation of T1D patients whereas 0.8% in healthy individuals. Furthermore, higher levels of CD4+CD8+ T cells and Th17 cells were observed in patients with T1D. Blood samples from 12 adult individuals with long-standing T1D and 12 healthy individuals were compared using cytometry by time-of-flight. Lower levels of galectin-10hi eosinophils, which are potent T cell suppressors, in individuals with T1D could indicate that activated T cells are enabled to unrestrictedly kill the insulin producing beta cells. This is the first study showing absence of galectin-10hi eosinophilic subgroup in individuals with T1D compared with healthy controls. This study is a first important step toward unraveling the role of the eosinophils in patients with T1D.
Collapse
Affiliation(s)
- Helen Larsson
- Department of ENT, Head and Neck Surgery, NU Hospital Group, Trollhättan, Sweden
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Sofie Albinsson Högberg
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, 41346, Göteborg, Sweden
| | - Marcus Lind
- Department of Medicine, NU Hospital Group, Uddevalla, Trollhättan, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- Department of Medicine, Sahlgrenska University Hospital, Göteborg, Region Västra Götaland, Sweden
| | - Hardis Rabe
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, 41346, Göteborg, Sweden
- RISE Research Institutes of Sweden, Bioscience and Materials, Göteborg, Sweden
| | - Christine Lingblom
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, 41346, Göteborg, Sweden.
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Göteborg, Region Västra Götaland, Sweden.
| |
Collapse
|
18
|
Kabat AM, Pearce EL, Pearce EJ. Metabolism in type 2 immune responses. Immunity 2023; 56:723-741. [PMID: 37044062 PMCID: PMC10938369 DOI: 10.1016/j.immuni.2023.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023]
Abstract
The immune response is tailored to the environment in which it takes place. Immune cells sense and adapt to changes in their surroundings, and it is now appreciated that in addition to cytokines made by stromal and epithelial cells, metabolic cues provide key adaptation signals. Changes in immune cell activation states are linked to changes in cellular metabolism that support function. Furthermore, metabolites themselves can signal between as well as within cells. Here, we discuss recent progress in our understanding of how metabolic regulation relates to type 2 immunity firstly by considering specifics of metabolism within type 2 immune cells and secondly by stressing how type 2 immune cells are integrated more broadly into the metabolism of the organism as a whole.
Collapse
Affiliation(s)
- Agnieszka M Kabat
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erika L Pearce
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Edward J Pearce
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| |
Collapse
|
19
|
Zhang T, Zhang B, Ma X, Zhang J, Wei Y, Wang F, Tang X. Research trends in the field of the gut-brain interaction: Functional dyspepsia in the spotlight – An integrated bibliometric and science mapping approach. Front Neurosci 2023; 17:1109510. [PMID: 36968499 PMCID: PMC10035075 DOI: 10.3389/fnins.2023.1109510] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/22/2023] [Indexed: 03/10/2023] Open
Abstract
ObjectivesThis study aims to perform a bibliometric analysis of functional dyspepsia (FD), which includes visualizing bibliographic information, in order to identify prevailing study themes, topics of interest, contributing journals, countries, institutions, and authors as well as co-citation patterns.MethodsThe Web of Science™ Core Collection Database was used to retrieve all peer-reviewed scientific publications related to FD research. The validated search terms were entered into the “title” and “author keywords” fields, and the results were sorted by publication year from 2006 to 2022. There were no restrictions on language. On 12 February 2023, a manual export of the complete metadata for each original publication and review article was performed. CiteSpace was used to reveal co-authorship, publication, and co-citation patterns to find prominent authors, organizations, countries, and journals in FD research as well as to identify author keywords with strong citation bursts, which could indicate an emerging research area. VOSviewer was used to build the co-occurrence indicator (co-word) to identify the main author keywords on which previous studies focused and to induce clustered scientific landscape for two consecutive periods to identify intriguing areas for future research.ResultsA search of the database retrieved 2,957 documents. There was a wave-like pattern in the number of publications until 2017, after which there was a spike in publication volume. The USA, China, and Japan provided the majority of contributions. In terms of institution, Mayo Clin, Univ Newcastle, and Katholieke Univ Leuven were found to be the prolific institutions. Additionally, the results indicate that eastern Asian researchers contributed significantly to the global knowledge of literature that led other countries; however, Canada, the USA, Australia, England, and Germany were found to have the highest degree of betweenness centrality. Nicholas J. Talley, Jan Tack, Gerald Holtmann, Michael Camilleri, Ken Haruma, and Paul Moayyedi occupied the top positions based on productivity and centrality indicators. Six thematic clusters emerged (Helicobacter pylori infection; pathophysiological mechanisms of FD; extraintestinal co-morbidities and overlap syndromes associated with FD; herbal medicine in FD; diabetic gastroparesis; and dietary factors in FD). “Acupuncture,” “duodenal eosinophilia,” “gut microbiota,” and others were among the author keywords with rising prevalence.ConclusionIn FD research, eastern Asian countries have established themselves as major contributors with the highest publishing productivity; however, research has primarily been driven by North America, Europe, and Australia, where cooperation is generally more active and highly influential scientific results are produced. Our analysis suggests that increased investments, training of human resources, improved infrastructures, and expanded collaborations are essential to improving the quality of FD research in Asia. The emerging author keyword analysis suggests that eosinophil-mast cell axis, gut microbiota, mental disorders, and acupuncture are the key areas that attract researchers’ attention as future research boulevards. There is a highly skewed distribution of research output across Asia, with most focus on complementary and alternative medicine (CAM) coming from Chinese, Japanese, and South Korean centers. However, CAM remains an underexplored area of research in the context of FD, and it deserves greater research efforts in order to obtain quality scientific evidence. Furthermore, we propose that the research framework of CAM should not be limited to dysmotility; rather, it could be interpreted within a more holistic context that includes the brain-gut-microbiota axis, as well as novel concepts such as duodenitis, increased mucosal permeability, and infiltration and activation of eosinophils and mast cells, among others. Overall, we provided bibliometrics-based overviews of relevant literature to researchers from different backgrounds and healthcare professionals to provide an in-depth overview of major trends in FD research.
Collapse
Affiliation(s)
- Tai Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Beihua Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangxue Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaqi Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuchen Wei
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Fengyun Wang,
| | - Xudong Tang
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Xudong Tang,
| |
Collapse
|
20
|
Gurtner A, Borrelli C, Gonzalez-Perez I, Bach K, Acar IE, Núñez NG, Crepaz D, Handler K, Vu VP, Lafzi A, Stirm K, Raju D, Gschwend J, Basler K, Schneider C, Slack E, Valenta T, Becher B, Krebs P, Moor AE, Arnold IC. Active eosinophils regulate host defence and immune responses in colitis. Nature 2023; 615:151-157. [PMID: 36509106 PMCID: PMC9977678 DOI: 10.1038/s41586-022-05628-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
In the past decade, single-cell transcriptomics has helped to uncover new cell types and states and led to the construction of a cellular compendium of health and disease. Despite this progress, some difficult-to-sequence cells remain absent from tissue atlases. Eosinophils-elusive granulocytes that are implicated in a plethora of human pathologies1-5-are among these uncharted cell types. The heterogeneity of eosinophils and the gene programs that underpin their pleiotropic functions remain poorly understood. Here we provide a comprehensive single-cell transcriptomic profiling of mouse eosinophils. We identify an active and a basal population of intestinal eosinophils, which differ in their transcriptome, surface proteome and spatial localization. By means of a genome-wide CRISPR inhibition screen and functional assays, we reveal a mechanism by which interleukin-33 (IL-33) and interferon-γ (IFNγ) induce the accumulation of active eosinophils in the inflamed colon. Active eosinophils are endowed with bactericidal and T cell regulatory activity, and express the co-stimulatory molecules CD80 and PD-L1. Notably, active eosinophils are enriched in the lamina propria of a small cohort of patients with inflammatory bowel disease, and are closely associated with CD4+ T cells. Our findings provide insights into the biology of eosinophils and highlight the crucial contribution of this cell type to intestinal homeostasis, immune regulation and host defence. Furthermore, we lay a framework for the characterization of eosinophils in human gastrointestinal diseases.
