1
|
Mitchell SJ, Pardo-Pastor C, Zangle TA, Rosenblatt J. Voltage-dependent volume regulation controls epithelial cell extrusion and morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532421. [PMID: 36993671 PMCID: PMC10054995 DOI: 10.1101/2023.03.13.532421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Epithelial cells work collectively to provide a protective barrier, yet also turn over rapidly by cell death and division. If the number of dying cells does not match those dividing, the barrier would vanish, or tumors can form. Mechanical forces and the stretch-activated ion channel (SAC) Piezo1 link both processes; stretch promotes cell division and crowding triggers cell death by initiating live cell extrusion1,2. However, it was not clear how particular cells within a crowded region are selected for extrusion. Here, we show that individual cells transiently shrink via water loss before they extrude. Artificially inducing cell shrinkage by increasing extracellular osmolarity is sufficient to induce cell extrusion. Pre-extrusion cell shrinkage requires the voltage-gated potassium channels Kv1.1 and Kv1.2 and the chloride channel SWELL1, upstream of Piezo1. Activation of these voltage-gated channels requires the mechano-sensitive Epithelial Sodium Channel, ENaC, acting as the earliest crowd-sensing step. Imaging with a voltage dye indicated that epithelial cells lose membrane potential as they become crowded and smaller, yet those selected for extrusion are markedly more depolarized than their neighbours. Loss of any of these channels in crowded conditions causes epithelial buckling, highlighting an important role for voltage and water regulation in controlling epithelial shape as well as extrusion. Thus, ENaC causes cells with similar membrane potentials to slowly shrink with compression but those with reduced membrane potentials to be eliminated by extrusion, suggesting a chief driver of cell death stems from insufficient energy to maintain cell membrane potential.
Collapse
Affiliation(s)
- Saranne J Mitchell
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, & School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Carlos Pardo-Pastor
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, & School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Thomas A Zangle
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Jody Rosenblatt
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, & School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| |
Collapse
|
2
|
Ehret E, Hummler E. Lessons learned about epithelial sodium channels from transgenic mouse models. Curr Opin Nephrol Hypertens 2022; 31:493-501. [PMID: 35894285 PMCID: PMC10022670 DOI: 10.1097/mnh.0000000000000821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review provides an up-to-date understanding about the regulation of epithelial sodium channel (ENaC) expression and function. In particular, we will focus on its implication in renal Na+ and K+ handling and control of blood pressure using transgenic animal models. RECENT FINDINGS In kidney, the highly amiloride-sensitive ENaC maintains whole body Na+ homeostasis by modulating Na+ transport via epithelia. This classical role is mostly confirmed using genetically engineered animal models. Recently identified key signaling pathways that regulate ENaC expression and function unveiled some nonclassical and unexpected channel regulatory processes. If aberrant, these dysregulated mechanisms may also result in the development of salt-dependent hypertension.The purpose of this review is to highlight the most recent findings in renal ENaC regulation and function, in considering data obtained from animal models. SUMMARY Increased ENaC-mediated Na+ transport is a prerequisite for salt-dependent forms of hypertension. To treat salt-sensitive hypertension it is crucial to fully understand the function and regulation of ENaC.
Collapse
Affiliation(s)
- Elodie Ehret
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne
| | - Edith Hummler
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne
- National Center of Competence in Research, Kidney.CH, Zurich, Switzerland
| |
Collapse
|
3
|
Hollenhorst MI, Kumar P, Zimmer M, Salah A, Maxeiner S, Elhawy MI, Evers SB, Flockerzi V, Gudermann T, Chubanov V, Boehm U, Krasteva-Christ G. Taste Receptor Activation in Tracheal Brush Cells by Denatonium Modulates ENaC Channels via Ca2+, cAMP and ACh. Cells 2022; 11:cells11152411. [PMID: 35954259 PMCID: PMC9367940 DOI: 10.3390/cells11152411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 02/04/2023] Open
Abstract
Mucociliary clearance is a primary defence mechanism of the airways consisting of two components, ciliary beating and transepithelial ion transport (ISC). Specialised chemosensory cholinergic epithelial cells, named brush cells (BC), are involved in regulating various physiological and immunological processes. However, it remains unclear if BC influence ISC. In murine tracheae, denatonium, a taste receptor agonist, reduced basal ISC in a concentration-dependent manner (EC50 397 µM). The inhibition of bitter taste signalling components with gallein (Gβγ subunits), U73122 (phospholipase C), 2-APB (IP3-receptors) or with TPPO (Trpm5, transient receptor potential-melastatin 5 channel) reduced the denatonium effect. Supportively, the ISC was also diminished in Trpm5−/− mice. Mecamylamine (nicotinic acetylcholine receptor, nAChR, inhibitor) and amiloride (epithelial sodium channel, ENaC, antagonist) decreased the denatonium effect. Additionally, the inhibition of Gα subunits (pertussis toxin) reduced the denatonium effect, while an inhibition of phosphodiesterase (IBMX) increased and of adenylate cyclase (forskolin) reversed the denatonium effect. The cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor CFTRinh172 and the KCNQ1 potassium channel antagonist chromanol 293B both reduced the denatonium effect. Thus, denatonium reduces ISC via the canonical bitter taste signalling cascade leading to the Trpm5-dependent nAChR-mediated inhibition of ENaC as well as Gα signalling leading to a reduction in cAMP-dependent ISC. Therefore, BC activation contributes to the regulation of fluid homeostasis.
Collapse
Affiliation(s)
| | - Praveen Kumar
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Maxim Zimmer
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Alaa Salah
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Stephan Maxeiner
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | | | - Saskia B. Evers
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Veit Flockerzi
- Institute for Experimental and Clinical Pharmacology and Toxicology, Centre for Molecular Signalling, Saarland University, 66421 Homburg, Germany
| | - Thomas Gudermann
- Walter-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University and German Centre for Lung Research (DZL), 80366 Munich, Germany
| | - Vladimir Chubanov
- Walter-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University and German Centre for Lung Research (DZL), 80366 Munich, Germany
| | - Ulrich Boehm
- Experimental Pharmacology, Centre for Molecular Signalling, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Gabriela Krasteva-Christ
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
- Correspondence: ; Tel.: +49-6841-16-26101
| |
Collapse
|
4
|
Tomilin VN, Pyrshev K, Stavniichuk A, Hassanzadeh Khayyat N, Ren G, Zaika O, Khedr S, Staruschenko A, Mei FC, Cheng X, Pochynyuk O. Epac1-/- and Epac2-/- mice exhibit deficient epithelial Na+ channel regulation and impaired urinary Na+ conservation. JCI Insight 2021; 7:145653. [PMID: 34914636 PMCID: PMC8855822 DOI: 10.1172/jci.insight.145653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
Exchange proteins directly activated by cAMP (Epacs) are abundantly expressed in the renal tubules. We used genetic and pharmacological tools in combination with balance, electrophysiological, and biochemical approaches to examine the role of Epac1 and Epac2 in renal sodium handling. We demonstrate that Epac1–/– and Epac2–/– mice exhibit a delayed anti-natriuresis to dietary sodium restriction despite augmented aldosterone levels. This was associated with a significantly lower response to the epithelial Na+ channel (ENaC) blocker amiloride, reduced ENaC activity in split-opened collecting ducts, and defective posttranslational processing of α and γENaC subunits in the KO mice fed with a Na+-deficient diet. Concomitant deletion of both isoforms led to a marginally greater natriuresis but further increased aldosterone levels. Epac2 blocker ESI-05 and Epac1&2 blocker ESI-09 decreased ENaC activity in Epac WT mice kept on the Na+-deficient diet but not on the regular diet. ESI-09 injections led to natriuresis in Epac WT mice on the Na+-deficient diet, which was caused by ENaC inhibition. In summary, our results demonstrate similar but nonredundant actions of Epac1 and Epac2 in stimulation of ENaC activity during variations in dietary salt intake. We speculate that inhibition of Epac signaling could be instrumental in treatment of hypertensive states associated with ENaC overactivation.
Collapse
Affiliation(s)
- Victor N Tomilin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, United States of America
| | - Kyrylo Pyrshev
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, United States of America
| | - Anna Stavniichuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, United States of America
| | - Naghmeh Hassanzadeh Khayyat
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, United States of America
| | - Guohui Ren
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, United States of America
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, United States of America
| | - Sherif Khedr
- Department of Physiology, Medical College of Wisconsin, Milwuakee, United States of America
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwuakee, United States of America
| | - Fang C Mei
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, United States of America
| | - Xiaodong Cheng
- The University of Texas Health Science Center at Houston, Houston, United States of America
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, United States of America
| |
Collapse
|
5
|
Mansley MK, Niklas C, Nacken R, Mandery K, Glaeser H, Fromm MF, Korbmacher C, Bertog M. Prostaglandin E2 stimulates the epithelial sodium channel (ENaC) in cultured mouse cortical collecting duct cells in an autocrine manner. J Gen Physiol 2021; 152:151804. [PMID: 32442241 PMCID: PMC7398144 DOI: 10.1085/jgp.201912525] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/30/2020] [Accepted: 04/21/2020] [Indexed: 12/26/2022] Open
Abstract
Prostaglandin E2 (PGE2) is the most abundant prostanoid in the kidney, affecting a wide range of renal functions. Conflicting data have been reported regarding the effects of PGE2 on tubular water and ion transport. The amiloride-sensitive epithelial sodium channel (ENaC) is rate limiting for transepithelial sodium transport in the aldosterone-sensitive distal nephron. The aim of the present study was to explore a potential role of PGE2 in regulating ENaC in cortical collecting duct (CCD) cells. Short-circuit current (ISC) measurements were performed using the murine mCCDcl1 cell line known to express characteristic properties of CCD principal cells and to be responsive to physiological concentrations of aldosterone and vasopressin. PGE2 stimulated amiloride-sensitive ISC via basolateral prostaglandin E receptors type 4 (EP4) with an EC50 of ∼7.1 nM. The rapid stimulatory effect of PGE2 on ISC resembled that of vasopressin. A maximum response was reached within minutes, coinciding with an increased abundance of β-ENaC at the apical plasma membrane and elevated cytosolic cAMP levels. The effects of PGE2 and vasopressin were nonadditive, indicating similar signaling cascades. Exposing mCCDcl1 cells to aldosterone caused a much slower (∼2 h) increase of the amiloride-sensitive ISC. Interestingly, the rapid effect of PGE2 was preserved even after aldosterone stimulation. Furthermore, application of arachidonic acid also increased the amiloride-sensitive ISC involving basolateral EP4 receptors. Exposure to arachidonic acid resulted in elevated PGE2 in the basolateral medium in a cyclooxygenase 1 (COX-1)–dependent manner. These data suggest that in the cortical collecting duct, locally produced and secreted PGE2 can stimulate ENaC-mediated transepithelial sodium transport.
Collapse
Affiliation(s)
- Morag K Mansley
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Niklas
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Regina Nacken
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kathrin Mandery
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Hartmut Glaeser
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Marko Bertog
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Abstract
The Epithelial Na+ Channel, ENaC, comprised of 3 subunits (αβγ, or sometimes δβγENaC), plays a critical role in regulating salt and fluid homeostasis in the body. It regulates fluid reabsorption into the blood stream from the kidney to control blood volume and pressure, fluid absorption in the lung to control alveolar fluid clearance at birth and maintenance of normal airway surface liquid throughout life, and fluid absorption in the distal colon and other epithelial tissues. Moreover, recent studies have also revealed a role for sodium movement via ENaC in nonepithelial cells/tissues, such as endothelial cells in blood vessels and neurons. Over the past 25 years, major advances have been made in our understanding of ENaC structure, function, regulation, and role in human disease. These include the recently solved three-dimensional structure of ENaC, ENaC function in various tissues, and mutations in ENaC that cause a hereditary form of hypertension (Liddle syndrome), salt-wasting hypotension (PHA1), or polymorphism in ENaC that contributes to other diseases (such as cystic fibrosis). Moreover, great strides have been made in deciphering the regulation of ENaC by hormones (e.g., the mineralocorticoid aldosterone, glucocorticoids, vasopressin), ions (e.g., Na+ ), proteins (e.g., the ubiquitin-protein ligase NEDD4-2, the kinases SGK1, AKT, AMPK, WNKs & mTORC2, and proteases), and posttranslational modifications [e.g., (de)ubiquitylation, glycosylation, phosphorylation, acetylation, palmitoylation]. Characterization of ENaC structure, function, regulation, and role in human disease, including using animal models, are described in this article, with a special emphasis on recent advances in the field. © 2021 American Physiological Society. Compr Physiol 11:1-29, 2021.
