1
|
Henze E, Burkhardt RN, Fox BW, Schwertfeger TJ, Gelsleichter E, Michalski K, Kramer L, Lenfest M, Boesch JM, Lin H, Schroeder FC, Kawate T. ATP-release pannexin channels are gated by lysophospholipids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.23.563601. [PMID: 37961151 PMCID: PMC10634739 DOI: 10.1101/2023.10.23.563601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In addition to its role as cellular energy currency, adenosine triphosphate (ATP) serves as an extracellular messenger that mediates diverse cell-to-cell communication. Compelling evidence supports that ATP is released from cells through pannexins, a family of membrane proteins that form heptameric large-pore channels. However, the activation mechanisms that trigger ATP release by pannexins remain poorly understood. Here, we discover lysophospholipids as endogenous pannexin activators, using activity-guided fractionation of mouse tissue extracts combined with untargeted metabolomics and electrophysiology. We show that lysophospholipids directly and reversibly activate pannexins in the absence of other proteins. Secretomics experiments reveal that lysophospholipid-activated pannexin 1 leads to the release of not only ATP but also other signaling metabolites, such as 5'-methylthioadenosine, which is important for immunomodulation. We also demonstrate that lysophospholipids activate endogenous pannexin 1 in human monocytes, leading to the release of IL-1β through inflammasome activation. Our results provide a connection between lipid metabolism and purinergic signaling, both of which play major roles in immune responses.
Collapse
|
2
|
Sayedyahossein S, Huang K, Zhang C, Karimi M, Bahmani M, O’Donnell BL, Wakefield B, Li Z, Johnston D, Leighton SE, Huver MS, Dagnino L, Sacks DB, Penuela S. Pannexin 1 crosstalk with the Hippo pathway in malignant melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611059. [PMID: 39372769 PMCID: PMC11451602 DOI: 10.1101/2024.09.03.611059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
In this study, we explored the intricate relationship between Pannexin 1 (PANX1) and the Hippo signaling pathway effector, Yes-associated protein (YAP). Analysis of The Cancer Genome Atlas (TCGA) data revealed a significant positive correlation between PANX1 mRNA and core Hippo components, YAP, TAZ, and Hippo scaffold, IQGAP1, in invasive cutaneous melanoma and breast carcinoma. Furthermore, we demonstrated that PANX1 expression is upregulated in invasive melanoma cell lines and is associated with increased YAP protein levels. Notably, our investigations uncovered a previously unrecognized interaction between endogenous PANX1 and the Hippo scaffold protein IQGAP1 in melanoma cells. Moreover, our findings revealed that IQGAP1 exhibits differential expression in melanoma cells and plays a regulatory role in cellular morphology. Functional studies involving PANX1 knockdown provided compelling evidence that PANX1 modulates YAP protein levels and its co-transcriptional activity in both melanoma and breast carcinoma cells. Importantly, our study showcases the potential therapeutic relevance of targeting PANX1, as pharmacological inhibition of PANX1 using selective FDA-approved inhibitors or PANX1 knockdown reduced YAP abundance in melanoma cells. Furthermore, our Clariom™ S analysis unveiled key genes implicated in cell proliferation, such as neuroglin1 (NRG1), β-galactoside binding protein, galectin-3 (LGALS3), that are affected in PANX1-deficient cells. In summary, our investigation delves into the intricate interplay between PANX1 and YAP in the context of invasive melanoma, offering valuable insights into potential therapeutic strategies for effective treatment.
Collapse
Affiliation(s)
- Samar Sayedyahossein
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA, 20892
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Kenneth Huang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Christopher Zhang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Mehdi Karimi
- Department of Mathematics, Illinois State University, Normal, Illinois, USA, 61790
| | | | - Brooke L. O’Donnell
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Brent Wakefield
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Danielle Johnston
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Stephanie E. Leighton
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Matthew S. Huver
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Lina Dagnino
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| |
Collapse
|
3
|
Fierro-Arenas A, Landskron G, Camhi-Vainroj I, Basterrechea B, Parada-Venegas D, Lobos-González L, Dubois-Camacho K, Araneda C, Romero C, Domínguez A, Vásquez G, López-K F, Alvarez K, González CM, Hager Ribeiro C, Balboa E, Eugenin E, Hermoso MA, De la Fuente López M. Pannexin-1 expression in tumor cells correlates with colon cancer progression and survival. Life Sci 2024; 351:122851. [PMID: 38897345 DOI: 10.1016/j.lfs.2024.122851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
AIMS Pannexin-1 (PANX1) is a hemichannel that releases ATP upon opening, initiating inflammation, cell proliferation, and migration. However, the role of PANX1 channels in colon cancer remains poorly understood, thus constituting the focus of this study. MAIN METHODS PANX1 mRNA expression was analyzed using multiple cancer databases. PANX1 protein expression and distribution were evaluated by immunohistochemistry on primary tumor tissue and non-tumor colonic mucosa from colon cancer patients. PANX1 inhibitors (probenecid or 10Panx) were used to assess colon cancer cell lines viability. To study the role of PANX1 in vivo, a subcutaneous xenograft model using HCT116 cells was performed in BALB/c NOD/SCID immunodeficient mice to evaluate tumor growth under PANX1 inhibition using probenecid. KEY FINDINGS PANX1 mRNA was upregulated in colon cancer tissue compared to non-tumor colonic mucosa. Elevated PANX1 mRNA expression in tumors correlated with worse disease-free survival. PANX1 protein abundance was increased on tumor cells compared to epithelial cells in paired samples, in a cancer stage-dependent manner. In vitro and in vivo experiments indicated that blocking PANX1 reduced cell viability and tumor growth. SIGNIFICANCE PANX1 can be used as a biomarker of colon cancer progression and blocking PANX1 channel opening could be used as a potential therapeutic strategy against this disease.
Collapse
Affiliation(s)
- Aaron Fierro-Arenas
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Glauben Landskron
- Center of Biomedical Research (CIBMED), School of Medicine, Faculty of Medicine-Clínica Las Condes, Universidad Finis Terrae, Santiago, Chile
| | - Ilan Camhi-Vainroj
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Benjamín Basterrechea
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Daniela Parada-Venegas
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lorena Lobos-González
- Regenerative Medicine Center, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Karen Dubois-Camacho
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Catalina Araneda
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Center of Biomedical Research (CIBMED), School of Medicine, Faculty of Medicine-Clínica Las Condes, Universidad Finis Terrae, Santiago, Chile
| | - Camila Romero
- Center of Biomedical Research (CIBMED), School of Medicine, Faculty of Medicine-Clínica Las Condes, Universidad Finis Terrae, Santiago, Chile
| | - Antonia Domínguez
- Center of Biomedical Research (CIBMED), School of Medicine, Faculty of Medicine-Clínica Las Condes, Universidad Finis Terrae, Santiago, Chile
| | - Gonzalo Vásquez
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Center of Biomedical Research (CIBMED), School of Medicine, Faculty of Medicine-Clínica Las Condes, Universidad Finis Terrae, Santiago, Chile
| | | | - Karin Alvarez
- Cancer Center, Clínica Universidad de los Andes, Santiago, Chile
| | - Carlos M González
- School of Veterinary Medicine, Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile
| | | | - Elisa Balboa
- Center of Biomedical Research (CIBMED), School of Medicine, Faculty of Medicine-Clínica Las Condes, Universidad Finis Terrae, Santiago, Chile
| | - Eliseo Eugenin
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch (UTMB), Galveston, USA
| | - Marcela A Hermoso
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marjorie De la Fuente López
- Center of Biomedical Research (CIBMED), School of Medicine, Faculty of Medicine-Clínica Las Condes, Universidad Finis Terrae, Santiago, Chile.
| |
Collapse
|
4
|
Pavelec CM, Young AP, Luviano HL, Orrell EE, Szagdaj A, Poudel N, Wolpe AG, Thomas SH, Yeudall S, Upchurch CM, Okusa MD, Isakson BE, Wolf MJ, Leitinger N. Cardiomyocyte PANX1 Controls Glycolysis and Neutrophil Recruitment in Hypertrophy. Circ Res 2024; 135:503-517. [PMID: 38957990 PMCID: PMC11293983 DOI: 10.1161/circresaha.124.324650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND PANX1 (pannexin 1), a ubiquitously expressed ATP release membrane channel, has been shown to play a role in inflammation, blood pressure regulation, and myocardial infarction. However, the possible role of PANX1 in cardiomyocytes in the progression of heart failure has not yet been investigated. METHOD We generated a novel mouse line with constitutive deletion of PANX1 in cardiomyocytes (Panx1MyHC6). RESULTS PANX1 deletion in cardiomyocytes had no effect on unstressed heart function but increased the glycolytic metabolism and resulting glycolytic ATP production, with a concurrent decrease in oxidative phosphorylation, both in vivo and in vitro. In vitro, treatment of H9c2 (H9c2 rat myoblast cell line) cardiomyocytes with isoproterenol led to PANX1-dependent release of ATP and Yo-Pro-1 uptake, as assessed by pharmacological blockade with spironolactone and siRNA-mediated knockdown of PANX1. To investigate nonischemic heart failure and the preceding cardiac hypertrophy, we administered isoproterenol, and we demonstrated that Panx1MyHC6 mice were protected from systolic and diastolic left ventricle volume increases as a result of cardiomyocyte hypertrophy. Moreover, we found that Panx1MyHC6 mice showed decreased isoproterenol-induced recruitment of immune cells (CD45+), particularly neutrophils (CD11b+ [integrin subunit alpha M], Ly6g+ [lymphocyte antigen 6 family member G]), to the myocardium. CONCLUSIONS Together, these data demonstrate that PANX1 deficiency in cardiomyocytes increases glycolytic metabolism and protects against cardiac hypertrophy in nonischemic heart failure at least in part by reducing immune cell recruitment. Our study implies PANX1 channel inhibition as a therapeutic approach to ameliorate cardiac dysfunction in patients with heart failure.
Collapse
Affiliation(s)
- Caitlin M Pavelec
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Alexander P Young
- Cardiovascular Medicine, Department of Medicine (A.P.Y., M.J.W.), University of Virginia School of Medicine, Charlottesville
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Hannah L Luviano
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Emily E Orrell
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Anna Szagdaj
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Nabin Poudel
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (N.P., M.D.O.), University of Virginia School of Medicine, Charlottesville
| | - Abigail G Wolpe
- Department of Cell Biology (A.G.W.), University of Virginia School of Medicine, Charlottesville
| | - Samantha H Thomas
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Scott Yeudall
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Clint M Upchurch
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (N.P., M.D.O.), University of Virginia School of Medicine, Charlottesville
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
- Department of Molecular Physiology and Biological Physics (B.E.I.), University of Virginia School of Medicine, Charlottesville
| | - Matthew J Wolf
- Cardiovascular Medicine, Department of Medicine (A.P.Y., M.J.W.), University of Virginia School of Medicine, Charlottesville
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Norbert Leitinger
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
5
|
Morishita K, Nakashima H, Machino M, Ito S, Segi N, Miyairi Y, Morita Y, Imagama S. Adenosine triphosphate release inhibitors targeting pannexin1 improve recovery after spinal cord injury. NAGOYA JOURNAL OF MEDICAL SCIENCE 2024; 86:392-406. [PMID: 39355370 PMCID: PMC11439608 DOI: 10.18999/nagjms.86.3.392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/08/2023] [Indexed: 10/03/2024]
Abstract
Traumatic spinal cord injury is characterized by immediate and irreversible tissue loss at the lesion site and secondary tissue damage. Secondary injuries should, in principle, be preventable, although no effective treatment options currently exist for patients with acute spinal cord injury. Traumatized tissues release excessive amounts of adenosine triphosphate and activate the P2X purinoceptor 7/pannexin1 complex, which is associated with secondary injury. We investigated the neuroprotective effects of the blue dye Brilliant Blue FCF, a selective inhibitor of P2X purinoceptor 7/pannexin1 that is approved for use as a food coloring, by comparing it with Brilliant Blue G, a P2X7 purinoceptor antagonist, and carbenoxolone, which attenuates P2X purinoceptor 7/pannexin1 function, in a rat spinal cord injury model. Brilliant Blue FCF administered early after spinal cord injury reduced spinal cord anatomical damage and improved motor recovery without apparent toxicity. Brilliant Blue G had the highest effect on this neurological recovery, with Brilliant Blue FCF and carbenoxolone having comparable improvement. Furthermore, Brilliant Blue FCF administration reduced local astrocytic and microglial activation and neutrophil infiltration, and no differences in these histological effects were observed between compounds. Thus, Brilliant Blue FCF protects spinal cord neurons after spinal cord injury and suppresses local inflammatory responses as well as Brilliant Blue G and carbenoxolone.