Collapse
Affiliation(s)
- Alessandra Gurtner
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Costanza Borrelli
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | | | - Karsten Bach
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Ilhan E Acar
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Nicolás G Núñez
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Daniel Crepaz
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Kristina Handler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Vivian P Vu
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Atefeh Lafzi
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Kristin Stirm
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Deeksha Raju
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Julia Gschwend
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | | | - Emma Slack
- Institute for Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland
- Botnar Research Center for Child Health, Basel, Switzerland
| | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| | - Isabelle C Arnold
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
21
|
Prince L, Martín-Faivre L, Villeret B, Sanchez-Guzman D, Le Guen P, Sallenave JM, Garcia-Verdugo I. Eosinophils Recruited during Pulmonary Vaccination Regulate Mucosal Antibody Production. Am J Respir Cell Mol Biol 2023; 68:186-200. [PMID: 36194580 DOI: 10.1165/rcmb.2022-0236oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Eosinophils have been previously shown to be able to regulate early humoral responses during systemic vaccination. Here we investigated the role of eosinophils during pulmonary vaccination, comparing vaccine-induced responses in eosinophil-deficient (ΔdblGATA) and wild-type mice using a Th2 adjuvant. We observed that eosinophils were needed to induce a complete vaccine response, thereby eliciting specific antibody-secreting plasma cells in the regional lymph nodes and antibody secretion in the BAL at the early stage of the immune response. Reintroduction of eosinophils in the lungs of ΔdblGATA mice during the priming stage enhanced both specific IgM and IgG plasma cells but not specific IgA plasma cells. Upon vaccination, eosinophils migrated to the lungs and secreted cytokines involved in B-cell activation, which might promote antibody production. Importantly, however, the absence of eosinophils did not impair late immune responses in a prime/boost protocol because, in that setup, we uncovered a compensating mechanism involving a Th17 pathway. In conclusion, our data demonstrate for the first time a new role for eosinophils during lung mucosal vaccination, whereby they accelerate early immune responses (IgM and IgG) while regulating IgA production at the late stages.
Collapse
Affiliation(s)
- Lisa Prince
- INSERM U1152, Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Paris, France
| | - Lydie Martín-Faivre
- INSERM U1152, Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Paris, France
| | - Bérengère Villeret
- INSERM U1152, Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Paris, France
| | - Daniel Sanchez-Guzman
- INSERM U1152, Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Paris, France
| | - Pierre Le Guen
- INSERM U1152, Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Paris, France
| | - Jean-Michel Sallenave
- INSERM U1152, Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Paris, France
| | - Ignacio Garcia-Verdugo
- INSERM U1152, Physiopathologie et épidémiologie des maladies respiratoires, Université Paris Cité, Paris, France
| |
Collapse
|
22
|
Shah M, Knights AJ, Vohralik EJ, Psaila AM, Quinlan KGR. Blood and adipose-resident eosinophils are defined by distinct transcriptional profiles. J Leukoc Biol 2023; 113:191-202. [PMID: 36822180 DOI: 10.1093/jleuko/qiac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 01/21/2023] Open
Abstract
Eosinophils are granular leukocytes of the innate immune system that play important functions in host defense. Inappropriate activation of eosinophils can occur in pathologies such as asthma and esophagitis. However, eosinophils also reside within adipose tissue, where they play homeostatic roles and are important in the activation of thermogenic beige fat. Here we performed bulk RNA sequencing in mouse adipose tissue-resident eosinophils isolated from both subcutaneous and gonadal depots, for the first time, and compared gene expression to blood eosinophils. We found a predominantly conserved transcriptional landscape in eosinophils between adipose depots that is distinct from blood eosinophils in circulation. Through exploration of differentially expressed transcription factors and transcription factors with binding sites enriched in adipose-resident eosinophil genes, we identified KLF, CEBP, and Fos/Jun family members that may drive functional specialization of eosinophils in adipose tissue. These findings increase our understanding of tissue-specific eosinophil heterogeneity, with implications for targeting eosinophil function to treat metabolic disorders such as obesity.
Collapse
Affiliation(s)
- Manan Shah
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| | - Alexander J Knights
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| | - Emily J Vohralik
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| | - Annalise M Psaila
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| |
Collapse
|
23
|
Ignacio A, Shah K, Bernier-Latmani J, Köller Y, Coakley G, Moyat M, Hamelin R, Armand F, Wong NC, Ramay H, Thomson CA, Burkhard R, Wang H, Dufour A, Geuking MB, McDonald B, Petrova TV, Harris NL, McCoy KD. Small intestinal resident eosinophils maintain gut homeostasis following microbial colonization. Immunity 2022; 55:1250-1267.e12. [PMID: 35709757 DOI: 10.1016/j.immuni.2022.05.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
Abstract
The intestine harbors a large population of resident eosinophils, yet the function of intestinal eosinophils has not been explored. Flow cytometry and whole-mount imaging identified eosinophils residing in the lamina propria along the length of the intestine prior to postnatal microbial colonization. Microscopy, transcriptomic analysis, and mass spectrometry of intestinal tissue revealed villus blunting, altered extracellular matrix, decreased epithelial cell turnover, increased gastrointestinal motility, and decreased lipid absorption in eosinophil-deficient mice. Mechanistically, intestinal epithelial cells released IL-33 in a microbiota-dependent manner, which led to eosinophil activation. The colonization of germ-free mice demonstrated that eosinophil activation in response to microbes regulated villous size alterations, macrophage maturation, epithelial barrier integrity, and intestinal transit. Collectively, our findings demonstrate a critical role for eosinophils in facilitating the mutualistic interactions between the host and microbiota and provide a rationale for the functional significance of their early life recruitment in the small intestine.
Collapse
Affiliation(s)
- Aline Ignacio
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Kathleen Shah
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jeremiah Bernier-Latmani
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne (UNIL), Chemin des Boveresses 155, Epalinges, Switzerland
| | - Yasmin Köller
- Maurice Müller Laboratories, Department of Biomedical Research, Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Gillian Coakley
- Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC, Australia
| | - Mati Moyat
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland; Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC, Australia
| | - Romain Hamelin
- Proteomics Core Facility, Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| | - Florence Armand
- Proteomics Core Facility, Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| | - Nick C Wong
- Monash Bioinformatics Platform, Monash University, Clayton, VIC 3168, Australia
| | - Hena Ramay
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carolyn A Thomson
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Regula Burkhard
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Haozhe Wang
- Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC, Australia
| | - Antoine Dufour
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Markus B Geuking
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Braedon McDonald
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4A1, Canada
| | - Tatiana V Petrova
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne (UNIL), Chemin des Boveresses 155, Epalinges, Switzerland; Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology Lausanne, Route Cantonale, 1015 Lausanne, Switzerland
| | - Nicola L Harris
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland; Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC, Australia.
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
24
|
Hari S, Burns GL, Hoedt EC, Keely S, Talley NJ. Eosinophils, Hypoxia-Inducible Factors, and Barrier Dysfunction in Functional Dyspepsia. FRONTIERS IN ALLERGY 2022; 3:851482. [PMID: 35769556 PMCID: PMC9234913 DOI: 10.3389/falgy.2022.851482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Functional dyspepsia (FD) is a highly prevalent disorder of gut-brain interaction (DGBI), previously known as a functional gastrointestinal disorder. Characterized by early satiety, postprandial fullness, and/or epigastric pain or burning, diagnosis depends on positive symptomatology and exclusion of obvious structural diseases. A subtle inflammatory phenotype has been identified in FD patients, involving an increase in duodenal mucosal eosinophils, and imbalances in the duodenal gut microbiota. A dysregulated epithelial barrier has also been well described in FD and is thought to be a contributing factor to the low-grade duodenal inflammation observed, however the mechanisms underpinning this are poorly understood. One possible explanation is that alterations in the microbiota and increased immune cells can result in the activation of cellular stress response pathways to perpetuate epithelial barrier dysregulation. One such cellular response pathway involves the stabilization of hypoxia-inducible factors (HIF). HIF, a transcriptional protein involved in the cellular recognition and adaptation to hypoxia, has been identified as a critical component of various pathologies, from cancer to inflammatory bowel disease (IBD). While the contribution of HIF to subtle inflammation, such as that seen in FD, is unknown, HIF has been shown to have roles in regulating the inflammatory response, particularly the recruitment of eosinophils, as well as maintaining epithelial barrier structure and function. As such, we aim to review our present understanding of the involvement of eosinophils, barrier dysfunction, and the changes to the gut microbiota including the potential pathways and mechanisms of HIF in FD. A combination of PubMed searches using the Mesh terms functional dyspepsia, functional gastrointestinal disorders, disorders of gut-brain interaction, duodenal eosinophilia, barrier dysfunction, gut microbiota, gut dysbiosis, low-grade duodenal inflammation, hypoxia-inducible factors (or HIF), and/or intestinal inflammation were undertaken in the writing of this narrative review to ensure relevant literature was included. Given the findings from various sources of literature, we propose a novel hypothesis involving a potential role for HIF in the pathophysiological mechanisms underlying FD.