Collapse
Affiliation(s)
- Daniela Rotin
- The Hospital for Sick Children, and The University of Toronto, Toronto, Canada
| | - Olivier Staub
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Abstract
For decades, recycling of membrane proteins has been represented in figures by arrows between the "endosome" and the plasma membrane, but recently there has been an explosion in the understanding of the mechanisms and protein complexes required to facilitate protein recycling. Here, some key discoveries will be introduced, including assigning function to a number of recently recognized protein complexes and linking their function to protein recycling. Furthermore, the importance of lipid interactions and links to diseases and epithelial polarity will be summarized.
Collapse
Affiliation(s)
- Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Cheung TT, Geda AC, Ware AW, Rasulov SR, Tenci P, Hamilton KL, McDonald FJ. Retromer is involved in epithelial Na+ channel trafficking. Am J Physiol Renal Physiol 2020; 319:F895-F907. [DOI: 10.1152/ajprenal.00198.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The epithelial Na+ channel (ENaC) located at the apical membrane in many epithelia is the rate-limiting step for Na+ reabsorption. Tight regulation of the plasma membrane population of ENaC is required, as hypertension or hypotension may result if too many or too few ENaCs are present. Endocytosed ENaC travels to the early endosome and is then either trafficked to the lysosome for degradation or recycled back to the plasma membrane. Recently, the retromer recycling complex, located at the early endosome, has been implicated in plasma membrane protein recycling pathways. We hypothesized that the retromer is required for recycling of ENaC. Stabilization of retromer function with the retromer stabilizing chaperone R55 increased ENaC current, whereas knockdown or overexpression of individual retromer and associated proteins altered ENaC current and cell surface population of ENaC. KIBRA was identified as an ENaC-binding protein allowing ENaC to link to sorting nexin 4 to alter ENaC trafficking. Knockdown of the retromer-associated cargo-binding sorting nexin 27 protein did not alter ENaC current, whereas CCDC22, a CCC-complex protein, coimmunoprecipitated with ENaC, and CCDC22 knockdown decreased ENaC current and population at the cell surface. Together, our results confirm that retromer and the CCC complex play a role in recycling of ENaC to the plasma membrane.
Collapse
Affiliation(s)
- Tanya T. Cheung
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anna C. Geda
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Adam W. Ware
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sahib R. Rasulov
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Polly Tenci
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kirk L. Hamilton
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Fiona J. McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Reactive species generated by heme impair alveolar epithelial sodium channel function in acute respiratory distress syndrome. Redox Biol 2020; 36:101592. [PMID: 32506040 PMCID: PMC7276446 DOI: 10.1016/j.redox.2020.101592] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
We previously reported that the highly reactive cell-free heme (CFH) is increased in the plasma of patients with chronic lung injury and causes pulmonary edema in animal model of acute respiratory distress syndrome (ARDS) post inhalation of halogen gas. However, the mechanisms by which CFH causes pulmonary edema are unclear. Herein we report for the first time that CFH and chlorinated lipids (formed by the interaction of halogen gas, Cl2, with plasmalogens) are increased in the plasma of patients exposed to Cl2 gas. Ex vivo incubation of red blood cells (RBC) with halogenated lipids caused oxidative damage to RBC cytoskeletal protein spectrin, resulting in hemolysis and release of CFH. Patch clamp and short circuit current measurements revealed that CFH inhibited the activity of amiloride-sensitive epithelial Na+ channel (ENaC) and cation sodium (Na+) channels in mouse alveolar cells and trans-epithelial Na+ transport across human airway cells with EC50 of 125 nM and 500 nM, respectively. Molecular modeling identified 22 putative heme-docking sites on ENaC (energy of binding range: 86-1563 kJ/mol) with at least 2 sites within its narrow transmembrane pore, potentially capable of blocking Na+ transport across the channel. A single intramuscular injection of the heme-scavenging protein, hemopexin (4 μg/kg body weight), one hour post halogen gas exposure, decreased plasma CFH and improved lung ENaC activity in mice. In conclusion, results suggested that CFH mediated inhibition of ENaC activity may be responsible for pulmonary edema post inhalation injury.
Collapse
|
10
|
Marunaka R, Marunaka Y. Interactive Actions of Aldosterone and Insulin on Epithelial Na + Channel Trafficking. Int J Mol Sci 2020; 21:ijms21103407. [PMID: 32408487 PMCID: PMC7279156 DOI: 10.3390/ijms21103407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 11/29/2022] Open
Abstract
Epithelial Na+ channel (ENaC) participates in renal epithelial Na+ reabsorption, controlling blood pressure. Aldosterone and insulin elevate blood pressure by increasing the ENaC-mediated Na+ reabsorption. However, little information is available on the interactive action of aldosterone and insulin on the ENaC-mediated Na+ reabsorption. In the present study, we tried to clarify if insulin would modify the aldosterone action on the ENaC-mediated Na+ reabsorption from a viewpoint of intracellular ENaC trafficking. We measured the ENaC-mediated Na+ transport as short-circuit currents using a four-state mathematical ENaC trafficking model in renal A6 epithelial cells with or without aldosterone treatment under the insulin-stimulated and -unstimulated conditions. We found that: (A) under the insulin-stimulated condition, aldosterone treatment (1 µM for 20 h) significantly elevated the ENaC insertion rate to the apical membrane (kI) 3.3-fold and the ENaC recycling rate (kR) 2.0-fold, but diminished the ENaC degradation rate (kD) 0.7-fold without any significant effect on the ENaC endocytotic rate (kE); (B) under the insulin-unstimulated condition, aldosterone treatment decreased kE 0.5-fold and increased kR 1.4-fold, without any significant effect on kI or kD. Thus, the present study indicates that: (1) insulin masks the well-known inhibitory action of aldosterone on the ENaC endocytotic rate; (2) insulin induces a stimulatory action of aldosterone on ENaC apical insertion and an inhibitory action of aldosterone on ENaC degradation; (3) insulin enhances the aldosterone action on ENaC recycling; (4) insulin has a more effective action on diminution of ENaC endocytosis than aldosterone.
Collapse
Affiliation(s)
- Rie Marunaka
- Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto 604-8472, Japan;
- Okamura Dental Clinic, Chuo-ku, Osaka 541-0041, Japan
| | - Yoshinori Marunaka
- Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto 604-8472, Japan;
- Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
- Correspondence: ; Tel.: +81-75-802-0135
| |
Collapse
|
11
|
Jackson EK, Mi Z, Kleyman TR, Cheng D. 8-Aminoguanine Induces Diuresis, Natriuresis, and Glucosuria by Inhibiting Purine Nucleoside Phosphorylase and Reduces Potassium Excretion by Inhibiting Rac1. J Am Heart Assoc 2019; 7:e010085. [PMID: 30608204 PMCID: PMC6404173 DOI: 10.1161/jaha.118.010085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background 8-Aminoguanosine and 8-aminoguanine are K+-sparing natriuretics that increase glucose excretion. Most effects of 8-aminoguanosine are due to its metabolism to 8-aminoguanine. However, the mechanism by which 8-aminoguanine affects renal function is unknown and is the focus of this investigation. Methods and Results Because 8-aminoguanine has structural similarities with inhibitors of the epithelial sodium channel (ENaC), Na+/H+ exchangers, and adenosine A1 receptors, we examined the effects of 8-aminoguanine on EN aC activity in mouse collecting duct cells, on intracellular pH of human proximal tubular epithelial cells, on responses to a selective A1-receptor agonist in vivo, and on renal excretory function in A1-receptor knockout rats. These experiments showed that 8-aminoguanine did not block EN aC, Na+/H+ exchangers, or A1 receptors. Because Rac1 enhances activity of mineralocorticoid receptors and some guanosine analogues inhibit Rac1, we examined the effects of 8-aminoguanine on Rac1 activity in mouse collecting duct cells. Rac1 activity was significantly inhibited by 8-aminoguanine. Because in vitro 8-aminoguanine is a purine nucleoside phosphorylase ( PNP ase) inhibitor, we examined the effects of a natriuretic dose of 8-aminoguanine on urinary excretion of PNP ase substrates and products. 8-Aminoguanine increased and decreased, respectively, urinary excretion of PNP ase substrates and products. Next we compared in rats the renal effects of intravenous doses of 9-deazaguanine ( PNP ase inhibitor) versus 8-aminoguanine. 8-Aminoguanine and 9-deazaguanine induced similar increases in urinary Na+ and glucose excretion, yet only 8-aminoguanine reduced K+ excretion. Nsc23766 (Rac1 inhibitor) mimicked the effects of 8-aminoguanine on K+ excretion. Conclusions 8-Aminoguanine increases Na+ and glucose excretion by blocking PNP ase and decreases K+ excretion by inhibiting Rac1.
Collapse
Affiliation(s)
- Edwin K Jackson
- 2 Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine Pittsburgh PA
| | - Zaichuan Mi
- 2 Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine Pittsburgh PA
| | - Thomas R Kleyman
- 1 Renal-Electrolyte Division Department of Medicine University of Pittsburgh School of Medicine Pittsburgh PA
| | - Dongmei Cheng
- 2 Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine Pittsburgh PA
| |
Collapse
|
12
|
Zhang X, Ge Y, Bukhari AAS, Zhu Q, Shen Y, Li M, Sun H, Su D, Liang X. Estrogen negatively regulates the renal epithelial sodium channel (ENaC) by promoting Derlin-1 expression and AMPK activation. Exp Mol Med 2019; 51:1-12. [PMID: 31113930 PMCID: PMC6529463 DOI: 10.1038/s12276-019-0253-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022] Open
Abstract
The main functions of the epithelial sodium channel (ENaC) in the kidney distal nephron are mediation of sodium and water balance and stabilization of blood pressure. Estrogen has important effects on sodium and water balance and on premenopausal blood pressure, but its role in the regulation of ENaC function is not fully understood. Female Sprague–Dawley rats were treated with 17β-estradiol for 6 weeks following bilateral ovariectomy. Plasma estrogen, aldosterone, creatinine, and electrolytes were analyzed, and α-ENaC and derlin-1 protein expression in the kidney was determined by immunohistochemistry and western blotting. The expression levels of α-ENaC, derlin-1, AMPK, and related molecules were also examined by western blotting and real-time PCR in cultured mouse renal collecting duct (mpkCCDc14) epithelial cells following estrogen treatment. Immunofluorescence and coimmunoprecipitation were performed to detect α-ENaC binding with derlin-1 and α-ENaC ubiquitination. The results demonstrated that the loss of estrogen elevated systolic blood pressure in ovariectomized (OVX) rats. OVX rat kidneys showed increased α-ENaC expression but decreased derlin-1 expression. In contrast, estrogen treatment decreased α-ENaC expression but increased derlin-1 expression in mpkCCDc14 cells. Moreover, estrogen induced α-ENaC ubiquitination by promoting the interaction of α-ENaC with derlin-1 and evoked phosphorylation of AMPK in mpkCCDc14 cells. Our study indicates that estrogen reduces ENaC expression and blood pressure in OVX rats through derlin-1 upregulation and AMPK activation. Estrogen treatment could prove valuable in tackling high blood pressure (hypertension) in postmenopausal women. Long-term healthy blood pressure is linked to the correct regulation of sodium and water levels in the kidneys. The renal epithelial sodium channel (ENaC) is a cellular membrane channel responsible for mediating sodium reabsorption and fluid balance. Liang and co-workers at Nanjing Medical University in Nanjing, China, conducted experiments on postmenopausal rat models, and found that loss of estrogen elevates systolic blood pressure (the pressure during heart muscle contraction), and that the rats had high levels of ENaC expression. Further investigations showed that estrogen treatment restored blood pressure to normal levels by promoting two key proteins involved in cellular membrane health and energy metabolism. This in turn reinstated normal levels of ENaC breakdown in the kidneys, limiting hypertension.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yamei Ge
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | | | - Qian Zhu
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yachen Shen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Min Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hui Sun
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Dongming Su
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu Province, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, China. .,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
13
|
Kota P, Gentzsch M, Dang YL, Boucher RC, Stutts MJ. The N terminus of α-ENaC mediates ENaC cleavage and activation by furin. J Gen Physiol 2018; 150:1179-1187. [PMID: 29980634 PMCID: PMC6080898 DOI: 10.1085/jgp.201711860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 03/05/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022] Open
Abstract
Epithelial Na+ channels comprise three homologous subunits (α, β, and γ) that are regulated by alternative splicing and proteolytic cleavage. Here, we determine the basis of the reduced Na+ current (INa) that results from expression of a previously identified, naturally occurring splice variant of the α subunit (α-ENaC), in which residues 34-82 are deleted (αΔ34-82). αΔ34-82-ENaC expression with WT β and γ subunits in Xenopus oocytes produces reduced basal INa, which can largely be recovered by exogenous trypsin. With this αΔ34-82-containing ENaC, both α and γ subunits display decreased cleavage fragments, consistent with reduced processing by furin or furin-like convertases. Data using MTSET modification of a cysteine, introduced into the degenerin locus in β-ENaC, suggest that the reduced INa of αΔ34-82-ENaC arises from an increased population of uncleaved, near-silent ENaC, rather than from a reduced open probability spread uniformly across all channels. After treatment with brefeldin A to disrupt anterograde trafficking of channel subunits, INa in oocytes expressing αΔ34-82-ENaC is reestablished more slowly than that in oocytes expressing WT ENaC. Overnight or acute incubation of oocytes expressing WT ENaC in the pore blocker amiloride increases basal ENaC proteolytic stimulation, consistent with relief of Na+ feedback inhibition. These responses are reduced in oocytes expressing αΔ34-82-ENaC. We conclude that the α-ENaC N terminus mediates interactions that govern the delivery of cleaved and uncleaved ENaC populations to the oocyte membrane.