Collapse
Affiliation(s)
- Kazuaki Morishita
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Nakashima
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Machino
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sadayuki Ito
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Segi
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Miyairi
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Morita
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shiro Imagama
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
6
|
Dossi E, Zonca L, Pivonkova H, Milior G, Moulard J, Vargova L, Chever O, Holcman D, Rouach N. Astroglial gap junctions strengthen hippocampal network activity by sustaining afterhyperpolarization via KCNQ channels. Cell Rep 2024; 43:114158. [PMID: 38722742 DOI: 10.1016/j.celrep.2024.114158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 04/11/2024] [Indexed: 06/01/2024] Open
Abstract
Throughout the brain, astrocytes form networks mediated by gap junction channels that promote the activity of neuronal ensembles. Although their inputs on neuronal information processing are well established, how molecular gap junction channels shape neuronal network patterns remains unclear. Here, using astroglial connexin-deficient mice, in which astrocytes are disconnected and neuronal bursting patterns are abnormal, we show that astrocyte networks strengthen bursting activity via dynamic regulation of extracellular potassium levels, independently of glutamate homeostasis or metabolic support. Using a facilitation-depression model, we identify neuronal afterhyperpolarization as the key parameter underlying bursting pattern regulation by extracellular potassium in mice with disconnected astrocytes. We confirm this prediction experimentally and reveal that astroglial network control of extracellular potassium sustains neuronal afterhyperpolarization via KCNQ voltage-gated K+ channels. Altogether, these data delineate how astroglial gap junctions mechanistically strengthen neuronal population bursts and point to approaches for controlling aberrant activity in neurological diseases.
Collapse
Affiliation(s)
- Elena Dossi
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Lou Zonca
- Group of Data Modeling and Computational Biology, Institute of Biology, Ecole Normale Superieure, CNRS, INSERM, Université PSL, Paris, France; ED386, Ecole Doctorale de Sciences Mathématiques Paris Centre, Paris, France
| | - Helena Pivonkova
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France; Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic; 2(nd) Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Giampaolo Milior
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Julien Moulard
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Lydia Vargova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic; 2(nd) Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Oana Chever
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - David Holcman
- Group of Data Modeling and Computational Biology, Institute of Biology, Ecole Normale Superieure, CNRS, INSERM, Université PSL, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France.
| |
Collapse
|
7
|
Luo Y, Zheng S, Xiao W, Zhang H, Li Y. Pannexins in the musculoskeletal system: new targets for development and disease progression. Bone Res 2024; 12:26. [PMID: 38705887 PMCID: PMC11070431 DOI: 10.1038/s41413-024-00334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
During cell differentiation, growth, and development, cells can respond to extracellular stimuli through communication channels. Pannexin (Panx) family and connexin (Cx) family are two important types of channel-forming proteins. Panx family contains three members (Panx1-3) and is expressed widely in bone, cartilage and muscle. Although there is no sequence homology between Panx family and Cx family, they exhibit similar configurations and functions. Similar to Cxs, the key roles of Panxs in the maintenance of physiological functions of the musculoskeletal system and disease progression were gradually revealed later. Here, we seek to elucidate the structure of Panxs and their roles in regulating processes such as osteogenesis, chondrogenesis, and muscle growth. We also focus on the comparison between Cx and Panx. As a new key target, Panxs expression imbalance and dysfunction in muscle and the therapeutic potentials of Panxs in joint diseases are also discussed.
Collapse
Affiliation(s)
- Yan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, 410008, China
| | - Shengyuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, 410008, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hang Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
8
|
Hussain N, Apotikar A, Pidathala S, Mukherjee S, Burada AP, Sikdar SK, Vinothkumar KR, Penmatsa A. Cryo-EM structures of pannexin 1 and 3 reveal differences among pannexin isoforms. Nat Commun 2024; 15:2942. [PMID: 38580658 PMCID: PMC10997603 DOI: 10.1038/s41467-024-47142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
Pannexins are single-membrane large-pore channels that release ions and ATP upon activation. Three isoforms of pannexins 1, 2, and 3, perform diverse cellular roles and differ in their pore lining residues. In this study, we report the cryo-EM structure of pannexin 3 at 3.9 Å and analyze its structural differences with pannexin isoforms 1 and 2. The pannexin 3 vestibule has two distinct chambers and a wider pore radius in comparison to pannexins 1 and 2. We further report two cryo-EM structures of pannexin 1, with pore substitutions W74R/R75D that mimic the pore lining residues of pannexin 2 and a germline mutant of pannexin 1, R217H at resolutions of 3.2 Å and 3.9 Å, respectively. Substitution of cationic residues in the vestibule of pannexin 1 results in reduced ATP interaction propensities to the channel. The germline mutant R217H in transmembrane helix 3 (TM3), leads to a partially constricted pore, reduced ATP interaction and weakened voltage sensitivity. The study compares the three pannexin isoform structures, the effects of substitutions of pore and vestibule-lining residues and allosteric effects of a pathological substitution on channel structure and function thereby enhancing our understanding of this vital group of ATP-release channels.
Collapse
Affiliation(s)
- Nazia Hussain
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Ashish Apotikar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Shabareesh Pidathala
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sourajit Mukherjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
- Department of Chemistry, The University of Chicago, Chicago, USA
| | - Ananth Prasad Burada
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Sujit Kumar Sikdar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Kutti R Vinothkumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| | - Aravind Penmatsa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
9
|
Pavelec CM, Young AP, Luviano HL, Orrell EE, Szagdaj A, Poudel N, Wolpe AG, Thomas SH, Yeudall S, Upchurch CM, Okusa MD, Isakson BE, Wolf MJ, Leitinger N. Pannexin 1 Channels Control Cardiomyocyte Metabolism and Neutrophil Recruitment During Non-Ischemic Heart Failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.29.573679. [PMID: 38234768 PMCID: PMC10793433 DOI: 10.1101/2023.12.29.573679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Pannexin 1 (PANX1), a ubiquitously expressed ATP release membrane channel, has been shown to play a role in inflammation, blood pressure regulation, and myocardial infarction. However, a possible role of PANX1 in cardiomyocytes in the progression of heart failure has not yet been investigated. We generated a novel mouse line with constitutive deletion of PANX1 in cardiomyocytes (Panx1 MyHC6 ). PANX1 deletion in cardiomyocytes had no effect on unstressed heart function but increased the glycolytic metabolism both in vivo and in vitro . In vitro , treatment of H9c2 cardiomyocytes with isoproterenol led to PANX1-dependent release of ATP and Yo-Pro-1 uptake, as assessed by pharmacological blockade with spironolactone and siRNA-mediated knock-down of PANX1. To investigate non-ischemic heart failure and the preceding cardiac hypertrophy we administered isoproterenol, and we demonstrate that Panx1 MyHC6 mice were protected from systolic and diastolic left ventricle volume increases and cardiomyocyte hypertrophy. Moreover, we found that Panx1 MyHC6 mice showed decreased isoproterenol-induced recruitment of immune cells (CD45 + ), particularly neutrophils (CD11b + , Ly6g + ), to the myocardium. Together these data demonstrate that PANX1 deficiency in cardiomyocytes impacts glycolytic metabolism and protects against cardiac hypertrophy in non-ischemic heart failure at least in part by reducing immune cell recruitment. Our study implies PANX1 channel inhibition as a therapeutic approach to ameliorate cardiac dysfunction in heart failure patients.
Collapse
|
10
|
Wang J, Mim C, Dahll G, Barro-Soria R. A metastasis-associated Pannexin1 mutant (Panx1 1-89 ) forms a minimalist ATP release channel. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584732. [PMID: 38559162 PMCID: PMC10980048 DOI: 10.1101/2024.03.12.584732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A truncated form of the ATP release channel pannexin 1 (Panx1), Panx1 1-89 , is enriched in metastatic breast cancer cells and has been proposed to mediate metastatic cell survival by increasing ATP release through mechanosensitive Panx1 channels. However, whether Panx1 1-89 on its own (without the presence of wtPanx1) mediates ATP release has not been tested. Here, we show that Panx1 1-89 by itself can form a constitutively active membrane channel, capable of releasing ATP even in the absence of wild type Panx1. Our biophysical characterization reveals that most basic structure-function features of the channel pore are conserved in the truncated Panx1 1-89 peptide. Thus, augmenting extracellular potassium ion concentrations enhances Panx1 1-89 -mediated conductance. Moreover, despite the severe truncation, Panx1 1-89 retains the sensitivity to most of wtPanx1 channel inhibitors and can thus be targeted. Therefore, Panx1 blockers have the potential to be of therapeutic value to combat metastatic cell survival. Our study not only elucidates a mechanism for ATP release from cancer cells, but it also supports that the Panx1 1-89 mutant should facilitate structure-function analysis of Panx1 channels.
Collapse
|
11
|
Fukuyama K, Motomura E, Okada M. Age-Dependent Activation of Purinergic Transmission Contributes to the Development of Epileptogenesis in ADSHE Model Rats. Biomolecules 2024; 14:204. [PMID: 38397441 PMCID: PMC10886636 DOI: 10.3390/biom14020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
To explore the developmental processes of epileptogenesis/ictogenesis, this study determined age-dependent functional abnormalities associated with purinergic transmission in a genetic rat model (S286L-TG) of autosomal-dominant sleep-related hypermotor epilepsy (ADSHE). The age-dependent fluctuations in the release of ATP and L-glutamate in the orbitofrontal cortex (OFC) were determined using microdialysis and ultra-high-performance liquid chromatography with mass spectrometry (UHPLC-MS). ATP release from cultured astrocytes was also determined using UHPLC-MS. The expressions of P2X7 receptor (P2X7R), connexin 43, phosphorylated-Akt and phosphorylated-Erk were determined using capillary immunoblotting. No functional abnormalities associated with purinergic transmission could be detected in the OFC of 4-week-old S286L-TG and cultured S286L-TG astrocytes. However, P2X7R expression, as well as basal and P2X7R agonist-induced ATP releases, was enhanced in S286L-TG OFC in the critical ADSHE seizure onset period (7-week-old). Long-term exposure to a modest level of P2X7R agonist, which could not increase astroglial ATP release, for 14 d increased the expressions of P2X7R and connexin 43 and the signaling of Akt and Erk in astrocytes, and it enhanced the sensitivity of P2X7R to its agonists. Akt but not Erk increased P2X7R expression, whereas both Akt and Erk increased connexin 43 expression. Functional abnormalities, enhanced ATP release and P2X7R expression were already seen before the onset of ADSHE seizure in S286L-TG. Additionally, long-term exposure to the P2X7R agonist mimicked the functional abnormalities associated with purinergic transmission in astrocytes, similar to those in S286L-TG OFC. Therefore, these results suggest that long-term modestly enhanced purinergic transmission and/or activated P2X7R are, at least partially, involved in the development of the epileptogenesis of ADSHE, rather than that of ictogenesis.
Collapse
Affiliation(s)
| | | | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.F.); (E.M.)
| |
Collapse
|
12
|
McAllister BB, Stokes-Heck S, Harding EK, van den Hoogen NJ, Trang T. Targeting Pannexin-1 Channels: Addressing the 'Gap' in Chronic Pain. CNS Drugs 2024; 38:77-91. [PMID: 38353876 DOI: 10.1007/s40263-024-01061-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/22/2024]
Abstract
Chronic pain complicates many diseases and is notoriously difficult to treat. In search of new therapeutic targets, pannexin-1 (Panx1) channels have sparked intense interest as a key mechanism involved in a variety of chronic pain conditions. Panx1 channels are transmembrane proteins that release ions and small molecules, such as adenosine triphosphate (ATP). They are expressed along important nodes of the pain pathway, modulating activity of diverse cell types implicated in the development and progression of chronic pain caused by injury or pathology. This review highlights advances that have unlocked the core structure and machinery controlling Panx1 function with a focus on understanding and treating chronic pain.
