1
|
Stoll SE, Böttiger BW, Dusse F, Leister N, Leupold T, Menzel C, Overbeek R, Mathes A. Impact of Inhaled Nitric Oxide (iNO) on the Outcome of COVID-19 Associated ARDS. J Clin Med 2024; 13:5981. [PMID: 39408041 PMCID: PMC11478273 DOI: 10.3390/jcm13195981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Inhaled nitric oxide (iNO) can improve oxygenation in acute respiratory syndrome (ARDS), has anti-inflammatory and antithrombotic effects, and can inhibit coronavirus- replication. The study aim was to investigate the impact of iNO in COVID-19 associated ARDS (CARDS) on oxygenation, the length of mechanical ventilation (MV), the level of inflammatory markers and the rate of thrombotic events during ICU stay. Methods: This was a retrospective, observational, monocentric study analyzing the effect of INO (15 parts per million) vs. non-iNO in adult ventilated CARDS patients on oxygenation, the level of inflammatory markers, and the rate of thrombotic events during ICU stay. Within the iNO group, the impact on gas exchange was assessed by comparing arterial blood gas results obtained at different time points. Results: Overall, 19/56 patients were treated with iNO, with no difference regarding sex, age, body mass index, and SOFA-/APACHE II- score between the iNO and non-iNO groups. iNO improved oxygenation in iNO-responders (7/19) and had no impact on inflammatory markers or the rate of thrombotic events but was associated with an increased MV length. Conclusions: iNO was able to improve oxygenation in CARDS in iNO-responders but did not show an impact on inflammatory markers or the rate of thrombotic events, while it was associated with an increased MV length.
Collapse
Affiliation(s)
- Sandra Emily Stoll
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (B.W.B.); (F.D.); (N.L.); (T.L.); (C.M.); (R.O.); (A.M.)
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | - Bernd W. Böttiger
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (B.W.B.); (F.D.); (N.L.); (T.L.); (C.M.); (R.O.); (A.M.)
| | - Fabian Dusse
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (B.W.B.); (F.D.); (N.L.); (T.L.); (C.M.); (R.O.); (A.M.)
| | - Nicolas Leister
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (B.W.B.); (F.D.); (N.L.); (T.L.); (C.M.); (R.O.); (A.M.)
| | - Tobias Leupold
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (B.W.B.); (F.D.); (N.L.); (T.L.); (C.M.); (R.O.); (A.M.)
| | - Christoph Menzel
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (B.W.B.); (F.D.); (N.L.); (T.L.); (C.M.); (R.O.); (A.M.)
| | - Remco Overbeek
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (B.W.B.); (F.D.); (N.L.); (T.L.); (C.M.); (R.O.); (A.M.)
| | - Alexander Mathes
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (B.W.B.); (F.D.); (N.L.); (T.L.); (C.M.); (R.O.); (A.M.)
| |
Collapse
|
2
|
Santos LEB, Padovese CCG, de Castro IBO, Franco RC, Okuda APPB, Bustamante MR, Gioli-Pereira L. Inhaled nitric oxide in moderate-to-severe COVID-19 acute respiratory distress syndrome: a retrospective cohort study. EINSTEIN-SAO PAULO 2024; 22:eAO0578. [PMID: 39166698 PMCID: PMC11319026 DOI: 10.31744/einstein_journal/2024ao0578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 02/21/2024] [Indexed: 08/23/2024] Open
Abstract
OBJECTIVE In this study, we present the findings from a cohort of patients with COVID-19 with acute respiratory distress syndrome who underwent standard therapy, including prone positioning, with or without adjunctive inhalation of nitric oxide. Our investigation sought to determine whether inhaled nitric oxide administration yielded clinical enhancement in this population. Remarkably, nitric oxide administration elevated the PaO2/FiO2 ratio, which is indicative of improved oxygenation. Despite this improvement, discernible mortality benefits did not emerge in association with the inhaled nitric oxide treatment. To evaluate the responsiveness of COVID-19 acute respiratory distress syndrome patients to inhaled nitric oxide as part of their standard therapy. METHODS This retrospective cohort study included critically ill adult patients with confirmed COVID-19 treated between March 2020 and May 2021. Eligible patients with moderate-to-severe acute respiratory distress syndrome due to COVID-19 were subsequently categorized into two groups based on inhaled nitric oxide use throughout their stay in the intensive care unit. The primary endpoints were overall mortality and improvement in oxygenation parameters 6 hours after inhaled nitric oxide use. RESULTS A total of 481 patients admitted to the intensive care unit due to COVID-19 acute respiratory distress syndrome were screened, 105 of which were included. Among the 105 patients, inhaled nitric oxide therapy was used in 33 patients, will 72 did not undergo inhaled nitric oxide therapy. No significant difference in mortality was observed between the groups (67% for the treatment and 82% for the no-treatment groups respectively, p=0.173). Among the patients who used inhaled nitric oxide, 17 (51%) were considered responsive to therapy. There was no significant difference in the length of stay in the intensive care unit (p=0.324) or total hospitalization time (p=0.344). CONCLUSION Inhaled nitric oxide rescue therapy improved oxygenation in patients with COVID-19 with moderate-to-severe acute respiratory distress syndrome but did not affect mortality.
Collapse
Affiliation(s)
- Lucas Eduardo Benthien Santos
- Hospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de CarvalhoHospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de Carvalho; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Camila Campos Grisa Padovese
- Hospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de CarvalhoHospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de Carvalho; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Isabela Belarmino Oliveira de Castro
- Hospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de CarvalhoHospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de Carvalho; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Rodrigo Carneiro Franco
- Hospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de CarvalhoHospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de Carvalho; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Ana Paula Pires Bolsoni Okuda
- Hospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de CarvalhoHospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de Carvalho; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Mariana Resende Bustamante
- Hospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de CarvalhoHospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de Carvalho; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Luciana Gioli-Pereira
- Hospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de CarvalhoHospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de Carvalho; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Masood M, Singh P, Hariss D, Khan F, Yameen D, Siraj S, Islam A, Dohare R, Mahfuzul Haque M. Nitric oxide as a double-edged sword in pulmonary viral infections: Mechanistic insights and potential therapeutic implications. Gene 2024; 899:148148. [PMID: 38191100 DOI: 10.1016/j.gene.2024.148148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
In the face of the global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), researchers are tirelessly exploring novel therapeutic approaches to combat coronavirus disease 2019 (COVID-19) and its associated complications. Nitric oxide (NO) has appeared as a multifaceted signaling mediator with diverse and often contrasting biological activities. Its intricate biochemistry renders it a crucial regulator of cardiovascular and pulmonary functions, immunity, and neurotransmission. Perturbations in NO production, whether excessive or insufficient, contribute to the pathogenesis of various diseases, encompassing cardiovascular disease, pulmonary hypertension, asthma, diabetes, and cancer. Recent investigations have unveiled the potential of NO donors to impede SARS-CoV- 2 replication, while inhaled NO demonstrates promise as a therapeutic avenue for improving oxygenation in COVID-19-related hypoxic pulmonary conditions. Interestingly, NO's association with the inflammatory response in asthma suggests a potential protective role against SARS-CoV-2 infection. Furthermore, compelling evidence indicates the benefits of inhaled NO in optimizing ventilation-perfusion ratios and mitigating the need for mechanical ventilation in COVID-19 patients. In this review, we delve into the molecular targets of NO, its utility as a diagnostic marker, the mechanisms underlying its action in COVID-19, and the potential of inhaled NO as a therapeutic intervention against viral infections. The topmost significant pathway, gene ontology (GO)-biological process (BP), GO-molecular function (MF) and GO-cellular compartment (CC) terms associated with Nitric Oxide Synthase (NOS)1, NOS2, NOS3 were arginine biosynthesis (p-value = 1.15 x 10-9) regulation of guanylate cyclase activity (p-value = 7.5 x 10-12), arginine binding (p-value = 2.62 x 10-11), vesicle membrane (p-value = 3.93 x 10-8). Transcriptomics analysis further validates the significant presence of NOS1, NOS2, NOS3 in independent COVID-19 and pulmonary hypertension cohorts with respect to controls. This review investigates NO's molecular targets, diagnostic potentials, and therapeutic role in COVID-19, employing bioinformatics to identify key pathways and NOS isoforms' significance.
Collapse
Affiliation(s)
- Mohammad Masood
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Daaniyaal Hariss
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Faizya Khan
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Daraksha Yameen
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Seerat Siraj
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Mohammad Mahfuzul Haque
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
4
|
Omidkhah N, Hadizadeh F, Ghodsi R, Kesharwani P, Sahebkar A. In silico Evaluation of NO-Sartans against SARS-CoV-2. Curr Drug Discov Technol 2024; 21:e050324227669. [PMID: 38445698 DOI: 10.2174/0115701638279362240223070810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Numerous clinical trials are currently investigating the potential of nitric oxide (NO) as an antiviral agent against coronaviruses, including SARS-CoV-2. Additionally, some researchers have reported positive effects of certain Sartans against SARS-CoV-2. METHOD Considering the impact of NO-Sartans on the cardiovascular system, we have compiled information on the general structure, synthesis methods, and biological studies of synthesized NOSartans. In silico evaluation of all NO-Sartans and approved sartans against three key SARS-CoV- -2 targets, namely Mpro (PDB ID: 6LU7), NSP16 (PDB ID: 6WKQ), and ACE-2 (PDB ID: 1R4L), was performed using MOE. RESULTS Almost all NO-Sartans and approved sartans demonstrated promising results in inhibiting these SARS-CoV-2 targets. Compound 36 (CLC-1280) showed the best docking scores against the three evaluated targets and was further evaluated using molecular dynamics (MD) simulations. CONCLUSION Based on our in silico studies, CLC-1280 (a Valsartan dinitrate) has the potential to be considered as an inhibitor of the SARS-CoV-2 virus. However, further in vitro and in vivo evaluations are necessary for the drug development process.
Collapse
Affiliation(s)
- Negar Omidkhah
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, 110062, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Di Fenza R, Shetty NS, Gianni S, Parcha V, Giammatteo V, Safaee Fakhr B, Tornberg D, Wall O, Harbut P, Lai PS, Li JZ, Paganoni S, Cenci S, Mueller AL, Houle TT, Akeju O, Bittner EA, Bose S, Scott LK, Carroll RW, Ichinose F, Hedenstierna M, Arora P, Berra L. High-Dose Inhaled Nitric Oxide in Acute Hypoxemic Respiratory Failure Due to COVID-19: A Multicenter Phase II Trial. Am J Respir Crit Care Med 2023; 208:1293-1304. [PMID: 37774011 PMCID: PMC10765403 DOI: 10.1164/rccm.202304-0637oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/28/2023] [Indexed: 10/01/2023] Open
Abstract
Rationale: The effects of high-dose inhaled nitric oxide on hypoxemia in coronavirus disease (COVID-19) acute respiratory failure are unknown. Objectives: The primary outcome was the change in arterial oxygenation (PaO2/FiO2) at 48 hours. The secondary outcomes included: time to reach a PaO2/FiO2.300mmHg for at least 24 hours, the proportion of participants with a PaO2/FiO2.300mmHg at 28 days, and survival at 28 and at 90 days. Methods: Mechanically ventilated adults with COVID-19 pneumonia were enrolled in a phase II, multicenter, single-blind, randomized controlled parallel-arm trial. Participants in the intervention arm received inhaled nitric oxide at 80 ppm for 48 hours, compared with the control group receiving usual care (without placebo). Measurements and Main Results: A total of 193 participants were included in the modified intention-to-treat analysis. The mean change in PaO2/FiO2 ratio at 48 hours was 28.3mmHg in the intervention group and 21.4mmHg in the control group (mean difference, 39.1mmHg; 95% credible interval [CrI], 18.1 to 60.3). The mean time to reach a PaO2/FiO2.300mmHg in the interventional group was 8.7 days, compared with 8.4 days for the control group (mean difference, 0.44; 95% CrI, 23.63 to 4.53). At 28 days, the proportion of participants attaining a PaO2/FiO2.300mmHg was 27.7% in the inhaled nitric oxide group and 17.2% in the control subjects (risk ratio, 2.03; 95% CrI, 1.11 to 3.86). Duration of ventilation and mortality at 28 and 90 days did not differ. No serious adverse events were reported. Conclusions: The use of high-dose inhaled nitric oxide resulted in an improvement of PaO2/FiO2 at 48 hours compared with usual care in adults with acute hypoxemic respiratory failure due to COVID-19.