Collapse
Affiliation(s)
- Suraj Hari
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
| | - Grace L. Burns
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| | - Emily C. Hoedt
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| | - Simon Keely
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| | - Nicholas J. Talley
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- *Correspondence: Nicholas J. Talley
| |
Collapse
|
25
|
Diny NL, Schonfeldova B, Shapiro M, Winder ML, Varsani-Brown S, Stockinger B. The aryl hydrocarbon receptor contributes to tissue adaptation of intestinal eosinophils in mice. J Exp Med 2022; 219:e20210970. [PMID: 35238865 PMCID: PMC8899390 DOI: 10.1084/jem.20210970] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 12/22/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Eosinophils are potent sources of inflammatory and toxic mediators, yet they reside in large numbers in the healthy intestine without causing tissue damage. We show here that intestinal eosinophils were specifically adapted to their environment and underwent substantial transcriptomic changes. Intestinal eosinophils upregulated genes relating to the immune response, cell-cell communication, extracellular matrix remodeling, and the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor with broad functions in intestinal homeostasis. Eosinophils from AHR-deficient mice failed to fully express the intestinal gene expression program, including extracellular matrix organization and cell junction pathways. AHR-deficient eosinophils were functionally impaired in the adhesion to and degradation of extracellular matrix, were more prone to degranulation, and had an extended life span. Lack of AHR in eosinophils had wider effects on the intestinal immune system, affecting the T cell compartment in nave and helminth-infected mice. Our study demonstrates that the response to environmental triggers via AHR partially shapes tissue adaptation of eosinophils in the small intestine.
Collapse
|
26
|
Akkaya I, Oylumlu E, Ozel I, Uzel G, Durmus L, Ciraci C. NLRC4 Inflammasome-Mediated Regulation of Eosinophilic Functions. Immune Netw 2022; 21:e42. [PMID: 35036029 PMCID: PMC8733190 DOI: 10.4110/in.2021.21.e42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/01/2022] Open
Abstract
Eosinophils play critical roles in the maintenance of homeostasis in innate and adaptive immunity. Although primarily known for their roles in parasitic infections and the development of Th2 cell responses, eosinophils also play complex roles in other immune responses ranging from anti-inflammation to defense against viral and bacterial infections. However, the contributions of pattern recognition receptors in general, and NOD-like receptors (NLRs) in particular, to eosinophil involvement in these immune responses remain relatively underappreciated. Our in vivo studies demonstrated that NLRC4 deficient mice had a decreased number of eosinophils and impaired Th2 responses after induction of an allergic airway disease model. Our in vitro data, utilizing human eosinophilic EoL-1 cells, suggested that TLR2 induction markedly induced pro-inflammatory responses and inflammasome forming NLRC4 and NLRP3. Moreover, activation by their specific ligands resulted in caspase-1 cleavage and mature IL-1β secretion. Interestingly, Th2 responses such as secretion of IL-5 and IL-13 decreased after transfection of EoL-1 cells with short interfering RNAs targeting human NLRC4. Specific induction of NLRC4 with PAM3CSK4 and flagellin upregulated the expression of IL-5 receptor and expression of Fc epsilon receptors (FcεR1α, FcεR2). Strikingly, activation of the NLRC4 inflammasome also promoted expression of the costimulatory receptor CD80 as well as expression of immunoregulatory receptors PD-L1 and Siglec-8. Concomitant with NLRC4 upregulation, we found an increase in expression and activation of matrix metalloproteinase (MMP)-9, but not MMP-2. Collectively, our results present new potential roles of NLRC4 in mediating a variety of eosinopilic functions.
Collapse
Affiliation(s)
- Ilgin Akkaya
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ece Oylumlu
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Irem Ozel
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Goksu Uzel
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Lubeyne Durmus
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ceren Ciraci
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey.,Inflammation Program, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
27
|
Wu X, Kasmani MY, Zheng S, Khatun A, Chen Y, Winkler W, Zander R, Burns R, Taparowsky EJ, Sun J, Cui W. BATF promotes group 2 innate lymphoid cell-mediated lung tissue protection during acute respiratory virus infection. Sci Immunol 2022; 7:eabc9934. [PMID: 35030033 DOI: 10.1126/sciimmunol.abc9934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Xiaopeng Wu
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Moujtaba Y Kasmani
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shikan Zheng
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Achia Khatun
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yao Chen
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Wendy Winkler
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Ryan Zander
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Robert Burns
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Elizabeth J Taparowsky
- Department of Biological Sciences, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Jie Sun
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Weiguo Cui
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
28
|
Eosinophils participate in modulation of liver immune response and tissue damage induced by Schistosoma mansoni infection in mice. Cytokine 2021; 149:155701. [PMID: 34741881 DOI: 10.1016/j.cyto.2021.155701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 01/18/2023]
Abstract
The severity of chronic schistosomiasis has been mainly associated with the intensity and extension of the inflammatory response induced by egg-secreted antigens in the host tissue, especially in the liver and intestine. During acute schistosomiasis, eosinophils account for approximately 50% of the cells that compose the liver granulomas; however, the role of this cell-type in the pathology of schistosomiasis remains controversial. In the current study, we compared the parasite burden and liver immunopathological changes during experimental schistosomiasis in wild-type (WT) BALB/c mice and BALB/c mice selectively deficient for the differentiation of eosinophils (ΔdblGATA). Our data demonstrated that the absence of eosinophil differentiation did not alter the S. mansoni load or the liver retention of parasite eggs; however, there were significant changes in the liver immune response profile and tissue damage. S. mansoni infection in ΔdblGATA mice resulted in significantly lower liver concentrations of IL-5, IL-13, IL-33, IL-17, IL-10, and TGF-β and higher concentrations of IFN-γ and TNF-α, as compared to WT mice. The changes in liver immune response observed in infected ΔdblGATA mice were accompanied by lower collagen deposition, but higher liver damage and larger granulomas. Moreover, the absence of eosinophils resulted in a higher mortality rate in mice infected with a high parasite load. Therefore, the data indicated that eosinophils participate in the establishment and/or amplification of liver Th-2 and regulatory response induced by S. mansoni, which is necessary for the balance between liver damage and fibrosis, which in turn is essential for modulating disease severity.
Collapse
|
29
|
Nogueira DS, de Oliveira LM, Amorim CCO, Gazzinelli-Guimarães AC, Barbosa FS, Oliveira FMS, Kraemer L, Mattos M, Cardoso MS, Resende NM, Clímaco MDC, Negrão-Corrêa DA, Faria AMC, Caliari MV, Bueno LL, Gaze S, Russo RC, Gazzinelli-Guimarães PH, Fujiwara RT. Eosinophils mediate SIgA production triggered by TLR2 and TLR4 to control Ascaris suum infection in mice. PLoS Pathog 2021; 17:e1010067. [PMID: 34784389 PMCID: PMC8631680 DOI: 10.1371/journal.ppat.1010067] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 11/30/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Human ascariasis is the most prevalent but neglected tropical disease in the world, affecting approximately 450 million people. The initial phase of Ascaris infection is marked by larval migration from the host's organs, causing mechanical injuries followed by an intense local inflammatory response, which is characterized mainly by neutrophil and eosinophil infiltration, especially in the lungs. During the pulmonary phase, the lesions induced by larval migration and excessive immune responses contribute to tissue remodeling marked by fibrosis and lung dysfunction. In this study, we investigated the relationship between SIgA levels and eosinophils. We found that TLR2 and TLR4 signaling induces eosinophils and promotes SIgA production during Ascaris suum infection. Therefore, control of parasite burden during the pulmonary phase of ascariasis involves eosinophil influx and subsequent promotion of SIgA levels. In addition, we also demonstrate that eosinophils also participate in the process of tissue remodeling after lung injury caused by larval migration, contributing to pulmonary fibrosis and dysfunction in re-infected mice. In conclusion, we postulate that eosinophils play a central role in mediating host innate and humoral immune responses by controlling parasite burden, tissue inflammation, and remodeling during Ascaris suum infection. Furthermore, we suggest that the use of probiotics can induce eosinophilia and SIgA production and contribute to controlling parasite burden and morbidity of helminthic diseases with pulmonary cycles.