Collapse
Affiliation(s)
- Pradeep Kota
- Marsico Lung Institute, Cystic Fibrosis Center and Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Martina Gentzsch
- Marsico Lung Institute, Cystic Fibrosis Center and Department of Medicine, University of North Carolina, Chapel Hill, NC
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC
| | - Yan L Dang
- Marsico Lung Institute, Cystic Fibrosis Center and Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Richard C Boucher
- Marsico Lung Institute, Cystic Fibrosis Center and Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - M Jackson Stutts
- Marsico Lung Institute, Cystic Fibrosis Center and Department of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
14
|
Abstract
JGP hosts key papers that shaped the epithelial transport field. Epithelia define the boundaries of the body and often transfer solutes and water from outside to inside (absorption) or from inside to outside (secretion). Those processes involve dual plasma membranes with different transport components that interact with each other. Understanding those functions has entailed breaking down the problem to analyze properties of individual membranes (apical vs. basolateral) and individual transport proteins. It also requires understanding of how those components interact and how they are regulated. This article outlines the modern history of this research as reflected by publications in The Journal of General Physiology.
Collapse
Affiliation(s)
- Lawrence G Palmer
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, NY
| |
Collapse
|
15
|
Ernandez T, Udwan K, Chassot A, Martin PY, Feraille E. Uninephrectomy and apical fluid shear stress decrease ENaC abundance in collecting duct principal cells. Am J Physiol Renal Physiol 2017; 314:F763-F772. [PMID: 28877879 DOI: 10.1152/ajprenal.00200.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute nephron reduction such as after living kidney donation may increase the risk of hypertension. Uninephrectomy induces major hemodynamic changes in the remaining kidney, resulting in rapid increase of single-nephron glomerular filtration rate (GFR) and fluid delivery in the distal nephron. Decreased sodium (Na) fractional reabsorption after the distal tubule has been reported after uninephrectomy in animals preserving volume homeostasis. In the present study, we thought to specifically explore the effect of unilateral nephrectomy on epithelial Na channel (ENaC) subunit expression in mice. We show that γ-ENaC subunit surface expression was specifically downregulated after uninephrectomy, whereas the expression of the aldosterone-sensitive α-ENaC and α1-Na-K-ATPase subunits as well as of kidney-specific Na-K-Cl cotransporter isoform and Na-Cl cotransporter were not significantly altered. Because acute nephron reduction induces a rapid increase of single-nephron GFR, resulting in a higher tubular fluid flow, we speculated that local mechanical factors such as fluid shear stress (FSS) were involved in Na reabsorption regulation after uninephrectomy. We further explore such hypothesis in an in vitro model of FSS applied on highly differentiated collecting duct principal cells. We found that FSS specifically downregulates β-ENaC and γ-ENaC subunits at the transcriptional level through an unidentified heat-insensitive paracrine basolateral factor. The primary cilium as a potential mechanosensor was not required. In contrast, protein kinase A and calcium-sensitive cytosolic phospholipase A2 were involved, but we could not demonstrate a role for cyclooxygenase or epoxygenase metabolites.
Collapse
Affiliation(s)
- T Ernandez
- Service of Nephrology, University Hospital of Geneva , Geneva , Switzerland.,Department of Cell Physiology and Metabolism, University Medical Center , Geneva , Switzerland
| | - K Udwan
- Department of Cell Physiology and Metabolism, University Medical Center , Geneva , Switzerland
| | - A Chassot
- Department of Cell Physiology and Metabolism, University Medical Center , Geneva , Switzerland
| | - P-Y Martin
- Service of Nephrology, University Hospital of Geneva , Geneva , Switzerland
| | - E Feraille
- Department of Cell Physiology and Metabolism, University Medical Center , Geneva , Switzerland
| |
Collapse
|
16
|
Al Therwani S, Malmberg MES, Rosenbaek JB, Bech JN, Pedersen EB. Effect of tolvaptan on renal handling of water and sodium, GFR and central hemodynamics in autosomal dominant polycystic kidney disease during inhibition of the nitric oxide system: a randomized, placebo-controlled, double blind, crossover study. BMC Nephrol 2017; 18:268. [PMID: 28810844 PMCID: PMC5558668 DOI: 10.1186/s12882-017-0686-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/07/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Tolvaptan slows progression of autosomal dominant polycystic kidney disease (ADPKD) by antagonizing the vasopressin-cAMP axis. Nitric oxide (NO) stimulates natriuresis and diuresis, but its role is unknown during tolvaptan treatment in ADPKD. METHODS Eighteen patients with ADPKD received tolvaptan 60 mg or placebo in a randomized, placebo-controlled, double blind, crossover study. L-NMMA (L-NG-monomethyl-arginine) was given as a bolus followed by continuous infusion during 60 min. We measured: GFR, urine output (UO), free water clearance (CH2O), fractional excretion of sodium (FENa), urinary excretion of aquaporin-2 channels (u-AQP2) and epithelial sodium channels (u-ENaCγ), plasma concentrations of vasopressin (p-AVP), renin (PRC), angiotensinII (p-AngII), aldosterone (p-Aldo), and central blood pressure (cBP). RESULTS During tolvaptan with NO-inhibition, a more pronounced decrease was measured in UO, CH2O (61% vs 43%) and FENa (46% vs 41%) after placebo than after tolvaptan; GFR and u-AQP2 decreased to the same extent; p-AVP increased three fold, whereas u-ENaCγ, PRC, p-AngII, and p-Aldo remained unchanged. After NO-inhibition, GFR increased after placebo and remained unchanged after tolvaptan (5% vs -6%). Central diastolic BP (CDBP) increased to a higher level after placebo than tolvaptan. Body weight fell during tolvaptan treatment. CONCLUSIONS During NO inhibition, tolvaptan antagonized both the antidiuretic and the antinatriuretic effect of L-NMMA, partly via an AVP-dependent mechanism. U-AQP2 was not changed by tolvaptan, presumeably due to a counteracting effect of elevated p-AVP. The reduced GFR during tolvaptan most likely is caused by the reduction in extracellular fluid volume and blood pressure. TRIAL REGISTRATION Clinical Trial no: NCT02527863 . Registered 18 February 2015.
Collapse
Affiliation(s)
- Safa Al Therwani
- University Clinic in Nephrology and Hypertension, Department of Medical Research, Holstebro Hospital and Aarhus University, Hospital Unit Jutland West, Laegaardvej 12, 7500, Holstebro, Denmark.
| | - My Emma Sofie Malmberg
- University Clinic in Nephrology and Hypertension, Department of Medical Research, Holstebro Hospital and Aarhus University, Hospital Unit Jutland West, Laegaardvej 12, 7500, Holstebro, Denmark
| | - Jeppe Bakkestroem Rosenbaek
- University Clinic in Nephrology and Hypertension, Department of Medical Research, Holstebro Hospital and Aarhus University, Hospital Unit Jutland West, Laegaardvej 12, 7500, Holstebro, Denmark
| | - Jesper Noergaard Bech
- University Clinic in Nephrology and Hypertension, Department of Medical Research, Holstebro Hospital and Aarhus University, Hospital Unit Jutland West, Laegaardvej 12, 7500, Holstebro, Denmark
| | - Erling Bjerregaard Pedersen
- University Clinic in Nephrology and Hypertension, Department of Medical Research, Holstebro Hospital and Aarhus University, Hospital Unit Jutland West, Laegaardvej 12, 7500, Holstebro, Denmark
| |
Collapse
|
17
|
Reihill JA, Walker B, Hamilton RA, Ferguson TEG, Elborn JS, Stutts MJ, Harvey BJ, Saint-Criq V, Hendrick SM, Martin SL. Inhibition of Protease-Epithelial Sodium Channel Signaling Improves Mucociliary Function in Cystic Fibrosis Airways. Am J Respir Crit Care Med 2017; 194:701-10. [PMID: 27014936 DOI: 10.1164/rccm.201511-2216oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE In cystic fibrosis (CF) a reduction in airway surface liquid (ASL) height compromises mucociliary clearance, favoring mucus plugging and chronic bacterial infection. Inhibitors of the epithelial sodium channel (ENaC) have therapeutic potential in CF airways to reduce hyperstimulated sodium and fluid absorption to levels that can restore airway hydration. OBJECTIVES To determine whether a novel compound (QUB-TL1) designed to inhibit protease/ENaC signaling in CF airways restores ASL volume and mucociliary function. METHODS Protease activity was measured using fluorogenic activity assays. Differentiated primary airway epithelial cell cultures (F508del homozygotes) were used to determined ENaC activity (Ussing chamber recordings), ASL height (confocal microscopy), and mucociliary function (by tracking the surface flow of apically applied microbeads). Cell toxicity was measured using a lactate dehydrogenase assay. MEASUREMENTS AND MAIN RESULTS QUB-TL1 inhibits extracellularly located channel activating proteases (CAPs), including prostasin, matriptase, and furin, the activities of which are observed at excessive levels at the apical surface of CF airway epithelial cells. QUB-TL1-mediated CAP inhibition results in diminished ENaC-mediated Na(+) absorption in CF airway epithelial cells caused by internalization of a prominent pool of cleaved (active) ENaCγ from the cell surface. Importantly, diminished ENaC activity correlates with improved airway hydration status and mucociliary clearance. We further demonstrate QUB-TL1-mediated furin inhibition, which is in contrast to other serine protease inhibitors (camostat mesylate and aprotinin), affords protection against neutrophil elastase-mediated ENaC activation and Pseudomonas aeruginosa exotoxin A-induced cell death. CONCLUSIONS QUB-TL1 corrects aberrant CAP activities, providing a mechanism to delay or prevent the development of CF lung disease in a manner independent of CF transmembrane conductance regulator mutation.