Collapse
Affiliation(s)
- Brendan B McAllister
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Sierra Stokes-Heck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Erika K Harding
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Nynke J van den Hoogen
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Tuan Trang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
13
|
Fukuyama K, Motomura E, Okada M. Age-Dependent Activation of Pannexin1 Function Contributes to the Development of Epileptogenesis in Autosomal Dominant Sleep-related Hypermotor Epilepsy Model Rats. Int J Mol Sci 2024; 25:1619. [PMID: 38338895 PMCID: PMC10855882 DOI: 10.3390/ijms25031619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
To explore the processes of epileptogenesis/ictogenesis, this study determined the age-dependent development of the functional abnormalities in astroglial transmission associated with pannexin1-hemichannel using a genetic rat model of autosomal dominant sleep-related hypermotor epilepsy (ADSHE) named 'S286L-TG'. Pannexin1 expression in the plasma membrane of primary cultured cortical astrocytes and the orbitofrontal cortex (OFC), which is an ADSHE focus region, were determined using capillary immunoblotting. Astroglial D-serine releases induced by artificial high-frequency oscillation (HFO)-evoked stimulation, the removal of extracellular Ca2+, and the P2X7 receptor agonist (BzATP) were determined using ultra-high performance liquid chromatography (UHPLC). The expressions of pannexin1 in the plasma membrane fraction of the OFC in S286L-TG at four weeks old were almost equivalent when compared to the wild type. The pannexin1 expression in the OFC of the wild type non-statistically decreased age-dependently, whereas that in S286L-TG significantly increased age-dependently, resulting in relatively increasing pannexin1 expression from the 7- (at the onset of interictal discharge) and 10-week-old (after the ADSHE seizure onset) S286L-TG compared to the wild type. However, no functional abnormalities of astroglial pannexin1 expression or D-serine release through the pannexin1-hemichannels from the cultured astrocytes of S286L-TG could be detected. Acutely HFO-evoked stimulation, such as physiological ripple burst (200 Hz) and epileptogenic fast ripple burst (500 Hz), frequency-dependently increased both pannexin1 expression in the astroglial plasma membrane and astroglial D-serine release. Neither the selective inhibitors of pannexin1-hemichannel (10PANX) nor connexin43-hemichannel (Gap19) affected astroglial D-serine release during the resting stage, whereas HFO-evoked D-serine release was suppressed by both inhibitors. The inhibitory effect of 10PANX on the ripple burst-evoked D-serine release was more predominant than that of Gap19, whereas fast ripple burst-evoked D-serine release was predominantly suppressed by Gap19 rather than 10PANX. Astroglial D-serine release induced by acute exposure to BzATP was suppressed by 10PANX but not by Gap19. These results suggest that physiological ripple burst during the sleep spindle plays important roles in the organization of some components of cognition in healthy individuals, but conversely, it contributes to the initial development of epileptogenesis/ictogenesis in individuals who have ADSHE vulnerability via activation of the astroglial excitatory transmission associated with pannexin1-hemichannels.
Collapse
Affiliation(s)
| | | | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.F.); (E.M.)
| |
Collapse
|
14
|
O'Donnell BL, Penuela S. Skin in the game: pannexin channels in healthy and cancerous skin. Biochem J 2023; 480:1929-1949. [PMID: 38038973 DOI: 10.1042/bcj20230176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
The skin is a highly organized tissue composed of multiple layers and cell types that require coordinated cell to cell communication to maintain tissue homeostasis. In skin cancer, this organized structure and communication is disrupted, prompting the malignant transformation of healthy cells into melanoma, basal cell carcinoma or squamous cell carcinoma tumours. One such family of channel proteins critical for cellular communication is pannexins (PANX1, PANX2, PANX3), all of which are present in the skin. These heptameric single-membrane channels act as conduits for small molecules and ions like ATP and Ca2+ but have also been shown to have channel-independent functions through their interacting partners or action in signalling pathways. Pannexins have diverse roles in the skin such as in skin development, aging, barrier function, keratinocyte differentiation, inflammation, and wound healing, which were discovered through work with pannexin knockout mice, organotypic epidermis models, primary cells, and immortalized cell lines. In the context of cutaneous cancer, PANX1 is present at high levels in melanoma tumours and functions in melanoma carcinogenesis, and both PANX1 and PANX3 expression is altered in non-melanoma skin cancer. PANX2 has thus far not been implicated in any skin cancer. This review will discuss pannexin isoforms, structure, trafficking, post-translational modifications, interactome, and channel activity. We will also outline the expression, localization, and function of pannexin channels within the diverse cell types of the epidermis, dermis, hypodermis, and adnexal structures of the skin, and how these properties are exploited or abrogated in instances of skin cancer.
Collapse
Affiliation(s)
- Brooke L O'Donnell
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
- Department of Oncology, Division of Experimental Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
15
|
Duszyc K, von Pein JB, Ramnath D, Currin-Ross D, Verma S, Lim F, Sweet MJ, Schroder K, Yap AS. Apical extrusion prevents apoptosis from activating an acute inflammatory program in epithelia. Dev Cell 2023; 58:2235-2248.e6. [PMID: 37647898 DOI: 10.1016/j.devcel.2023.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/20/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Apoptosis is traditionally considered to be an immunologically silent form of cell death. Multiple mechanisms exist to ensure that apoptosis does not stimulate the immune system to cause inflammation or autoimmunity. Against this expectation, we now report that epithelia are programmed to provoke, rather than suppress, inflammation in response to apoptosis. We found that an acute inflammatory response led by neutrophils occurs in zebrafish and cell culture when apoptotic epithelial cells cannot be expelled from the monolayer by apical extrusion. This reflects an intrinsic circuit where ATP released from apoptotic cells stimulates epithelial cells in the immediate vicinity to produce interleukin-8 (IL-8). Apical extrusion therefore prevents inappropriate epithelial inflammation by physically eliminating apoptotic cells before they can activate this pro-inflammatory circuit. This carries the implication that epithelia may be predisposed to inflammation, elicited by sporadic or induced apoptosis, if apical extrusion is compromised.
Collapse
Affiliation(s)
- Kinga Duszyc
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| | - Jessica B von Pein
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Divya Ramnath
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Denni Currin-Ross
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Suzie Verma
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Fayth Lim
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Matthew J Sweet
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Kate Schroder
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Alpha S Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
16
|
Mascayano C, Muñoz-Osses M, Navarrete E, Torres P, Torres-González S, Morales P, Huidobro-Toro JP. Natural pentacyclic triterpenoid as allosteric modulators of human 5-lipoxygenase with potential anti-inflammatory activity. J Biomol Struct Dyn 2023:1-9. [PMID: 37909479 DOI: 10.1080/07391102.2023.2276875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
This study explored new methods to inhibit human 5-lipoxygenase (5-hLOX) by analyzing natural terpenes that share structural similarities with acetoxyboswellic acid (AKBA). Enzymatic assays were used to evaluate the terpene's ability to inhibit the enzyme, potentially providing anti-inflammatory benefits. Our research focused on how certain types of triterpenes can inhibit 5-hLOX allosterically via a newly discovered allosteric site identified by enzyme crystallization. To determine whether natural boswellic acid analogs mimicked the allosteric known inhibitor AKBA, we combined 5-hLOX inhibition with in silico modeling. Our research has discovered that certain amino acids, specifically Arg 138, Arg 101, Arg 68, and Gln129, located in the allosteric 5-hLOX pocket, play a critical role in stabilizing glycyrrhetinic isomers. These amino acids form hydrogen bonds and hydrophobic interactions that contribute to the inhibitory potency of boswellic acid derivatives. We have found that α and β glycyrrhetinic acid isomers, carbenoxolone, and to a minor extent, prednisolone, have a potent inhibitory effect against 5-hLOX with IC50 values of 8.64, 3.94, 52.98, and 291.20 µM, respectively. These values are in line with our calculated in silico allosteric site binding energy estimations. In contrast, other steroidal or non-steroidal anti-inflammatory agents exhibited inhibitory potencies larger than 500 μM. However, the specific pharmacodynamic mechanisms are currently unknown. We propose that AKBA analogs may lead to the future development of novel anti-inflammatory agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Carolina Mascayano
- Laboratorio de Diseño Racional de Fármacos y Simulación Molecular, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Michelle Muñoz-Osses
- Laboratorio de Diseño Racional de Fármacos y Simulación Molecular, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Elizabeth Navarrete
- Laboratorio de Diseño Racional de Fármacos y Simulación Molecular, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Paulina Torres
- Laboratorio de Diseño Racional de Fármacos y Simulación Molecular, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Simón Torres-González
- Laboratorio de Diseño Racional de Fármacos y Simulación Molecular, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Pilar Morales
- Laboratorio de Diseño Racional de Fármacos y Simulación Molecular, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Juan Pablo Huidobro-Toro
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro para el Desarrollo de Nanociencia y Nanotecnología, CEDENNA, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
17
|
Lamouroux A, Tournier M, Iaculli D, Caufriez A, Rusiecka OM, Martin C, Bes V, Carpio LE, Girardin Y, Loris R, Tabernilla A, Molica F, Gozalbes R, Mayán MD, Vinken M, Kwak BR, Ballet S. Structure-Based Design and Synthesis of Stapled 10Panx1 Analogues for Use in Cardiovascular Inflammatory Diseases. J Med Chem 2023; 66:13086-13102. [PMID: 37703077 PMCID: PMC10544015 DOI: 10.1021/acs.jmedchem.3c01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 09/14/2023]
Abstract
Following a rational design, a series of macrocyclic ("stapled") peptidomimetics of 10Panx1, the most established peptide inhibitor of Pannexin1 (Panx1) channels, were developed and synthesized. Two macrocyclic analogues SBL-PX1-42 and SBL-PX1-44 outperformed the linear native peptide. During in vitro adenosine triphosphate (ATP) release and Yo-Pro-1 uptake assays in a Panx1-expressing tumor cell line, both compounds were revealed to be promising bidirectional inhibitors of Panx1 channel function, able to induce a two-fold inhibition, as compared to the native 10Panx1 sequence. The introduction of triazole-based cross-links within the peptide backbones increased helical content and enhanced in vitro proteolytic stability in human plasma (>30-fold longer half-lives, compared to 10Panx1). In adhesion assays, a "double-stapled" peptide, SBL-PX1-206 inhibited ATP release from endothelial cells, thereby efficiently reducing THP-1 monocyte adhesion to a TNF-α-activated endothelial monolayer and making it a promising candidate for future in vivo investigations in animal models of cardiovascular inflammatory disease.
