1
|
Schroeder J, Dunning J, Chan AHH, Chik HYJ, Burke T. Not so social in old age: demography as one driver of decreasing sociality. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220458. [PMID: 39463245 PMCID: PMC11513642 DOI: 10.1098/rstb.2022.0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Humans become more selective with whom they spend their time, and as a result, the social networks of older humans are smaller than those of younger ones. In non-human animals, processes such as competition and opportunity can result in patterns of declining sociality with age. While there is support for declining sociality with age in mammals, evidence from wild bird populations is lacking. Here, we test whether sociality declines with age in a wild, insular bird population, where we know the exact ages of individuals. Using 6 years of sociality data, we find that as birds aged, their degree and betweenness decreased. The number of same-age birds still alive also decreased with age. Our results suggest that a longitudinal change in sociality with age may be, in part, an emergent effect of natural changes in demography. This highlights the need to investigate the changing costs and benefits of sociality across a lifetime.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Julia Schroeder
- Department of Life Sciences, Imperial College London, Silwood Park Campus, AscotSL5 7PY, UK
| | - Jamie Dunning
- Department of Life Sciences, Imperial College London, Silwood Park Campus, AscotSL5 7PY, UK
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Alex Hoi Han Chan
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, KonstanzPostbox 687, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behaviour, Radolfzell78464, Germany
| | - Heung Ying Janet Chik
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen9747 AG, The Netherlands
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Terry Burke
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, SheffieldS10 2TN, UK
| |
Collapse
|
2
|
Albery GF, Hasik AZ, Morris S, Morris A, Kenyon F, McBean D, Pemberton JM, Nussey DH, Firth JA. Divergent age-related changes in parasite infection occur independently of behaviour and demography in a wild ungulate. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230508. [PMID: 39463254 PMCID: PMC11513643 DOI: 10.1098/rstb.2023.0508] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/15/2024] [Accepted: 05/22/2024] [Indexed: 10/29/2024] Open
Abstract
As animals age, they exhibit a suite of phenotypic changes, often including reductions in movement and social behaviour ('behavioural ageing'). By altering an individual's exposure to parasites, behavioural ageing may influence infection status trajectories over the lifespan. However, these processes could be confounded by age-related changes in other phenotypic traits, or by selective disappearance of certain individuals owing to parasite-induced mortality. Here, we uncover contrasting age-related patterns of infection across three helminth parasites in wild adult female red deer (Cervus elaphus). Counts of strongyle nematodes (order: Strongylida) increased with age, while counts of liver fluke (Fasciola hepatica) and tissue worm (Elaphostrongylus cervi) decreased, and lungworm (Dictyocaulus) counts did not change. These relationships could not be explained by socio-spatial behaviours, spatial structuring, or selective disappearance, suggesting behavioural ageing is unlikely to be responsible for driving age trends. Instead, social connectedness and strongyle infection were positively correlated, such that direct age-infection trends were directly contrasted with the effects implied by previously documented behavioural ageing. This suggests that behavioural ageing may reduce parasite exposure, potentially countering other age-related changes. These findings demonstrate that different parasites can show contrasting age trajectories depending on diverse intrinsic and extrinsic factors, and that behaviour's role in these processes is likely to be complex and multidirectional.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Gregory F. Albery
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
- Department of Biology, Georgetown University, Washington, DC20057, USA
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin12587, Germany
- School of Natural Sciences, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Adam Z. Hasik
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Sean Morris
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Alison Morris
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Fiona Kenyon
- Moredun Research Institute, PenicuikEH26 0PZ, UK
| | - David McBean
- Moredun Research Institute, PenicuikEH26 0PZ, UK
| | | | - Daniel H. Nussey
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Josh A. Firth
- Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
- School of Biology, University of Leeds, LeedsLS2 9JT, UK
| |
Collapse
|
3
|
Firth JA, Albery GF, Bouwhuis S, Brent LJN, Salguero-Gómez R. Understanding age and society using natural populations. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220469. [PMID: 39463246 PMCID: PMC11513640 DOI: 10.1098/rstb.2022.0469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024] Open
Abstract
Ageing affects almost all aspects of life and therefore is an important process across societies, human and non-human animal alike. This article introduces new research exploring the complex interplay between individual-level ageing and demography, and the consequences this interplay holds for the structure and functioning of societies across various natural populations. We discuss how this Special Issue provides a foundation for integrating perspectives from evolutionary biology, behavioural ecology and demography to provide new insights into how ageing shapes individuals' social behaviour and social associations, and how this in turn impacts social networks, social processes (such as disease or information transfer) and fitness. Through examining these topics across taxa, from invertebrates to birds and mammals, we outline how contemporary studies are using natural populations to advance our understanding of the relationship between age and society in innovative ways. We highlight key emerging research themes from this Special Issue, such as how sociality affects lifespan and health, the genetic and ecological underpinnings of social ageing and the adaptive strategies employed by different species. We conclude that this Special Issue underscores the importance of studying social ageing using diverse systems and interdisciplinary approaches for advancing evolutionary and ecological insights into both ageing and sociality more generally.This article is part of the discussion meeting issue 'Understanding age and society using natural populations '.
