1
|
Frangogiannis NG. Targeting macrophage-fibroblast interactions in the failing heart. Nat Rev Cardiol 2025; 22:223-224. [PMID: 39681733 DOI: 10.1038/s41569-024-01112-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute. Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
You Q, Yu J, Pan R, Feng J, Guo H, Liu B. Decoding the regulatory roles of circular RNAs in cardiac fibrosis. Noncoding RNA Res 2025; 11:115-130. [PMID: 39759175 PMCID: PMC11697406 DOI: 10.1016/j.ncrna.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the primary cause of death globally. The evolution of nearly all types of CVDs is characterized by a common theme: the emergence of cardiac fibrosis. The precise mechanisms that trigger cardiac fibrosis are still not completely understood. In recent years, a type of non-coding regulatory RNA molecule known as circular RNAs (circRNAs) has been reported. These molecules are produced during back splicing and possess significant biological capabilities, such as regulating microRNA activity, serving as protein scaffolds and recruiters, competing with mRNA, forming circR-loop structures to modulate transcription, and translating polypeptides. Furthermore, circRNAs exhibit a substantial abundance, notable stability, and specificity of tissues, cells, and time, endowing them with the potential as biomarkers, therapeutic targets, and therapeutic agents. CircRNAs have garnered growing interest in the field of CVDs. Recent investigations into the involvement of circRNAs in cardiac fibrosis have yielded encouraging findings. This study aims to provide a concise overview of the existing knowledge about the regulatory roles of circRNAs in cardiac fibrosis.
Collapse
Affiliation(s)
| | | | - Runfang Pan
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiaming Feng
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haidong Guo
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Baonian Liu
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
3
|
Guo Y, Wan R, Duan J, Yuan L, Wang Z, Zhong J, Zhang X, Ma Z, Bai H, Wang J. Targeting tumor-intrinsic S100 calcium-binding protein A1 augments antitumor immunity and potentiates immunotherapy efficacy. Signal Transduct Target Ther 2025; 10:99. [PMID: 40090947 PMCID: PMC11911448 DOI: 10.1038/s41392-025-02190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Immune checkpoint blockade (ICB) has revolutionized cancer treatment, but the therapeutic response is highly heterogeneous, which highlights the necessity for developing predictive biomarkers and overcoming ICB resistance. Cancer cell-intrinsic features, especially those that can be dynamically monitored via liquid biopsy, represent a broader scope for biomarker development. In addition, a potential mode of ICB resistance is tumor-intrinsic mechanisms leading to an immunosuppressive tumor microenvironment (TME). However, the underlying interactive network remains elusive, and the generalizable biomarkers and targeting strategies are still lacking. Here, we uncovered the potential of plasma S100 calcium-binding protein A1 (S100A1) for determining ICB efficacy via liquid biopsy of patients with lung cancer. Multiomics and functional studies have suggested that tumor-intrinsic S100A1 expression correlated with an immunologically "cold" TME and resistance to ICB in multiple syngeneic murine tumors and tissue samples from patients with lung cancer. Mechanistic investigations demonstrated that interfering with the tumor-intrinsic S100A1/ubiquitin-specific protease 7/p65/granulocyte-macrophage colony-stimulating factor (GM-CSF) modulatory axis could potentiate an inflamed TME by promoting M1-like macrophage polarization and T cell function. GM-CSF priming was sufficient to enhance the ICB response in tumors with high S100A1 expression in preclinical models. These findings define S100A1 as a potential blood-based biomarker and a novel synergistic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yufeng Guo
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Rui Wan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianchun Duan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Li Yuan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhijie Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia Zhong
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xue Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zixiao Ma
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hua Bai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
4
|
Blagov AV, Churov AV, Starodubtseva IA, Kovyanova TI, Pecherina TB, Sukhorukov VN. Cytokines are the Basis of the Development and Suppression of Inflammation in Atherosclerosis. Rev Cardiovasc Med 2025; 26:26421. [PMID: 40160593 PMCID: PMC11951496 DOI: 10.31083/rcm26421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 04/02/2025] Open
Abstract
Cardiovascular diseases continue to be the primary cause of mortality in industrialised countries, and atherosclerosis plays a role in their development. A persistent inflammatory condition affecting big and medium-sized arteries is known as atherosclerosis. It is brought on by dyslipidemia and is facilitated by the immune system's innate and adaptive components. At every stage of the progression of atherosclerosis, inflammation plays a crucial role. It has been demonstrated that soluble factors, or cytokines, activate cells involved in the pathophysiology of atherosclerosis and have a significant impact on disease progression. Anti-inflammatory cytokines (such as interleukin (IL)-5 and IL-13) mitigate atherosclerosis, whereas pro-inflammatory cytokines (such as IL-1, IL-6) quicken the disease's course. Of interest is the fact that a number of cytokines can exhibit both atherogenic and atheroprotective properties, which is the topic of study and discussion in this review. This review provides a comparative analysis of the functions of the main cytokines involved in the pathogenesis of atherosclerosis. Their functional relationships with each other are also shown. In addition, potential therapeutic strategies targeting these cytokines for the treatment of atherosclerosis are proposed, with an emphasis on recent clinical research in this area.
Collapse
Affiliation(s)
| | - Alexey V. Churov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Institute on Aging Research, Russian Gerontology Clinical Research Centre, Pirogov Russian National Research Medical University, 129226 Moscow, Russia
| | - Irina A. Starodubtseva
- Department of Polyclinic Therapy, NN Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Tatiana I. Kovyanova
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Institute for Atherosclerosis Research, 121609 Moscow, Russia
| | - Tamara B. Pecherina
- Laboratory for Cardiac Fibrosis, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia
| | - Vasily N. Sukhorukov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Institute of Experimental Cardiology, Russian Medical Research Center of Cardiology, 121552 Moscow, Russia
| |
Collapse
|
5
|
Kohutek ZA, Caslin HL, Fehrenbach DJ, Heimlich JB, Brown JD, Madhur MS, Ferrell PB, Doran AC. Bone Marrow Niche in Cardiometabolic Disease: Mechanisms and Therapeutic Potential. Circ Res 2025; 136:325-353. [PMID: 39883790 PMCID: PMC11790260 DOI: 10.1161/circresaha.124.323778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Cardiovascular and cardiometabolic diseases are leading causes of morbidity and mortality worldwide, driven in part by chronic inflammation. Emerging research suggests that the bone marrow microenvironment, or marrow niche, plays a critical role in both immune system regulation and disease progression. The bone marrow niche is essential for maintaining hematopoietic stem cells (HSCs) and orchestrating hematopoiesis. Under normal conditions, this niche ensures a return to immune homeostasis after acute stress. However, in the setting of inflammatory conditions such as those seen in cardiometabolic diseases, it becomes dysregulated, leading to enhanced myelopoiesis and immune activation. This review explores the reciprocal relationship between the bone marrow niche and cardiometabolic diseases, highlighting how alterations in the niche contribute to disease development and progression. The niche regulates HSCs through complex interactions with stromal cells, endothelial cells, and signaling molecules. However, in the setting of chronic diseases such as hypertension, atherosclerosis, and diabetes, inflammatory signals disrupt the balance between HSC self-renewal and differentiation, promoting the excessive production of proinflammatory myeloid cells that exacerbate the disease. Key mechanisms discussed include the effects of hyperlipidemia, hyperglycemia, and sympathetic nervous system activation on HSC proliferation and differentiation. Furthermore, the review emphasizes the role of epigenetic modifications and metabolic reprogramming in creating trained immunity, a phenomenon whereby HSCs acquire long-term proinflammatory characteristics that sustain disease states. Finally, we explore therapeutic strategies aimed at targeting the bone marrow niche to mitigate chronic inflammation and its sequelae. Novel interventions that modulate hematopoiesis and restore niche homeostasis hold promise for the treatment of cardiometabolic diseases. By interrupting the vicious cycle of inflammation and marrow dysregulation, such therapies may offer new avenues for reducing cardiovascular risk and improving patient outcomes.
Collapse
Affiliation(s)
- Zachary A Kohutek
- Department of Radiation Oncology (Z.A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Heather L Caslin
- Department of Health and Human Performance, University of Houston, TX (H.L.C.)
| | - Daniel J Fehrenbach
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis (D.J.F., M.S.M.)
| | - J Brett Heimlich
- Division of Cardiovascular Medicine, Department of Medicine (J.B.H., J.D.B., A.C.D.), Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan D Brown
- Division of Cardiovascular Medicine, Department of Medicine (J.B.H., J.D.B., A.C.D.), Vanderbilt University Medical Center, Nashville, TN
| | - Meena S Madhur
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis (D.J.F., M.S.M.)
| | - P Brent Ferrell
- Division of Hematology and Oncology, Department of Medicine (P.B.F.), Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN (P.B.F., A.C.D.)
| | - Amanda C Doran
- Division of Cardiovascular Medicine, Department of Medicine (J.B.H., J.D.B., A.C.D.), Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN (P.B.F., A.C.D.)
| |
Collapse
|
6
|
Ko S, Anzai A, Liu X, Kinouchi K, Yamanoi K, Torimitsu T, Ichihara G, Kitakata H, Shirakawa K, Katsumata Y, Endo J, Hayashi K, Yoshida M, Nishimori K, Tanaka KF, Onaka T, Sano M, Ieda M. Social Bonds Retain Oxytocin-Mediated Brain-Liver Axis to Retard Atherosclerosis. Circ Res 2025; 136:78-90. [PMID: 39601150 DOI: 10.1161/circresaha.124.324638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUNDS Social interaction with others is essential to life. Although social isolation and loneliness have been implicated as increased risks of cardiometabolic and cardiovascular diseases and all-cause mortality, the cellular and molecular mechanisms by which social connection maintains cardiometabolic and cardiovascular health remain largely unresolved. METHODS To investigate how social connection protects against cardiometabolic and cardiovascular diseases, atherosclerosis-prone, high-fat diet-fed Apoe-/- mouse siblings were randomly assigned to either individual or grouped housing for 12 weeks. Histological, flow cytometric, biochemical, gene, and protein analyses were performed to assess atherosclerotic lesions, systemic metabolism, inflammation, and stress response. The effects of oxytocin on hepatocytes and subsequent cardiometabolic and cardiovascular function were investigated by in vivo and in vitro approaches. RESULTS Apoe-/- mice housed individually developed larger vulnerable atherosclerotic lesions by disrupted lipid metabolism compared with those of mice in regular group housing, irrespective of body weight, eating behavior, feeding conditions, sympathetic nervous activity, glucocorticoid response, or systemic inflammation. Mechanistically, the chronic isolation reduced the hypothalamic production of oxytocin, which controls bile acid production and LPL (lipoprotein lipase) activity through the peripheral OXTR (oxytocin receptor) in hepatocytes, whose downstream targets include Cyp7a1, Angptl4, and Angptl8. While hepatocyte-specific OXTR-null mice and mice receiving adeno-associated virus targeting OXTR on hepatocytes led to severe dyslipidemia and aggravated atherosclerosis, oral oxytocin supplementation to socially isolated mice, but not to hepatocyte-specific OXTR conditional knockout mice, improved lipid profiles and retarded atherosclerosis development. CONCLUSIONS These results identify a novel brain-liver axis that links sociality to hepatic lipid metabolism, thus proposing a potential therapeutic strategy for loneliness-associated atherosclerosis progression.
Collapse
Affiliation(s)
- Seien Ko
- Department of Cardiology (S.K., A.A., X.L., G.I., H.K., K.S., Y.K., J.E., M.S., M.I.), Keio University School of Medicine, Tokyo, Japan
| | - Atsushi Anzai
- Department of Cardiology (S.K., A.A., X.L., G.I., H.K., K.S., Y.K., J.E., M.S., M.I.), Keio University School of Medicine, Tokyo, Japan
| | - Xueyuan Liu
- Department of Cardiology (S.K., A.A., X.L., G.I., H.K., K.S., Y.K., J.E., M.S., M.I.), Keio University School of Medicine, Tokyo, Japan
| | - Kenichiro Kinouchi
- Department of Endocrinology, Metabolism, and Nephrology (K.K., T.T., K.H.), Keio University School of Medicine, Tokyo, Japan
| | - Kazuhiro Yamanoi
- Department of Pathology (K.Y.), Keio University School of Medicine, Tokyo, Japan
| | - Takuto Torimitsu
- Department of Endocrinology, Metabolism, and Nephrology (K.K., T.T., K.H.), Keio University School of Medicine, Tokyo, Japan
| | - Genki Ichihara
- Department of Cardiology (S.K., A.A., X.L., G.I., H.K., K.S., Y.K., J.E., M.S., M.I.), Keio University School of Medicine, Tokyo, Japan
| | - Hiroki Kitakata
- Department of Cardiology (S.K., A.A., X.L., G.I., H.K., K.S., Y.K., J.E., M.S., M.I.), Keio University School of Medicine, Tokyo, Japan
| | - Kohsuke Shirakawa
- Department of Cardiology (S.K., A.A., X.L., G.I., H.K., K.S., Y.K., J.E., M.S., M.I.), Keio University School of Medicine, Tokyo, Japan
| | - Yoshinori Katsumata
- Department of Cardiology (S.K., A.A., X.L., G.I., H.K., K.S., Y.K., J.E., M.S., M.I.), Keio University School of Medicine, Tokyo, Japan
| | - Jin Endo
- Department of Cardiology (S.K., A.A., X.L., G.I., H.K., K.S., Y.K., J.E., M.S., M.I.), Keio University School of Medicine, Tokyo, Japan
| | - Kaori Hayashi
- Department of Endocrinology, Metabolism, and Nephrology (K.K., T.T., K.H.), Keio University School of Medicine, Tokyo, Japan
| | - Masahide Yoshida
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan (M.Y., T.O.)
| | - Katsuhiko Nishimori
- Department of Obesity and Internal Inflammation, Fukushima Medical University, Japan (K.N.)