Collapse
Affiliation(s)
- Denise Silva Nogueira
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana Maria de Oliveira
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, Aracajú, Brazil
| | - Chiara Cássia Oliveira Amorim
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Clara Gazzinelli-Guimarães
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Fabrício Marcus Silva Oliveira
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Kraemer
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Matheus Mattos
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Santos Cardoso
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Marianna de Carvalho Clímaco
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Ana Maria Caetano Faria
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Vidigal Caliari
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian Lacerda Bueno
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Soraya Gaze
- René Rachou Institute, Oswaldo Cruz Foundation–FIOCRUZ, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Ricardo Toshio Fujiwara
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
30
|
Bidirectional crosstalk between eosinophils and esophageal epithelial cells regulates inflammatory and remodeling processes. Mucosal Immunol 2021; 14:1133-1143. [PMID: 33972688 PMCID: PMC8380647 DOI: 10.1038/s41385-021-00400-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 02/04/2023]
Abstract
Eosinophils accumulate adjacent to epithelial cells in the mucosa of patients with eosinophilic esophagitis (EoE), yet the bidirectional communication between these cells is not well understood. Herein, we investigated the crosstalk between human eosinophils and esophageal epithelial cells. We report that blood-derived eosinophils have prolonged survival when cocultured with epithelial cells; 96 ± 1% and 30 ± 6% viability was observed after 7 and 14 days of coculture, respectively, compared with 1 ± 0% and 0 ± 0% of monoculture. In the presence of IL-13 and epithelial cells, eosinophils had greater survival (68 ± 1%) at 14 days compared with cocultures lacking IL-13. Prolonged eosinophil viability did not require cellular contact and was observed when eosinophils were cultured in conditioned media from esophageal epithelial cells; neutralizing GM-CSF attenuated eosinophil survival. The majority of eosinophil transcripts (58%) were dysregulated in cocultured eosinophils compared with freshly isolated cells. Analysis of epithelial cell transcripts indicated that exposure to eosinophils induced differential expression of a subset of genes that were part of the EoE esophageal transcriptome. Collectively, these results uncover a network of crosstalk between eosinophils and esophageal epithelial cells involving epithelial mediated eosinophil survival and reciprocal changes in cellular transcripts, events likely to occur in EoE.
Collapse
|
31
|
Percopo CM, McCullough M, Limkar AR, Druey KM, Rosenberg HF. Impact of controlled high-sucrose and high-fat diets on eosinophil recruitment and cytokine content in allergen-challenged mice. PLoS One 2021; 16:e0255997. [PMID: 34383839 PMCID: PMC8360545 DOI: 10.1371/journal.pone.0255997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/27/2021] [Indexed: 12/30/2022] Open
Abstract
Despite an ongoing focus on the role of diet in health and disease, we have only a limited understanding of these concepts at the cellular and molecular levels. While obesity has been clearly recognized as contributing to metabolic syndrome and the pathogenesis of adult asthma, recent evidence has linked high sugar intake alone to an increased risk of developing asthma in childhood. In this study, we examined the impact of diet in a mouse model of allergic airways inflammation with a specific focus on eosinophils. As anticipated, male C57BL/6 mice gained weight on a high-calorie, high-fat diet. However, mice also gained weight on an isocaloric high-sucrose diet. Elevated levels of leptin were detected in the serum and airways of mice maintained on the high-fat, but not the high-sucrose diets. We found that diet alone had no impact on eosinophil numbers in the airways at baseline or their recruitment in response to allergen (Alternaria alternata) challenge in either wild-type or leptin-deficient ob/ob mice. However, both bronchoalveolar lavage fluid and eosinophils isolated from lung tissue of allergen-challenged mice exhibited profound diet-dependent differences in cytokine content. Similarly, while all wild-type mice responded to allergen challenge with significant increases in methacholine-dependent total airway resistance (Rrs), airway resistance in mice maintained on the isocaloric high-sucrose (but not the high-calorie/high-fat) diet significantly exceeded that of mice maintained on the basic diet. In summary, our findings revealed that mice maintained on an isocaloric high-sucrose diet responded to allergen challenge with significant changes in both BAL and eosinophil cytokine content together with significant increases in Rrs. These results provide a model for further exploration of the unique risks associated with a high-sugar diet and its impact on allergen-associated respiratory dysfunction.
Collapse
Affiliation(s)
- Caroline M. Percopo
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Morgan McCullough
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ajinkya R. Limkar
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kirk M. Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Helene F. Rosenberg
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
32
|
Magrone T, Magrone M, Jirillo E. Eosinophils, a Jack of All Trades in Immunity: Therapeutic Approaches for Correcting Their Functional Disorders. Endocr Metab Immune Disord Drug Targets 2021; 20:1166-1181. [PMID: 32148205 DOI: 10.2174/1871530320666200309094726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/28/2019] [Accepted: 01/09/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Eosinophils are primitive myeloid cells derived from bonemarrow precursors and require the intervention of interleukin (IL)-5 for their survival and persistence in blood and tissues. Under steady-state conditions, they contribute to immune regulation and homeostasis. Under pathological circumstances, eosinophils are involved in host protection against parasites and participate in allergy and inflammation. DISCUSSION Mostly, in asthma, eosinophils provoke airway damage via the release of granule contents and IL-13 with mucus hypersecretion and differentiation of goblet cells. Then, tissue remodeling follows with the secretion of transforming growth factor-β. Eosinophils are able to kill helminth larvae acting as antigen-presenting cells with the involvement of T helper (h)-2 cells and subsequent antibody response. However, they also exert pro-worm activity with the production of suppressive cytokine (IL- 10 and IL-4) and inhibition of nitric oxide. Eosinophils may play a pathogenic role in the course of chronic and autoimmune disease, e.g., inflammatory bowel disease and eosinophilic gastroenteritis, regulating Th2 responses and promoting a profibrotic effect. In atopic dermatitis, eosinophils are commonly detected and may be associated with disease severity. In cutaneous spontaneous urticaria, eosinophils participate in the formation of wheals, tissue remodeling and modifications of vascular permeability. With regard to tumor growth, it seems that IgE can exert anti-neoplastic surveillance via mast cell and eosinophil-mediated cytotoxicity, the so-called allergo-oncology. From a therapeutic point of view, monoclonal antibodies directed against IL-5 or the IL-5 receptors have been shown to be very effective in patients with severe asthma. Finally, as an alternative treatment, polyphenols for their anti-inflammatory and anti-allergic activities seem to be effective in reducing serum IgE and eosinophil count in bronchoalveolar lavage in murine asthma. CONCLUSION Eosinophils are cells endowed with multiple functions and their modulation with monoclonal antibodies and nutraceuticals may be effective in the treatment of chronic disease.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Manrico Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
33
|
Dashti N, Zarebavani M. Probiotics in the management of Giardia duodenalis: an update on potential mechanisms and outcomes. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1869-1878. [PMID: 34324017 DOI: 10.1007/s00210-021-02124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Giardia duodenalis is a common cause of infection in children and travelers. The most frequent symptom is diarrhea in these patients. G. duodenalis trophozoites use a highly specialized adhesive disc to attach the host intestinal epithelium to induce intestinal damages. Pathological features of the small intestine following giardiasis include villous atrophy; infiltration of granulocytes, lymphocytes, and plasma cells into the lamina propria; and nodular lymphoid hyperplasia. The disturbed intestinal microbiota has been observed in patients with giardiasis. Therefore, a growing body of evidence has emphasized restoring the gut microbiome by probiotics in giardiasis. This study aimed to review the literature to find the pathologic features of giardiasis and its relationship with imbalanced microbiota. Then, benefits of probiotics in giardiasis and their potential molecular mechanisms were discussed. It has been illustrated that using probiotics (e.g., Lactobacillus and Saccharomyces) can reduce the time of gastrointestinal symptoms and repair the damages, particularly in giardiasis. Probiotics' capability in restoring the composition of commensal microbiota may lead to therapeutic outcomes. According to preclinical and clinical studies, probiotics can protect against parasite-induced mucosal damages via increasing the antioxidant capacity, suppressing oxidative products, and regulating the systemic and mucosal immune responses. In addition, they can reduce the proportion of G. duodenalis load by directly targeting the parasite. They can destroy the cellular architecture of parasites and suppress the proliferation and growth of trophozoites via the production of some factors with anti-giardial features. Further researches are required to find suitable probiotics for the prevention and treatment of giardiasis.