Collapse
Affiliation(s)
- James A Reihill
- 1 Biomolecular Sciences Research Group, School of Pharmacy, and
| | - Brian Walker
- 1 Biomolecular Sciences Research Group, School of Pharmacy, and
| | | | | | - J Stuart Elborn
- 2 School of Medicine, Dentistry & Biomedical Sciences, Queen's University, Belfast, Northern Ireland, United Kingdom
| | - M Jackson Stutts
- 3 Marsico Lung Institute and Cystic Fibrosis Center, University of North Carolina, Chapel Hill, North Carolina; and
| | - Brian J Harvey
- 4 Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI-ERC Beaumont Hospital, Dublin, Ireland
| | - Vinciane Saint-Criq
- 4 Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI-ERC Beaumont Hospital, Dublin, Ireland
| | - Siobhan M Hendrick
- 4 Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI-ERC Beaumont Hospital, Dublin, Ireland
| | | |
Collapse
|
18
|
Klemens CA, Edinger RS, Kightlinger L, Liu X, Butterworth MB. Ankyrin G Expression Regulates Apical Delivery of the Epithelial Sodium Channel (ENaC). J Biol Chem 2016; 292:375-385. [PMID: 27895120 DOI: 10.1074/jbc.m116.753616] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/11/2016] [Indexed: 11/06/2022] Open
Abstract
The epithelial sodium channel (ENaC) is the limiting entry point for Na+ reabsorption in the distal kidney nephron and is regulated by numerous hormones, including the mineralocorticoid hormone aldosterone. Previously we identified ankyrin G (AnkG), a cytoskeletal protein involved in vesicular transport, as a novel aldosterone-induced protein that can alter Na+ transport in mouse cortical collecting duct cells. However, the mechanisms underlying AnkG regulation of Na+ transport were unknown. Here we report that AnkG expression directly regulates Na+ transport by altering ENaC activity in the apical membrane. Increasing AnkG expression increased ENaC activity while depleting AnkG reduced ENaC-mediated Na+ transport. These changes were due to a change in ENaC directly rather than through alterations to the Na+ driving force created by Na+/K+-ATPase. Using a constitutively open mutant of ENaC, we demonstrate that the augmentation of Na+ transport is caused predominantly by increasing the number of ENaCs at the surface. To determine the mechanism of AnkG action on ENaC surface number, changes in rates of internalization, recycling, and membrane delivery were investigated. AnkG did not alter ENaC delivery to the membrane from biosynthetic pathways or removal by endocytosis. However, AnkG did alter ENaC insertion from constitutive recycling pathways. These findings provide a mechanism to account for the role of AnkG in the regulation of Na+ transport in the distal kidney nephron.
Collapse
Affiliation(s)
- Christine A Klemens
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Robert S Edinger
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Lindsay Kightlinger
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Xiaoning Liu
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Michael B Butterworth
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
19
|
Oosthuyzen W, Scullion KM, Ivy JR, Morrison EE, Hunter RW, Starkey Lewis PJ, O'Duibhir E, Street JM, Caporali A, Gregory CD, Forbes SJ, Webb DJ, Bailey MA, Dear JW. Vasopressin Regulates Extracellular Vesicle Uptake by Kidney Collecting Duct Cells. J Am Soc Nephrol 2016; 27:3345-3355. [PMID: 27020854 PMCID: PMC5084879 DOI: 10.1681/asn.2015050568] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 02/12/2016] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles (ECVs) facilitate intercellular communication along the nephron, with the potential to change the function of the recipient cell. However, it is not known whether this is a regulated process analogous to other signaling systems. We investigated the potential hormonal regulation of ECV transfer and report that desmopressin, a vasopressin analogue, stimulated the uptake of fluorescently loaded ECVs into a kidney collecting duct cell line (mCCDC11) and into primary cells. Exposure of mCCDC11 cells to ECVs isolated from cells overexpressing microRNA-503 led to downregulated expression of microRNA-503 target genes, but only in the presence of desmopressin. Mechanistically, ECV entry into mCCDC11 cells required cAMP production, was reduced by inhibiting dynamin, and was selective for ECVs from kidney tubular cells. In vivo, we measured the urinary excretion and tissue uptake of fluorescently loaded ECVs delivered systemically to mice before and after administration of the vasopressin V2 receptor antagonist tolvaptan. In control-treated mice, we recovered 2.5% of administered ECVs in the urine; tolvaptan increased recovery five-fold and reduced ECV deposition in kidney tissue. Furthermore, in a patient with central diabetes insipidus, desmopressin reduced the excretion of ECVs derived from glomerular and proximal tubular cells. These data are consistent with vasopressin-regulated uptake of ECVs in vivo We conclude that ECV uptake is a specific and regulated process. Physiologically, ECVs are a new mechanism of intercellular communication; therapeutically, ECVs may be a vehicle by which RNA therapy could be targeted to specific cells for the treatment of kidney disease.
Collapse
Affiliation(s)
- Wilna Oosthuyzen
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh and
| | - Kathleen M Scullion
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh and
| | - Jessica R Ivy
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh and
| | - Emma E Morrison
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh and
| | - Robert W Hunter
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh and
| | - Philip J Starkey Lewis
- Medical Research Council Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, Edinburgh, United Kingdom; and
| | - Eoghan O'Duibhir
- Medical Research Council Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, Edinburgh, United Kingdom; and
| | - Jonathan M Street
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Andrea Caporali
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh and
| | - Christopher D Gregory
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Stuart J Forbes
- Medical Research Council Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, Edinburgh, United Kingdom; and
| | - David J Webb
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh and
| | - Matthew A Bailey
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh and
| | - James W Dear
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh and
| |
Collapse
|
20
|
Nesterov V, Krueger B, Bertog M, Dahlmann A, Palmisano R, Korbmacher C. In Liddle Syndrome, Epithelial Sodium Channel Is Hyperactive Mainly in the Early Part of the Aldosterone-Sensitive Distal Nephron. Hypertension 2016; 67:1256-62. [DOI: 10.1161/hypertensionaha.115.07061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/16/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Viatcheslav Nesterov
- From the Institut für Zelluläre und Molekulare Physiologie (V.N., B.K., M.B., C.K.), Universitätsklinikum Erlangen, Medizinische Klinik 4–Nephrologie und Hypertensiologie (A.D.), and Optical Imaging Center Erlangen (OICE) (R.P.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Bettina Krueger
- From the Institut für Zelluläre und Molekulare Physiologie (V.N., B.K., M.B., C.K.), Universitätsklinikum Erlangen, Medizinische Klinik 4–Nephrologie und Hypertensiologie (A.D.), and Optical Imaging Center Erlangen (OICE) (R.P.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Marko Bertog
- From the Institut für Zelluläre und Molekulare Physiologie (V.N., B.K., M.B., C.K.), Universitätsklinikum Erlangen, Medizinische Klinik 4–Nephrologie und Hypertensiologie (A.D.), and Optical Imaging Center Erlangen (OICE) (R.P.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anke Dahlmann
- From the Institut für Zelluläre und Molekulare Physiologie (V.N., B.K., M.B., C.K.), Universitätsklinikum Erlangen, Medizinische Klinik 4–Nephrologie und Hypertensiologie (A.D.), and Optical Imaging Center Erlangen (OICE) (R.P.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ralf Palmisano
- From the Institut für Zelluläre und Molekulare Physiologie (V.N., B.K., M.B., C.K.), Universitätsklinikum Erlangen, Medizinische Klinik 4–Nephrologie und Hypertensiologie (A.D.), and Optical Imaging Center Erlangen (OICE) (R.P.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christoph Korbmacher
- From the Institut für Zelluläre und Molekulare Physiologie (V.N., B.K., M.B., C.K.), Universitätsklinikum Erlangen, Medizinische Klinik 4–Nephrologie und Hypertensiologie (A.D.), and Optical Imaging Center Erlangen (OICE) (R.P.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
21
|
Xu W, Huang Y, Li L, Sun Z, Shen Y, Xing J, Li M, Su D, Liang X. Hyperuricemia induces hypertension through activation of renal epithelial sodium channel (ENaC). Metabolism 2016; 65:73-83. [PMID: 26892518 DOI: 10.1016/j.metabol.2015.10.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The mechanisms leading to hypertension associated with hyperuricemia are still unclear. The activity of the distal nephron epithelial sodium channel (ENaC) is an important determinant of sodium balance and blood pressure. Our aim was to investigate whether the effect of hyperuricemia on blood pressure is related to ENaC activation. METHODS A hyperuricemic model was induced in rats by 2% oxonic acid and 6 mg/dl uric acid (UA). The hyperuricemic rats were co-treated with either 10mg/kg/d benzbromarone (Ben) or 1 mg/kg/d amiloride (Ami). Blood pressure was monitored using a tail-cuff, and blood, urine, and kidney samples were taken. Western blotting and immunohistochemical staining were performed to determine the expressions of ENaC subunits and components of the ENaC Regulatory Complex (ERC) in kidney tissue or mCCD cells. RESULTS Serum uric acid (SUA) was increased 2.5-3.5 times above normal in hyperuricemic rats after 3 weeks and remained at these high levels until 6 weeks. The in vivo rise in SUA was followed by elevated blood pressure, renal tubulointerstitial injury, and increased expressions of ENaC subunits, SGK1, and GILZ1, which were prevented by Ben treatment. The decrease in urinary Na(+) excretion in hyperuricemic rats was blunted by Ami. UA induced the expression of all three ENaC subunits, SGK1, and GILZ1, and increased Na(+) transport in mCCD cells. Phosphorylation of ERK was significantly decreased in both UA-treated mCCD cells and hyperuricemic rat kidney; this effect was prevented by Ben co-treatment. CONCLUSION Our findings suggest that elevated serum uric acid could induce hypertension by activation of ENaC and regulation of ERC expression.
Collapse
Affiliation(s)
- Weifeng Xu
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, China; Zhuji people Hospital, Zhuji, Zhejiang Province, China
| | - Yujie Huang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lei Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhen Sun
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yachen Shen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jing Xing
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Min Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu Province, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
22
|
Palma AG, Galizia L, Kotsias BA, Marino GI. CFTR channel in oocytes from Xenopus laevis and its regulation by xShroom1 protein. Pflugers Arch 2016; 468:871-80. [PMID: 26888038 DOI: 10.1007/s00424-016-1800-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/18/2016] [Accepted: 02/10/2016] [Indexed: 01/24/2023]
Abstract
Shroom is a family of related proteins linked to the actin cytoskeleton. xShroom1 is constitutively expressed in Xenopus laevis oocytes, and it is required for the expression of the epithelial sodium channel (ENaC). As there is a close relationship between ENaC and the cystic fibrosis transmembrane regulator (CFTR), we examined the action of xShroom1 on CFTR expression and activity. Biotinylation was used to measure CFTR surface expression, and currents were registered with voltage clamp when stimulated with forskolin and 3-isobutyl-1-methylxanthine. Oocytes were coinjected with CFTR complementary RNAs (cRNAs) and xShroom1 sense or antisense oligonucleotides. We observed an increment in CFTR currents and CFTR surface expression in oocytes coinjected with CFTR and xShroom1 antisense oligonucleotides. MG-132, a proteasome inhibitor, did not prevent the increment in currents when xShroom1 was suppressed by antisense oligonucleotides. In addition, we inhibited the delivery of newly synthesized proteins to the plasma membrane with BFA and we found that the half-life of plasma membrane CFTR was prolonged when coinjected with the xShroom1 antisense oligonucleotides. Chloroquine, an inhibitor of the late endosome/lysosome, did not significantly increase CFTR currents when xShroom1 expression was inhibited. The higher expression of CFTR when xShroom1 is suppressed is in concordance with the functional studies suggesting that the suppression of the xShroom1 protein resulted in an increment in CFTR currents by promoting the increase of the half-life of CFTR in the plasma membrane. The role of xShroom1 in regulating CFTR expression could be relevant in the understanding of the channel malfunction in several diseases.