Collapse
Affiliation(s)
- Josh A. Firth
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Department of Biology, Oxford University, Oxford, UK
| | - Gregory F. Albery
- School of Natural Sciences, Trinity College Dublin, Dublin, Republic of Ireland
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Lauren J. N. Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | | |
Collapse
|
4
|
Siracusa ER, Pavez-Fox MA, Negron-Del Valle JE, Phillips D, Platt ML, Snyder-Mackler N, Higham JP, Brent LJN, Silk MJ. Social ageing can protect against infectious disease in a group-living primate. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220462. [PMID: 39463240 PMCID: PMC11528358 DOI: 10.1098/rstb.2022.0462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 10/29/2024] Open
Abstract
The benefits of social living are well established, but sociality also comes with costs, including infectious disease risk. This cost-benefit ratio of sociality is expected to change across individuals' lifespans, which may drive changes in social behaviour with age. To explore this idea, we combine data from a group-living primate for which social ageing has been described with epidemiological models to show that having lower social connectedness when older can protect against the costs of a hypothetical, directly transmitted endemic pathogen. Assuming no age differences in epidemiological characteristics (susceptibility to, severity and duration of infection), older individuals suffered lower infection costs, which was explained largely because they were less connected in their social networks than younger individuals. This benefit of 'social ageing' depended on epidemiological characteristics and was greatest when infection severity increased with age. When infection duration increased with age, social ageing was beneficial only when pathogen transmissibility was low. Older individuals benefited most from having a lower frequency of interactions (strength) and network embeddedness (closeness) and benefited less from having fewer social partners (degree). Our study provides a first examination of the epidemiology of social ageing, demonstrating the potential for pathogens to influence the evolutionary dynamics of social ageing in natural populations.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Erin R. Siracusa
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Melissa A. Pavez-Fox
- Department of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | | | - Daniel Phillips
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Michael L. Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Marketing, University of Pennsylvania, Philadelphia, PA, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- School for Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - James P. Higham
- Department of Anthropology, New York University, New York, NY, USA
| | - Lauren J. N. Brent
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Matthew J. Silk
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Mittell EA, Mandaliya P, Pemberton JM, Morris A, Morris S, Johnston SE, Kruuk LEB. Antler size in red deer: declining selection and increasing genetic variance with age, but little senescence. J Evol Biol 2024; 37:1288-1297. [PMID: 39303006 DOI: 10.1093/jeb/voae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/06/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
While senescence is a common occurrence in wild populations, not all traits decline with age simultaneously and some do not show any senescence. A lack of senescence in secondary sexual traits is thought to be due to their importance for reproductive success. However, if reproductive success senesces, why would secondary sexual traits apparently not senesce? Here, we explored this question in a wild population of red deer (Cervus elaphus) using antler form (number of points), a secondary sexual trait which shows little senescence, despite the occurrence of reproductive senescence. In line with expectations for traits that senesce, genetic variance in antler form increased with age and selection weakened with age. Therefore, there was no indication that a stronger selection on individuals that survived to older ages was countering the dilution of selection due to fewer individuals being alive. Furthermore, the effect of selective disappearance masking a slight decline in antler form in the oldest years was small. Interestingly, although genetic variance and positive selection of antler form were found, there was no evidence of a response to selection, supporting a genetic decoupling of antler senescence and reproductive senescence. Finally, a positive genetic covariance in antler form among age classes provides a possible explanation for the lack of senescence. These findings suggest that the antler form is under a genetic constraint that prevents it from senescing, providing an interesting evolutionary explanation for negligible senescence in a secondary sexual trait, and consequently, the existence of asynchrony in senescence among traits within populations.
Collapse
Affiliation(s)
- Elizabeth A Mittell
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Priyam Mandaliya
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Josephine M Pemberton
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison Morris
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sean Morris
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Susan E Johnston
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Loeske E B Kruuk
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Siracusa ER, Pavez-Fox MA, Negron-Del Valle JE, Phillips D, Platt ML, Snyder-Mackler N, Higham JP, Brent LJN, Silk MJ. Social ageing can protect against infectious disease in a group-living primate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.09.584237. [PMID: 38559098 PMCID: PMC10979879 DOI: 10.1101/2024.03.09.584237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The benefits of social living are well established, but sociality also comes with costs, including infectious disease risk. This cost-benefit ratio of sociality is expected to change across individuals' lifespans, which may drive changes in social behaviour with age. To explore this idea, we combine data from a group-living primate for which social ageing has been described with epidemiological models to show that having lower social connectedness when older can protect against the costs of a hypothetical, directly transmitted endemic pathogen. Assuming no age differences in epidemiological characteristics (susceptibility to, severity, and duration of infection), older individuals suffered lower infection costs, which was explained largely because they were less connected in their social networks than younger individuals. This benefit of 'social ageing' depended on epidemiological characteristics and was greatest when infection severity increased with age. When infection duration increased with age, social ageing was beneficial only when pathogen transmissibility was low. Older individuals benefited most from having a lower frequency of interactions (strength) and network embeddedness (closeness) and benefited less from having fewer social partners (degree). Our study provides a first examination of the epidemiology of social ageing, demonstrating the potential for pathogens to influence evolutionary dynamics of social ageing in natural populations.
Collapse
|
7
|
Lalande LD, Bourgoin G, Carbillet J, Cheynel L, Debias F, Ferté H, Gaillard JM, Garcia R, Lemaître JF, Palme R, Pellerin M, Peroz C, Rey B, Vuarin P, Gilot-Fromont E. Early-life glucocorticoids accelerate lymphocyte count senescence in roe deer. Gen Comp Endocrinol 2024; 357:114595. [PMID: 39059616 DOI: 10.1016/j.ygcen.2024.114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Immunosenescence corresponds to the progressive decline of immune functions with increasing age. Although it is critical to understand what modulates such a decline, the ecological and physiological drivers of immunosenescence remain poorly understood in the wild. Among them, the level of glucocorticoids (GCs) during early life are good candidates to modulate immunosenescence patterns because these hormones can have long-term consequences on individual physiology. Indeed, GCs act as regulators of energy allocation to ensure allostasis, are part of the stress response triggered by unpredictable events and have immunosuppressive effects when chronically elevated. We used longitudinal data collected over two decades in two populations of roe deer (Capreolus capreolus) to test whether higher baseline GC levels measured within the first year of life were associated with a more pronounced immunosenescence and parasite susceptibility. We first assessed immunosenescence trajectories in these populations facing contrasting environmental conditions. Then, we found that juvenile GC levels can modulate lymphocyte trajectory. Lymphocyte depletion was accelerated late in life when GCs were elevated early in life. Although the exact mechanism remains to be elucidated, it could involve a role of GCs on thymic characteristics. In addition, elevated GC levels in juveniles were associated with a higher abundance of lung parasites during adulthood for individuals born during bad years, suggesting short-term negative effects of GCs on juvenile immunity, having in turn long-lasting consequences on adult parasite load, depending on juvenile environmental conditions. These findings offer promising research directions in assessing the carry-over consequences of GCs on life-history traits in the wild.
Collapse
Affiliation(s)
- Lucas D Lalande
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France.
| | - Gilles Bourgoin
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France; Université de Lyon, VetAgro Sup, 69280 Marcy l'Etoile, France
| | - Jeffrey Carbillet
- Institute of Ecology and Earth Sciences, University of Tartu, 51014 Tartu, Estonia
| | - Louise Cheynel
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire d'Écologie des Hydrosystèmes Naturels et Anthropisés UMR 5023, F-69622 Villeurbanne, France
| | - François Debias
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Hubert Ferté
- Université de Reims, Épidémio-Surveillance et Circulation de Parasites dans les Environnements UR 7510, 55100 Reims, France
| | - Jean-Michel Gaillard
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rebecca Garcia
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Jean-François Lemaître
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Maryline Pellerin
- Office Français de la Biodiversité, Direction de la Recherche et de l'Appui Scientifique, Service Conservation et Gestion Durable des Espèces Exploités, 52210 Châteauvillain, France
| | - Carole Peroz
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France; Université de Lyon, VetAgro Sup, 69280 Marcy l'Etoile, France
| | - Benjamin Rey
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Pauline Vuarin
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Emmanuelle Gilot-Fromont
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France; Université de Lyon, VetAgro Sup, 69280 Marcy l'Etoile, France.