Collapse
Affiliation(s)
- Nasrin Dashti
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Zarebavani
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Ondari E, Calvino-Sanles E, First NJ, Gestal MC. Eosinophils and Bacteria, the Beginning of a Story. Int J Mol Sci 2021; 22:8004. [PMID: 34360770 PMCID: PMC8347986 DOI: 10.3390/ijms22158004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Eosinophils are granulocytes primarily associated with TH2 responses to parasites or immune hyper-reactive states, such as asthma, allergies, or eosinophilic esophagitis. However, it does not make sense from an evolutionary standpoint to maintain a cell type that is only specific for parasitic infections and that otherwise is somehow harmful to the host. In recent years, there has been a shift in the perception of these cells. Eosinophils have recently been recognized as regulators of immune homeostasis and suppressors of over-reactive pro-inflammatory responses by secreting specific molecules that dampen the immune response. Their role during parasitic infections has been well investigated, and their versatility during immune responses to helminths includes antigen presentation as well as modulation of T cell responses. Although it is known that eosinophils can present antigens during viral infections, there are still many mechanistic aspects of the involvement of eosinophils during viral infections that remain to be elucidated. However, are eosinophils able to respond to bacterial infections? Recent literature indicates that Helicobacter pylori triggers TH2 responses mediated by eosinophils; this promotes anti-inflammatory responses that might be involved in the long-term persistent infection caused by this pathogen. Apparently and on the contrary, in the respiratory tract, eosinophils promote TH17 pro-inflammatory responses during Bordetella bronchiseptica infection, and they are, in fact, critical for early clearance of bacteria from the respiratory tract. However, eosinophils are also intertwined with microbiota, and up to now, it is not clear if microbiota regulates eosinophils or vice versa, or how this connection influences immune responses. In this review, we highlight the current knowledge of eosinophils as regulators of pro and anti-inflammatory responses in the context of both infection and naïve conditions. We propose questions and future directions that might open novel research avenues in the future.
Collapse
Affiliation(s)
| | | | | | - Monica C. Gestal
- LSU Health, Department of Microbiology and Immunology, Louisiana State University (LSU), Shreveport, LA 71103, USA; (E.O.); (E.C.-S.); (N.J.F.)
| |
Collapse
|
35
|
Rodrigo-Muñoz JM, Gil-Martínez M, Sastre B, del Pozo V. Emerging Evidence for Pleiotropism of Eosinophils. Int J Mol Sci 2021; 22:ijms22137075. [PMID: 34209213 PMCID: PMC8269185 DOI: 10.3390/ijms22137075] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 02/08/2023] Open
Abstract
Eosinophils are complex granulocytes with the capacity to react upon diverse stimuli due to their numerous and variable surface receptors, which allows them to respond in very different manners. Traditionally believed to be only part of parasitic and allergic/asthmatic immune responses, as scientific studies arise, the paradigm about these cells is continuously changing, adding layers of complexity to their roles in homeostasis and disease. Developing principally in the bone marrow by the action of IL-5 and granulocyte macrophage colony-stimulating factor GM-CSF, eosinophils migrate from the blood to very different organs, performing multiple functions in tissue homeostasis as in the gastrointestinal tract, thymus, uterus, mammary glands, liver, and skeletal muscle. In organs such as the lungs and gastrointestinal tract, eosinophils are able to act as immune regulatory cells and also to perform direct actions against parasites, and bacteria, where novel mechanisms of immune defense as extracellular DNA traps are key factors. Besides, eosinophils, are of importance in an effective response against viral pathogens by their nuclease enzymatic activity and have been lately described as involved in severe acute respiratory syndrome coronavirus SARS-CoV-2 immunity. The pleiotropic role of eosinophils is sustained because eosinophils can be also detrimental to human physiology, for example, in diseases like allergies, asthma, and eosinophilic esophagitis, where exosomes can be significant pathophysiologic units. These eosinophilic pathologies, require specific treatments by eosinophils control, such as new monoclonal antibodies like mepolizumab, reslizumab, and benralizumab. In this review, we describe the roles of eosinophils as effectors and regulatory cells and their involvement in pathological disorders and treatment.
Collapse
Affiliation(s)
- José M. Rodrigo-Muñoz
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 28040 Madrid, Spain; (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 28029 Madrid, Spain
| | - Marta Gil-Martínez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 28040 Madrid, Spain; (J.M.R.-M.); (M.G.-M.)
| | - Beatriz Sastre
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 28040 Madrid, Spain; (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 28029 Madrid, Spain
- Correspondence: (B.S.); (V.d.P.)
| | - Victoria del Pozo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 28040 Madrid, Spain; (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 28029 Madrid, Spain
- Medicine Department, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Correspondence: (B.S.); (V.d.P.)
| |
Collapse
|
36
|
Friesen C, Colombo J, Schurman J. Update on the Role of Allergy in Pediatric Functional Abdominal Pain Disorders: A Clinical Perspective. Nutrients 2021; 13:2056. [PMID: 34208479 PMCID: PMC8235503 DOI: 10.3390/nu13062056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/07/2021] [Accepted: 06/12/2021] [Indexed: 11/16/2022] Open
Abstract
Both functional abdominal pain disorders (FAPDs) and food allergies are relatively common in children and adolescents, and most studies report an association between FAPDs and allergic conditions. FAPDs share pathophysiologic processes with allergies, including both immune and psychological processes interacting with the microbiome. No conclusive data are implicating IgE-mediated reactions to foods in FAPDs; however, there may be patients who have IgE reactions localized to the gastrointestinal mucosa without systemic symptoms that are not identified by common tests. In FAPDs, the data appears stronger for aeroallergens than for foods. It also remains possible that food antigens initiate an IgG reaction that promotes mast cell activation. If a food allergen is identified, the management involves eliminating the specific food from the diet. In the absence of systemic allergic symptoms or oral allergy syndrome, it appears unlikely that allergic triggers for FAPDs can be reliably identified by standard testing. Medications used to blunt allergic reactions or symptomatically treat allergic reactions may be useful in FAPDs. The purpose of the current manuscript is to review the current literature regarding the role of allergy in FAPDs from a clinical perspective, including how allergy may fit in the current model of FAPDs.
Collapse
Affiliation(s)
- Craig Friesen
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Mercy Kansas City, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; (J.C.); (J.S.)
| | | | | |
Collapse
|
37
|
Vaillant L, Oster P, McMillan B, Velin D. Gastric eosinophils are detrimental for Helicobacter pylori vaccine efficacy. Vaccine 2021; 39:3590-3601. [PMID: 34049736 DOI: 10.1016/j.vaccine.2021.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori (Hp) colonizes the human gastric mucosa with a high worldwide prevalence. Currently, Hp can be eradicated by the use of antibiotics. Due to the increase of antibiotic resistance, new therapeutic strategies need to be devised: one such approach being prophylactic vaccination. Pre-clinical and clinical data showed that a urease-based vaccine is efficient in decreasing Hp infection through the mobilization of T helper (Th)-dependent immune effectors, including eosinophils. Preliminary data have shown that upon vaccination and subsequent Hp infection, eosinophils accumulate in the gastric mucosa, suggesting a possible implication of this granulocyte subset in the vaccine-induced reduction of Hp infection. In our study, we confirm that activated eosinophils, expressing CD63, CD40, MHCII and PD-L1 at their cell surface, infiltrate the gastric mucosa during vaccine-induced reduction of Hp infection. Strikingly, we provide evidence that bone marrow derived eosinophils efficiently kill Hp in vitro, suggesting that eosinophils may participate to the vaccine-induced reduction of Hp infection. However, conversely to our expectations, the absence of eosinophils does not decrease the efficacy of this Hp vaccine in vivo. Indeed, vaccinated mice that have been genetically ablated of the eosinophil lineage or that have received anti-Sialic acid-binding immunoglobulin-like lectin F eosinophil-depleting antibodies, display a lower Hp colonization when compared to their eosinophil sufficient counterparts. Although the vaccine induces similar urease-specific humoral and Th responses in both eosinophil sufficient and deficient mice, a decreased production of anti-inflammatory cytokines, such as IL-10, TGFβ, and calgranulin B, was specifically observed in eosinophil depleted mice. Taken together, our results suggest that gastric eosinophils maintain an anti-inflammatory environment, thus sustaining chronic Hp infection. Because eosinophils are one of the main immune effectors mobilized by Th2 responses, our study strongly suggests that the formulation of an Hp vaccine needs to include an adjuvant that preferentially primes Hp-specific Th1/Th17 responses.
