1
|
Bijnen M, Sridhar S, Keller A, Greter M. Brain macrophages in vascular health and dysfunction. Trends Immunol 2024:S1471-4906(24)00297-7. [PMID: 39732528 DOI: 10.1016/j.it.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/30/2024]
Abstract
Diverse macrophage populations inhabit the rodent and human central nervous system (CNS), including microglia in the parenchyma and border-associated macrophages (BAMs) in the meninges, choroid plexus, and perivascular spaces. These innate immune phagocytes are essential in brain development and maintaining homeostasis, but they also play diverse roles in neurological diseases. In this review, we highlight the emerging roles of CNS macrophages in regulating vascular function in health and disease. We discuss that, in addition to microglia, BAMs, including perivascular macrophages, play roles in supporting vascular integrity and maintaining blood flow. We highlight recent advancements in understanding how these macrophages are implicated in protecting against vascular dysfunction and modulating the progression of cerebrovascular diseases, as seen in vessel-associated neurodegeneration.
Collapse
Affiliation(s)
- Mitchell Bijnen
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sucheta Sridhar
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Stables J, Pal R, Bradford BM, Carter-Cusack D, Taylor I, Pridans C, Khan N, Woodruff TM, Irvine KM, Summers KM, Mabbott NA, Hume DA. The effect of a dominant kinase-dead Csf1r mutation associated with adult-onset leukoencephalopathy on brain development and neuropathology. Neurobiol Dis 2024; 203:106743. [PMID: 39581554 DOI: 10.1016/j.nbd.2024.106743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
Amino acid substitutions in the kinase domain of the human CSF1R protein are associated with autosomal dominant adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). To model the human disease, we created a disease-associated mutation (Glu631Lys; E631K) in the mouse Csf1r locus. Previous analysis demonstrated that heterozygous mutation (Csf1rE631K/+) had a dominant inhibitory effect on CSF1R signaling in vitro and in vivo but did not recapitulate human disease pathology. We speculated that leukoencephalopathy in humans requires an environmental trigger and/or epistatic interaction with common neurodegenerative disease-associated alleles. Here we examine the Csf1rE631K/+ mutation impact on microglial phenotype, postnatal brain development, age-related changes in gene expression and on prion disease and experimental autoimmune encephalitis (EAE), two pathologies in which microgliosis is a prominent feature. The Csf1rE631K/+ mutation reduced microglial abundance and the expression of microglial-associated transcripts relative to wild-type controls at 12 and 43 weeks of age. There was no selective effect on homeostatic markers e.g. P2ry12, or age-related changes in gene expression in striatum and hippocampus. An epistatic interaction was demonstrated between Csf1rE631K/+ and Cx3cr1EGFP/+ genotypes leading to dysregulated microglial and neuronal gene expression in hippocampus and striatum. Heterozygous Csf1rE631K mutation reduced the microgliosis associated with both diseases. There was no significant impact on disease severity or progression in prion disease. In EAE, inflammation-associated transcripts in the hippocampus and striatum were suppressed in parallel with microglia-specific transcripts. The results support a dominant inhibitory model of CSF1R-related leukoencephalopathy and likely contributions of an environmental trigger and/or genetic background to neuropathology.
Collapse
Affiliation(s)
- Jennifer Stables
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Reiss Pal
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Barry M Bradford
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Dylan Carter-Cusack
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Isis Taylor
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Clare Pridans
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - Nemat Khan
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Neil A Mabbott
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
3
|
Wiens KR, Wasti N, Ulloa OO, Klegeris A. Diversity of Microglia-Derived Molecules with Neurotrophic Properties That Support Neurons in the Central Nervous System and Other Tissues. Molecules 2024; 29:5525. [PMID: 39683685 DOI: 10.3390/molecules29235525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Microglia, the brain immune cells, support neurons by producing several established neurotrophic molecules including glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Modern analytical techniques have identified numerous phenotypic states of microglia, each associated with the secretion of a diverse set of substances, which likely include not only canonical neurotrophic factors but also other less-studied molecules that can interact with neurons and provide trophic support. In this review, we consider the following eight such candidate cytokines: oncostatin M (OSM), leukemia inhibitory factor (LIF), activin A, colony-stimulating factor (CSF)-1, interleukin (IL)-34, growth/differentiation factor (GDF)-15, fibroblast growth factor (FGF)-2, and insulin-like growth factor (IGF)-2. The available literature provides sufficient evidence demonstrating murine cells produce these cytokines and that they exhibit neurotrophic activity in at least one neuronal model. Several distinct types of neurotrophic activity are identified that only partially overlap among the cytokines considered, reflecting either their distinct intrinsic properties or lack of comprehensive studies covering the full spectrum of neurotrophic effects. The scarcity of human-specific studies is another significant knowledge gap revealed by this review. Further studies on these potential microglia-derived neurotrophic factors are warranted since they may be used as targeted treatments for diverse neurological disorders.
Collapse
Affiliation(s)
- Kennedy R Wiens
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Naved Wasti
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Omar Orlando Ulloa
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Andis Klegeris
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
4
|
Shao Y, Han S, Hou Z, Yang C, Zhao Y. Tumor-associated macrophages within the immunological milieu: An emerging focal point for therapeutic intervention. Heliyon 2024; 10:e36839. [PMID: 39281573 PMCID: PMC11401039 DOI: 10.1016/j.heliyon.2024.e36839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
Tumor-associated macrophages play an important role in the tumor immune microenvironment, and regulating the function of tumor-associated macrophages has important therapeutic potential in tumor therapy. Mature macrophages could migrate to the tumor microenvironment, influencing multiple factors such as tumor cell proliferation, invasion, metastasis, extracellular matrix remodeling, immune suppression, and drug resistance. As a major component of the tumor microenvironment, tumor-associated macrophages crosstalk with other immune cells. Currently, tumor-associated macrophages have garnered considerable attention in tumor therapy, broadening the spectrum of drug selection to some extent, thereby aiding in mitigating the prevailing clinical drug resistance dilemma. This article summarizes the recent advances in tumor-associated macrophages concerning immunology, drug targeting mechanisms for tumor-associated macrophages treatment, new developments, and existing challenges, offering insights for future therapeutic approaches. In addition, this paper summarized the impact of tumor-associated macrophages on current clinical therapies, discussed the advantages and disadvantages of targeted tumor-associated macrophages therapy compared with existing tumor therapies, and predicted and discussed the future role of targeted tumor-associated macrophages therapy and the issues that need to be focused on.
Collapse
Affiliation(s)
- Yanchi Shao
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Song Han
- The First Hospital of Jilin University, Changchun, China
| | - Zhenxin Hou
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Chen Yang
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yanbin Zhao
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Geng J, Xu S, Cao Y, Liu F, Ren X, Che D, Pan B, Yu Y. IL-34 and its receptors as predictors of brain metastasis and prognosis in lung adenocarcinoma: Unveiling insights through bioinformatic and immunohistochemical investigations. Heliyon 2024; 10:e33791. [PMID: 39055827 PMCID: PMC11269839 DOI: 10.1016/j.heliyon.2024.e33791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Background Brain metastasis (BM) is a prevalent form of metastasis in lung adenocarcinoma (LUAD), necessitating investigations into the underlying mechanisms. Interleukin 34 (IL-34) and its receptors, macrophage colony-stimulating factor-1 receptor (CSF-IR), Syndecan-1 (SDC-1), and protein-tyrosine phosphatase zeta receptor (PTPRZ1), are known to play pivotal roles in the metastasis of malignant tumors, thereby holding promise as potential biomarkers for studying BM in LUAD. Methods We performed immunohistochemistry to analyze the expression of IL-34, CSF-1R, SDC-1, and PTPRZ1 in 10 pairs of LUAD primary tissues and BMs, along with 96 unpaired primary tissues and 68 unpaired BMs. Subsequently, we evaluated the association between protein expression and the occurrence of BM. Furthermore, Kaplan-Meier survival curve analysis was conducted on both network and clinical data to explore the association between protein expression and patient prognosis and survival. Results At the protein level, the expression of IL-34 and its receptors showed significant variation between paired primary tumors and BMs in 10 LUAD patients. The levels of IL-34, CSF-1R, and SDC-1 expression are typically elevated in brain metastatic lesions of LUAD compared to primary LUAD tumors. Furthermore, patients with high CSF-1R expression in primary LUAD are at a greater risk of developing brain metastases. High expression of IL-34 and CSF-1R in primary LUAD lesions indicated poor disease-free survival (DFS) and overall survival (OS), while high expression of SDC-1 indicated poor OS. Cox multivariate analysis further revealed that CSF-1R and IL-34+CSF-1R positivity independently affected LUAD OS. These findings were further substantiated in unpaired samples. Conclusions Our results indicate significant alterations in the expression of IL-34 and its receptors, CSF-1R and SDC-1, between LUAD primary lesions and BMs, with increased expression observed in BMs. LUAD patients with positive CSF-1R expression in primary lesions exhibited a higher likelihood of developing BM, and high expression of IL-34, CSF-1R, and SDC-1 correlated with poor prognosis. These findings contribute novel insights towards identifying potential treatment or diagnostic targets for metastatic LUAD.
Collapse
Affiliation(s)
- Jianxiong Geng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Shanqi Xu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Yingyue Cao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Fang Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Xingmei Ren
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Dehai Che
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Bo Pan
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| |
Collapse
|
6
|
Luo C, Zhang W, Zhu J, Qiu T, Fang Q. Interleukin-2 mediated associations between gut microbiota and acute myeloid leukemia: A population-based mediation Mendelian randomization study. Heliyon 2024; 10:e33194. [PMID: 39022041 PMCID: PMC11252755 DOI: 10.1016/j.heliyon.2024.e33194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 07/20/2024] Open
Abstract
The relationship between the gut microbiota and acute myeloid leukemia (AML) has been established, but the exact role of interleukin (IL) in mediating this relationship has remained unclear. This study aimed to utilize whether interleukins mediate the relationships between gut microbiota and AML, thereby identifying potential novel targets for future AML treatment. Mendelian randomization (MR) is a method for finding the causality of exposure and outcome. Final instrumental variables were selected based on MR assumptions, and used to judge validity of the results. Our study identified risk and protective factors for AML, and interleukin-related gut microbiota. Finally, mediation MR analyses resulted in Interleukin-2 (IL-2) mediated associations between Clostridiaceae 1, Clostridium sensu stricto 1 and AML, with IL-2 respectively explaining 13.96 % and 12.11 % of the total effect of the aforementioned gut microbiota on AML. Our results successfully identified causal effects between specific gut microbiota, AML, and interleukins, while also elucidating the mediating role of IL-2 in these associations using MR analysis. These findings provide valuable insights into potential therapeutic targets for AML treatment.
Collapse
Affiliation(s)
- Chenxi Luo
- School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Wei Zhang
- School of Nursing, Wuhan University, Wuhan, 430071, China
| | - Jicheng Zhu
- School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Tianlai Qiu
- School of Nursing, Wuhan University, Wuhan, 430071, China
| | - Qingbo Fang
- School of Nursing, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
7
|
Duarte C, Yamada C, Ngala B, Garcia C, Akkaoui J, Birsa M, Ho A, Nusbaum A, AlQallaf H, John V, Movila A. Effects of IL-34 and anti-IL-34 neutralizing mAb on alveolar bone loss in a ligature-induced model of periodontitis. Mol Oral Microbiol 2024; 39:93-102. [PMID: 37902168 PMCID: PMC11058120 DOI: 10.1111/omi.12437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023]
Abstract
Macrophage colony-stimulating factor (M-CSF) and interleukin-34 (IL-34) are ligands for the colony-stimulating factor-1 receptor (CSF-1r) expressed on the surface of monocyte/macrophage lineage cells. The importance of coordinated signaling between M-CSF/receptor activator of the nuclear factor kappa-Β ligand (RANKL) in physiological and pathological bone remodeling and alveolar bone loss in response to oral bacterial colonization is well established. However, our knowledge about the IL-34/RANKL signaling in periodontal bone loss remains limited. Recently published cohort studies have demonstrated that the expression patterns of IL-34 are dramatically elevated in gingival crevicular fluid collected from patients with periodontitis. Therefore, the present study aims to evaluate the effects of IL-34 on osteoclastogenesis in vitro and in experimental ligature-mediated model of periodontitis using male mice. Our initial in vitro study demonstrated increased RANKL-induced osteoclastogenesis of IL-34-primed osteoclast precursors (OCPs) compared to M-CSF-primed OCPs. Using an experimental model of ligature-mediated periodontitis, we further demonstrated elevated expression of IL-34 in periodontal lesions. In contrast, M-CSF levels were dramatically reduced in these periodontal lesions. Furthermore, local injections of mouse recombinant IL-34 protein significantly elevated cathepsin K activity, increased the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and promoted alveolar bone loss in periodontitis lesions. In contrast, anti-IL-34 neutralizing monoclonal antibody significantly reduced the level of alveolar bone loss and the number of TRAP-positive osteoclasts in periodontitis lesions. No beneficial effects of locally injected anti-M-CSF neutralizing antibody were observed in periodontal lesions. This study illustrates the role of IL-34 in promoting alveolar bone loss in periodontal lesions and proposes the potential of anti-IL34 monoclonal antibody (mAb)-based therapeutic regimens to suppress alveolar bone loss in periodontitis lesions.