Collapse
Affiliation(s)
- Arthur Lamouroux
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Malaury Tournier
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Debora Iaculli
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Anne Caufriez
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Research
Unit of In Vitro Toxicology and Dermato-Cosmetology, Department of
Pharmaceutical Sciences, Vrije Universiteit
Brussel, Laarbeeklaan
103, 1090 Brussels, Belgium
| | - Olga M. Rusiecka
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Charlotte Martin
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Viviane Bes
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Laureano E. Carpio
- ProtoQSAR
SL, Centro Europeo de Empresas Innovadoras, Parque Tecnológico de Valencia, Avda. Benjamin Franklin 12, 46980 Paterna, Spain
| | - Yana Girardin
- Structural
Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Centre for
Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Remy Loris
- Structural
Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Centre for
Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Andrés Tabernilla
- Research
Unit of In Vitro Toxicology and Dermato-Cosmetology, Department of
Pharmaceutical Sciences, Vrije Universiteit
Brussel, Laarbeeklaan
103, 1090 Brussels, Belgium
| | - Filippo Molica
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Rafael Gozalbes
- ProtoQSAR
SL, Centro Europeo de Empresas Innovadoras, Parque Tecnológico de Valencia, Avda. Benjamin Franklin 12, 46980 Paterna, Spain
- MolDrug
AI Systems SL, c/Olimpia
Arozena 45, 46018 Valencia, Spain
| | - María D. Mayán
- CellCOM
Research Group, Instituto de Investigación Biomédica
de A Coruña, Servizo Galego de Saúde, Universidade da Coruña, 15071 A Coruña, Spain
| | - Mathieu Vinken
- Research
Unit of In Vitro Toxicology and Dermato-Cosmetology, Department of
Pharmaceutical Sciences, Vrije Universiteit
Brussel, Laarbeeklaan
103, 1090 Brussels, Belgium
| | - Brenda R. Kwak
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Steven Ballet
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
18
|
Caufriez A, Lamouroux A, Martin C, Iaculli D, Ince Ergüç E, Gozalbes R, Mayan MD, Kwak BR, Tabernilla A, Vinken M, Ballet S. Determination of structural features that underpin the pannexin1 channel inhibitory activity of the peptide 10Panx1. Bioorg Chem 2023; 138:106612. [PMID: 37210827 DOI: 10.1016/j.bioorg.2023.106612] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/29/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Pannexin1 channels facilitate paracrine communication and are involved in a broad spectrum of diseases. Attempts to find appropriate pannexin1 channel inhibitors that showcase target-selective properties and in vivo applicability remain nonetheless scarce. However, a promising lead candidate, the ten amino acid long peptide mimetic 10Panx1 (H-Trp1-Arg2-Gln3-Ala4-Ala5-Phe6-Val7-Asp8-Ser9-Tyr10-OH), has shown potential as a pannexin1 channel inhibitor in both in vitro and in vivo studies. Nonetheless, structural optimization is critical for clinical use. One of the main hurdles to overcome along the optimization process consists of subduing the low biological stability (10Panx1 t1/2 = 2.27 ± 0.11 min). To tackle this issue, identification of important structural features within the decapeptide structure is warranted. For this reason, a structure-activity relationship study was performed to proteolytically stabilize the sequence. Through an Alanine scan, this study demonstrated that the side chains of Gln3 and Asp8 are crucial for 10Panx1's channel inhibitory capacity. Guided by plasma stability experiments, scissile amide bonds were identified and stabilized, while extracellular adenosine triphosphate release experiments, indicative of pannexin1 channel functionality, allowed to enhance the in vitro inhibitory capacity of 10Panx1.
Collapse
Affiliation(s)
- Anne Caufriez
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Research Group of In Vitro Toxicology and Dermato-cosmetology, Department of Pharmaceutical and Pharmacological sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Arthur Lamouroux
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Charlotte Martin
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Debora Iaculli
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Elif Ince Ergüç
- Research Group of In Vitro Toxicology and Dermato-cosmetology, Department of Pharmaceutical and Pharmacological sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Rafael Gozalbes
- ProtoQSAR SL, Centro Europeo de Empresas Innovadoras, Parque Tecnológico de Valencia, Avda. Benjamin Franklin 12, 46980 Paterna, Spain
| | - Maria D Mayan
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña, Servizo Galego de Saúde, Universidade da Coruña, 15071 A Coruña, Spain
| | - Brenda R Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Andrés Tabernilla
- Research Group of In Vitro Toxicology and Dermato-cosmetology, Department of Pharmaceutical and Pharmacological sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Research Group of In Vitro Toxicology and Dermato-cosmetology, Department of Pharmaceutical and Pharmacological sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
19
|
Wu YL, Yang AH, Chiu YH. Recent advances in the structure and activation mechanisms of metabolite-releasing Pannexin 1 channels. Biochem Soc Trans 2023; 51:1687-1699. [PMID: 37622532 DOI: 10.1042/bst20230038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Pannexin 1 (PANX1) is a widely expressed large-pore ion channel located in the plasma membrane of almost all vertebrate cells. It possesses a unique ability to act as a conduit for both inorganic ions (e.g. potassium or chloride) and bioactive metabolites (e.g. ATP or glutamate), thereby activating varying signaling pathways in an autocrine or paracrine manner. Given its crucial role in cell-cell interactions, the activity of PANX1 has been implicated in maintaining homeostasis of cardiovascular, immune, and nervous systems. Dysregulation of PANX1 has also been linked to numerous diseases, such as ischemic stroke, seizure, and inflammatory disorders. Therefore, the mechanisms underlying different modes of PANX1 activation and its context-specific channel properties have gathered significant attention. In this review, we summarize the roles of PANX1 in various physiological processes and diseases, and analyze the accumulated lines of evidence supporting diverse molecular mechanisms associated with different PANX1 activation modalities. We focus on examining recent discoveries regarding PANX1 regulations by reversible post-translational modifications, elevated intracellular calcium concentration, and protein-protein interactions, as well as by irreversible cleavage of its C-terminal tail. Additionally, we delve into the caveats in the proposed PANX1 gating mechanisms and channel open-closed configurations by critically analyzing the structural insights derived from cryo-EM studies and the unitary properties of PANX1 channels. By doing so, we aim to identify potential research directions for a better understanding of the functions and regulations of PANX1 channels.
Collapse
Affiliation(s)
- Yi-Ling Wu
- Department of Life Science, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Rd., Hsinchu 300044, Taiwan
| | - Ai-Hsing Yang
- Department of Life Science, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Rd., Hsinchu 300044, Taiwan
| | - Yu-Hsin Chiu
- Department of Life Science, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Rd., Hsinchu 300044, Taiwan
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Rd., Hsinchu 300044, Taiwan
| |
Collapse
|
20
|
Chen X, Yuan S, Mi L, Long Y, He H. Pannexin1: insight into inflammatory conditions and its potential involvement in multiple organ dysfunction syndrome. Front Immunol 2023; 14:1217366. [PMID: 37711629 PMCID: PMC10498923 DOI: 10.3389/fimmu.2023.1217366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
Sepsis represents a global health concern, and patients with severe sepsis are at risk of experiencing MODS (multiple organ dysfunction syndrome), which is associated with elevated mortality rates and a poorer prognosis. The development of sepsis involves hyperactive inflammation, immune disorder, and disrupted microcirculation. It is crucial to identify targets within these processes to develop therapeutic interventions. One such potential target is Panx1 (pannexin-1), a widely expressed transmembrane protein that facilitates the passage of molecules smaller than 1 KDa, such as ATP. Accumulating evidence has implicated the involvement of Panx1 in sepsis-associated MODS. It attracts immune cells via the purinergic signaling pathway, mediates immune responses via the Panx1-IL-33 axis, promotes immune cell apoptosis, regulates blood flow by modulating VSMCs' and vascular endothelial cells' tension, and disrupts microcirculation by elevating endothelial permeability and promoting microthrombosis. At the level of organs, Panx1 contributes to inflammatory injury in multiple organs. Panx1 primarily exacerbates injury and hinders recovery, making it a potential target for sepsis-induced MODS. While no drugs have been developed explicitly against Panx1, some compounds that inhibit Panx1 hemichannels have been used extensively in experiments. However, given that Panx1's role may vary during different phases of sepsis, more investigations are required before interventions against Panx1 can be applied in clinical. Overall, Panx1 may be a promising target for sepsis-induced MODS. Nevertheless, further research is needed to understand its complex role in different stages of sepsis fully and to develop suitable pharmaceutical interventions for clinical use.
Collapse
Affiliation(s)
| | | | | | - Yun Long
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Huaiwu He
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Zhao J, Harrison S, Levy D. Meningeal P2X7 Signaling Mediates Migraine-Related Intracranial Mechanical Hypersensitivity. J Neurosci 2023; 43:5975-5985. [PMID: 37487740 PMCID: PMC10436684 DOI: 10.1523/jneurosci.0368-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/11/2023] [Accepted: 06/02/2023] [Indexed: 07/26/2023] Open
Abstract
Cortical spreading depolarization (CSD) is a key pathophysiological event that underlies visual and sensory auras in migraine. CSD is also thought to drive the headache phase in migraine by promoting the activation and mechanical sensitization of trigeminal primary afferent nociceptive neurons that innervate the cranial meninges. The factors underlying meningeal nociception in the wake of CSD remain poorly understood but potentially involve the parenchymal release of algesic mediators and damage-associated molecular patterns, particularly ATP. Here, we explored the role of ATP-P2X purinergic receptor signaling in mediating CSD-evoked meningeal afferent activation and mechanical sensitization. Male rats were subjected to a single CSD episode. In vivo, extracellular single-unit recording was used to measure meningeal afferent ongoing activity changes. Quantitative mechanical stimuli using a servomotor force-controlled stimulator assessed changes in the afferent's mechanosensitivity. Manipulation of meningeal P2X receptors was achieved via local administration of pharmacological agents. Broad-spectrum P2X receptor inhibition, selective blockade of the P2X7 receptor, and its related Pannexin 1 channel suppressed CSD-evoked afferent mechanical sensitization but did not affect the accompanying afferent activation response. Surprisingly, inhibition of the pronociceptive P2X2/3 receptor did not affect the activation or sensitization of meningeal afferents post-CSD. P2X7 signaling underlying afferent mechanosensitization was localized to the meninges and did not affect CSD susceptibility. We propose that meningeal P2X7 and Pannexin 1 signaling, potentially in meningeal macrophages or neutrophils, mediates the mechanical sensitization of meningeal afferents, which contributes to migraine pain by exacerbating the headache during normally innocuous physical activities.SIGNIFICANCE STATEMENT Activation and sensitization of meningeal afferents play a key role in migraine headache, but the underlying mechanisms remain unclear. Here, using a rat model of migraine with aura involving cortical spreading depolarization (CSD), we demonstrate that meningeal purinergic P2X7 signaling and its related Pannexin 1 pore, but not nociceptive P2X2/3 receptors, mediate prolonged meningeal afferent sensitization. Additionally, we show that meningeal P2X signaling does not contribute to the increased afferent ongoing activity in the wake of CSD. Our finding points to meningeal P2X7 signaling as a critical mechanism underlying meningeal nociception in migraine, the presence of distinct mechanisms underlying the activation and sensitization of meningeal afferents in migraine, and highlight the need to target both processes for effective migraine therapy.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Samantha Harrison
- Center for Anesthesia Research Excellence, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115
| | - Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
22
|
Güiza J, Solís F, Valenzuela B, Arancibia D, Zamorano P, González J, Saavedra J, Neely A, Salgado M, Martínez AD, Sáez JC, Vega JL. Unnexin is a protein subunit of a large-pore channel expressed by unicellular organisms. Proc Natl Acad Sci U S A 2023; 120:e2307898120. [PMID: 37487087 PMCID: PMC10400985 DOI: 10.1073/pnas.2307898120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Cells of vertebrate and invertebrate organisms express proteins specialized in membrane channel-based cell-cell communication that are absent in unicellular organisms. We recently described the prediction of some members of the large-pore channel family in kinetoplastids, consisting of proteins called unnexins, which share several structural features with innexin and pannexin proteins. Here, we demonstrated that the unnexin1 protein (Unx1) is delivered to the cell membrane, displaying a topology consisting of four transmembrane domains with C and N termini on the cytoplasmic side and form large-pore channels that are permeable to small molecules. Low extracellular Ca2+/Mg2+ levels or extracellular alkalinization, but not mechanical stretching, increases channel activity. The Unx1 channel mediates the influx of Ca2+ and does not form intercellular dye coupling between HeLa Unx1 transfected cells. Unx1 channel function was further evidenced by its ability to mediate ionic currents when expressed in Xenopus oocytes. Downregulation of Unx1 mRNA with morpholine contains Trypanosoma cruzi invasion. Phylogenetic analysis revealed the presence of Unx1 homologs in other protozoan parasites, suggesting a conserved function for these channel parasites in other protists. Our data demonstrate that Unx1 forms large-pore membrane channels, which may serve as a diffusional pathway for ions and small molecules that are likely to be metabolic substrates or waste products, and signaling autocrine and paracrine molecules that could be involved in cell invasion. As morpholinos-induced downregulation of Unx1 reduces the infectivity of trypomastigotes, the Unx1 channels might be an attractive target for developing trypanocide drugs.