Collapse
Affiliation(s)
- Laurie Vaillant
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Paul Oster
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Brynn McMillan
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Dominique Velin
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
38
|
Intestinal eosinophils, homeostasis and response to bacterial intrusion. Semin Immunopathol 2021; 43:295-306. [PMID: 33929602 PMCID: PMC8241669 DOI: 10.1007/s00281-021-00856-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/03/2021] [Indexed: 02/06/2023]
Abstract
Eosinophils are traditionally considered as end-stage effector cells involved in the pathogenesis of Th2 immune-mediated disorders as well as in the protection against parasite infection. However, this restricted view has recently been challenged by a series of studies revealing the highly plastic nature of these cells and implication in various homeostatic processes. Large numbers of eosinophils reside in the lamina propria of the gastrointestinal tract, at the front line of host defence, where they contribute to maintain the intestinal epithelial barrier function in the face of inflammation-associated epithelial cell damage. Eosinophils confer active protection against bacterial pathogens capable of penetrating the mucosal barrier through the release of cytotoxic compounds and the generation of extracellular DNA traps. Eosinophils also integrate tissue-specific cytokine signals such as IFN-γ, which synergise with bacterial recognition pathways to enforce different context-dependent functional responses, thereby ensuring a rapid adaptation to the ever-changing intestinal environment. The ability of eosinophils to regulate local immune responses and respond to microbial stimuli further supports the pivotal role of these cells in the maintenance of tissue homeostasis at the intestinal interface.
Collapse
|
39
|
Jacobsen EA, Jackson DJ, Heffler E, Mathur SK, Bredenoord AJ, Pavord ID, Akuthota P, Roufosse F, Rothenberg ME. Eosinophil Knockout Humans: Uncovering the Role of Eosinophils Through Eosinophil-Directed Biological Therapies. Annu Rev Immunol 2021; 39:719-757. [PMID: 33646859 PMCID: PMC8317994 DOI: 10.1146/annurev-immunol-093019-125918] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enigmatic eosinophil has emerged as an exciting component of the immune system, involved in a plethora of homeostatic and inflammatory responses. Substantial progress has been achieved through experimental systems manipulating eosinophils in vivo, initially in mice and more recently in humans. Researchers using eosinophil knockout mice have identified a contributory role for eosinophils in basal and inflammatory processes and protective immunity. Primarily fueled by the purported proinflammatory role of eosinophils in eosinophil-associated diseases, a series of anti-eosinophil therapeutics have emerged as a new class of drugs. These agents, which dramatically deplete eosinophils, provide a valuable opportunity to characterize the consequences of eosinophil knockout humans. Herein, we comparatively describe mouse and human eosinophil knockouts. We put forth the view that human eosinophils negatively contribute to a variety of diseases and, unlike mouse eosinophils, do not yet have an identified role in physiological health; thus, clarifying all roles of eosinophils remains an ongoing pursuit.
Collapse
Affiliation(s)
- Elizabeth A Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona 85259, USA;
| | - David J Jackson
- Guy's and St Thomas' Hospitals, London WC2R 2LS, United Kingdom;
- Department of Immunobiology, King's College London, London WC2R 2LS, United Kingdom
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
- Personalized Medicine, Asthma and Allergy Unit, Humanitas Clinical and Research Center IRCCS, 20089 Milan, Italy;
| | - Sameer K Mathur
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53792, USA;
| | - Albert J Bredenoord
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Ian D Pavord
- Respiratory Medicine Unit, Oxford Respiratory NIHR BRC, Nuffield Department of Medicine, Oxford OX3 9DU, United Kingdom;
| | - Praveen Akuthota
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA;
| | - Florence Roufosse
- Médecine Interne, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA;
| |
Collapse
|
40
|
Homeostatic regulation of T follicular helper and antibody response to particle antigens by IL-1Ra of medullary sinus macrophage origin. Proc Natl Acad Sci U S A 2021; 118:2019798118. [PMID: 33875594 DOI: 10.1073/pnas.2019798118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hepatitis B virus (HBV) vaccines are composed of surface antigen HBsAg that spontaneously assembles into subviral particles. Factors that impede its humoral immunity in 5% to 10% of vaccinees remain elusive. Here, we showed that the low-level interleukin-1 receptor antagonist (IL-1Ra) can predict antibody protection both in mice and humans. Mechanistically, murine IL-1Ra-inhibited T follicular helper (Tfh) cell expansion and subsequent germinal center (GC)-dependent humoral immunity, resulting in significantly weakened protection against the HBV challenge. Compared to soluble antigens, HBsAg particle antigen displayed a unique capture/uptake and innate immune activation, including IL-1Ra expression, preferably of medullary sinus macrophages. In humans, a unique polymorphism in the RelA/p65 binding site of IL-1Ra enhancer associated IL-1Ra levels with ethnicity-dependent vaccination outcome. Therefore, the differential IL-1Ra response to particle antigens probably creates a suppressive milieu for Tfh/GC development, and neutralization of IL-1Ra would resurrect antibody response in HBV vaccine nonresponders.
Collapse
|
41
|
Intestinal eosinophils: multifaceted roles in tissue homeostasis and disease. Semin Immunopathol 2021; 43:307-317. [PMID: 33772336 DOI: 10.1007/s00281-021-00851-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022]
Abstract
Intestinal eosinophils are largely considered to be one of the central immune effector cells during helminth infection and disorders such as eosinophilic oesophagitis and food allergies. Given the abundance of these cells present in the gastrointestinal tract at homeostasis, emerging studies now reveal novel roles for eosinophils in the development and regulation of immunity, and during tissue repair. In addition, the identification of distinct eosinophil subsets indicates that we must consider the heterogeneity of these cells and how they differentially participate in mucosal immunity at steady state and during disease. Here, we summarise the literature on intestinal eosinophils, and how they contribute to mucosal homeostasis through immune regulation and interactions with the microbiome. We then explore the divergent roles of eosinophils in the context of eosinophilic gastrointestinal disorders and during helminth infection, whereby we discuss key observations and differences that have emerged from animal models and human studies. Lastly, we consider the possible interactions of eosinophils with the enteric nervous system, and how this represents an exciting area for future research which may inform future therapeutic targets.
Collapse
|
42
|
Masterson JC, Menard-Katcher C, Larsen LD, Furuta GT, Spencer LA. Heterogeneity of Intestinal Tissue Eosinophils: Potential Considerations for Next-Generation Eosinophil-Targeting Strategies. Cells 2021; 10:cells10020426. [PMID: 33671475 PMCID: PMC7922004 DOI: 10.3390/cells10020426] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/05/2023] Open
Abstract
Eosinophils are implicated in the pathophysiology of a spectrum of eosinophil-associated diseases, including gastrointestinal eosinophilic diseases (EGIDs). Biologics that target the IL-5 pathway and are intended to ablate eosinophils have proved beneficial in severe eosinophilic asthma and may offer promise in treating some endotypes of EGIDs. However, destructive effector functions of eosinophils are only one side of the coin; eosinophils also play important roles in immune and tissue homeostasis. A growing body of data suggest tissue eosinophils represent a plastic and heterogeneous population of functional sub-phenotypes, shaped by environmental (systemic and local) pressures, which may differentially impact disease outcomes. This may be particularly relevant to the GI tract, wherein the highest density of eosinophils reside in the steady state, resident immune cells are exposed to an especially broad range of external and internal environmental pressures, and greater eosinophil longevity may uniquely enrich for co-expression of eosinophil sub-phenotypes. Here we review the growing evidence for functional sub-phenotypes of intestinal tissue eosinophils, with emphasis on the multifactorial pressures that shape and diversify eosinophil identity and potential targets to inform next-generation eosinophil-targeting strategies designed to restrain inflammatory eosinophil functions while sustaining homeostatic roles.