Collapse
Affiliation(s)
- Raffaele Di Fenza
- Department of Anesthesia, Critical Care, and Pain Medicine
- Harvard Medical School, Boston, Massachusetts
| | - Naman S. Shetty
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stefano Gianni
- Department of Anesthesia, Critical Care, and Pain Medicine
- Harvard Medical School, Boston, Massachusetts
| | - Vibhu Parcha
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Valentina Giammatteo
- Department of Anesthesia, Critical Care, and Pain Medicine
- Harvard Medical School, Boston, Massachusetts
| | - Bijan Safaee Fakhr
- Department of Anesthesia, Critical Care, and Pain Medicine
- Harvard Medical School, Boston, Massachusetts
| | - Daniel Tornberg
- Department of Clinical Sciences and
- Department of Anesthesia and Intensive Care and
| | - Olof Wall
- Department of Clinical Sciences and
- Department of Clinical Science and Education, Sodersxjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Piotr Harbut
- Department of Clinical Sciences and
- Department of Anesthesia and Intensive Care and
| | - Peggy S. Lai
- Pulmonary and Critical Care Medicine, Department of Medicine
- Harvard Medical School, Boston, Massachusetts
| | - Jonathan Z. Li
- Harvard Medical School, Boston, Massachusetts
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Sabrina Paganoni
- Sean M. Healey and AMG Center for ALS
- Neurological Clinical Research Institute
- Harvard Medical School, Boston, Massachusetts
| | - Stefano Cenci
- Department of Anesthesia, Critical Care, and Pain Medicine
- Harvard Medical School, Boston, Massachusetts
| | - Ariel L. Mueller
- Department of Anesthesia, Critical Care, and Pain Medicine
- Anesthesia Research Center
- Harvard Medical School, Boston, Massachusetts
| | - Timothy T. Houle
- Department of Anesthesia, Critical Care, and Pain Medicine
- Anesthesia Research Center
- Harvard Medical School, Boston, Massachusetts
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care, and Pain Medicine
- Harvard Medical School, Boston, Massachusetts
| | - Edward A. Bittner
- Department of Anesthesia, Critical Care, and Pain Medicine
- Harvard Medical School, Boston, Massachusetts
| | - Somnath Bose
- Harvard Medical School, Boston, Massachusetts
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts; and
| | - Louie K. Scott
- Critical Care Medicine, Department of Medicine, Louisiana State University Health Shreveport, Shreveport, Louisiana
| | - Ryan W. Carroll
- Division of Pediatric Critical Care Medicine, Department of Pediatrics
- Harvard Medical School, Boston, Massachusetts
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care, and Pain Medicine
- Anesthesia Critical Care Center for Research, and
- Harvard Medical School, Boston, Massachusetts
| | | | - Pankaj Arora
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care, and Pain Medicine
- Anesthesia Critical Care Center for Research, and
- Respiratory Care Services, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Xiao S, Yuan Z, Huang Y. The Potential Role of Nitric Oxide as a Therapeutic Agent against SARS-CoV-2 Infection. Int J Mol Sci 2023; 24:17162. [PMID: 38138990 PMCID: PMC10742813 DOI: 10.3390/ijms242417162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become the greatest worldwide public health threat of this century, which may predispose multi-organ failure (especially the lung) and death despite numerous mild and moderate symptoms. Recent studies have unraveled the molecular and clinical characteristics of the infectivity, pathogenicity, and immune evasion of SARS-CoV-2 and thus improved the development of many different therapeutic strategies to combat COVID-19, including treatment and prevention. Previous studies have indicated that nitric oxide (NO) is an antimicrobial and anti-inflammatory molecule with key roles in pulmonary vascular function in the context of viral infections and other pulmonary disease states. This review summarized the recent advances of the pathogenesis of SARS-CoV-2, and accordingly elaborated on the potential application of NO in the management of patients with COVID-19 through antiviral activities and anti-inflammatory properties, which mitigate the propagation of this disease. Although there are some limits of NO in the treatment of COVID-19, it might be a worthy candidate in the multiple stages of COVID-19 prevention or therapy.
Collapse
Affiliation(s)
| | | | - Yi Huang
- National Biosafety Laboratory, Chinese Academy of Sciences, Wuhan 430020, China
| |
Collapse
|
7
|
Ma D, Wang X, Li M, Hu C, Tang L. Reconsideration of interferon treatment for viral diseases: Lessons from SARS, MERS, and COVID-19. Int Immunopharmacol 2023; 121:110485. [PMID: 37348227 PMCID: PMC10272952 DOI: 10.1016/j.intimp.2023.110485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Periodic pandemics of coronavirus (CoV)-related pneumonia have been a major challenging issue since the outbreak of severe acute respiratory syndrome (SARS) in 2002 and Middle East respiratory syndrome (MERS) in 2012. The ongoing pandemic of CoV disease (COVID-19) poses a substantial threat to public health. As for the treatment options, only limited antiviral agents have been approved hitherto, and clinicians mainly focus on currently available drugs including the conventional antiviral interferons (IFNs). In clinical practice, IFNs, when used either alone or in combination with ribavirin and/or lopinavir/ritonavir, have shown promising outcomes, to some extent, in SARS-CoV or MERS-CoV treatment. Although the efficacy and safety of IFNs in COVID-19 treatment remain unclear, their possible use merits further evaluation. We present a review that summarizes current evidence of IFN treatment for COVID-19 and elaborates on other challenges in terms of the timing of IFN treatment initiation, treatment duration, and IFN type to be used. The review findings suggested that IFN acts by directly inhibiting viral replication and activating immune cell subsets. However, there is a lack of well-designed and controlled clinical trials providing firm evidence for the efficacy or safety of IFN therapy for CoVs. Additionally, critically ill patients with multiple immunosuppression-associated comorbidities may not benefit from IFN therapy, necessitating screening of those patients who would most benefit from IFN treatment.
Collapse
Affiliation(s)
- Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, GuiZhou, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, GuiZhou, China
| | - Ximin Wang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Min Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Chujiao Hu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, GuiZhou, China.
| | - Lei Tang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, GuiZhou, China.
| |
Collapse
|
8
|
Redaelli S, Pozzi M, Giani M, Magliocca A, Fumagalli R, Foti G, Berra L, Rezoagli E. Inhaled Nitric Oxide in Acute Respiratory Distress Syndrome Subsets: Rationale and Clinical Applications. J Aerosol Med Pulm Drug Deliv 2023; 36:112-126. [PMID: 37083488 PMCID: PMC10402704 DOI: 10.1089/jamp.2022.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/13/2023] [Indexed: 04/22/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening condition, characterized by diffuse inflammatory lung injury. Since the coronavirus disease 2019 (COVID-19) pandemic spread worldwide, the most common cause of ARDS has been the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Both the COVID-19-associated ARDS and the ARDS related to other causes-also defined as classical ARDS-are burdened by high mortality and morbidity. For these reasons, effective therapeutic interventions are urgently needed. Among them, inhaled nitric oxide (iNO) has been studied in patients with ARDS since 1993 and it is currently under investigation. In this review, we aim at describing the biological and pharmacological rationale of iNO treatment in ARDS by elucidating similarities and differences between classical and COVID-19 ARDS. Thereafter, we present the available evidence on the use of iNO in clinical practice in both types of respiratory failure. Overall, iNO seems a promising agent as it could improve the ventilation/perfusion mismatch, gas exchange impairment, and right ventricular failure, which are reported in ARDS. In addition, iNO may act as a viricidal agent and prevent lung hyperinflammation and thrombosis of the pulmonary vasculature in the specific setting of COVID-19 ARDS. However, the current evidence on the effects of iNO on outcomes is limited and clinical studies are yet to demonstrate any survival benefit by administering iNO in ARDS.
Collapse
Affiliation(s)
- Simone Redaelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Matteo Pozzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Marco Giani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Aurora Magliocca
- Department of Medical Physiopathology and Transplants, University of Milan, Milano, Italy
| | - Roberto Fumagalli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Anesthesia and Intensive Care Medicine, Niguarda Ca’ Granda, Milan, Italy
| | - Giuseppe Foti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Lorenzo Berra
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Respiratory Care Department, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
9
|
Wang Z, Jin A, Yang Z, Huang W. Advanced Nitric Oxide Generating Nanomedicine for Therapeutic Applications. ACS NANO 2023; 17:8935-8965. [PMID: 37126728 PMCID: PMC10395262 DOI: 10.1021/acsnano.3c02303] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO), a gaseous transmitter extensively present in the human body, regulates vascular relaxation, immune response, inflammation, neurotransmission, and other crucial functions. Nitrite donors have been used clinically to treat angina, heart failure, pulmonary hypertension, and erectile dysfunction. Based on NO's vast biological functions, it further can treat tumors, bacteria/biofilms and other infections, wound healing, eye diseases, and osteoporosis. However, delivering NO is challenging due to uncontrolled blood circulation release and a half-life of under five seconds. With advanced biotechnology and the development of nanomedicine, NO donors packaged with multifunctional nanocarriers by physically embedding or chemically conjugating have been reported to show improved therapeutic efficacy and reduced side effects. Herein, we review and discuss recent applications of NO nanomedicines, their therapeutic mechanisms, and the challenges of NO nanomedicines for future scientific studies and clinical applications. As NO enables the inhibition of the replication of DNA and RNA in infectious microbes, including COVID-19 coronaviruses and malaria parasites, we highlight the potential of NO nanomedicines for antipandemic efforts. This review aims to provide deep insights and practical hints into design strategies and applications of NO nanomedicines.
Collapse
Affiliation(s)
- Zhixiong Wang
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Albert Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| | - Wei Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| |
Collapse
|
10
|
Bourgin M, Durand S, Kroemer G. Diagnostic, Prognostic and Mechanistic Biomarkers of COVID-19 Identified by Mass Spectrometric Metabolomics. Metabolites 2023; 13:metabo13030342. [PMID: 36984782 PMCID: PMC10056171 DOI: 10.3390/metabo13030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
A number of studies have assessed the impact of SARS-CoV-2 infection and COVID-19 severity on the metabolome of exhaled air, saliva, plasma, and urine to identify diagnostic and prognostic biomarkers. In spite of the richness of the literature, there is no consensus about the utility of metabolomic analyses for the management of COVID-19, calling for a critical assessment of the literature. We identified mass spectrometric metabolomic studies on specimens from SARS-CoV2-infected patients and subjected them to a cross-study comparison. We compared the clinical design, technical aspects, and statistical analyses of published studies with the purpose to identify the most relevant biomarkers. Several among the metabolites that are under- or overrepresented in the plasma from patients with COVID-19 may directly contribute to excessive inflammatory reactions and deficient immune control of SARS-CoV2, hence unraveling important mechanistic connections between whole-body metabolism and the course of the disease. Altogether, it appears that mass spectrometric approaches have a high potential for biomarker discovery, especially if they are subjected to methodological standardization.
