1
|
Tedla MG, Nahar MF, Every AL, Scheerlinck JPY. The Immune Memory Response of In Vitro-Polarised Th1, Th2, and Th17 Cells in the Face of Ovalbumin-Transgenic Leishmania major in a Mouse Model. Int J Mol Sci 2024; 25:8753. [PMID: 39201440 PMCID: PMC11354729 DOI: 10.3390/ijms25168753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Th1 and Th2 cytokines determine the outcome of Leishmania major infection and immune protection depends mainly on memory T cells induced during vaccination. This largely hinges on the nature and type of memory T cells produced. In this study, transgenic Leishmania major strains expressing membrane-associated ovalbumin (mOVA) and soluble ovalbumin (sOVA) were used as a model to study whether fully differentiated Th1/Th2 and Th17 cells can recall immune memory and tolerate pathogen manipulation. Naïve OT-II T cells were polarised in vitro into Th1/Th2 cells, and these cells were transferred adoptively into recipient mice. Following the transferral of the memory cells, the recipient mice were challenged with OVA transgenic Leishmania major and a wild-type parasite was used a control. The in vitro-polarised T helper cells continued to produce the same cytokine signatures after being challenged by both forms of OVA-expressing Leishmania major parasites in vivo. This suggests that antigen-experienced cells remain the same or unaltered in the face of OVA-transgenic Leishmania major. Such ability of these antigen-experienced cells to remain resilient to manipulation by the parasite signifies that vaccines might be able to produce immune memory responses and defend against parasitic immune manipulation in order to protect the host from infection.
Collapse
Affiliation(s)
- Mebrahtu G. Tedla
- Department of Pediatrics, School of Medicine, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Musammat F. Nahar
- Department of Health Science and Community, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Alison L. Every
- Australian Academy of Technological Sciences and Engineering, Forrest, ACT 2603, Australia
| | - Jean-Pierre Y. Scheerlinck
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
2
|
Story ME, Ferris LK, Mathers AR. Resident memory T cells in dirty mice suppress innate cell activation and infiltration into the skin following stimulation with alarmins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.602963. [PMID: 39071349 PMCID: PMC11275811 DOI: 10.1101/2024.07.11.602963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Trm cells are sequestered at barrier tissues as a swift first line defense against peripheral reinfections in both antigen dependent and antigen independent bystander modes. Trm cells are also capable of mediating autoimmune diseases, such as psoriasis, wherein autoreactive Trm cells are aberrantly activated. To quickly combat infections, activated Trm cells can stimulate the influx and activation of memory T cells and innate immune cells. However, there is significant heterogeneity in the inflammatory responses that Trm cell populations can induce, specifically in the activation of the innate profile. Most studies to date have utilized a reductionist approach to examine single Trm populations, specific pathogens, and defined tissues. Herein, we adopted a more holistic approach utilizing barrier-free 'dirty' mice to profile activated innate cells attracted to the skin in the presence of quiescent cutaneous Trm cells. Notably, dirty mice are a more human predictive model due to having a diverse microbial experience that leads to the development of a complete complement of Trm cells in the skin. We demonstrate that in the dirty mouse model mice have a significant reduction in cutaneous neutrophils and monocytes compared to SPF mice following local treatment with two separate innate stimuli. These findings reveal that cutaneous Trm cells have the capacity to temper the innate immune response and further substantiate the implication that Trm cells are heterogenous in their functions depending in large part on their tissue residency. However, in an autoimmune microenvironment Trm cells are capable of recruiting innate cells to the site of an exposure to a damage-associated molecular pattern. Likely due to the imbalance of IL-17 and IFN-γ.
Collapse
Affiliation(s)
- Meaghan E. Story
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Laura K. Ferris
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Alicia R. Mathers
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
3
|
Liu G, Wang Z, Li S. Heterogeneity and plasticity of tissue-resident memory T cells in skin diseases and homeostasis: a review. Front Immunol 2024; 15:1378359. [PMID: 38779662 PMCID: PMC11109409 DOI: 10.3389/fimmu.2024.1378359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Skin tissue-resident memory T (Trm) cells are produced by antigenic stimulation and remain in the skin for a long time without entering the peripheral circulation. In the healthy state Trm cells can play a patrolling and surveillance role, but in the disease state Trm cells differentiate into various phenotypes associated with different diseases, exhibit different localizations, and consequently have local protective or pathogenic roles, such as disease recurrence in vitiligo and maintenance of immune homeostasis in melanoma. The most common surface marker of Trm cells is CD69/CD103. However, the plasticity of tissue-resident memory T cells after colonization remains somewhat uncertain. This ambiguity is largely due to the variation in the functionality and ultimate destination of Trm cells produced from memory cells differentiated from diverse precursors. Notably, the presence of Trm cells is not stationary across numerous non-lymphoid tissues, most notably in the skin. These cells may reenter the blood and distant tissue sites during the recall response, revealing the recycling and migration potential of the Trm cell progeny. This review focuses on the origin and function of skin Trm cells, and provides new insights into the role of skin Trm cells in the treatment of autoimmune skin diseases, infectious skin diseases, and tumors.
Collapse
Affiliation(s)
- Guomu Liu
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun, China
| | - Ziyue Wang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Shanshan Li
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Chi H, Pepper M, Thomas PG. Principles and therapeutic applications of adaptive immunity. Cell 2024; 187:2052-2078. [PMID: 38670065 PMCID: PMC11177542 DOI: 10.1016/j.cell.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Adaptive immunity provides protection against infectious and malignant diseases. These effects are mediated by lymphocytes that sense and respond with targeted precision to perturbations induced by pathogens and tissue damage. Here, we review key principles underlying adaptive immunity orchestrated by distinct T cell and B cell populations and their extensions to disease therapies. We discuss the intracellular and intercellular processes shaping antigen specificity and recognition in immune activation and lymphocyte functions in mediating effector and memory responses. We also describe how lymphocytes balance protective immunity against autoimmunity and immunopathology, including during immune tolerance, response to chronic antigen stimulation, and adaptation to non-lymphoid tissues in coordinating tissue immunity and homeostasis. Finally, we discuss extracellular signals and cell-intrinsic programs underpinning adaptive immunity and conclude by summarizing key advances in vaccination and engineering adaptive immune responses for therapeutic interventions. A deeper understanding of these principles holds promise for uncovering new means to improve human health.
Collapse
Affiliation(s)
- Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA, USA.
| | - Paul G Thomas
- Department of Host-Microbe Interactions and Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
5
|
Murakami M. Tissue-resident memory T cells: decoding intra-organ diversity with a gut perspective. Inflamm Regen 2024; 44:19. [PMID: 38632596 PMCID: PMC11022361 DOI: 10.1186/s41232-024-00333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Tissue-resident memory T cells (TRM) serve as the frontline of host defense, playing a critical role in protection against invading pathogens. This emphasizes their role in providing rapid on-site immune responses across various organs. The physiological significance of TRM is not just confined to infection control; accumulating evidence has revealed that TRM also determine the pathology of diseases such as autoimmune disorders, inflammatory bowel disease, and cancer. Intensive studies on the origin, mechanisms of formation and maintenance, and physiological significance of TRM have elucidated the transcriptional and functional diversity of these cells, which are often affected by local cues associated with their presence. These were further confirmed by the recent remarkable advancements of next-generation sequencing and single-cell technologies, which allow the transcriptional and phenotypic characterization of each TRM subset induced in different microenvironments. This review first overviews the current knowledge of the cell fate, molecular features, transcriptional and metabolic regulation, and biological importance of TRM in health and disease. Finally, this article presents a variety of recent studies on disease-associated TRM, particularly focusing and elaborating on the TRM in the gut, which constitute the largest and most intricate immune network in the body, and their pathological relevance to gut inflammation in humans.
Collapse
Affiliation(s)
- Mari Murakami
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
6
|
Seyed N, Taheri T, Rafati S. Live attenuated-nonpathogenic Leishmania and DNA structures as promising vaccine platforms against leishmaniasis: innovations can make waves. Front Microbiol 2024; 15:1326369. [PMID: 38633699 PMCID: PMC11021776 DOI: 10.3389/fmicb.2024.1326369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Leishmaniasis is a vector-borne disease caused by the protozoan parasite of Leishmania genus and is a complex disease affecting mostly tropical regions of the world. Unfortunately, despite the extensive effort made, there is no vaccine available for human use. Undoubtedly, a comprehensive understanding of the host-vector-parasite interaction is substantial for developing an effective prophylactic vaccine. Recently the role of sandfly saliva on disease progression has been uncovered which can make a substantial contribution in vaccine design. In this review we try to focus on the strategies that most probably meet the prerequisites of vaccine development (based on the current understandings) including live attenuated/non-pathogenic and subunit DNA vaccines. Innovative approaches such as reverse genetics, CRISP/R-Cas9 and antibiotic-free selection are now available to promisingly compensate for intrinsic drawbacks associated with these platforms. Our main goal is to call more attention toward the prerequisites of effective vaccine development while controlling the disease outspread is a substantial need.
Collapse
Affiliation(s)
- Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | | | | |
Collapse
|
7
|
Nateghi-Rostami M, Sohrabi Y. Memory T cells: promising biomarkers for evaluating protection and vaccine efficacy against leishmaniasis. Front Immunol 2024; 15:1304696. [PMID: 38469319 PMCID: PMC10925770 DOI: 10.3389/fimmu.2024.1304696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Understanding the immune response to Leishmania infection and identifying biomarkers that correlate with protection are crucial for developing effective vaccines. One intriguing aspect of Leishmania infection is the persistence of parasites, even after apparent lesion healing. Various host cells, including dendritic cells, fibroblasts, and Langerhans cells, may serve as safe sites for latent infection. Memory T cells, especially tissue-resident memory T cells (TRM), play a crucial role in concomitant immunity against cutaneous Leishmania infections. These TRM cells are long-lasting and can protect against reinfection in the absence of persistent parasites. CD4+ TRM cells, in particular, have been implicated in protection against Leishmania infections. These cells are characterized by their ability to reside in the skin and rapidly respond to secondary infections by producing cytokines such as IFN-γ, which activates macrophages to kill parasites. The induction of CD4+ TRM cells has shown promise in experimental immunization, leading to protection against Leishmania challenge infections. Identifying biomarkers of protection is a critical step in vaccine development and CD4+ TRM cells hold potential as biomarkers, as their presence and functions may correlate with protection. While recent studies have shown that Leishmania-specific memory CD4+ T-cell subsets are present in individuals with a history of cutaneous leishmaniasis, further studies are needed to characterize CD4+ TRM cell populations. Overall, this review highlights the importance of memory T cells, particularly skin-resident CD4+ TRM cells, as promising targets for developing effective vaccines against leishmaniasis and as biomarkers of immune protection to assess the efficacy of candidate vaccines against human leishmaniasis.