Collapse
Affiliation(s)
- Carolina Duarte
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA
- Hussman Institute for Autism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Chiaki Yamada
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bidii Ngala
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher Garcia
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Juliet Akkaoui
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA
- School of Medicine, Florida International University, Miami, FL, USA
| | - Maxim Birsa
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA
| | - Anny Ho
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA
| | - Amilia Nusbaum
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hawra AlQallaf
- Department of Periodontology, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Vanchit John
- Department of Periodontology, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Alexandru Movila
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
8
|
Tang F, Hou XF, Cheng Y, Liu Y, Sun J, Liu HY, Lv LP, Fu L. Longitudinal associations between serum IL-34 with severity and prognosis in community-acquired pneumonia patients. Respir Investig 2024; 62:223-230. [PMID: 38218098 DOI: 10.1016/j.resinv.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Interleukin-34 (IL-34) is a hematopoietic cytokine and a ligand of colony-stimulating factor 1 receptor (CSF-1R). Numerous studies have demonstrated that IL-34 is involved in several inflammatory diseases. Nevertheless, the role of IL-34 is obscure in community-acquired pneumonia (CAP) patients. This research aimed to assess the associations of serum IL-34 with severity and prognosis in CAP patients through a longitudinal study. METHODS CAP patients and healthy volunteers were recruited. Peripheral blood samples were collected. Serum IL-34 and inflammatory cytokines were tested by enzyme linked immunosorbent assay (ELISA). Demographic characteristics and clinical information were acquired through electronic medical records. RESULTS Serum IL-34 was elevated in CAP patients compared with healthy volunteers. The content of serum IL-34 was gradually upregulated with increased CAP severity scores. Mixed logistic and linear regression models suggested that serum IL-34 elevation was associated with increased PSI and SMART-COP scores. Correlative analysis found that serum IL-34 was positively correlated with inflammatory cytokines among CAP patients. A longitudinal study indicated that higher serum IL-34 at admission elevated the risks of mechanical ventilation and death during hospitalization. Serum IL-34 had a higher predictive capacity for death than CAP severity scores. CONCLUSION There are prominently positive dose-response associations between serum IL-34 at admission with the severity and poor prognosis, suggesting that IL-34 is implicated in the occurrence and development of CAP. Serum IL-34 may serve as a biomarker to forecast disease progression and poor prognosis in CAP patients.
Collapse
Affiliation(s)
- Fei Tang
- Department of Interventional Pulmonology and Endoscopic Diagnosis and Treatment Center, Anhui Chest Hospital, Hefei, Anhui, 230022, China
| | - Xue-Feng Hou
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Yu Cheng
- Department of Interventional Pulmonology and Endoscopic Diagnosis and Treatment Center, Anhui Chest Hospital, Hefei, Anhui, 230022, China
| | - Ying Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Jing Sun
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Hong-Yan Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| | - Li-Ping Lv
- Department of Interventional Pulmonology and Endoscopic Diagnosis and Treatment Center, Anhui Chest Hospital, Hefei, Anhui, 230022, China.
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| |
Collapse
|
9
|
Jordan CKI, Clarke TB. How does the microbiota control systemic innate immunity? Trends Immunol 2024; 45:94-102. [PMID: 38216387 DOI: 10.1016/j.it.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
The intestinal microbiota has a pervasive influence on mammalian innate immunity fortifying defenses to infection in tissues throughout the host. How intestinal microbes control innate defenses in systemic tissues is, however, poorly defined. In our opinion, there are three core challenges that need addressing to advance our understanding of how the intestinal microbiota controls innate immunity systemically: first, deciphering how signals from intestinal microbes are transmitted to distal tissues; second, unraveling how intestinal microbes prime systemic innate immunity without inducing widespread immunopathology; and third, identifying which intestinal microbes control systemic immunity. Here, we propose answers to these problems which provide a framework for understanding how microbes in the intestine can regulate innate immunity systemically.
Collapse
Affiliation(s)
- Christine K I Jordan
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London, UK; Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
| | - Thomas B Clarke
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
10
|
Lu C, Liu Y, Miao L, Kong X, Li H, Chen H, Zhao X, Zhang B, Cui X. Research progress on the role of tumor‑associated macrophages in tumor development and their use as molecular targets (Review). Int J Oncol 2024; 64:11. [PMID: 38063203 PMCID: PMC10734668 DOI: 10.3892/ijo.2023.5599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The tumor microenvironment (TME) is a complex system composed mainly of tumor cells, mesenchymal cells and immune cells. Macrophages, also known as tumor‑associated macrophages (TAMs), among innate immune cells, are some of the most abundant components of the TME. They may influence tumor growth and metastasis through interactions with other cell populations in the TME and have been associated with poor prognosis in a variety of tumors. Therefore, a better understanding of the role of TAMs in the TME may provide new insight into tumor therapy. In the present review, the origin and classification of TAMs in the TME were outlined and their polarization and dual effects on tumor cells, as well as emerging strategies for cancer therapies targeting TAMs, were discussed.
Collapse
Affiliation(s)
- Chenglin Lu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 860411, P.R. China
| | - Ying Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 860411, P.R. China
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 860411, P.R. China
| | - Linxuan Miao
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 860411, P.R. China
| | - Xiangle Kong
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 860411, P.R. China
| | - Huili Li
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 860411, P.R. China
| | - Haoran Chen
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 860411, P.R. China
| | - Xu Zhao
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 860411, P.R. China
| | - Bin Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 860411, P.R. China
| | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 860411, P.R. China
| |
Collapse
|
11
|
Berglund R, Cheng Y, Piket E, Adzemovic MZ, Zeitelhofer M, Olsson T, Guerreiro-Cacais AO, Jagodic M. The aging mouse CNS is protected by an autophagy-dependent microglia population promoted by IL-34. Nat Commun 2024; 15:383. [PMID: 38195627 PMCID: PMC10776874 DOI: 10.1038/s41467-023-44556-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
Microglia harness an unutilized health-promoting potential in age-related neurodegenerative and neuroinflammatory diseases, conditions like progressive multiple sclerosis (MS). Our research unveils an microglia population emerging in the cortical brain regions of aging mice, marked by ERK1/2, Akt, and AMPK phosphorylation patterns and a transcriptome indicative of activated autophagy - a process critical for cellular adaptability. By deleting the core autophagy gene Ulk1 in microglia, we reduce this population in the central nervous system of aged mice. Notably, this population is found dependent on IL-34, rather than CSF1, although both are ligands for CSF1R. When aging mice are exposed to autoimmune neuroinflammation, the loss of autophagy-dependent microglia leads to neural and glial cell death and increased mortality. Conversely, microglial expansion mediated by IL-34 exhibits a protective effect. These findings shed light on an autophagy-dependent neuroprotective microglia population as a potential target for treating age-related neuroinflammatory conditions, including progressive MS.
Collapse
Affiliation(s)
- Rasmus Berglund
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| | - Yufei Cheng
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Eliane Piket
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Milena Z Adzemovic
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Manuel Zeitelhofer
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, 171 65, Solna, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Andre Ortlieb Guerreiro-Cacais
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 171 76, Stockholm, Sweden
| |
Collapse
|
12
|
Zheng A, Xu Y, Cen N, Wu B. A Lower IL-34 Expression Is Associated with Non-Healing Diabetic Foot Ulcers. Comb Chem High Throughput Screen 2024; 27:1533-1543. [PMID: 37888825 DOI: 10.2174/0113862073273222231005065757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND The non-healing of diabetic foot ulcers (DFU) is a major cause of high disability, morbidity, and mortality. Thus, new therapeutic targets and methods to help healing in patients with DFUs are major research hotspots. OBJECTIVE This study examined the molecular differences between healing and non-healing DFUs to identify genes associated with DFU healing. METHODS Differentially expressed genes (DEGs) were identified by bioinformatics. Samples were collected from patients with healing (n=10) and non-healing (n=10) DFUs from September 2021 to September 2022. Interleukin (IL)-34 expression was measured by ELISA and qRT-PCT. The fibroblasts from healing and non-healing DFU were divided according to their gene signatures and subdivided based on their gene expression profile differences. RESULTS A comparison of fibroblast subpopulation characteristics revealed that the proportion of subpopulation 4 was significantly higher in non-healing DFUs than in healing DFUs. Subpopulation 4 had 254 upregulated genes and 2402 downregulated genes in the non-healing compared with the healing DFUs. The DEGs were involved in several biological functions, including cytokine activity, receptor-ligand activity, signaling receptor activator activity, and receptor regulator activity. IL-34 was downregulated in non-healing compared with healing DFUs, suggesting a possible role of IL-34 in DFU healing. In the clinical specimens, IL-34 was significantly downregulated in non-healing DFUs, consistent with the bioinformatics results. CONCLUSION IL-34 expression is downregulated in non-healing DFU. IL-34 appears to be involved in DFU healing, but the exact causal relationship remains to be explored.
Collapse
Affiliation(s)
- Aitian Zheng
- Jinan University, Guangzhou, 511486, China
- Department of Endocrinology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Yuanyuan Xu
- Department of Endocrinology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Nimiao Cen
- Department of Endocrinology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Biaoliang Wu
- Jinan University, Guangzhou, 511486, China
- Department of Endocrinology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| |
Collapse
|
13
|
Meng Q, Wang Y, Yuan T, Su Y, Li Z, Sun S. Osteoclast: The novel whistleblower in osteonecrosis of the femoral head. GENE REPORTS 2023; 33:101833. [DOI: 10.1016/j.genrep.2023.101833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Jordan CKI, Brown RL, Larkinson MLY, Sequeira RP, Edwards AM, Clarke TB. Symbiotic Firmicutes establish mutualism with the host via innate tolerance and resistance to control systemic immunity. Cell Host Microbe 2023; 31:1433-1449.e9. [PMID: 37582375 DOI: 10.1016/j.chom.2023.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023]
Abstract
The intestinal microbiota regulates immunity across organ systems. Which symbionts control systemic immunity, the mechanisms they use, and how they avoid widespread inflammatory damage are unclear. We uncover host tolerance and resistance mechanisms that allow Firmicutes from the human microbiota to control systemic immunity without inducing immunopathology. Intestinal processing releases Firmicute glycoconjugates that disseminate, resulting in release of cytokine IL-34 that stimulates macrophages and enhances defenses against pneumonia, sepsis, and meningitis. Despite systemic penetration of Firmicutes, immune homeostasis is maintained through feedback control whereby IL-34-mediated mTORC1 activation in macrophages clears polymeric glycoconjugates from peripheral tissues. Smaller glycoconjugates evading this clearance mechanism are tolerated through sequestration by albumin, which acts as an inflammatory buffer constraining their immunological impact. Without these resistance and tolerance mechanisms, Firmicutes drive catastrophic organ damage and cachexia via IL-1β. This reveals how Firmicutes are safely assimilated into systemic immunity to protect against infection without threatening host viability.