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research (K.F.T.), Keio University School of Medicine, Tokyo, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan (M.Y., T.O.)
| | - Motoaki Sano
- Department of Cardiology (S.K., A.A., X.L., G.I., H.K., K.S., Y.K., J.E., M.S., M.I.), Keio University School of Medicine, Tokyo, Japan
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Japan (M.S.)
| | - Masaki Ieda
- Department of Cardiology (S.K., A.A., X.L., G.I., H.K., K.S., Y.K., J.E., M.S., M.I.), Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Di X, Li Y, Wei J, Li T, Liao B. Targeting Fibrosis: From Molecular Mechanisms to Advanced Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410416. [PMID: 39665319 PMCID: PMC11744640 DOI: 10.1002/advs.202410416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Indexed: 12/13/2024]
Abstract
As the final stage of disease-related tissue injury and repair, fibrosis is characterized by excessive accumulation of the extracellular matrix. Unrestricted accumulation of stromal cells and matrix during fibrosis impairs the structure and function of organs, ultimately leading to organ failure. The major etiology of fibrosis is an injury caused by genetic heterogeneity, trauma, virus infection, alcohol, mechanical stimuli, and drug. Persistent abnormal activation of "quiescent" fibroblasts that interact with or do not interact with the immune system via complicated signaling cascades, in which parenchymal cells are also triggered, is identified as the main mechanism involved in the initiation and progression of fibrosis. Although the mechanisms of fibrosis are still largely unknown, multiple therapeutic strategies targeting identified molecular mechanisms have greatly attenuated fibrotic lesions in clinical trials. In this review, the organ-specific molecular mechanisms of fibrosis is systematically summarized, including cardiac fibrosis, hepatic fibrosis, renal fibrosis, and pulmonary fibrosis. Some important signaling pathways associated with fibrosis are also introduced. Finally, the current antifibrotic strategies based on therapeutic targets and clinical trials are discussed. A comprehensive interpretation of the current mechanisms and therapeutic strategies targeting fibrosis will provide the fundamental theoretical basis not only for fibrosis but also for the development of antifibrotic therapies.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Ya Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Jingwen Wei
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Tianyue Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Banghua Liao
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| |
Collapse
|
8
|
Zhang XZ, Li QL, Tang TT, Cheng X. Emerging Role of Macrophage-Fibroblast Interactions in Cardiac Homeostasis and Remodeling. JACC Basic Transl Sci 2025; 10:113-127. [PMID: 39958468 PMCID: PMC11830265 DOI: 10.1016/j.jacbts.2024.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 02/18/2025]
Abstract
As major noncardiomyocyte components in cardiac tissues, macrophages and fibroblasts play crucial roles in maintaining cardiac homeostasis, orchestrating reparative responses after cardiac injuries, facilitating adaptive cardiac remodeling, and contributing to adverse cardiac remodeling, owing to their inherent heterogeneity and plasticity. Recent advances in research methods have yielded novel insights into the intricate interactions between macrophages and fibroblasts in the cardiac context. This review aims to comprehensively examine the molecular mechanisms governing macrophage-fibroblast interactions in cardiac homeostasis and remodeling, emphasize recent advancements in the field, and offer an evaluation from a translational standpoint.
Collapse
Affiliation(s)
- Xu-Zhe Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin-Lin Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting-Ting Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Li Y. Novel Therapeutic Strategies Targeting Fibroblasts to Improve Heart Disease. J Cell Physiol 2025; 240:e31504. [PMID: 39690827 DOI: 10.1002/jcp.31504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024]
Abstract
Cardiac fibrosis represents the terminal pathological manifestation of various heart diseases, with the formation of fibroblasts playing a pivotal role in this process. Consequently, targeting the formation and function of fibroblasts holds significant potential for improving outcomes in heart disease. Recent research reveals the considerable potential of fibroblasts in ameliorating cardiac conditions, demonstrating different functional characteristics at various time points and spatial locations. Therefore, precise modulation of fibroblast activity may offer an effective approach for treating cardiac fibrosis and achieving targeted therapeutic outcomes. In this review, we focus on the fate and inhibition of fibroblasts, analyze their dynamic changes in cardiac diseases, and propose a framework for identifying markers of fibroblast activation mechanisms and selecting optimal time windows for therapeutic intervention. By synthesizing research findings in these areas, we aim to provide new strategies and directions for the precise treatment of fibroblasts in cardiac diseases.
Collapse
Affiliation(s)
- Yujuan Li
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Psarras S. The Macrophage-Fibroblast Dipole in the Context of Cardiac Repair and Fibrosis. Biomolecules 2024; 14:1403. [PMID: 39595580 PMCID: PMC11591949 DOI: 10.3390/biom14111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Stromal and immune cells and their interactions have gained the attention of cardiology researchers and clinicians in recent years as their contribution in cardiac repair is increasingly recognized. The repair process in the heart is a particularly critical constellation of complex molecular and cellular events and interactions that characteristically fail to ensure adequate recovery following injury, insult, or exposure to stress conditions in this regeneration-hostile organ. The tremendous consequence of this pronounced inability to maintain homeostatic states is being translated in numerous ways promoting progress into heart failure, a deadly, irreversible condition requiring organ transplantation. Fibrosis is in fact a repair response eventually promoting cardiac dysfunction and cardiac fibroblasts are the major cellular players in this process, overproducing collagens and other extracellular matrix components when activated. On the other hand, macrophages may differentially affect fibroblasts and cardiac repair depending on their status and subsets. The opposite interaction is also probable. We discuss here the multifaceted aspects and crosstalk of this cell dipole and the opportunities it may offer for beneficial manipulation approaches that will hopefully lead to progress in heart disease interventions.
Collapse
Affiliation(s)
- Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 115 27 Athens, Greece
| |
Collapse
|
11
|
Yin W, Chen Y, Wang W, Guo M, Tong L, Zhang M, Wang Z, Yuan H. Macrophage-mediated heart repair and remodeling: A promising therapeutic target for post-myocardial infarction heart failure. J Cell Physiol 2024; 239:e31372. [PMID: 39014935 DOI: 10.1002/jcp.31372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Heart failure (HF) remains prevalent in patients who survived myocardial infarction (MI). Despite the accessibility of the primary percutaneous coronary intervention and medications that alleviate ventricular remodeling with functional improvement, there is an urgent need for clinicians and basic scientists to further reveal the mechanisms behind post-MI HF as well as investigate earlier and more efficient treatment after MI. Growing numbers of studies have highlighted the crucial role of macrophages in cardiac repair and remodeling following MI, and timely intervention targeting the immune response via macrophages may represent a promising therapeutic avenue. Recently, technology such as single-cell sequencing has provided us with an updated and in-depth understanding of the role of macrophages in MI. Meanwhile, the development of biomaterials has made it possible for macrophage-targeted therapy. Thus, an overall and thorough understanding of the role of macrophages in post-MI HF and the current development status of macrophage-based therapy will assist in the further study and development of macrophage-targeted treatment for post-infarction cardiac remodeling. This review synthesizes the spatiotemporal dynamics, function, mechanism and signaling of macrophages in the process of HF after MI, as well as discusses the emerging bio-materials and possible therapeutic agents targeting macrophages for post-MI HF.
Collapse
Affiliation(s)
- Wenchao Yin
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yong Chen
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenjun Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lingjun Tong
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhaoyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
12
|
Ullah A, Chen Y, Singla RK, Cao D, Shen B. Exploring cytokines dynamics: Uncovering therapeutic concepts for metabolic disorders in postmenopausal women- diabetes, metabolic bone diseases, and non-alcohol fatty liver disease. Ageing Res Rev 2024; 101:102505. [PMID: 39307315 DOI: 10.1016/j.arr.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/18/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Menopause is an age-related change that persists for around one-third of a woman's life. Menopause increases the risk of metabolic illnesses such as diabetes, osteoporosis (OP), and nonalcoholic fatty liver disease (NAFLD). Immune mediators (pro-inflammatory cytokines), such as interleukin-1 (IL-1), IL-6, IL-17, transforming growth factor (TGF), and tumor necrosis factor (TNF), exacerbate the challenges of a woman undergoing menopause by causing inflammation and contributing to the development of these metabolic diseases in postmenopausal women. Furthermore, studies have shown that anti-inflammatory cytokines such as interleukin-1 receptor antagonists (IL-1Ra), IL-2, and IL-10 have a double-edged effect on diabetes and OP. Likewise, several interferon (IFN) members are double-edged swords in the OP. Therefore, addressing these immune mediators precisely may be an approach to improving the health of postmenopausal women. Hence, considering the significant changes in these cytokines, the present review focuses on the latest findings concerning the molecular mechanisms by which pro- and anti-inflammatory cytokines (interleukins) impact postmenopausal women with diabetes, OP, and NAFLD. Furthermore, we comprehensively discuss the therapeutic approaches that identify cytokines as therapeutic targets, such as hormonal therapy, physical activities, natural inhibitors (drugs), and others. Finally, this review aims to provide valuable insights into the role of cytokines in postmenopausal women's diabetes, OP, and NAFLD. Deeply investigating the mechanisms and therapeutic interventions involved will address the characteristics of immune mediators (cytokines) and improve the management of these illnesses, thereby enhancing the general quality of life and health of the corresponding populations of women.
Collapse
Affiliation(s)
- Amin Ullah
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongxiu Chen
- Gynecology Department, Guangdong Women and Children Hospital, No. 521, Xingnan Road, Panyu District, Guangzhou 511442, China
| | - Rajeev K Singla
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Dan Cao
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bairong Shen
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
13
|
Huynh P, Hoffmann JD, Gerhardt T, Kiss MG, Zuraikat FM, Cohen O, Wolfram C, Yates AG, Leunig A, Heiser M, Gaebel L, Gianeselli M, Goswami S, Khamhoung A, Downey J, Yoon S, Chen Z, Roudko V, Dawson T, Ferreira da Silva J, Ameral NJ, Morgenroth-Rebin J, D'Souza D, Koekkoek LL, Jacob W, Munitz J, Lee D, Fullard JF, van Leent MMT, Roussos P, Kim-Schulze S, Shah N, Kleinstiver BP, Swirski FK, Leistner D, St-Onge MP, McAlpine CS. Myocardial infarction augments sleep to limit cardiac inflammation and damage. Nature 2024; 635:168-177. [PMID: 39478215 DOI: 10.1038/s41586-024-08100-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 09/23/2024] [Indexed: 11/06/2024]
Abstract
Sleep is integral to cardiovascular health1,2. Yet, the circuits that connect cardiovascular pathology and sleep are incompletely understood. It remains unclear whether cardiac injury influences sleep and whether sleep-mediated neural outputs contribute to heart healing and inflammation. Here we report that in humans and mice, monocytes are actively recruited to the brain after myocardial infarction (MI) to augment sleep, which suppresses sympathetic outflow to the heart, limiting inflammation and promoting healing. After MI, microglia rapidly recruit circulating monocytes to the brain's thalamic lateral posterior nucleus (LPN) via the choroid plexus, where they are reprogrammed to generate tumour necrosis factor (TNF). In the thalamic LPN, monocytic TNF engages Tnfrsf1a-expressing glutamatergic neurons to increase slow wave sleep pressure and abundance. Disrupting sleep after MI worsens cardiac function, decreases heart rate variability and causes spontaneous ventricular tachycardia. After MI, disrupting or curtailing sleep by manipulating glutamatergic TNF signalling in the thalamic LPN increases cardiac sympathetic input which signals through the β2-adrenergic receptor of macrophages to promote a chemotactic signature that increases monocyte influx. Poor sleep in the weeks following acute coronary syndrome increases susceptibility to secondary cardiovascular events and reduces the heart's functional recovery. In parallel, insufficient sleep in humans reprogrammes β2-adrenergic receptor-expressing monocytes towards a chemotactic phenotype, enhancing their migratory capacity. Collectively, our data uncover cardiogenic regulation of sleep after heart injury, which restricts cardiac sympathetic input, limiting inflammation and damage.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Chemotaxis, Leukocyte
- Choroid Plexus/metabolism
- Glutamic Acid/metabolism
- Heart/physiopathology
- Heart Rate
- Inflammation/pathology
- Inflammation/prevention & control
- Lateral Thalamic Nuclei/metabolism
- Macrophages/cytology
- Macrophages/metabolism
- Mice, Inbred C57BL
- Microglia/cytology
- Microglia/metabolism
- Monocytes/cytology
- Monocytes/metabolism
- Myocardial Infarction/physiopathology
- Myocardial Infarction/complications
- Myocardial Infarction/pathology
- Myocardial Infarction/metabolism
- Myocardium/pathology
- Myocardium/metabolism
- Neurons/metabolism
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Sleep/physiology
- Sleep, Slow-Wave/physiology
- Sympathetic Nervous System/physiopathology
- Tachycardia, Ventricular/physiopathology
- Tachycardia, Ventricular/etiology
- Tachycardia, Ventricular/metabolism
- Tumor Necrosis Factors/metabolism
Collapse
Affiliation(s)
- Pacific Huynh
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jan D Hoffmann
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, NYC Health and Hospitals/Elmhurst, Elmhurst, Queens, NY, USA
| | - Teresa Gerhardt
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Germany and Berlin Institute of Health, Berlin, Germany
| | - Máté G Kiss
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Faris M Zuraikat
- Center of Excellence for Sleep and Circadian Research, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Oren Cohen
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher Wolfram
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Germany and Berlin Institute of Health, Berlin, Germany
| | - Abi G Yates
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Leunig
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Merlin Heiser
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lena Gaebel
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matteo Gianeselli
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sukanya Goswami
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Annie Khamhoung
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey Downey
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seonghun Yoon
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhihong Chen
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vladimir Roudko
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Travis Dawson
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joana Ferreira da Silva
- Center for Genomic Medicine, Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Natalie J Ameral
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Jarod Morgenroth-Rebin
- Center for Genomic Medicine, Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Darwin D'Souza
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura L Koekkoek
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Walter Jacob
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jazz Munitz
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donghoon Lee
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Fullard
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mandy M T van Leent
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neomi Shah
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Filip K Swirski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Leistner
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Germany and Berlin Institute of Health, Berlin, Germany
- Department of Medicine, Cardiology/Angiology, Goethe University Hospital, Frankfurt, Germany
| | - Marie-Pierre St-Onge
- Center of Excellence for Sleep and Circadian Research, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Cameron S McAlpine
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Huang S, Li J, Li Q, Wang Q, Zhou X, Chen J, Chen X, Bellou A, Zhuang J, Lei L. Cardiomyopathy: pathogenesis and therapeutic interventions. MedComm (Beijing) 2024; 5:e772. [PMID: 39465141 PMCID: PMC11502724 DOI: 10.1002/mco2.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiomyopathy is a group of disease characterized by structural and functional damage to the myocardium. The etiologies of cardiomyopathies are diverse, spanning from genetic mutations impacting fundamental myocardial functions to systemic disorders that result in widespread cardiac damage. Many specific gene mutations cause primary cardiomyopathy. Environmental factors and metabolic disorders may also lead to the occurrence of cardiomyopathy. This review provides an in-depth analysis of the current understanding of the pathogenesis of various cardiomyopathies, highlighting the molecular and cellular mechanisms that contribute to their development and progression. The current therapeutic interventions for cardiomyopathies range from pharmacological interventions to mechanical support and heart transplantation. Gene therapy and cell therapy, propelled by ongoing advancements in overarching strategies and methodologies, has also emerged as a pivotal clinical intervention for a variety of diseases. The increasing number of causal gene of cardiomyopathies have been identified in recent studies. Therefore, gene therapy targeting causal genes holds promise in offering therapeutic advantages to individuals diagnosed with cardiomyopathies. Acting as a more precise approach to gene therapy, they are gradually emerging as a substitute for traditional gene therapy. This article reviews pathogenesis and therapeutic interventions for different cardiomyopathies.