| |
Collapse
|
8
|
Rudd LF, Packer C, Biro D, Firth JA, Albery GF. Sex-specific social aging in wild African lions. Curr Biol 2024; 34:4039-4046.e2. [PMID: 39111314 DOI: 10.1016/j.cub.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 09/12/2024]
Abstract
There is a growing interest in social behavior change with age,1,2,3,4,5 and the impacts of sociality on longevity,6,7,8 but current knowledge is broadly limited to primates, societies structured by dominance hierarchies, or single-sex studies. It is less clear how social aging patterns emerge in carnivores. The African lion (Panthera leo), a species that lives in egalitarian fission-fusion societies, presents an exceptional opportunity to examine social aging. Across felids, lions are unique in their dependence on conspecifics for many essential processes,9,10,11 and there is vast knowledge of lion behavioral ecology,10,11,12,13,14 including documented reproductive senescence in both sexes.14,15 Applying spatial-social network analyses across 30 years of data on the wild Serengeti lion population, we show that sex strongly modulates patterns of social aging and longevity. Group size increased with age for both sexes, but only males experienced significant changes in associate numbers (degree), specifically to females, which peaked in mid-life before declining. While aging females experienced declines in intra-sex connectivity (strength) and bond strength (mean strength), they peaked in both to males during mid-life. Male inter-sex strength also peaked in mid-life, while conversely their intra-sex strength and mean strength significantly dipped in mid-life. Although social associations were important for survival in both sexes, the investment diverged significantly: females' overall network connectivity was key for longevity, while the number of associates was important for males. These findings illustrate important potential effects of social aging in a wild carnivore and demonstrate how these diverge strongly between the sexes.
Collapse
Affiliation(s)
- Lauren F Rudd
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK.
| | - Craig Packer
- Department of Ecology, Evolution and Behaviour, University of Minnesota, St. Paul, MN 55108, USA
| | - Dora Biro
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
| | - Josh A Firth
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK; School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC 20057, USA; Trinity College Dublin, Dublin D02 PN40, Republic of Ireland
| |
Collapse
|
9
|
Sanghvi K, Pizzari T, Sepil I. What does not kill you makes you stronger? Effects of paternal age at conception on fathers and sons. Evolution 2024; 78:1619-1632. [PMID: 38912848 DOI: 10.1093/evolut/qpae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Advancing male age is often hypothesized to reduce both male fertility and offspring quality due to reproductive senescence. However, the effects of advancing male age on reproductive output and offspring quality are not always deleterious. For example, older fathers might buffer the effects of reproductive senescence by terminally investing in reproduction. Similarly, males that survive to reproduce at an old age might carry alleles that confer high viability (viability selection), which are then inherited by offspring, or might have high reproductive potential (selective disappearance). Differentiating these mechanisms requires an integrated experimental study of paternal survival and reproductive performance, as well as offspring quality, which is currently lacking. Using a cross-sectional study in Drosophila melanogaster, we test the effects of paternal age at conception (PAC) on paternal survival and reproductive success, and on the lifespans of sons. We discover that mating at an old age is linked with decreased future male survival, suggesting that mating-induced mortality is possibly due to old fathers being frail. We find no evidence for terminal investment and show that reproductive senescence in fathers does not onset until their late-adult life. Additionally, we find that as a father's lifespan increases, his probability of siring offspring increases for older PAC treatments only. Lastly, we show that sons born to older fathers live longer than those born to younger fathers due to viability selection. Collectively, our results suggest that advancing paternal age is not necessarily associated with deleterious effects for offspring and may even lead to older fathers producing longer-lived offspring.
Collapse
Affiliation(s)
- Krish Sanghvi
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Tommaso Pizzari
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Irem Sepil
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Acácio M, Gahm K, Anglister N, Vaadia G, Hatzofe O, Harel R, Efrat R, Nathan R, Pinter-Wollman N, Spiegel O. Behavioral plasticity shapes population aging patterns in a long-lived avian scavenger. Proc Natl Acad Sci U S A 2024; 121:e2407298121. [PMID: 39163331 PMCID: PMC11363333 DOI: 10.1073/pnas.2407298121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/13/2024] [Indexed: 08/22/2024] Open
Abstract
Studying the mechanisms shaping age-related changes in behavior ("behavioral aging") is important for understanding population dynamics in our changing world. Yet, studies that capture within-individual behavioral changes in wild populations of long-lived animals are still scarce. Here, we used a 15-y GPS-tracking dataset of a social obligate scavenger, the griffon vulture (Gyps fulvus), to investigate age-related changes in movement and social behaviors, and disentangle the role of behavioral plasticity and selective disappearance in shaping such patterns. We tracked 142 individuals for up to 12 y and found a nonlinear increase in site fidelity with age: a sharp increase in site fidelity before sexual maturity (<5 y old), stabilization during adulthood (6 to 15 y), and a further increase at old age (>15 y). This pattern resulted from individuals changing behavior throughout their life (behavioral plasticity) and not from selective disappearance. Mature vultures increased the predictability of their movement routines and spent more nights at the most popular roosting sites compared to younger individuals. Thus, adults likely have a competitive advantage over younger conspecifics. These changes in site fidelity and movement routines were mirrored in changes to social behavior. Older individuals interacted less with their associates (decreasing average strength with age), particularly during the breeding season. Our results reveal a variety of behavioral aging patterns in long-lived species and underscore the importance of behavioral plasticity in shaping such patterns. Comprehensive longitudinal studies are imperative for understanding how plasticity and selection shape the persistence of wild animal populations facing human-induced environmental changes.
Collapse
Affiliation(s)
- Marta Acácio
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kaija Gahm
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA
| | - Nili Anglister
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gideon Vaadia
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Hatzofe
- Science Division, Israel Nature and Parks Authority, Jerusalem, Israel
| | - Roi Harel
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Ron Efrat
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Ran Nathan
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Worsley SF, Davies CS, Lee CZ, Mannarelli ME, Burke T, Komdeur J, Dugdale HL, Richardson DS. Longitudinal gut microbiome dynamics in relation to age and senescence in a wild animal population. Mol Ecol 2024; 33:e17477. [PMID: 39010794 DOI: 10.1111/mec.17477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 07/17/2024]
Abstract
In humans, gut microbiome (GM) differences are often correlated with, and sometimes causally implicated in, ageing. However, it is unclear how these findings translate in wild animal populations. Studies that investigate how GM dynamics change within individuals, and with declines in physiological condition, are needed to fully understand links between chronological age, senescence and the GM, but have rarely been done. Here, we use longitudinal data collected from a closed population of Seychelles warblers (Acrocephalus sechellensis) to investigate how bacterial GM alpha diversity, composition and stability are associated with host senescence. We hypothesised that GM diversity and composition will differ, and become more variable, in older adults, particularly in the terminal year prior to death, as the GM becomes increasingly dysregulated due to senescence. However, GM alpha diversity and composition remained largely invariable with respect to adult age and did not differ in an individual's terminal year. Furthermore, there was no evidence that the GM became more heterogenous in senescent age groups (individuals older than 6 years), or in the terminal year. Instead, environmental variables such as season, territory quality and time of day, were the strongest predictors of GM variation in adult Seychelles warblers. These results contrast with studies on humans, captive animal populations and some (but not all) studies on non-human primates, suggesting that GM deterioration may not be a universal hallmark of senescence in wild animal species. Further work is needed to disentangle the factors driving variation in GM-senescence relationships across different host taxa.