Collapse
Affiliation(s)
- Alejandra G Palma
- Laboratorio de Canales Iónicos, Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires, IDIM-CONICET, C. de Malvinas 3150, 1427, Buenos Aires, Argentina
| | - Luciano Galizia
- Laboratorio de Canales Iónicos, Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires, IDIM-CONICET, C. de Malvinas 3150, 1427, Buenos Aires, Argentina
| | - Basilio A Kotsias
- Laboratorio de Canales Iónicos, Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires, IDIM-CONICET, C. de Malvinas 3150, 1427, Buenos Aires, Argentina
| | - Gabriela I Marino
- Laboratorio de Canales Iónicos, Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires, IDIM-CONICET, C. de Malvinas 3150, 1427, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Plasma membrane insertion of epithelial sodium channels occurs with dual kinetics. Pflugers Arch 2016; 468:859-70. [DOI: 10.1007/s00424-016-1799-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 01/05/2023]
|
24
|
Gattineni J, Baum M. Developmental changes in renal tubular transport-an overview. Pediatr Nephrol 2015; 30:2085-98. [PMID: 24253590 PMCID: PMC4028442 DOI: 10.1007/s00467-013-2666-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/01/2013] [Accepted: 10/11/2013] [Indexed: 10/26/2022]
Abstract
The adult kidney maintains a constant volume and composition of extracellular fluid despite changes in water and salt intake. The neonate is born with a kidney that has a small fraction of the glomerular filtration rate of the adult and immature tubules that function at a lower capacity than that of the mature animal. Nonetheless, the neonate is also able to maintain a constant extracellular fluid volume and composition. Postnatal renal tubular development was once thought to be due to an increase in the transporter abundance to meet the developmental increase in glomerular filtration rate. However, postnatal renal development of each nephron segment is quite complex. There are isoform changes of several transporters as well as developmental changes in signal transduction that affect the capacity of renal tubules to reabsorb solutes and water. This review will discuss neonatal tubular function with an emphasis on the differences that have been found between the neonate and adult. We will also discuss some of the factors that are responsible for the maturational changes in tubular transport that occur during postnatal renal development.
Collapse
Affiliation(s)
- Jyothsna Gattineni
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9061, USA
| | - Michel Baum
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9061, USA.
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
25
|
Rajendran VM, Nanda Kumar NS, Tse CM, Binder HJ. Na-H Exchanger Isoform-2 (NHE2) Mediates Butyrate-dependent Na+ Absorption in Dextran Sulfate Sodium (DSS)-induced Colitis. J Biol Chem 2015; 290:25487-96. [PMID: 26350456 DOI: 10.1074/jbc.m115.654277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Indexed: 12/13/2022] Open
Abstract
Diarrhea associated with ulcerative colitis (UC) occurs primarily as a result of reduced Na(+) absorption. Although colonic Na(+) absorption is mediated by both epithelial Na(+) channels (ENaC) and Na-H exchangers (NHE), inhibition of NHE-mediated Na(+) absorption is the primary cause of diarrhea in UC. As there are conflicting observations reported on NHE expression in human UC, the present study was initiated to identify whether NHE isoforms (NHE2 and NHE3) expression is altered and how Na(+) absorption is regulated in DSS-induced inflammation in rat colon, a model that has been used to study UC. Western blot analyses indicate that neither NHE2 nor NHE3 expression is altered in apical membranes of inflamed colon. Na(+) fluxes measured in vitro under voltage clamp conditions in controls demonstrate that both HCO3 (-)-dependent and butyrate-dependent Na(+) absorption are inhibited by S3226 (NHE3-inhibitor), but not by HOE694 (NHE2-inhibitor) in normal animals. In contrast, in DSS-induced inflammation, butyrate-, but not HCO3 (-)-dependent Na(+) absorption is present and is inhibited by HOE694, but not by S3226. These observations indicate that in normal colon NHE3 mediates both HCO3 (-)-dependent and butyrate-dependent Na(+) absorption, whereas DSS-induced inflammation activates NHE2, which mediates butyrate-dependent (but not HCO3 (-)-dependent) Na(+) absorption. In in vivo loop studies HCO3 (-)-Ringer and butyrate-Ringer exhibit similar rates of water absorption in normal rats, whereas in DSS-induced inflammation luminal butyrate-Ringer reversed water secretion observed with HCO3 (-)-Ringer to fluid absorption. Lumen butyrate-Ringer incubation activated NHE3-mediated Na(+) absorption in DSS-induced colitis. These observations suggest that the butyrate activation of NHE2 would be a potential target to control UC-associated diarrhea.
Collapse
Affiliation(s)
- Vazhaikkurichi M Rajendran
- From the Department of Biochemistry and Molecular Biology, West Virginia University School of Medicine, Morgantown, West Virginia 26506,
| | - Navalpur S Nanda Kumar
- From the Department of Biochemistry and Molecular Biology, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Chung M Tse
- the Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | - Henry J Binder
- the Department of Internal Medicine, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
26
|
Azizi F, Arredouani A, Mohammad RM. Airway surface liquid volume expansion induces rapid changes in amiloride-sensitive Na+ transport across upper airway epithelium-Implications concerning the resolution of pulmonary edema. Physiol Rep 2015; 3:3/9/e12453. [PMID: 26333829 PMCID: PMC4600371 DOI: 10.14814/phy2.12453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During airway inflammation, airway surface liquid volume (ASLV) expansion may result from the movement of plasma proteins and excess liquid into the airway lumen due to extravasation and elevation of subepithelial hydrostatic pressure. We previously demonstrated that elevation of submucosal hydrostatic pressure increases airway epithelium permeability resulting in ASLV expansion by 500 μL cm−2 h−1. Liquid reabsorption by healthy airway epithelium is regulated by active Na+ transport at a rate of 5 μL cm−2 h−1. Thus, during inflammation the airway epithelium may be submerged by a large volume of luminal liquid. Here, we have investigated the mechanism by which ASLV expansion alters active epithelial Na+ transport, and we have characterized the time course of the change. We used primary cultures of tracheal airway epithelium maintained under air interface (basal ASLV, depth is 7 ± 0.5 μm). To mimic airway flooding, ASLV was expanded to a depth of 5 mm. On switching from basal to expanded ASLV conditions, short-circuit current (Isc, a measure of total transepithelial active ion transport) declined by 90% with a half-time (t1/2) of 1 h. 24 h after the switch, there was no significant change in ATP concentration nor in the number of functional sodium pumps as revealed by [3H]-ouabain binding. However, amiloride-sensitive uptake of 22Na+ was reduced by 70% upon ASLV expansion. This process is reversible since after returning cells back to air interface, Isc recovered with a t1/2 of 5–10 h. These results may have important clinical implications concerning the development of Na+ channels activators and resolution of pulmonary edema.
Collapse
Affiliation(s)
- Fouad Azizi
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Ramzi M Mohammad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
27
|
Subunit composition of a DEG/ENaC mechanosensory channel of Caenorhabditis elegans. Proc Natl Acad Sci U S A 2015; 112:11690-5. [PMID: 26324944 DOI: 10.1073/pnas.1515968112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Caenorhabditis elegans senses gentle touch in the six touch receptor neurons (TRNs) using a mechanotransduction complex that contains the pore-forming degenerin/epithelial sodium channel (DEG/ENaC) proteins MEC-4 and MEC-10. Past work has suggested these proteins interact with the paraoxonase-like MEC-6 and the cholesterol-binding stomatin-like MEC-2 proteins. Using single molecule optical imaging in Xenopus oocytes, we found that MEC-4 forms homotrimers and MEC-4 and MEC-10 form 4:4:10 heterotrimers. MEC-6 and MEC-2 do not associate tightly with these trimers and do not influence trimer stoichiometry, indicating that they are not part of the core channel transduction complex. Consistent with the in vitro data, MEC-10, but not MEC-6, formed puncta in TRN neurites that colocalize with MEC-4 when MEC-4 is overexpressed in the TRNs.
Collapse
|
28
|
Kortenoeven MLA, Pedersen NB, Rosenbaek LL, Fenton RA. Vasopressin regulation of sodium transport in the distal nephron and collecting duct. Am J Physiol Renal Physiol 2015; 309:F280-99. [DOI: 10.1152/ajprenal.00093.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/27/2015] [Indexed: 12/22/2022] Open
Abstract
Arginine vasopressin (AVP) is released from the posterior pituitary gland during states of hyperosmolality or hypovolemia. AVP is a peptide hormone, with antidiuretic and antinatriuretic properties. It allows the kidneys to increase body water retention predominantly by increasing the cell surface expression of aquaporin water channels in the collecting duct alongside increasing the osmotic driving forces for water reabsorption. The antinatriuretic effects of AVP are mediated by the regulation of sodium transport throughout the distal nephron, from the thick ascending limb through to the collecting duct, which in turn partially facilitates osmotic movement of water. In this review, we will discuss the regulatory role of AVP in sodium transport and summarize the effects of AVP on various molecular targets, including the sodium-potassium-chloride cotransporter NKCC2, the thiazide-sensitive sodium-chloride cotransporter NCC, and the epithelial sodium channel ENaC.
Collapse
Affiliation(s)
- M. L. A. Kortenoeven
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport (InterPrET), Aarhus University, Aarhus, Denmark
| | - N. B. Pedersen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; and
| | - L. L. Rosenbaek
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - R. A. Fenton
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport (InterPrET), Aarhus University, Aarhus, Denmark
| |
Collapse
|
29
|
Yusef YR, Thomas W, Harvey BJ. Estrogen increases ENaC activity via PKCδ signaling in renal cortical collecting duct cells. Physiol Rep 2014; 2:2/5/e12020. [PMID: 24872356 PMCID: PMC4098747 DOI: 10.14814/phy2.12020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The most active estrogen, 17β‐estradiol (E2), has previously been shown to stimulate a female sex‐specific antisecretory response in the intestine. This effect is thought to contribute to the increase in whole body extracellular fluid (ECF) volume which occurs in high estrogen states, such as in the implantation window during estrous cycle. The increased ECF volume may be short‐circuited by a renal compensation unless estrogen exerts a proabsorptive effect in the nephron. Thus, the effect of E2 on ENaC in kidney cortical collecting duct (CCD) cells is of interest to understand estrogen regulation of ECF volume. Previous studies showed a rapid stimulatory effect of estrogen on ENaC in bronchial epithelium. In this study we examined if such a rapid effect on Na+ absorption could occur in the kidney. Experiments were carried out on murine M1‐CCD cell cultures. E2 (25 nmol/L) treatment caused a rapid‐onset (<15 min) and sustained increase in the amiloride‐sensitive Na+ current (INa) in CCD monolayers mounted in Ussing chambers (control, 1.9 ± 0.2 μA/cm2; E2, 4.7 ± 0.3 μA/cm2; n = 43, P < 0.001), without affecting the ouabain‐sensitive Na+/K+ pump current. The INa response to E2 was inhibited by PKCδ activity antagonism with rottlerin (5 μmol/L), inhibition of matrix metalloproteinases activity with GM6001 (1 μmol/L), inhibition of EGFR activity with AG1478 (10 μmol/L), inhibition of PLC activity with U‐73122 (10 μmol/L), and inhibition of estrogen receptors with the general ER antagonist ICI‐182780 (100 nmol/L). The estrogen activation of INa could be mimicked by the ERα agonist PPT (1 nmol/L). The nuclear excluded estrogen dendrimer conjugate (EDC) induced similar stimulatory effects on INa comparable to free E2. The end target for E2 stimulation of PKCδ was shown to be an increased abundance of the γ‐ENaC subunit in the apical plasma membrane of CCD cells. We have demonstrated a novel rapid “nongenomic” function of estrogen to stimulate ENaC via ERα‐EGFR transactivation in kidney CCD cells. We propose that the salt‐retaining effect of estrogen in the kidney together with its antisecretory action in the intestine are the molecular mechanisms causing the expanded ECF volume in high‐estrogen states. Estrogen stimulates sodium absorption in kidney cells. This rapid “nongenomic” response to estrogen is transduced via estrogen receptor transactivation of the epidermal growth factor receptor. The ER‐EGFR transactivation triggers a protein kinase signaling cascade which culminates in the insertion of sodium channel subunits into the cell membrane. Estrogen is a novel salt‐retaining hormone with proabsorptive effects in kidney and antisecretory actions in intestine.