Collapse
Affiliation(s)
- Mélanie Bourgin
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75005 Paris, France
- Correspondence:
| | - Sylvère Durand
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75005 Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75005 Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75610 Paris, France
| |
Collapse
|
11
|
Yamasaki H, Imai H, Tanaka A, Otaki JM. Pleiotropic Functions of Nitric Oxide Produced by Ascorbate for the Prevention and Mitigation of COVID-19: A Revaluation of Pauling's Vitamin C Therapy. Microorganisms 2023; 11:397. [PMID: 36838362 PMCID: PMC9963342 DOI: 10.3390/microorganisms11020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Linus Pauling, who was awarded the Nobel Prize in Chemistry, suggested that a high dose of vitamin C (l-ascorbic acid) might work as a prevention or treatment for the common cold. Vitamin C therapy was tested in clinical trials, but clear evidence was not found at that time. Although Pauling's proposal has been strongly criticized for a long time, vitamin C therapy has continued to be tested as a treatment for a variety of diseases, including coronavirus infectious disease 2019 (COVID-19). The pathogen of COVID-19, SARS-CoV-2, belongs to the β-coronavirus lineage, which includes human coronavirus, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). This review intends to shed new light on vitamin C antiviral activity that may prevent SARS-CoV-2 infection through the chemical production of nitric oxide (NO). NO is a gaseous free radical that is largely produced by the enzyme NO synthase (NOS) in cells. NO produced by upper epidermal cells contributes to the inactivation of viruses and bacteria contained in air or aerosols. In addition to enzymatic production, NO can be generated by the chemical reduction of inorganic nitrite (NO2-), an alternative mechanism for NO production in living organisms. Dietary vitamin C, largely contained in fruits and vegetables, can reduce the nitrite in saliva to produce NO in the oral cavity when chewing foods. In the stomach, salivary nitrite can also be reduced to NO by vitamin C secreted from the epidermal cells of the stomach. The strong acidic pH of gastric juice facilitates the chemical reduction of salivary nitrite to produce NO. Vitamin C contributes in multiple ways to the host innate immune system as a first-line defense mechanism against pathogens. Highlighting chemical NO production by vitamin C, we suggest that controversies on the therapeutic effects of vitamin C in previous clinical trials may partly be due to less appreciation of the pleiotropic functions of vitamin C as a universal bioreductant.
Collapse
Affiliation(s)
- Hideo Yamasaki
- Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan
| | | | | | | |
Collapse
|
12
|
Al-Sehemi AG, Parulekar RS, Pannipara M, P P MA, Zubaidha PK, Bhatia MS, Mohanta TK, Al-Harrasi A. In silico evaluation of NO donor heterocyclic vasodilators as SARS-CoV-2 M pro protein inhibitor. J Biomol Struct Dyn 2023; 41:280-297. [PMID: 34809523 DOI: 10.1080/07391102.2021.2005682] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which causes COVID-19 disease has been exponentially increasing throughout the world. The mortality rate is increasing gradually as effective treatment is unavailable to date. In silico based screening for novel testable hypotheses on SARS-CoV-2 Mpro protein to discover the potential lead drug candidate is an emerging area along with the discovery of a vaccine. Administration of NO-releasing agents, NO inducers or the NO gas itself may be useful as therapeutics in the treatment of SARS-CoV-2. In the present study, a 3D structure of SARS-CoV-2 Mpro protein was used for the rational setting of inhibitors to the binding pocket of enzyme which proposed that phenyl furoxan derivative gets efficiently dock in the target pocket. Molecular docking and molecular dynamics simulations helped to investigate possible effective inhibitor candidates bound to SARS-CoV-2 Mpro substrate binding pocket. Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations revealed energetic contributions of active site residues of Mpro in binding with most stable proposed NO donor heterocyclic vasodilator inhibitor molecules. Furthermore, principal component analysis (PCA) showed that the NO donor heterocyclic inhibitor molecules 14, 16, 18 and 19 was strongly bound to catalytic core of SARS-CoV-2 Mpro protein, limiting its movement to form stable complex as like control. Thus, overall in silico investigations revealed that 5-oxopiperazine-2-carboxylic acid coupled furoxan derivatives was found to be key pharmacophore in drug design for the treatment of SARS-CoV-2, a global pandemic disease with a dual mechanism of action as NO donor and a worthwhile ligand to act as SARS-CoV-2 Mpro protein inhibitor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdullah G Al-Sehemi
- Research center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia.,Department of Chemistry, King Khalid University, Abha, Saudi Arabia
| | - Rishikesh S Parulekar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, India
| | - Mehboobali Pannipara
- Research center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia.,Department of Chemistry, King Khalid University, Abha, Saudi Arabia
| | - Manzur Ali P P
- Department of Biotechnology, MES College, Marampally, Kerala, India
| | | | - Manish S Bhatia
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, India
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
13
|
Nasrullah A, Virk S, Shah A, Jacobs M, Hamza A, Sheikh AB, Javed A, Butt MA, Sangli S. Acute Respiratory Distress Syndrome and the Use of Inhaled Pulmonary Vasodilators in the COVID-19 Era: A Narrative Review. Life (Basel) 2022; 12:1766. [PMID: 36362921 PMCID: PMC9695622 DOI: 10.3390/life12111766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 09/03/2023] Open
Abstract
The Coronavirus disease (COVID-19) pandemic of 2019 has resulted in significant morbidity and mortality, especially from severe acute respiratory distress syndrome (ARDS). As of September 2022, more than 6.5 million patients have died globally, and up to 5% required intensive care unit treatment. COVID-19-associated ARDS (CARDS) differs from the typical ARDS due to distinct pathology involving the pulmonary vasculature endothelium, resulting in diffuse thrombi in the pulmonary circulation and impaired gas exchange. The National Institute of Health and the Society of Critical Care Medicine recommend lung-protective ventilation, prone ventilation, and neuromuscular blockade as needed. Further, a trial of pulmonary vasodilators is suggested for those who develop refractory hypoxemia. A review of the prior literature on inhaled pulmonary vasodilators in ARDS suggests only a transient improvement in oxygenation, with no mortality benefit. This narrative review aims to highlight the fundamental principles in ARDS management, delineate the fundamental differences between CARDS and ARDS, and describe the comprehensive use of inhaled pulmonary vasodilators. In addition, with the differing pathophysiology of CARDS from the typical ARDS, we sought to evaluate the current evidence regarding the use of inhaled pulmonary vasodilators in CARDS.
Collapse
Affiliation(s)
- Adeel Nasrullah
- Division of Pulmonology and Critical Care, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Shiza Virk
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA 15512, USA
| | - Aaisha Shah
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA 15512, USA
| | - Max Jacobs
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA 15512, USA
| | - Amina Hamza
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA 15512, USA
| | - Abu Baker Sheikh
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87106, USA
| | - Anam Javed
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA 15512, USA
| | - Muhammad Ali Butt
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA 15512, USA
| | - Swathi Sangli
- Division of Pulmonology and Critical Care, Allegheny Health Network, Pittsburgh, PA 15212, USA
| |
Collapse
|
14
|
Oza PP, Kashfi K. Utility of NO and H 2S donating platforms in managing COVID-19: Rationale and promise. Nitric Oxide 2022; 128:72-102. [PMID: 36029975 PMCID: PMC9398942 DOI: 10.1016/j.niox.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 01/08/2023]
Abstract
Viral infections are a continuing global burden on the human population, underscored by the ramifications of the COVID-19 pandemic. Current treatment options and supportive therapies for many viral infections are relatively limited, indicating a need for alternative therapeutic approaches. Virus-induced damage occurs through direct infection of host cells and inflammation-related changes. Severe cases of certain viral infections, including COVID-19, can lead to a hyperinflammatory response termed cytokine storm, resulting in extensive endothelial damage, thrombosis, respiratory failure, and death. Therapies targeting these complications are crucial in addition to antiviral therapies. Nitric oxide and hydrogen sulfide are two endogenous gasotransmitters that have emerged as key signaling molecules with a broad range of antiviral actions in addition to having anti-inflammatory properties and protective functions in the vasculature and respiratory system. The enhancement of endogenous nitric oxide and hydrogen sulfide levels thus holds promise for managing both early-stage and later-stage viral infections, including SARS-CoV-2. Using SARS-CoV-2 as a model for similar viral infections, here we explore the current evidence regarding nitric oxide and hydrogen sulfide's use to limit viral infection, resolve inflammation, and reduce vascular and pulmonary damage.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, 10091, USA.
| |
Collapse
|
15
|
Festa J, Singh H, Hussain A, Da Boit M. Elderberries as a potential supplement to improve vascular function in a SARS-CoV-2 environment. J Food Biochem 2022; 46:e14091. [PMID: 35118699 DOI: 10.1111/jfbc.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has been triggered by the severe acute respiratory syndrome coronavirus (SARS-CoV-2). Although recent studies demonstrate that SARS-CoV-2 possibly does not directly infect endothelial cells (EC), the endothelium may be affected as a secondary response due to the damage of neighboring cells, circulating pro-inflammatory cytokines, and/or other mechanisms. Long-term COVID-19 symptoms specifically nonrespiratory symptoms are due to the persistence of endothelial dysfunction (ED). Based on the literature, anthocyanins a major subgroup of flavonoid polyphenols found in berries, have been well researched for their vascular protective properties as well as the prevention of cardiovascular disease (CVD)-related deaths. Elderberries have been previously used as a natural remedy for treating influenza, cold, and consequently cardiovascular health due to a high content of cyanidin-3-glucoside (C3G) a major anthocyanin found in the human diet. The literature reported many studies demonstrating that EE has both antiviral and vascular protective properties that should be further investigated as a nutritional component used against the (in)direct effect of SARS-CoV-2 in vascular function. PRACTICAL APPLICATIONS: While previous work among the literature looks promising and builds a suggestion for investigating elderberry extract (EE) against COVID-19, further in vitro and in vivo research is required to fully evaluate EE mechanisms of action and its use as a supplement to aid current therapies.
Collapse
Affiliation(s)
- Joseph Festa
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Harprit Singh
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Aamir Hussain
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK.,Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Mariasole Da Boit
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| |
Collapse
|
16
|
Meng L, Liao X, Wang Y, Chen L, Gao W, Wang M, Dai H, Yan N, Gao Y, Wu X, Wang K, Liu Q. Pharmacologic therapies of ARDS: From natural herb to nanomedicine. Front Pharmacol 2022; 13:930593. [PMID: 36386221 PMCID: PMC9651133 DOI: 10.3389/fphar.2022.930593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common critical illness in respiratory care units with a huge public health burden. Despite tremendous advances in the prevention and treatment of ARDS, it remains the main cause of intensive care unit (ICU) management, and the mortality rate of ARDS remains unacceptably high. The poor performance of ARDS is closely related to its heterogeneous clinical syndrome caused by complicated pathophysiology. Based on the different pathophysiology phases, drugs, protective mechanical ventilation, conservative fluid therapy, and other treatment have been developed to serve as the ARDS therapeutic methods. In recent years, there has been a rapid development in nanomedicine, in which nanoparticles as drug delivery vehicles have been extensively studied in the treatment of ARDS. This study provides an overview of pharmacologic therapies for ARDS, including conventional drugs, natural medicine therapy, and nanomedicine. Particularly, we discuss the unique mechanism and strength of nanomedicine which may provide great promises in treating ARDS in the future.