Collapse
Affiliation(s)
- Christine K I Jordan
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Rebecca L Brown
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Max L Y Larkinson
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Richard P Sequeira
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Andrew M Edwards
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Thomas B Clarke
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
15
|
Kim J, Lee J, Li X, Kunjravia N, Rambhia D, Cueto I, Kim K, Chaparala V, Ko Y, Garcet S, Zhou W, Cao J, Krueger JG. Multi-omics segregate different transcriptomic impacts of anti-IL-17A blockade on type 17 T-cells and regulatory immune cells in psoriasis skin. Front Immunol 2023; 14:1250504. [PMID: 37781383 PMCID: PMC10536146 DOI: 10.3389/fimmu.2023.1250504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Durable psoriasis improvement has been reported in a subset of psoriasis patients after treatment withdrawal of biologics blocking IL-23/Type 17 T-cell (T17) autoimmune axis. However, it is not well understood if systemic blockade of the IL-23/T17 axis promotes immune tolerance in psoriasis skin. The purpose of the study was to find translational evidence that systemic IL-17A blockade promotes regulatory transcriptome modification in human psoriasis skin immune cell subsets. We analyzed human psoriasis lesional skin 6 mm punch biopsy tissues before and after systemic IL-17A blockade using the muti-genomics approach integrating immune cell-enriched scRNA-seq (n = 18), microarray (n = 61), and immunohistochemistry (n = 61) with repository normal control skin immune cell-enriched scRNA-seq (n = 10) and microarray (n = 8) data. For the T17 axis transcriptome, systemic IL-17A blockade depleted 100% of IL17A + T-cells and 95% of IL17F + T-cells in psoriasis skin. The expression of IL23A in DC subsets was also downregulated by IL-17A blockade. The expression of IL-17-driven inflammatory mediators (IL36G, S100A8, DEFB4A, and DEFB4B) in suprabasal keratinocytes was correlated with psoriasis severity and was downregulated by IL-17A blockade. For the regulatory DC transcriptome, the proportion of regulatory semimature DCs expressing regulatory DC markers of BDCA-3 (THBD) and DCIR (CLEC4A) was increased in posttreatment psoriasis lesional skin compared to pretreatment psoriasis lesional skin. In addition, IL-17A blockade induced higher expression of CD1C and CD14, which are markers of CD1c+ CD14+ dendritic cell (DC) subset that suppresses antigen-specific T-cell responses, in posttreatment regulatory semimature DCs compared to pretreatment regulatory semimature DCs. In conclusion, systemic IL-17A inhibition not only blocks the entire IL-23/T17 cell axis but also promotes regulatory gene expression in regulatory DCs in human psoriasis skin.
Collapse
Affiliation(s)
- Jaehwan Kim
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
- Dermatology Section, Veterans Affairs Northern California Health Care System, Mather, CA, United States
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States
| | - Jongmi Lee
- Dermatology Section, Veterans Affairs Northern California Health Care System, Mather, CA, United States
| | - Xuan Li
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Norma Kunjravia
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Darshna Rambhia
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Inna Cueto
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Katherine Kim
- Dermatology Section, Veterans Affairs Northern California Health Care System, Mather, CA, United States
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States
| | - Vasuma Chaparala
- Dermatology Section, Veterans Affairs Northern California Health Care System, Mather, CA, United States
| | - Younhee Ko
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Seoul, Republic of Korea
| | - Sandra Garcet
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
- Research Bioinformatics, Center for Clinical and Translational Science, The Rockefeller University, New York, NY, United States
| | - Wei Zhou
- Laboratory of Single-cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, United States
| | - Junyue Cao
- Laboratory of Single-cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, United States
| | - James G. Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| |
Collapse
|
16
|
Zheng H, Cheng X, Jin L, Shan S, Yang J, Zhou J. Recent advances in strategies to target the behavior of macrophages in wound healing. Biomed Pharmacother 2023; 165:115199. [PMID: 37517288 DOI: 10.1016/j.biopha.2023.115199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
Chronic wounds and scar formation are widespread due to limited suitable remedies. The macrophage is a crucial regulator in wound healing, controlling the onset and termination of inflammation and regulating other processes related to wound healing. The current breakthroughs in developing new medications and drug delivery methods have enabled the accurate targeting of macrophages in oncology and rheumatic disease therapies through clinical trials. These successes have cleared the way to utilize drugs targeting macrophages in various disorders. This review thus summarizes macrophage involvement in normal and pathologic wound healing. It further details the targets available for macrophage intervention and therapeutic strategies for targeting the behavior of macrophages in tissue repair and regeneration.
Collapse
Affiliation(s)
- Hongkun Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xinwei Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lu Jin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Jia Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
Chou LF, Yang HY, Hung CC, Tian YC, Hsu SH, Yang CW. Leptospirosis kidney disease: Evolution from acute to chronic kidney disease. Biomed J 2023; 46:100595. [PMID: 37142093 PMCID: PMC10345244 DOI: 10.1016/j.bj.2023.100595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023] Open
Abstract
Leptospirosis is a neglected bacterial disease caused by leptospiral infection that carries a substantial mortality risk in severe cases. Research has shown that acute, chronic, and asymptomatic leptospiral infections are closely linked to acute and chronic kidney disease (CKD) and renal fibrosis. Leptospires affect renal function by infiltrating kidney cells via the renal tubules and interstitium and surviving in the kidney by circumventing the immune system. The most well-known pathogenic molecular mechanism of renal tubular damage caused by leptospiral infection is the direct binding of the bacterial outer membrane protein LipL32 to toll-like receptor-2 expressed in renal tubular epithelial cells (TECs) to induce intracellular inflammatory signaling pathways. These pathways include the production of tumor necrosis factor (TNF)-α and nuclear factor kappa activation, resulting in acute and chronic leptospirosis-related kidney injury. Few studies have investigated the relationship between acute and chronic renal diseases and leptospirosis and further evidence is necessary. In this review, we intend to discuss the roles of acute kidney injury (AKI) to/on CKD in leptospirosis. This study reviews the molecular pathways underlying the pathogenesis of leptospirosis kidney disease, which will assist in concentrating on potential future research directions.
Collapse
Affiliation(s)
- Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan; Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, Department of Biochemistry, Chang Gung University, Taoyuan, Taiwan
| | - Huang-Yu Yang
- Kidney Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Chieh Hung
- Kidney Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Chung Tian
- Kidney Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shen-Hsing Hsu
- Kidney Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
18
|
Oldham JM, Johnson KW, Albers GJ, Calamita E, Mah J, Ghai P, Hewitt RJ, Maher TM, Molyneaux PL, Huang M, Byrne AJ. Airway soluble CSF1R predicts progression in patients with idiopathic pulmonary fibrosis. ERJ Open Res 2023; 9:00690-2022. [PMID: 37465557 PMCID: PMC10350676 DOI: 10.1183/23120541.00690-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/03/2023] [Indexed: 07/20/2023] Open
Abstract
This study provides the first evidence for a role of airway sCSF1R in IPF https://bit.ly/3KTBrCA.
Collapse
Affiliation(s)
- Justin M. Oldham
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Gesa J. Albers
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Emily Calamita
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jordina Mah
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Poonam Ghai
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Richard J. Hewitt
- National Heart and Lung Institute, Imperial College London, London, UK
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Toby M. Maher
- National Heart and Lung Institute, Imperial College London, London, UK
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Philip L. Molyneaux
- National Heart and Lung Institute, Imperial College London, London, UK
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Adam J. Byrne
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
19
|
Roy N, Park CY. IL-34: a novel differentiation therapy for AML? Blood 2023; 141:3130-3132. [PMID: 37383007 DOI: 10.1182/blood.2023020525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Affiliation(s)
- Nainita Roy
- New York University Grossman School of Medicine
| | | |
Collapse
|
20
|
Cansever D, Petrova E, Krishnarajah S, Mussak C, Welsh CA, Mildenberger W, Mulder K, Kreiner V, Roussel E, Stifter SA, Andreadou M, Zwicky P, Jurado NP, Rehrauer H, Tan G, Liu Z, Blériot C, Ronchi F, Macpherson AJ, Ginhoux F, Natalucci G, Becher B, Greter M. Lactation-associated macrophages exist in murine mammary tissue and human milk. Nat Immunol 2023:10.1038/s41590-023-01530-0. [PMID: 37337103 PMCID: PMC10307629 DOI: 10.1038/s41590-023-01530-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/08/2023] [Indexed: 06/21/2023]
Abstract
Macrophages are involved in immune defense, organogenesis and tissue homeostasis. Macrophages contribute to the different phases of mammary gland remodeling during development, pregnancy and involution postlactation. Less is known about the dynamics of mammary gland macrophages in the lactation stage. Here, we describe a macrophage population present during lactation in mice. By multiparameter flow cytometry and single-cell RNA sequencing, we identified a lactation-induced CD11c+CX3CR1+Dectin-1+ macrophage population (liMac) that was distinct from the two resident F4/80hi and F4/80lo macrophage subsets present pregestationally. LiMacs were predominantly monocyte-derived and expanded by proliferation in situ concomitant with nursing. LiMacs developed independently of IL-34, but required CSF-1 signaling and were partly microbiota-dependent. Locally, they resided adjacent to the basal cells of the alveoli and extravasated into the milk. We found several macrophage subsets in human milk that resembled liMacs. Collectively, these findings reveal the emergence of unique macrophages in the mammary gland and milk during lactation.
Collapse
Affiliation(s)
- Dilay Cansever
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Roche, Basel, Switzerland
| | - Ekaterina Petrova
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Caroline Mussak
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Christina A Welsh
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Wiebke Mildenberger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Kevin Mulder
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Université Paris-Saclay, Ile-de-France, France
| | - Victor Kreiner
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Elsa Roussel
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sebastian A Stifter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Myrto Andreadou
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Pascale Zwicky
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Ge Tan
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Camille Blériot
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut Necker des Enfants Malades, CNRS, Paris, France
| | - Francesca Ronchi
- University Clinic for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andrew J Macpherson
- University Clinic for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Giancarlo Natalucci
- Larsson-Rosenquist Center for Neurodevelopment, Growth and Nutrition of the Newborn, Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
- Newborn Research, Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
21
|
Alzoubi O, Meyer A, Gonzalez TP, Burgos AC, Sweiss N, Zomorrodi RK, Shahrara S. Significance of IL-34 and SDC-1 in the pathogenesis of RA cells and preclinical models. Clin Immunol 2023; 251:109635. [PMID: 37150238 PMCID: PMC10985830 DOI: 10.1016/j.clim.2023.109635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/22/2023] [Accepted: 03/18/2023] [Indexed: 05/09/2023]
Abstract
IL-34 shares a common receptor with M-CSF, while it can bind to other distinct receptors including protein-tyrosine phosphatase zeta (PTPζ), and syndecan1 (SDC-1). In physiological conditions, IL-34 has a critical role in the maintenance and development of Langerhans and microglial cells in part through PTPζ ligation. Conversely, in autoimmune diseases such as rheumatoid arthritis (RA), SDC-1-induced phosphorylation of M-CSFR was responsible for the pathological effect of IL-34 in patient cells and/or preclinical models. Intriguingly, enrichment of IL-34 is strongly linked to rheumatoid factor (RF), disease activity score (DAS)28, erythrocyte sedimentation rate (ESR), c-reactive protein (CRP), and radiographic progression. In parallel, IL-34-induced naïve cell reprogramming into glycolytic RA CD14+CD86+GLUT1+ macrophage was dysregulated via M-CSFR or SDC-1 antibody therapy. Moreover, the inflammatory and erosive imprints of IL-34 arthritic mice were mitigated by glucose uptake inhibition and SDC-1, or RAG deficiency through nullifying macrophage metabolic rewiring and their ability to advance Th1/Th17 cell polarization. Consistently, IL-34-/- and SDC-1-/- mice could effectively impair CIA joint inflammation, osteoclast formation, and neovascularization by restraining monocyte infiltration as well as suppressing the inflammatory macrophage and T effector cell reconfiguration via metabolic deactivation. In conclusion, targeting IL-34/SDC-1 signaling, or its interconnected metabolites can uniquely intercept the crosstalk between glycolytic RA myeloid and lymphoid cells and their ability to trigger arthritis.