Collapse
Affiliation(s)
- Yamil R Yusef
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Warren Thomas
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Brian J Harvey
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
30
|
Mummalaneni S, Qian J, Phan THT, Rhyu MR, Heck GL, DeSimone JA, Lyall V. Effect of ENaC modulators on rat neural responses to NaCl. PLoS One 2014; 9:e98049. [PMID: 24839965 PMCID: PMC4026388 DOI: 10.1371/journal.pone.0098049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/28/2014] [Indexed: 01/31/2023] Open
Abstract
The effects of small molecule ENaC activators N,N,N-trimethyl-2-((4-methyl-2-((4-methyl-1H-indol-3-yl)thio)pentanoyl)oxy)ethanaminium iodide (Compound 1) and N-(2-hydroxyethyl)-4-methyl-2-((4-methyl-1H-indol-3-yl)thio)pentanamide (Compound 2), were tested on the benzamil (Bz)-sensitive NaCl chorda tympani (CT) taste nerve response under open-circuit conditions and under ±60 mV applied lingual voltage-clamp, and compared with the effects of known physiological activators (8-CPT-cAMP, BAPTA-AM, and alkaline pH), and an inhibitor (ionomycin+Ca2+) of ENaC. The NaCl CT response was enhanced at −60 mV and suppressed at +60 mV. In every case the CT response (r) versus voltage (V) curve was linear. All ENaC activators increased the open-circuit response (ro) and the voltage sensitivity (κ, negative of the slope of the r versus V curve) and ionomycin+Ca2+ decreased ro and κ to zero. Compound 1 and Compound 2 expressed a sigmoidal-saturating function of concentration (0.25–1 mM) with a half-maximal response concentration (k) of 0.49 and 1.05 mM, respectively. Following treatment with 1 mM Compound 1, 8-CPT-cAMP, BAPTA-AM and pH 10.3, the Bz-sensitive NaCl CT response to 100 mM NaCl was enhanced and was equivalent to the Bz-sensitive CT response to 300 mM NaCl. Plots of κ versus ro in the absence and presence of the activators or the inhibitor were linear, suggesting that changes in the affinity of Na+ for ENaC under different conditions are fully compensated by changes in the apical membrane potential difference, and that the observed changes in the Bz-sensitive NaCl CT response arise exclusively from changes in the maximum CT response (rm). The results further suggest that the agonists enhance and ionomycin+Ca2+ decreases ENaC function by increasing or decreasing the rate of release of Na+ from its ENaC binding site to the receptor cell cytosol, respectively. Irrespective of agonist type, the Bz-sensitive NaCl CT response demonstrated a maximum response enhancement limit of about 75% over control value.
Collapse
Affiliation(s)
- Shobha Mummalaneni
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jie Qian
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Tam-Hao T. Phan
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Mee-Ra Rhyu
- Korea Food Research Institute, Bundang-gu, Sungnam-si, Gyeonggi-do, Korea
| | - Gerard L. Heck
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - John A. DeSimone
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Vijay Lyall
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
31
|
Kelley CA, Decker SE, Silva P, Forrest JN. Gastric inhibitory peptide, serotonin, and glucagon are unexpected chloride secretagogues in the rectal gland of the skate (Leucoraja erinacea). Am J Physiol Regul Integr Comp Physiol 2014; 306:R674-80. [PMID: 24553297 DOI: 10.1152/ajpregu.00531.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the discovery of the rectal gland of the dogfish shark 50 years ago, experiments with this tissue have greatly aided our understanding of secondary active chloride secretion and the secretagogues responsible for this function. In contrast, very little is known about the rectal gland of skates. In the present experiments, we performed the first studies in the perfused rectal gland of the little skate (Leucoraja erinacea), an organ weighing less than one-tenth of the shark rectal gland. Our results indicate that the skate gland can be studied by modified perfusion techniques and in primary culture monolayers, and that secretion is blocked by the inhibitors of membrane proteins required for secondary active chloride secretion. Our major finding is that three G protein-coupled receptor agonists, the incretin gastric inhibitory polypeptide (GIP), also known as glucose-dependent insulinotropic peptide, as well as glucagon and serotonin, are unexpected potent chloride secretagogues in the skate but not the shark. Glucagon stimulated chloride secretion to a mean value of 1,661 ± 587 μeq·h(-1)·g(-1) and serotonin stimulated to 2,893 ± 699 μeq·h(-1)·g(-1). GIP stimulated chloride secretion to 3,733 ± 679 μeq·h(-1)·g(-1) and significantly increased tissue cAMP content compared with basal conditions. This is the first report of GIP functioning as a chloride secretagogue in any species or tissue.
Collapse
Affiliation(s)
- Catherine A Kelley
- Nephrology Division, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | | | | |
Collapse
|
32
|
Kortenoeven MLA, Sinke AP, Hadrup N, Trimpert C, Wetzels JFM, Fenton RA, Deen PMT. Demeclocycline attenuates hyponatremia by reducing aquaporin-2 expression in the renal inner medulla. Am J Physiol Renal Physiol 2013; 305:F1705-18. [PMID: 24154696 DOI: 10.1152/ajprenal.00723.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Binding of vasopressin to its type 2 receptor in renal collecting ducts induces cAMP signaling, transcription and translocation of aquaporin (AQP)2 water channels to the plasma membrane, and water reabsorption from the prourine. Demeclocycline is currently used to treat hyponatremia in patients with the syndrome of inappropriate antidiuretic hormone secretion (SIADH). Demeclocycline's mechanism of action, which is poorly understood, is studied here. In mouse cortical collecting duct (mpkCCD) cells, which exhibit deamino-8-D-arginine vasopressin (dDAVP)-dependent expression of endogenous AQP2, demeclocycline decreased AQP2 abundance and gene transcription but not its protein stability. Demeclocycline did not affect vasopressin type 2 receptor localization but decreased dDAVP-induced cAMP generation and the abundance of adenylate cyclase 3 and 5/6. The addition of exogenous cAMP partially corrected the demeclocycline effect. As in patients, demeclocycline increased urine volume, decreased urine osmolality, and reverted hyponatremia in an SIADH rat model. AQP2 and adenylate cyclase 5/6 abundances were reduced in the inner medulla but increased in the cortex and outer medulla, in the absence of any sign of toxicity. In conclusion, our in vitro and in vivo data indicate that demeclocycline mainly attenuates hyponatremia in SIADH by reducing adenylate cyclase 5/6 expression and, consequently, cAMP generation, AQP2 gene transcription, and AQP2 abundance in the renal inner medulla, coinciding with a reduced vasopressin escape response in other collecting duct segments.
Collapse
Affiliation(s)
- Marleen L A Kortenoeven
- no. 286, Dept. of Physiology, Radboud Univ. Medical Centre, PO Box 9101, Nijmegen 6500 HB, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
33
|
Effect of volume expansion with hypertonic- and isotonic saline and isotonic glucose on sodium and water transport in the principal cells in the kidney. BMC Nephrol 2013; 14:202. [PMID: 24067081 PMCID: PMC3849534 DOI: 10.1186/1471-2369-14-202] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/23/2013] [Indexed: 12/21/2022] Open
Abstract
Background The renal distal nephron plays an important role in the maintenance of sodium balance, extra cellular volume and blood pressure. The degree of water transport, via aquaporin2 water channels (AQP2), and sodium transport, via epithelial sodium channels (ENaC) in renal collecting duct principal cells are reflected by the level of urinary excretion of AQP2 (u-AQP2) and the γ-fraction of ENaC (u-ENaCγ). The effects of an acute intravenous volume load with isotonic saline, hypertonic saline and glucose on u-AQP2, u-ENaCγ and underlying mechanisms have never been studied in a randomized, placebo-controlled trial in healthy humans. Methods We studied the effects of 0.9% saline (23 ml/kg), 3% saline (7 ml/kg) and 5% glucose (23 ml/kg) on u-AQP2 and u-ENaCγ, fractional sodium excretion (FENa), free water clearance (CH2O), and plasma concentrations of vasopressin (AVP), renin (PRC), angiotensin II (ANG II) and aldosterone (Aldo) in a randomized, crossover study of 23 healthy subjects, who consumed a standardized diet, regarding calories, sodium and fluid for 4 days before each examination day. Results After isotonic saline infusion, u-AQP2 increased (27%). CH2O and u-ENaCγ were unchanged, whereas FENa increased (123%). After hypertonic saline infusion, there was an increase in u-AQP2 (25%), u-ENaCγ (19%) and FENa (96%), whereas CH2O decreased (-153%). After isotonic glucose infusion, there was a decrease in u-AQP2 (-16%), ENaCγ (-10%) and FENa (-44%) whereas CH2O increased (164%). AVP remained unchanged after isotonic saline and glucose, but increased after hypertonic saline (139%). PRC, AngII and p-Aldo decreased after isotonic and hypertonic saline infusion, but not after glucose infusion. Conclusions Volume expansion with 3% and 0.9% saline increased u-AQP2, while isotonic glucose decreased u-AQP2. Infusion of hypertonic saline increased u-ENaCγ, whereas u-ENaCγ was not significantly changed after isotonic saline and tended to decrease after glucose. Thus, the transport of water and sodium is changed both via the aquaporin 2 water channels and the epithelial sodium channels during all three types of volume expansion to regulate and maintain water- and sodium homeostasis in the body. Trial registration Clinical Trial no: NCT01414088
Collapse
|
34
|
Kusche-Vihrog K, Jeggle P, Oberleithner H. The role of ENaC in vascular endothelium. Pflugers Arch 2013; 466:851-9. [PMID: 24046153 DOI: 10.1007/s00424-013-1356-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 12/31/2022]
Abstract
Once upon a time, the expression of the epithelial sodium channel (ENaC) was mainly assigned to the kidneys, colon and sweat glands where it was considered to be the main determinant of sodium homeostasis. Recent, though indirect, evidence for the possible existence of ENaC in a non-epithelial tissue was derived from the observation that the vascular endothelium is a target for aldosterone. Inhibitory actions of the intracellular aldosterone receptors by spironolactone and, more directly, by ENaC blockers such as amiloride supported this view. Shortly after, direct data on the expression of ENaC in vascular endothelium could be demonstrated. There, endothelial ENaC (EnNaC) could be defined as a major regulator of cellular mechanics which is a critical parameter in differentiating between vascular function and dysfunction. Foremost, the mechanical stiffness of the endothelial cell cortex, a layer 50-200 nm beneath the plasma membrane, has been shown to play a crucial role as it controls the production of the endothelium-derived vasodilator nitric oxide (NO) which directly affects the tone of the vascular smooth muscle cells. In contrast to soft endothelial cells, stiff endothelial cells release reduced amounts of NO, the hallmark of endothelial dysfunction. Thus, the combination of endothelial stiffness and myogenic tone might increase the peripheral vascular resistance. An elevation of arterial blood pressure is supposed to be the consequence of such functional changes. In this review, EnNaC is discussed as an aldosterone-regulated plasma membrane protein of the vascular endothelium that could significantly contribute to maintaining of an appropriate arterial blood pressure but, if overexpressed, could participate in the pathogenesis of arterial hypertension.
Collapse
Affiliation(s)
- Kristina Kusche-Vihrog
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany,
| | | | | |
Collapse
|
35
|
Feinstein TN, Yui N, Webber MJ, Wehbi VL, Stevenson HP, King JD, Hallows KR, Brown D, Bouley R, Vilardaga JP. Noncanonical control of vasopressin receptor type 2 signaling by retromer and arrestin. J Biol Chem 2013; 288:27849-60. [PMID: 23935101 DOI: 10.1074/jbc.m112.445098] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The vasopressin type 2 receptor (V2R) is a critical G protein-coupled receptor (GPCR) for vertebrate physiology, including the balance of water and sodium ions. It is unclear how its two native hormones, vasopressin (VP) and oxytocin (OT), both stimulate the same cAMP/PKA pathway yet produce divergent antinatriuretic and antidiuretic effects that are either strong (VP) or weak (OT). Here, we present a new mechanism that differentiates the action of VP and OT on V2R signaling. We found that vasopressin, as opposed to OT, continued to generate cAMP and promote PKA activation for prolonged periods after ligand washout and receptor internalization in endosomes. Contrary to the classical model of arrestin-mediated GPCR desensitization, arrestins bind the VP-V2R complex yet extend rather than shorten the generation of cAMP. Signaling is instead turned off by the endosomal retromer complex. We propose that this mechanism explains how VP sustains water and Na(+) transport in renal collecting duct cells. Together with recent work on the parathyroid hormone receptor, these data support the existence of a novel "noncanonical" regulatory pathway for GPCR activation and response termination, via the sequential action of β-arrestin and the retromer complex.