Collapse
Affiliation(s)
- Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | - Charli S Davies
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | - Chuen Zhang Lee
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | | - Terry Burke
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Nature Seychelles, Mahé, Republic of Seychelles
| |
Collapse
|
12
|
Baur J, Koppik M, Savković U, Đorđević M, Stojkovic B, Berger D. Coevolution of longevity and female germline maintenance. Proc Biol Sci 2024; 291:20240532. [PMID: 38864321 PMCID: PMC11338575 DOI: 10.1098/rspb.2024.0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 06/13/2024] Open
Abstract
An often-overlooked aspect of life-history optimization is the allocation of resources to protect the germline and secure safe transmission of genetic information. While failure to do so renders significant fitness consequences in future generations, germline maintenance comes with substantial costs. Thus, germline allocation should trade off with other life-history decisions and be optimized in accordance with an organism's reproductive schedule. Here, we tested this hypothesis by studying germline maintenance in lines of seed beetle, selected for early (E) or late (L) reproduction for 350 and 240 generations, respectively. Female animals provide maintenance and screening of male gametes in their reproductive tract and oocytes. Here, we reveal the ability of young and aged E- and L-females to provide this form of germline maintenance by mating them to males with ejaculates with artificially elevated levels of protein and DNA damage. We find that germline maintenance in E-females peaks at young age and then declines, while the opposite is true for L-females, in accordance with the age of reproduction in the respective regime. These findings identify the central role of allocation to secure germline integrity in life-history evolution and highlight how females can play a crucial role in mitigating the effects of male germline decisions on mutation rate and offspring quality.
Collapse
Affiliation(s)
- Julian Baur
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Mareike Koppik
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Animal Ecology, Department of Zoology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Uroš Savković
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade11000, Serbia
| | - Mirko Đorđević
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade11000, Serbia
| | - Biljana Stojkovic
- Institute of Zoology, Chair of Genetics and Evolution, Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia
| | - David Berger
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Sadoughi B, Mundry R, Schülke O, Ostner J. Social network shrinking is explained by active and passive effects but not increasing selectivity with age in wild macaques. Proc Biol Sci 2024; 291:20232736. [PMID: 38471563 DOI: 10.1098/rspb.2023.2736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Evidence of social disengagement, network narrowing and social selectivity with advancing age in several non-human animals challenges our understanding of the causes of social ageing. Natural animal populations are needed to test whether social ageing and selectivity occur under natural predation and extrinsic mortality pressures, and longitudinal studies are particularly valuable to disentangle the contribution of within-individual ageing from the demographic processes that shape social ageing at the population level. Data on wild Assamese macaques (Macaca assamensis) were collected between 2013 and 2020 at the Phu Khieo Wildlife Sanctuary, Thailand. We investigated the social behaviour of 61 adult females observed for 13 270 h to test several mechanistic hypotheses of social ageing and evaluated the consistency between patterns from mixed-longitudinal and within-individual analyses. With advancing age, females reduced the size of their social network, which could not be explained by an overall increase in the time spent alone, but by an age-related decline in mostly active, but also passive, behaviour, best demonstrated by within-individual analyses. A selective tendency to approach preferred partners was maintained into old age but did not increase. Our results contribute to our understanding of the driver of social ageing in natural animal populations and suggest that social disengagement and selectivity follow independent trajectories during ageing.
Collapse
Affiliation(s)
- Baptiste Sadoughi
- Department of Behavioral Ecology, Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Kellnerweg 6, D-37077 Göttingen, Germany
- Research Group Primate Social Evolution, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Roger Mundry
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
- Department for Primate Cognition, Georg-August-Universität Göttingen, Kellnerweg 4, 37077 Göttingen, Germany
| | - Oliver Schülke
- Department of Behavioral Ecology, Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Kellnerweg 6, D-37077 Göttingen, Germany
- Research Group Primate Social Evolution, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Julia Ostner
- Department of Behavioral Ecology, Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Kellnerweg 6, D-37077 Göttingen, Germany
- Research Group Primate Social Evolution, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| |
Collapse
|
14
|
Pepke ML. Telomere length is not a useful tool for chronological age estimation in animals. Bioessays 2024; 46:e2300187. [PMID: 38047504 DOI: 10.1002/bies.202300187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Telomeres are short repetitive DNA sequences capping the ends of chromosomes. Telomere shortening occurs during cell division and may be accelerated by oxidative damage or ameliorated by telomere maintenance mechanisms. Consequently, telomere length changes with age, which was recently confirmed in a large meta-analysis across vertebrates. However, based on the correlation between telomere length and age, it was concluded that telomere length can be used as a tool for chronological age estimation in animals. Correlation should not be confused with predictability, and the current data and studies suggest that telomeres cannot be used to reliably predict individual chronological age. There are biological reasons for why there is large individual variation in telomere dynamics, which is mainly due to high susceptibility to a wide range of environmental, but also genetic factors, rendering telomeres unfeasible as a tool for age estimation. The use of telomeres for chronological age estimation is largely a misguided effort, but its occasional reappearance in the literature raises concerns that it will mislead resources in wildlife conservation.
Collapse
Affiliation(s)
- Michael L Pepke
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Sanghvi K, Vega-Trejo R, Nakagawa S, Gascoigne SJL, Johnson SL, Salguero-Gómez R, Pizzari T, Sepil I. Meta-analysis shows no consistent evidence for senescence in ejaculate traits across animals. Nat Commun 2024; 15:558. [PMID: 38228708 PMCID: PMC10791739 DOI: 10.1038/s41467-024-44768-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
Male reproductive traits such as ejaculate size and quality, are expected to decline with advancing age due to senescence. It is however unclear whether this expectation is upheld across taxa. We perform a meta-analysis on 379 studies, to quantify the effects of advancing male age on ejaculate traits across 157 species of non-human animals. Contrary to predictions, we find no consistent pattern of age-dependent changes in ejaculate traits. This result partly reflects methodological limitations, such as studies sampling a low proportion of adult lifespan, or the inability of meta-analytical approaches to document non-linear ageing trajectories of ejaculate traits; which could potentially lead to an underestimation of senescence. Yet, we find taxon-specific differences in patterns of ejaculate senescence. For instance, older males produce less motile and slower sperm in ray-finned fishes, but larger ejaculates in insects, compared to younger males. Notably, lab rodents show senescence in most ejaculate traits measured. Our study challenges the notion of universal reproductive senescence, highlighting the need for controlled methodologies and a more nuanced understanding of reproductive senescence, cognisant of taxon-specific biology, experimental design, selection pressures, and life-history.