Collapse
Affiliation(s)
- Osama Alzoubi
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL, USA
| | - Anja Meyer
- Jesse Brown VA Medical Center, Chicago, IL, USA; Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL, USA
| | - Tanya Pulido Gonzalez
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL, USA
| | - Adel C Burgos
- Jesse Brown VA Medical Center, Chicago, IL, USA; Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL, USA
| | - Nadera Sweiss
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL, USA
| | - Ryan K Zomorrodi
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL, USA; Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL, USA.
| |
Collapse
|
22
|
Fujikawa R, Tsuda M. The Functions and Phenotypes of Microglia in Alzheimer's Disease. Cells 2023; 12:cells12081207. [PMID: 37190116 DOI: 10.3390/cells12081207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide, but therapeutic strategies to slow down AD pathology and symptoms have not yet been successful. While attention has been focused on neurodegeneration in AD pathogenesis, recent decades have provided evidence of the importance of microglia, and resident immune cells in the central nervous system. In addition, new technologies, including single-cell RNA sequencing, have revealed heterogeneous cell states of microglia in AD. In this review, we systematically summarize the microglial response to amyloid-β and tau tangles, and the risk factor genes expressed in microglia. Furthermore, we discuss the characteristics of protective microglia that appear during AD pathology and the relationship between AD and microglia-induced inflammation during chronic pain. Understanding the diverse roles of microglia will help identify new therapeutic strategies for AD.
Collapse
Affiliation(s)
- Risako Fujikawa
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Kyushu University Institute for Advanced Study, Fukuoka 819-0395, Japan
| |
Collapse
|
23
|
Krammer C, Yang B, Reichl S, Besson-Girard S, Ji H, Bolini V, Schulte C, Noels H, Schlepckow K, Jocher G, Werner G, Willem M, El Bounkari O, Kapurniotu A, Gokce O, Weber C, Mohanta S, Bernhagen J. Pathways linking aging and atheroprotection in Mif-deficient atherosclerotic mice. FASEB J 2023; 37:e22752. [PMID: 36794636 DOI: 10.1096/fj.202200056r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 02/17/2023]
Abstract
Atherosclerosis is a chronic inflammatory condition of our arteries and the main underlying pathology of myocardial infarction and stroke. The pathogenesis is age-dependent, but the links between disease progression, age, and atherogenic cytokines and chemokines are incompletely understood. Here, we studied the chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) in atherogenic Apoe-/- mice across different stages of aging and cholesterol-rich high-fat diet (HFD). MIF promotes atherosclerosis by mediating leukocyte recruitment, lesional inflammation, and suppressing atheroprotective B cells. However, links between MIF and advanced atherosclerosis across aging have not been systematically explored. We compared effects of global Mif-gene deficiency in 30-, 42-, and 48-week-old Apoe-/- mice on HFD for 24, 36, or 42 weeks, respectively, and in 52-week-old mice on a 6-week HFD. Mif-deficient mice exhibited reduced atherosclerotic lesions in the 30/24- and 42/36-week-old groups, but atheroprotection, which in the applied Apoe-/- model was limited to lesions in the brachiocephalic artery and abdominal aorta, was not detected in the 48/42- and 52/6-week-old groups. This suggested that atheroprotection afforded by global Mif-gene deletion differs across aging stages and atherogenic diet duration. To characterize this phenotype and study the underlying mechanisms, we determined immune cells in the periphery and vascular lesions, obtained a multiplex cytokine/chemokine profile, and compared the transcriptome between the age-related phenotypes. We found that Mif deficiency promotes lesional macrophage and T-cell counts in younger but not aged mice, with subgroup analysis pointing toward a role for Trem2+ macrophages. The transcriptomic analysis identified pronounced MIF- and aging-dependent changes in pathways predominantly related to lipid synthesis and metabolism, lipid storage, and brown fat cell differentiation, as well as immunity, and atherosclerosis-relevant enriched genes such as Plin1, Ldlr, Cpne7, or Il34, hinting toward effects on lesional lipids, foamy macrophages, and immune cells. Moreover, Mif-deficient aged mice exhibited a distinct plasma cytokine/chemokine signature consistent with the notion that mediators known to drive inflamm'aging are either not downregulated or even upregulated in Mif-deficient aged mice compared with the corresponding younger ones. Lastly, Mif deficiency favored formation of lymphocyte-rich peri-adventitial leukocyte clusters. While the causative contributions of these mechanistic pillars and their interplay will be subject to future scrutiny, our study suggests that atheroprotection due to global Mif-gene deficiency in atherogenic Apoe-/- mice is reduced upon advanced aging and identifies previously unrecognized cellular and molecular targets that could explain this phenotype shift. These observations enhance our understanding of inflamm'aging and MIF pathways in atherosclerosis and may have implications for translational MIF-directed strategies.
Collapse
Affiliation(s)
- Christine Krammer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Bishan Yang
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Sabrina Reichl
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Simon Besson-Girard
- Systems Neuroscience Laboratory, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Munich, Germany.,Graduate School of Systemic Neurosciences (GSN), LMU Munich, Planegg-Martinsried, Germany
| | - Hao Ji
- Systems Neuroscience Laboratory, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Munich, Germany
| | - Verena Bolini
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Corinna Schulte
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rhenish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rhenish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Kai Schlepckow
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Georg Jocher
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Georg Werner
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Willem
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich (TUM), Munich, Germany
| | - Ozgun Gokce
- Systems Neuroscience Laboratory, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Weber
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute for Cardiovascular Prevention, LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany.,Munich Heart Alliance, Munich, Germany
| | - Sarajo Mohanta
- Institute for Cardiovascular Prevention, LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Munich Heart Alliance, Munich, Germany
| |
Collapse
|
24
|
Zhong L, Lu J, Fang J, Yao L, Yu W, Gui T, Duffy M, Holdreith N, Bautista CA, Huang X, Bandyopadhyay S, Tan K, Chen C, Choi Y, Jiang JX, Yang S, Tong W, Dyment N, Qin L. Csf1 from marrow adipogenic precursors is required for osteoclast formation and hematopoiesis in bone. eLife 2023; 12:e82112. [PMID: 36779854 PMCID: PMC10005765 DOI: 10.7554/elife.82112] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/03/2023] [Indexed: 02/14/2023] Open
Abstract
Colony-stimulating factor 1 (Csf1) is an essential growth factor for osteoclast progenitors and an important regulator for bone resorption. It remains elusive which mesenchymal cells synthesize Csf1 to stimulate osteoclastogenesis. We recently identified a novel mesenchymal cell population, marrow adipogenic lineage precursors (MALPs), in bone. Compared to other mesenchymal subpopulations, MALPs expressed Csf1 at a much higher level and this expression was further increased during aging. To investigate its role, we constructed MALP-deficient Csf1 CKO mice using AdipoqCre. These mice had increased femoral trabecular bone mass, but their cortical bone appeared normal. In comparison, depletion of Csf1 in the entire mesenchymal lineage using Prrx1Cre led to a more striking high bone mass phenotype, suggesting that additional mesenchymal subpopulations secrete Csf1. TRAP staining revealed diminished osteoclasts in the femoral secondary spongiosa region of Csf1 CKOAdipoq mice, but not at the chondral-osseous junction nor at the endosteal surface of cortical bone. Moreover, Csf1 CKOAdipoq mice were resistant to LPS-induced calvarial osteolysis. Bone marrow cellularity, hematopoietic progenitors, and macrophages were also reduced in these mice. Taken together, our studies demonstrate that MALPs synthesize Csf1 to control bone remodeling and hematopoiesis.
Collapse
Affiliation(s)
- Leilei Zhong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jiawei Lu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jiankang Fang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Wei Yu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Tao Gui
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital, Jinan UniversityGuangzhouChina
| | - Michael Duffy
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Nicholas Holdreith
- Division of Hematology, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pediatrics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Catherine A Bautista
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Xiaobin Huang
- Department of Oral and Maxillofacial Surgery/Pharmacology, School of Dental Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Shovik Bandyopadhyay
- Graduate Group in Cell and Molecular Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Medical Scientist Training Program, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Kai Tan
- Department of Pediatrics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Center for Childhood Cancer Research, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery/Pharmacology, School of Dental Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Shuying Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Wei Tong
- Division of Hematology, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pediatrics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Nathanial Dyment
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
25
|
Inoue K, Qin Y, Xia Y, Han J, Yuan R, Sun J, Xu R, Jiang JX, Greenblatt MB, Zhao B. Bone marrow Adipoq-lineage progenitors are a major cellular source of M-CSF that dominates bone marrow macrophage development, osteoclastogenesis, and bone mass. eLife 2023; 12:e82118. [PMID: 36779851 PMCID: PMC10005769 DOI: 10.7554/elife.82118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 02/12/2023] [Indexed: 02/14/2023] Open
Abstract
M-CSF is a critical growth factor for myeloid lineage cells, including monocytes, macrophages, and osteoclasts. Tissue-resident macrophages in most organs rely on local M-CSF. However, it is unclear what specific cells in the bone marrow produce M-CSF to maintain myeloid homeostasis. Here, we found that Adipoq-lineage progenitors but not mature adipocytes in bone marrow or in peripheral adipose tissue, are a major cellular source of M-CSF, with these Adipoq-lineage progenitors producing M-CSF at levels much higher than those produced by osteoblast lineage cells. The Adipoq-lineage progenitors with high CSF1 expression also exist in human bone marrow. Deficiency of M-CSF in bone marrow Adipoq-lineage progenitors drastically reduces the generation of bone marrow macrophages and osteoclasts, leading to severe osteopetrosis in mice. Furthermore, the osteoporosis in ovariectomized mice can be significantly alleviated by the absence of M-CSF in bone marrow Adipoq-lineage progenitors. Our findings identify bone marrow Adipoq-lineage progenitors as a major cellular source of M-CSF in bone marrow and reveal their crucial contribution to bone marrow macrophage development, osteoclastogenesis, bone homeostasis, and pathological bone loss.
Collapse
Affiliation(s)
- Kazuki Inoue
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Yongli Qin
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Yuhan Xia
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Jie Han
- The first Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen UniversityXiamenChina
| | - Ruoxi Yuan
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Jun Sun
- Pathology and Laboratory Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Ren Xu
- The first Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen UniversityXiamenChina
| | - Jean X Jiang
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Matthew B Greenblatt
- Pathology and Laboratory Medicine, Weill Cornell Medical CollegeNew YorkUnited States
- Research Institute, Hospital for Special SurgeryNew YorkUnited States
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
- Graduate Program in Cell and Development Biology, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| |
Collapse
|
26
|
The proteome of hand eczema assessed by tape stripping. J Invest Dermatol 2023:S0022-202X(23)00071-4. [PMID: 36773646 DOI: 10.1016/j.jid.2022.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 02/11/2023]
Abstract
Hand eczema (HE) is a prevalent skin disease. However, classification of HE into different subtypes remains challenging. Limited number of prior studies have employed invasive biopsy-based strategies; yet, studies of the HE proteome using non-invasive tape stripping methodology have not been reported. In this study, we wanted to assess whether global proteomic analysis of skin tape strip samples can be used for sub-classification of HE patients. Tape strips were collected from patients with HE and healthy skin. Liquid chromatography-mass spectrometry (LC/MS) proteomics was performed, and the global protein expression was analyzed. We identified 2,919 proteins in stratum corneum-derived skin cells from tape strip samples. Compared to healthy skin, the lesional samples from HE patients exhibited increased expression of immune-related markers and a decreased expression of structural barrier proteins. The difference between HE subtypes was restricted to the lesional skin areas, and included an increased expression of skin barrier-related proteins independently of the concurrent AD. In conclusion we found, that the non-invasive tape strip method used in combination with LC/MS proteomics can be used for analysis of skin protein expression in HE patients. Thus, the method shows potential for assessing the proteomic differences between subtypes of HE, and biomarker discovery.