Collapse
Affiliation(s)
- Timothy N Feinstein
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sasaki S, Yui N, Noda Y. Actin directly interacts with different membrane channel proteins and influences channel activities: AQP2 as a model. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:514-20. [PMID: 23770358 DOI: 10.1016/j.bbamem.2013.06.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/01/2013] [Accepted: 06/06/2013] [Indexed: 11/26/2022]
Abstract
The interplay between actin and 10 membrane channel proteins that have been shown to directly bind to actin are reviewed. The 10 membrane channel proteins covered in this review are aquaporin 2 (AQP2), cystic fibrosis transmembrane conductance regulator (CFTR), ClC2, short form of ClC3 (sClC3), chloride intracellular channel 1 (CLIC1), chloride intracellular channel 5 (CLIC5), epithelial sodium channel (ENaC), large-conductance calcium-activated potassium channel (Maxi-K), transient receptor potential vanilloid 4 (TRPV4), and voltage-dependent anion channel (VDAC), with particular attention to AQP2. In regard to AQP2, most reciprocal interactions between actin and AQP2 occur during intracellular trafficking, which are largely mediated through indirect binding. Actin and the actin cytoskeleton work as cables, barriers, stabilizers, and force generators for motility. However, as with ENaC, the effects of actin cytoskeleton on channel gating should be investigated further. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Sei Sasaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.
| | - Naofumi Yui
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Yumi Noda
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| |
Collapse
|
37
|
Kline CF, Mohler PJ. Defective interactions of protein partner with ion channels and transporters as alternative mechanisms of membrane channelopathies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:723-30. [PMID: 23732236 DOI: 10.1016/j.bbamem.2013.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/15/2013] [Accepted: 05/21/2013] [Indexed: 01/27/2023]
Abstract
The past twenty years have revealed the existence of numerous ion channel mutations resulting in human pathology. Ion channels provide the basis of diverse cellular functions, ranging from hormone secretion, excitation-contraction coupling, cell signaling, immune response, and trans-epithelial transport. Therefore, the regulation of biophysical properties of channels is vital in human physiology. Only within the last decade has the role of non-ion channel components come to light in regard to ion channel spatial, temporal, and biophysical regulation in physiology. A growing number of auxiliary components have been determined to play elemental roles in excitable cell physiology, with dysfunction resulting in disorders and related manifestations. This review focuses on the broad implications of such dysfunction, focusing on disease-causing mutations that alter interactions between ion channels and auxiliary ion channel components in a diverse set of human excitable cell disease. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé
Collapse
Affiliation(s)
- Crystal F Kline
- The Dorothy M. Davis Heart and Lung Research Institute, Department of Internal Medicine, Division of Cardiovascular Medicine, Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, USA
| | - Peter J Mohler
- The Dorothy M. Davis Heart and Lung Research Institute, Department of Internal Medicine, Division of Cardiovascular Medicine, Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, USA.
| |
Collapse
|
38
|
Yu L, Cai H, Yue Q, Alli AA, Wang D, Al-Khalili O, Bao HF, Eaton DC. WNK4 inhibition of ENaC is independent of Nedd4-2-mediated ENaC ubiquitination. Am J Physiol Renal Physiol 2013; 305:F31-41. [PMID: 23594824 DOI: 10.1152/ajprenal.00652.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A serine-threonine protein kinase, WNK4, reduces Na⁺ reabsorption and K⁺ secretion in the distal convoluted tubule by reducing trafficking of the thiazide-sensitive Na-Cl cotransporter to and enhancing renal outer medullary potassium channel retrieval from the apical membrane. Epithelial sodium channels (ENaC) in the distal nephron also play a role in regulating Na⁺ reabsorption and are also regulated by WNK4, but the mechanism is unclear. In A6 distal nephron cells, transepithelial current measurement and single channel recording show that WNK4 inhibits ENaC activity. Analysis of the number of channel per patch shows that WNK4 reduces channel number but has no effect on channel open probability. Western blots of apical and total ENaC provide additional evidence that WNK4 reduces apical as well as total ENaC expression. WNK4 enhances ENaC internalization independent of Nedd4-2-mediated ENaC ubiquitination. WNK4 also reduced the amount of ENaC available for recycling but has no effect on the rate of transepithelial current increase to forskolin. In contrast, Nedd4-2 not only reduced ENaC in the recycling pool but also decreased the rate of increase of current after forskolin. WNK4 associates with wild-type as well as Liddle's mutated ENaC, and WNK4 reduces both wild-type and mutated ENaC expressed in HEK293 cells.
Collapse
Affiliation(s)
- Ling Yu
- Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Holleran JP, Zeng J, Frizzell RA, Watkins SC. Regulated recycling of mutant CFTR is partially restored by pharmacological treatment. J Cell Sci 2013; 126:2692-703. [PMID: 23572510 DOI: 10.1242/jcs.120196] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Efficient trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) to and from the cell surface is essential for maintaining channel density at the plasma membrane (PM) and ensuring proper physiological activity. The most common mutation, F508del, exhibits reduced surface expression and impaired function despite treatment with currently available pharmacological small molecules, called correctors. To gain more detailed insight into whether CFTR enters compartments that allow corrector stabilization in the cell periphery, we investigated the peripheral trafficking itineraries and kinetics of wild type (WT) and F508del in living cells using high-speed fluorescence microscopy together with fluorogen activating protein detection. We directly visualized internalization and accumulation of CFTR WT from the PM to a perinuclear compartment that colocalized with the endosomal recycling compartment (ERC) markers Rab11 and EHD1, reaching steady-state distribution by 25 minutes. Stimulation by protein kinase A (PKA) depleted this intracellular pool and redistributed CFTR channels to the cell surface, elicited by reduced endocytosis and active translocation to the PM. Corrector or temperature rescue of F508del also resulted in targeting to the ERC and exhibited subsequent PKA-stimulated trafficking to the PM. Corrector treatment (24 hours) led to persistent residence of F508del in the ERC, while thermally destabilized F508del was targeted to lysosomal compartments by 3 hours. Acute addition of individual correctors, C4 or C18, acted on peripheral trafficking steps to partially block lysosomal targeting of thermally destabilized F508del. Taken together, corrector treatment redirects F508del trafficking from a degradative pathway to a regulated recycling route, and proteins that mediate this process become potential targets for improving the efficacy of current and future correctors.
Collapse
Affiliation(s)
- John P Holleran
- University of Pittsburgh School of Medicine, Department of Cell Biology, BSTS 225, 3500 Terrace St, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
40
|
Roos KP, Bugaj V, Mironova E, Stockand JD, Ramkumar N, Rees S, Kohan DE. Adenylyl cyclase VI mediates vasopressin-stimulated ENaC activity. J Am Soc Nephrol 2013; 24:218-27. [PMID: 23264685 PMCID: PMC3559481 DOI: 10.1681/asn.2012050449] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 10/22/2012] [Indexed: 12/11/2022] Open
Abstract
Vasopressin modulates sodium reabsorption in the collecting duct through adenylyl cyclase-stimulated cyclic AMP, which exists as multiple isoforms; the specific isoform involved in vasopressin-stimulated sodium transport is unknown. To assess this, we studied mice deficient in adenylyl cyclase type VI specifically in the principal cells of the collecting duct. Knockout mice had increased urine volume and reduced urine sodium concentration, but regardless of the level of sodium intake, they did not exhibit significant alterations in urinary sodium excretion, arterial pressure, or pulse rate. Plasma renin concentration was elevated in knockout mice, however, suggesting a compensatory response. Valsartan significantly reduced arterial pressure in knockout mice but not in controls. Knockout mice had decreased renal cortical mRNA content of all three epithelial sodium channel (ENaC) isoforms, and total cell sodium channel isoforms α and γ were reduced in these animals. Patch-clamp analysis of split-open cortical collecting ducts revealed no difference in baseline activity of sodium channels, but knockout mice had abolished vasopressin-stimulated ENaC open probability and apical membrane channel number. In summary, these data suggest that adenylyl cyclase VI mediates vasopressin-stimulated ENaC activity in the kidney.
Collapse
Affiliation(s)
- Karl P. Roos
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah; and
| | - Vladislav Bugaj
- Department of Physiology, University of Texas Health Sciences Center, San Antonio, Texas
| | - Elena Mironova
- Department of Physiology, University of Texas Health Sciences Center, San Antonio, Texas
| | - James D. Stockand
- Department of Physiology, University of Texas Health Sciences Center, San Antonio, Texas
| | - Nirupama Ramkumar
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah; and
| | - Sara Rees
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah; and
| | - Donald E. Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah; and
| |
Collapse
|
41
|
The migratory capacity of human trophoblastic BeWo cells: effects of aldosterone and the epithelial sodium channel. J Membr Biol 2013; 246:243-55. [PMID: 23354843 DOI: 10.1007/s00232-013-9526-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 01/08/2013] [Indexed: 01/08/2023]
Abstract
Aldosterone is a key regulator of the epithelial sodium channel (ENaC) and stimulates protein methylation on the β-subunit of the ENaC. We found that aldosterone (100 nM) promotes cellular migration in a wound-healing model in trophoblastic BeWo cells. Here, we tested if the positive influence of aldosterone on wound healing is related to methylation reactions. Cell migration and proliferation were measured in BeWo cells at 6 h, when mitosis is still scarce. Cell migration covered 12.4, 25.3, 19.6 and 45.1 % of the wound when cultivated under control, aldosterone (12 h), 8Br-cAMP and aldosterone plus 8Br-cAMP, respectively. Amiloride blocked the effects of aldosterone alone or in the presence of 8Br-cAMP on wound healing. Wound healing decreased in aldosterone (plus 8Br-cAMP) coexposed with the methylation inhibitor 3-deaza-adenosine (3-DZA, 12.9 % reinvasion of the wound). There was an increase in wound healing in aldosterone-, 8Br-cAMP- and 3-DZA-treated cells in the presence of AdoMet, a methyl donor, compared to cells in the absence of AdoMet (27.3 and 12.9 % reinvasion of the wound, respectively). Cell proliferation assessed with the reagent MTT was not changed in any of these treatments, suggesting that cellular migration is the main factor for reinvasion of wound healing. Electrophysiological studies showed an increase in ENaC current in the presence of aldosterone. This effect was higher with 8Br-cAMP, and there was a decrease when 3-DZA was present. AdoMet treatment partially reversed this phenomenon. We suggest that aldosterone positively influences wound healing in BeWo cells, at least in part through methylation of the ENaC.
Collapse
|
42
|
Abstract
Among the compensatory mechanisms restoring circulating blood volume after severe haemorrhage, increased vasopressin secretion enhances water permeability of distal nephron segments and stimulates Na(+) reabsorption in cortical collecting tubules via epithelial sodium channels (ENaC). The ability of vasopressin to upregulate ENaC via a cAMP-dependent mechanism in the medium to long term is well established. This study addressed the acute regulatory effect of cAMP on human ENaC (hENaC) and thus the potential role of vasopressin in the initial compensatory responses to haemorrhagic shock. The effects of raising intracellular cAMP (using 5 mmol/L isobutylmethylxanthine (IBMX) and 50 μmol/L forskolin) on wild-type and Liddle-mutated hENaC activity expressed in Xenopus oocytes and hENaC localisation in oocyte membranes were evaluated by dual-electrode voltage clamping and immunohistochemistry, respectively. After 30 min, IBMX + forskolin had stimulated amiloride-sensitive Na(+) current by 52% and increased the membrane density of Na(+) channels in oocytes expressing wild-type hENaC. These responses were prevented by 5 μmol/L brefeldin A, which blocks antegrade vesicular transport. By contrast, IBMX + forskolin had no effects in oocytes expressing Liddle-mutated hENaC. cAMP stimulated rapid, exocytotic recruitment of wild-type hENaC into Xenopus oocyte membranes, but had no effect on constitutively over-expressed Liddle-mutated hENaC. Extrapolating these findings to the early cAMP-mediated effect of vasopressin on cortical collecting tubule cells, they suggest that vasopressin rapidly mobilises ENaC to the apical membrane of cortical collecting tubule cells, but does not enhance ENaC activity once inserted into the membrane. We speculate that this stimulatory effect on Na(+) reabsorption (and hence water absorption) may contribute to the early restoration of extracellular fluid volume following severe haemorrhage.