Collapse
Affiliation(s)
| | - Yahya Sohrabi
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Westfälische Wilhelms-Universität, Münster, Germany
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
8
|
Long B, Zhou S, Gao Y, Fan K, Lai J, Yao C, Li J, Xu X, Yu S. Tissue-Resident Memory T Cells in Allergy. Clin Rev Allergy Immunol 2024; 66:64-75. [PMID: 38381299 DOI: 10.1007/s12016-024-08982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Tissue-resident memory T (TRM) cells constitute a distinct subset within the memory T cell population, serving as the vanguard against invading pathogens and antigens in peripheral non-lymphoid tissues, including the respiratory tract, intestines, and skin. Notably, TRM cells adapt to the specific microenvironment of each tissue, predominantly maintaining a sessile state with distinctive phenotypic and functional attributes. Their role is to ensure continuous immunological surveillance and protection. Recent findings have highlighted the pivotal contribution of TRM cells to the modulation of adaptive immune responses in allergic disorders such as allergic rhinitis, asthma, and dermatitis. A comprehensive understanding of the involvement of TRM cells in allergic diseases bears profound implications for allergy prevention and treatment. This review comprehensively explores the phenotypic characteristics, developmental mechanisms, and functional roles of TRM cells, focusing on their intricate relationship with allergic diseases.
Collapse
Affiliation(s)
- Bojin Long
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Shican Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yawen Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Kai Fan
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Ju Lai
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Chunyan Yao
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jingwen Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xiayue Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Shaoqing Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
9
|
Zheng C, Cao T, Ye C, Zou Y. Neutrophil recruitment by CD4 tissue-resident memory T cells induces chronic recurrent inflammation in atopic dermatitis. Clin Immunol 2023; 256:109805. [PMID: 37832861 DOI: 10.1016/j.clim.2023.109805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/18/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disease that continues to impose significant physical, mental, and economic burdens on patients. Recent research has suggested the significant role of tissue-resident memory (TRM) cells in AD. However, the precise role and mechanisms of action of TRM cells in AD remain unclear. A deeper understanding of the involvement of TRM cells in AD will unveil promising pathways for future innovative therapeutic strategies. METHODS To investigate the involvement of TRM cells in AD, we used diverse mouse models and employed experimental techniques to manipulate cell formation and depletion. We assessed the inflammatory response by analyzing mouse ear phenotype, measuring ear thickness, and performing hematoxylin and eosin staining. Flow cytometry and immunofluorescence staining were used to identify different cell types and evaluate changes in cell quantity. Additionally, we used qPCR to analyze gene expression of relevant chemokines and cytokines. RESULTS Our study revealed the presence of TRM cells in the skin after exposure to calcipotriol. After a 24-h re-challenge, we observed substantial neutrophil infiltration into the previously irritated skin. Neutrophil depletion prior to re-challenge effectively prevented early flare-up responses during AD recurrence. Furthermore, we demonstrate that CD4+TRM cells upregulate expression of cytokines INF-γ and TNF-α, which may induce the expression of CXCL1, thereby recruiting neutrophils and contributing to the chronic recurrent inflammation observed in AD. CONCLUSIONS We have established a novel, chronic recurrent mouse model for investigating TRM cells in AD. Our findings demonstrate that CD4+TRM cells in the skin mediate early flare-up response during AD recurrence and influence the chronic recurrent inflammation of AD by recruiting neutrophils. Targeting CD4+TRM cells may represent a promising approach for the treatment of chronic recurrent inflammation in AD.
Collapse
Affiliation(s)
- Chunjiao Zheng
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ting Cao
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chengbin Ye
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Zou
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Endo A, Imai J, Izumi T, Kawana Y, Sugawara H, Kohata M, Seike J, Kubo H, Komamura H, Sato T, Asai Y, Hosaka S, Kodama S, Takahashi K, Kaneko K, Katagiri H. Phagocytosis by macrophages promotes pancreatic β cell mass reduction after parturition in mice. Dev Cell 2023; 58:1819-1829.e5. [PMID: 37716356 DOI: 10.1016/j.devcel.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/07/2023] [Accepted: 08/01/2023] [Indexed: 09/18/2023]
Abstract
Elucidating the mechanism(s) modulating appropriate tissue size is a critical biological issue. Pancreatic β cells increase during pregnancy via cellular proliferation, but how β cells promptly decrease to the original amount after parturition remains unclear. Herein, we demonstrate the role and mechanism of macrophage accumulation in this process. In the final stage of pregnancy, HTR1D signaling upregulates murine β cell CXCL10, thereby promoting macrophage accumulation in pancreatic islets via the CXCL10-CXCR3 axis. Blocking this mechanism by administering an HTR1D antagonist or the CXCR3 antibody and depleting islet macrophages inhibited postpartum β cell mass reduction. β cells engulfed by macrophages increased in postpartum islets, but Annexin V administration suppressed this engulfment and the postpartum β cell mass reduction, indicating the accumulated macrophages to phagocytose β cells. This mechanism contributes to both maintenance of appropriate β cell mass and glucose homeostasis promptly adapting to reduced systemic insulin demand after parturition.
Collapse
Affiliation(s)
- Akira Endo
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Tomohito Izumi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yohei Kawana
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hiroto Sugawara
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Masato Kohata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Junro Seike
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Haremaru Kubo
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hiroshi Komamura
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Toshihiro Sato
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yoichiro Asai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Shinichiro Hosaka
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Shinjiro Kodama
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Kei Takahashi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Keizo Kaneko
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
11
|
Armitage E, Quan D, Flórido M, Palendira U, Triccas JA, Britton WJ. CXCR3 Provides a Competitive Advantage for Retention of Mycobacterium tuberculosis-Specific Tissue-Resident Memory T Cells Following a Mucosal Tuberculosis Vaccine. Vaccines (Basel) 2023; 11:1549. [PMID: 37896952 PMCID: PMC10611282 DOI: 10.3390/vaccines11101549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Mycobacterium tuberculosis is a major human pathogen, and new vaccines are needed to prevent transmission. Mucosal vaccination may confer protection against M. tuberculosis by stimulating tissue-resident memory (TRM) CD4+ T cells in the lungs. The chemokine receptor CXCR3 promotes lung recruitment of T cells, but its role in TRM development is unknown. This study demonstrates the recombinant influenza A virus vaccine PR8.p25, expressing the immunodominant M. tuberculosis T cell epitope p25, induces CXCR3 expression on p25-specific CD4+ T cells in the lungs so that the majority of vaccine-induced CD4+ TRM expresses CXCR3 at 6 weeks. However, CXCR3-/- mice developed equivalent antigen-specific CD4+ T cell responses to wild-type (WT) mice following PR8.p25, and surprisingly retained more p25-specific CD4+ TRM in the lungs than WT mice at 6 weeks. The adoptive transfer of CXCR3-/- and WT P25 T cells into WT mice revealed that the initial recruitment of vaccine-induced CD4+ T cells into the lungs was independent of CXCR3, but by 6 weeks, CXCR3-deficient P25 T cells, and especially CXCR3-/- TRM, were significantly reduced compared to CXCR3-sufficient P25 T cells. Therefore, although CXCR3 was not essential for CD4+ TRM recruitment or retention, it provided a competitive advantage for the induction of M. tuberculosis-specific CD4+ TRM in the lungs following pulmonary immunization.
Collapse
Affiliation(s)
- Ellis Armitage
- Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia; (E.A.); (D.Q.); (M.F.); (U.P.)
| | - Diana Quan
- Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia; (E.A.); (D.Q.); (M.F.); (U.P.)
| | - Manuela Flórido
- Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia; (E.A.); (D.Q.); (M.F.); (U.P.)
| | - Umaimainthan Palendira
- Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia; (E.A.); (D.Q.); (M.F.); (U.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - James A. Triccas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
- The University of Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Warwick J. Britton
- Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia; (E.A.); (D.Q.); (M.F.); (U.P.)
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
12
|
Longet S, Paul S. Pivotal role of tissue-resident memory lymphocytes in the control of mucosal infections: can mucosal vaccination induce protective tissue-resident memory T and B cells? Front Immunol 2023; 14:1216402. [PMID: 37753095 PMCID: PMC10518612 DOI: 10.3389/fimmu.2023.1216402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Affiliation(s)
- Stephanie Longet
- Centre International de Recherche en Infectiologie, Team Groupe sur l'immunité des muqueuses et agents pathogènes (GIMAP), Université Jean Monnet, Université Claude Bernard Lyon, Inserm, Saint-Etienne, France
| | - Stephane Paul
- Centre International de Recherche en Infectiologie, Team Groupe sur l'immunité des muqueuses et agents pathogènes (GIMAP), Université Jean Monnet, Université Claude Bernard Lyon, Inserm, Saint-Etienne, France
- Centre d'investigation clinique (CIC) 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, Saint-Etienne, France
- Immunology Department, iBiothera Reference Center, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
13
|
Mas A, Hurtado-Morillas C, Martínez-Rodrigo A, Orden JA, de la Fuente R, Domínguez-Bernal G, Carrión J. A Tailored Approach to Leishmaniases Vaccination: Comparative Evaluation of the Efficacy and Cross-Protection Capacity of DNA vs. Peptide-Based Vaccines in a Murine Model. Int J Mol Sci 2023; 24:12334. [PMID: 37569710 PMCID: PMC10418836 DOI: 10.3390/ijms241512334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Zoonotic leishmaniases are a worldwide public health problem for which the development of effective vaccines remains a challenge. A vaccine against leishmaniases must be safe and affordable and should induce cross-protection against the different disease-causing species. In this context, the DNA vaccine pHisAK70 has been demonstrated to induce, in a murine model, a resistant phenotype against L. major, L. infantum, and L. amazonensis. Moreover, a chimeric multiepitope peptide, HisDTC, has been obtained by in silico analysis from the histone proteins encoded in the DNA vaccine and has showed its ability to activate a potent CD4+ and CD8+ T-cell protective immune response in mice against L. infantum infection. In the present study, we evaluated the plasmid DNA vaccine pHisAK70 in comparison with the peptide HisDTC (with and without saponin) against L. major and L. infantum infection. Our preliminary results showed that both formulations were able to induce a potent cellular response leading to a decrease in parasite load against L. infantum. In addition, the DNA candidate was able to induce better lesion control in mice against L. major. These preliminary results indicate that both strategies are potentially effective candidates for leishmaniases control. Furthermore, it is important to carry out such comparative studies to elucidate which vaccine candidates are the most appropriate for further development.