Collapse
Affiliation(s)
- Linlin Meng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Ximing Liao
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Yuanyuan Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Liangzhi Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Gao
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Muyun Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Huiling Dai
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Na Yan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yixuan Gao
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xu Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kun Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
- *Correspondence: Kun Wang, ; Qinghua Liu,
| | - Qinghua Liu
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
- *Correspondence: Kun Wang, ; Qinghua Liu,
| |
Collapse
|
17
|
Corrêa HL, Simões HG, Neves RVP, Deus LA, Rosa TS. The potential role of physical activity and a healthy diet in increasing nitric oxide during COVID-19 outbreak. Sci Sports 2022; 37:639-642. [PMID: 36062207 PMCID: PMC9420716 DOI: 10.1016/j.scispo.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/09/2021] [Indexed: 12/03/2022]
Abstract
The potential role of physical activity and a healthy diet in increasing nitric oxide during COVID-19 outbreak. This manuscript presents a perspective which provide new insights about the promising role of nitric oxide on COVID-19. Demonstration that nitric oxide was an important cornerstone against viral infections, including SARS-CoV-1 in 2009. Thus, given the concern that higher NO− could improve endothelial health and might be a protection factor against COVID-19, should we critically consider non-pharmacological strategies that increase NO− bioavailability as medicine for COVID-19? From this perspective, we highlight the potential effect of physical activity and healthy diet in stimulating the increase of NO− bioavailability.
Collapse
Affiliation(s)
- H L Corrêa
- Graduate Program of Physical Education, Catholic University of Brasilia, Federal district, Brasilia, Brazil
| | - H G Simões
- Graduate Program of Physical Education, Catholic University of Brasilia, Federal district, Brasilia, Brazil
| | - R V P Neves
- Graduate Program of Physical Education, Catholic University of Brasilia, Federal district, Brasilia, Brazil
| | - L A Deus
- Graduate Program of Physical Education, Catholic University of Brasilia, Federal district, Brasilia, Brazil
| | - T S Rosa
- Graduate Program of Physical Education, Catholic University of Brasilia, Federal district, Brasilia, Brazil
| |
Collapse
|
18
|
High-Dose Inhaled Nitric Oxide for the Treatment of Spontaneously Breathing Pregnant Patients With Severe Coronavirus Disease 2019 (COVID-19) Pneumonia. Obstet Gynecol 2022; 140:195-203. [PMID: 35852269 PMCID: PMC9994457 DOI: 10.1097/aog.0000000000004847] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To evaluate whether the use of inhaled nitric oxide (iNO)200 improves respiratory function. METHODS This retrospective cohort study used data from pregnant patients hospitalized with severe bilateral coronavirus disease 2019 (COVID-19) pneumonia at four teaching hospitals between March 2020 and December 2021. Two cohorts were identified: 1) those receiving standard of care alone (SoC cohort) and 2) those receiving iNO200 for 30 minutes twice daily in addition to standard of care alone (iNO200 cohort). Inhaled nitric oxide, as a novel therapy, was offered only at one hospital. The prespecified primary outcome was days free from any oxygen supplementation at 28 days postadmission. Secondary outcomes were hospital length of stay, rate of intubation, and intensive care unit (ICU) length of stay. The multivariable-adjusted regression analyses accounted for age, body mass index, gestational age, use of steroids, remdesivir, and the study center. RESULTS Seventy-one pregnant patients were hospitalized for severe bilateral COVID-19 pneumonia: 51 in the SoC cohort and 20 in the iNO200 cohort. Patients receiving iNO200 had more oxygen supplementation-free days (iNO200: median [interquartile range], 24 [23-26] days vs standard of care alone: 22 [14-24] days, P=.01) compared with patients in the SoC cohort. In the multivariable-adjusted analyses, iNO200 was associated with 63.2% (95% CI 36.2-95.4%; P<.001) more days free from oxygen supplementation, 59.7% (95% CI 56.0-63.2%; P<.001) shorter ICU length of stay, and 63.6% (95% CI 55.1-70.8%; P<.001) shorter hospital length of stay. No iNO200-related adverse events were reported. CONCLUSION In pregnant patients with severe bilateral COVID-19 pneumonia, iNO200 was associated with a reduced need for oxygen supplementation and shorter hospital stay.
Collapse
|
19
|
Safety and practicality of high dose inhaled nitric oxide in emergency department COVID-19 patients. Am J Emerg Med 2022; 58:5-8. [PMID: 35623183 PMCID: PMC9066706 DOI: 10.1016/j.ajem.2022.04.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Inhaled nitric oxide (iNO) is a selective pulmonary vasodilator and mild bronchodilator that has been shown to improve systemic oxygenation, but has rarely been administered in the Emergency Department (ED). In addition to its favorable pulmonary vascular effects, in-vitro studies report that NO donors can inhibit replication of viruses, including SARS Coronavirus 2 (SARS-CoV-2). This study evaluated the administration of high-dose iNO by mask in spontaneously breathing emergency department (ED) patients with respiratory symptoms attributed to Coronavirus disease 2019 (COVID-19). METHODS We designed a randomized clinical trial to determine whether 30 min of high dose iNO (250 ppm) could be safely and practically administered by emergency physicians in the ED to spontaneously-breathing patients with respiratory symptoms attributed to COVID-19. Our secondary goal was to learn if iNO could prevent the progression of mild COVID-19 to a more severe state. FINDINGS We enrolled 47 ED patients with acute respiratory symptoms most likely due to COVID-19: 25 of 47 (53%) were randomized to the iNO treatment group; 22 of 47 (46%) to the control group (supportive care only). All patients tolerated the administration of high-dose iNO in the ED without significant complications or symptoms. Five patients receiving iNO (16%) experienced asymptomatic methemoglobinemia (MetHb) > 5%. Thirty-four of 47 (72%) subjects tested positive for SARS-CoV-2: 19 of 34 were randomized to the iNO treatment group and 15 of 34 subjects to the control group. Seven of 19 (38%) iNO patients returned to the ED, while 4 of 15 (27%) control patients did. One patient in each study arm was hospitalized: 5% in iNO treatment and 7% in controls. One patient was intubated in the iNO group. No patients in either group died. The differences between these groups were not significant. CONCLUSION A single dose of iNO at 250 ppm was practical and not associated with any significant adverse effects when administered in the ED by emergency physicians. Local disease control led to early study closure and prevented complete testing of COVID-19 safety and treatment outcomes measures.
Collapse
|
20
|
More questions than answers for the use of inhaled nitric oxide in COVID-19. Nitric Oxide 2022; 124:39-48. [PMID: 35526702 PMCID: PMC9072755 DOI: 10.1016/j.niox.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
Inhaled nitric oxide (iNO) is a potent vasodilator approved for use in term and near-term neonates, but with broad off-label use in settings including acute respiratory distress syndrome (ARDS). As an inhaled therapy, iNO reaches well ventilated portions of the lung and selectively vasodilates the pulmonary vascular bed, with little systemic effect due to its rapid inactivation in the bloodstream. iNO is well documented to improve oxygenation in a variety of pathological conditions, but in ARDS, these transient improvements in oxygenation have not translated into meaningful clinical outcomes. In coronavirus disease 2019 (COVID-19) related ARDS, iNO has been proposed as a potential treatment due to a variety of mechanisms, including its vasodilatory effect, antiviral properties, as well as anti-thrombotic and anti-inflammatory actions. Presently however, no randomized controlled data are available evaluating iNO in COVID-19, and published data are largely derived from retrospective and cohort studies. It is therefore important to interpret these limited findings with caution, as many questions remain around factors such as patient selection, optimal dosing, timing of administration, duration of administration, and delivery method. Each of these factors may influence whether iNO is indeed an efficacious therapy - or not - in this context. As such, until randomized controlled trial data are available, use of iNO in the treatment of patients with COVID-19 related ARDS should be considered on an individual basis with sound clinical judgement from the attending physician.
Collapse
|
21
|
Rajendran R, Chathambath A, Al-Sehemi AG, Pannipara M, Unnikrishnan MK, Aleya L, Raghavan RP, Mathew B. Critical role of nitric oxide in impeding COVID-19 transmission and prevention: a promising possibility. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38657-38672. [PMID: 35258738 PMCID: PMC8902850 DOI: 10.1007/s11356-022-19148-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/06/2022] [Indexed: 05/06/2023]
Abstract
COVID-19 is a serious respiratory infection caused by a beta-coronavirus that is closely linked to SARS. Hypoxemia is a symptom of infection, which is accompanied by acute respiratory distress syndrome (ARDS). Augmenting supplementary oxygen may not always improve oxygen saturation; reversing hypoxemia in COVID-19 necessitates sophisticated means to promote oxygen transfer from alveoli to blood. Inhaled nitric oxide (iNO) has been shown to inhibit the multiplication of the respiratory coronavirus, a property that distinguishes it from other vasodilators. These findings imply that NO may have a crucial role in the therapy of COVID-19, indicating research into optimal methods to restore pulmonary physiology. According to clinical and experimental data, NO is a selective vasodilator proven to restore oxygenation by helping to normalize shunts and ventilation/perfusion mismatches. This study examines the role of NO in COVID-19 in terms of its specific physiological and biochemical properties, as well as the possibility of using inhaled NO as a standard therapy. We have also discussed how NO could be used to prevent and cure COVID-19, in addition to the limitations of NO.
Collapse
Affiliation(s)
- Rajalakshmi Rajendran
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Anjana Chathambath
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science, King Khalid University, Abha, 61413, Saudi Arabia
- Department of Chemistry, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mehboobali Pannipara
- Research Center for Advanced Materials Science, King Khalid University, Abha, 61413, Saudi Arabia
- Department of Chemistry, King Khalid University, Abha, 61413, Saudi Arabia
| | | | - Lotfi Aleya
- Laboratoire Chrono-Environment, Universite de Bourgogne Franche-Comte, CNRS6249, Besancon, France
| | - Roshni Pushpa Raghavan
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682 041, India
| |
Collapse
|
22
|
Inhaled nitric oxide as temporary respiratory stabilization in patients with COVID-19 related respiratory failure (INOCOV): Study protocol for a randomized controlled trial. PLoS One 2022; 17:e0268822. [PMID: 35622848 PMCID: PMC9140246 DOI: 10.1371/journal.pone.0268822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background In March 2020, WHO announced the COVID-19 a pandemic and a major global public health emergency. Mortality from COVID-19 is rapidly increasing globally, with acute respiratory failure as the predominant cause of death. Many patients experience severe hypoxia and life-threatening respiratory failure often requiring mechanical ventilation. To increase safety margins during emergency anaesthesia and rapid sequence intubation (RSI), patients are preoxygenated with a closed facemask with high-flow oxygen and positive end-expiratory pressure (PEEP). Due to the high shunt fraction of deoxygenated blood through the lungs frequently described in COVID-19 however, these measures may be insufficient to avoid harmful hypoxemia. Preoxygenation with inhaled nitric oxide (iNO) potentially reduces the shunt fraction and may thus allow for the necessary margins of safety during RSI. Methods and design The INOCOV protocol describes a phase II pharmacological trial of inhaled nitric oxide (iNO) as an adjunct to standard of care with medical oxygen in initial airway and ventilation management of patients with known or suspected COVID-19 in acute respiratory failure. The trial is parallel two-arm, randomized, controlled, blinded trial. The primary outcome measure is the change in oxygen saturation (SpO2), and the null hypothesis is that there is no difference in the change in SpO2 following initiation of iNO. Trial registration EudraCT number 2020-001656-18; WHO UTN: U1111-1250-1698. Protocol version: 2.0 (June 25th, 2021).