Collapse
Affiliation(s)
- Krish Sanghvi
- Department of Biology, University of Oxford, Oxford, UK.
| | | | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | | | - Sheri L Johnson
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | | | - Irem Sepil
- Department of Biology, University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Martin RA, Riesch R, Plath M, Al Hanoosh NA, Wronski T. Reproductive biology of Gazella arabica: Predictors of offspring weight and short- and long-term offspring survival. Curr Zool 2023; 69:643-653. [PMID: 37876648 PMCID: PMC10591149 DOI: 10.1093/cz/zoac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/13/2022] [Indexed: 10/26/2023] Open
Abstract
Reproductive traits are central to organismal fitness, and so the factors influencing patterns of reproduction and offspring survival are at the heart of biology. Making use of breeding data collected over 16 years at the King Khalid Wildlife Research Centre in Saudi Arabia, we investigated the reproductive biology of Arabian gazelles Gazella arabica. Offspring survival was mainly a function of birth weight, with heavier offspring having higher survival rates than lighter offspring. However, while sons were heavier than daughters, daughters had higher survival rates. We could not find evidence that giving birth to sons negatively impacts offspring weight in the following year. We uncovered large narrow-sense heritability (h2) in offspring weight at birth, while maternal effects (m2) on birth weight were of lesser importance. However, maternal effects on offspring survival were strong until weaning age, while paternal effects dominated survival to sexual maturity and first reproduction. We propose that variation in maternal postnatal care might overshadow the effects of maternal inheritance of birth weights, while the overall strong heritability of weight at birth and the paternal effects on survival illustrates strong variance in sire fitness based on genetic quality, suggesting a role for sexual selection by female mate choice in wild populations.
Collapse
Affiliation(s)
- Ryan A Martin
- Department of Biology, DeGrace Hall, Case Western Reserve University, Cleveland, OH, USA
| | - Rüdiger Riesch
- Department of Biological Sciences, Centre for Ecology, Evolution and Behaviour, Royal Holloway University of London, Egham, Surrey, UK
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | - Martin Plath
- College of Nursing of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, 14040-902, Brazil
| | - Naif A Al Hanoosh
- National Center for Wildlife, King Khalid Wildlife Research Center, Thumamah, Kingdom of Saudi Arabia
| | - Torsten Wronski
- Faculty of Science, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
17
|
Albery GF, Sweeny AR, Webber Q. How behavioural ageing affects infectious disease. Neurosci Biobehav Rev 2023; 155:105426. [PMID: 37839673 PMCID: PMC10842249 DOI: 10.1016/j.neubiorev.2023.105426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Ageing is associated with profound changes in behaviour that could influence exposure and susceptibility to infectious disease. As well as determining emergent patterns of infection across individuals of different ages, behavioural ageing could interact with, confound, or counteract age-related changes in other traits. Here, we examine how behavioural ageing can manifest and influence patterns of infection in wild animals. We discuss a range of age-related changes that involve interactions between behaviour and components of exposure and susceptibility to infection, including social ageing and immunosenescence, acquisition of novel parasites and pathogens with age, changes in spatial behaviours, and age-related hygiene and sickness behaviours. Overall, most behavioural changes are expected to result in a reduced exposure rate, but there is relatively little evidence for this phenomenon, emerging largely from a rarity of explicit tests of exposure changes over the lifespan. This review offers a framework for understanding how ageing, behaviour, immunity, and infection interact, providing a series of hypotheses and testable predictions to improve our understanding of health in ageing societies.
Collapse
Affiliation(s)
- Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA; Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, Scotland, UK; Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.
| | - Amy R Sweeny
- School of Biosciences, University of Sheffield, Sheffield, England, UK
| | - Quinn Webber
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
18
|
Power ML, Ransome RD, Riquier S, Romaine L, Jones G, Teeling EC. Hibernation telomere dynamics in a shifting climate: insights from wild greater horseshoe bats. Proc Biol Sci 2023; 290:20231589. [PMID: 37817598 PMCID: PMC10565397 DOI: 10.1098/rspb.2023.1589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/10/2023] [Indexed: 10/12/2023] Open
Abstract
Hibernation is linked with various hypotheses to explain the extended lifespan of hibernating mammals compared with their non-hibernating counterparts. Studies on telomeres, markers of ageing and somatic maintenance, suggest telomere shortening slows during hibernation, and lengthening may reflect self-maintenance with favourable conditions. Bats in temperate zones adjust body temperatures during winter torpor to conserve energy and exploit mild conditions for foraging. Climate change may impact the hibernation cycle of bats, but more research is needed regarding the role of telomeres in understanding their response to a changing climate. Here, relative telomere length (rTL) was measured in the long-lived greater horseshoe bat Rhinolophus ferrumequinum (n = 223 individuals) over three winters, considering climatic conditions. Cross-sectional analyses revealed between-individual variation in rTL with a strong year effect, likely linked to varying weather conditions and foraging success. Additionally, within-individual increases of rTL occurred in 51% of consecutive measurements, with evidence of increasing telomerase expression during hibernation in this species. These findings highlight the beneficial effects of hibernation on telomeres and potential consequences of changing climatic conditions for long-lived temperate bats. Understanding the interplay between hibernation, telomeres, and climate can provide insights into the adaptive capacity and survival of bat populations facing environmental challenges.
Collapse
Affiliation(s)
- Megan L Power
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Roger D Ransome
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Sébastien Riquier
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Luke Romaine
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Emma C Teeling
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| |
Collapse
|
19
|
Martyka R, Arct A, Kotowska D, Gustafsson L. Age- and trait-dependent breeding responses to environmental variation in a short-lived songbird. Sci Rep 2023; 13:14967. [PMID: 37696936 PMCID: PMC10495331 DOI: 10.1038/s41598-023-42166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
Breeding responses of organisms to environmental changes may profoundly depend on an individual's age, as an age-environment interaction may be expected to affect the expression of reproductive traits. However, little is known about how this interaction affects short-lived species that experience various environmental conditions in adulthood. Here, we used a 32-year dataset from the collared flycatcher, Ficedula albicollis, population to test whether and how the environment interacts with age to shape female age-specific reproduction. To characterise environmental variation, we applied the remotely sensed normalised difference vegetation index (NDVI), estimating vegetation productivity, and used it as a surrogate for habitat quality. Then, we analysed how within-individual age and NDVI determine patterns in laying date, clutch size, offspring production, and recruitment. We found that young and old females, but not middle-aged females, breeding under low NDVI started to lay eggs later and produced smaller clutches than females of the same age breeding under higher NDVI. No such effects were observed for offspring production or recruitment. Our study provides evidence that both an individual's age and the environmental variation experienced during adulthood may be crucial for shaping reproductive patterns in short-lived avian species, as has been found in long-lived birds.