Collapse
Affiliation(s)
- Alicia Mas
- INMIVET Group, Animal Health Department, Veterinary School, Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Clara Hurtado-Morillas
- INMIVET Group, Animal Health Department, Veterinary School, Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Abel Martínez-Rodrigo
- INMIVET Group, Animal Science Department, Veterinary School, Universidad Complutense Madrid, 28040 Madrid, Spain
| | - José A. Orden
- INMIVET Group, Animal Health Department, Veterinary School, Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Ricardo de la Fuente
- INMIVET Group, Animal Health Department, Veterinary School, Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Gustavo Domínguez-Bernal
- INMIVET Group, Animal Health Department, Veterinary School, Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Javier Carrión
- INMIVET Group, Animal Health Department, Veterinary School, Universidad Complutense Madrid, 28040 Madrid, Spain
| |
Collapse
|
14
|
Depew CE, Nguyen AT, Franke MC, Calderon J, Sciammas R, McSorley SJ. Cutting Edge: Optimal Formation of Hepatic Tissue-Resident Memory CD4 T Cells Requires T-bet Regulation of CD18. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:180-185. [PMID: 37283516 PMCID: PMC10330511 DOI: 10.4049/jimmunol.2300017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
CD4 tissue-resident memory T cells (TRMs) allow robust protection of barrier surfaces against pathogens. We investigated the role of T-bet in the formation of liver CD4 TRMs using mouse models. T-bet-deficient CD4 T cells did not efficiently form liver TRMs when compared with wild-type (WT). In addition, ectopic expression of T-bet enhanced the formation of liver CD4 TRMs, but only when in competition with WT CD4 T cells. Liver TRMs also expressed higher levels of CD18, which was T-bet dependent. The WT competitive advantage was blocked by Ab neutralization of CD18. Taken together, our data show that activated CD4 T cells compete for entry to liver niches via T-bet-induced expression of CD18, allowing TRM precursors to access subsequent hepatic maturation signals. These findings uncover an essential role for T-bet in liver TRM CD4 formation and suggest targeted enhancement of this pathway could increase the efficacy of vaccines that require hepatic TRMs.
Collapse
Affiliation(s)
- Claire E Depew
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA
| | - Alana T Nguyen
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA
| | - Marissa C Franke
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA
| | - Jesica Calderon
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA
| | - Roger Sciammas
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA
| | - Stephen J McSorley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA
| |
Collapse
|
15
|
Strobl J, Haniffa M. Functional heterogeneity of human skin-resident memory T cells in health and disease. Immunol Rev 2023; 316:104-119. [PMID: 37144705 PMCID: PMC10952320 DOI: 10.1111/imr.13213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The human skin is populated by a diverse pool of memory T cells, which can act rapidly in response to pathogens and cancer antigens. Tissue-resident memory T cells (TRM ) have been implicated in range of allergic, autoimmune and inflammatory skin diseases. Clonal expansion of cells with TRM properties is also known to contribute to cutaneous T-cell lymphoma. Here, we review the heterogeneous phenotypes, transcriptional programs, and effector functions of skin TRM . We summarize recent studies on TRM formation, longevity, plasticity, and retrograde migration and contextualize the findings to skin TRM and their role in maintaining skin homeostasis and altered functions in skin disease.
Collapse
Affiliation(s)
- Johanna Strobl
- Department of DermatologyMedical University of ViennaViennaAustria
- CeMM Research Center for Molecular MedicineViennaAustria
| | - Muzlifah Haniffa
- Wellcome Sanger InstituteCambridgeUK
- Department of Dermatology and NIHR Newcastle Biomedical Research CentreNewcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
16
|
Abstract
Specialized subpopulations of CD4+ T cells survey major histocompatibility complex class II-peptide complexes to control phagosomal infections, help B cells, regulate tissue homeostasis and repair or perform immune regulation. Memory CD4+ T cells are positioned throughout the body and not only protect the tissues from reinfection and cancer, but also participate in allergy, autoimmunity, graft rejection and chronic inflammation. Here we provide updates on our understanding of the longevity, functional heterogeneity, differentiation, plasticity, migration and human immunodeficiency virus reservoirs as well as key technological advances that are facilitating the characterization of memory CD4+ T cell biology.
Collapse
Affiliation(s)
- Marco Künzli
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - David Masopust
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
17
|
Nguyen QP, Takehara KK, Deng TZ, O’Shea S, Heeg M, Omilusik KD, Milner JJ, Quon S, Pipkin ME, Choi J, Crotty S, Goldrath AW. Transcriptional programming of CD4 + T RM differentiation in viral infection balances effector- and memory-associated gene expression. Sci Immunol 2023; 8:eabq7486. [PMID: 37172104 PMCID: PMC10350289 DOI: 10.1126/sciimmunol.abq7486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 04/19/2023] [Indexed: 05/14/2023]
Abstract
After resolution of infection, T cells differentiate into long-lived memory cells that recirculate through secondary lymphoid organs or establish residence in tissues. In contrast to CD8+ tissue-resident memory T cells (TRM), the developmental origins and transcriptional regulation of CD4+ TRM remain largely undefined. Here, we investigated the phenotypic, functional, and transcriptional profiles of CD4+ TRM in the small intestine (SI) responding to acute viral infection, revealing a shared gene expression program and chromatin accessibility profile with circulating TH1 and the progressive acquisition of a mature TRM program. Single-cell RNA sequencing identified heterogeneity among established CD4+ TRM, which were predominantly located in the lamina propria, and revealed a population of cells that coexpressed both effector- and memory-associated genes, including the transcriptional regulators Blimp1, Id2, and Bcl6. TH1-associated Blimp1 and Id2 and TFH-associated Bcl6 were required for early TRM formation and development of a mature TRM population in the SI. These results demonstrate a developmental relationship between TH1 effector cells and the establishment of early TRM, as well as highlighted differences in CD4+ versus CD8+ TRM populations, providing insights into the mechanisms underlying the origins, differentiation, and persistence of CD4+ TRM in response to viral infection.
Collapse
Affiliation(s)
- Quynh P Nguyen
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Kennidy K Takehara
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Tianda Z Deng
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Shannon O’Shea
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Maximilian Heeg
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Kyla D Omilusik
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - J Justin Milner
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Sara Quon
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida
| | - Jinyong Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Ananda W Goldrath
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| |
Collapse
|
18
|
Fiuza JA, Gannavaram S, Gaze ST, de Ornellas LG, Alves ÉA, Ismail N, Nakhasi HL, Correa-Oliveira R. Deletion of MIF gene from live attenuated LdCen -/- parasites enhances protective CD4 + T cell immunity. Sci Rep 2023; 13:7362. [PMID: 37147351 PMCID: PMC10163264 DOI: 10.1038/s41598-023-34333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/27/2023] [Indexed: 05/07/2023] Open
Abstract
Vaccination with live attenuated Leishmania parasites such as centrin deleted Leishmania donovani (LdCen-/-) against visceral leishmaniasis has been reported extensively. The protection induced by LdCen-/- parasites was mediated by both CD4+ and CD8+ T cells. While the host immune mediators of protection are known, parasite determinants that affect the CD4+ and CD8+ T cell populations remain unknown. Parasite encoded inflammatory cytokine MIF has been shown to modulate the T cell differentiation characteristics by altering the inflammation induced apoptosis during contraction phase in experimental infections with Leishmania or Plasmodium. Neutralization of parasite encoded MIF either by antibodies or gene deletion conferred protection in Plasmodium and Leishmania studies. We investigated if the immunogenicity and protection induced by LdCen-/- parasites is affected by deleting MIF genes from this vaccine strain. Our results showed that LdCen-/-MIF-/- immunized group presented higher percentage of CD4+ and CD8+ central memory T cells, increased CD8+ T cell proliferation after challenge compared to LdCen-/- immunization. LdCen-/-MIF-/- immunized group presented elevated production of IFN-γ+ and TNF-α+ CD4+ T cells concomitant with a reduced parasite load in spleen and liver compared to LdCen-/-group following challenge with L. infantum. Our results demonstrate the role of parasite induced factors involved in protection and long-term immunity of vaccines against VL.
Collapse
Affiliation(s)
- Jacqueline Araújo Fiuza
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil.
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.
| | - Soraya Torres Gaze
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil
| | | | - Érica Alessandra Alves
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil
| | - Nevien Ismail
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Hira Lal Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Rodrigo Correa-Oliveira
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil
| |
Collapse
|
19
|
Depew CE, Rixon JA, McSorley SJ. Optimal generation of hepatic tissue-resident memory CD4 T cells requires IL-1 and IL-2. Proc Natl Acad Sci U S A 2023; 120:e2214699120. [PMID: 37040404 PMCID: PMC10120061 DOI: 10.1073/pnas.2214699120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/23/2023] [Indexed: 04/12/2023] Open
Abstract
Hepatic CD4 tissue-resident memory T cells (TRM) are required for robust protection against Salmonella infection; however, the generation of this T cell population is poorly understood. To interrogate the contribution of inflammation, we developed a simple Salmonella-specific T cell transfer system that allowed direct visualization of hepatic TRM formation. Salmonella-specific (SM1) T cell receptor (TCR) transgenic CD4 T cells were activated in vitro and adoptively transferred into C57BL/6 mice while hepatic inflammation was induced by acetaminophen overdose or L. monocytogenes infection. In both model systems, hepatic CD4 TRM formation was accentuated by local tissue responses. Liver inflammation also enhanced the suboptimal protection provided by a subunit Salmonella vaccine which typically induces circulating memory CD4 T cells. To further elucidate the mechanism of CD4 TRM formation in response to liver inflammation, various cytokines were examined by RNAseq, bone marrow chimeras, and in vivo neutralization. Surprisingly, IL-2 and IL-1 were found to enhance CD4 TRM formation. Thus, local inflammatory mediators enhance CD4 TRM populations and can boost the protective immunity provided by a suboptimal vaccine. This knowledge will be foundational for the development of a more effective vaccine against invasive nontyphoidal salmonellosis (iNTS).