Collapse
|
23
|
Gianni S, Valsecchi C, Berra L. Therapeutic Gases and Inhaled Anesthetics as Adjunctive Therapies in Critically Ill Patients. Semin Respir Crit Care Med 2022; 43:440-452. [PMID: 35533689 DOI: 10.1055/s-0042-1747966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The administration of exogenous oxygen to support adequate gas exchange is the cornerstone of respiratory care. In the past few years, other gaseous molecules have been introduced in clinical practice to treat the wide variety of physiological derangement seen in critical care patients.Inhaled nitric oxide (NO) is used for its unique selective pulmonary vasodilator effect. Recent studies showed that NO plays a pivotal role in regulating ischemia-reperfusion injury and it has antibacterial and antiviral activity.Helium, due to its low density, is used in patients with upper airway obstruction and lower airway obstruction to facilitate gas flow and to reduce work of breathing.Carbon monoxide (CO) is a poisonous gas that acts as a signaling molecule involved in many biologic pathways. CO's anti-inflammatory and antiproliferative effects are under investigation in the setting of acute respiratory distress and idiopathic pulmonary fibrosis.Inhaled anesthetics are widely used in the operative room setting and, with the development of anesthetic reflectors, are now a valid option for sedation management in the intensive care unit.Many other gases such as xenon, argon, and hydrogen sulfide are under investigation for their neuroprotective and cardioprotective effects in post-cardiac arrest syndrome.With all these therapeutic options available, the clinician must have a clear understanding of the physiologic basis, therapeutic potential, and possible adverse events of these therapeutic gases. In this review, we will present the therapeutic gases other than oxygen used in clinical practice and we will describe other promising therapeutic gases that are in the early phases of investigation.
Collapse
Affiliation(s)
- Stefano Gianni
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Carlo Valsecchi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Sodano F, Gazzano E, Fruttero R, Lazzarato L. NO in Viral Infections: Role and Development of Antiviral Therapies. Molecules 2022; 27:2337. [PMID: 35408735 PMCID: PMC9000700 DOI: 10.3390/molecules27072337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Nitric oxide is a ubiquitous signaling radical that influences critical body functions. Its importance in the cardiovascular system and the innate immune response to bacterial and viral infections has been extensively investigated. The overproduction of NO is an early component of viral infections, including those affecting the respiratory tract. The production of high levels of NO is due to the overexpression of NO biosynthesis by inducible NO synthase (iNOS), which is involved in viral clearance. The development of NO-based antiviral therapies, particularly gaseous NO inhalation and NO-donors, has proven to be an excellent antiviral therapeutic strategy. The aim of this review is to systematically examine the multiple research studies that have been carried out to elucidate the role of NO in viral infections and to comprehensively describe the NO-based antiviral strategies that have been developed thus far. Particular attention has been paid to the potential mechanisms of NO and its clinical use in the prevention and therapy of COVID-19.
Collapse
Affiliation(s)
- Federica Sodano
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (R.F.); (L.L.)
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy
| | - Elena Gazzano
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Roberta Fruttero
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (R.F.); (L.L.)
| | - Loretta Lazzarato
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (R.F.); (L.L.)
| |
Collapse
|
25
|
Implications of microvascular dysfunction and nitric oxide mediated inflammation in severe COVID-19 infection. Am J Med Sci 2022; 364:251-256. [PMID: 35469768 PMCID: PMC9027037 DOI: 10.1016/j.amjms.2022.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/01/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022]
Abstract
Infection with COVID-19 has resulted in over 276,000 deaths in the United States and over 1.5 million deaths globally, with upwards of 15% of patients requiring hospitalization. Severe COVID-19 infection is, in essence, a microvascular disease. This contention has been emphasized throughout the course of the pandemic, particularly due to the clinical manifestation of severe infection. In fact, it has been hypothesized and shown in particular instances that microvascular function is a significant prognosticator for morbidity and mortality. Initially thought to be isolated to the pulmonary system and resulting in ARDS, patients with COVID-19 have been observed to have acute cardiac, renal, and thrombolytic complications. Therefore, severe COVID-19 is a vascular disease that has systemic implications. The objective of this review is to provide a mechanistic background for the microvascular nature of severe COVID-19 infection, with a particular emphasis on dysfunction of the endothelial glycocalyx and nitric oxide mediated pathogenesis.
Collapse
|
26
|
Nitric oxide releasing nanoparticles reduce inflammation in a small animal model of ARDS. Pharmacotherapy 2022; 148:112705. [DOI: 10.1016/j.biopha.2022.112705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 11/20/2022]
|
27
|
Oxidative Stress-Related Mechanisms in SARS-CoV-2 Infections. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5589089. [PMID: 35281470 PMCID: PMC8906126 DOI: 10.1155/2022/5589089] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/11/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic caused relatively high mortality in patients, especially in those with concomitant diseases (i.e., diabetes, hypertension, and chronic obstructive pulmonary disease (COPD)). In most of aforementioned comorbidities, the oxidative stress appears to be an important player in their pathogenesis. The direct cause of death in critically ill patients with COVID-19 is still far from being elucidated. Although some preliminary data suggests that the lung vasculature injury and the loss of the functioning part of pulmonary alveolar population are crucial, the precise mechanism is still unclear. On the other hand, at least two classes of medications used with some clinical benefits in COVID-19 treatment seem to have a major influence on ROS (reactive oxygen species) and RNS (reactive nitrogen species) production. However, oxidative stress is one of the important mechanisms in the antiviral immune response and innate immunity. Therefore, it would be of interest to summarize the data regarding the oxidative stress in severe COVID-19. In this review, we discuss the role of oxidative and antioxidant mechanisms in severe COVID-19 based on available studies. We also present the role of ROS and RNS in other viral infections in humans and in animal models. Although reactive oxygen and nitrogen species play an important role in the innate antiviral immune response, in some situations, they might have a deleterious effect, e.g., in some coronaviral infections. The understanding of the redox mechanisms in severe COVID-19 disease may have an impact on its treatment.
Collapse
|
28
|
Beheshtirouy S, Khani E, Khiali S, Entezari-Maleki T. Investigational antiviral drugs for the treatment of COVID-19 patients. Arch Virol 2022; 167:751-805. [PMID: 35138438 DOI: 10.1007/s00705-022-05368-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022]
Abstract
In the current pandemic of coronavirus disease 2019 (COVID-19), antiviral drugs are at the center of attention because of their critical role against severe acute respiratory disease syndrome coronavirus 2 (SARS-CoV-2). In addition to designing new antivirals against SARS-COV-2, a drug repurposing strategy is a practical approach for treating COVID-19. A brief insight about antivirals would help clinicians to choose the best medication for the treatment of COVID-19. In this review, we discuss both novel and repurposed investigational antivirals, focusing on in vitro, in vivo, and clinical trial studies.
Collapse
Affiliation(s)
- Samineh Beheshtirouy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Khani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajad Khiali
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. .,Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
Perchiazzi G, Lipcsey M, Malinovschi A. Göran Hedenstierna (1941-2021). Clin Physiol Funct Imaging 2022; 42:146-147. [PMID: 35128789 DOI: 10.1111/cpf.12743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/12/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Gaetano Perchiazzi
- Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Miklos Lipcsey
- Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Andrei Malinovschi
- Clinical Physiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
Kamenshchikov NO, Berra L, Carroll RW. Therapeutic Effects of Inhaled Nitric Oxide Therapy in COVID-19 Patients. Biomedicines 2022; 10:biomedicines10020369. [PMID: 35203578 PMCID: PMC8962307 DOI: 10.3390/biomedicines10020369] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 01/08/2023] Open
Abstract
The global COVID-19 pandemic has become the largest public health challenge of recent years. The incidence of COVID-19-related acute hypoxemic respiratory failure (AHRF) occurs in up to 15% of hospitalized patients. Antiviral drugs currently available to clinicians have little to no effect on mortality, length of in-hospital stay, the need for mechanical ventilation, or long-term effects. Inhaled nitric oxide (iNO) administration is a promising new non-standard approach to directly treat viral burden while enhancing oxygenation. Along with its putative antiviral affect in COVID-19 patients, iNO can reduce inflammatory cell-mediated lung injury by inhibiting neutrophil activation, lowering pulmonary vascular resistance and decreasing edema in the alveolar spaces, collectively enhancing ventilation/perfusion matching. This narrative review article presents recent literature on the iNO therapy use for COVID-19 patients. The authors suggest that early administration of the iNO therapy may be a safe and promising approach for the treatment of COVID-19 patients. The authors also discuss unconventional approaches to treatment, continuous versus intermittent high-dose iNO therapy, timing of initiation of therapy (early versus late), and novel delivery systems. Future laboratory and clinical research is required to define the role of iNO as an adjunct therapy against bacterial, viral, and fungal infections.
Collapse
Affiliation(s)
- Nikolay O. Kamenshchikov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
- Correspondence:
| | - Lorenzo Berra
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA;
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA;
| | - Ryan W. Carroll
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA;
- Division of Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
31
|
DonaireGarcia A, Dachepally R, Hanna W, Latifi SQ, Agarwal HS. Inhaled nitric oxide therapy for severe hypoxemia in hyperinflated mechanically ventilated bronchiolitis patient. Respir Med Case Rep 2022; 37:101643. [PMID: 35402153 PMCID: PMC8987375 DOI: 10.1016/j.rmcr.2022.101643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
Management of hospitalized bronchiolitis patients comprises supportive care including non-invasive and invasive mechanical ventilation. Inhaled nitric oxide (iNO) therapy has been used in bronchiolitis patients to manage pulmonary hypertension, acute respiratory distress syndrome, bronchoconstriction or inflammation. We report the role of iNO in management of severe hypoxemia in a 7-month-old mechanically ventilated bronchiolitis patient on 100% oxygen and high ventilator settings who had hyperinflation on chest x-ray, and diffuse bronchospasm on clinical assessment. We believe iNO improved hypoxemia in our patient by optimizing the ventilation/perfusion mismatch, decreasing dead space ventilation and relieving elevated pulmonary vascular resistance associated with alveolar overdistention. Inhaled nitric oxide therapy for severe hypoxemia in hyperinflated mechanically ventilated bronchiolitis patient.
Collapse
|
32
|
Inhaled Nitric Oxide in Patients with Severe COVID-19 Infection at Intensive Care Unit - A Cross Sectional Study. J Crit Care Med (Targu Mures) 2021; 7:318-319. [PMID: 34934824 PMCID: PMC8647665 DOI: 10.2478/jccm-2021-0033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
|
33
|
Aslan A, Aslan C, Zolbanin NM, Jafari R. Acute respiratory distress syndrome in COVID-19: possible mechanisms and therapeutic management. Pneumonia (Nathan) 2021; 13:14. [PMID: 34872623 PMCID: PMC8647516 DOI: 10.1186/s41479-021-00092-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023] Open
Abstract
COVID-19 pandemic is a serious concern in the new era. Acute respiratory distress syndrome (ARDS), and lung failure are the main lung diseases in COVID-19 patients. Even though COVID-19 vaccinations are available now, there is still an urgent need to find potential treatments to ease the effects of COVID-19 on already sick patients. Multiple experimental drugs have been approved by the FDA with unknown efficacy and possible adverse effects. Probably the increasing number of studies worldwide examining the potential COVID-19 related therapies will help to identification of effective ARDS treatment. In this review article, we first provide a summary on immunopathology of ARDS next we will give an overview of management of patients with COVID-19 requiring intensive care unit (ICU), while focusing on the current treatment strategies being evaluated in the clinical trials in COVID-19-induced ARDS patients.