Collapse
Affiliation(s)
- Juan Güiza
- Laboratory of Gap Junction Proteins and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta1240000, Chile
| | - Francisco Solís
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta1240000, Chile
| | - Bernardita Valenzuela
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta1240000, Chile
| | - Duxan Arancibia
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta1240000, Chile
| | - Pedro Zamorano
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta1240000, Chile
| | - Jorge González
- Departamento de Tecnología Médica, Unidad de Parasitología Molecular, Facultad Ciencias de la Salud, Universidad de Antofagasta, Antofagasta1240000, Chile
| | - Jonathan Saavedra
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2381850, Chile
| | - Alan Neely
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2381850, Chile
| | - Magdiel Salgado
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2381850, Chile
| | - Agustín D. Martínez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2381850, Chile
| | - Juan C. Sáez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso2381850, Chile
| | - José L. Vega
- Laboratory of Gap Junction Proteins and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta1240000, Chile
- Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta1240000, Chile
| |
Collapse
|
23
|
Bu F, Li Y, Lan S, Yang T, He B, Dong P, Shen F, Cai H, Lu Y, Fei Y, Xu L, Qin X. Blocking Pannexin-1 Channels Alleviates Thalamic Hemorrhage-Induced Pain and Inflammatory Depolarization of Microglia in Mice. ACS Chem Neurosci 2023. [PMID: 37377340 DOI: 10.1021/acschemneuro.3c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Central post-stroke pain (CPSP) is a neuropathic pain syndrome that frequently occurs following cerebral stroke. The pathogenesis of CPSP is mainly due to thalamic injury caused by ischemia and hemorrhage. However, its underlying mechanism is far from clear. In the present study, a thalamic hemorrhage (TH) model was established in young male mice by microinjection of 0.075 U of type IV collagenase into the unilateral ventral posterior lateral nucleus and ventral posterior medial nucleus of the thalamus. We found that TH led to microglial pannexin (Panx)-1, a large-pore ion channel, opening within the thalamus accompanied with thalamic tissue injury, pain sensitivities, and neurological deficit, which were significantly prevented by either intraperitoneal injection of the Panx1 blocker carbenoxolone or intracerebroventricular perfusion of the inhibitory mimetic peptide 10Panx. However, inhibition of Panx1 has no additive effect on pain sensitivities upon pharmacological depletion of microglia. Mechanistically, we found that carbenoxolone alleviated TH-induced proinflammatory factors transcription, neuronal apoptosis, and neurite disassembly within the thalamus. In summary, we conclude that blocking of microglial Panx1 channels alleviates CPSP and neurological deficit through, at least in part, reducing neural damage mediated by the inflammatory response of thalamic microglia after TH. Targeting Panx1 might be a potential strategy in the treatment of CPSP.
Collapse
Affiliation(s)
- Fan Bu
- Department of Neurology & Psychology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Yuerong Li
- Department of Neurology & Psychology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Shiming Lan
- Department of Neurology & Psychology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Taiqin Yang
- Department of Neurology & Psychology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Baokun He
- Laboratory of Molecular Pharmacology and Drug Discovery, Institute of Chinese Materia Medica, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Peng Dong
- Department of Neurosurgery, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Fengyan Shen
- Department of Anesthesiology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Haobin Cai
- Department of Neurology & Psychology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Yunwei Lu
- Department of Neurology & Psychology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Yong Fei
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Longsheng Xu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Xiude Qin
- Department of Neurology & Psychology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| |
Collapse
|
24
|
Zhao J, Harrison S, Levy D. Meningeal P2X7 signaling mediates migraine-related intracranial mechanical hypersensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526853. [PMID: 36778299 PMCID: PMC9915648 DOI: 10.1101/2023.02.02.526853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cortical spreading depolarization (CSD) is a key pathophysiological event that underlies visual and sensory auras in migraine. CSD is also thought to drive the headache phase in migraine by promoting the activation and mechanical sensitization of trigeminal primary afferent nociceptive neurons that innervate the cranial meninges. The factors underlying meningeal nociception in the wake of CSD remain poorly understood but potentially involve the parenchymal release of algesic mediators and damage-associated molecular patterns, particularly ATP. Here, we explored the role of ATP-P2X purinergic receptor signaling in mediating CSD-evoked meningeal afferent activation and mechanical sensitization. Male rats were subjected to a single CSD episode. In vivo, extracellular single-unit recording was used to measure meningeal afferent ongoing activity changes. Quantitative mechanical stimuli using a servomotor force-controlled stimulator assessed changes in the afferent's mechanosensitivity. Manipulation of meningeal P2X receptors was achieved via local administration of pharmacological agents. Broad-spectrum P2X receptor inhibition, selective blockade of the P2X7 receptor, and its related pannexin 1 channel suppressed CSD-evoked afferent mechanical sensitization but did not affect the accompanying afferent activation response. Surprisingly, inhibition of the pronociceptive P2X2/3 receptor did not affect the activation or sensitization of meningeal afferents post-CSD. P2X7 signaling underlying afferent mechanosensitization was localized to the meninges and did not affect CSD susceptibility. We propose that meningeal P2X7 and Pannexin 1 signaling, potentially in meningeal macrophages or neutrophils, mediates the mechanical sensitization of meningeal afferents, which contributes to migraine pain by exacerbating the headache during normally innocuous physical activities. Significance Statement Activation and sensitization of meningeal afferents play a key role in migraine headache, but the underlying mechanisms remain unclear. Here, using a rat model of migraine with aura involving cortical spreading depolarization (CSD), we demonstrate that meningeal purinergic P2X7 signaling and its related Pannexin 1 pore, but not nociceptive P2X2/3 receptors, mediate prolonged meningeal afferent sensitization. Additionally, we show that meningeal P2X signaling does not contribute to the increased afferent ongoing activity in the wake of CSD. Our finding points to meningeal P2X7 signaling as a critical mechanism underlying meningeal nociception in migraine, the presence of distinct mechanisms underlying the activation and sensitization of meningeal afferents in migraine, and highlight the need to target both processes for effective migraine therapy.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115
| | - Samantha Harrison
- Center for Anesthesia Research Excellence, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
25
|
García-Rodríguez C, Mujica P, Illanes-González J, López A, Vargas C, Sáez JC, González-Jamett A, Ardiles ÁO. Probenecid, an Old Drug with Potential New Uses for Central Nervous System Disorders and Neuroinflammation. Biomedicines 2023; 11:1516. [PMID: 37371611 DOI: 10.3390/biomedicines11061516] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Probenecid is an old uricosuric agent used in clinics to treat gout and reduce the renal excretion of antibiotics. In recent years, probenecid has gained attention due to its ability to interact with membrane proteins such as TRPV2 channels, organic anion transporters, and pannexin 1 hemichannels, which suggests new potential therapeutic utilities in medicine. Some current functions of probenecid include their use as an adjuvant to increase the bioavailability of several drugs in the Central Nervous System (CNS). Numerous studies also suggest that this drug has important neuroprotective, antiepileptic, and anti-inflammatory properties, as evidenced by their effect against neurological and neurodegenerative diseases. In these studies, the use of probenecid as a Panx1 hemichannel blocker to reduce neuroinflammation is highlighted since neuroinflammation is a major trigger for diverse CNS alterations. Although the clinical use of probenecid has declined over the years, advances in its use in preclinical research indicate that it may be useful to improve conventional therapies in the psychiatric field where the drugs used have a low bioavailability, either because of a deficient passage through the blood-brain barrier or a high efflux from the CNS or also a high urinary clearance. This review summarizes the history, pharmacological properties, and recent research uses of probenecid and discusses its future projections as a potential pharmacological strategy to intervene in neurodegeneration as an outcome of neuroinflammation.
Collapse
Affiliation(s)
- Claudia García-Rodríguez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Paula Mujica
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Javiera Illanes-González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Araceli López
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Camilo Vargas
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Juan C Sáez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Arlek González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Álvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Centro Interdisciplinario de Estudios en Salud, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2540064, Chile
| |
Collapse
|
26
|
Ledderose S, Rodler S, Eismann L, Ledderose G, Rudelius M, Junger WG, Ledderose C. P2X1 and P2X7 Receptor Overexpression Is a Negative Predictor of Survival in Muscle-Invasive Bladder Cancer. Cancers (Basel) 2023; 15:2321. [PMID: 37190249 PMCID: PMC10136747 DOI: 10.3390/cancers15082321] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Bladder cancer is amongst the most common causes of cancer death worldwide. Muscle-invasive bladder cancer (MIBC) bears a particularly poor prognosis. Overexpression of purinergic P2X receptors (P2XRs) has been associated with worse outcome in several malignant tumors. Here, we investigated the role of P2XRs in bladder cancer cell proliferation in vitro and the prognostic value of P2XR expression in MIBC patients. Cell culture experiments with T24, RT4, and non-transformed TRT-HU-1 cells revealed a link between high ATP concentrations in the cell culture supernatants of bladder cell lines and a higher grade of malignancy. Furthermore, proliferation of highly malignant T24 bladder cancer cells depended on autocrine signaling through P2X receptors. P2X1R, P2X4R, and P2X7R expression was immunohistochemically analyzed in tumor specimens from 173 patients with MIBC. High P2X1R expression was associated with pathological parameters of disease progression and reduced survival time. High combined expression of P2X1R and P2X7R increased the risk of distant metastasis and was an independent negative predictor of overall and tumor-specific survival in multivariate analyses. Our results suggest that P2X1R/P2X7R expression scores are powerful negative prognostic markers in MIBC patients and that P2XR-mediated pathways are potential targets for novel therapeutic strategies in bladder cancer.
Collapse
Affiliation(s)
- Stephan Ledderose
- Institute of Pathology, Ludwig Maximilian University, 80337 Munich, Germany
| | - Severin Rodler
- Department of Urology, Ludwig Maximilian University, 81377 Munich, Germany
| | - Lennert Eismann
- Department of Urology, Ludwig Maximilian University, 81377 Munich, Germany
| | - Georg Ledderose
- Department of Oto-Rhino-Laryngology, Ludwig Maximilian University, 81377 Munich, Germany
| | - Martina Rudelius
- Institute of Pathology, Ludwig Maximilian University, 80337 Munich, Germany
| | - Wolfgang G. Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Surgery, University of California San Diego Health, La Jolla, CA 92037, USA
| | - Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Surgery, University of California San Diego Health, La Jolla, CA 92037, USA
| |
Collapse
|
27
|
Koval M, Schug WJ, Isakson BE. Pharmacology of pannexin channels. Curr Opin Pharmacol 2023; 69:102359. [PMID: 36858833 PMCID: PMC10023479 DOI: 10.1016/j.coph.2023.102359] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 03/02/2023]
Abstract
Pannexin channels play fundamental roles in regulating inflammation and have been implicated in many diseases including hypertension, stroke, and neuropathic pain. Thus, the ability to pharmacologically block these channels is a vital component of several therapeutic approaches. Pharmacologic interrogation of model systems also provides a means to discover new roles for pannexins in cell physiology. Here, we review the state of the art for agents that can be used to block pannexin channels, with a focus on chemical pharmaceuticals and peptide mimetics that act on pannexin 1. Guidance on interpreting results obtained with pannexin pharmacologics in experimental systems is discussed, as well as strengths and caveats of different agents, including specificity and feasibility of clinical application.
Collapse
Affiliation(s)
- Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wyatt J Schug
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Brant E Isakson
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
28
|
He Z, Zhao Y, Rau MJ, Fitzpatrick JAJ, Sah R, Hu H, Yuan P. Structural and functional analysis of human pannexin 2 channel. Nat Commun 2023; 14:1712. [PMID: 36973289 PMCID: PMC10043284 DOI: 10.1038/s41467-023-37413-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
The pannexin 2 channel (PANX2) participates in multiple physiological processes including skin homeostasis, neuronal development, and ischemia-induced brain injury. However, the molecular basis of PANX2 channel function remains largely unknown. Here, we present a cryo-electron microscopy structure of human PANX2, which reveals pore properties contrasting with those of the intensely studied paralog PANX1. The extracellular selectivity filter, defined by a ring of basic residues, more closely resembles that of the distantly related volume-regulated anion channel (VRAC) LRRC8A, rather than PANX1. Furthermore, we show that PANX2 displays a similar anion permeability sequence as VRAC, and that PANX2 channel activity is inhibited by a commonly used VRAC inhibitor, DCPIB. Thus, the shared channel properties between PANX2 and VRAC may complicate dissection of their cellular functions through pharmacological manipulation. Collectively, our structural and functional analysis provides a framework for development of PANX2-specific reagents that are needed for better understanding of channel physiology and pathophysiology.