Collapse
Affiliation(s)
- Shitong Huang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Jiaxin Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuying Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuyu Wang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Xianwu Zhou
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jimei Chen
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Xuanhui Chen
- Department of Medical Big Data CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Abdelouahab Bellou
- Department of Emergency Medicine, Institute of Sciences in Emergency MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Emergency MedicineWayne State University School of MedicineDetroitMichiganUSA
| | - Jian Zhuang
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Liming Lei
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| |
Collapse
|
15
|
Kong Y, Zhang Q, Wang S, Li R, Fu C, Wei Q. Mitochondrial metabolism regulated macrophage phenotype in myocardial infarction. Biomed Pharmacother 2024; 180:117494. [PMID: 39321509 DOI: 10.1016/j.biopha.2024.117494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide, with myocardial infarction (MI) being the primary contributor to mortality and disability associated with CVD. Reperfusion therapies are widely recognized as effective strategies for treating MI. However, while intended to restore blood flow, the reperfusion processes paradoxically initiate a series of pathophysiological events that worsen myocardial injury, resulting in ischemia-reperfusion (I/R) injury. Therefore, there is a pressing need for new treatment strategies to reduce the size of MI and enhance cardiac function post-infarction. Macrophages are crucial for maintaining homeostasis and mitigating undesirable remodeling following MI. Extensive research has established a strong link between cellular metabolism and macrophage function. In the context of MI, macrophages undergo adaptive metabolic reprogramming to mount an immune response. Moreover, mitochondrial metabolism in macrophages is evident, leading to significant changes in their metabolism. Therefore, we need to delve deeper into summarizing and understanding the relationship and role between mitochondrial metabolism and macrophage phenotype, and summarize existing treatment methods. In this review, we explore the role of mitochondria in shaping the macrophage phenotype and function. Additionally, we summarize current therapeutic strategies aimed at modulating mitochondrial metabolism of macrophages, which may offer new insights treating of MI.
Collapse
Affiliation(s)
- Youli Kong
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Qing Zhang
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Shiqi Wang
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Ran Li
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Chenying Fu
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Quan Wei
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China.
| |
Collapse
|
16
|
Frangogiannis NG. The fate and role of the pericytes in myocardial diseases. Eur J Clin Invest 2024; 54:e14204. [PMID: 38586936 DOI: 10.1111/eci.14204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
The adult mammalian heart contains a large population of pericytes that play important roles in homeostasis and disease. In the normal heart, pericytes regulate microvascular permeability and flow. Myocardial diseases are associated with marked alterations in pericyte phenotype and function. This review manuscript discusses the role of pericytes in cardiac homeostasis and disease. Following myocardial infarction (MI), cardiac pericytes participate in all phases of cardiac repair. During the inflammatory phase, pericytes may secrete cytokines and chemokines and may regulate leukocyte trafficking, through formation of intercellular gaps that serve as exit points for inflammatory cells. Moreover, pericyte contraction induces microvascular constriction, contributing to the pathogenesis of 'no-reflow' in ischemia and reperfusion. During the proliferative phase, pericytes are activated by growth factors, such as transforming growth factor (TGF)-β and contribute to fibrosis, predominantly through secretion of fibrogenic mediators. A fraction of pericytes acquires fibroblast identity but contributes only to a small percentage of infarct fibroblasts and myofibroblasts. As the scar matures, pericytes form a coat around infarct neovessels, promoting stabilization of the vasculature. Pericytes may also be involved in the pathogenesis of chronic heart failure, by regulating inflammation, fibrosis, angiogenesis and myocardial perfusion. Pericytes are also important targets of viral infections (such as SARS-CoV2) and may be implicated in the pathogenesis of cardiac complications of COVID19. Considering their role in myocardial inflammation, fibrosis and angiogenesis, pericytes may be promising therapeutic targets in myocardial disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
17
|
Kanuri B, Sreejit G, Biswas P, Murphy AJ, Nagareddy PR. Macrophage heterogeneity in myocardial infarction: Evolution and implications for diverse therapeutic approaches. iScience 2024; 27:110274. [PMID: 39040061 PMCID: PMC11261154 DOI: 10.1016/j.isci.2024.110274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Given the extensive participation of myeloid cells (especially monocytes and macrophages) in both inflammation and resolution phases post-myocardial infarction (MI) owing to their biphasic role, these cells are considered as crucial players in the disease pathogenesis. Multiple studies have agreed on the significant contribution of macrophage polarization theory (M2 vs. M1) while determining the underlying reasons behind the observed biphasic effects; nevertheless, this simplistic classification attracts severe drawbacks. The advent of multiple advanced technologies based on OMICS platforms facilitated a successful path to explore comprehensive cellular signatures that could expedite our understanding of macrophage heterogeneity and plasticity. While providing an overall basis behind the MI disease pathogenesis, this review delves into the literature to discuss the current knowledge on multiple macrophage clusters, including the future directions in this research arena. In the end, our focus will be on outlining the possible therapeutic implications based on the emerging observations.
Collapse
Affiliation(s)
- Babunageswararao Kanuri
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Gopalkrishna Sreejit
- Department of Pathology, New York University Grossman School of Medicine, New York City, NY, USA
| | - Priosmita Biswas
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA
| | - Andrew J. Murphy
- Baker Heart and Diabetes Institute, Division of Immunometabolism, Melbourne, VIC, Australia
| | - Prabhakara R. Nagareddy
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| |
Collapse
|
18
|
Thorp EB, Filipp M, Dima M, Tan C, Feinstein M, Popko B, DeBerge M. CCR2 + monocytes promote white matter injury and cognitive dysfunction after myocardial infarction. Brain Behav Immun 2024; 119:818-835. [PMID: 38735403 PMCID: PMC11574971 DOI: 10.1016/j.bbi.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
Survivors of myocardial infarction are at increased risk for vascular dementia. Neuroinflammation has been implicated in the pathogenesis of vascular dementia, yet little is known about the cellular and molecular mediators of neuroinflammation after myocardial infarction. Using a mouse model of myocardial infarction coupled with flow cytometric analyses and immunohistochemistry, we discovered increased monocyte abundance in the brain after myocardial infarction, which was associated with increases in brain-resident perivascular macrophages and microglia. Myeloid cell recruitment and activation was also observed in post-mortem brains of humans that died after myocardial infarction. Spatial and single cell transcriptomic profiling of brain-resident myeloid cells after experimental myocardial infarction revealed increased expression of monocyte chemoattractant proteins. In parallel, myocardial infarction increased crosstalk between brain-resident myeloid cells and oligodendrocytes, leading to neuroinflammation, white matter injury, and cognitive dysfunction. Inhibition of monocyte recruitment preserved white matter integrity and cognitive function, linking monocytes to neurodegeneration after myocardial infarction. Together, these preclinical and clinical results demonstrate that monocyte infiltration into the brain after myocardial infarction initiate neuropathological events that lead to vascular dementia.
Collapse
Affiliation(s)
- Edward B Thorp
- Department of Pathology, Northwestern University, Chicago, IL, United States.
| | - Mallory Filipp
- Department of Pathology, Northwestern University, Chicago, IL, United States
| | - Maria Dima
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Northwestern University, Chicago, IL, United States
| | - Chunfeng Tan
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Matthew Feinstein
- Department of Pathology, Northwestern University, Chicago, IL, United States; Department of Medicine, Division of Cardiology, Northwestern University, Chicago, IL, United States
| | - Brian Popko
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Northwestern University, Chicago, IL, United States
| | - Matthew DeBerge
- Department of Pathology, Northwestern University, Chicago, IL, United States; Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States.
| |
Collapse
|
19
|
Jiang K, Hwa J, Xiang Y. Novel strategies for targeting neutrophil against myocardial infarction. Pharmacol Res 2024; 205:107256. [PMID: 38866263 DOI: 10.1016/j.phrs.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Inflammation is a crucial factor in cardiac remodeling after acute myocardial infarction (MI). Neutrophils, as the first wave of leukocytes to infiltrate the injured myocardium, exacerbate inflammation and cardiac injury. However, therapies that deplete neutrophils to manage cardiac remodeling after MI have not consistently produced promising outcomes. Recent studies have revealed that neutrophils at different time points and locations may have distinct functions. Thus, transferring neutrophil phenotypes, rather than simply blocking their activities, potentially meet the needs of cardiac repair. In this review, we focus on discussing the fate, heterogeneity, functions of neutrophils, and attempt to provide a more comprehensive understanding of their roles and targeting strategies in MI. We highlight the strategies and translational potential of targeting neutrophils to limit cardiac injury to reduce morbidity and mortality from MI.
Collapse
Affiliation(s)
- Kai Jiang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Yaozu Xiang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
20
|
Ramos-Regalado L, Alcover S, Badimon L, Vilahur G. The Influence of Metabolic Risk Factors on the Inflammatory Response Triggered by Myocardial Infarction: Bridging Pathophysiology to Treatment. Cells 2024; 13:1125. [PMID: 38994977 PMCID: PMC11240659 DOI: 10.3390/cells13131125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
Myocardial infarction (MI) sets off a complex inflammatory cascade that is crucial for effective cardiac healing and scar formation. Yet, if this response becomes excessive or uncontrolled, it can lead to cardiovascular complications. This review aims to provide a comprehensive overview of the tightly regulated local inflammatory response triggered in the early post-MI phase involving cardiomyocytes, (myo)fibroblasts, endothelial cells, and infiltrating immune cells. Next, we explore how the bone marrow and extramedullary hematopoiesis (such as in the spleen) contribute to sustaining immune cell supply at a cardiac level. Lastly, we discuss recent findings on how metabolic cardiovascular risk factors, including hypercholesterolemia, hypertriglyceridemia, diabetes, and hypertension, disrupt this immunological response and explore the potential modulatory effects of lifestyle habits and pharmacological interventions. Understanding how different metabolic risk factors influence the inflammatory response triggered by MI and unraveling the underlying molecular and cellular mechanisms may pave the way for developing personalized therapeutic approaches based on the patient's metabolic profile. Similarly, delving deeper into the impact of lifestyle modifications on the inflammatory response post-MI is crucial. These insights may enable the adoption of more effective strategies to manage post-MI inflammation and improve cardiovascular health outcomes in a holistic manner.
Collapse
Affiliation(s)
- Lisaidy Ramos-Regalado
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain (S.A.)
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Sebastià Alcover
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain (S.A.)
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Lina Badimon
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain (S.A.)
- Ciber CV, Institute Carlos III, 28029 Madrid, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Gemma Vilahur
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain (S.A.)