Collapse
Affiliation(s)
- Anolin Aslan
- Department of Critical Care Nursing, School of Nursing and Midwifery, Tehran University of Medical Science, Tehran, Iran
| | - Cynthia Aslan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Jafari
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Shafa St., Ershad Blvd., P.O. Box: 1138, Urmia, 57147, Iran. .,Hematology, Immune Cell Therapy, and Stem Cell Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
34
|
Tiwari V, Kumar M, Tiwari A, Sahoo BM, Singh S, Kumar S, Saharan R. Current trends in diagnosis and treatment strategies of COVID-19 infection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64987-65013. [PMID: 34601675 PMCID: PMC8487330 DOI: 10.1007/s11356-021-16715-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/21/2021] [Indexed: 04/15/2023]
Abstract
Coronaviruses are terrifically precise and adapted towards specialized respiratory epithelial cells, observed in organ culture and human volunteers both. This virus is found to possess an unpredictable anti-viral T-cell response which in turn results in T-cell activation and finally apoptosis, leading to cytokine storm and collapse of the whole immune system. The present review provides comprehensive information regarding SARS-CoV-2 infection, mutant strains, and the impact of SARS-COV-2 on vital organs, the pathophysiology of the disease, diagnostic tests available, and possible treatments. It also includes all the vaccines developed so far throughout the world to control this pandemic. Until now, 18 vaccines have been approved by the WHO and further 22 vaccines are in the third trial. This study also provides up-to-date information regarding the drugs repurposed in clinical trials and the recent status of allopathic drugs along with its result. Although vaccines are available, specific treatment is not available for the disease. Furthermore, the effect of vaccines on new variants is a new area of research at this time. Therefore, a preventive attitude is the best approach to fight against this virus.
Collapse
Affiliation(s)
- Varsha Tiwari
- Department of Pharmacy, Devsthali Vidyapeeth College of Pharmacy, Lalpur (U.S. Nagar), Uttrakhand, Rudrapur, 236148, India
| | - Manish Kumar
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, 133207, India
| | - Abhishek Tiwari
- Department of Pharmacy, Devsthali Vidyapeeth College of Pharmacy, Lalpur (U.S. Nagar), Uttrakhand, Rudrapur, 236148, India.
| | - Biswa Mohan Sahoo
- Roland Institute of Pharmaceutical Sciences, Odisha, ha-760010, Berhampur, India
| | - Sunil Singh
- Department of Pharmaceutical Chemistry, Shri Sai College of Pharmacy, Handia, Prayagraj, Uttar Pradesh, 221503, India
| | - Suresh Kumar
- Bharat Institute of Pharmacy, Pehladpur, Babain, Kurukshetra, Haryana, 136156, India
| | - Renu Saharan
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, 133207, India
| |
Collapse
|
35
|
Oktawiec J, Jiang HZH, Turkiewicz AB, Long JR. Influence of the primary and secondary coordination spheres on nitric oxide adsorption and reactivity in cobalt(ii)-triazolate frameworks. Chem Sci 2021; 12:14590-14598. [PMID: 34881011 PMCID: PMC8580060 DOI: 10.1039/d1sc03994f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
Nitric oxide (NO) is an important signaling molecule in biological systems, and as such, the ability of porous materials to reversibly adsorb NO is of interest for potential medical applications. Although certain metal-organic frameworks are known to bind NO reversibly at coordinatively unsaturated metal sites, the influence of the metal coordination environment on NO adsorption has not been studied in detail. Here, we examine NO adsorption in the frameworks Co2Cl2(bbta) (H2bbta = 1H,5H-benzo(1,2-d:4,5-d')bistriazole) and Co2(OH)2(bbta) using gas adsorption, infrared spectroscopy, powder X-ray diffraction, and magnetometry. At room temperature, NO adsorbs reversibly in Co2Cl2(bbta) without electron transfer, with low temperature data supporting spin-crossover of the NO-bound cobalt(ii) centers of the material. In contrast, adsorption of low pressures of NO in Co2(OH)2(bbta) is accompanied by charge transfer from the cobalt(ii) centers to form a cobalt(iii)-NO- adduct, as supported by diffraction and infrared spectroscopy data. At higher pressures of NO, characterization data indicate additional uptake of the gas and disproportionation of the bound NO to form a cobalt(iii)-nitro (NO2 -) species and N2O gas, a transformation that appears to be facilitated by secondary sphere hydrogen bonding interactions between the bound NO2 - and framework hydroxo groups. These results provide a rare example of reductive NO binding in a cobalt-based metal-organic framework, and they demonstrate that NO uptake can be tuned by changing the primary and secondary coordination environment of the framework metal centers.
Collapse
Affiliation(s)
- Julia Oktawiec
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - Henry Z H Jiang
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - Ari B Turkiewicz
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - Jeffrey R Long
- Department of Chemistry, University of California Berkeley California 94720 USA
- Department of Chemical and Biomolecular Engineering, University of California Berkeley California 94720 USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| |
Collapse
|
36
|
Adebayo A, Varzideh F, Wilson S, Gambardella J, Eacobacci M, Jankauskas SS, Donkor K, Kansakar U, Trimarco V, Mone P, Lombardi A, Santulli G. l-Arginine and COVID-19: An Update. Nutrients 2021; 13:nu13113951. [PMID: 34836206 PMCID: PMC8619186 DOI: 10.3390/nu13113951] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
l-Arginine is involved in many different biological processes and recent reports indicate that it could also play a crucial role in the coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, we present an updated systematic overview of the current evidence on the functional contribution of L-Arginine in COVID-19, describing its actions on endothelial cells and the immune system and discussing its potential as a therapeutic tool, emerged from recent clinical experimentations.
Collapse
Affiliation(s)
- Ayobami Adebayo
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Fahimeh Varzideh
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Scott Wilson
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Michael Eacobacci
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Stanislovas S Jankauskas
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Kwame Donkor
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Valentina Trimarco
- Department of Neuroscience, "Federico II" University, 80131 Naples, Italy
| | - Pasquale Mone
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Angela Lombardi
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Gaetano Santulli
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Advanced Biomedical Sciences, "Federico II" University and International Translational Research and Medical Education (ITME) Consortium, 80100 Naples, Italy
| |
Collapse
|
37
|
Brain D, Plant-Hately A, Heaton B, Arshad U, David C, Hedrich C, Owen A, Liptrott NJ. Drug delivery systems as immunomodulators for therapy of infectious disease: Relevance to COVID-19. Adv Drug Deliv Rev 2021; 178:113848. [PMID: 34182016 PMCID: PMC8233062 DOI: 10.1016/j.addr.2021.113848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
The emergence of SARS-CoV-2, and the ensuing global pandemic, has resulted in an unprecedented response to identify therapies that can limit uncontrolled inflammation observed in patients with moderate to severe COVID-19. The immune pathology behind COVID-19 is complex and involves the activation and interaction of multiple systems including, but not limited to, complement, inflammasomes, endothelial as well as innate and adaptive immune cells to bring about a convoluted profile of inflammation, coagulation and tissue damage. To date, therapeutic approaches have focussed on inhibition of coagulation, untargeted immune suppression and/or cytokine-directed blocking agents. Regardless of recently achieved improvements in individual patient outcomes and survival rates, improved and focussed approaches targeting individual systems involved is needed to further improve prognosis and wellbeing. This review summarizes the current understanding of molecular and cellular systems involved in the pathophysiology of COVID-19, and their contribution to pathogen clearance and damage to then discuss possible therapeutic options involving immunomodulatory drug delivery systems as well as summarising the complex interplay between them.
Collapse
Affiliation(s)
- Danielle Brain
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Alex Plant-Hately
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Bethany Heaton
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Usman Arshad
- Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Christopher David
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Christian Hedrich
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK; Department of Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Andrew Owen
- Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Neill J Liptrott
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
38
|
Safaee Fakhr B, Di Fenza R, Gianni S, Wiegand SB, Miyazaki Y, Araujo Morais CC, Gibson LE, Chang MG, Mueller AL, Rodriguez-Lopez JM, Ackman JB, Arora P, Scott LK, Bloch DB, Zapol WM, Carroll RW, Ichinose F, Berra L. Inhaled high dose nitric oxide is a safe and effective respiratory treatment in spontaneous breathing hospitalized patients with COVID-19 pneumonia. Nitric Oxide 2021; 116:7-13. [PMID: 34400339 PMCID: PMC8361002 DOI: 10.1016/j.niox.2021.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/21/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Inhaled nitric oxide (NO) is a selective pulmonary vasodilator. In-vitro studies report that NO donors can inhibit replication of SARS-CoV-2. This multicenter study evaluated the feasibility and effects of high-dose inhaled NO in non-intubated spontaneously breathing patients with Coronavirus disease-2019 (COVID-19). METHODS This is an interventional study to determine whether NO at 160 parts-per-million (ppm) inhaled for 30 min twice daily might be beneficial and safe in non-intubated COVID-19 patients. RESULTS Twenty-nine COVID-19 patients received a total of 217 intermittent inhaled NO treatments for 30 min at 160 ppm between March and June 2020. Breathing NO acutely decreased the respiratory rate of tachypneic patients and improved oxygenation in hypoxemic patients. The maximum level of nitrogen dioxide delivered was 1.5 ppm. The maximum level of methemoglobin (MetHb) during the treatments was 4.7%. MetHb decreased in all patients 5 min after discontinuing NO administration. No adverse events during treatment, such as hypoxemia, hypotension, or acute kidney injury during hospitalization occurred. In our NO treated patients, one patient of 29 underwent intubation and mechanical ventilation, and none died. The median hospital length of stay was 6 days [interquartile range 4-8]. No discharged patients required hospital readmission nor developed COVID-19 related long-term sequelae within 28 days of follow-up. CONCLUSIONS In spontaneous breathing patients with COVID-19, the administration of inhaled NO at 160 ppm for 30 min twice daily promptly improved the respiratory rate of tachypneic patients and systemic oxygenation of hypoxemic patients. No adverse events were observed. None of the subjects was readmitted or had long-term COVID-19 sequelae.