Collapse
Affiliation(s)
- Zhihui He
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Yonghui Zhao
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael J Rau
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO, USA
| | - James A J Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Rajan Sah
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hongzhen Hu
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
29
|
Langlois S, St-Pierre ME, Holland SH, Xiang X, Freeman E, Mohamed H, Dural AC, Hammad A, Karami S, van de Panne C, Cowan KN. Inhibition of PANX1 Channels Reduces the Malignant Properties of Human High-Risk Neuroblastoma. J Cancer 2023; 14:689-706. [PMID: 37056395 PMCID: PMC10088893 DOI: 10.7150/jca.79552] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/03/2023] [Indexed: 04/15/2023] Open
Abstract
Pannexin 1 (PANX1) is expressed in many tissue types including tissues of neural origin. Neuroblastoma (NB) is a neural crest-derived malignancy mainly occurring in children. The majority of NB patients present with high-risk disease for which current therapies are ineffective. Here, we show that while PANX1 is expressed in NB of all stages, high PANX1 expression in high-risk NB is associated with a reduced survival probability. PANX1 channel inhibition using probenecid (PBN) or carbenoxolone (CBX) reduced the proliferation of our panel of high-risk NB cell lines. We show that expression of the Y10F PANX1 mutant, which cannot be phosphorylated on tyrosine 10 and acts in a dominant-negative manner, curtailed NB cell proliferation. Furthermore, PBN and CBX treatment halted the growth of NB spheroids and in some cases triggered the regression of established NB spheroids. Finally, both drugs reduced the progression of high-risk NB in vivo. Together our data indicate that PANX1 channels regulate human NB malignant properties and that the use of PBN or CBX may provide a new therapeutic approach for high-risk NB.
Collapse
Affiliation(s)
- Stéphanie Langlois
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Marie-Eve St-Pierre
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Stephen H. Holland
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Xiao Xiang
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Emily Freeman
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Hisham Mohamed
- Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Ahmet Cem Dural
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Ahmed Hammad
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Sanaz Karami
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Chloé van de Panne
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Kyle N. Cowan
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
- ✉ Corresponding author: Dr. Kyle N. Cowan, Children's Hospital of Eastern Ontario, Pediatric General Surgery, 401 Smyth Rd, Room 3370, Ottawa, Ontario, K1H 8L1, Canada; E-mail: ; Phone: +1 613-737-7600 (ext. 2675); Fax: 613-738-4849
| |
Collapse
|
30
|
Rusiecka OM, Tournier M, Molica F, Kwak BR. Pannexin1 channels-a potential therapeutic target in inflammation. Front Cell Dev Biol 2022; 10:1020826. [PMID: 36438559 PMCID: PMC9682086 DOI: 10.3389/fcell.2022.1020826] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/20/2022] [Indexed: 08/11/2023] Open
Abstract
An exaggerated inflammatory response is the hallmark of a plethora of disorders. ATP is a central signaling molecule that orchestrates the initiation and resolution of the inflammatory response by enhancing activation of the inflammasome, leukocyte recruitment and activation of T cells. ATP can be released from cells through pannexin (Panx) channels, a family of glycoproteins consisting of three members, Panx1, Panx2, and Panx3. Panx1 is ubiquitously expressed and forms heptameric channels in the plasma membrane mediating paracrine and autocrine signaling. Besides their involvement in the inflammatory response, Panx1 channels have been shown to contribute to different modes of cell death (i.e., pyroptosis, necrosis and apoptosis). Both genetic ablation and pharmacological inhibition of Panx1 channels decrease inflammation in vivo and contribute to a better outcome in several animal models of inflammatory disease involving various organs, including the brain, lung, kidney and heart. Up to date, several molecules have been identified to inhibit Panx1 channels, for instance probenecid (Pbn), mefloquine (Mfq), flufenamic acid (FFA), carbenoxolone (Cbx) or mimetic peptides like 10Panx1. Unfortunately, the vast majority of these compounds lack specificity and/or serum stability, which limits their application. The recent availability of detailed structural information on the Panx1 channel from cryo-electron microscopy studies may open up innovative approaches to acquire new classes of synthetic Panx1 channel blockers with high target specificity. Selective inhibition of Panx1 channels may not only limit acute inflammatory responses but may also prove useful in chronic inflammatory diseases, thereby improving human health. Here, we reviewed the current knowledge on the role of Panx1 in the initiation and resolution of the inflammatory response, we summarized the effects of Panx1 inhibition in inflammatory pathologies and recapitulate current Panx1 channel pharmacology with an outlook towards future approaches.
Collapse
Affiliation(s)
- Olga M. Rusiecka
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Malaury Tournier
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Filippo Molica
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Brenda R. Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
31
|
Jin YJ, An ZY, Sun ZX, Liu XC. NLRP3 Inflammasome as a Therapeutic Target for Atherosclerosis: A Focus on Potassium Outflow. Rev Cardiovasc Med 2022; 23:268. [PMID: 39076616 PMCID: PMC11266955 DOI: 10.31083/j.rcm2308268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 07/31/2024] Open
Abstract
Atherosclerosis is a risk factor for various cardiovascular diseases, and is linked to high rates of morbidity and mortality across the globe. Although numerous complex processes are involved in the development and progression of atherosclerosis, the exact mechanisms behind its pathogenesis remain unclear. Inflammation and endothelial cell damage exert a lasting effect on atherosclerosis, causing lipid and fibrous tissue accumulation in the intima of the artery to form plaques, and subsequently promoting atherosclerosis. Nod-like receptor protein 3 (NLRP3) inflammatory corpuscle is thought to be the link between lipid metabolism and inflammation. Long Potassium outflow is a vital activator of NLRP3, with a simultaneous effect as a start-up and adjustment. The majority of existing drugs for atherosclerosis targeting the NLRP3 signaling pathway target IL-1, whereas drugs targeting the critical link of potassium efflux are relatively new. This review discusses the NLRP3 inflammatory corpuscle as a critical regulator of the immunological inflammatory pathway in atherosclerosis. Moreover, current knowledge on NLRP3 inflammatory corpuscle start and activation pathways were integrated, emphasizing potassium-involved outflow-related proteins. We highlight potential treatment approaches for NLRP3 inflammatory corpuscle pathways, specifically targeting potassium outflow channels of targeted drugs. Collectively, these insights indicate that targeting the NLRP3 inflammatory corpuscle is a vital anti-inflammatory therapy for treating atherosclerosis.
Collapse
Affiliation(s)
- Yi-Jing Jin
- Peking University Health Science Center, 100191 Beijing, China
- Department of Cardiology, Peking University First Hospital, 100034 Beijing, China
| | - Zhuo-Yu An
- Peking University Health Science Center, 100191 Beijing, China
- Peking University Institute of Hematology, Peking University People's Hospital, 100044 Beijing, China
| | - Zhi-Xuan Sun
- Peking University Third Hospital, 100191 Beijing, China
| | - Xin-Chen Liu
- Peking University Third Hospital, 100191 Beijing, China
| |
Collapse
|
32
|
Caufriez A, Tabernilla A, Van Campenhout R, Cooreman A, Leroy K, Sanz Serrano J, Kadam P, dos Santos Rodrigues B, Lamouroux A, Ballet S, Vinken M. Effects of Drugs Formerly Suggested for COVID-19 Repurposing on Pannexin1 Channels. Int J Mol Sci 2022; 23:ijms23105664. [PMID: 35628472 PMCID: PMC9146942 DOI: 10.3390/ijms23105664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Although many efforts have been made to elucidate the pathogenesis of COVID-19, the underlying mechanisms are yet to be fully uncovered. However, it is known that a dysfunctional immune response and the accompanying uncontrollable inflammation lead to troublesome outcomes in COVID-19 patients. Pannexin1 channels are put forward as interesting drug targets for the treatment of COVID-19 due to their key role in inflammation and their link to other viral infections. In the present study, we selected a panel of drugs previously tested in clinical trials as potential candidates for the treatment of COVID-19 early on in the pandemic, including hydroxychloroquine, chloroquine, azithromycin, dexamethasone, ribavirin, remdesivir, favipiravir, lopinavir, and ritonavir. The effect of the drugs on pannexin1 channels was assessed at a functional level by means of measurement of extracellular ATP release. Immunoblot analysis and real-time quantitative reversetranscription polymerase chain reaction analysis were used to study the potential of the drugs to alter pannexin1 protein and mRNA expression levels, respectively. Favipiravir, hydroxychloroquine, lopinavir, and the combination of lopinavir with ritonavir were found to inhibit pannexin1 channel activity without affecting pannexin1 protein or mRNA levels. Thusthree new inhibitors of pannexin1 channels were identified that, though currently not being used anymore for the treatment of COVID-19 patients, could be potential drug candidates for other pannexin1-related diseases.
Collapse
Affiliation(s)
- Anne Caufriez
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (A.L.); (S.B.)
| | - Andrés Tabernilla
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Raf Van Campenhout
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Axelle Cooreman
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Kaat Leroy
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Julen Sanz Serrano
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Prashant Kadam
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Bruna dos Santos Rodrigues
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Arthur Lamouroux
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (A.L.); (S.B.)
| | - Steven Ballet
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (A.L.); (S.B.)
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
- Correspondence: ; Tel.: +32-2477-4587
| |
Collapse
|
33
|
Singh B, Khattab F, Gilon P. Glucose inhibits glucagon secretion by decreasing [Ca2+]c and by reducing the efficacy of Ca2+ on exocytosis via somatostatin-dependent and independent mechanisms. Mol Metab 2022; 61:101495. [PMID: 35421610 PMCID: PMC9065434 DOI: 10.1016/j.molmet.2022.101495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/15/2022] [Accepted: 04/04/2022] [Indexed: 11/15/2022] Open
Abstract
Objective Methods Results Conclusions Glucose modulates [Ca2+]c in α-cells within islets but not in dispersed α-cells. In α-cells within islets, it decreases [Ca2+]c independently of their KATP channels. It decreases α-cell [Ca2+]c partly via somatostatin. All glucose-induced [Ca2+]c changes trigger parallel changes in glucagon release. Glucose also decreases the efficacy of Ca2+ on exocytosis (attenuating pathway).
Collapse
Affiliation(s)
- Bilal Singh
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Firas Khattab
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Patrick Gilon
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium.
| |
Collapse
|
34
|
Kuzuya M, Hirano H, Hayashida K, Watanabe M, Kobayashi K, Terada T, Mahmood MI, Tama F, Tani K, Fujiyoshi Y, Oshima A. Structures of human pannexin-1 in nanodiscs reveal gating mediated by dynamic movement of the N terminus and phospholipids. Sci Signal 2022; 15:eabg6941. [PMID: 35133866 DOI: 10.1126/scisignal.abg6941] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pannexin (PANX) family proteins form large-pore channels that mediate purinergic signaling. We analyzed the cryo-EM structures of human PANX1 in lipid nanodiscs to elucidate the gating mechanism and its regulation by the amino terminus in phospholipids. The wild-type channel has an amino-terminal funnel in the pore, but in the presence of the inhibitor probenecid, a cytoplasmically oriented amino terminus and phospholipids obstruct the pore. Functional analysis using whole-cell patch-clamp and oocyte voltage clamp showed that PANX1 lacking the amino terminus did not open and had a dominant negative effect on channel activity, thus confirming that the amino-terminal domain played an essential role in channel opening. These observations suggest that dynamic conformational changes in the amino terminus of human PANX1 are associated with lipid movement in and out of the pore. Moreover, the data provide insight into the gating mechanism of PANX1 and, more broadly, other large-pore channels.