Collapse
Affiliation(s)
- Claire E. Depew
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA95616
| | - Jordan A. Rixon
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA95616
| | - Stephen J. McSorley
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA95616
| |
Collapse
|
20
|
Rosato PC, Lotfi-Emran S, Joag V, Wijeyesinghe S, Quarnstrom CF, Degefu HN, Nedellec R, Schenkel JM, Beura LK, Hangartner L, Burton DR, Masopust D. Tissue-resident memory T cells trigger rapid exudation and local antibody accumulation. Mucosal Immunol 2023; 16:17-26. [PMID: 36657662 PMCID: PMC10338064 DOI: 10.1016/j.mucimm.2022.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 01/18/2023]
Abstract
Adaptive immunity is didactically partitioned into humoral and cell-mediated effector mechanisms, which may imply that each arm is separate and does not function together. Here, we report that the activation of CD8+ resident memory T cells (TRM) in nonlymphoid tissues triggers vascular permeability, which facilitates rapid distribution of serum antibodies into local tissues. TRM reactivation was associated with transcriptional upregulation of antiviral signaling pathways as well as Fc receptors and components of the complement cascade. Effects were local, but evidence is presented that TRM in brain and reproductive mucosa are both competent to induce rapid antibody exudation. TRM reactivation in the mouse female genital tract increased local concentrations of virus-specific neutralizing antibodies, including anti-vesicular stomatitis virus, and passively transferred anti-HIV antibodies. We showed that this response was sufficient to increase the efficacy of ex vivo vesicular stomatitis virus neutralization. These results indicate that CD8+ TRM antigen recognition can enhance local humoral immunity.
Collapse
Affiliation(s)
- Pamela C Rosato
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA; Geisel School of Medicine at Dartmouth College, Dartmouth Cancer Center, Department of Microbiology and Immunology, Lebanon, NH, USA
| | - Sahar Lotfi-Emran
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA
| | - Vineet Joag
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA
| | - Sathi Wijeyesinghe
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA
| | - Clare F Quarnstrom
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA
| | - Hanna N Degefu
- Geisel School of Medicine at Dartmouth College, Dartmouth Cancer Center, Department of Microbiology and Immunology, Lebanon, NH, USA
| | - Rebecca Nedellec
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jason M Schenkel
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA
| | - Lalit K Beura
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA; Brown University, Department of Molecular Microbiology and Immunology, Providence, RI, USA
| | - Lars Hangartner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - David Masopust
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA.
| |
Collapse
|
21
|
Complexing CpG adjuvants with cationic liposomes enhances vaccine-induced formation of liver T RM cells. Vaccine 2023; 41:1094-1107. [PMID: 36609029 DOI: 10.1016/j.vaccine.2022.12.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023]
Abstract
Tissue resident memory T cells (TRM cells) can provide effective tissue surveillance and can respond rapidly to infection. Vaccination strategies aimed at generating TRM cells have shown promise against a range of pathogens. We have previously shown that the choice of adjuvant critically influences CD8+ TRM cell formation in the liver. However, the range of adjuvants tested was limited. Here, we assessed the ability of a broad range of adjuvants stimulating membrane (TLR4), endosomal (TLR3, TLR7 and TLR9) and cytosolic (cGAS, RIG-I) pathogen recognition receptors for their capacity to induce CD8+ TRM formation in a subunit vaccination model. We show that CpG oligodeoxynucleotides (ODN) remain the most efficient inducers of liver TRM cells among all adjuvants tested. Moreover, their combination with the cationic liposome DOTAP further enhances the potency, particularly of the class B ODN CpG 1668 and the human TLR9 ligand CpG 2006 (CpG 7909). This study informs the design of efficient liver TRM-based vaccines for their potential translation.
Collapse
|
22
|
Novel approaches to preventing phagosomal infections: timing is key. Trends Immunol 2023; 44:22-31. [PMID: 36494273 DOI: 10.1016/j.it.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Prophylactic vaccination strategies designed to prevent diseases caused by pathogens using the phagolysosome of innate immune cells as a site of intracellular replication and survival have been largely ineffective. These include Mycobacterium tuberculosis (Mtb), Leishmania spp., and Cryptococcus spp. These failed strategies have traditionally targeted CD4+ T helper (Th) 1 cell-mediated immune memory, deeming it crucial for vaccine efficacy. This failure warrants an investigation of alternative mediators of protection. Here, we suggest three novel approaches to activate phagocytic cells prior to or at the time of infection. We hypothesize that preventing the formation of the pathogen niche within the phagolysosome is essential for preventing disease, and a greater emphasis on the timing of phagocyte activation should generate more effective prophylactic treatment options.
Collapse
|
23
|
Unique properties of tissue-resident memory T cells in the lungs: implications for COVID-19 and other respiratory diseases. Nat Rev Immunol 2022; 23:329-335. [PMID: 36494455 PMCID: PMC9735123 DOI: 10.1038/s41577-022-00815-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
Tissue-resident memory T (TRM) cells were originally identified as a tissue-sequestered population of memory T cells that show lifelong persistence in non-lymphoid organs. That definition has slowly evolved with the documentation of TRM cells having variable terms of tissue residency combined with a capacity to return to the wider circulation. Nonetheless, reductionist experiments have identified an archetypical population of TRM cells showing intrinsic permanent residency in a wide range of non-lymphoid organs, with one notable exception: the lungs. Despite the fact that memory T cells generated during a respiratory infection are maintained in the circulation, local TRM cell numbers in the lung decline concomitantly with a decay in T cell-mediated protection. This Perspective describes the mechanisms that underpin long-term T cell lodgement in non-lymphoid tissues and explains why residency is transient for select TRM cell subsets. In doing so, it highlights the unusual nature of memory T cell egress from the lungs and speculates on the broader disease implications of this process, especially during infection with SARS-CoV-2.
Collapse
|
24
|
Whitley SK, Li M, Kashem SW, Hirai T, Igyártó BZ, Knizner K, Ho J, Ferris LK, Weaver CT, Cua DJ, McGeachy MJ, Kaplan DH. Local IL-23 is required for proliferation and retention of skin-resident memory T H17 cells. Sci Immunol 2022; 7:eabq3254. [PMID: 36367947 PMCID: PMC9847353 DOI: 10.1126/sciimmunol.abq3254] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The cytokine interleukin-23 (IL-23) is critical for development and maintenance of autoimmune inflammation in nonlymphoid tissues; however, the mechanism through which IL-23 supports tissue-specific immunity remains unclear. In mice, we found that circulating memory T cells were dispensable for anamnestic protection from Candida albicans skin infection, and tissue-resident memory (TRM) cell-mediated protection from C. albicans reinfection required IL-23. Administration of anti-IL-23 receptor antibody to mice after resolution of primary C. albicans infection resulted in loss of CD69+ CD103+ tissue-resident memory T helper 17 (TRM17) cells from skin, and clinical anti-IL-23 therapy depleted TRM17 cells from skin of patients with psoriasis. IL-23 receptor blockade impaired TRM17 cell proliferation but did not affect apoptosis susceptibility or tissue egress. IL-23 produced by CD301b+ myeloid cells was required for TRM17 maintenance in skin after C. albicans infection, and CD301b+ cells were necessary for TRM17 expansion during the development of imiquimod dermatitis. This study demonstrates that locally produced IL-23 promotes in situ proliferation of cutaneous TRM17 cells to support their longevity and function and provides mechanistic insight into the durable efficacy of IL-23 blockade in the treatment of psoriasis.
Collapse
Affiliation(s)
- Sarah K. Whitley
- Departments of Dermatology, University of Pittsburgh, Pittsburgh PA
| | - Mushi Li
- Departments of Dermatology, University of Pittsburgh, Pittsburgh PA
| | - Sakeen W. Kashem
- Departments of Dermatology, University of Pittsburgh, Pittsburgh PA
- Immunology, University of Pittsburgh, Pittsburgh PA
| | - Toshiro Hirai
- Departments of Dermatology, University of Pittsburgh, Pittsburgh PA
- Immunology, University of Pittsburgh, Pittsburgh PA
| | - Botond Z. Igyártó
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| | - Kelley Knizner
- Departments of Dermatology, University of Pittsburgh, Pittsburgh PA
| | - Jonhan Ho
- Departments of Dermatology, University of Pittsburgh, Pittsburgh PA
| | - Laura K. Ferris
- Departments of Dermatology, University of Pittsburgh, Pittsburgh PA
| | - Casey T. Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | | | - Mandy J. McGeachy
- Rheumatology, University of Pittsburgh, Pittsburgh PA
- Immunology, University of Pittsburgh, Pittsburgh PA
| | - Daniel H. Kaplan
- Departments of Dermatology, University of Pittsburgh, Pittsburgh PA
- Immunology, University of Pittsburgh, Pittsburgh PA
| |
Collapse
|
25
|
Neuwirth T, Knapp K, Stary G. (Not) Home alone: Antigen presenting cell - T Cell communication in barrier tissues. Front Immunol 2022; 13:984356. [PMID: 36248804 PMCID: PMC9556809 DOI: 10.3389/fimmu.2022.984356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Priming of T cells by antigen presenting cells (APCs) is essential for T cell fate decisions, enabling T cells to migrate to specific tissues to exert their effector functions. Previously, these interactions were mainly explored using blood-derived cells or animal models. With great advances in single cell RNA-sequencing techniques enabling analysis of tissue-derived cells, it has become clear that subsets of APCs are responsible for priming and modulating heterogeneous T cell effector responses in different tissues. This composition of APCs and T cells in tissues is essential for maintaining homeostasis and is known to be skewed in infection and inflammation, leading to pathological T cell responses. This review highlights the commonalities and differences of T cell priming and subsequent effector function in multiple barrier tissues such as the skin, intestine and female reproductive tract. Further, we provide an overview of how this process is altered during tissue-specific infections which are known to cause chronic inflammation and how this knowledge could be harnessed to modify T cell responses in barrier tissue.
Collapse
Affiliation(s)
- Teresa Neuwirth
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Katja Knapp
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| |
Collapse
|
26
|
Li C, Lin YD, Wang WB, Xu M, Zhang N, Xiong N. Differential regulation of CD8 + CD86 + Vγ1.1 + γδT cell responses in skin barrier tissue protection and homeostatic maintenance. Eur J Immunol 2022; 52:1498-1509. [PMID: 35581932 DOI: 10.1002/eji.202249793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/13/2022] [Accepted: 05/16/2022] [Indexed: 11/11/2022]
Abstract
Compared to αβT cells, γδT cells are more innate-like and preferentially function as the first line of defense in barrier tissues. Certain populations of γδT cells possess adaptive immune cell properties but their regulation is not well understood. We herein report that while innate-like γδT17 cells dominated in the skin of WT mice, Vγ1.1+ γδT cells with adaptive T cell-like properties predominantly expanded in the skin of TCRβ-/- and B2m-/- mice. Commensal bacteria drove expansion of Vγ1.1+ skin γδT cells, functional properties of which correlated with local immune requirements. That is, Vγ1.1+ skin γδT cells in TCRβ-/- mice were a heterogeneous population; while Vγ1.1+ skin γδT cells in B2m-/- mice were mostly CD8+ CD86+ cells that had a similar function of CD8+ CD86+ skin αβT cells in supporting local Treg cells. We also found that intrinsic TGF-β receptor 2-derived signals in skin CD8+ αβT and γδT cells are required for their expression of CD86, a molecule important in supporting skin Treg cells. Our findings reveal broad functional potentials of γδT cells that are coordinately regulated with αβT cells to help maintain local tissue homeostasis.