Collapse
Affiliation(s)
- Bijan Safaee Fakhr
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA; Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Raffaele Di Fenza
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA; Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Stefano Gianni
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA; Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Steffen B Wiegand
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA; Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Yusuke Miyazaki
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA; Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Caio C Araujo Morais
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA; Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Lauren E Gibson
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA; Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Marvin G Chang
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA; Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Ariel L Mueller
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA; Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Josanna M Rodriguez-Lopez
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA; Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
| | - Jeanne B Ackman
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA; Division of Thoracic Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
| | - Pankaj Arora
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Tinsley Harrison Tower, Suite 311, 1900 University Boulevard, Birmingham, AL, 35233, USA
| | - Louie K Scott
- Critical Care Medicine, Department of Medicine, LSU Health Shreveport, 1501 Kings Hwy, Shreveport, LA, 71103, USA
| | - Donald B Bloch
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA; Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA; Center for Immunology and Inflammatory Diseases and Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
| | - Warren M Zapol
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA; Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Ryan W Carroll
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA; Division of Pediatric Critical Care Medicine, Department of Pediatrics, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
| | - Fumito Ichinose
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA; Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Lorenzo Berra
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA; Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA; Respiratory Care Services, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA.
| | | |
Collapse
|
39
|
Ma SX. Nitric Oxide on Pathophysiology of SARS-CoV 19: Toward Possible Role of Acupuncture Treatment. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2021; 17:40-45. [PMID: 35018143 PMCID: PMC8745007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ongoing outbreak of COVID-19 has quickly become a daunting challenge to global health. In the absence of satisfied therapy, effective treatment interventions are urgently needed. Previous studies have demonstrated that acupuncture is effective at relieving common symptoms of COVID-19 including breathlessness, nausea, insomnia, leukopenia, fatigue, vomiting, and abdominal pain. Experiments have shown that nitric oxide (NO) inhibits the replication cycle of severe acute respiratory syndrome (SARS) coronavirus with similar structures of COVID-19. Increase in level of NO by using NO gas inhalation has been shown to restore lung function by reducing airway resistance and improving virus-induced lung infections in SARS patients. Recent case report showed that a medical acupuncturist with symptoms consistent with severe COVID pneumonia achieved full recovery by self-administered medical acupuncture and cupping therapy at home. Clinical features and pathophysiology demonstrated that NO deficiency and endothelial dysfunction contribute to the development of COVID-19. Several studies from different groups consistently demonstrated that acupuncture increases NO synthase expression and induces an elevation of NO production and release in plasma and the local skin regions in both animals and humans. It is suggested that exogenous NO supplies or interventions that induce increasing levels of NO can play an important role in protective effects against inflammation and acute lung injury. This article reviews the rationale for mechanisms of NO induction induced by acupuncture in the possible treatment of COVID-19 and highlights its potential for contributing to better clinical outcomes and improving future clinical studies of acupuncture on treatment of COVID-19.
Collapse
Affiliation(s)
- Sheng-Xing Ma
- Lundquist Institute for Biomedical Innovation at Harbor-University of California at Los Angeles (UCLA) Medical Center and Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA and Harbor-UCLA Medical Center, Torrance, CA 90502
| |
Collapse
|
40
|
Gratsianskaya SE, Demchenkova AY, Martynyuk TV, Veselova TN, Ternovoy SK. Case report of mild form of a new coronavirus infection in patient with idiopathic pulmonary hypertension. KARDIOLOGIYA 2021; 61:108-112. [PMID: 34763646 DOI: 10.18087/cardio.2021.10.n1405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/18/2020] [Indexed: 11/18/2022]
Abstract
The article presents a clinical case of mild novel coronavirus infection COVID-19 complicated with bilateral interstitial pneumonia in a female patient with idiopathic pulmonary hypertension.
Collapse
Affiliation(s)
- S E Gratsianskaya
- National medical research center of cardiology, Ministry of Healthcare, Moscow
| | - A Yu Demchenkova
- National medical research center of cardiology, Ministry of Healthcare, Moscow
| | - T V Martynyuk
- National medical research center of cardiology, Ministry of Healthcare, Moscow
| | - T N Veselova
- National medical research center of cardiology, Ministry of Healthcare, Moscow
| | - S K Ternovoy
- National medical research center of cardiology, Ministry of Healthcare, Moscow
| |
Collapse
|
41
|
Rao GK, Gowthami B, Naveen NR, Samudrala PK. An updated review on potential therapeutic drug candidates, vaccines and an insight on patents filed for COVID-19. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100063. [PMID: 34870158 PMCID: PMC8498785 DOI: 10.1016/j.crphar.2021.100063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/08/2023] Open
Abstract
The outbreak of COVID-19 was recognized in December 2019 in China and as of October5th, the pandemic was swept through 216 countries and infected around 34,824,108 individuals, thus posing an unprecedented threat to world's health and economy. Several researchers reported that, a significant mutation in membrane proteins and receptor binding sites of preceding severe acute respiratory syndrome coronavirus (SARS-CoV) to turned as novel SARS-CoV-2 virus and disease was named as COVID-19 (Coronavirus disease 2019). Unfortunately, there is no specific treatment available for COVID-19 patients. The lessons learned from the past management of SARS-CoV and other pandemics, have provided some insights to treat COVID-19. Currently, therapies like anti-viral treatment, immunomodulatory agents, plasma transfusion and supportive intervention etc., are using to treat the COVID-19. Few of these were proven to provide significant therapeutic benefits in treating the COVID-19, however no drug is approved by the regulatory agencies. As the fatality rate is high in patients with comorbid conditions, we have also enlightened the current in-line treatment therapies and specific treatment strategies in comorbid conditions to combat the emergence of COVID-19. In addition, pharmaceutical, biological companies and research institutions across the globe have begun to develop thesafe and effective vaccine for COVID-19. Globally around 170 teams of researchers are racing to develop the COVID-19 vaccine and here we have discussed about their current status of development. Furthermore, recent patents filed in association with COVID-19 was elaborated. This can help many individuals, researchers or health workers, in applying these principles for diagnosis/prevention/management/treatment of the current pandemic.
Collapse
Affiliation(s)
- G.S.N. Koteswara Rao
- College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh 522502, India
| | - Buduru Gowthami
- Department of Pharmaceutics, Annamacharya College of Pharmacy, New Boyanapalli, Rajampet, Andhra Pradesh 516126, India
| | - N. Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagar, Karnataka, 571448, India
| | - Pavan Kumar Samudrala
- Department of Pharmacology, Shri Vishnu College of Pharmacy, Vishnupur, Bhimavaram, 534202, Andhra Pradesh, India
| |
Collapse
|
42
|
Charlie-Silva I, Araújo APC, Guimarães ATB, Veras FP, Braz HLB, de Pontes LG, Jorge RJB, Belo MAA, Fernandes BHV, Nóbrega RH, Galdino G, Condino-Neto A, Galindo-Villegas J, Machado-Santelli GM, Sanches PRS, Rezende RM, Cilli EM, Malafaia G. Toxicological insights of Spike fragments SARS-CoV-2 by exposure environment: A threat to aquatic health? JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126463. [PMID: 34216962 PMCID: PMC8226002 DOI: 10.1016/j.jhazmat.2021.126463] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/26/2021] [Accepted: 06/21/2021] [Indexed: 05/06/2023]
Abstract
The Spike protein (S protein) is a critical component in the infection of the new coronavirus (SARS-CoV-2). The objective of this work was to evaluate whether peptides from S protein could cause negative impact in the aquatic animals. The aquatic toxicity of SARS-CoV-2 Spike protein peptides derivatives has been evaluated in tadpoles (n = 50 tadpoles/5 replicates of 10 animals) from species Physalaemus cuvieri (Leptodactylidae). After synthesis, purification, and characterization of peptides (PSDP2001, PSDP2002, PSDP2003) an aquatic contamination has been simulated with these peptides during 24 h of exposure in two concentrations (100 and 500 ng/mL). The control group ("C") was composed of tadpoles kept in polyethylene containers containing de-chlorinated water. Oxidative stress, antioxidant biomarkers and AChE activity were assessed. In both concentrations, PSPD2002 and PSPD2003 increased catalase and superoxide dismutase antioxidants enzymes activities, as well as oxidative stress (nitrite levels, hydrogen peroxide and reactive oxygen species). All three peptides also increased acetylcholinesterase activity in the highest concentration. These peptides showed molecular interactions in silico with acetylcholinesterase and antioxidant enzymes. Aquatic particle contamination of SARS-CoV-2 has cholinesterasic effect in P. cuvieri tadpoles. These findings indicate that the COVID-19 can constitute environmental impact or biological damage potential.
Collapse
Affiliation(s)
- Ives Charlie-Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil
| | - Amanda P C Araújo
- Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil; Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urata Campus, GO, Brazil
| | - Abraão T B Guimarães
- Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil; Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urata Campus, GO, Brazil
| | - Flávio P Veras
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Helyson L B Braz
- Postgraduate Program in Morphological Science, Department of Morphology, School of Medicine, Federal University of Ceara, Delmiro de Farias St., 60.430-170 Fortaleza, CE, Brazil
| | - Letícia G de Pontes
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil
| | - Roberta J B Jorge
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275 Fortaleza, CE, Brazil; Drug Research and Development Center, Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Marco A A Belo
- Laboratory of Animal Pharmacology and Toxicology, Brazil University, Descalvado, SP, Brazil; Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Bianca H V Fernandes
- Laboratório de Controle Genético e Sanitário, Diretoria Técnica de Apoio ao Ensino e Pesquisa, Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - Rafael H Nóbrega
- Reproductive and Molecular Biology Group, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Giovane Galdino
- Institute of Motricity Sciences, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Antônio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil
| | | | | | - Paulo R S Sanches
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara SP, Brazil
| | - Rafael M Rezende
- Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, United States
| | - Eduardo M Cilli
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara SP, Brazil
| | - Guilherme Malafaia
- Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil; Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urata Campus, GO, Brazil.
| |
Collapse
|
43
|
Pilicheva B, Boyuklieva R. Can the Nasal Cavity Help Tackle COVID-19? Pharmaceutics 2021; 13:1612. [PMID: 34683904 PMCID: PMC8537957 DOI: 10.3390/pharmaceutics13101612] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/18/2021] [Accepted: 10/01/2021] [Indexed: 12/23/2022] Open
Abstract
Despite the progress made in the fight against the COVID-19 pandemic, it still poses dramatic challenges for scientists around the world. Various approaches are applied, including repurposed medications and alternative routes for administration. Several vaccines have been approved, and many more are under clinical and preclinical investigation. This review aims to systemize the available information and to outline the key therapeutic strategies for COVID-19, based on the nasal route of administration.
Collapse
Affiliation(s)
- Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Radka Boyuklieva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| |
Collapse
|
44
|
Gallego CM, Mazzeo A, Vargas P, Suárez S, Pellegrino J, Doctorovich F. Azanone (HNO): generation, stabilization and detection. Chem Sci 2021; 12:10410-10425. [PMID: 34447533 PMCID: PMC8356739 DOI: 10.1039/d1sc02236a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
HNO (nitroxyl, azanone), joined the 'biologically relevant reactive nitrogen species' family in the 2000s. Azanone is impossible to store due to its high reactivity and inherent low stability. Consequently, its chemistry and effects are studied using donor compounds, which release this molecule in solution and in the gas phase upon stimulation. Researchers have also tried to stabilize this elusive species and its conjugate base by coordination to metal centers using several ligands, like metalloporphyrins and pincer ligands. Given HNO's high reactivity and short lifetime, several different strategies have been proposed for its detection in chemical and biological systems, such as colorimetric methods, EPR, HPLC, mass spectrometry, fluorescent probes, and electrochemical analysis. These approaches are described and critically compared. Finally, in the last ten years, several advances regarding the possibility of endogenous HNO generation were made; some of them are also revised in the present work.