- Ciber CV, Institute Carlos III, 28029 Madrid, Spain
| |
Collapse
|
21
|
Hilgendorf I, Frantz S, Frangogiannis NG. Repair of the Infarcted Heart: Cellular Effectors, Molecular Mechanisms and Therapeutic Opportunities. Circ Res 2024; 134:1718-1751. [PMID: 38843294 PMCID: PMC11164543 DOI: 10.1161/circresaha.124.323658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
The adult mammalian heart has limited endogenous regenerative capacity and heals through the activation of inflammatory and fibrogenic cascades that ultimately result in the formation of a scar. After infarction, massive cardiomyocyte death releases a broad range of damage-associated molecular patterns that initiate both myocardial and systemic inflammatory responses. TLRs (toll-like receptors) and NLRs (NOD-like receptors) recognize damage-associated molecular patterns (DAMPs) and transduce downstream proinflammatory signals, leading to upregulation of cytokines (such as interleukin-1, TNF-α [tumor necrosis factor-α], and interleukin-6) and chemokines (such as CCL2 [CC chemokine ligand 2]) and recruitment of neutrophils, monocytes, and lymphocytes. Expansion and diversification of cardiac macrophages in the infarcted heart play a major role in the clearance of the infarct from dead cells and the subsequent stimulation of reparative pathways. Efferocytosis triggers the induction and release of anti-inflammatory mediators that restrain the inflammatory reaction and set the stage for the activation of reparative fibroblasts and vascular cells. Growth factor-mediated pathways, neurohumoral cascades, and matricellular proteins deposited in the provisional matrix stimulate fibroblast activation and proliferation and myofibroblast conversion. Deposition of a well-organized collagen-based extracellular matrix network protects the heart from catastrophic rupture and attenuates ventricular dilation. Scar maturation requires stimulation of endogenous signals that inhibit fibroblast activity and prevent excessive fibrosis. Moreover, in the mature scar, infarct neovessels acquire a mural cell coat that contributes to the stabilization of the microvascular network. Excessive, prolonged, or dysregulated inflammatory or fibrogenic cascades accentuate adverse remodeling and dysfunction. Moreover, inflammatory leukocytes and fibroblasts can contribute to arrhythmogenesis. Inflammatory and fibrogenic pathways may be promising therapeutic targets to attenuate heart failure progression and inhibit arrhythmia generation in patients surviving myocardial infarction.
Collapse
Affiliation(s)
- Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine at the University of Freiburg, Freiburg, Germany
| | - Stefan Frantz
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY
| |
Collapse
|
22
|
Kovacevic B, Wagle SR, Ionescu CM, Foster T, Đanić M, Mikov M, Mooranian A, Al-Salami H. Biotechnological Effects of Advanced Smart-Bile Acid Cyclodextrin-Based Nanogels for Ear Delivery and Treatment of Hearing Loss. Adv Healthc Mater 2024; 13:e2303149. [PMID: 38514042 DOI: 10.1002/adhm.202303149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/26/2024] [Indexed: 03/23/2024]
Abstract
Inner ear delivery requires safe and effective drug delivery vehicles incorporating high-viscosity formulations with permeation enhancers. This study designs novel thermoresponsive-smart polymer-bile acid and cyclodextrin-based nanogels for inner ear delivery. Nanogels are examined for their rheological and physical properties. The biocompatibility studies will be assessed on auditory and macrophage cell lines by investigating the impact of nanogels on cellular viability, mitochondrial respiration, glycolysis, intracellular oxidative stress, inflammatory profile, and macrophage polarization. Novel ther nanogels based on bile acid and beta-cyclodextrin show preserved porous nanogels' inner structure, exhibit non-Newtonian, shear-thinning fluid behavior, have fast gelation at 37 °C and minimal albumin adsorption on the surface. The nanogels have minimal impact on cellular viability, mitochondrial respiration, glycolysis, intracellular oxidative stress, and inflammatory profile of the auditory cell line House Ear Institute-Organ of Corti 1 after 24 h incubation. Nanogel exposure of 24 h to macrophage cell line RAW264.7 leads to decreased viability, mitochondrial dysfunction, and increased intracellular ROS and inflammatory cytokines. However, polarization changes from M2 anti-inflammatory to M1 pro-inflammatory macrophages are minimal, and inflammatory products of RAW264.7 macrophages do not overly disrupt the survivability of HEI-OC1 cells. Based on these results, thermoresponsive bile acid and cyclodextrin nanogels can be potential drug delivery vehicles for inner ear drug delivery.
Collapse
Affiliation(s)
- Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Maja Đanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, 21101, Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, 21101, Serbia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, 9016, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
- Medical School, University of Western Australia, Perth, 6009, Australia
| |
Collapse
|
23
|
Amaro-Prellezo E, Gómez-Ferrer M, Hakobyan L, Ontoria-Oviedo I, Peiró-Molina E, Tarazona S, Salguero P, Ruiz-Saurí A, Selva-Roldán M, Vives-Sanchez R, Sepúlveda P. Extracellular vesicles from dental pulp mesenchymal stem cells modulate macrophage phenotype during acute and chronic cardiac inflammation in athymic nude rats with myocardial infarction. Inflamm Regen 2024; 44:25. [PMID: 38807194 PMCID: PMC11134765 DOI: 10.1186/s41232-024-00340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND/AIMS Extracellular vesicles (EVs) derived from dental pulp mesenchymal stem cells (DP-MSCs) are a promising therapeutic option for the treatment of myocardial ischemia. The aim of this study is to determine whether MSC-EVs could promote a pro-resolving environment in the heart by modulating macrophage populations. METHODS EVs derived from three independent biopsies of DP-MSCs (MSC-EVs) were isolated by tangential flow-filtration and size exclusion chromatography and were characterized by omics analyses. Biological processes associated with these molecules were analyzed using String and GeneCodis platforms. The immunomodulatory capacity of MSC-EVs to polarize macrophages towards a pro-resolving or M2-like phenotype was assessed by evaluating surface markers, cytokine production, and efferocytosis. The therapeutic potential of MSC-EVs was evaluated in an acute myocardial infarction (AMI) model in nude rats. Infarct size and the distribution of macrophage populations in the infarct area were evaluated 7 and 21 days after intramyocardial injection of MSC-EVs. RESULTS Lipidomic, proteomic, and miRNA-seq analysis of MSC-EVs revealed their association with biological processes involved in tissue regeneration and regulation of the immune system, among others. MSC-EVs promoted the differentiation of pro-inflammatory macrophages towards a pro-resolving phenotype, as evidenced by increased expression of M2 markers and decreased secretion of pro-inflammatory cytokines. Administration of MSC-EVs in rats with AMI limited the extent of the infarcted area at 7 and 21 days post-infarction. MSC-EV treatment also reduced the number of pro-inflammatory macrophages within the infarct area, promoting the resolution of inflammation. CONCLUSION EVs derived from DP-MSCs exhibited similar characteristics at the omics level irrespective of the biopsy from which they were derived. All MSC-EVs exerted effective pro-resolving responses in a rat model of AMI, indicating their potential as therapeutic agents for the treatment of inflammation associated with AMI.
Collapse
Affiliation(s)
- Elena Amaro-Prellezo
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Marta Gómez-Ferrer
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Lusine Hakobyan
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Valencia, 46100, Spain
| | - Imelda Ontoria-Oviedo
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Esteban Peiró-Molina
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
- Hospital Universitari I Politècnic La Fe, Valencia, 46026, Spain
| | - Sonia Tarazona
- Department of Applied Statistics and Operations Research and Quality, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Pedro Salguero
- Department of Applied Statistics and Operations Research and Quality, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Amparo Ruiz-Saurí
- Department of Pathology, University of Valencia, Valencia, 46010, Spain
| | - Marta Selva-Roldán
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Rosa Vives-Sanchez
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain.
- Hospital Universitari I Politècnic La Fe, Valencia, 46026, Spain.
- Department of Pathology, University of Valencia, Valencia, 46010, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), III Institute of Health, Madrid, Carlos, Spain.
| |
Collapse
|
24
|
Shen SC, Xu J, Cheng C, Xiang XJ, Hong BY, Zhang M, Gong C, Ma LK. Macrophages promote the transition from myocardial ischemia reperfusion injury to cardiac fibrosis in mice through GMCSF/CCL2/CCR2 and phenotype switching. Acta Pharmacol Sin 2024; 45:959-974. [PMID: 38225394 PMCID: PMC11053127 DOI: 10.1038/s41401-023-01222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024]
Abstract
Following acute myocardial ischemia reperfusion (MIR), macrophages infiltrate damaged cardiac tissue and alter their polarization phenotype to respond to acute inflammation and chronic fibrotic remodeling. In this study we investigated the role of macrophages in post-ischemic myocardial fibrosis and explored therapeutic targets for myocardial fibrosis. Male mice were subjected to ligation of the left coronary artery for 30 min. We first detected the levels of chemokines in heart tissue that recruited immune cells infiltrating into the heart, and found that granulocyte-macrophage colony-stimulating factor (GMCSF) released by mouse cardiac microvascular endothelial cells (MCMECs) peaked at 6 h after reperfusion, and c-c motif chemokine ligand 2 (CCL2) released by GMCSF-induced macrophages peaked at 24 h after reperfusion. In co-culture of BMDMs with MCMECs, we demonstrated that GMCSF derived from MCMECs stimulated the release of CCL2 by BMDMs and effectively promoted the migration of BMDMs. We also confirmed that GMCSF promoted M1 polarization of macrophages in vitro, while GMCSF neutralizing antibodies (NTABs) blocked CCL2/CCR2 signaling. In MIR mouse heart, we showed that GMCSF activated CCL2/CCR2 signaling to promote NLRP3/caspase-1/IL-1β-mediated and amplified inflammatory damage. Knockdown of CC chemokine receptor 2 gene (CCR2-/-), or administration of specific CCR2 inhibitor RS102895 (5 mg/kg per 12 h, i.p., one day before MIR and continuously until the end of the experiment) effectively reduced the area of myocardial infarction, and down-regulated inflammatory mediators and NLRP3/Caspase-1/IL-1β signaling. Mass cytometry confirmed that M2 macrophages played an important role during fibrosis, while macrophage-depleted mice exhibited significantly reduced transforming growth factor-β (Tgf-β) levels in heart tissue after MIR. In co-culture of macrophages with fibroblasts, treatment with recombinant mouse CCL2 stimulated macrophages to release a large amount of Tgf-β, and promoted the release of Col1α1 by fibroblasts. This effect was diminished in BMDMs from CCR2-/- mice. After knocking out or inhibiting CCR2-gene, the levels of Tgf-β were significantly reduced, as was the level of myocardial fibrosis, and cardiac function was protected. This study confirms that the acute injury to chronic fibrosis transition after MIR in mice is mediated by GMCSF/CCL2/CCR2 signaling in macrophages through NLRP3 inflammatory cascade and the phenotype switching.
Collapse
Affiliation(s)
- Shi-Chun Shen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jie Xu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Cheng Cheng
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xin-Jian Xiang
- Department of Plastic and Reconstructive Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Bao-Yu Hong
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Meng Zhang
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Chen Gong
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Li-Kun Ma
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
25
|
Hoque MM, Gbadegoye JO, Hassan FO, Raafat A, Lebeche D. Cardiac fibrogenesis: an immuno-metabolic perspective. Front Physiol 2024; 15:1336551. [PMID: 38577624 PMCID: PMC10993884 DOI: 10.3389/fphys.2024.1336551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Cardiac fibrosis is a major and complex pathophysiological process that ultimately culminates in cardiac dysfunction and heart failure. This phenomenon includes not only the replacement of the damaged tissue by a fibrotic scar produced by activated fibroblasts/myofibroblasts but also a spatiotemporal alteration of the structural, biochemical, and biomechanical parameters in the ventricular wall, eliciting a reactive remodeling process. Though mechanical stress, post-infarct homeostatic imbalances, and neurohormonal activation are classically attributed to cardiac fibrosis, emerging evidence that supports the roles of immune system modulation, inflammation, and metabolic dysregulation in the initiation and progression of cardiac fibrogenesis has been reported. Adaptive changes, immune cell phenoconversions, and metabolic shifts in the cardiac nonmyocyte population provide initial protection, but persistent altered metabolic demand eventually contributes to adverse remodeling of the heart. Altered energy metabolism, mitochondrial dysfunction, various immune cells, immune mediators, and cross-talks between the immune cells and cardiomyocytes play crucial roles in orchestrating the transdifferentiation of fibroblasts and ensuing fibrotic remodeling of the heart. Manipulation of the metabolic plasticity, fibroblast-myofibroblast transition, and modulation of the immune response may hold promise for favorably modulating the fibrotic response following different cardiovascular pathological processes. Although the immunologic and metabolic perspectives of fibrosis in the heart are being reported in the literature, they lack a comprehensive sketch bridging these two arenas and illustrating the synchrony between them. This review aims to provide a comprehensive overview of the intricate relationship between different cardiac immune cells and metabolic pathways as well as summarizes the current understanding of the involvement of immune-metabolic pathways in cardiac fibrosis and attempts to identify some of the previously unaddressed questions that require further investigation. Moreover, the potential therapeutic strategies and emerging pharmacological interventions, including immune and metabolic modulators, that show promise in preventing or attenuating cardiac fibrosis and restoring cardiac function will be discussed.