Collapse
Affiliation(s)
- Chao Li
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, P. R. China
| | - Yang-Ding Lin
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Wei-Bei Wang
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Ming Xu
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Nu Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Na Xiong
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
- Division of Dermatology and Cutaneous Surgery, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| |
Collapse
|
27
|
Sghaier RM, Benhnini F, Guerfali FZ, Attia H, Bali A, Zaatour A, Mkannez G, Gharbi A, Belhaj-Hamida N, Dridi H, Ben-Salah A, Dellagi K, Laouini D. Healed Lesions of Human Cutaneous Leishmaniasis Caused By Leishmania major Do Not Shelter Persistent Residual Parasites. Front Cell Infect Microbiol 2022; 12:839216. [PMID: 35967864 PMCID: PMC9363604 DOI: 10.3389/fcimb.2022.839216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
In human cutaneous leishmaniasis (HCL) caused by Leishmania (L.) major, the cutaneous lesions heal spontaneously and induce a Th1-type immunity that confers solid protection against reinfection. The same holds true for the experimental leishmaniasis induced by L. major in C57BL/6 mice where residual parasites persist after spontaneous clinical cure and induce sustainable memory immune responses and resistance to reinfection. Whether residual parasites also persist in scars of cured HCL caused by L. major is still unknown. Cutaneous scars from 53 volunteers with healed HCL caused by L. major were biopsied and the tissue sample homogenates were analyzed for residual parasites by four methods: i) microscope detection of amastigotes, ii) parasite culture by inoculation on biphasic medium, iii) inoculation of tissue exctracts to the footpad of BALB/c mice, an inbred strain highly susceptible to L. major, and iv) amplification of parasite kDNA by a highly sensitive real-time PCR (RT-PCR). Our results show that the scars of healed lesions of HCL caused by L. major do not contain detectable residual parasites, suggesting that this form likely induces a sterile cure at least within the scars. This feature contrasts with other Leishmania species causing chronic, diffuse, or recidivating forms of leishmaniasis where parasites do persist in healed lesions. The possibility that alternative mechanisms to parasite persistence are needed to boost and maintain long-term immunity to L. major, should be taken into consideration in vaccine development against L. major infection.
Collapse
Affiliation(s)
- Rabiaa M. Sghaier
- LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Fouad Benhnini
- LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Fatma Z. Guerfali
- LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Hanène Attia
- LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Aymen Bali
- LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Amor Zaatour
- LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
- Service of Medical Epidemiology, Institut Pasteur de Tunis, Tunis-Belvédère, Tunisia
| | - Ghada Mkannez
- LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Adel Gharbi
- LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
- Service of Medical Epidemiology, Institut Pasteur de Tunis, Tunis-Belvédère, Tunisia
| | - Nabil Belhaj-Hamida
- LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
- Service of Medical Epidemiology, Institut Pasteur de Tunis, Tunis-Belvédère, Tunisia
| | - Hichem Dridi
- LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
- Service of Medical Epidemiology, Institut Pasteur de Tunis, Tunis-Belvédère, Tunisia
| | - Afif Ben-Salah
- LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
- Service of Medical Epidemiology, Institut Pasteur de Tunis, Tunis-Belvédère, Tunisia
- Department of Family and Community Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Koussay Dellagi
- LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Dhafer Laouini
- LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
- *Correspondence: Dhafer Laouini, ;
| |
Collapse
|
28
|
Abstract
In this review, we summarize and discuss recent advances in understanding the characteristics of tissue-resident memory T cells (TRMs) in the context of solid organ transplantation (SOT). We first introduce the traditionally understood noncirculating features of TRMs and the key phenotypic markers that define this population, then provide a detailed discussion of emerging concepts on the recirculation and plasticity of TRM in mice and humans. We comment on the potential heterogeneity of transient, temporary resident, and permanent resident T cells and potential interchangeable phenotypes between TRM and effector T cells in nonlymphoid tissues. We review the literature on the distribution of TRM in human nonlymphoid organs and association of clinical outcomes in different types of SOT, including intestine, lung, liver, kidney, and heart. We focus on both tissue-specific and organ-shared features of donor- and recipient-derived TRMs after transplantation whenever applicable. Studies with comprehensive sample collection, including longitudinal and cross-sectional controls, and applied advanced techniques such as multicolor flow cytometry to distinguish donor and recipient TRMs, bulk, and single-cell T-cell receptor sequencing to track clonotypes and define transcriptome profiles, and functional readouts to define alloreactivity and proinflammatory/anti-inflammatory activities are emphasized. We also discuss important findings on the tissue-resident features of regulatory αβ T cells and unconventional γδ T cells after transplantation. Understanding of TRM in SOT is a rapidly growing field that urges future studies to address unresolved questions regarding their heterogeneity, plasticity, longevity, alloreactivity, and roles in rejection and tolerance.
Collapse
Affiliation(s)
- Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, United States
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, United States
- Department of Surgery, Columbia University, New York, United States
- Department of Microbiology & Immunology, Columbia University, New York, United States
| |
Collapse
|
29
|
Ismail N, Karmakar S, Bhattacharya P, Sepahpour T, Takeda K, Hamano S, Matlashewski G, Satoskar AR, Gannavaram S, Dey R, Nakhasi HL. Leishmania Major Centrin Gene-Deleted Parasites Generate Skin Resident Memory T-Cell Immune Response Analogous to Leishmanization. Front Immunol 2022; 13:864031. [PMID: 35419001 PMCID: PMC8996177 DOI: 10.3389/fimmu.2022.864031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 12/17/2022] Open
Abstract
Leishmaniasis is a vector-borne parasitic disease transmitted through the bite of a sand fly with no available vaccine for humans. Recently, we have developed a live attenuated Leishmania major centrin gene-deleted parasite strain (LmCen-/- ) that induced protection against homologous and heterologous challenges. We demonstrated that the protection is mediated by IFN (Interferon) γ-secreting CD4+ T-effector cells and multifunctional T cells, which is analogous to leishmanization. In addition, in a leishmanization model, skin tissue-resident memory T (TRM) cells were also shown to be crucial for host protection. In this study, we evaluated the generation and function of skin TRM cells following immunization with LmCen-/- parasites and compared those with leishmanization. We show that immunization with LmCen-/- generated skin CD4+ TRM cells and is supported by the induction of cytokines and chemokines essential for their production and survival similar to leishmanization. Following challenge with wild-type L. major, TRM cells specific to L. major were rapidly recruited and proliferated at the site of infection in the immunized mice. Furthermore, upon challenge, CD4+ TRM cells induce higher levels of IFNγ and Granzyme B in the immunized and leishmanized mice than in non-immunized mice. Taken together, our studies demonstrate that the genetically modified live attenuated LmCen -/- vaccine generates functional CD4+ skin TRM cells, similar to leishmanization, that may play a crucial role in host protection along with effector T cells as shown in our previous study.
Collapse
Affiliation(s)
- Nevien Ismail
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Subir Karmakar
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Telly Sepahpour
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Kazuyo Takeda
- Laboratory of Clinical Hematology, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Abhay R Satoskar
- Department of Pathology and Microbiology, Ohio State University, Columbus, OH, United States
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| |
Collapse
|
30
|
Roberts LM, Wehrly TD, Leighton I, Hanley P, Lovaglio J, Smith BJ, Bosio CM. Circulating T Cells Are Not Sufficient for Protective Immunity against Virulent Francisella tularensis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1180-1188. [PMID: 35149529 PMCID: PMC8881340 DOI: 10.4049/jimmunol.2100915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/23/2021] [Indexed: 11/19/2022]
Abstract
Pulmonary infections elicit a combination of tissue-resident and circulating T cell responses. Understanding the contribution of these anatomically distinct cellular pools in protective immune responses is critical for vaccine development. Francisella tularensis is a highly virulent bacterium capable of causing lethal systemic disease following pulmonary infection for which there is no currently licensed vaccine. Although T cells are required for survival of F. tularensis infection, the relative contribution of tissue-resident and circulating T cells is not completely understood, hampering design of effective, long-lasting vaccines directed against this bacterium. We have previously shown that resident T cells were not sufficient to protect against F. tularensis, suggesting circulating cells may serve a critical role in host defense. To elucidate the role of circulating T cells, we used a model of vaccination and challenge of parabiotic mice. Intranasally infected naive mice conjoined to immune animals had increased numbers of circulating memory T cells and similar splenic bacterial burdens as vaccinated-vaccinated pairs. However, bacterial loads in the lungs of naive parabionts were significantly greater than those observed in vaccinated-vaccinated pairs, but despite early control of F. tularensis replication, all naive-vaccinated pairs succumbed to infection. Together, these data define the specific roles of circulating and resident T cells in defense against infection that is initiated in the pulmonary compartment but ultimately causes disseminated disease. These data also provide evidence for employing vaccination strategies that elicit both pools of T cells for immunity against F. tularensis and may be a common theme for other disseminating bacterial infections.
Collapse
Affiliation(s)
- Lydia M Roberts
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Tara D Wehrly
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Ian Leighton
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Patrick Hanley
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Brian J Smith
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Catharine M Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT; and
| |
Collapse
|
31
|
Funch AB, Mraz V, Gadsbøll AØ, Jee MH, Weber JF, Ødum N, Woetmann A, Johansen JD, Geisler C, Bonefeld CM. CD8 + tissue-resident memory T cells recruit neutrophils that are essential for flare-ups in contact dermatitis. Allergy 2022; 77:513-524. [PMID: 34169536 DOI: 10.1111/all.14986] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Allergic contact dermatitis (ACD) is classically described as a delayed-type hypersensitivity reaction. However, patients often experience flare-ups characterized by itching erythema, edema, and often vesicles occurring within hours after re-exposure of previously sensitized skin to the specific contact allergen. Recent studies have indicated that skin-resident memory T (TRM ) cells play a central role in ACD. However, the pathogenic role of TRM cells in allergen-induced flare-ups is not known. METHODS By the use of various mouse models and cell depletion protocols, we investigated the role of epidermal TRM cells in flare-up reactions to the experimental contact allergen 1-fluoro-2,4-dinitrobenzene. The inflammatory response was measured by changes in ear thickness, and the cellular composition in epidermis was determined by flow cytometry and confocal microscopy. Finally, adaptive transfer and inhibitors were used to determine the role of TRM cells, neutrophils, and CXCL1/CXCL2 in the response. RESULTS We show that CD8+ TRM cells initiate massive infiltration of neutrophils in the epidermis within 12 h after re-exposure to the contact allergen. Depletion of neutrophils before re-exposure to the allergen abrogated the flare-up reactions. Furthermore, we demonstrate that CD8+ TRM cells mediate neutrophil recruitment by inducing CXCL1 and CXCL2 production in the skin, and that blockage of the C-X-C chemokine receptor type 1 and 2 inhibits flare-up reactions and neutrophil infiltration. CONCLUSION As the first, we show that epidermal CD8+ TRM cells cause ACD flare-ups by rapid recruitment of neutrophils to the epidermis.