Collapse
Affiliation(s)
- Joanne C. Masterson
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
- GI and Liver Innate Immune Program, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Allergy, Inflammation & Remodeling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Calies Menard-Katcher
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
| | - Leigha D. Larsen
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
| | - Glenn T. Furuta
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
- GI and Liver Innate Immune Program, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Lisa A. Spencer
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
- GI and Liver Innate Immune Program, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-303-724-3277
| |
Collapse
|
43
|
King RL, Tan B, Craig FE, George TI, Horny HP, Kelemen K, Orazi A, Reichard KK, Rimsza LM, Wang SA, Zamo A, Quintanilla-Martinez L. Reactive Eosinophil Proliferations in Tissue and the Lymphocytic Variant of Hypereosinophilic Syndrome. Am J Clin Pathol 2021; 155:211-238. [PMID: 33367482 DOI: 10.1093/ajcp/aqaa227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The 2019 Society for Hematopathology and European Association for Haematopathology Workshop reviewed the spectrum of neoplastic, nonneoplastic, and borderline entities associated with reactive eosinophilia in tissue. METHODS The workshop panel reviewed 46 cases covered in 2 workshop sessions. RESULTS The 46 cases were presented with their consensus diagnoses during the workshop. Reactive eosinophilia in lymph nodes and other tissues may be accompanied by or be distinct from peripheral blood eosinophilia. Reactive etiologies included inflammatory disorders such as Kimura disease and IgG4-related disease, which may show overlapping pathologic features and reactions to infectious agents and hypersensitivity (covered in a separate review). Hodgkin, T-cell, and B-cell lymphomas and histiocytic neoplasms can result in reactive eosinophilia. The spectrum of these diseases is discussed and illustrated through representative cases. CONCLUSIONS Reactive eosinophilia in lymph nodes and tissues may be related to both nonneoplastic and neoplastic lymphoid proliferations and histiocytic and nonhematolymphoid processes. Understanding the differential diagnosis of reactive eosinophilia and the potential for overlapping clinical and pathologic findings is critical in reaching the correct diagnosis so that patients can be treated appropriately.
Collapse
Affiliation(s)
| | - Brent Tan
- Division of Hematopathology, Stanford University, Stanford, CA
| | - Fiona E Craig
- Division of Hematopathology, Mayo Clinic, Phoenix, AZ
| | - Tracy I George
- Department of Pathology, University of Utah School of Medicine, Salt Lake City
| | - Hans-Peter Horny
- Institute of Pathology, University of Munich (LMU), Munich, Germany
| | | | - Attilio Orazi
- Department of Pathology, TexasTech University Health Sciences Center, P.L. Foster School of Medicine, El Paso
| | | | - Lisa M Rimsza
- Division of Hematopathology, Mayo Clinic, Phoenix, AZ
| | - Sa A Wang
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX
| | - Alberto Zamo
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany
| |
Collapse
|
44
|
Kanda A, Yun Y, Bui DV, Nguyen LM, Kobayashi Y, Suzuki K, Mitani A, Sawada S, Hamada S, Asako M, Iwai H. The multiple functions and subpopulations of eosinophils in tissues under steady-state and pathological conditions. Allergol Int 2021; 70:9-18. [PMID: 33243693 DOI: 10.1016/j.alit.2020.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/30/2022] Open
Abstract
Eosinophils not only play a critical role in the pathogenesis of eosinophil-associated diseases, but they also have multiple important biological functions, including the maintenance of homeostasis, host defense against infections, immune regulation through canonical Th1/Th2 balance modulation, and anti-inflammatory and anti-tumorigenic activities. Recent studies have elucidated some emerging roles of eosinophils in steady-state conditions; for example, eosinophils contribute to adipose tissue metabolism and metabolic health through alternatively activated macrophages and the maintenance of plasma cells in intestinal tissue and bone marrow. Moreover, eosinophils exert tissue damage through eosinophil-derived cytotoxic mediators that are involved in eosinophilic airway inflammation, leading to diseases including asthma and chronic rhinosinusitis with nasal polyps characterized by fibrin deposition through excessive response by eosinophils-induced. Thus, eosinophils possessing these various effects reflect the heterogenous features of these cells, which suggests the existence of distinct different subpopulations of eosinophils between steady-state and pathological conditions. Indeed, a recent study demonstrated that instead of dividing eosinophils by classical morphological changes into normodense and hypodense eosinophils, murine eosinophils from lung tissue can be phenotypically divided into two distinct subtypes: resident eosinophils and inducible eosinophils gated by Siglec-Fint CD62L+ CD101low and Siglec-Fhigh CD62L- CD101high, respectively. However, it is difficult to explain every function of eosinophils by rEos and iEos, and the relationship between the functions and subpopulations of eosinophils remains controversial. Here, we overview the multiple roles of eosinophils in the tissue and their biological behavior in steady-state and pathological conditions. We also discuss eosinophil subpopulations.
Collapse
Affiliation(s)
- Akira Kanda
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka, Japan; Allergy Center, Kansai Medical University, Osaka, Japan; Department of Pathology and Laboratory Medicine, Kansai Medical University, Osaka, Japan.
| | - Yasutaka Yun
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka, Japan
| | - Dan Van Bui
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka, Japan
| | - Linh Manh Nguyen
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka, Japan
| | - Yoshiki Kobayashi
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka, Japan; Allergy Center, Kansai Medical University, Osaka, Japan
| | - Kensuke Suzuki
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka, Japan
| | - Akitoshi Mitani
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka, Japan
| | - Shunsuke Sawada
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka, Japan
| | - Satoko Hamada
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka, Japan
| | - Mikiya Asako
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka, Japan; Allergy Center, Kansai Medical University, Osaka, Japan
| | - Hiroshi Iwai
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka, Japan
| |
Collapse
|
45
|
Ge L, Xu M, Brant SR, Liu S, Zhu C, Shang J, Zhao Q, Zhou F. Sestrin3 enhances macrophage-mediated generation of T helper 1 and T helper 17 cells in a mouse colitis model. Int Immunol 2021; 32:421-432. [PMID: 32154559 DOI: 10.1093/intimm/dxaa016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/07/2020] [Indexed: 12/13/2022] Open
Abstract
Intestinal macrophages participate in the pathogenesis of inflammatory bowel diseases (IBDs) through secreting pro-inflammatory and tissue-damaging factors as well as inducing the differentiation of T helper 1 (Th1) and T helper 17 (Th17) cells. Elucidating the regulatory mechanisms of intestinal macrophage activity in IBDs is important for developing new therapeutic approaches. In the current study, the expression of Sestrins in myeloid cells and lymphocytes in colonic lamina propria (LP) was evaluated in a murine acute colitis model. We found that Sestrin3 was significantly up-regulated in LP macrophages by the colonic LP microenvironment. In the in vitro experiments, lentivirus-mediated Sestrin3 knockdown significantly reduced the production of IL-12 and IL-23 in activated macrophages, in addition to decreasing the expression of classical pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α. Additionally, Sestrin3 knockdown impaired macrophage-mediated generation of Th1 and Th17 cells from CD4+ T cells, probably through up-regulating the phosphorylation of mechanistic target of rapamycin complex 1 (mTORC1) in macrophages. In the in vivo experiments, adoptive transfer of Sestrin3-deficient macrophages alleviated the generation of Th1 and Th17 cells in the colonic LP and mesenteric lymph nodes. Furthermore, the adoptive transfer mitigated the severity of colitis, as demonstrated by lower production of pro-inflammatory cytokines and fewer tissue lesions in the colon. Our study suggests that Sestrin3 might be crucial for macrophage-mediated generation of pathogenic Th1 and Th17 cells in IBDs.
Collapse
Affiliation(s)
- Liuqing Ge
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan, China
| | - Min Xu
- Department of Hematology and Oncology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Steven R Brant
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, and Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Shaoping Liu
- Medical Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Shang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan, China
| | - Feng Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
46
|
Doyle AD, Masuda MY, Kita H, Wright BL. Eosinophils in Eosinophilic Esophagitis: The Road to Fibrostenosis is Paved With Good Intentions. Front Immunol 2020; 11:603295. [PMID: 33335531 PMCID: PMC7736408 DOI: 10.3389/fimmu.2020.603295] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Eosinophilic esophagitis (EoE) is an antigen-driven disease associated with epithelial barrier dysfunction and chronic type 2 inflammation. Eosinophils are the defining feature of EoE histopathology but relatively little is known about their role in disease onset and progression. Classically defined as destructive, end-stage effector cells, eosinophils (a resident leukocyte in most of the GI tract) are increasingly understood to play roles in local immunity, tissue homeostasis, remodeling, and repair. Indeed, asymptomatic esophageal eosinophilia is observed in IgE-mediated food allergy. Interestingly, EoE is a potential complication of oral immunotherapy (OIT) for food allergy. However, we recently found that patients with peanut allergy may have asymptomatic esophageal eosinophilia at baseline and that peanut OIT induces transient esophageal eosinophilia in most subjects. This is seemingly at odds with multiple studies which have shown that EoE disease severity correlates with tissue eosinophilia. Herein, we review the potential role of eosinophils in EoE at different stages of disease pathogenesis. Based on current literature we suggest the following: (1) eosinophils are recruited to the esophagus as a homeostatic response to epithelial barrier disruption; (2) eosinophils mediate barrier-protective activities including local antibody production, mucus production and epithelial turnover; and (3) when type 2 inflammation persists, eosinophils promote fibrosis.