Collapse
|
27
|
Monteleone G, Franzè E, Maresca C, Colella M, Pacifico T, Stolfi C. Targeted Therapy of Interleukin-34 as a Promising Approach to Overcome Cancer Therapy Resistance. Cancers (Basel) 2023; 15:cancers15030971. [PMID: 36765929 PMCID: PMC9913481 DOI: 10.3390/cancers15030971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Chemotherapy and immunotherapy have markedly improved the management of several malignancies. However, not all cancer patients respond primarily to such therapies, and others can become resistant during treatment. Thus, identification of the factors/mechanisms underlying cancer resistance to such treatments could help develop novel effective therapeutic compounds. Tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs) are major components of the suppressive tumor microenvironment and are critical drivers of immunosuppression, creating a tumor-promoting and drug-resistant niche. In this regard, therapeutic strategies to tackle immunosuppressive cells are an interesting option to increase anti-tumor immune responses and overcome the occurrence of drug resistance. Accumulating evidence indicates that interleukin-34 (IL-34), a cytokine produced by cancer cells, and/or TAMs act as a linker between induction of a tumor-associated immunosuppressive microenvironment and drug resistance. In this article, we review the current data supporting the role of IL-34 in the differentiation/function of immune suppressive cells and, hence, in the mechanisms leading to therapeutic resistance in various cancers.
Collapse
Affiliation(s)
- Giovanni Monteleone
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Gastroenterology Unit, Policlinico Universitario Tor Vergata, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-06-20903702; Fax: +39-06-72596158
| | - Eleonora Franzè
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Claudia Maresca
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Marco Colella
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Teresa Pacifico
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
28
|
Lin M, Liu X, Zhang X, Wang H, Fang Y, Wu X, Yin A, Yang W, Zhang D, Li M, Zhang L, Ying S. Sp1 Controls the Basal Level of Interleukin-34 Transcription. Immunol Invest 2023; 52:224-240. [PMID: 36562687 DOI: 10.1080/08820139.2022.2157283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Interleukin-34 (IL-34) is a cytokine that plays important roles at steady state and in diseases. The induced or inhibited expression of IL-34 by stimuli has been deeply investigated. However, the regulation of IL-34 basal expression is largely unknown. The aim of this study is to investigate whether IL-34 expression is regulated by a general transcription factor Specificity Protein 1 (Sp1) at transcription level. By using bioinformatic software, four putative Sp1-binding sites overlapping GC boxes were found in the core promoter region of IL-34. Alignment of the core promoter sequences of mammalian IL-34 showed GC box-C (-62/-57) and D (-11/-6) were conserved in some mammals. Luciferase assay results showed that only deletion of GC box-C (-62/-57) significantly reduced luciferase activities of IL-34 core promoter in SH-SY5Y cells. By using electrophoretic mobility shift assay (EMSA), it was found that Sp1 specifically interacted with GC box-C sequence CCCGCC (-62/-57) in the core promoter of IL-34. By using chromatin immunoprecipitation (ChIP), it was discovered that Sp1 bound to the core promoter of IL-34 in living cells. In addition, silencing of Sp1 expression by its specific siRNA reduced IL-34 mRNA and protein levels significantly in SH-SY5Y cells. Likewise, IL-34 expression was inhibited in a dose-dependent manner by a Sp1 inhibitor Plicamycin. Furthermore, silencing of Sp1 also downregulated mRNA and protein expression of IL-34 in GES-1 and 293T cell lines, suggesting that IL-34 transcription regulated by Sp1 was not cell-type specific. Taken together, these results indicate that Sp1 controls the basal level of IL-34 transcription.
Collapse
Affiliation(s)
- Minggui Lin
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Xingyun Liu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Xinhui Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Huimin Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Yu Fang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Xiaoting Wu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Anqi Yin
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Wanqing Yang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Dong Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Miaomiao Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Ling Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| |
Collapse
|
29
|
Kim J, Lee J, Hawkes JE, Li X, Kunjravia N, Rambhia D, Cueto I, Moreno A, Hur H, Garcet S, Zhou W, Cao J, Krueger JG. Secukinumab improves mild-to-moderate psoriasis: A randomized, placebo-controlled exploratory clinical trial. J Am Acad Dermatol 2023; 88:428-430. [PMID: 35551962 PMCID: PMC11314355 DOI: 10.1016/j.jaad.2022.04.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 01/17/2023]
Affiliation(s)
- Jaehwan Kim
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York; Department of Dermatology, University of California, Davis, Sacramento, California; Dermatology Section, Veterans Affairs Northern California Health Care System, Mather, California.
| | - Jongmi Lee
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Jason E Hawkes
- Department of Dermatology, University of California, Davis, Sacramento, California
| | - Xuan Li
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Norma Kunjravia
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Darshna Rambhia
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Inna Cueto
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Ariana Moreno
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Hong Hur
- Research Bioinformatics, Center for Clinical and Translational Science, The Rockefeller University, New York, New York
| | - Sandra Garcet
- Research Bioinformatics, Center for Clinical and Translational Science, The Rockefeller University, New York, New York
| | - Wei Zhou
- Laboratory of Single-cell Genomics and Population Dynamics, The Rockefeller University, New York, New York
| | - Junyue Cao
- Laboratory of Single-cell Genomics and Population Dynamics, The Rockefeller University, New York, New York
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York.
| |
Collapse
|
30
|
Xiang C, Li H, Tang W. Targeting CSF-1R represents an effective strategy in modulating inflammatory diseases. Pharmacol Res 2023; 187:106566. [PMID: 36423789 DOI: 10.1016/j.phrs.2022.106566] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Colony-stimulating factor-1 receptor (CSF-1R), also known as FMS kinase, is a type I single transmembrane protein mainly expressed in myeloid cells, such as monocytes, macrophages, glial cells, and osteoclasts. The endogenous ligands, colony-stimulating factor-1 (CSF-1) and Interleukin-34 (IL-34), activate CSF-1R and downstream signaling pathways including PI3K-AKT, JAK-STATs, and MAPKs, and modulate the proliferation, differentiation, migration, and activation of target immune cells. Over the past decades, the promising therapeutic potential of CSF-1R signaling inhibition has been widely studied for decreasing immune suppression and escape in tumors, owing to depletion and reprogramming of tumor-associated macrophages. In addition, the excessive activation of CSF-1R in inflammatory diseases is consecutively uncovered in recent years, which may result in inflammation in bone, kidney, lung, liver and central nervous system. Agents against CSF-1R signaling have been increasingly investigated in preclinical or clinical studies for inflammatory diseases treatment. However, the pathological mechanism of CSF-1R in inflammation is indistinct and whether CSF-1R signaling can be identified as biomarkers remains controversial. With the background information aforementioned, this review focus on the dialectical roles of CSF-1R and its ligands in regulating innate immune cells and highlights various therapeutic implications of blocking CSF-1R signaling in inflammatory diseases.
Collapse
Affiliation(s)
- Caigui Xiang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Li
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Wei Tang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
Liu ZX, Chen WJ, Wang Y, Chen BQ, Liu YC, Cheng TC, Luo LL, Chen L, Ju LL, Liu Y, Li M, Feng N, Shao JG, Bian ZL. Interleukin-34 deficiency aggravates development of colitis and colitis-associated cancer in mice. World J Gastroenterol 2022; 28:6752-6768. [PMID: 36620338 PMCID: PMC9813936 DOI: 10.3748/wjg.v28.i47.6752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/02/2022] [Accepted: 11/23/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Although expression of interleukin (IL)-34 is upregulated in active ulcerative colitis (UC), the molecular function and underlying mechanism are largely unclear.
AIM To investigate the function of IL-34 in acute colitis, in a wound healing model and in colitis-associated cancer in IL-34-deficient mice.
METHODS Colitis was induced by administration of dextran sodium sulfate (DSS), and carcinogenesis was induced by azoxymethane (AOM). Whether the impact of IL-34 on colitis was dependent on macrophages was validated by depletion of macrophages in a murine model. The association between IL-34 expression and epithelial proliferation was studied in patients with active UC.
RESULTS IL-34 deficiency aggravated murine colitis in acute colitis and in wound healing phase. The effect of IL-34 on experimental colitis was not dependent on macrophage differentiation and polarization. IL-34-deficient mice developed more tumors than wild-type mice following administration of AOM and DSS. No significant difference was shown in degree of cellular differentiation in tumors between wild-type and IL-34-deficient mice. IL-34 was dramatically increased in the active UC patients as previously reported. More importantly, expression of IL-34 was positively correlated with epithelial cell proliferation in patients with UC.
CONCLUSION IL-34 deficiency exacerbates colonic inflammation and accelerates colitis-associated carcinogenesis in mice. It might be served as a potential therapeutic target in UC.
Collapse
Affiliation(s)
- Zhao-Xiu Liu
- Department of Gastroenterology and Hepatology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wei-Jie Chen
- Medical School, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yang Wang
- Medical School, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Bing-Qian Chen
- Medical School, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yi-Cun Liu
- Medical School, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Tiao-Chun Cheng
- Medical School, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Lei-Lei Luo
- Department of Gastroenterology and Hepatology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu Province, China
| | - Lin Chen
- Nantong Institute of Liver Diseases, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu Province, China
| | - Lin-Ling Ju
- Nantong Institute of Liver Diseases, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu Province, China
| | - Yuan Liu
- Department of Gastroenterology and Hepatology, The Sixth People’s Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, China
| | - Ming Li
- Department of Traditional Chinese Medicine, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu Province, China
| | - Nan Feng
- Division of Emergency, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Jian-Guo Shao
- Department of Gastroenterology and Hepatology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu Province, China
| | - Zhao-Lian Bian
- Department of Gastroenterology and Hepatology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu Province, China
| |
Collapse
|
32
|
Hume DA, Batoon L, Sehgal A, Keshvari S, Irvine KM. CSF1R as a Therapeutic Target in Bone Diseases: Obvious but Not so Simple. Curr Osteoporos Rep 2022; 20:516-531. [PMID: 36197652 PMCID: PMC9718875 DOI: 10.1007/s11914-022-00757-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW The purpose of the review is to summarize the expression and function of CSF1R and its ligands in bone homeostasis and constraints on therapeutic targeting of this axis. RECENT FINDINGS Bone development and homeostasis depends upon interactions between mesenchymal cells and cells of the mononuclear phagocyte lineage (MPS), macrophages, and osteoclasts (OCL). The homeostatic interaction is mediated in part by the systemic and local production of growth factors, macrophage colony-stimulating factor (CSF1), and interleukin 34 (IL34) that interact with a receptor (CSF1R) expressed exclusively by MPS cells and their progenitors. Loss-of-function mutations in CSF1 or CSF1R lead to loss of OCL and macrophages and dysregulation of postnatal bone development. MPS cells continuously degrade CSF1R ligands via receptor-mediated endocytosis. As a consequence, any local or systemic increase or decrease in macrophage or OCL abundance is rapidly reversible. In principle, both CSF1R agonists and antagonists have potential in bone regenerative medicine but their evaluation in disease models and therapeutic application needs to carefully consider the intrinsic feedback control of MPS biology.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| | - Lena Batoon
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
33
|
Chou EL, Chaffin M, Simonson B, Pirruccello JP, Akkad AD, Nekoui M, Cardenas CLL, Bedi KC, Nash C, Juric D, Stone JR, Isselbacher EM, Margulies KB, Klattenhoff C, Ellinor PT, Lindsay ME. Aortic Cellular Diversity and Quantitative Genome-Wide Association Study Trait Prioritization Through Single-Nuclear RNA Sequencing of the Aneurysmal Human Aorta. Arterioscler Thromb Vasc Biol 2022; 42:1355-1374. [PMID: 36172868 PMCID: PMC9613617 DOI: 10.1161/atvbaha.122.317953] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/16/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mural cells in ascending aortic aneurysms undergo phenotypic changes that promote extracellular matrix destruction and structural weakening. To explore this biology, we analyzed the transcriptional features of thoracic aortic tissue. METHODS Single-nuclear RNA sequencing was performed on 13 samples from human donors, 6 with thoracic aortic aneurysm, and 7 without aneurysm. Individual transcriptomes were then clustered based on transcriptional profiles. Clusters were used for between-disease differential gene expression analyses, subcluster analysis, and analyzed for intersection with genetic aortic trait data. RESULTS We sequenced 71 689 nuclei from human thoracic aortas and identified 14 clusters, aligning with 11 cell types, predominantly vascular smooth muscle cells (VSMCs) consistent with aortic histology. With unbiased methodology, we found 7 vascular smooth muscle cell and 6 fibroblast subclusters. Differentially expressed genes analysis revealed a vascular smooth muscle cell group accounting for the majority of differential gene expression. Fibroblast populations in aneurysm exhibit distinct behavior with almost complete disappearance of quiescent fibroblasts. Differentially expressed genes were used to prioritize genes at aortic diameter and distensibility genome-wide association study loci highlighting the genes JUN, LTBP4 (latent transforming growth factor beta-binding protein 1), and IL34 (interleukin 34) in fibroblasts, ENTPD1, PDLIM5 (PDZ and LIM domain 5), ACTN4 (alpha-actinin-4), and GLRX in vascular smooth muscle cells, as well as LRP1 in macrophage populations. CONCLUSIONS Using nuclear RNA sequencing, we describe the cellular diversity of healthy and aneurysmal human ascending aorta. Sporadic aortic aneurysm is characterized by differential gene expression within known cellular classes rather than by the appearance of novel cellular forms. Single-nuclear RNA sequencing of aortic tissue can be used to prioritize genes at aortic trait loci.