Collapse
Affiliation(s)
- Md Monirul Hoque
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Joy Olaoluwa Gbadegoye
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Fasilat Oluwakemi Hassan
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amr Raafat
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Djamel Lebeche
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
- Medicine-Cardiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
- Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
26
|
Abdalla AME, Miao Y, Ahmed AIM, Meng N, Ouyang C. CAR-T cell therapeutic avenue for fighting cardiac fibrosis: Roadblocks and perspectives. Cell Biochem Funct 2024; 42:e3955. [PMID: 38379220 DOI: 10.1002/cbf.3955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
Heart diseases remain the primary cause of human mortality in the world. Although conventional therapeutic opportunities fail to halt or recover cardiac fibrosis, the promising clinical results and therapeutic efficacy of engineered chimeric antigen receptor (CAR) T cell therapy show several advancements. However, the current models of CAR-T cells need further improvement since the T cells are associated with the triggering of excessive inflammatory cytokines that directly affect cardiac functions. Thus, the current study highlights the critical function of heart immune cells in tissue fibrosis and repair. The study also confirms CAR-T cell as an emerging therapeutic for treating cardiac fibrosis, explores the current roadblocks to CAR-T cell therapy, and considers future outlooks for research development.
Collapse
Affiliation(s)
- Ahmed M E Abdalla
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum, Sudan
| | - Yu Miao
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Ahmed I M Ahmed
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum, Sudan
| | - Ning Meng
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Pan W, Zhou G, Hu M, Li G, Zhang M, Yang H, Li K, Li J, Liu T, Wang Y, Jin J. Coenzyme Q10 mitigates macrophage mediated inflammation in heart following myocardial infarction via the NLRP3/IL1β pathway. BMC Cardiovasc Disord 2024; 24:76. [PMID: 38281937 PMCID: PMC10822151 DOI: 10.1186/s12872-024-03729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND The protective effect of Coenzyme Q10 (CoQ10) on the cardiovascular system has been reported, however, whether it can promote early recovery of cardiac function and alleviate cardiac remodeling after myocardial infarction (MI) remains to be elucidated. Whether CoQ10 may regulate the macrophage-mediated pro-inflammatory response after MI and its potential mechanism are worth further exploration. METHODS To determine the baseline plasma levels of CoQ10 by LC-MS/MS, healthy controls and MI patients (n = 11 each) with age- and gender-matched were randomly enrolled. Additional MI patients were consecutively enrolled and randomized into the blank control (n = 59) or CoQ10 group (n = 61). Follow-ups were performed at 1- and 3-month to assess cardiac function after percutaneous coronary intervention (PCI). In the animal study, mice were orally administered CoQ10/vehicle daily and were subjected to left anterior descending coronary artery (LAD) ligation or sham operation. Echocardiography and serum BNP measured by ELISA were analyzed to evaluate cardiac function. Masson staining and WGA staining were performed to analyze the myocardial fibrosis and cardiomyocyte hypertrophy, respectively. Immunofluorescence staining was performed to assess the infiltration of IL1β/ROS-positive macrophages into the ischemic myocardium. Flow cytometry was employed to analyze the recruitment of myeloid immune cells to the ischemic myocardium post-MI. The expression of inflammatory indicators was assessed through RNA-seq, qPCR, and western blotting (WB). RESULTS Compared to controls, MI patients showed a plasma deficiency of CoQ10 (0.76 ± 0.31 vs. 0.46 ± 0.10 µg/ml). CoQ10 supplementation significantly promoted the recovery of cardiac function in MI patients at 1 and 3 months after PCI. In mice study, compared to vehicle-treated MI mice, CoQ10-treated MI mice showed a favorable trend in survival rate (42.85% vs. 61.90%), as well as significantly alleviated cardiac dysfunction, myocardial fibrosis, and cardiac hypertrophy. Notably, CoQ10 administration significantly suppressed the recruitment of pro-inflammatory CCR2+ macrophages into infarct myocardium and their mediated inflammatory response, partially by attenuating the activation of the NLR family pyrin domain containing 3 (NLRP3)/Interleukin-1 beta (IL1β) signaling pathway. CONCLUSIONS These findings suggest that CoQ10 can significantly promote early recovery of cardiac function after MI. CoQ10 may function by inhibiting the recruitment of CCR2+ macrophages and suppressing the activation of the NLRP3/IL1β pathway in macrophages. TRIAL REGISTRATION Date of registration 09/04/2021 (number: ChiCTR2100045256).
Collapse
Affiliation(s)
- Wenxu Pan
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Guiquan Zhou
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Meiling Hu
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Gaoshan Li
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Mingle Zhang
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hao Yang
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Kunyan Li
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jingwei Li
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Ting Liu
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Ying Wang
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China.
| | - Jun Jin
- Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing, China.
| |
Collapse
|
28
|
Zhang H, Dhalla NS. The Role of Pro-Inflammatory Cytokines in the Pathogenesis of Cardiovascular Disease. Int J Mol Sci 2024; 25:1082. [PMID: 38256155 PMCID: PMC10817020 DOI: 10.3390/ijms25021082] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
With cardiovascular disease (CVD) being a primary source of global morbidity and mortality, it is crucial that we understand the molecular pathophysiological mechanisms at play. Recently, numerous pro-inflammatory cytokines have been linked to several different CVDs, which are now often considered an adversely pro-inflammatory state. These cytokines most notably include interleukin-6 (IL-6),tumor necrosis factor (TNF)α, and the interleukin-1 (IL-1) family, amongst others. Not only does inflammation have intricate and complex interactions with pathophysiological processes such as oxidative stress and calcium mishandling, but it also plays a role in the balance between tissue repair and destruction. In this regard, pre-clinical and clinical evidence has clearly demonstrated the involvement and dynamic nature of pro-inflammatory cytokines in many heart conditions; however, the clinical utility of the findings so far remains unclear. Whether these cytokines can serve as markers or risk predictors of disease states or act as potential therapeutic targets, further extensive research is needed to fully understand the complex network of interactions that these molecules encompass in the context of heart disease. This review will highlight the significant advances in our understanding of the contributions of pro-inflammatory cytokines in CVDs, including ischemic heart disease (atherosclerosis, thrombosis, acute myocardial infarction, and ischemia-reperfusion injury), cardiac remodeling (hypertension, cardiac hypertrophy, cardiac fibrosis, cardiac apoptosis, and heart failure), different cardiomyopathies as well as ventricular arrhythmias and atrial fibrillation. In addition, this article is focused on discussing the shortcomings in both pathological and therapeutic aspects of pro-inflammatory cytokines in CVD that still need to be addressed by future studies.
Collapse
Affiliation(s)
- Hannah Zhang
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
29
|
Abe Y, Tani H, Sadahiro T, Yamada Y, Akiyama T, Nakano K, Honda S, Ko S, Anzai A, Ieda M. Cardiac reprogramming reduces inflammatory macrophages and improves cardiac function in chronic myocardial infarction. Biochem Biophys Res Commun 2024; 690:149272. [PMID: 37992523 DOI: 10.1016/j.bbrc.2023.149272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Cardiomyocytes (CMs) have little regenerative capacity. After myocardial infarction (MI), scar formation and myocardial remodeling proceed in the infarct and non-infarct areas, respectively, leading to heart failure (HF). Prolonged activation of cardiac fibroblasts (CFs) and inflammatory cells may contribute to this process; however, therapies targeting these cell types remain lacking. Cardiac reprogramming converts CFs into induced CMs, reduces fibrosis, and improves cardiac function in chronic MI through the overexpression of Mef2c/Gata4/Tbx5/Hand2 (MGTH). However, whether cardiac reprogramming reduces inflammation in infarcted hearts remains unclear. Moreover, the mechanism through which MGTH overexpression in CFs affects inflammatory cells remains unknown. Here, we showed that inflammation persists in the myocardium until three months after MI, which can be reversed with cardiac reprogramming. Single-cell RNA sequencing demonstrated that CFs expressed pro-inflammatory genes and exhibited strong intercellular communication with inflammatory cells, including macrophages, in chronic MI. Cardiac reprogramming suppressed the inflammatory profiles of CFs and reduced the relative ratios and pro-inflammatory signatures of cardiac macrophages. Moreover, fluorescence-activated cell sorting analysis (FACS) revealed that cardiac reprogramming reduced the number of chemokine receptor type 2 (CCR2)-positive inflammatory macrophages in the non-infarct areas in chronic MI, thereby restoring myocardial remodeling. Thus, cardiac reprogramming reduced the number of inflammatory macrophages to exacerbate cardiac function after MI.
Collapse
Affiliation(s)
- Yuto Abe
- Department of Cardiology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki, 305-8575, Japan
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Taketaro Sadahiro
- Department of Cardiology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki, 305-8575, Japan
| | - Yu Yamada
- Department of Cardiology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki, 305-8575, Japan
| | - Tatsuya Akiyama
- Department of Cardiology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki, 305-8575, Japan; Department of Respiratory Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki, 305-8575, Japan
| | - Koji Nakano
- Department of Cardiology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki, 305-8575, Japan
| | - Seiichiro Honda
- Department of Cardiology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki, 305-8575, Japan
| | - Seien Ko
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Atsushi Anzai
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaki Ieda
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
30
|
Wang Y. Immune-related biomarkers in myocardial infarction; diagnostic/prognostic value and therapeutic potential. J Biochem Mol Toxicol 2023; 37:e23489. [PMID: 37574886 DOI: 10.1002/jbt.23489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/24/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
The incidence of myocardial infarction (MI) is increasing worldwide on an annual basis. The incorporation of circulating biomarkers, along with electrocardiography, echocardiography, coronary angiograms, and other diagnostic techniques, is essential in the evaluation, prediction, and therapeutic efficacy assessment of patients afflicted with MI. Biomarker evaluation has been employed in the diagnosis of MI for over five decades. Further biomarker research can be carried out as newer biomarkers have been discovered in pathways such as inflammatory response, neurohormonal stimulation, or myocardial stress that initiate significantly earlier than myocyte necrosis and the diagnostic establishment of cardiac troponins. The assessment of biomarkers for MI is on the brink of a significant transformation due to advancements in comprehending the intricate pathophysiology of the condition. This has led to a pursuit of innovative biomarkers that could potentially overcome the limitations of current biomarkers. For individuals with a high-risk profile, this may facilitate tailoring of appropriate treatment. This review places emphasis on a diverse array of biomarkers that have the potential to offer diagnostic and prognostic information, as well as the latest clinical and preclinical evidence that is driving theoretical advancements in cardiovascular immunotherapy.
Collapse
Affiliation(s)
- Yanhai Wang
- Clinical Laboratory Department, Hohhot First Hospital, Hohhot, China
| |
Collapse
|
31
|
Ravassa S, López B, Treibel TA, San José G, Losada-Fuentenebro B, Tapia L, Bayés-Genís A, Díez J, González A. Cardiac Fibrosis in heart failure: Focus on non-invasive diagnosis and emerging therapeutic strategies. Mol Aspects Med 2023; 93:101194. [PMID: 37384998 DOI: 10.1016/j.mam.2023.101194] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Heart failure is a leading cause of mortality and hospitalization worldwide. Cardiac fibrosis, resulting from the excessive deposition of collagen fibers, is a common feature across the spectrum of conditions converging in heart failure. Eventually, either reparative or reactive in nature, in the long-term cardiac fibrosis contributes to heart failure development and progression and is associated with poor clinical outcomes. Despite this, specific cardiac antifibrotic therapies are lacking, making cardiac fibrosis an urgent unmet medical need. In this context, a better patient phenotyping is needed to characterize the heterogenous features of cardiac fibrosis to advance toward its personalized management. In this review, we will describe the different phenotypes associated with cardiac fibrosis in heart failure and we will focus on the potential usefulness of imaging techniques and circulating biomarkers for the non-invasive characterization and phenotyping of this condition and for tracking its clinical impact. We will also recapitulate the cardiac antifibrotic effects of existing heart failure and non-heart failure drugs and we will discuss potential strategies under preclinical development targeting the activation of cardiac fibroblasts at different levels, as well as targeting additional extracardiac processes.
Collapse
Affiliation(s)
- Susana Ravassa
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Begoña López
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Thomas A Treibel
- Institute of Cardiovascular Science, University College London, UK; Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Gorka San José
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Blanca Losada-Fuentenebro
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Leire Tapia
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Antoni Bayés-Genís
- CIBERCV, Carlos III Institute of Health, Madrid, Spain; Servei de Cardiologia i Unitat d'Insuficiència Cardíaca, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
32
|
Salvatori F, D’Aversa E, Serino ML, Singh AV, Secchiero P, Zauli G, Tisato V, Gemmati D. miRNAs Epigenetic Tuning of Wall Remodeling in the Early Phase after Myocardial Infarction: A Novel Epidrug Approach. Int J Mol Sci 2023; 24:13268. [PMID: 37686073 PMCID: PMC10487654 DOI: 10.3390/ijms241713268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of death in Western countries. An early diagnosis decreases subsequent severe complications such as wall remodeling or heart failure and improves treatments and interventions. Novel therapeutic targets have been recognized and, together with the development of direct and indirect epidrugs, the role of non-coding RNAs (ncRNAs) yields great expectancy. ncRNAs are a group of RNAs not translated into a product and, among them, microRNAs (miRNAs) are the most investigated subgroup since they are involved in several pathological processes related to MI and post-MI phases such as inflammation, apoptosis, angiogenesis, and fibrosis. These processes and pathways are finely tuned by miRNAs via complex mechanisms. We are at the beginning of the investigation and the main paths are still underexplored. In this review, we provide a comprehensive discussion of the recent findings on epigenetic changes involved in the first phases after MI as well as on the role of the several miRNAs. We focused on miRNAs function and on their relationship with key molecules and cells involved in healing processes after an ischemic accident, while also giving insight into the discrepancy between males and females in the prognosis of cardiovascular diseases.