Collapse
Affiliation(s)
- Alfred D Doyle
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Mia Y Masuda
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Hirohito Kita
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States.,Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Benjamin L Wright
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States.,Division of Pulmonology, Phoenix Children's Hospital, Phoenix, AZ, United States
| |
Collapse
|
47
|
Anjum FR, Anam S, Abbas G, Mahmood MS, Rahman SU, Goraya MU, Abdullah RM, Luqman M, Ali A, Akram MK, Chaudhry TH. Type I IFNs: A Blessing in Disguise or Partner in Crime in MERS-CoV-, SARS-CoV-, and SARS-CoV-2-Induced Pathology and Potential Use of Type I IFNs in Synergism with IFN- γ as a Novel Antiviral Approach Against COVID-19. Viral Immunol 2020; 34:321-329. [PMID: 33181057 DOI: 10.1089/vim.2020.0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Since the end of 2019, the emergence of novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has accelerated the research on host immune responses toward the coronaviruses. When there is no approved drug or vaccine to use against these culprits, host immunity is the major strategy to fight such infections. Type I interferons are an integral part of the host innate immune system and define one of the first lines of innate immune defense against viral infections. The in vitro antiviral role of type I IFNs against Middle East respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV (severe acute respiratory syndrome coronavirus) is well established. Moreover, the involvement of type I IFNs in disease pathology has also been reported. In this study, we have reviewed the protective and the immunopathogenic role of type I IFNs in the pathogenesis of MERS-CoV, SARS-CoV, and SARS-CoV-2. This review will also enlighten the potential implications of type I IFNs for the treatment of COVID-19 when used in combination with IFN-γ.
Collapse
Affiliation(s)
| | - Sidra Anam
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Ghazanfar Abbas
- Melbourne Veterinary School, The University of Melbourne, Werribee, Australia
| | | | - Sajjad Ur Rahman
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | | | | - Muhammad Luqman
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Ashiq Ali
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Kamran Akram
- Queensland Alliance for Agriculture and food Innovation, The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
48
|
A critical regulation of Th2 cell responses by RORα in allergic asthma. SCIENCE CHINA-LIFE SCIENCES 2020; 64:1326-1335. [PMID: 33165810 DOI: 10.1007/s11427-020-1825-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
Allergic asthma is a chronic inflammatory disease of the lung and the airway, which is characterized by aberrant type 2 immune responses to otherwise unharmful aeroallergens. While the central role of Th2 cells and type 2 cytokines in the pathogenesis of allergic asthma is well documented, the regulation and plasticity of Th2 cells remain incompletely understood. By using an animal model of allergic asthma in IL-4-reporter mice, we found that Th2 cells in the lung expressed higher levels of Rora than those in the lymph nodes, and that treatment with an RORα agonist SR1078 resulted in diminished Th2 cell responses in vivo. To determine the T cell-intrinsic role of RORα in allergic asthma in vivo, we established T cell-specific RORα-deficient (Cd4creRoraf/f) mice. Upon intranasal allergen challenges, Cd4creRoraf/f mice exhibited a significantly increased Th2 cells in the lungs and the airway and showed an enhanced eosinophilic inflammation compared to littermate control mice. Studies with Foxp3YFP-creRoraf/f mice and CD8+ T cell depletion showed that the increased Th2 cell responses in the Cd4creRoraf/f mice were independent of Treg cells and CD8+ T cells. Our findings demonstrate a critical regulatory role of RORα in Th2 cells, which suggest that RORα agonists could be effective for the treatment of allergic diseases.
Collapse
|
49
|
Singh M, Singh V, Schurman JV, Friesen CA. Mucosal Th17 Cells Are Increased in Pediatric Functional Dyspepsia Associated with Chronic Gastritis. Dig Dis Sci 2020; 65:3184-3190. [PMID: 31916087 DOI: 10.1007/s10620-019-06041-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic gastritis is a common histologic finding in children with functional dyspepsia (FD). While Th17 cells have been implicated in other forms of gastritis, they have not been evaluated in chronic gastritis. AIMS The aim of the current study was to assess Th17 cells in children with FD with and without chronic gastritis. METHODS Densities were determined for Th17 cells, eosinophils, and mast cells, respectively, in both the gastric antrum and the duodenum. Densities were compared between five groups: FD with chronic gastritis (N = 20), FD without chronic gastritis (N = 20), Helicobacter pylori-associated gastritis (N = 10), Crohn's gastritis (N = 10), and normal controls (N = 10). Th17 densities were also compared between patients with and without early satiety. RESULTS FD with chronic gastritis was associated with higher Th17 cell density as compared to normal controls and comparable to both H. pylori-associated gastritis and Crohn's gastritis. Eosinophil and mast cell densities were higher in FD patients with chronic gastritis as compared to either FD without gastritis or normal controls. Th17 density was higher in patients reporting early satiety but not in those with epigastric pain. CONCLUSIONS FD with chronic gastritis is associated with higher Th17 cell, eosinophil, and mast cell density as compared to FD without chronic gastritis or normal controls. Chronic gastritis demonstrated Th17 cell density similar to that seen in other conditions where Th17 cells are believed to play a pathogenic role. Th17 cells may represent another therapeutic target in these patients.
Collapse
Affiliation(s)
- Meenal Singh
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Vivekanand Singh
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, USA
| | - Jennifer V Schurman
- Division of Developmental and Behavioral Sciences, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, USA
| | - Craig A Friesen
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA.
| |
Collapse
|
50
|
FitzPatrick RD, Kennedy MHE, Lawrence KM, Gauthier CM, Moeller BE, Robinson AN, Reynolds LA. Littermate-Controlled Experiments Reveal Eosinophils Are Not Essential for Maintaining Steady-State IgA and Demonstrate the Influence of Rearing Conditions on Antibody Phenotypes in Eosinophil-Deficient Mice. Front Immunol 2020; 11:557960. [PMID: 33178185 PMCID: PMC7593696 DOI: 10.3389/fimmu.2020.557960] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022] Open
Abstract
Conflicting data has emerged regarding a role for eosinophils in IgA production, with some reports that eosinophils support both secretory and circulating IgA levels during homeostasis. Previous studies have compared antibody levels between wildtype and eosinophil-deficient mice, but these mice were obtained from different commercial vendors and/or were not littermates. Thus, the possibility remains that extrinsic environmental factors, rather than an intrinsic lack of eosinophils, are responsible for the reports of reduced IgA in eosinophil-deficient mice. Here we used wild-type and eosinophil-deficient (ΔdblGATA) mice that were purchased from a single vendor, subsequently bred in-house and either co-housed as adults, co-reared from birth or raised as littermates. We found no differences in the levels of secretory IgA or in the numbers of small intestinal IgA-producing plasma cells between wild-type and ΔdblGATA mice, demonstrating that under controlled steady-state conditions eosinophils are not essential for the maintenance of secretory IgA in the intestinal tract. While we found that levels of IgM and IgE were significantly elevated in the serum of ΔdblGATA mice compared to co-reared or co-housed wild-type mice, no significant differences in these or other circulating antibody isotypes were identified between genotypes in littermate-controlled experiments. Our results demonstrate that eosinophils are not required to maintain secretory or circulating IgA production and the absence of eosinophils does not impact circulating IgG1, IgG2b, IgM, or IgE levels during homeostasis. These findings emphasize the importance of optimally controlling rearing and housing conditions throughout life between mice of different genotypes.
Collapse
Affiliation(s)
- Rachael D FitzPatrick
- Reynolds Laboratory, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Mia H E Kennedy
- Reynolds Laboratory, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Katherine M Lawrence
- Reynolds Laboratory, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Courtney M Gauthier
- Reynolds Laboratory, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Brandon E Moeller
- Reynolds Laboratory, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Andrew N Robinson
- Reynolds Laboratory, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Lisa A Reynolds
- Reynolds Laboratory, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|