Collapse
Affiliation(s)
- Elizabeth L. Chou
- Division of Vascular and Endovascular Surgery,
Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General
Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
| | - Mark Chaffin
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Precision Cardiology Laboratory, The Broad Institute,
Cambridge, MA, USA 02142
| | - Bridget Simonson
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Precision Cardiology Laboratory, The Broad Institute,
Cambridge, MA, USA 02142
| | - James P. Pirruccello
- Cardiology Division, Massachusetts General Hospital,
Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General
Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Precision Cardiology Laboratory, The Broad Institute,
Cambridge, MA, USA 02142
- Demoulas Center for Cardiac Arrhythmias, Massachusetts
General Hospital, Boston, Massachusetts, USA
| | - Amer-Denis Akkad
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge,
MA, USA 02142
| | - Mahan Nekoui
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts
General Hospital, Boston, Massachusetts, USA
| | - Christian Lacks Lino Cardenas
- Cardiology Division, Massachusetts General Hospital,
Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General
Hospital, Boston, Massachusetts, USA
| | - Kenneth C. Bedi
- Perelman School of Medicine, University of Pennsylvania,
Philadelphia, PA, USA 19104
| | - Craig Nash
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Precision Cardiology Laboratory, The Broad Institute,
Cambridge, MA, USA 02142
| | - Dejan Juric
- Cancer Center, Massachusetts General Hospital, Boston,
Massachusetts, USA
| | - James R. Stone
- Department of Pathology, Massachusetts General
Hospital, Boston, Massachusetts, USA
| | - Eric M. Isselbacher
- Cardiology Division, Massachusetts General Hospital,
Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General
Hospital, Boston, Massachusetts, USA
- Thoracic Aortic Center, Massachusetts General Hospital,
Boston, Massachusetts, USA
| | - Kenneth B. Margulies
- Perelman School of Medicine, University of Pennsylvania,
Philadelphia, PA, USA 19104
| | - Carla Klattenhoff
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge,
MA, USA 02142
| | - Patrick T. Ellinor
- Cardiology Division, Massachusetts General Hospital,
Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General
Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Precision Cardiology Laboratory, The Broad Institute,
Cambridge, MA, USA 02142
- Demoulas Center for Cardiac Arrhythmias, Massachusetts
General Hospital, Boston, Massachusetts, USA
| | - Mark E. Lindsay
- Cardiology Division, Massachusetts General Hospital,
Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General
Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Thoracic Aortic Center, Massachusetts General Hospital,
Boston, Massachusetts, USA
| |
Collapse
|
34
|
Patankar M, Li M, Khalatbari A, Castle JD, Hu L, Zhang C, Shaker A. Inflammatory and Proliferative Pathway Activation in Human Esophageal Myofibroblasts Treated with Acidic Bile Salts. Int J Mol Sci 2022; 23:ijms231810371. [PMID: 36142285 PMCID: PMC9498994 DOI: 10.3390/ijms231810371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Subepithelial human esophageal myofibroblasts (HEMFs) in gastroesophageal reflux disease (GERD) are exposed to luminal contents via impaired squamous epithelium barrier integrity. The supernatant of HEMFs treated with acidic bile salts reflective of in vivo reflux increases squamous epithelial thickness. We aimed to identify the involved mechanisms using an unbiased approach. Acidic-bile-salt-treated primary HEMF cultures (n = 4) were submitted for RNA-Seq and analyzed with Partek Flow followed by Ingenuity Pathway Analysis (IPA). A total of 1165 molecules (579 downregulated, 586 upregulated) were differentially expressed, with most top regulated molecules either extracellular or in the plasma membrane. Increases in HEMF CXCL-8, IL-6, AREG, and EREG mRNA, and protein secretion were confirmed. Top identified canonical pathways were agranulocyte and granulocyte adhesion and diapedesis, PI3K/AKT signaling, CCR5 signaling in macrophages, and the STAT3 pathway. Top diseases and biological functions were cellular growth and development, hematopoiesis, immune cell trafficking, and cell-mediated response. The targets of the top upstream regulator ErbB2 included CXCL-8, IL-6, and AREG and the inhibition of CXCL-8 in the HEMF supernatant decreased squamous epithelial proliferation. Our work shows an inflammatory/immune cell and proliferative pathways activation in HEMFs in the GERD environment and identifies CXCL-8 as a HEMF-derived chemokine with paracrine proliferative effects on squamous epithelium.
Collapse
Affiliation(s)
- Madhura Patankar
- Department of Internal Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Meng Li
- USC Libraries Bioinformatics Services, University of Southern California, Los Angeles, CA 90007, USA
| | - Atousa Khalatbari
- Department of Internal Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Joshua D. Castle
- Department of Internal Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Liping Hu
- Department of Internal Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Chunying Zhang
- Department of Internal Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Anisa Shaker
- Department of Internal Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
- Correspondence: ; Tel.: +1-323-442-2084
| |
Collapse
|
35
|
Hédou J, Cederberg KL, Ambati A, Lin L, Farber N, Dauvilliers Y, Quadri M, Bourgin P, Plazzi G, Andlauer O, Hong SC, Huang YS, Leu-Semenescu S, Arnulf I, Taheri S, Mignot E. Proteomic biomarkers of Kleine-Levin syndrome. Sleep 2022; 45:zsac097. [PMID: 35859339 PMCID: PMC9453623 DOI: 10.1093/sleep/zsac097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 03/21/2022] [Indexed: 07/23/2023] Open
Abstract
STUDY OBJECTIVES Kleine-Levin syndrome (KLS) is characterized by relapsing-remitting episodes of hypersomnia, cognitive impairment, and behavioral disturbances. We quantified cerebrospinal fluid (CSF) and serum proteins in KLS cases and controls. METHODS SomaScan was used to profile 1133 CSF proteins in 30 KLS cases and 134 controls, while 1109 serum proteins were profiled in serum from 26 cases and 65 controls. CSF and serum proteins were both measured in seven cases. Univariate and multivariate analyses were used to find differentially expressed proteins (DEPs). Pathway and tissue enrichment analyses (TEAs) were performed on DEPs. RESULTS Univariate analyses found 28 and 141 proteins differentially expressed in CSF and serum, respectively (false discovery rate <0.1%). Upregulated CSF proteins included IL-34, IL-27, TGF-b, IGF-1, and osteonectin, while DKK4 and vWF were downregulated. Pathway analyses revealed microglial alterations and disrupted blood-brain barrier permeability. Serum profiles show upregulation of Src-family kinases (SFKs), proteins implicated in cellular growth, motility, and activation. TEA analysis of up- and downregulated proteins revealed changes in brain proteins (p < 6 × 10-5), notably from the pons, medulla, and midbrain. A multivariate machine-learning classifier performed robustly, achieving a receiver operating curve area under the curve of 0.90 (95% confidence interval [CI] = 0.78-1.0, p = 0.0006) in CSF and 1.0 (95% CI = 1.0-1.0, p = 0.0002) in serum in validation cohorts, with some commonality across tissues, as the model trained on serum sample also discriminated CSF samples of controls versus KLS cases. CONCLUSIONS Our study identifies proteomic KLS biomarkers with diagnostic potential and provides insight into biological mechanisms that will guide future research in KLS.
Collapse
Affiliation(s)
- Julien Hédou
- Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA, USA
| | - Katie L Cederberg
- Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA, USA
| | - Aditya Ambati
- Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA, USA
| | - Ling Lin
- Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA, USA
| | - Neal Farber
- Kleine-Levin Syndrome Foundation, Boston, MA, USA
| | - Yves Dauvilliers
- National Reference Centre for Orphan Diseases, Narcolepsy-Rare Hypersomnias, Sleep Unit, Department of Neurology, CHU Montpellier, Univ Montpellier, Montpellier, France
- Department of Neurology, Institute for Neurosciences of Montpellier INM, Univ Montpellier, INSERM, Montpellier, France
| | | | - Patrice Bourgin
- Sleep Disorders Center, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna and IRCCS Institute of Neurological Sciences, Bologna, Italy
| | | | - Seung-Chul Hong
- Department of Psychiatry, St. Vincent’s Hospital, Catholic University of Korea, Seoul, South Korea
| | - Yu-Shu Huang
- Department of Child Psychiatry and Sleep Center, Chang Gung Memorial Hospital and University, Taoyuan, Taiwan
| | - Smaranda Leu-Semenescu
- Sleep Disorders, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris-Sorbonne, National Reference Center for Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Paris, France
| | - Isabelle Arnulf
- Sleep Disorders, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris-Sorbonne, National Reference Center for Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Paris, France
- Sorbonne University, Institut Hospitalo-Universitaire, Institut du Cerveau et de la Moelle, Paris, France
| | - Shahrad Taheri
- Department of Medicine and Clinical Research Core, Weill Cornell Medicine—Qatar, Qatar Foundation—Education City, Doha, Qatar
| | - Emmanuel Mignot
- Corresponding author. Emmanuel Mignot, Center for Narcolepsy and Related Disorders, Stanford University, 3165 Porter Drive, Palo Alto, CA 94305, USA.
| |
Collapse
|
36
|
Kim J, Moreno A, Krueger JG. The imbalance between Type 17 T-cells and regulatory immune cell subsets in psoriasis vulgaris. Front Immunol 2022; 13:1005115. [PMID: 36110854 PMCID: PMC9468415 DOI: 10.3389/fimmu.2022.1005115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Psoriasis vulgaris is a common inflammatory disease affecting 7.5 million adults just in the US. Previously, psoriasis immunopathogenesis has been viewed as the imbalance between CD4+ T-helper 17 (Th17) cells and regulatory T-cells (Tregs). However, current paradigms are rapidly evolving as new technologies to study immune cell subsets in the skin have been advanced. For example, recently minted single-cell RNA sequencing technology has provided the opportunity to compare highly differing transcriptomes of Type 17 T-cell (T17 cell) subsets depending on IL-17A vs. IL-17F expression. The expression of regulatory cytokines in T17 cell subsets provided evidence of T-cell plasticity between T17 cells and regulatory T-cells (Tregs) in humans. In addition to Tregs, other types of regulatory cells in the skin have been elucidated, including type 1 regulatory T-cells (Tr1 cells) and regulatory dendritic cells. More recently, investigators are attempting to apply single-cell technologies to clinical trials of biologics to test if monoclonal blockade of pathogenic T-cells will induce expansion of regulatory immune cell subsets involved in skin homeostasis.