Collapse
Affiliation(s)
- Rafał Martyka
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120, Kraków, Poland.
| | - Aneta Arct
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016, Kraków, Poland
| | - Dorota Kotowska
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120, Kraków, Poland
| | - Lars Gustafsson
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| |
Collapse
|
20
|
Schlicht E, Kempenaers B. Age trajectories in extra-pair siring success suggest an effect of maturation or early-life experience. J Evol Biol 2023; 36:1213-1225. [PMID: 37438929 DOI: 10.1111/jeb.14201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/22/2023] [Accepted: 06/11/2023] [Indexed: 07/14/2023]
Abstract
Across birds, male age is the most consistent predictor of extra-pair siring success, yet little is known about age effects on paternity over the lifetime of individuals. Here, we use data from a 13-year study of a population of blue tits (Cyanistes caeruleus) to investigate how extra-pair siring success changes with age within individuals. Our results indicate that extra-pair siring success does not continuously increase with male age. Instead, siring success was related to male age in a threshold fashion, whereby yearling males were less likely to gain paternity than older males. This effect was independent of the age of the social partner, but influenced by the age of the extra-pair female: success of yearlings at siring extra-pair young (EPY) with older females was even lower. Among males that sired at least one EPY, the number of extra-pair mates and the proportion of EPY sired were unrelated to male age. We found no evidence for an influence of selective disappearance on extra-pair reproduction. Senescence, if anything, only occurs at ages blue tits rarely reach. A literature review indicates that an effect of male age on extra-pair siring success may be limited to the switch from yearling to older in many species. Thus, the generally observed age effect on male extra-pair siring success may be linked to age class rather than continuous ageing. This suggests that lack of experience or not fully completed maturation are important drivers of age patterns in extra-pair paternity.
Collapse
Affiliation(s)
- Emmi Schlicht
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Bart Kempenaers
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| |
Collapse
|
21
|
Tangili M, Slettenhaar AJ, Sudyka J, Dugdale HL, Pen I, Palsbøll PJ, Verhulst S. DNA methylation markers of age(ing) in non-model animals. Mol Ecol 2023; 32:4725-4741. [PMID: 37401200 DOI: 10.1111/mec.17065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
Inferring the chronological and biological age of individuals is fundamental to population ecology and our understanding of ageing itself, its evolution, and the biological processes that affect or even cause ageing. Epigenetic clocks based on DNA methylation (DNAm) at specific CpG sites show a strong correlation with chronological age in humans, and discrepancies between inferred and actual chronological age predict morbidity and mortality. Recently, a growing number of epigenetic clocks have been developed in non-model animals and we here review these studies. We also conduct a meta-analysis to assess the effects of different aspects of experimental protocol on the performance of epigenetic clocks for non-model animals. Two measures of performance are usually reported, the R2 of the association between the predicted and chronological age, and the mean/median absolute deviation (MAD) of estimated age from chronological age, and we argue that only the MAD reflects accuracy. R2 for epigenetic clocks based on the HorvathMammalMethylChip4 was higher and the MAD scaled to age range lower, compared with other DNAm quantification approaches. Scaled MAD tended to be lower among individuals in captive populations, and decreased with an increasing number of CpG sites. We conclude that epigenetic clocks can predict chronological age with relatively high accuracy, suggesting great potential in ecological epigenetics. We discuss general aspects of epigenetic clocks in the hope of stimulating further DNAm-based research on ageing, and perhaps more importantly, other key traits.
Collapse
Affiliation(s)
- Marianthi Tangili
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Annabel J Slettenhaar
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Joanna Sudyka
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
| | - Ido Pen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Per J Palsbøll
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Center for Coastal Studies, Provincetown, Massachusetts, USA
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Macdonald KR, Rotella JJ, Paterson JT. Evaluating the importance of individual heterogeneity in reproduction to Weddell seal population dynamics using integral projection models. J Anim Ecol 2023; 92:1828-1839. [PMID: 37395110 DOI: 10.1111/1365-2656.13975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/02/2023] [Indexed: 07/04/2023]
Abstract
Identifying and accounting for unobserved individual heterogeneity in vital rates in demographic models is important for estimating population-level vital rates and identifying diverse life-history strategies, but much less is known about how this individual heterogeneity influences population dynamics. We aimed to understand how the distribution of individual heterogeneity in reproductive and survival rates influenced population dynamics using vital rates from a Weddell seal population by altering the distribution of individual heterogeneity in reproduction, which also altered the distribution of individual survival rates through the incorporation of our estimate of the correlation between the two rates and assessing resulting changes in population growth. We constructed an integral projection model (IPM) structured by age and reproductive state using estimates of vital rates for a long-lived mammal that has recently been shown to exhibit large individual heterogeneity in reproduction. Using output from the IPM, we evaluated how population dynamics changed with different underlying distributions of unobserved individual heterogeneity in reproduction. Results indicate that the changes to the underlying distribution of individual heterogeneity in reproduction cause very small changes in the population growth rate and other population metrics. The largest difference in the estimated population growth rate resulting from changes to the underlying distribution of individual heterogeneity was less than 1%. Our work highlights the differing importance of individual heterogeneity at the population level compared to the individual level. Although individual heterogeneity in reproduction may result in large differences in the lifetime fitness of individuals, changing the proportion of above- or below-average breeders in the population results in much smaller differences in annual population growth rate. For a long-lived mammal with stable and high adult-survival that gives birth to a single offspring, individual heterogeneity in reproduction has a limited effect on population dynamics. We posit that the limited effect of individual heterogeneity on population dynamics may be due to canalization of life-history traits.