Collapse
Affiliation(s)
- Francesca Salvatori
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
| | - Elisabetta D’Aversa
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
| | - Maria Luisa Serino
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
| | - Giorgio Zauli
- Department of Environmental Science and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
- University Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
- University Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
33
|
Huerta CT, Voza FA, Ortiz YY, Liu ZJ, Velazquez OC. Targeted cell delivery of mesenchymal stem cell therapy for cardiovascular disease applications: a review of preclinical advancements. Front Cardiovasc Med 2023; 10:1236345. [PMID: 37600026 PMCID: PMC10436297 DOI: 10.3389/fcvm.2023.1236345] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
Cardiovascular diseases (CVD) continue to be the leading cause of morbidity and mortality globally and claim the lives of over 17 million people annually. Current management of CVD includes risk factor modification and preventative strategies including dietary and lifestyle changes, smoking cessation, medical management of hypertension and cholesterol lipid levels, and even surgical revascularization procedures if needed. Although these strategies have shown therapeutic efficacy in reducing major adverse cardiovascular events such as heart attack, stroke, symptoms of chronic limb-threatening ischemia (CLTI), and major limb amputation significant compliance by patients and caregivers is required and off-target effects from systemic medications can still result in organ dysfunction. Stem cell therapy holds major potential for CVD applications but is limited by the low quantities of cells that are able to traffic to and engraft at diseased tissue sites. New preclinical investigations have been undertaken to modify mesenchymal stem cells (MSCs) to achieve targeted cell delivery after systemic administration. Although previous reviews have focused broadly on the modification of MSCs for numerous local or intracoronary administration strategies, here we review recent preclinical advances related to overcoming challenges imposed by the high velocity and dynamic flow of the circulatory system to specifically deliver MSCs to ischemic cardiac and peripheral tissue sites. Many of these technologies can also be applied for the targeted delivery of other types of therapeutic cells for treating various diseases.
Collapse
Affiliation(s)
- Carlos Theodore Huerta
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Francesca A. Voza
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yulexi Y. Ortiz
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Zhao-Jun Liu
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Omaida C. Velazquez
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
34
|
Xiao Y, Powell DW, Liu X, Li Q. Cardiovascular manifestations of inflammatory bowel diseases and the underlying pathogenic mechanisms. Am J Physiol Regul Integr Comp Physiol 2023; 325:R193-R211. [PMID: 37335014 PMCID: PMC10979804 DOI: 10.1152/ajpregu.00300.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
Inflammatory bowel disease (IBD), consisting of ulcerative colitis and Crohn's disease, mainly affects the gastrointestinal tract but is also known to have extraintestinal manifestations because of long-standing systemic inflammation. Several national cohort studies have found that IBD is an independent risk factor for the development of cardiovascular disorders. However, the molecular mechanisms by which IBD impairs the cardiovascular system are not fully understood. Although the gut-heart axis is attracting more attention in recent years, our knowledge of the organ-to-organ communication between the gut and the heart remains limited. In patients with IBD, upregulated inflammatory factors, altered microRNAs and lipid profiles, as well as dysbiotic gut microbiota, may induce adverse cardiac remodeling. In addition, patients with IBD have a three- to four times higher risk of developing thrombosis than people without IBD, and it is believed that the increased risk of thrombosis is largely due to increased procoagulant factors, platelet count/activity, and fibrinogen concentration, in addition to decreased anticoagulant factors. The predisposing factors for atherosclerosis are present in IBD and the possible mechanisms may involve oxidative stress system, overexpression of matrix metalloproteinases, and changes in vascular smooth muscle phenotype. This review focuses mainly on 1) the prevalence of cardiovascular diseases associated with IBD, 2) the potential pathogenic mechanisms of cardiovascular diseases in patients with IBD, and 3) adverse effects of IBD drugs on the cardiovascular system. Also, we introduce here a new paradigm for the gut-heart axis that includes exosomal microRNA and the gut microbiota as a cause for cardiac remodeling and fibrosis.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, United States
| | - Don W Powell
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, United States
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Qingjie Li
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, United States
| |
Collapse
|
35
|
Zhou W, Cao X, Xu Q, Qu J, Sun Y. The double-edged role of neutrophil heterogeneity in inflammatory diseases and cancers. MedComm (Beijing) 2023; 4:e325. [PMID: 37492784 PMCID: PMC10363828 DOI: 10.1002/mco2.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/27/2023] Open
Abstract
Neutrophils are important immune cells act as the body's first line of defense against infection and respond to diverse inflammatory cues. Many studies have demonstrated that neutrophils display plasticity in inflammatory diseases and cancers. Clarifying the role of neutrophil heterogeneity in inflammatory diseases and cancers will contribute to the development of novel treatment strategies. In this review, we have presented a review on the development of the understanding on neutrophil heterogeneity from the traditional perspective and a high-resolution viewpoint. A growing body of evidence has confirmed the double-edged role of neutrophils in inflammatory diseases and tumors. This may be due to a lack of precise understanding of the role of specific neutrophil subsets in the disease. Thus, elucidating specific neutrophil subsets involved in diseases would benefit the development of precision medicine. Thusly, we have summarized the relevance and actions of neutrophil heterogeneity in inflammatory diseases and cancers comprehensively. Meanwhile, we also discussed the potential intervention strategy for neutrophils. This review is intended to deepen our understanding of neutrophil heterogeneity in inflammatory diseases and cancers, while hold promise for precise treatment of neutrophil-related diseases.
Collapse
Affiliation(s)
- Wencheng Zhou
- Department of PharmacyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Yang Sun
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| |
Collapse
|
36
|
Isidoro CA, Deniset JF. Pericardial Immune Cells and Their Evolving Role in Cardiovascular Pathophysiology. Can J Cardiol 2023; 39:1078-1089. [PMID: 37270165 DOI: 10.1016/j.cjca.2023.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023] Open
Abstract
The pericardium plays several homeostatic roles to support and maintain everyday cardiac function. Recent advances in techniques and experimental models have allowed for further exploration into the cellular contents of the pericardium itself. Of particular interest are the various immune cell populations present in the space within the pericardial fluid and fat. In contrast to immune cells of the comparable pleura, peritoneum and heart, pericardial immune cells appear to be distinct in their function and phenotype. Specifically, recent work has suggested these cells play critical roles in an array of pathophysiological conditions including myocardial infarction, pericarditis, and post-cardiac surgery complications. In this review, we spotlight the pericardial immune cells currently identified in mice and humans, the pathophysiological role of these cells, and the clinical significance of the immunocardiology axis in cardiovascular health.
Collapse
Affiliation(s)
- Carmina Albertine Isidoro
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Justin F Deniset
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, Calgary, Alberta, Canada; Department of Cardiac Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
37
|
Chowkwale M, Lindsey ML, Saucerman JJ. Intercellular model predicts mechanisms of inflammation-fibrosis coupling after myocardial infarction. J Physiol 2023; 601:2635-2654. [PMID: 35862254 PMCID: PMC9859968 DOI: 10.1113/jp283346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/18/2022] [Indexed: 01/25/2023] Open
Abstract
After myocardial infarction (MI), cardiac cells work together to regulate wound healing of the infarct. The pathological response to MI yields cardiac remodelling comprising inflammatory and fibrosis phases, and the interplay of cellular dynamics that underlies these phases has not been elucidated. This study developed a computational model to identify cytokine and cellular dynamics post-MI to predict mechanisms driving post-MI inflammation, resolution of inflammation, and scar formation. Additionally, this study evaluated the interdependence between inflammation and fibrosis. Our model bypassed limitations of in vivo approaches in achieving cellular specificity and performing specific perturbations such as global knockouts of chemical factors. The model predicted that inflammation is a graded response to initial infarct size that is amplified by a positive feedback loop between neutrophils and interleukin 1β (IL-1β). Resolution of inflammation was driven by degradation of IL-1β, matrix metalloproteinase 9, and transforming growth factor β (TGF-β), as well as apoptosis of neutrophils. Inflammation regulated TGFβ secretion directly through immune cell recruitment and indirectly through upregulation of macrophage phagocytosis. Lastly, we found that mature collagen deposition was an ultrasensitive switch in response to inflammation, which was amplified primarily by cardiac fibroblast proliferation. These findings describe the relationship between inflammation and fibrosis and highlight how the two responses work together post-MI. This model revealed that post-MI inflammation and fibrosis are dynamically coupled, which provides rationale for designing novel anti-inflammatory, pro-resolving or anti-fibrotic therapies that may improve the response to MI. KEY POINTS: Inflammation and matrix remodelling are two processes involved in wound healing after a heart attack. Cardiac cells work together to facilitate these processes; this is done by secreting cytokines that then regulate the cells themselves or other cells surrounding them. This study developed a computational model of the dynamics of cardiac cells and cytokines to predict mechanisms through which inflammation and matrix remodelling is regulated. We show the roles of various cytokines and signalling motifs in driving inflammation, resolution of inflammation and fibrosis. The novel concept of inflammation-fibrosis coupling, based on the model prediction that inflammation and fibrosis are dynamically coupled, provides rationale for future studies and for designing therapeutics to improve the response after a heart attack.
Collapse
Affiliation(s)
- Mukti Chowkwale
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Merry L. Lindsey
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN
- Research Service, Nashville VA Medical Center, Nashville, TN
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA
| |
Collapse
|
38
|
Poto R, Loffredo S, Marone G, Di Salvatore A, de Paulis A, Schroeder JT, Varricchi G. Basophils beyond allergic and parasitic diseases. Front Immunol 2023; 14:1190034. [PMID: 37205111 PMCID: PMC10185837 DOI: 10.3389/fimmu.2023.1190034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Basophils bind IgE via FcεRI-αβγ2, which they uniquely share only with mast cells. In doing so, they can rapidly release mediators that are hallmark of allergic disease. This fundamental similarity, along with some morphological features shared by the two cell types, has long brought into question the biological significance that basophils mediate beyond that of mast cells. Unlike mast cells, which mature and reside in tissues, basophils are released into circulation from the bone marrow (constituting 1% of leukocytes), only to infiltrate tissues under specific inflammatory conditions. Evidence is emerging that basophils mediate non-redundant roles in allergic disease and, unsuspectingly, are implicated in a variety of other pathologies [e.g., myocardial infarction, autoimmunity, chronic obstructive pulmonary disease, fibrosis, cancer, etc.]. Recent findings strengthen the notion that these cells mediate protection from parasitic infections, whereas related studies implicate basophils promoting wound healing. Central to these functions is the substantial evidence that human and mouse basophils are increasingly implicated as important sources of IL-4 and IL-13. Nonetheless, much remains unclear regarding the role of basophils in pathology vs. homeostasis. In this review, we discuss the dichotomous (protective and/or harmful) roles of basophils in a wide spectrum of non-allergic disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Antonio Di Salvatore
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - John T. Schroeder
- Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| |
Collapse
|
39
|
Lin Z. More than a key-the pathological roles of SARS-CoV-2 spike protein in COVID-19 related cardiac injury. SPORTS MEDICINE AND HEALTH SCIENCE 2023:S2666-3376(23)00024-0. [PMID: 37361919 PMCID: PMC10062797 DOI: 10.1016/j.smhs.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 06/28/2023] Open
Abstract
Cardiac injury is common in hospitalized coronavirus disease 2019 (COVID-19) patients and cardiac abnormalities have been observed in a significant number of recovered COVID-19 patients, portending long-term health issues for millions of infected individuals. To better understand how Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, CoV-2 for short) damages the heart, it is critical to fully comprehend the biology of CoV-2 encoded proteins, each of which may play multiple pathological roles. For example, CoV-2 spike glycoprotein (CoV-2-S) not only engages angiotensin converting enzyme II (ACE2) to mediate virus infection but also directly activates immune responses. In this work, the goal is to review the known pathological roles of CoV-2-S in the cardiovascular system, thereby shedding lights on the pathogenesis of COVID-19 related cardiac injury.
Collapse
Affiliation(s)
- Zhiqiang Lin
- Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY, 13501, USA
| |
Collapse
|
40
|
Abstract
The principle of trained immunity represents innate immune memory due to sustained, mainly epigenetic, changes triggered by endogenous or exogenous stimuli in bone marrow (BM) progenitors (central trained immunity) and their innate immune cell progeny, thereby triggering elevated responsiveness against secondary stimuli. BM progenitors can respond to microbial and sterile signals, thereby possibly acquiring trained immunity-mediated long-lasting alterations that may shape the fate and function of their progeny, for example, neutrophils. Neutrophils, the most abundant innate immune cell population, are produced in the BM from committed progenitor cells in a process designated granulopoiesis. Neutrophils are the first responders against infectious or inflammatory challenges and have versatile functions in immunity. Together with other innate immune cells, neutrophils are effectors of peripheral trained immunity. However, given the short lifetime of neutrophils, their ability to acquire immunological memory may lie in the central training of their BM progenitors resulting in generation of reprogrammed, that is, "trained", neutrophils. Although trained immunity may have beneficial effects in infection or cancer, it may also mediate detrimental outcomes in chronic inflammation. Here, we review the emerging research area of trained immunity with a particular emphasis on the role of neutrophils and granulopoiesis.