Collapse
Affiliation(s)
- Maki Kuzuya
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hidemi Hirano
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kenichi Hayashida
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Masakatsu Watanabe
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyō-ku, Tokyo 113-8657, Japan
| | - Md Iqbal Mahmood
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Florence Tama
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Kazutoshi Tani
- Graduate School of Medicine, Mie University, 2-174 Edobashi Tsu, Mie 514-8507, Japan
| | - Yoshinori Fujiyoshi
- Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyō-ku, Tokyo 113-8510, Japan.,CeSPIA Inc., Otemachi, Chiyoda, Tokyo 100-0004, Japan
| | - Atsunori Oshima
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
35
|
Janczi T, Meier F, Fehrl Y, Kinne RW, Böhm B, Burkhardt H. A Novel Pro-Inflammatory Mechanosensing Pathway Orchestrated by the Disintegrin Metalloproteinase ADAM15 in Synovial Fibroblasts. Cells 2021; 10:cells10102705. [PMID: 34685689 PMCID: PMC8534551 DOI: 10.3390/cells10102705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Mechanotransduction is elicited in cells upon the perception of physical forces transmitted via the extracellular matrix in their surroundings and results in signaling events that impact cellular functions. This physiological process is a prerequisite for maintaining the integrity of diarthrodial joints, while excessive loading is a factor promoting the inflammatory mechanisms of joint destruction. Here, we describe a mechanotransduction pathway in synovial fibroblasts (SF) derived from the synovial membrane of inflamed joints. The functionality of this pathway is completely lost in the absence of the disintegrin metalloproteinase ADAM15 strongly upregulated in SF. The mechanosignaling events involve the Ca2+-dependent activation of c-Jun-N-terminal kinases, the subsequent downregulation of long noncoding RNA HOTAIR, and upregulation of the metabolic energy sensor sirtuin-1. This afferent loop of the pathway is facilitated by ADAM15 via promoting the cell membrane density of the constitutively cycling mechanosensitive transient receptor potential vanilloid 4 calcium channels. In addition, ADAM15 reinforces the Src-mediated activation of pannexin-1 channels required for the enhanced release of ATP, a mediator of purinergic inflammation, which is increasingly produced upon sirtuin-1 induction.
Collapse
Affiliation(s)
- Tomasz Janczi
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
| | - Florian Meier
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60590 Frankfurt am Main, Germany
| | - Yuliya Fehrl
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
| | - Raimund W. Kinne
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany;
| | - Beate Böhm
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
- Correspondence: (B.B.); (H.B.)
| | - Harald Burkhardt
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60590 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, 60590 Frankfurt am Main, Germany
- Correspondence: (B.B.); (H.B.)
| |
Collapse
|
36
|
Syrjanen J, Michalski K, Kawate T, Furukawa H. On the molecular nature of large-pore channels. J Mol Biol 2021; 433:166994. [PMID: 33865869 PMCID: PMC8409005 DOI: 10.1016/j.jmb.2021.166994] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/25/2022]
Abstract
Membrane transport is a fundamental means to control basic cellular processes such as apoptosis, inflammation, and neurodegeneration and is mediated by a number of transporters, pumps, and channels. Accumulating evidence over the last half century has shown that a type of so-called "large-pore channel" exists in various tissues and organs in gap-junctional and non-gap-junctional forms in order to flow not only ions but also metabolites such as ATP. They are formed by a number of protein families with little or no evolutionary linkages including connexin, innexin, pannexin, leucine-rich repeat-containing 8 (LRRC8), and calcium homeostasis modulator (CALHM). This review summarizes the history and concept of large-pore channels starting from connexin gap junction channels to the more recent developments in innexin, pannexin, LRRC8, and CALHM. We describe structural and functional features of large-pore channels that are crucial for their diverse functions on the basis of available structures.
Collapse
Affiliation(s)
- Johanna Syrjanen
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kevin Michalski
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Toshimitsu Kawate
- Department of Molecular Medicine, Fields of Biochemistry, Molecular, and Cell Biology (BMCB), and Biophysics, Cornell University, Ithaca, NY 14853, USA
| | - Hiro Furukawa
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
37
|
Design and synthesis of the first indole-based blockers of Panx-1 channel. Eur J Med Chem 2021; 223:113650. [PMID: 34174741 DOI: 10.1016/j.ejmech.2021.113650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 10/21/2022]
Abstract
Panx-1 is a membrane channel protein involved in some pathologies such as ischemic stroke, cancer and neuropathic pain, thus representing a promising therapeutic target. We present here a study aimed at obtaining the first class of selective Panx-1 blockers, a new topic for pharmaceutical chemistry, since all compounds used so far for the study of this channel have different primary targets. Among various scaffolds analyzed, the indole nucleous emerged, whose elaboration yielded interesting Panx-1 blockers, such as the potent 5-sulfamoyl derivatives 14c and 15b (I% = 100 at 50 μM). In vivo tests performed in the mouse model of oxaliplatin-induced neuropathy, demonstrated that the hypersensitivity was completely reverted by treatment with 15b (1 nmol, administered intrathecally), suggesting a relationship between this effect and the channel blocking ability. Finally, we decided to perform a virtual screening study on compounds 5b, 6l and 14c using a recently resolved cryo-EM structure of hPanx-1 channel, to try to relate the potency of our new inhibitors.
Collapse
|
38
|
Carbenoxolone has the potential to ameliorate acute incision pain in rats. Mol Med Rep 2021; 24:520. [PMID: 34013377 PMCID: PMC8160483 DOI: 10.3892/mmr.2021.12159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
Carbenoxolone (CBX) is primarily used to relieve various types of neuropathic and inflammatory pain. However, little is known concerning the role of CBX in acute pain and its functional mechanisms therein and this was investigated in the present study. Rats underwent toe incision and behavioral tests were performed to assess mechanical hypersensitivity. The expression levels of pannexin 1 (Px1) and connexin 43 (Cx43) were detected using western blot analysis 2, 4, 6 or 24 h after toe incision, and the expression of TNF-α, IL-1β and P substance (SP) was determined by ELISA; Px1 and Cx43 expression was also examined by immunofluorescence staining. At 2, 6 and 12 h post-toe incision, the postoperative pain threshold was significantly reduced, which was subsequently recovered at 2 and 6 h post-surgery following pretreatment with CBX or pannexin 1 mimetic inhibitory peptide. CBX reduced Px1 levels at 4 and 24 h post-incision. However, Cx43 levels were reduced by CBX as little as 2 h post-surgery. Furthermore, CBX not only distinctly decreased the levels of Px1 and Cx43, but also reduced the co-localization of Px1 or Cx43 with glial fibrillary acidic protein, 2 h after incision. It was also observed that the protein levels of inflammatory makers (IL-1β, SP and TNF-α) showed a tendency to decline at 2, 4, 6 and 24 h after incision. Collectively, the expression of Px1 and Cx43 in astrocytes may be involved in pain behaviors diminished by CBX, and CBX potentially reduces acute pain by decreasing Px1 and Cx43 levels. Px1 and Cx43 from spinal astrocytes may serve important roles in the early stages and maintenance of acute pain, while preoperative injection of CBX has the potential to relieve hyperalgesia.
Collapse
|
39
|
Mim C, Perkins G, Dahl G. Structure versus function: Are new conformations of pannexin 1 yet to be resolved? J Gen Physiol 2021; 153:e202012754. [PMID: 33835130 PMCID: PMC8042604 DOI: 10.1085/jgp.202012754] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pannexin 1 (Panx1) plays a decisive role in multiple physiological and pathological settings, including oxygen delivery to tissues, mucociliary clearance in airways, sepsis, neuropathic pain, and epilepsy. It is widely accepted that Panx1 exerts its role in the context of purinergic signaling by providing a transmembrane pathway for ATP. However, under certain conditions, Panx1 can also act as a highly selective membrane channel for chloride ions without ATP permeability. A recent flurry of publications has provided structural information about the Panx1 channel. However, while these structures are consistent with a chloride selective channel, none show a conformation with strong support for the ATP release function of Panx1. In this Viewpoint, we critically assess the existing evidence for the function and structure of the Panx1 channel and conclude that the structure corresponding to the ATP permeation pathway is yet to be determined. We also list a set of additional topics needing attention and propose ways to attain the large-pore, ATP-permeable conformation of the Panx1 channel.
Collapse
Affiliation(s)
- Carsten Mim
- Department of Biomedical Engineering and Health Systems Royal Institute of Technology, Huddinge, Sweden
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego School of Medicine, La Jolla, CA
| | - Gerhard Dahl
- Department of Physiology, University of Miami School of Medicine, Miami, FL
| |
Collapse
|
40
|
Purinergic signaling in nervous system health and disease: Focus on pannexin 1. Pharmacol Ther 2021; 225:107840. [PMID: 33753132 DOI: 10.1016/j.pharmthera.2021.107840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Purinergic signaling encompasses the cycle of adenosine 5' triphosphate (ATP) release and its metabolism into nucleotide and nucleoside derivatives, the direct release of nucleosides, and subsequent receptor-triggered downstream intracellular pathways. Since the discovery of nerve terminal and glial ATP release into the neuropil, purinergic signaling has been implicated in the modulation of nervous system development, function, and disease. In this review, we detail our current understanding of the roles of the pannexin 1 (PANX1) ATP-release channel in neuronal development and plasticity, glial signaling, and neuron-glial-immune interactions. We additionally provide an overview of PANX1 structure, activation, and permeability to orientate readers and highlight recent research developments. We identify areas of convergence between PANX1 and purinergic receptor actions. Additional highlights include data on PANX1's participation in the pathophysiology of nervous system developmental, degenerative, and inflammatory disorders. Our aim in combining this knowledge is to facilitate the movement of our current understanding of PANX1 in the context of other nervous system purinergic signaling mechanisms one step closer to clinical translation.
Collapse
|
41
|
Mazzarda F, D'Elia A, Massari R, De Ninno A, Bertani FR, Businaro L, Ziraldo G, Zorzi V, Nardin C, Peres C, Chiani F, Tettey-Matey A, Raspa M, Scavizzi F, Soluri A, Salvatore AM, Yang J, Mammano F. Organ-on-chip model shows that ATP release through connexin hemichannels drives spontaneous Ca 2+ signaling in non-sensory cells of the greater epithelial ridge in the developing cochlea. LAB ON A CHIP 2020; 20:3011-3023. [PMID: 32700707 DOI: 10.1039/d0lc00427h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Prior work supports the hypothesis that ATP release through connexin hemichannels drives spontaneous Ca2+ signaling in non-sensory cells of the greater epithelial ridge (GER) in the developing cochlea; however, direct proof is lacking. To address this issue, we plated cochlear organotypic cultures (COCs) and whole cell-based biosensors with nM ATP sensitivity (ATP-WCBs) at the bottom and top of an ad hoc designed transparent microfluidic chamber, respectively. By performing dual multiphoton Ca2+ imaging, we monitored the propagation of intercellular Ca2+ waves in the GER of COCs and ATP-dependent Ca2+ responses in overlying ATP-WCBs. Ca2+ signals in both COCs and ATP-WCBs were inhibited by supplementing the extracellular medium with ATP diphosphohydrolase (apyrase). Spontaneous Ca2+ signals were strongly depressed in the presence of Gjb6-/- COCs, in which connexin 30 (Cx30) is absent and connexin 26 (Cx26) is strongly downregulated. In contrast, spontaneous Ca2+ signals were not affected by replacement of Panx1-/- with Panx1+/+ COCs in the microfluidic chamber. Similar results were obtained by estimating ATP release from COCs using a classical luciferin-luciferase bioluminescence assay. Therefore, connexin hemichannels and not pannexin 1 channels mediate the release of ATP that is responsible for Ca2+ wave propagation in the developing mouse cochlea. The technological advances presented here have the potential to shed light on a plethora of unrelated open issues that involve paracrine signaling in physiology and pathology and cannot be addressed with standard methods.