Collapse
Affiliation(s)
- Anders B. Funch
- Department of Immunology and Microbiology Faculty of Health and Medical Sciences The LEO Foundation Skin Immunology Research Center University of Copenhagen Copenhagen Denmark
- Department of Dermatology and Allergy National Allergy Research Center Copenhagen University Hospital Gentofte Hellerup Denmark
| | - Veronika Mraz
- Department of Immunology and Microbiology Faculty of Health and Medical Sciences The LEO Foundation Skin Immunology Research Center University of Copenhagen Copenhagen Denmark
| | - Anne‐Sofie Ø. Gadsbøll
- Department of Immunology and Microbiology Faculty of Health and Medical Sciences The LEO Foundation Skin Immunology Research Center University of Copenhagen Copenhagen Denmark
| | - Mia H. Jee
- Department of Immunology and Microbiology Faculty of Health and Medical Sciences The LEO Foundation Skin Immunology Research Center University of Copenhagen Copenhagen Denmark
- Department of Dermatology and Allergy National Allergy Research Center Copenhagen University Hospital Gentofte Hellerup Denmark
| | - Julie F. Weber
- Department of Immunology and Microbiology Faculty of Health and Medical Sciences The LEO Foundation Skin Immunology Research Center University of Copenhagen Copenhagen Denmark
| | - Niels Ødum
- Department of Immunology and Microbiology Faculty of Health and Medical Sciences The LEO Foundation Skin Immunology Research Center University of Copenhagen Copenhagen Denmark
| | - Anders Woetmann
- Department of Immunology and Microbiology Faculty of Health and Medical Sciences The LEO Foundation Skin Immunology Research Center University of Copenhagen Copenhagen Denmark
| | - Jeanne D. Johansen
- Department of Dermatology and Allergy National Allergy Research Center Copenhagen University Hospital Gentofte Hellerup Denmark
| | - Carsten Geisler
- Department of Immunology and Microbiology Faculty of Health and Medical Sciences The LEO Foundation Skin Immunology Research Center University of Copenhagen Copenhagen Denmark
| | - Charlotte M. Bonefeld
- Department of Immunology and Microbiology Faculty of Health and Medical Sciences The LEO Foundation Skin Immunology Research Center University of Copenhagen Copenhagen Denmark
| |
Collapse
|
32
|
Zheng MZM, Wakim LM. Tissue resident memory T cells in the respiratory tract. Mucosal Immunol 2022; 15:379-388. [PMID: 34671115 PMCID: PMC8526531 DOI: 10.1038/s41385-021-00461-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 02/04/2023]
Abstract
Owing to their capacity to rapidly spread across the population, airborne pathogens represent a significant risk to global health. Indeed, several of the past major global pandemics have been instigated by respiratory pathogens. A greater understanding of the immune cells tasked with protecting the airways from infection will allow for the development of strategies that curb the spread and impact of these airborne diseases. A specific subset of memory T-cell resident in both the upper and lower respiratory tract, termed tissue-resident memory (Trm), have been shown to play an instrumental role in local immune responses against a wide breadth of both viral and bacterial infections. In this review, we discuss factors that influence respiratory tract Trm development, longevity, and immune surveillance and explore vaccination regimes that harness these cells, such approaches represent exciting new strategies that may be utilized to tackle the next global pandemic.
Collapse
Affiliation(s)
- Ming Z. M. Zheng
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000 Australia
| | - Linda M. Wakim
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000 Australia
| |
Collapse
|
33
|
Abstract
The parasitic trypanosomatids cause lethal and debilitating diseases, the leishmaniases, Chagas disease, and the African trypanosomiases, with major impacts on human and animal health. Sustained research has borne fruit by assisting efforts to reduce the burden of disease and by improving our understanding of fundamental molecular and cell biology. But where has the research primarily been conducted, and which research areas have received the most attention? These questions are addressed below using publication and citation data from the past few decades.
Collapse
Affiliation(s)
- David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
34
|
Roberts LM, Jessop F, Wehrly TD, Bosio CM. Cutting Edge: Lung-Resident T Cells Elicited by SARS-CoV-2 Do Not Mediate Protection against Secondary Infection. THE JOURNAL OF IMMUNOLOGY 2021; 207:2399-2404. [PMID: 34607940 DOI: 10.4049/jimmunol.2100608] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/13/2021] [Indexed: 01/08/2023]
Abstract
Immunity to pulmonary infection typically requires elicitation of lung-resident T cells that subsequently confer protection against secondary infection. The presence of tissue-resident T cells in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) convalescent patients is unknown. Using a sublethal mouse model of coronavirus disease 2019, we determined if SARS-CoV-2 infection potentiated Ag-specific pulmonary resident CD4+ and CD8+ T cell responses and if these cells mediated protection against secondary infection. S protein-specific T cells were present in resident and circulating populations. However, M and N protein-specific T cells were detected only in the resident T cell pool. Using an adoptive transfer strategy, we found that T cells from SARS-CoV-2 immune animals did not protect naive mice. These data indicate that resident T cells are elicited by SARS-CoV-2 infection but are not sufficient for protective immunity.
Collapse
Affiliation(s)
- Lydia M Roberts
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT
| | - Forrest Jessop
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT
| | - Tara D Wehrly
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT
| | - Catharine M Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT
| |
Collapse
|
35
|
Yang XX, Yang C, Wang L, Zhou YB, Yuan X, Xiang N, Wang YP, Li XM. Molecular Mechanism of Sphingosine-1-Phosphate Receptor 1 Regulating CD4 + Tissue Memory in situ T Cells in Primary Sjogren's Syndrome. Int J Gen Med 2021; 14:6177-6188. [PMID: 34611431 PMCID: PMC8485922 DOI: 10.2147/ijgm.s327304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/25/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Although extensive research has been carried out on CD4+T cells infiltrating the labial glands in patients with primary Sjögren’s Syndrome (pSS), it is still unclear how CD4+T cells remain in the labial gland tissue and develop into tissue resident cells. The aim of this study was to investigate the molecular mechanism by which CD4+T reside in labial glandular tissue of pSS patients. Methods Lymphocyte infiltration in labial salivary glands (LSG) of pSS patients was detected by H&E staining. Expression of sphingosine-1-phosphate receptor 1 (S1PR1) in LSG was examined by Immunohistochemistry. Immunofluorescence analyses were utilized to detect the co-expression of CD4, CD69 and S1PR1 in T cells of LSG of pSS patients. Expression of gene S1pr1 in peripheral blood CD4+T cells of healthy controls and pSS patients was detected by quantitative real-time PCR (QPCR). QPCR was used to examine the expression of gene S1pr1, Klf2, and Cd69 in the CD4+T cells that were co-cultured in vitro with cytokines TNF-α, TGF-β, and IL-33. Results S1PR1 was expressed in the infiltrating monocytes in LSG of pSS patients, and S1PR1 was weakly or even not expressed in cytoplasm of CD4+CD69+TRM cells of LSG in patients with pSS. Expression of gene S1pr1 in peripheral blood CD4+T cells of pSS patients was about three-fifths of that of healthy controls (P < 0.05). Expression of genes S1pr1 (P < 0.001) and Klf-2 (P < 0.001) was significantly decreased, and the expression of gene Cd69 (P < 0.05) was significantly increased in peripheral blood CD4+T cells of pSS patients co-cultured in vitro with cytokines TNF-α, TGF-β, and IL-33. Conclusion Our study suggests that the decrease of S1pr1 gene expression may provide a molecular basis for promoting the tissue retention and development of CD4+CD69+TRM cells.
Collapse
Affiliation(s)
- Xiao-Xiao Yang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China.,The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Chao Yang
- The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Li Wang
- The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Ying-Bo Zhou
- The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Xiang Yuan
- The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Nan Xiang
- The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Yi-Ping Wang
- Westmead Institute for Medical Research, University of Sydney, Sdyney, NSW, 2145, Australia
| | - Xiao-Mei Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China.,The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| |
Collapse
|
36
|
Park SL, Mackay LK. Decoding Tissue-Residency: Programming and Potential of Frontline Memory T Cells. Cold Spring Harb Perspect Biol 2021; 13:a037960. [PMID: 33753406 PMCID: PMC8485744 DOI: 10.1101/cshperspect.a037960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Memory T-cell responses are partitioned between the blood, secondary lymphoid organs, and nonlymphoid tissues. Tissue-resident memory T (Trm) cells are a population of immune cells that remain permanently in tissues without recirculating in blood. These nonrecirculating cells serve as a principal node in the anamnestic response to invading pathogens and developing malignancies. Here, we contemplate how T-cell tissue residency is defined and shapes protective immunity in the steady state and in the context of disease. We review the properties and heterogeneity of Trm cells, highlight the critical roles these cells play in maintaining tissue homeostasis and eliciting immune pathology, and explore how they might be exploited to treat disease.
Collapse
Affiliation(s)
- Simone L Park
- Department of Microbiology & Immunology at The Peter Doherty Institute for Infection & Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Laura K Mackay
- Department of Microbiology & Immunology at The Peter Doherty Institute for Infection & Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
37
|
Son YM, Sun J. Co-Ordination of Mucosal B Cell and CD8 T Cell Memory by Tissue-Resident CD4 Helper T Cells. Cells 2021; 10:cells10092355. [PMID: 34572004 PMCID: PMC8471972 DOI: 10.3390/cells10092355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/25/2022] Open
Abstract
Adaptive cellular immunity plays a major role in clearing microbial invasion of mucosal tissues in mammals. Following the clearance of primary pathogens, memory lymphocytes are established both systemically and locally at pathogen entry sites. Recently, resident memory CD8 T and B cells (TRM and BRM respectively), which are parked mainly in non-lymphoid mucosal tissues, were characterized and demonstrated to be essential for protection against secondary microbial invasion. Here we reviewed the current understanding of the cellular and molecular cues regulating CD8 TRM and BRM development, maintenance and function. We focused particularly on elucidating the role of a novel tissue-resident helper T (TRH) cell population in assisting TRM and BRM responses in the respiratory mucosa following viral infection. Finally, we argue that the promotion of TRH responses by future mucosal vaccines would be key to the development of successful universal influenza or coronavirus vaccines, providing long-lasting immunity against a broad spectrum of viral strains.