Collapse
Affiliation(s)
- Lydia Kalafati
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Aikaterini Hatzioannou
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
41
|
Zhang RYK, Cochran BJ, Thomas SR, Rye KA. Impact of Reperfusion on Temporal Immune Cell Dynamics After Myocardial Infarction. J Am Heart Assoc 2023; 12:e027600. [PMID: 36789837 PMCID: PMC10111498 DOI: 10.1161/jaha.122.027600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Excessive inflammation and impaired healing of cardiac tissue following a myocardial infarction (MI) can drive the development of heart failure. Cardiac repair begins immediately after the onset of MI and continues for months. The repair process can be divided into the following 3 overlapping phases, each having distinct functions and sequelae: the inflammatory phase, the proliferative phase, and the maturation phase. Macrophages, neutrophils, and lymphocytes are present in the myocardium throughout the repair process and govern the duration and function of each of these phases. However, changes in the functions of these cell types across each phase are poorly characterized. Numerous immunomodulatory therapies that specifically target inflammation have been developed for promoting cardiac repair and preventing heart failure after MI. However, these treatments have been largely unsuccessful in large-scale clinical randomized controlled trials. A potential explanation for this failure is the lack of a thorough understanding of the time-dependent evolution of the functions of immune cells after a major cardiovascular event. Failure to account for this temporal plasticity in cell function may reduce the efficacy of immunomodulatory approaches that target cardiac repair. This review is concerned with how the functions of different immune cells change with time following an MI. Improved understanding of the temporal changes in immune cell function is important for the future development of effective and targeted treatments for preventing heart failure after MI.
Collapse
Affiliation(s)
| | - Blake J Cochran
- School of Medical Sciences University of New South Wales Sydney New South Wales
| | - Shane R Thomas
- School of Medical Sciences University of New South Wales Sydney New South Wales
| | - Kerry-Anne Rye
- School of Medical Sciences University of New South Wales Sydney New South Wales
| |
Collapse
|
42
|
Li K, Kratzmann V, Dai M, Gatzke N, Rocic P, Bramlage P, Grisk O, Lubomirov LT, Hoffmeister M, Lauxmann MA, Ritter O, Buschmann E, Bader M, Persson AB, Buschmann I, Hillmeister P. Angiotensin receptor-neprilysin inhibitor improves coronary collateral perfusion. Front Cardiovasc Med 2023; 9:981333. [PMID: 36818914 PMCID: PMC9936066 DOI: 10.3389/fcvm.2022.981333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/09/2022] [Indexed: 02/05/2023] Open
Abstract
Background We investigated the pleiotropic effects of an angiotensin receptor-neprilysin inhibitor (ARNi) on collateral-dependent myocardial perfusion in a rat model of coronary arteriogenesis, and performed comprehensive analyses to uncover the underlying molecular mechanisms. Methods A rat model of coronary arteriogenesis was established by implanting an inflatable occluder on the left anterior descending coronary artery followed by a 7-day repetitive occlusion procedure (ROP). Coronary collateral perfusion was measured by using a myocardial particle infusion technique. The putative ARNi-induced pro-arteriogenic effects were further investigated and compared with an angiotensin-converting enzyme inhibitor (ACEi). Expression of the membrane receptors and key enzymes in the natriuretic peptide system (NPS), renin-angiotensin-aldosterone system (RAAS) and kallikrein-kinin system (KKS) were analyzed by quantitative polymerase chain reaction (qPCR) and immunoblot assay, respectively. Protein levels of pro-arteriogenic cytokines were measured by enzyme-linked immunosorbent assay, and mitochondrial DNA copy number was assessed by qPCR due to their roles in arteriogenesis. Furthermore, murine heart endothelial cells (MHEC5-T) were treated with a neprilysin inhibitor (NEPi) alone, or in combination with bradykinin receptor antagonists. MHEC5-T proliferation was analyzed by colorimetric assay. Results The in vivo study showed that ARNis markedly improved coronary collateral perfusion, regulated the gene expression of KKS, and increased the concentrations of relevant pro-arteriogenic cytokines. The in vitro study demonstrated that NEPis significantly promoted MHEC5-T proliferation, which was diminished by bradykinin receptor antagonists. Conclusion ARNis improve coronary collateral perfusion and exert pro-arteriogenic effects via the bradykinin receptor signaling pathway.
Collapse
Affiliation(s)
- Kangbo Li
- Department for Angiology, Center for Internal Medicine I, Deutsches Angiologie Zentrum Brandenburg - Berlin, University Clinic Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Victoria Kratzmann
- Department for Angiology, Center for Internal Medicine I, Deutsches Angiologie Zentrum Brandenburg - Berlin, University Clinic Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Mengjun Dai
- Department for Angiology, Center for Internal Medicine I, Deutsches Angiologie Zentrum Brandenburg - Berlin, University Clinic Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nora Gatzke
- Department for Angiology, Center for Internal Medicine I, Deutsches Angiologie Zentrum Brandenburg - Berlin, University Clinic Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Petra Rocic
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Huntsville, TX, United States
| | - Peter Bramlage
- Institute for Pharmacology and Preventive Medicine, Cloppenburg, Germany
| | - Olaf Grisk
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Lubomir T. Lubomirov
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Meike Hoffmeister
- Institute of Biochemistry, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
- Faculty of Health Sciences Brandenburg, Joint Faculty of the Brandenburg University of Technology Cottbus – Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, Brandenburg an der Havel, Germany
| | - Martin A. Lauxmann
- Institute of Biochemistry, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Oliver Ritter
- Faculty of Health Sciences Brandenburg, Joint Faculty of the Brandenburg University of Technology Cottbus – Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, Brandenburg an der Havel, Germany
- Department for Cardiology, Center for Internal Medicine I, University Clinic Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Eva Buschmann
- Department of Cardiology, University Clinic Graz, Graz, Austria
| | - Michael Bader
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Anja Bondke Persson
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ivo Buschmann
- Department for Angiology, Center for Internal Medicine I, Deutsches Angiologie Zentrum Brandenburg - Berlin, University Clinic Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
- Faculty of Health Sciences Brandenburg, Joint Faculty of the Brandenburg University of Technology Cottbus – Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, Brandenburg an der Havel, Germany
| | - Philipp Hillmeister
- Department for Angiology, Center for Internal Medicine I, Deutsches Angiologie Zentrum Brandenburg - Berlin, University Clinic Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
- Faculty of Health Sciences Brandenburg, Joint Faculty of the Brandenburg University of Technology Cottbus – Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, Brandenburg an der Havel, Germany
| |
Collapse
|
43
|
Saeedi-Boroujeni A, Purrahman D, Shojaeian A, Poniatowski ŁA, Rafiee F, Mahmoudian-Sani MR. Progranulin (PGRN) as a regulator of inflammation and a critical factor in the immunopathogenesis of cardiovascular diseases. J Inflamm (Lond) 2023; 20:1. [PMID: 36658641 PMCID: PMC9851114 DOI: 10.1186/s12950-023-00327-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Immune dysregulation has been identified as a critical cause of the most common types of cardiovascular diseases (CVDs). Notably, the innate and adaptive immune responses under physiological conditions are typically regulated with high sensitivity to avoid the exacerbation of inflammation, but any dysregulation can probably be associated with CVDs. In this respect, progranulin (PGRN) serves as one of the main components of the regulation of inflammatory processes, which significantly contributes to the immunopathogenesis of such disorders. PGRN has been introduced among the secreted growth factors as one related to wound healing, inflammation, and human embryonic development, as well as a wide variety of autoimmune diseases. The relationship between the serum PGRN and TNF-α ratio with the spontaneous bacterial peritonitis constitute one of the independent predictors of these conditions. The full-length PGRN can thus effectively reduce the calcification of valve interstitial cells, and the granulin precursor (GRN), among the degradation products of PGRN, can be beneficial. Moreover, it was observed that, PGRN protects the heart against ischemia-reperfusion injury. Above all, PGRN also provides protection in the initial phase following myocardial ischemia-reperfusion injury. The protective impact of PGRN on this may be associated with the early activation of the PI3K/Akt signaling pathway. PGRN also acts as a protective factor in hyperhomocysteinemia, probably by down-regulating the wingless-related integration site Wnt/β-catenin signaling pathway. Many studies have further demonstrated that SARS-CoV-2 (COVID-19) has dramatically increased the risks of CVDs due to inflammation, so PGRN has drawn much more attention among scholars. Lysosomes play a pivotal role in the inflammation process, and PGRN is one of the key regulators in their functioning, which contributes to the immunomodulatory mechanism in the pathogenesis of CVDs. Therefore, investigation of PGRN actions can help find new prospects in the treatment of CVDs. This review aims to summarize the role of PGRN in the immunopathogenesis of CVD, with an emphasis on its treatment.
Collapse
Affiliation(s)
- Ali Saeedi-Boroujeni
- Department of Microbiology, School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Daryush Purrahman
- grid.411230.50000 0000 9296 6873Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Shojaeian
- grid.411950.80000 0004 0611 9280Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Łukasz A. Poniatowski
- grid.491786.50000 0001 0211 9062Department of Neurosurgery, Dietrich-Bonhoeffer-Klinikum, Neubrandenburg, Germany
| | - Fatemeh Rafiee
- grid.469309.10000 0004 0612 8427Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Science, Zanjan, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- grid.411230.50000 0000 9296 6873Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran ,grid.411230.50000 0000 9296 6873Clinical Research Development Unit, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
44
|
Fathieh S, Grieve SM, Negishi K, Figtree GA. Potential Biological Mediators of Myocardial and Vascular Complications of Air Pollution-A State-of-the-Art Review. Heart Lung Circ 2023; 32:26-42. [PMID: 36585310 DOI: 10.1016/j.hlc.2022.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 12/29/2022]
Abstract
Ambient air pollution is recognised globally as a significant contributor to the burden of cardiovascular diseases. The evidence from both human and animal studies supporting the cardiovascular impact of exposure to air pollution has grown substantially, implicating numerous pathophysiological pathways and related signalling mediators. In this review, we summarise the list of activated mediators for each pathway that lead to myocardial and vascular injury in response to air pollutants. We performed a systematic search of multiple databases, including articles between 1990 and Jan 2022, summarising the evidence for activated pathways in response to each significant air pollutant. Particulate matter <2.5 μm (PM2.5) was the most studied pollutant, followed by particulate matter between 2.5 μm-10 μm (PM10), nitrogen dioxide (NO2) and ozone (O3). Key pathogenic pathways that emerged included activation of systemic and local inflammation, oxidative stress, endothelial dysfunction, and autonomic dysfunction. We looked at how potential mediators of each of these pathways were linked to both cardiovascular disease and air pollution and included the overlapping mediators. This review illustrates the complex relationship between air pollution and cardiovascular diseases, and discusses challenges in moving beyond associations, towards understanding causal contributions of specific pathways and markers that may inform us regarding an individual's exposure, response, and likely risk.
Collapse
Affiliation(s)
- Sina Fathieh
- Kolling Institute of Medical Research, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Stuart M Grieve
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia; Department of Radiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Kazuaki Negishi
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tas, Australia; Department of Cardiology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan; Sydney Medical School Nepean, Faculty of Medicine and Health, Charles Perkins Centre Nepean, The University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Nepean Hospital, Sydney, NSW, Australia
| | - Gemma A Figtree
- Kolling Institute of Medical Research, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia.
| |
Collapse
|
45
|
Qi T, Xu X, Guo Y, Xia Y, Peng L, Li C, Ding F, Gao C, Fan M, Yu M, Zhao H, He Y, Li W, Hai C, Gao E, Zhang X, Gao F, Fan Y, Yan W, Tao L. CSF2RB overexpression promotes the protective effects of mesenchymal stromal cells against ischemic heart injury. Theranostics 2023; 13:1759-1773. [PMID: 37064880 PMCID: PMC10091875 DOI: 10.7150/thno.81336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/26/2023] [Indexed: 04/18/2023] Open
Abstract
Aims: The invasive intramyocardial injection of mesenchymal stromal cells (MSCs) allows for limited repeat injections and shows poor therapeutic efficacy against ischemic heart failure. Intravenous injection is an alternative method because this route allows for repeated, noninvasive, and easy delivery. However, the lack of targeting of MSCs hinders the ability of these cells to accumulate in the ischemic area after intravenous injections. We investigated whether and how the overexpression of colony-stimulating factor 2 receptor beta subunit (CSF2RB) may regulate the cardiac homing of MSCs and their cardioprotective effects against ischemic heart failure. Methods and Results: Adult mice were subjected to myocardial ischemia/reperfusion (MI/R) or sham operations. We observed significantly higher CSF2 protein expression and secretion by the ischemic heart from 1 day to 2 weeks after MI/R. Mouse adipose tissue-derived MSCs (ADSCs) were infected with adenovirus harboring CSF2RB or control adenovirus. Enhanced green fluorescent protein (EGFP)-labeled ADSCs were intravenously injected into MI/R mice every three days for a total of 7 times. Compared with ADSCs infected with control adenovirus, intravenously delivered ADSCs overexpressing CSF2RB exhibited markedly increased cardiac homing. Histological analysis revealed that CSF2RB overexpression significantly enhanced the ADSC-mediated proangiogenic, antiapoptotic, and antifibrotic effects. More importantly, ADSCs overexpressing CSF2RB significantly increased the left ventricular ejection fraction and cardiac contractility/relaxation in MI/R mice. In vitro experiments demonstrated that CSF2RB overexpression increases the migratory capacity and reduces the hypoxia/reoxygenation-induced apoptosis of ADSCs. We identified STAT5 phosphorylation as the key mechanism underlying the effects of CSF2RB on promoting ADSC migration and inhibiting ADSC apoptosis. RNA sequencing followed by cause-effect analysis revealed that CSF2RB overexpression increases the expression of the ubiquitin ligase RNF4. Coimmunoprecipitation and coimmunostaining experiments showed that RNF4 binds to phosphorylated STAT5. RNF4 knockdown reduced STAT5 phosphorylation as well as the antiapoptotic and promigratory actions of ADSCs overexpressing CSF2RB. Conclusions: We demonstrate for the first time that CSF2RB overexpression optimizes the efficacy of intravenously delivered MSCs in the treatment of ischemic heart injury by increasing the response of the MSCs to a CSF2 gradient and CSF2RB-dependent STAT5/RNF4 activation.