Collapse
Affiliation(s)
- Jaehwan Kim
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
- Dermatology Section, Veterans Affairs Northern California Health Care System, Mather, CA, United States
- Department of Dermatology, University of California Davis, Sacramento, CA, United States
- *Correspondence: Jaehwan Kim, ; James G. Krueger,
| | - Ariana Moreno
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - James G. Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
- *Correspondence: Jaehwan Kim, ; James G. Krueger,
| |
Collapse
|
37
|
Mildenberger W, Stifter SA, Greter M. Diversity and function of brain-associated macrophages. Curr Opin Immunol 2022; 76:102181. [DOI: 10.1016/j.coi.2022.102181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/07/2023]
|
38
|
Stables J, Green EK, Sehgal A, Patkar OL, Keshvari S, Taylor I, Ashcroft ME, Grabert K, Wollscheid-Lengeling E, Szymkowiak S, McColl BW, Adamson A, Humphreys NE, Mueller W, Starobova H, Vetter I, Shabestari SK, Blurton-Jones MM, Summers KM, Irvine KM, Pridans C, Hume DA. A kinase-dead Csf1r mutation associated with adult-onset leukoencephalopathy has a dominant inhibitory impact on CSF1R signalling. Development 2022; 149:274819. [PMID: 35333324 PMCID: PMC9002114 DOI: 10.1242/dev.200237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/04/2022] [Indexed: 12/21/2022]
Abstract
Amino acid substitutions in the kinase domain of the human CSF1R gene are associated with autosomal dominant adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). To model the human disease, we created a disease-associated mutation (pGlu631Lys; E631K) in the mouse Csf1r locus. Homozygous mutation (Csf1rE631K/E631K) phenocopied the Csf1r knockout, with prenatal mortality or severe postnatal growth retardation and hydrocephalus. Heterozygous mutation delayed the postnatal expansion of tissue macrophage populations in most organs. Bone marrow cells from Csf1rE631K/+mice were resistant to CSF1 stimulation in vitro, and Csf1rE631K/+ mice were unresponsive to administration of a CSF1-Fc fusion protein, which expanded tissue macrophage populations in controls. In the brain, microglial cell numbers and dendritic arborisation were reduced in Csf1rE631K/+ mice, as in patients with ALSP. The microglial phenotype is the opposite of microgliosis observed in Csf1r+/- mice. However, we found no evidence of brain pathology or impacts on motor function in aged Csf1rE631K/+ mice. We conclude that heterozygous disease-associated CSF1R mutations compromise CSF1R signalling. We speculate that leukoencephalopathy associated with dominant human CSF1R mutations requires an environmental trigger and/or epistatic interaction with common neurodegenerative disease-associated alleles.
Collapse
Affiliation(s)
- Jennifer Stables
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| | - Emma K Green
- Centre for Inflammation Research and Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| | - Omkar L Patkar
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| | - Isis Taylor
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| | - Maisie E Ashcroft
- Centre for Inflammation Research and Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Kathleen Grabert
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Evi Wollscheid-Lengeling
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, Belvaux, L-4401, Luxembourg
| | - Stefan Szymkowiak
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Barry W McColl
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Antony Adamson
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Neil E Humphreys
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Werner Mueller
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Hana Starobova
- Institute for Molecular Biosciences & School of Pharmacy, University of Queensland, Brisbane, Qld 4072, Australia
| | - Irina Vetter
- Institute for Molecular Biosciences & School of Pharmacy, University of Queensland, Brisbane, Qld 4072, Australia
| | | | | | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| | - Clare Pridans
- Centre for Inflammation Research and Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| |
Collapse
|
39
|
Lu F, Leach LL, Gross JM. mTOR activity is essential for retinal pigment epithelium regeneration in zebrafish. PLoS Genet 2022; 18:e1009628. [PMID: 35271573 PMCID: PMC8939802 DOI: 10.1371/journal.pgen.1009628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 03/22/2022] [Accepted: 02/23/2022] [Indexed: 12/30/2022] Open
Abstract
The retinal pigment epithelium (RPE) plays numerous critical roles in maintaining vision and this is underscored by the prevalence of degenerative blinding diseases like age-related macular degeneration (AMD), in which visual impairment is caused by progressive loss of RPE cells. In contrast to mammals, zebrafish possess the ability to intrinsically regenerate a functional RPE layer after severe injury. The molecular underpinnings of this regenerative process remain largely unknown yet hold tremendous potential for developing treatment strategies to stimulate endogenous regeneration in the human eye. In this study, we demonstrate that the mTOR pathway is activated in RPE cells post-genetic ablation. Pharmacological and genetic inhibition of mTOR activity impaired RPE regeneration, while mTOR activation enhanced RPE recovery post-injury, demonstrating that mTOR activity is essential for RPE regeneration in zebrafish. RNA-seq of RPE isolated from mTOR-inhibited larvae identified a number of genes and pathways dependent on mTOR activity at early and late stages of regeneration; amongst these were components of the immune system, which is emerging as a key regulator of regenerative responses across various tissue and model systems. Our results identify crosstalk between macrophages/microglia and the RPE, wherein mTOR activity is required for recruitment of macrophages/microglia to the RPE injury site. Macrophages/microglia then reinforce mTOR activity in regenerating RPE cells. Interestingly, the function of macrophages/microglia in maintaining mTOR activity in the RPE appeared to be inflammation-independent. Taken together, these data identify mTOR activity as a key regulator of RPE regeneration and link the mTOR pathway to immune responses in facilitating RPE regeneration.
Collapse
Affiliation(s)
- Fangfang Lu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lyndsay L. Leach
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jeffrey M. Gross
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
40
|
Hason M, Mikulasova T, Machonova O, Pombinho A, van Ham TJ, Irion U, Nüsslein-Volhard C, Bartunek P, Svoboda O. M-CSFR/CSF1R signaling regulates myeloid fates in zebrafish via distinct action of its receptors and ligands. Blood Adv 2022; 6:1474-1488. [PMID: 34979548 PMCID: PMC8905693 DOI: 10.1182/bloodadvances.2021005459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Macrophage colony-stimulating factor receptor (M-CSFR/CSF1R) signaling is crucial for the differentiation, proliferation, and survival of myeloid cells. The CSF1R pathway is a promising therapeutic target in many human diseases, including neurological disorders and cancer. Zebrafish are commonly used for human disease modeling and preclinical therapeutic screening. Therefore, it is necessary to understand the proper function of cytokine signaling in zebrafish to reliably model human-related diseases. Here, we investigate the roles of zebrafish Csf1rs and their ligands (Csf1a, Csf1b, and Il34) in embryonic and adult myelopoiesis. The proliferative effect of exogenous Csf1a on embryonic macrophages is connected to both receptors, Csf1ra and Csf1rb, however there is no evident effect of Csf1b in zebrafish embryonic myelopoiesis. Furthermore, we uncover an unknown role of Csf1rb in zebrafish granulopoiesis. Deregulation of Csf1rb signaling leads to failure in myeloid differentiation, resulting in neutropenia throughout the whole lifespan. Surprisingly, Il34 signaling through Csf1rb seems to be of high importance as both csf1rbΔ4bp-deficient and il34Δ5bp-deficient zebrafish larvae lack granulocytes. Our single-cell RNA sequencing analysis of adult whole kidney marrow (WKM) hematopoietic cells suggests that csf1rb is expressed mainly by blood and myeloid progenitors, and the expression of csf1ra and csf1rb is nonoverlapping. We point out differentially expressed genes important in hematopoietic cell differentiation and immune response in selected WKM populations. Our findings could improve the understanding of myeloid cell function and lead to the further study of CSF1R pathway deregulation in disease, mostly in cancerogenesis.
Collapse
Affiliation(s)
- Martina Hason
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Tereza Mikulasova
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Olga Machonova
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Antonio Pombinho
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Tjakko J. van Ham
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands; and
| | - Uwe Irion
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Petr Bartunek
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Ondrej Svoboda
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic
| |
Collapse
|
41
|
Wang F, Min HS, Shan H, Yin F, Jiang C, Zong Y, Ma X, Lin Y, Zhou Z, Yu X. IL-34 Aggravates Steroid-Induced Osteonecrosis of the Femoral Head via Promoting Osteoclast Differentiation. Immune Netw 2022; 22:e25. [PMID: 35799706 PMCID: PMC9250868 DOI: 10.4110/in.2022.22.e25] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/02/2022] Open
Abstract
IL-34 can promote osteoclast differentiation and activation, which may contribute to steroid-induced osteonecrosis of the femoral head (ONFH). Animal model was constructed in both BALB/c and IL-34 deficient mice to detect the relative expression of inflammation cytokines. Micro-CT was utilized to reveal the internal structure. In vitro differentiated osteoclast was induced by culturing bone marrow-derived macrophages with IL-34 conditioned medium or M-CSF. The relative expression of pro-inflammation cytokines, osteoclast marker genes, and relevant pathways molecules was detected with quantitative real-time RT-PCR, ELISA, and Western blot. Up-regulated IL-34 expression could be detected in the serum of ONFH patients and femoral heads of ONFH mice. IL-34 deficient mice showed the resistance to ONFH induction with the up-regulated trabecular number, trabecular thickness, bone value fraction, and down-regulated trabecular separation. On the other hand, inflammatory cytokines, such as TNF-α, IFN-γ, IL-6, IL-12, IL-2, and IL-17A, showed diminished expression in IL-34 deficient ONFH induced mice. IL-34 alone or works in coordination with M-CSF to promote osteoclastogenesis and activate ERK, STAT3, and non-canonical NF-κB pathways. These data demonstrate that IL-34 can promote the differentiation of osteoclast through ERK, STAT3, and non-canonical NF-κB pathways to aggravate steroid-induced ONFH, and IL-34 can be considered as a treatment target.
Collapse
Affiliation(s)
- Feng Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Hong Sung Min
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Fuli Yin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Chaolai Jiang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Yang Zong
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Xin Ma
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Yiwei Lin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Zubin Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
42
|
Verde MT, Villanueva-Saz S, Loste A, Marteles D, Pereboom D, Conde T, Fernández A. Comparison of circulating CD4+, CD8+ lymphocytes and cytokine profiles between dogs with atopic dermatitis and healthy dogs. Res Vet Sci 2022; 145:13-20. [DOI: 10.1016/j.rvsc.2022.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 01/03/2023]
|
43
|
Harford DA, Delaney C, O'Callaghan J, Hudson N, Connolly R, Doyle S, Farrell M, Doherty CP, Cahill M, Campbell M. Decreased CSF1R Signaling and the Accumulation of Reticular Pseudo-Drusen? Ophthalmic Surg Lasers Imaging Retina 2021; 52:666-671. [PMID: 34908483 DOI: 10.3928/23258160-20211101-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is caused by dominant-acting mutations in the gene colony-stimulating factor 1 receptor (CSF1R). It is an ultra-rare leukoencephalopathy that involves demyelination of white matter and early-onset dementia. It has been well validated that mutations in the kinase region of the gene cause decreased signaling of the receptor via its two cognate ligands interleukin-34 (IL-34) and colony-stimulating factor-1 (CSF-1). In this article, we report a thorough analysis of retinal integrity in a 48-year-old genetically diagnosed ALSP patient. We show that although the optic nerve, optic chiasm, and optic tracts are relatively preserved, the patient has visual field deficits likely due to optic radiation and/or cortical atrophy. Intriguingly, we report the appearance of inner retinal vascular leakage and the appearance of reticular pseudo-drusen (RPD)-like deposits. We propose that the early stages of RPD accumulation may be associated with an attenuated CSF-1 receptor signaling axis. [Ophthalmic Surg Lasers Imaging Retina. 2021;52:666-671.].
Collapse
|
44
|
Bamias G, Pizarro TT, Cominelli F. Immunological Regulation of Intestinal Fibrosis in Inflammatory Bowel Disease. Inflamm Bowel Dis 2021; 28:337-349. [PMID: 34904152 PMCID: PMC8919810 DOI: 10.1093/ibd/izab251] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 02/06/2023]
Abstract
Intestinal fibrosis is a late-stage phenotype of inflammatory bowel disease (IBD), which underlies most of the long-term complications and surgical interventions in patients, particularly those with Crohn's disease. Despite these issues, antifibrotic therapies are still scarce, mainly due to the current lack of understanding concerning the pathogenetic mechanisms that mediate fibrogenesis in patients with chronic intestinal inflammation. In the current review, we summarize recent evidence regarding the cellular and molecular factors of innate and adaptive immunity that are considered critical for the initiation and amplification of extracellular matrix deposition and stricture formation. We focus on the role of cytokines by dissecting the pro- vs antifibrotic components of the immune response, while taking into consideration their temporal association to the progressive stages of the natural history of IBD. We critically present evidence from animal models of intestinal fibrosis and analyze inflammation-fibrosis interactions that occur under such experimental scenarios. In addition, we comment on recent findings from large-scale, single-cell profiling of fibrosis-relevant populations in IBD patients. Based on such evidence, we propose future potential targets for antifibrotic therapies to treat patients with IBD.