Collapse
Affiliation(s)
- Young Min Son
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jie Sun
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence: or
| |
Collapse
|
38
|
Hohman LS, Mou Z, Carneiro MB, Ferland G, Kratofil RM, Kubes P, Uzonna JE, Peters NC. Protective CD4+ Th1 cell-mediated immunity is reliant upon execution of effector function prior to the establishment of the pathogen niche. PLoS Pathog 2021; 17:e1009944. [PMID: 34543348 PMCID: PMC8483310 DOI: 10.1371/journal.ppat.1009944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/30/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022] Open
Abstract
Intracellular infection with the parasite Leishmania major features a state of concomitant immunity in which CD4+ T helper 1 (Th1) cell-mediated immunity against reinfection coincides with a chronic but sub-clinical primary infection. In this setting, the rapidity of the Th1 response at a secondary site of challenge in the skin represents the best correlate of parasite elimination and has been associated with a reversal in Leishmania-mediated modulation of monocytic host cells. Remarkably, the degree to which Th1 cells are absolutely reliant upon the time at which they interact with infected monocytes to mediate their protective effect has not been defined. In the present work, we report that CXCR3-dependent recruitment of Ly6C+ Th1 effector (Th1EFF) cells is indispensable for concomitant immunity and acute (<4 days post-infection) Th1EFF cell-phagocyte interactions are critical to prevent the establishment of a permissive pathogen niche, as evidenced by altered recruitment, gene expression and functional capacity of innate and adaptive immune cells at the site of secondary challenge. Surprisingly, provision of Th1EFF cells after establishment of the pathogen niche, even when Th1 cells were provided in large quantities, abrogated protection, Th1EFF cell accumulation and IFN-γ production, and iNOS production by inflammatory monocytes. These findings indicate that protective Th1 immunity is critically dependent on activation of permissive phagocytic host cells by preactivated Th1EFF cells at the time of infection.
Collapse
Affiliation(s)
- Leah S. Hohman
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; University of Calgary, Calgary, Alberta, Canada
| | - Zhirong Mou
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Matheus B. Carneiro
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; University of Calgary, Calgary, Alberta, Canada
| | - Gabriel Ferland
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; University of Calgary, Calgary, Alberta, Canada
| | - Rachel M. Kratofil
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jude E. Uzonna
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nathan C. Peters
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
39
|
Emmanuel T, Mistegård J, Bregnhøj A, Johansen C, Iversen L. Tissue-Resident Memory T Cells in Skin Diseases: A Systematic Review. Int J Mol Sci 2021; 22:ijms22169004. [PMID: 34445713 PMCID: PMC8396505 DOI: 10.3390/ijms22169004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
In health, the non-recirculating nature and long-term persistence of tissue-resident memory T cells (TRMs) in tissues protects against invading pathogens. In disease, pathogenic TRMs contribute to the recurring traits of many skin diseases. We aimed to conduct a systematic literature review on the current understanding of the role of TRMs in skin diseases and identify gaps as well as future research paths. EMBASE, PubMed, SCOPUS, Web of Science, Clinicaltrials.gov and WHO Trials Registry were searched systematically for relevant studies from their inception to October 2020. Included studies were reviewed independently by two authors. This study was conducted in accordance with the PRISMA-S guidelines. This protocol was registered with the PROSPERO database (ref: CRD42020206416). We identified 96 studies meeting the inclusion criteria. TRMs have mostly been investigated in murine skin and in relation to infectious skin diseases. Pathogenic TRMs have been characterized in various skin diseases including psoriasis, vitiligo and cutaneous T-cell lymphoma. Studies are needed to discover biomarkers that may delineate TRMs poised for pathogenic activity in skin diseases and establish to which extent TRMs are contingent on the local skin microenvironment. Additionally, future studies may investigate the effects of current treatments on the persistence of pathogenic TRMs in human skin.
Collapse
|
40
|
Ruterbusch M, Pruner KB, Shehata L, Pepper M. In Vivo CD4 + T Cell Differentiation and Function: Revisiting the Th1/Th2 Paradigm. Annu Rev Immunol 2021; 38:705-725. [PMID: 32340571 DOI: 10.1146/annurev-immunol-103019-085803] [Citation(s) in RCA: 272] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of CD4+ T cell subset-defining master transcription factors and framing of the Th1/Th2 paradigm ignited the CD4+ T cell field. Advances in in vivo experimental systems, however, have revealed that more complex lineage-defining transcriptional networks direct CD4+ T cell differentiation in the lymphoid organs and tissues. This review focuses on the layers of fate decisions that inform CD4+ T cell differentiation in vivo. Cytokine production by antigen-presenting cells and other innate cells influences the CD4+ T cell effector program [e.g., T helper type 1 (Th1), Th2, Th17]. Signals downstream of the T cell receptor influence whether individual clones bearing hallmarks of this effector program become T follicular helper cells, supporting development of B cells expressing specific antibody isotypes, or T effector cells, which activate microbicidal innate cells in tissues. These bifurcated, parallel axes allow CD4+ T cells to augment their particular effector program and prevent disease.
Collapse
Affiliation(s)
- Mikel Ruterbusch
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - Kurt B Pruner
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - Laila Shehata
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| |
Collapse
|
41
|
Inclan-Rico JM, Herbert DR. T Regulatory Cells Influence Decisions between Concomitant Immunity versus Sterile Cure. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:3-4. [PMID: 34935628 DOI: 10.4049/jimmunol.2100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Juan M Inclan-Rico
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
42
|
Ko WCC, Li L, Young TR, McLean-Mandell RE, Deng AC, Vanguri VK, Dresser K, Harris JE. Gene expression profiling in skin reveals strong similarities between subacute and chronic cutaneous lupus that are distinct from lupus nephritis. J Invest Dermatol 2021; 141:2808-2819. [PMID: 34153327 DOI: 10.1016/j.jid.2021.04.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023]
Abstract
Subacute cutaneous lupus erythematosus (SCLE) and chronic cutaneous lupus erythematosus (CCLE) are represented in the majority of cutaneous lupus subtypes, each of which has variable implications for systemic manifestations such as lupus nephritis. On dermatologic exam, SCLE and CCLE are distinct. However, it is often difficult to diagnose the subtype from histology alone. Our study utilized whole-genome microarray expression analysis on human skin samples of SCLE, CCLE, and healthy controls, along with human samples of lupus nephritis and normal kidney tissue to compare cutaneous lupus subtypes to each other, as well as lupus nephritis. The data revealed that cutaneous lupus subtypes were distinct from healthy control skin, with gene expression predominantly characterized by upregulation of type 1 interferon and T-cell chemotactic genes. However, the cutaneous lupus subtypes were very similar to one another; comparative analyses revealed few statistically significant differences in gene expression. There were also distinct differences between the gene signatures of cutaneous lupus and lupus nephritis. Cutaneous lupus samples revealed gene signatures demonstrating a prominent inflammatory component that may suggest the skin as an early site of initiation of lupus pathogenesis, while lupus nephritis reflected recruitment and activation of M2 macrophages and a wound healing signature.
Collapse
Affiliation(s)
- Wei-Che C Ko
- Department of Dermatology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Li Li
- Computational Biology, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| | - Taylor R Young
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Riley E McLean-Mandell
- Department of Dermatology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - April C Deng
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Vijay K Vanguri
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Karen Dresser
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - John E Harris
- Department of Dermatology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
43
|
Niec RE, Rudensky AY, Fuchs E. Inflammatory adaptation in barrier tissues. Cell 2021; 184:3361-3375. [PMID: 34171319 DOI: 10.1016/j.cell.2021.05.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/27/2021] [Accepted: 05/19/2021] [Indexed: 02/08/2023]
Abstract
Surface epithelia provide a critical barrier to the outside world. Upon a barrier breach, resident epithelial and immune cells coordinate efforts to control infections and heal tissue damage. Inflammation can etch lasting marks within tissues, altering features such as scope and quality of future responses. By remembering inflammatory experiences, tissues are better equipped to quickly and robustly respond to barrier breaches. Alarmingly, in disease states, memory may fuel the inflammatory fire. Here, we review the cellular communication networks in barrier tissues and the integration between tissue-resident and recruited immune cells and tissue stem cells underlying tissue adaptation to environmental stress.