Collapse
Affiliation(s)
- Tingting Qi
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoming Xu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yongzhen Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- School of Public Management, Northwest University, Xi'an 710127, China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Lu Peng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Fengyue Ding
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Chao Gao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Miaomiao Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Min Yu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Huishou Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yuan He
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wenli Li
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an 710032, China
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Chunxu Hai
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an 710032, China
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xing Zhang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Feng Gao
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yanhong Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- ✉ Corresponding authors: Ling Tao, MD, PhD, Professor and Chief of Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84771692; +86-29-84775183; Fax: +86-29-84771692; E-mail: . Wenjun Yan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692; E-mail: . Yanhong Fan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692;
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- ✉ Corresponding authors: Ling Tao, MD, PhD, Professor and Chief of Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84771692; +86-29-84775183; Fax: +86-29-84771692; E-mail: . Wenjun Yan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692; E-mail: . Yanhong Fan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692;
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- ✉ Corresponding authors: Ling Tao, MD, PhD, Professor and Chief of Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84771692; +86-29-84775183; Fax: +86-29-84771692; E-mail: . Wenjun Yan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692; E-mail: . Yanhong Fan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692;
| |
Collapse
|
46
|
Flannigan KL, Nieves KM, Szczepanski HE, Serra A, Lee JW, Alston LA, Ramay H, Mani S, Hirota SA. The Pregnane X Receptor and Indole-3-Propionic Acid Shape the Intestinal Mesenchyme to Restrain Inflammation and Fibrosis. Cell Mol Gastroenterol Hepatol 2023; 15:765-795. [PMID: 36309199 PMCID: PMC9883297 DOI: 10.1016/j.jcmgh.2022.10.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Fibrosis is a common complication of inflammatory bowel diseases (IBDs). The pregnane X receptor (PXR) (encoded by NR1I2) suppresses intestinal inflammation and has been shown to influence liver fibrosis. In the intestine, PXR signaling is influenced by microbiota-derived indole-3-propionic acid (IPA). Here, we sought to assess the role of the PXR in regulating intestinal inflammation and fibrosis. METHODS Intestinal inflammation was induced using dextran sulfate sodium (DSS). Fibrosis was assessed in wild-type (WT), Nr1i2-/-, epithelial-specific Nr1i2-/-, and fibroblast-specific Nr1i2-/- mice. Immune cell influx was quantified by flow cytometry and cytokines by Luminex. Myofibroblasts isolated from WT and Nr1i2-/- mice were stimulated with cytomix or lipopolysaccharide, and mediator production was assessed by quantitative polymerase chain reaction and Luminex. RESULTS After recovery from DSS-induced colitis, WT mice exhibited fibrosis, a response that was exacerbated in Nr1i2-/- mice. This was correlated with greater neutrophil infiltration and innate cytokine production. Deletion of the PXR in fibroblasts, but not the epithelium, recapitulated this phenotype. Inflammation and fibrosis were reduced by IPA administration, whereas depletion of the microbiota exaggerated intestinal fibrosis. Nr1i2-deficient myofibroblasts were hyperresponsive to stimulation, producing increased levels of inflammatory mediators compared with WT cells. In biopsies from patients with active Crohn's disease (CD) and ulcerative colitis (UC), expression of NR1I2 was reduced, correlating with increased expression of fibrotic and innate immune genes. Finally, both CD and UC patients exhibited reduced levels of fecal IPA. CONCLUSIONS These data highlight a role for IPA and its interactions with the PXR in regulating the mesenchyme and the development of inflammation and fibrosis, suggesting microbiota metabolites may be a vital determinant in the progression of fibrotic complications in IBD.
Collapse
Affiliation(s)
- Kyle L Flannigan
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Kristoff M Nieves
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Holly E Szczepanski
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Alex Serra
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Joshua W Lee
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Laurie A Alston
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Hena Ramay
- International Microbiome Centre, University of Calgary, AB, Canada
| | - Sridhar Mani
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Simon A Hirota
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
47
|
Trager LE, Lyons M, Kuznetsov A, Sheffield C, Roh K, Freeman R, Rhee J, Guseh JS, Li H, Rosenzweig A. Beyond cardiomyocytes: Cellular diversity in the heart's response to exercise. JOURNAL OF SPORT AND HEALTH SCIENCE 2022:S2095-2546(22)00125-9. [PMID: 36549585 PMCID: PMC10362490 DOI: 10.1016/j.jshs.2022.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Cardiomyocytes comprise ∼70% to 85% of the total volume of the adult mammalian heart but only about 25% to 35% of its total number of cells. Advances in single cell and single nuclei RNA sequencing have greatly facilitated investigation into and increased appreciation of the potential functions of non-cardiomyocytes in the heart. While much of this work has focused on the relationship between non-cardiomyocytes, disease, and the heart's response to pathological stress, it will also be important to understand the roles that these cells play in the healthy heart, cardiac homeostasis, and the response to physiological stress such as exercise. The present review summarizes recent research highlighting dynamic changes in non-cardiomyocytes in response to the physiological stress of exercise. Of particular interest are changes in fibrotic pathways, the cardiac vasculature, and immune or inflammatory cells. In many instances, limited data are available about how specific lineages change in response to exercise or whether the changes observed are functionally important, underscoring the need for further research.
Collapse
Affiliation(s)
- Lena E Trager
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; University of Minnesota Medical School, Minneapolis, MI 55455, USA
| | - Margaret Lyons
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alexandra Kuznetsov
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Cedric Sheffield
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kangsan Roh
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rebecca Freeman
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - James Rhee
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - J Sawalla Guseh
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Haobo Li
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Anthony Rosenzweig
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
48
|
Moggio A, Schunkert H, Kessler T, Sager HB. Quo Vadis? Immunodynamics of Myeloid Cells after Myocardial Infarction. Int J Mol Sci 2022; 23:15814. [PMID: 36555456 PMCID: PMC9779515 DOI: 10.3390/ijms232415814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Myocardial infarction (MI), a major contributor to worldwide morbidity and mortality, is caused by a lack of blood flow to the heart. Affected heart tissue becomes ischemic due to deficiency of blood perfusion and oxygen delivery. In case sufficient blood flow cannot be timely restored, cardiac injury with necrosis occurs. The ischemic/necrotic area induces a systemic inflammatory response and hundreds of thousands of leukocytes are recruited from the blood to the injured heart. The blood pool of leukocytes is rapidly depleted and urgent re-supply of these cells is needed. Myeloid cells are generated in the bone marrow (BM) and spleen, released into the blood, travel to sites of need, extravasate and accumulate inside tissues to accomplish various functions. In this review we focus on the "leukocyte supply chain" and will separately evaluate different myeloid cell compartments (BM, spleen, blood, heart) in steady state and after MI. Moreover, we highlight the local and systemic kinetics of extracellular factors, chemokines and danger signals involved in the regulation of production/generation, release, transportation, uptake, and activation of myeloid cells during the inflammatory phase of MI.
Collapse
Affiliation(s)
- Aldo Moggio
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
49
|
Li Y, Li D, Wang W, Li X, Li P, Zhang Y, Lin Q, Li Y. Effect of Danhong injection on prognosis and inflammatory factor expression in patients with acute coronary syndrome during the perioperative period of percutaneous coronary intervention: A systematic review and meta-analysis. Front Cardiovasc Med 2022; 9:1029387. [DOI: 10.3389/fcvm.2022.1029387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
ObjectivesIn China, Danhong injection (DHI) is recommended by expert consensus and is widely used in the perioperative management of patients with acute coronary syndrome (ACS). This study investigates the effect of perioperative DHI administration and the timing of DHI administration on patients with ACS undergoing percutaneous coronary intervention (PCI) by analyzing the prognosis and anti-inflammatory effects. This article summarizes the most up-to-date clinical evidence on DHI, and in this study, we assesses treatment efficacy of DHI in patients with ACS.MethodsA total of seven databases (PubMed, Embase, Cochrane Library, SINOMED, CNKI, Wanfang, and VIP) were searched from the time of their inception to 1 July 2022. Clinical randomized controlled trials (RCTs) of DHI combined with PCI for the treatment of ACS were included. RCT quality was assessed using the Cochrane Handbook risk-of-bias tool, and STATA 17.0 was used for meta-analysis.ResultsIn total, 33 studies including 3,458 patients with ACS undergoing PCI were included in the meta-analysis. Compared with conventional therapy alone, the combination of DHI and conventional therapy significantly decreased the incidence of major adverse cardiovascular events (MACEs; P<0.001) and improved the reperfusion rate (P < 0.001). Serum high-sensitivity C-reactive protein (hs-CRP) and interleukin (IL)-6 levels were substantially reduced in the test group (P<0.001). In addition, the plasma levels of myocardial injury markers and cardiac troponin T (cTnT) declined significantly (P < 0.01). Compared with the control group, DHI improved the left ventricular ejection fraction (LVEF; P < 0.001) and reduced B-type natriuretic peptide (BNP; P < 0.001) levels. Subgroups were established based on different timings of DHI administration: preoperative, intraoperative, and postoperative groups. The results showed that the incidence of MACEs and the reperfusion rate did not differ between the groups. Among the subgroups, the postoperative group exhibited significantly lower levels of BNP, hs-CRP, and IL-6 serum and a significantly higher level of LVEF (P < 0.05).ConclusionThe combination of DHI and conventional therapy results in a better therapeutic effect than that observed with conventional therapy alone in patients with ACS. To improve treatment efficacy, postoperative initiation of DHI is recommended as a standard treatment. Further research is needed to confirm these results.Systematic review registrationIdentifier: CRD42022344830.
Collapse
|
50
|
Zhou Q, Zhang G, Liu Z, Zhang J, Shi R. Identification and exploration of novel M2 macrophage-related biomarkers in the development of acute myocardial infarction. Front Cardiovasc Med 2022; 9:974353. [PMID: 36440001 PMCID: PMC9685672 DOI: 10.3389/fcvm.2022.974353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/24/2022] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI), one of the most severe and fatal cardiovascular diseases, is a major cause of morbidity and mortality worldwide. Macrophages play a critical role in ventricular remodeling after AMI. The regulatory mechanisms of the AMI progression remain unclear. This study aimed to identify hub regulators of macrophage-related modules and provide translational experiments with potential therapeutic targets. MATERIALS AND METHODS The GSE59867 dataset was downloaded from the Gene Expression Omnibus (GEO) database for bioinformatics analysis. The expression patterns of 22 types of immune cells were determined using CIBERSORT. GEO2R was used to identify differentially expressed genes (DEGs) through the limma package. Then, DEGs were clustered into different modules, and relationships between modules and macrophage types were analyzed using weighted gene correlation network analysis (WGCNA). Further functional enrichment analysis was performed using significantly associated modules. The module most significantly associated with M2 macrophages (Mϕ2) was chosen for subsequent analysis. Co-expressed DEGs of AMI were identified in the GSE123342 and GSE97320 datasets and module candidate hub genes. Additionally, hub gene identification was performed in GSE62646 dataset and clinical samples. RESULTS A total of 8,760 DEGs were identified and clustered into ten modules using WGCNA analysis. The blue and turquoise modules were significantly related to Mϕ2, and 482 hub genes were discerned from two hub modules that conformed to module membership values > 0.8 and gene significance values > 0.25. Subsequent analysis using a Venn diagram assessed 631 DEGs in GSE123342, 1457 DEGs in GSE97320, and module candidate hub genes for their relationship with Mϕ2 in the progression of AMI. Finally, four hub genes (CSF2RB, colony stimulating factor 2 receptor subunit beta; SIGLEC9, sialic acid-binding immunoglobulin-like lectin 9; LRRC25, leucine-rich repeat containing 25; and CSF3R, colony-stimulating factor-3 receptor) were validated to be differentially expressed and to have high diagnostic value in both GSE62646 and clinical samples. CONCLUSION Using comprehensive bioinformatics analysis, we identified four novel genes that may play crucial roles in the pathophysiological mechanism of AMI. This study provides novel insights into the impact of macrophages on the progression of AMI and directions for Mϕ2-targeted molecular therapies for AMI.
Collapse
Affiliation(s)
- Qiaoyu Zhou
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Guogang Zhang
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhaoya Liu
- Department of Geriatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiayi Zhang
- Department of Gastroenterology, The First Hospital of Changsha, Changsha, China
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, The Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|