Collapse
Affiliation(s)
- Giorgos Bamias
- Gastrointestinal Unit, Third Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Theresa T Pizarro
- Departments of Pathology and Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Fabio Cominelli
- Departments of Pathology and Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Address correspondence to: Fabio Cominelli, MD, PhD, ()
| |
Collapse
|
45
|
Tuong ZK, Lukowski SW, Nguyen QH, Chandra J, Zhou C, Gillinder K, Bashaw AA, Ferdinand JR, Stewart BJ, Teoh SM, Hanson SJ, Devitt K, Clatworthy MR, Powell JE, Frazer IH. A model of impaired Langerhans cell maturation associated with HPV induced epithelial hyperplasia. iScience 2021; 24:103326. [PMID: 34805788 PMCID: PMC8586807 DOI: 10.1016/j.isci.2021.103326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Langerhans cells (LC) are skin-resident antigen-presenting cells that regulate immune responses to epithelial microorganisms. Human papillomavirus (HPV) infection can promote malignant epithelial transformation. As LCs are considered important for controlling HPV infection, we compared the transcriptome of murine LCs from skin transformed by K14E7 oncoprotein and from healthy skin. We identified transcriptome heterogeneity at the single cell level amongst LCs in normal skin, associated with ontogeny, cell cycle, and maturation. We identified a balanced co-existence of immune-stimulatory and immune-inhibitory LC cell states in normal skin that was significantly disturbed in HPV16 E7-transformed skin. Hyperplastic skin was depleted of immune-stimulatory LCs and enriched for LCs with an immune-inhibitory gene signature, and LC-keratinocyte crosstalk was dysregulated. We identified reduced expression of interleukin (IL)-34, a critical molecule for LC homeostasis. Enrichment of an immune-inhibitory LC gene signature and reduced levels of epithelial IL-34 were also found in human HPV-associated cervical epithelial cancers. Single cell atlas of Langerhans cells in cutaneous skin Stimulatory and inhibitory Langerhans cell states are in balance Inhibitory Langerhans cell states dominate HPV-transformed hyperplastic skin Langerhans cell imbalance is associated with disrupted IL-34 signaling
Collapse
Affiliation(s)
- Zewen K Tuong
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia.,Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Samuel W Lukowski
- Australia Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Quan H Nguyen
- Australia Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Janin Chandra
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Chenhao Zhou
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Kevin Gillinder
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Abate A Bashaw
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - John R Ferdinand
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Siok Min Teoh
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Sarah J Hanson
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Katharina Devitt
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK.,Wellcome Trust Sanger Institute, Hinxton, UK
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
46
|
Ordentlich P. Clinical evaluation of colony-stimulating factor 1 receptor inhibitors. Semin Immunol 2021; 54:101514. [PMID: 34776301 DOI: 10.1016/j.smim.2021.101514] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/23/2021] [Indexed: 02/08/2023]
Abstract
Signaling through colony-stimulating factor 1 receptor (CSF1R) regulates the development, differentiation, and activation of mononuclear phagocytic cells. Inhibition of this pathway provides an opportunity for therapeutic intervention in diseases in which these cells play a pathogenic role, including cancers, inflammation, fibrosis, and others. Multiple monoclonal antibodies and small molecule inhibitors targeting CSF1R or its known ligands CSF1 and IL-34 have been clinically tested and are generally well tolerated with side effects associated with on-target macrophage inhibition or depletion. To date, clinical activity of CSF1R inhibitors has been primarily observed in diffuse-type tenosynovial giant cell tumors, a disease characterized by genetic alterations in CSF1 leading to dysregulated CSF1R signaling. Expanded development into novel indications such as chronic graft vs host disease may provide new opportunities to further explore areas where a role for CSF1R dependent monocytes and macrophages has been established. This review presents key findings from the clinical development of 12 CSF1/CSF1R targeted therapies as monotherapy or in combination with immune checkpoint inhibitors and chemotherapy.
Collapse
|
47
|
Sehgal A, Irvine KM, Hume DA. Functions of macrophage colony-stimulating factor (CSF1) in development, homeostasis, and tissue repair. Semin Immunol 2021; 54:101509. [PMID: 34742624 DOI: 10.1016/j.smim.2021.101509] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022]
Abstract
Macrophage colony-stimulating factor (CSF1) is the primary growth factor required for the control of monocyte and macrophage differentiation, survival, proliferation and renewal. Although the cDNAs encoding multiple isoforms of human CSF1 were cloned in the 1980s, and recombinant proteins were available for testing in humans, CSF1 has not yet found substantial clinical application. Here we present an overview of CSF1 biology, including evolution, regulation and functions of cell surface and secreted isoforms. CSF1 is widely-expressed, primarily by cells of mesenchymal lineages, in all mouse tissues. Cell-specific deletion of a floxed Csf1 allele in mice indicates that local CSF1 production contributes to the maintenance of tissue-specific macrophage populations but is not saturating. CSF1 in the circulation is controlled primarily by receptor-mediated clearance by macrophages in liver and spleen. Administration of recombinant CSF1 to humans or animals leads to monocytosis and expansion of tissue macrophage populations and growth of the liver and spleen. In a wide variety of tissue injury models, CSF1 administration promotes monocyte infiltration, clearance of damaged cells and repair. We suggest that CSF1 has therapeutic potential in regenerative medicine.
Collapse
Affiliation(s)
- Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
48
|
Niedzwiedz-Massey VM, Douglas JC, Rafferty T, Wight PA, Kane CJM, Drew PD. Ethanol modulation of hippocampal neuroinflammation, myelination, and neurodevelopment in a postnatal mouse model of fetal alcohol spectrum disorders. Neurotoxicol Teratol 2021; 87:107015. [PMID: 34256161 PMCID: PMC8440486 DOI: 10.1016/j.ntt.2021.107015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are alarmingly common and result in significant personal and societal loss. Neuropathology of the hippocampus is common in FASD leading to aberrant cognitive function. In the current study, we evaluated the effects of ethanol on the expression of a targeted set of molecules involved in neuroinflammation, myelination, neurotransmission, and neuron function in the developing hippocampus in a postnatal model of FASD. Mice were treated with ethanol from P4-P9, hippocampi were isolated 24 h after the final treatment at P10, and mRNA levels were quantitated by qRT-PCR. We evaluated the effects of ethanol on both pro-inflammatory and anti-inflammatory molecules in the hippocampus and identified novel mechanisms by which ethanol induces neuroinflammation. We further demonstrated that ethanol decreased expression of molecules associated with mature oligodendrocytes and greatly diminished expression of a lacZ reporter driven by the first half of the myelin proteolipid protein (PLP) gene (PLP1). In addition, ethanol caused a decrease in genes expressed in oligodendrocyte progenitor cells (OPCs). Together, these studies suggest ethanol may modulate pathogenesis in the developing hippocampus through effects on cells of the oligodendrocyte lineage, resulting in altered oligodendrogenesis and myelination. We also observed differential expression of molecules important in synaptic plasticity, neurogenesis, and neurotransmission. Collectively, the molecules evaluated in these studies may play a role in ethanol-induced pathology in the developing hippocampus and contribute to cognitive impairment associated with FASD. A better understanding of these molecules and their effects on the developing hippocampus may lead to novel treatment strategies for FASD.
Collapse
Affiliation(s)
- Victoria M Niedzwiedz-Massey
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - James C Douglas
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tonya Rafferty
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Patricia A Wight
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
49
|
da Silva MCM, Gomes GF, de Barros Fernandes H, da Silva AM, Teixeira AL, Moreira FA, de Miranda AS, de Oliveira ACP. Inhibition of CSF1R, a receptor involved in microglia viability, alters behavioral and molecular changes induced by cocaine. Sci Rep 2021; 11:15989. [PMID: 34362959 PMCID: PMC8346567 DOI: 10.1038/s41598-021-95059-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Different data suggest that microglia may participate in the drug addiction process as these cells respond to neurochemical changes induced by the administration of these substances. In order to study the role of microglia in drug abuse, Swiss mice aged 8-9 weeks were treated with the CSF1R inhibitor PLX3397 (40 mg/kg, p.o.) and submitted to behavioral sensitization or conditioned place preference (CPP) induced by cocaine (15 mg/kg, i.p.). Thereafter, brains were used to evaluate the effects of CSF1R inhibition and cocaine administration on morphological, biochemical and molecular changes. CSF1R inhibition attenuated behavioral sensitization, reduced the number of Iba-1+ cells and increased ramification and lengths of the branches in the remaining microglia. Additionally, both cocaine and PLX3397 increased the cell body to total cell size ratio of Iba-1+ cells, as well as CD68+ and GFAP+ stained areas, suggesting an activated pattern of the glial cells. Besides, CSF1R inhibition increased CX3CL1 levels in the striatum, prefrontal cortex and hippocampus, as well as reduced CX3CR1 expression in the hippocampus. In this region, cocaine also reduced BDNF levels, an effect that was enhanced by CSF1R inhibition. In summary, our results suggest that microglia participate in the behavioral and molecular changes induced by cocaine. This study contributes to the understanding of the role of microglia in cocaine addiction.
Collapse
Affiliation(s)
- Maria Carolina Machado da Silva
- Neuropharmacology Laboratory, Department of Pharmacology, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Giovanni Freitas Gomes
- Neuropharmacology Laboratory, Department of Pharmacology, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Heliana de Barros Fernandes
- Neurobiology Laboratory Conceição Machado, Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Inflammatory Genes, Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Aristóbolo Mendes da Silva
- Laboratory of Inflammatory Genes, Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antônio Lúcio Teixeira
- Department of Psychiatry and Behavioral Science McGovern School, The University of Texas Health Science Center at Houston, Houston, USA
| | - Fabrício A Moreira
- Neuropsychopharmacology Laboratory, Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Aline Silva de Miranda
- Neurobiology Laboratory Conceição Machado, Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antônio Carlos Pinheiro de Oliveira
- Neuropharmacology Laboratory, Department of Pharmacology, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
50
|
Huang X, Li F, Yang T, Li H, Liu T, Wang Y, Xu M, Yan L, Zhang Y, Wang Y, Fu L, Geng D. Increased serum interleukin-34 levels as a novel diagnostic and prognostic biomarker in patients with acute ischemic stroke. J Neuroimmunol 2021; 358:577652. [PMID: 34217885 DOI: 10.1016/j.jneuroim.2021.577652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/05/2021] [Accepted: 06/27/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Recent data reveal that interleukin-34 (IL-34) can drive inflammatory response, thereby participating in the pathogenesis of inflammatory diseases. However, the potential effect of IL-34 in acute ischemic stroke (AIS) remains unknown. The purpose of this study was to explore whether the levels of serum IL-34 were correlated with clinical severity or prognosis in AIS patients. METHODS In this prospective cohort study, serum IL-34 levels were detected in 150 healthy controls and 155 AIS patients. Univariate and multivariate logistic regression analysis were conducted to investigate the effect of IL-34 on the diagnosis and prognosis of AIS. ROC curve was utilized to evaluate predictive values for IL-34. RESULTS Serum IL-34 levels at admission were significantly higher in AIS patients than those in the healthy controls. Univariate and multivariate logistics regression analysis showed that IL-34 was an independent predictor of occurrence and functional outcome of AIS. The ROC curve demonstrated that IL-34 had a good predictive effect on the diagnosis and prognosis of AIS. CONCLUSIONS IL-34 can be used as a novel and independent diagnostic and predicting prognostic biomarker in AIS.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Fengzhan Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Tingting Yang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Hao Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Tan Liu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Yingying Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Minmin Xu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Lisha Yan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Yong Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China.
| | - Yuzhong Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Linlin Fu
- Department of Pathogenic Biology and Lab of Infection and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China.
| |
Collapse
|