Collapse
|
43
|
Edinger RS, Bertrand CA, Rondandino C, Apodaca GA, Johnson JP, Butterworth MB. The epithelial sodium channel (ENaC) establishes a trafficking vesicle pool responsible for its regulation. PLoS One 2012; 7:e46593. [PMID: 23029554 PMCID: PMC3460899 DOI: 10.1371/journal.pone.0046593] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/05/2012] [Indexed: 12/16/2022] Open
Abstract
The epithelial sodium channel (ENaC) is the rate-limiting step for sodium reabsorption across tight epithelia. Cyclic-AMP (cAMP) stimulation promotes ENaC trafficking to the apical surface to increase channel number and transcellular Na(+) transport. Removal of corticosteroid supplementation in a cultured cortical collecting duct cell line reduced ENaC expression. Concurrently, the number of vesicles trafficked in response to cAMP stimulation, as measured by a change in membrane capacitance, also decreased. Stimulation with aldosterone restored both the basal and cAMP-stimulated ENaC activity and increased the number of exocytosed vesicles. Knocking down ENaC directly decreased both the cAMP-stimulated short-circuit current and capacitance response in the presence of aldosterone. However, constitutive apical recycling of the Immunoglobulin A receptor was unaffected by alterations in ENaC expression or trafficking. Fischer Rat Thyroid cells, transfected with α,β,γ-mENaC had a significantly greater membrane capacitance response to cAMP stimulation compared to non-ENaC controls. Finally, immunofluorescent labeling and quantitation revealed a smaller number of vesicles in cells where ENaC expression was reduced. These findings indicate that ENaC is not a passive passenger in regulated epithelial vesicle trafficking, but plays a role in establishing and maintaining the pool of vesicles that respond to cAMP stimulation.
Collapse
Affiliation(s)
- Robert S. Edinger
- Department of Medicine, Renal-Electrolyte Division, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Carol A. Bertrand
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Christine Rondandino
- Department of Medicine, Renal-Electrolyte Division, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Gerard A. Apodaca
- Department of Medicine, Renal-Electrolyte Division, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - John P. Johnson
- Department of Medicine, Renal-Electrolyte Division, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael B. Butterworth
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
44
|
Kashlan OB, Kleyman TR. Epithelial Na(+) channel regulation by cytoplasmic and extracellular factors. Exp Cell Res 2012; 318:1011-9. [PMID: 22405998 DOI: 10.1016/j.yexcr.2012.02.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 02/24/2012] [Indexed: 11/30/2022]
Abstract
Electrogenic Na(+) transport across high resistance epithelial is mediated by the epithelial Na(+) channel (ENaC). Our understanding of the mechanisms of ENaC regulation has continued to evolve over the two decades following the cloning of ENaC subunits. This review highlights many of the cellular and extracellular factors that regulate channel trafficking or gating.
Collapse
Affiliation(s)
- Ossama B Kashlan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | | |
Collapse
|
45
|
Butterworth MB, Edinger RS, Silvis MR, Gallo LI, Liang X, Apodaca G, Frizzell RA, Fizzell RA, Johnson JP. Rab11b regulates the trafficking and recycling of the epithelial sodium channel (ENaC). Am J Physiol Renal Physiol 2011; 302:F581-90. [PMID: 22129970 DOI: 10.1152/ajprenal.00304.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression of the epithelial sodium channel (ENaC) at the apical membrane of cortical collecting duct (CCD) principal cells is modulated by regulated trafficking mediated by vesicle insertion and retrieval. Small GTPases are known to facilitate vesicle trafficking, recycling, and membrane fusion events; however, little is known about the specific Rab family members that modify ENaC surface density. Using a mouse CCD cell line that endogenously expresses ENaC (mpkCCD), the channel was localized to both Rab11a- and Rab11b-positive endosomes by immunoisolation and confocal fluorescent microscopy. Expression of a dominant negative (DN) form of Rab11a or Rab11b significantly reduced the basal and cAMP-stimulated ENaC-dependent sodium (Na(+)) transport. The greatest reduction in Na(+) transport was observed with the expression of DN-Rab11b. Furthermore, small interfering RNA-mediated knockdown of each Rab11 isoform demonstrated the requirement for Rab11b in ENaC surface expression. These data indicate that Rab11b, and to a lesser extent Rab11a, is involved in establishing the constitutive and cAMP-stimulated Na(+) transport in mpkCCD cells.
Collapse
Affiliation(s)
- Michael B Butterworth
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Roos KP, Strait KA, Raphael KL, Blount MA, Kohan DE. Collecting duct-specific knockout of adenylyl cyclase type VI causes a urinary concentration defect in mice. Am J Physiol Renal Physiol 2011; 302:F78-84. [PMID: 21937603 DOI: 10.1152/ajprenal.00397.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Collecting duct (CD) adenylyl cyclase VI (AC6) has been implicated in arginine vasopressin (AVP)-stimulated renal water reabsorption. To evaluate the role of CD-derived AC6 in regulating water homeostasis, mice were generated with CD-specific knockout (KO) of AC6 using the Cre/loxP system. CD AC6 KO and controls were studied under normal water intake, chronically water loaded, or water deprived; all of these conditions were repeated in the presence of continuous administration of 1-desamino-8-d-arginine vasopressin (DDAVP). During normal water intake or after water deprivation, urine osmolality (U(osm)) was reduced in CD AC6 KO animals vs. controls. Similarly, U(osm) was decreased in CD AC6 KO mice vs. controls after water deprivation+DDAVP administration. Pair-fed (with controls) CD AC6 KO mice also had lower urine osmolality vs. controls. There were no detectable differences between KO and control animals in fluid intake or urine volume under any conditions. CD AC6 KO mice did not have altered plasma AVP levels vs. controls. AVP-stimulated cAMP accumulation was reduced in acutely isolated inner medullary CD (IMCD) from CD A6 KO vs. controls. Medullary aquaporin-2 (AQP2) protein expression was lower in CD AC6 KO mice vs. controls. There were no differences in urinary urea excretion or IMCD UT-A1 expression; however, IMCD UT-A3 expression was reduced in CD AC6 KO mice vs. controls. In summary, AC6 in the CD regulates renal water excretion, most likely through control of AVP-stimulated cAMP accumulation and AQP2.
Collapse
Affiliation(s)
- Karl P Roos
- Div. of Nephrology, Univ. of Utah Health Sciences Center, 1900 East, 30 North, Salt Lake City, UT 84132, USA.
| | | | | | | | | |
Collapse
|
47
|
Stahl M, Stahl K, Brubacher MB, Forrest JN. Divergent CFTR orthologs respond differently to the channel inhibitors CFTRinh-172, glibenclamide, and GlyH-101. Am J Physiol Cell Physiol 2011; 302:C67-76. [PMID: 21940661 DOI: 10.1152/ajpcell.00225.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Comparison of diverse orthologs is a powerful tool to study the structure and function of channel proteins. We investigated the response of human, killifish, pig, and shark cystic fibrosis transmembrane conductance regulator (CFTR) to specific inhibitors of the channel: CFTR(inh)-172, glibenclamide, and GlyH-101. In three systems, including organ perfusion of the shark rectal gland, primary cultures of shark rectal gland tubules, and expression studies of each ortholog in cRNA microinjected Xenopus laevis oocytes, we observed fundamental differences in the sensitivity to inhibition by these channel blockers. In organ perfusion studies, shark CFTR was insensitive to inhibition by CFTR(inh)-172. This insensitivity was also seen in short-circuit current experiments with cultured rectal gland tubular epithelial cells (maximum inhibition 4 ± 1.3%). In oocyte expression studies, shark CFTR was again insensitive to CFTR(inh)-172 (maximum inhibition 10.3 ± 2.5% at 25 μM), pig CFTR was insensitive to glibenclamide (maximum inhibition 18.4 ± 4.4% at 250 μM), and all orthologs were sensitive to GlyH-101. The amino acid residues considered responsible by previous site-directed mutagenesis for binding of the three inhibitors are conserved in the four CFTR isoforms studied. These experiments demonstrate a profound difference in the sensitivity of different orthologs of CFTR proteins to inhibition by CFTR blockers that cannot be explained by mutagenesis of single amino acids. We believe that the potency of the inhibitors CFTR(inh)-172, glibenclamide, and GlyH-101 on the CFTR chloride channel protein is likely dictated by the local environment and the three-dimensional structure of additional residues that form the vestibules, the chloride pore, and regulatory regions of the channel.
Collapse
Affiliation(s)
- Maximilian Stahl
- Nephrology Division, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510-3222, USA
| | | | | | | |
Collapse
|
48
|
Thomas SV, Kathpalia PP, Rajagopal M, Charlton C, Zhang J, Eaton DC, Helms MN, Pao AC. Epithelial sodium channel regulation by cell surface-associated serum- and glucocorticoid-regulated kinase 1. J Biol Chem 2011; 286:32074-85. [PMID: 21784856 PMCID: PMC3173222 DOI: 10.1074/jbc.m111.278283] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 07/20/2011] [Indexed: 11/06/2022] Open
Abstract
Serum- and glucocorticoid-regulated kinase 1 (sgk1) participates in diverse biological processes, including cell growth, apoptosis, and sodium homeostasis. In the cortical collecting duct of the kidney, sgk1 regulates sodium transport by stimulating the epithelial sodium channel (ENaC). Control of subcellular localization of sgk1 may be an important mechanism for modulating specificity of sgk1 function; however, which subcellular locations are required for sgk1-regulated ENaC activity in collecting duct cells has yet to be established. Using cell surface biotinylation studies, we detected endogenous sgk1 at the apical cell membrane of aldosterone-stimulated mpkCCD(c14) collecting duct cells. The association of sgk1 with the cell membrane was enhanced when ENaC was co-transfected with sgk1 in kidney cells, suggesting that ENaC brings sgk1 to the cell surface. Furthermore, association of endogenous sgk1 with the apical cell membrane of mpkCCD(c14) cells could be modulated by treatments that increase or decrease ENaC expression at the apical membrane; forskolin increased the association of sgk1 with the apical surface, whereas methyl-β-cyclodextrin decreased the association of sgk1 with the apical surface. Single channel recordings of excised inside-out patches from the apical membrane of aldosterone-stimulated A6 collecting duct cells revealed that the open probability of ENaC was sensitive to the sgk1 inhibitor GSK650394, indicating that endogenous sgk1 is functionally active at the apical cell membrane. We propose that the association of sgk1 with the apical cell membrane, where it interacts with ENaC, is a novel means by which sgk1 specifically enhances ENaC activity in aldosterone-stimulated collecting duct cells.
Collapse
Affiliation(s)
- Sheela V. Thomas
- From the Department of Medicine, Division of Nephrology, Stanford University, Stanford, California 94305
| | - Paru P. Kathpalia
- From the Department of Medicine, Division of Nephrology, Stanford University, Stanford, California 94305
| | - Madhumitha Rajagopal
- From the Department of Medicine, Division of Nephrology, Stanford University, Stanford, California 94305
| | - Carol Charlton
- From the Department of Medicine, Division of Nephrology, Stanford University, Stanford, California 94305
| | - Jianning Zhang
- the Department of Medicine, Division of Nephrology, University of Texas, Southwestern Medical Center, Dallas, Texas 75390, and
| | - Douglas C. Eaton
- the Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - My N. Helms
- the Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Alan C. Pao
- From the Department of Medicine, Division of Nephrology, Stanford University, Stanford, California 94305
| |
Collapse
|
49
|
Chang T, Ke Y, Ly K, McDonald FJ. COMMD1 regulates the delta epithelial sodium channel (δENaC) through trafficking and ubiquitination. Biochem Biophys Res Commun 2011; 411:506-11. [DOI: 10.1016/j.bbrc.2011.06.149] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 06/22/2011] [Indexed: 11/16/2022]
|
50
|
Abstract
The steroid hormone aldosterone is a key regulator of electrolyte transport in the kidney and contributes to both homeostatic whole-body electrolyte balance and the development of renal and cardiovascular pathologies. Aldosterone exerts its action principally through the mineralocorticoid receptor (MR), which acts as a ligand-dependent transcription factor in target tissues. Aldosterone also stimulates the activation of protein kinases and secondary messenger signaling cascades that act independently on specific molecular targets in the cell membrane and also modulate the transcriptional action of aldosterone through MR. This review describes current knowledge regarding the mechanisms and targets of rapid aldosterone action in the nephron and how aldosterone integrates these responses into the regulation of renal physiology.
Collapse
Affiliation(s)
- Warren Thomas
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.
| | | |
Collapse
|