Collapse
Affiliation(s)
| | - Jay J Rotella
- Ecology Department, Montana State University, Bozeman, Montana, USA
| | - J Terrill Paterson
- Northern Rocky Mountain Science Center, U.S. Geological Survey, Bozeman, Montana, USA
| |
Collapse
|
23
|
Morland F, Ewen JG, Simons MJP, Brekke P, Hemmings N. Early-life telomere length predicts life-history strategy and reproductive senescence in a threatened wild songbird. Mol Ecol 2023; 32:4031-4043. [PMID: 37173827 PMCID: PMC10947174 DOI: 10.1111/mec.16981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Telomeres are well known for their associations with lifespan and ageing across diverse taxa. Early-life telomere length can be influenced by developmental conditions and has been shown positively affect lifetime reproductive success in a limited number of studies. Whether these effects are caused by a change in lifespan, reproductive rate or perhaps most importantly reproductive senescence is unclear. Using long-term data on female breeding success from a threatened songbird (the hihi, Notiomystis cincta), we show that the early-life telomere length of individuals predicts the presence and rate of future senescence of key reproductive traits: clutch size and hatching success. In contrast, senescence of fledging success is not associated with early-life telomere length, which may be due to the added influence of biparental care at this stage. Early-life telomere length does not predict lifespan or lifetime reproductive success in this species. Females may therefore change their reproductive allocation strategy depending on their early developmental conditions, which we hypothesise are reflected in their early-life telomere length. Our results offer new insights on the role that telomeres play in reproductive senescence and individual fitness and suggest telomere length can be used as a predictor for future life history in threatened species.
Collapse
Affiliation(s)
- Fay Morland
- Department of BiosciencesUniversity of SheffieldSheffieldUK
- Institute of Zoology, Zoological Society of LondonLondonUK
- Department of AnatomyUniversity of OtagoDunedinNew Zealand
| | - John G. Ewen
- Institute of Zoology, Zoological Society of LondonLondonUK
| | | | | | | |
Collapse
|
24
|
McKenna-Ell C, Ravindran S, Pilkington JG, Pemberton JM, Nussey DH, Froy H. Trait-dependent associations between early- and late-life reproduction in a wild mammal. Biol Lett 2023; 19:20230050. [PMID: 37433328 DOI: 10.1098/rsbl.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
Early- versus late-life trade-offs are a central prediction of life-history theory that are expected to shape the evolution of ageing. While ageing is widely observed in wild vertebrates, evidence that early-late trade-offs influence ageing rates remains limited. Vertebrate reproduction is a complex, multi-stage process, yet few studies have examined how different aspects of early-life reproductive allocation shape late-life performance and ageing. Here, we use longitudinal data from a 36-year study of wild Soay sheep to show that early-life reproduction predicts late-life reproductive performance in a trait-dependent manner. Females that started breeding earlier showed more rapid declines in annual breeding probability with age, consistent with a trade-off. However, age-related declines in offspring first-year survival and birth weight were not associated with early-life reproduction. Selective disappearance was evident in all three late-life reproductive measures, with longer-lived females having higher average performance. Our results provide mixed support for early-late reproductive trade-offs and show that the way early-life reproduction shapes late-life performance and ageing can differ among reproductive traits.
Collapse
Affiliation(s)
- Chris McKenna-Ell
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sanjana Ravindran
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Jill G Pilkington
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Josephine M Pemberton
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Daniel H Nussey
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Hannah Froy
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
25
|
Lescroël A, Schmidt A, Ainley DG, Dugger KM, Elrod M, Jongsomjit D, Morandini V, Winquist S, Ballard G. High-resolution recording of foraging behaviour over multiple annual cycles shows decline in old Adélie penguins' performance. Proc Biol Sci 2023; 290:20222480. [PMID: 37015277 PMCID: PMC10072935 DOI: 10.1098/rspb.2022.2480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/06/2023] [Indexed: 04/06/2023] Open
Abstract
Age-related variation in foraging performance can result from both within-individual change and selection processes. These mechanisms can only be disentangled by using logistically challenging long-term, longitudinal studies. Coupling a long-term demographic data set with high-temporal-resolution tracking of 18 Adélie penguins (Pygoscelis adeliae, age 4-15 yrs old) over three consecutive annual cycles, we examined how foraging behaviour changed within individuals of different age classes. Evidence indicated within-individual improvement in young and middle-age classes, but a significant decrease in foraging dive frequency within old individuals, associated with a decrease in the dive descent rate. Decreases in foraging performance occurred at a later age (from 12-15 yrs old to 15-18 yrs old) than the onset of senescence predicted for this species (9-11 yrs old). Foraging dive frequency was most affected by the interaction between breeding status and annual life-cycle periods, with frequency being highest during returning migration and breeding season and was highest overall for successful breeders during the chick-rearing period. Females performed more foraging dives per hour than males. This longitudinal, full annual cycle study allowed us to shed light on the changes in foraging performance occurring among individuals of different age classes and highlighted the complex interactions among drivers of individual foraging behaviour.
Collapse
Affiliation(s)
| | - Annie Schmidt
- Point Blue Conservation Science, Petaluma, CA 94954, USA
| | - David G. Ainley
- H. T. Harvey & Associates Ecological Consultants, Los Gatos, CA 95032, USA
| | - Katie M. Dugger
- US Geological Survey, Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR 97333, USA
| | - Megan Elrod
- Point Blue Conservation Science, Petaluma, CA 94954, USA
| | | | - Virginia Morandini
- Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, 104 Nash Hall, Corvallis, OR 97331, USA
- Fundación Migres, CIMA, N-340km 85, E-11380 Tarifa, Spain
- Museo Nacional de Ciencias Naturales, CSIC, C/Jose Gutierrez Abascal, 2, 28006 Madrid, Spain
| | - Suzanne Winquist
- Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Hatfield Marine Science Center, Newport, OR 97365, USA
| | - Grant Ballard
- Point Blue Conservation Science, Petaluma, CA 94954, USA
| |
Collapse
|
26
|
Longitudinal telomere dynamics within natural lifespans of a wild bird. Sci Rep 2023; 13:4272. [PMID: 36922555 PMCID: PMC10017829 DOI: 10.1038/s41598-023-31435-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Telomeres, the nucleotide sequences that protect the ends of eukaryotic chromosomes, shorten with each cell division and telomere loss may be influenced by environmental factors. Telomere length (TL) decreases with age in several species, but little is known about the sources of genetic and environmental variation in the change in TL (∆TL) in wild animals. In this study, we tracked changes in TL throughout the natural lifespan (from a few months to almost 9 years) of free-living house sparrows (Passer domesticus) in two different island populations. TL was measured in nestlings and subsequently up to four times during their lifetime. TL generally decreased with age (senescence), but we also observed instances of telomere lengthening within individuals. We found some evidence for selective disappearance of individuals with shorter telomeres through life. Early-life TL positively predicted later-life TL, but the within-individual repeatability in TL was low (9.2%). Using genetic pedigrees, we found a moderate heritability of ∆TL (h2 = 0.21), which was higher than the heritabilities of early-life TL (h2 = 0.14) and later-life TL measurements (h2 = 0.15). Cohort effects explained considerable proportions of variation in early-life TL (60%), later-life TL (53%), and ∆TL (37%), which suggests persistent impacts of the early-life environment on lifelong telomere dynamics. Individual changes in TL were independent of early-life TL. Finally, there was weak evidence for population differences in ∆TL that may be linked to ecological differences in habitat types. Combined, our results show that individual telomere biology is highly dynamic and influenced by both genetic and environmental variation in natural conditions.