Collapse
Affiliation(s)
- Rachel E Niec
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA; Department of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
44
|
Lebratti T, Lim YS, Cofie A, Andhey P, Jiang X, Scott J, Fabbrizi MR, Ozantürk AN, Pham C, Clemens R, Artyomov M, Dinauer M, Shin H. A sustained type I IFN-neutrophil-IL-18 axis drives pathology during mucosal viral infection. eLife 2021; 10:e65762. [PMID: 34047696 PMCID: PMC8163503 DOI: 10.7554/elife.65762] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Neutrophil responses against pathogens must be balanced between protection and immunopathology. Factors that determine these outcomes are not well-understood. In a mouse model of genital herpes simplex virus-2 (HSV-2) infection, which results in severe genital inflammation, antibody-mediated neutrophil depletion reduced disease. Comparative single-cell RNA-sequencing analysis of vaginal cells against a model of genital HSV-1 infection, which results in mild inflammation, demonstrated sustained expression of interferon-stimulated genes (ISGs) only after HSV-2 infection primarily within the neutrophil population. Both therapeutic blockade of IFNα/β receptor 1 (IFNAR1) and genetic deletion of IFNAR1 in neutrophils concomitantly decreased HSV-2 genital disease severity and vaginal IL-18 levels. Therapeutic neutralization of IL-18 also diminished genital inflammation, indicating an important role for this cytokine in promoting neutrophil-dependent immunopathology. Our study reveals that sustained type I interferon (IFN) signaling is a driver of pathogenic neutrophil responses and identifies IL-18 as a novel component of disease during genital HSV-2 infection.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Chlorocebus aethiops
- Disease Models, Animal
- Female
- Herpes Genitalis/immunology
- Herpes Genitalis/metabolism
- Herpes Genitalis/prevention & control
- Herpes Genitalis/virology
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/pathogenicity
- Herpesvirus 2, Human/immunology
- Herpesvirus 2, Human/pathogenicity
- Host-Pathogen Interactions
- Immunity, Mucosal/drug effects
- Interferon Type I/metabolism
- Interleukin-18/metabolism
- Mice, Inbred C57BL
- Mice, Transgenic
- Mucous Membrane/drug effects
- Mucous Membrane/innervation
- Mucous Membrane/metabolism
- Mucous Membrane/virology
- Neutrophil Activation/drug effects
- Neutrophils/drug effects
- Neutrophils/immunology
- Neutrophils/metabolism
- Neutrophils/virology
- Receptor, Interferon alpha-beta/antagonists & inhibitors
- Receptor, Interferon alpha-beta/metabolism
- Signal Transduction
- Vagina/drug effects
- Vagina/immunology
- Vagina/metabolism
- Vagina/virology
- Vero Cells
- Mice
Collapse
Affiliation(s)
- Tania Lebratti
- Department of Medicine/Division of Infectious Diseases, Washington University School of MedicineSt LouisUnited States
| | - Ying Shiang Lim
- Department of Medicine/Division of Infectious Diseases, Washington University School of MedicineSt LouisUnited States
| | - Adjoa Cofie
- Department of Medicine/Division of Infectious Diseases, Washington University School of MedicineSt LouisUnited States
| | - Prabhakar Andhey
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
| | - Xiaoping Jiang
- Department of Medicine/Division of Infectious Diseases, Washington University School of MedicineSt LouisUnited States
| | - Jason Scott
- Department of Medicine/Division of Infectious Diseases, Washington University School of MedicineSt LouisUnited States
| | - Maria Rita Fabbrizi
- Department of Medicine/Division of Infectious Diseases, Washington University School of MedicineSt LouisUnited States
| | - Ayşe Naz Ozantürk
- Department of Medicine/Division of Infectious Diseases, Washington University School of MedicineSt LouisUnited States
| | - Christine Pham
- Department of Medicine/Division of Rheumatology, Washington University School of MedicineSt LouisUnited States
| | - Regina Clemens
- Department of Pediatrics/Division of Critical Care Medicine, Washington University School of MedicineSt LouisUnited States
| | - Maxim Artyomov
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
| | - Mary Dinauer
- Department of Pediatrics/Hematology and Oncology, Washington University School of MedicineSt LouisUnited States
| | - Haina Shin
- Department of Medicine/Division of Infectious Diseases, Washington University School of MedicineSt LouisUnited States
| |
Collapse
|
45
|
LeibundGut-Landmann S. Tissue-Resident Memory T Cells in Antifungal Immunity. Front Immunol 2021; 12:693055. [PMID: 34113356 PMCID: PMC8185520 DOI: 10.3389/fimmu.2021.693055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022] Open
Abstract
Fungi are an integral part of the mammalian microbiota colonizing most if not all mucosal surfaces and the skin. Maintaining stable colonization on these surfaces is critical for preventing fungal dysbiosis and infection, which in some cases can lead to life threatening consequences. The epithelial barriers are protected by T cells and additional controlling immune mechanisms. Noncirculating memory T cells that reside stably in barrier tissues play an important role for host protection from commensals and recurrent pathogens due to their fast response and local activity, which provides them a strategic advantage. So far, only a few specific examples of tissue resident memory T cells (TRMs) that act against fungi have been reported. This review provides an overview of the characteristics and functional attributes of TRMs that have been established based on human and mouse studies with various microbes. It highlights what is currently known about fungi specific TRMs mediating immunosurveillance, how they have been targeted in preclinical vaccination approaches and how they can promote immunopathology, if not controlled. A better appreciation of the host protective and damaging roles of TRMs might accelerate the development of novel tissue specific preventive strategies against fungal infections and fungi-driven immunopathologies.
Collapse
Affiliation(s)
- Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
46
|
Zayats R, Uzonna JE, Murooka TT. Visualizing the In Vivo Dynamics of Anti- Leishmania Immunity: Discoveries and Challenges. Front Immunol 2021; 12:671582. [PMID: 34093571 PMCID: PMC8172142 DOI: 10.3389/fimmu.2021.671582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/07/2021] [Indexed: 11/20/2022] Open
Abstract
Intravital microscopy, such as 2-photon microscopy, is now a mainstay in immunological research to visually characterize immune cell dynamics during homeostasis and pathogen infections. This approach has been especially beneficial in describing the complex process of host immune responses to parasitic infections in vivo, such as Leishmania. Human-parasite co-evolution has endowed parasites with multiple strategies to subvert host immunity in order to establish chronic infections and ensure human-to-human transmission. While much focus has been placed on viral and bacterial infections, intravital microscopy studies during parasitic infections have been comparatively sparse. In this review, we will discuss how in vivo microscopy has provided important insights into the generation of innate and adaptive immunity in various organs during parasitic infections, with a primary focus on Leishmania. We highlight how microscopy-based approaches may be key to providing mechanistic insights into Leishmania persistence in vivo and to devise strategies for better parasite control.
Collapse
Affiliation(s)
- Romaniya Zayats
- Rady Faculty of Health Sciences, Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Jude E. Uzonna
- Rady Faculty of Health Sciences, Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Thomas T. Murooka
- Rady Faculty of Health Sciences, Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
47
|
van Gisbergen KPJM, Zens KD, Münz C. T-cell memory in tissues. Eur J Immunol 2021; 51:1310-1324. [PMID: 33837521 DOI: 10.1002/eji.202049062] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
Immunological memory equips our immune system to respond faster and more effectively against reinfections. This acquired immunity was originally attributed to long-lived, memory T and B cells with body wide access to peripheral and secondary lymphoid tissues. In recent years, it has been realized that both innate and adaptive immunity to a large degree depends on resident immune cells that act locally in barrier tissues including tissue-resident memory T cells (Trm). Here, we will discuss the phenotype of these Trm in mice and humans, the tissues and niches that support them, and their function, plasticity, and transcriptional control. Their unique properties enable Trm to achieve long-lived immunological memory that can be deposited in nearly every organ in response to acute and persistent infection, and in response to cancer. However, Trm may also induce substantial immunopathology in allergic and autoimmune disease if their actions remain unchecked. Therefore, inhibitory and activating stimuli appear to balance the actions of Trm to ensure rapid proinflammatory responses upon infection and to prevent damage to host tissues under steady state conditions.
Collapse
Affiliation(s)
- Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kyra D Zens
- Viral Immunobiology, University of Zurich, Zurich, Switzerland.,Department of Public and Global Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.,Department of Infectious Diseases and Hospital Epidemiology, University Hospital, Zurich, Switzerland
| | - Christian Münz
- Viral Immunobiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
48
|
Hirahara K, Kokubo K, Aoki A, Kiuchi M, Nakayama T. The Role of CD4 + Resident Memory T Cells in Local Immunity in the Mucosal Tissue - Protection Versus Pathology. Front Immunol 2021; 12:616309. [PMID: 33968018 PMCID: PMC8097179 DOI: 10.3389/fimmu.2021.616309] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/25/2021] [Indexed: 01/12/2023] Open
Abstract
Memory T cells are crucial for both local and systemic protection against pathogens over a long period of time. Three major subsets of memory T cells; effector memory T (TEM) cells, central memory T (TCM) cells, and tissue-resident memory T (TRM) cells have been identified. The most recently identified subset, TRM cells, is characterized by the expression of the C-type lectin CD69 and/or the integrin CD103. TRM cells persist locally at sites of mucosal tissue, such as the lung, where they provide frontline defense against various pathogens. Importantly, however, TRM cells are also involved in shaping the pathology of inflammatory diseases. A number of pioneering studies revealed important roles of CD8+ TRM cells, particularly those in the local control of viral infection. However, the protective function and pathogenic role of CD4+ TRM cells that reside within the mucosal tissue remain largely unknown. In this review, we discuss the ambivalent feature of CD4+ TRM cells in the protective and pathological immune responses. We also review the transcriptional and epigenetic characteristics of CD4+ TRM cells in the lung that have been elucidated by recent technical approaches. A better understanding of the function of CD4+ TRM cells is crucial for the development of both effective vaccination against pathogens and new therapeutic strategies for intractable inflammatory diseases, such as inflammatory bowel diseases and chronic allergic diseases.
Collapse
Affiliation(s)
- Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,AMED-PRIME, Japan Agency for Medical Research and Development, Chiba, Japan
| | - Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ami Aoki
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Chiba, Japan
| |
Collapse
|
49
|
Roy RK, Yadav R, Jain A, Tripathi V, Jain M, Singh S, Prakash H. Yin and yang of immunological memory in controlling infections: Overriding self defence mechanisms. Int Rev Immunol 2021; 41:240-252. [PMID: 33872093 DOI: 10.1080/08830185.2021.1912037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunological memory is critical for host immunity and decisive for individual to respond exponentially to previously encountered infection. Both T and B cell memory are known to orchestrate immunological memory with their central and effector memory arms contributing in prolonged immunity/defence mechanisms of host. While central memory helps in maintaining prolonged immunity for a particular infection, effector memory helps in keeping local/seasonal infection in control. In addition to this, generation of long-lived plasma cells is pivotal for generating neutralizing antibodies which can enhance recall and B cell memory to control re-infection. In view of this, scaling up memory response is one of the major objectives for the expected outcome of vaccination. In this line, this review deals with the significance of memory cells, molecular pathways of their development, maintenance, epigenetic regulation and negative regulation in various infections. We have also highlighted the significance of both T and B cell memory responses in the vaccination approaches against range of infections which is not fully explored so far.[Box: see text].
Collapse
Affiliation(s)
- Roshan Kumar Roy
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | - Rakhi Yadav
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Vishwas Tripathi
- School of Biotechnology, Gautam Buddha University, Gautam Buddha Nagar, India
| | - Manju Jain
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Sandhya Singh
- Amity Institute of Physiology and Allied Sciences, Amity University, Noida, India
| | - Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| |
Collapse
|
50
|
Knight FC, Wilson JT. Engineering Vaccines for Tissue-Resident Memory T Cells. ADVANCED THERAPEUTICS 2021; 4:2000230. [PMID: 33997268 PMCID: PMC8114897 DOI: 10.1002/adtp.202000230] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 01/01/2023]
Abstract
In recent years, tissue-resident memory T cells (TRM) have attracted significant attention in the field of vaccine development. Distinct from central and effector memory T cells, TRM cells take up residence in home tissues such as the lung or urogenital tract and are ideally positioned to respond quickly to pathogen encounter. TRM have been found to play a role in the immune response against many globally important infectious diseases for which new or improved vaccines are needed, including influenza and tuberculosis. It is also increasingly clear that TRM play a pivotal role in cancer immunity. Thus, vaccines that can generate this memory T cell population are highly desirable. The field of immunoengineering-that is, the application of engineering principles to study the immune system and design new and improved therapies that harness or modulate immune responses-is ideally poised to provide solutions to this need for next-generation TRM vaccines. This review covers recent developments in vaccine technologies for generating TRM and protecting against infection and cancer, including viral vectors, virus-like particles, and synthetic and natural biomaterials. In addition, it offers critical insights on the future of engineering vaccines for tissue-resident memory T cells.
Collapse
Affiliation(s)
- Frances C. Knight
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - John T. Wilson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|