Collapse
Affiliation(s)
- Cecilia Mariel Gallego
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Agostina Mazzeo
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Paola Vargas
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Sebastián Suárez
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Juan Pellegrino
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| |
Collapse
|
45
|
Kobayashi J. Lifestyle-mediated nitric oxide boost to prevent SARS-CoV-2 infection: A perspective. Nitric Oxide 2021; 115:55-61. [PMID: 34364972 PMCID: PMC8340570 DOI: 10.1016/j.niox.2021.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide and has seriously threatened public health by causing significant morbidity and mortality. Patients with coronavirus disease (COVID-19) with preexisting endothelial dysfunction caused by aging, diabetes, hypertension, and obesity are at high risk for life-threatening thromboembolic complications. This suggests a possibility that reduced endothelial nitric oxide (NO) production and NO bioavailability could be a common underlying pathology for the progression of COVID-19. Increasingly, evidence from experimental and clinical studies of SARS-CoV-2 infection shows that NO inhibits the pathogenesis of COVID-19, including virus entry into host cells, viral replication, host immune response, and subsequent thromboembolic complications. Restoring NO bioavailability may have the potential to be a preventive or early-treatment option for COVID-19. This review aims to provide in-depth discussion of NO bioavailability to prevent SARS-CoV-2 infection, particularly by focusing on lifestyle factors such as nitrate-rich diets, physical exercise, and nasal breathing, which could be easily performed on a daily basis to boost NO bioavailability.
Collapse
Affiliation(s)
- Jun Kobayashi
- Faculty of Pharmaceutical Science, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| |
Collapse
|
46
|
Bhattacharya S, Agarwal S, Shrimali NM, Guchhait P. Interplay between hypoxia and inflammation contributes to the progression and severity of respiratory viral diseases. Mol Aspects Med 2021; 81:101000. [PMID: 34294412 PMCID: PMC8287505 DOI: 10.1016/j.mam.2021.101000] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/07/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
History of pandemics is dominated by viral infections and specifically respiratory viral diseases like influenza and COVID-19. Lower respiratory tract infection is the fourth leading cause of death worldwide. Crosstalk between resultant inflammation and hypoxic microenvironment may impair ventilatory response of lungs. This reduces arterial partial pressure of oxygen, termed as hypoxemia, which is observed in a section of patients with respiratory virus infections including SARS-CoV-2 (COVID-19). In this review, we describe the interplay between inflammation and hypoxic microenvironment in respiratory viral infection and its contribution to disease pathogenesis.
Collapse
Affiliation(s)
- Sulagna Bhattacharya
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India; School of Biotechnology, Kalinga Institute of Industrial Technology, Orissa, India
| | - Sakshi Agarwal
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Nishith M Shrimali
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
47
|
Sarangi MK, Padhi S, Dheeman S, Karn SK, Patel LD, Yi DK, Nanda SS. Diagnosis, prevention, and treatment of coronavirus disease: a review. Expert Rev Anti Infect Ther 2021; 20:243-266. [PMID: 34151679 DOI: 10.1080/14787210.2021.1944103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: Coronavirus disease (COVID-19) was first reported in Wuhan, China, in late December 2019 and subsequently, declared a pandemic. As of 3 June 2021, 172,493,290 individuals have acquired COVID-19 and 3,708,334 patients have died worldwide, according to the World Health Organization.Areas covered: This review explores epidemiology; virology; pathogenesis; genomic variations; mode of transmission; clinical occurrence; diagnosis; and treatment with antiviral agents, antibiotics, and supportive therapies. It covers a nanotechnology-based treatment approach and emphasizes the importance of herbal and marine antiviral drugs. The review attempts to explain current advances in research, prevention, and control of COVID-19 spread through artificial intelligence and vaccine development status under cosmopolitan consideration.Expert opinion: While COVID-19 research is advancing at full capacity, the discovery of drugs or vaccines that can fight the pandemic is necessary. Human survival in such a critical situation will be possible only with the development of strong immunity by opting for exercise, yoga, and consumption of hygienic food and beverages. Therefore, education about COVID-19 lethality and its impact on livelihood is important. The pandemic has also shown positive effects on the environment, such as a significant reduction in environmental pollution and global warming and improvement in river water quality.
Collapse
Affiliation(s)
- Manoj Kumar Sarangi
- Department of Pharmaceutics, School of Pharmaceutical Sciences & Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, India
| | - Sasmita Padhi
- Department of Pharmaceutics, School of Pharmaceutical Sciences & Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, India
| | - Shrivardhan Dheeman
- Department of Microbiology, School of Life Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, India
| | - Santosh Kumar Karn
- Department of Biotechnology and Biochemistry, School of Life Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, India
| | - L D Patel
- Department of Pharmacy, Sharda School of Pharmacy, Ahmedabad, Gujarat, India
| | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin, South Korea
| | | |
Collapse
|
48
|
Bath PM, Coleman CM, Gordon AL, Lim WS, Webb AJ. Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections. F1000Res 2021; 10:536. [PMID: 35685687 PMCID: PMC9171293 DOI: 10.12688/f1000research.51270.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Although the antimicrobial potential of nitric oxide (NO) is widely published, it is little used clinically. NO is a key signalling molecule modulating vascular, neuronal, inflammatory and immune responses. Endogenous antimicrobial activity is largely mediated by high local NO concentrations produced by cellular inducible nitric oxide synthase, and by derivative reactive nitrogen oxide species including peroxynitrite and S-nitrosothiols. NO may be taken as dietary substrate (inorganic nitrate, L-arginine), and therapeutically as gaseous NO, and transdermal, sublingual, oral, intranasal and intravenous nitrite or nitrate. Numerous preclinical studies have demonstrated that NO has generic static and cidal activities against viruses (including β-coronaviruses such as SARS-CoV-2), bacteria, protozoa and fungi/yeasts in vitro. Therapeutic effects have been seen in animal models in vivo, and phase II trials have demonstrated that NO donors can reduce microbial infection. Nevertheless, excess NO, as occurs in septic shock, is associated with increased morbidity and mortality. In view of the dose-dependent positive and negative effects of NO, safety and efficacy trials of NO and its donors are needed for assessing their role in the prevention and treatment of infections. Trials should test dietary inorganic nitrate for pre- or post-exposure prophylaxis and gaseous NO or oral, topical or intravenous nitrite and nitrate for treatment of mild-to-severe infections, including due to SARS-CoV-2 (COVID-19). This review summarises the evidence base from in vitro, in vivo and early phase clinical studies of NO activity in viral, bacterial, protozoal and fungal infections.
Collapse
Affiliation(s)
- Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
- Stroke, Nottingham University Hospitals NHS Trust, Nottingham, Notts, NG7 2UH, UK
| | - Christopher M Coleman
- Division of Infection, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
| | - Adam L Gordon
- Unit of Injury, Inflammation and Recovery Sciences, University of Nottingham, Derby, Derbyshire, DE22 3NE, UK
- NIHR Applied Research Collaboration-East Midlands (ARC-EM), Nottingham, Notts, UK
| | - Wei Shen Lim
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, NG5 1PB, UK
| | - Andrew J Webb
- Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, Kings College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
49
|
Bath PM, Coleman CM, Gordon AL, Lim WS, Webb AJ. Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections. F1000Res 2021; 10:536. [PMID: 35685687 PMCID: PMC9171293 DOI: 10.12688/f1000research.51270.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/18/2023] Open
Abstract
Although the antimicrobial potential of nitric oxide (NO) is widely published, it is little used clinically. NO is a key signalling molecule modulating vascular, neuronal, inflammatory and immune responses. Endogenous antimicrobial activity is largely mediated by high local NO concentrations produced by cellular inducible nitric oxide synthase, and by derivative reactive nitrogen oxide species including peroxynitrite and S-nitrosothiols. NO may be taken as dietary substrate (inorganic nitrate, L-arginine), and therapeutically as gaseous NO, and transdermal, sublingual, oral, intranasal and intravenous nitrite or nitrate. Numerous preclinical studies have demonstrated that NO has generic static and cidal activities against viruses (including β-coronaviruses such as SARS-CoV-2), bacteria, protozoa and fungi/yeasts in vitro. Therapeutic effects have been seen in animal models in vivo, and phase II trials have demonstrated that NO donors can reduce microbial infection. Nevertheless, excess NO, as occurs in septic shock, is associated with increased morbidity and mortality. In view of the dose-dependent positive and negative effects of NO, safety and efficacy trials of NO and its donors are needed for assessing their role in the prevention and treatment of infections. Trials should test dietary inorganic nitrate for pre- or post-exposure prophylaxis and gaseous NO or oral, topical or intravenous nitrite and nitrate for treatment of mild-to-severe infections, including due to SARS-CoV-2 (COVID-19). This review summarises the evidence base from in vitro, in vivo and early phase clinical studies of NO activity in viral, bacterial, protozoal and fungal infections.
Collapse
Affiliation(s)
- Philip M. Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
- Stroke, Nottingham University Hospitals NHS Trust, Nottingham, Notts, NG7 2UH, UK
| | - Christopher M. Coleman
- Division of Infection, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
| | - Adam L. Gordon
- Unit of Injury, Inflammation and Recovery Sciences, University of Nottingham, Derby, Derbyshire, DE22 3NE, UK
- NIHR Applied Research Collaboration-East Midlands (ARC-EM), Nottingham, Notts, UK
| | - Wei Shen Lim
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, NG5 1PB, UK
| | - Andrew J. Webb
- Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, Kings College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
50
|
Ben-Zuk N, Dechtman ID, Henn I, Weiss L, Afriat A, Krasner E, Gal Y. Potential Prophylactic Treatments for COVID-19. Viruses 2021; 13:1292. [PMID: 34372498 PMCID: PMC8310088 DOI: 10.3390/v13071292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023] Open
Abstract
The World Health Organization declared the SARS-CoV-2 outbreak a Public Health Emergency of International Concern at the end of January 2020 and a pandemic two months later. The virus primarily spreads between humans via respiratory droplets, and is the causative agent of Coronavirus Disease 2019 (COVID-19), which can vary in severity, from asymptomatic or mild disease (the vast majority of the cases) to respiratory failure, multi-organ failure, and death. Recently, several vaccines were approved for emergency use against SARS-CoV-2. However, their worldwide availability is acutely limited, and therefore, SARS-CoV-2 is still expected to cause significant morbidity and mortality in the upcoming year. Hence, additional countermeasures are needed, particularly pharmaceutical drugs that are widely accessible, safe, scalable, and affordable. In this comprehensive review, we target the prophylactic arena, focusing on small-molecule candidates. In order to consolidate a potential list of such medications, which were categorized as either antivirals, repurposed drugs, or miscellaneous, a thorough screening for relevant clinical trials was conducted. A brief molecular and/or clinical background is provided for each potential drug, rationalizing its prophylactic use as an antiviral or inflammatory modulator. Drug safety profiles are discussed, and current medical indications and research status regarding their relevance to COVID-19 are shortly reviewed. In the near future, a significant body of information regarding the effectiveness of drugs being clinically studied for COVID-19 is expected to accumulate, in addition to information regarding the efficacy of prophylactic treatments.
Collapse
Affiliation(s)
- Noam Ben-Zuk
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel-Aviv 61909, Israel; (N.B.-Z.); (I.H.); (L.W.)
| | - Ido-David Dechtman
- The Israel Defense Force Medical Corps, Tel Hashomer, Military Post 02149, Israel;
- Pulmonology Department, Edith Wolfson Medical Center, 62 Halochamim Street, Holon 5822012, Israel
| | - Itai Henn
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel-Aviv 61909, Israel; (N.B.-Z.); (I.H.); (L.W.)
| | - Libby Weiss
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel-Aviv 61909, Israel; (N.B.-Z.); (I.H.); (L.W.)
| | - Amichay Afriat
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Esther Krasner
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel-Aviv 61909, Israel; (N.B.-Z.); (I.H.); (L.W.)
| | - Yoav Gal
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel-Aviv 61909, Israel; (N.B.-Z.); (I.H.); (L.W.)
- Israel Institute for Biological Research, Ness-Ziona 76100, Israel
| |
Collapse
|