Collapse
Affiliation(s)
- Flavia Mazzarda
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Department of Science, Università degli Studi di Roma3, Rome, Italy
| | - Annunziata D'Elia
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Department of Science, Università degli Studi di Roma3, Rome, Italy
| | - Roberto Massari
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | - Adele De Ninno
- CNR Institute for Photonics and Nanotechnology, Rome, Italy.
| | | | - Luca Businaro
- CNR Institute for Photonics and Nanotechnology, Rome, Italy.
| | - Gaia Ziraldo
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Veronica Zorzi
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara Nardin
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | - Chiara Peres
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | - Francesco Chiani
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | | | - Marcello Raspa
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | | | - Alessandro Soluri
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | | | - Jun Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. and Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Fabio Mammano
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Department of Physics and Astronomy "G. Galilei", University of Padova, Padua, Italy.
| |
Collapse
|
42
|
Navis KE, Fan CY, Trang T, Thompson RJ, Derksen DJ. Pannexin 1 Channels as a Therapeutic Target: Structure, Inhibition, and Outlook. ACS Chem Neurosci 2020; 11:2163-2172. [PMID: 32639715 DOI: 10.1021/acschemneuro.0c00333] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pannexin 1 (Panx1) channels are transmembrane proteins that release adenosine triphosphate and play an important role in intercellular communication. They are widely expressed in somatic and nervous system tissues, and their activity has been associated with many pathologies such as stroke, epilepsy, inflammation, and chronic pain. While there are a variety of small molecules known to inhibit Panx1, currently little is known about the mechanism of channel inhibition, and there is a dearth of sufficiently potent and selective drugs targeting Panx1. Herein we provide a review of the current literature on Panx1 structural biology and known pharmacological agents that will help provide a basis for rational development of Panx1 chemical modulators.
Collapse
Affiliation(s)
- Kathleen E. Navis
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Churmy Y. Fan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Tuan Trang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Roger J. Thompson
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Darren J. Derksen
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
43
|
Ruan Z, Orozco IJ, Du J, Lü W. Structures of human pannexin 1 reveal ion pathways and mechanism of gating. Nature 2020; 584:646-651. [PMID: 32494015 PMCID: PMC7814660 DOI: 10.1038/s41586-020-2357-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022]
Abstract
Pannexin 1 (PANX1) is an ATP-permeable channel with critical roles in a variety of physiological functions such as blood pressure regulation1, apoptotic cell clearance2 and human oocyte development3. Here we present several structures of human PANX1 in a heptameric assembly at resolutions of up to 2.8 angström, including an apo state, a caspase-7-cleaved state and a carbenoxolone-bound state. We reveal a gating mechanism that involves two ion-conducting pathways. Under normal cellular conditions, the intracellular entry of the wide main pore is physically plugged by the C-terminal tail. Small anions are conducted through narrow tunnels in the intracellular domain. These tunnels connect to the main pore and are gated by a long linker between the N-terminal helix and the first transmembrane helix. During apoptosis, the C-terminal tail is cleaved by caspase, allowing the release of ATP through the main pore. We identified a carbenoxolone-binding site embraced by W74 in the extracellular entrance and a role for carbenoxolone as a channel blocker. We identified a gap-junction-like structure using a glycosylation-deficient mutant, N255A. Our studies provide a solid foundation for understanding the molecular mechanisms underlying the channel gating and inhibition of PANX1 and related large-pore channels.
Collapse
Affiliation(s)
- Zheng Ruan
- Van Andel Institute, Grand Rapids, MI, USA
| | | | - Juan Du
- Van Andel Institute, Grand Rapids, MI, USA.
| | - Wei Lü
- Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
44
|
Caufriez A, Böck D, Martin C, Ballet S, Vinken M. Peptide-based targeting of connexins and pannexins for therapeutic purposes. Expert Opin Drug Discov 2020; 15:1213-1222. [PMID: 32539572 DOI: 10.1080/17460441.2020.1773787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Connexin and pannexin (hemi)channels play an important role in paracrine and autocrine signaling pathways. The opening of these cellular pores is linked to a wide range of diseases. Therefore, pharmacological closing of connexin and pannexin (hemi)channels seems a promising therapeutic strategy. However, the currently available inhibitors cope with recurring problems concerning selectivity, specificity, stability and/or solubility. AREAS COVERED A number of peptides that mimic specific regions in the native sequence of connexins and pannexins have the potential to overcome some of these hurdles. In this paper, an overview is provided on these peptide-based inhibitors of connexin and pannexin (hemi)channels for therapeutic purposes. The authors also provide the reader with their expert perspectives on the future of these peptide-based inhibitors. EXPERT OPINION Peptide mimetics can become valuable tools in the treatment of connexin-related and pannexin-related diseases. This can be made possible provided that available peptides are optimized, and new peptide mimetics are designed based on knowledge of the mechanisms underlying the gating control of connexin and pannexin (hemi)channels.
Collapse
Affiliation(s)
- Anne Caufriez
- Department of in Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , 1090, Brussels, Belgium
| | - Denise Böck
- Department of in Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , 1090, Brussels, Belgium
| | - Charlotte Martin
- Department of Organic Chemistry, Vrije Universiteit Brussel , 1050, Brussels, Belgium
| | - Steven Ballet
- Department of Organic Chemistry, Vrije Universiteit Brussel , 1050, Brussels, Belgium
| | - Mathieu Vinken
- Department of in Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , 1090, Brussels, Belgium
| |
Collapse
|
45
|
Giaume C, Naus CC, Sáez JC, Leybaert L. Glial Connexins and Pannexins in the Healthy and Diseased Brain. Physiol Rev 2020; 101:93-145. [PMID: 32326824 DOI: 10.1152/physrev.00043.2018] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over the past several decades a large amount of data have established that glial cells, the main cell population in the brain, dynamically interact with neurons and thus impact their activity and survival. One typical feature of glia is their marked expression of several connexins, the membrane proteins forming intercellular gap junction channels and hemichannels. Pannexins, which have a tetraspan membrane topology as connexins, are also detected in glial cells. Here, we review the evidence that connexin and pannexin channels are actively involved in dynamic and metabolic neuroglial interactions in physiological as well as in pathological situations. These features of neuroglial interactions open the way to identify novel non-neuronal aspects that allow for a better understanding of behavior and information processing performed by neurons. This will also complement the "neurocentric" view by facilitating the development of glia-targeted therapeutic strategies in brain disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christian C Naus
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Juan C Sáez
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
46
|
Jin Q, Zhang B, Zheng X, Li N, Xu L, Xie Y, Song F, Bhat EA, Chen Y, Gao N, Guo J, Zhang X, Ye S. Cryo-EM structures of human pannexin 1 channel. Cell Res 2020; 30:449-451. [PMID: 32246089 DOI: 10.1038/s41422-020-0310-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/15/2020] [Indexed: 01/30/2023] Open
Affiliation(s)
- Qiuheng Jin
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Bo Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiang Zheng
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, 666 Wusu street, Hangzhou, Zhejiang, 311300, China
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Lingyi Xu
- Department of Biophysics, Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Yuan Xie
- Department of Biophysics, Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Fangjun Song
- Department of Biophysics, Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Eijaz Ahmed Bhat
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yuan Chen
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, 666 Wusu street, Hangzhou, Zhejiang, 311300, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Jiangtao Guo
- Department of Biophysics, Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China. .,Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Xiaokang Zhang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| | - Sheng Ye
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China. .,Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
47
|
Gaete PS, Contreras JE. Taking a close look at a large-pore channel. eLife 2020; 9:56114. [PMID: 32228857 PMCID: PMC7108858 DOI: 10.7554/elife.56114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 11/24/2022] Open
Abstract
The structure of pannexin 1, a channel protein with a large pore, has been determined for the first time.
Collapse
Affiliation(s)
- Pablo S Gaete
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, United States
| | - Jorge E Contreras
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, United States
| |
Collapse
|
48
|
Deng Z, He Z, Maksaev G, Bitter RM, Rau M, Fitzpatrick JAJ, Yuan P. Cryo-EM structures of the ATP release channel pannexin 1. Nat Struct Mol Biol 2020; 27:373-381. [PMID: 32231289 DOI: 10.1038/s41594-020-0401-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022]
Abstract
The plasma membrane adenosine triphosphate (ATP) release channel pannexin 1 (PANX1) has been implicated in many physiological and pathophysiological processes associated with purinergic signaling, including cancer progression, apoptotic cell clearance, inflammation, blood pressure regulation, oocyte development, epilepsy and neuropathic pain. Here we present near-atomic-resolution structures of human and frog PANX1 determined by cryo-electron microscopy that revealed a heptameric channel architecture. Compatible with ATP permeation, the transmembrane pore and cytoplasmic vestibule were exceptionally wide. An extracellular tryptophan ring located at the outer pore created a constriction site, potentially functioning as a molecular sieve that restricts the size of permeable substrates. The amino and carboxyl termini, not resolved in the density map, appeared to be structurally dynamic and might contribute to narrowing of the pore during channel gating. In combination with functional characterization, this work elucidates the previously unknown architecture of pannexin channels and establishes a foundation for understanding their unique channel properties.
Collapse
Affiliation(s)
- Zengqin Deng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhihui He
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Grigory Maksaev
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan M Bitter
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael Rau
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, USA
| | - James A J Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.,Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, USA.,Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO, USA
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA. .,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
49
|
Tam TH, Chan KL, Boroumand P, Liu Z, Brozinick JT, Bui HH, Roth K, Wakefield CB, Penuela S, Bilan PJ, Klip A. Nucleotides released from palmitate-activated murine macrophages attract neutrophils. J Biol Chem 2020; 295:4902-4911. [PMID: 32132172 DOI: 10.1074/jbc.ra119.010868] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/27/2020] [Indexed: 01/11/2023] Open
Abstract
Obesity and elevation of circulating free fatty acids are associated with an accumulation and proinflammatory polarization of macrophages within metabolically active tissues, such as adipose tissue, muscle, liver, and pancreas. Beyond macrophages, neutrophils also accumulate in adipose and muscle tissues during high-fat diets and contribute to a state of local inflammation and insulin resistance. However, the mechanisms by which neutrophils are recruited to these tissues are largely unknown. Here we used a cell culture system as proof of concept to show that, upon exposure to a saturated fatty acid, palmitate, macrophages release nucleotides that attract neutrophils. Moreover, we found that palmitate up-regulates pannexin-1 channels in macrophages that mediate the attraction of neutrophils, shown previously to allow transfer of nucleotides across membranes. These findings suggest that proinflammatory macrophages release nucleotides through pannexin-1, a process that may facilitate neutrophil recruitment into metabolic tissues during obesity.
Collapse
Affiliation(s)
- Theresa H Tam
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Kenny L Chan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Parastoo Boroumand
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Zhi Liu
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | | | | | - Kenneth Roth
- Eli Lilly and Company, Indianapolis, Indiana 46285
| | - C Brent Wakefield
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.,Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada .,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
50
|
Michalski K, Syrjanen JL, Henze E, Kumpf J, Furukawa H, Kawate T. The Cryo-EM structure of pannexin 1 reveals unique motifs for ion selection and inhibition. eLife 2020; 9:e54670. [PMID: 32048993 PMCID: PMC7108861 DOI: 10.7554/elife.54670] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/11/2020] [Indexed: 12/24/2022] Open
Abstract
Pannexins are large-pore forming channels responsible for ATP release under a variety of physiological and pathological conditions. Although predicted to share similar membrane topology with other large-pore forming proteins such as connexins, innexins, and LRRC8, pannexins have minimal sequence similarity to these protein families. Here, we present the cryo-EM structure of a frog pannexin 1 (Panx1) channel at 3.0 Å. We find that Panx1 protomers harbor four transmembrane helices similar in arrangement to other large-pore forming proteins but assemble as a heptameric channel with a unique constriction formed by Trp74 in the first extracellular loop. Mutating Trp74 or the nearby Arg75 disrupt ion selectivity, whereas altering residues in the hydrophobic groove formed by the two extracellular loops abrogates channel inhibition by carbenoxolone. Our structural and functional study establishes the extracellular loops as important structural motifs for ion selectivity and channel inhibition in Panx1.
Collapse
Affiliation(s)
- Kevin Michalski
- Department of Molecular Medicine, Cornell UniversityIthacaUnited States
| | - Johanna L Syrjanen
- WM Keck Structural Biology Laboratory, Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Erik Henze
- Department of Molecular Medicine, Cornell UniversityIthacaUnited States
| | - Julia Kumpf
- Department of Molecular Medicine, Cornell UniversityIthacaUnited States
| | - Hiro Furukawa
- WM Keck Structural Biology Laboratory, Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Toshimitsu Kawate
- Department of Molecular Medicine, Cornell UniversityIthacaUnited States
| |
Collapse
|