Collapse
|
27
|
Rotella JJ. Patterns, sources, and consequences of variation in age-specific vital rates: Insights from a long-term study of Weddell seals. J Anim Ecol 2023; 92:552-567. [PMID: 36495476 DOI: 10.1111/1365-2656.13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Variations in the reproductive and survival abilities of individuals within a population are ubiquitous in nature, key to individual fitness, and affect population dynamics, which leads to strong interest in understanding causes and consequences of vital-rate variation. For long-lived species, long-term studies of large samples of known-age individuals are ideal for evaluating vital-rate variation. A population of Weddell seals in Erebus Bay, Antarctica, has been studied each Austral spring since the 1960s. Since 1982, all newborns have been tagged each year and multiple capture-mark-recapture (CMR) surveys have been conducted annually. Over the past 20 years, a series of analyses have built on results of earlier research by taking advantage of steady improvements in the project's long-term CMR data and available analytical methods. Here, I summarize progress made on four major topics related to variation in age-specific vital rates for females: early-life survival and age at first reproduction, costs of reproduction, demographic buffering, and demographic senescence. Multistate modelling found that age at first reproduction varies widely (4-14 years of age) and identified contrasting influences of maternal age on survival and recruitment rates of offspring. Subsequent analyses of data for females after recruitment revealed costs of reproduction to both survival and future reproduction and provided strong evidence of demographic buffering. Recent results indicated that important levels of among-individual variation exist in vital rates and revealed contrasting patterns for senescence in reproduction and survival. Sources of variation in vital rates include age, reproductive state, year, and individual. The combination of luck and individual quality results in strong variation in individual fitness outcomes: ~80% of females born in the population produce no offspring, and the remaining 20% vary strongly in lifetime reproductive output (range: 1-23 pups). Further research is needed to identify the specific environmental conditions that lead to annual variation in vital rates and to better understand the origins of individual heterogeneity. Work is also needed to better quantify the relative roles of luck, maternal effects, and environmental conditions on variation in vital rates and to learn the importance of such variation to demographic performance of offspring and on overall population dynamics.
Collapse
Affiliation(s)
- Jay J Rotella
- Ecology Department, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
28
|
Míčková K, Tomášek O, Jelínek V, Šulc M, Pazdera L, Albrechtová J, Albrecht T. Age-related changes in sperm traits and evidence for aging costs of sperm production in a sexually promiscuous passerine. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
In many animal species, organismal performance declines with age in a process known as aging or senescence. Senescence typically leads to a deterioration of physiological functionality and can impact the development of primary sexual phenotypes. Sperm production is a complex and costly process that is sensitive to changes in individual physiological state, yet remarkably little is known about age-related changes in sperm performance and aging costs of sperm production. Here we use a non-linear generalized additive mixed models (GAMM) modelling to evaluate age-related changes in postcopulatory sexual traits in the European barn swallow (Hirundo rustica rustica), a relatively short lived sexually promiscuous passerine species, where male extra-pair fertilization success has been shown to increase with age. We confirmed a positive relationship between sperm midpiece length and sperm velocity in this species. Within-male changes in sperm morphology and sperm velocity were in general absent, with only sperm length decreasing linearly with increasing age, although this change was negligible compared to the overall variation in sperm size among males. In contrast, the cloacal protuberance (CP) size changed nonlinearly with age, with an initial increase between the first and third year of life followed by a plateau. The results further indicate the existence of a trade-off between investments in sperm production and survival as males with large CP tended to have a reduced lifespan. This seems consistent with the idea of expensive sperm production and survival aging costs associated with investments in post-copulatory traits in this sexually promiscuous species.
Collapse
|
29
|
Rughetti M, Ferloni M. Reproductive cost in female European and mountain hares. J Zool (1987) 2022. [DOI: 10.1111/jzo.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- M. Rughetti
- Dipartimento di Scienze Veterinarie Università degli Studi di Torino Grugliasco Italy
| | - M. Ferloni
- Ufficio Faunistico ‐ Provincia di Sondrio Sondrio Italy
| |
Collapse
|
30
|
Schneider-Crease IA, Feder JA, Baniel A, McCann C, Haile AA, Abebe B, Fitzgerald L, Gomery MA, Simberloff RA, Petrie ZL, Gabriel S, Dorny P, Fashing PJ, Nguyen N, Bergman TJ, Beehner JC, Snyder-Mackler N, Lu A. Urinary neopterin reflects immunological variation associated with age, helminth parasitism, and the microbiome in a wild primate. Sci Rep 2022; 12:21307. [PMID: 36494454 PMCID: PMC9734142 DOI: 10.1038/s41598-022-25298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Neopterin, a product of activated white blood cells, is a marker of nonspecific inflammation that can capture variation in immune investment or disease-related immune activity and can be collected noninvasively in urine. Mounting studies in wildlife point to lifetime patterns in neopterin related to immune development, aging, and certain diseases, but rarely are studies able to assess whether neopterin can capture multiple concurrent dimensions of health and disease in a single system. We assessed the relationship between urinary neopterin stored on filter paper and multiple metrics of health and disease in wild geladas (Theropithecus gelada), primates endemic to the Ethiopian highlands. We tested whether neopterin captures age-related variation in inflammation arising from developing immunity in infancy and chronic inflammation in old age, inflammation related to intramuscular tapeworm infection, helminth-induced anti-inflammatory immunomodulation, and perturbations in the gastrointestinal microbiome. We found that neopterin had a U-shaped relationship with age, no association with larval tapeworm infection, a negative relationship with metrics related to gastrointestinal helminth infection, and a negative relationship with microbial diversity. Together with growing research on neopterin and specific diseases, our results demonstrate that urinary neopterin can be a powerful tool for assessing multiple dimensions of health and disease in wildlife.
Collapse
Affiliation(s)
- India A Schneider-Crease
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.
| | - Jacob A Feder
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Alice Baniel
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Colleen McCann
- Department of Mammals, Bronx Zoo, Wildlife Conservation Society, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | | | - Belayneh Abebe
- African Wildlife Foundation, Simien Mountains Landscape Conservation and Management Project, Debark, Ethiopia
| | | | - Megan A Gomery
- Simien Mountains Gelada Research Project, Debark, Ethiopia
| | - Ruth A Simberloff
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | | | - Sarah Gabriel
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Pierre Dorny
- Department of Biomedical Sciences, Institute for Tropical Medicine, Antwerp, Belgium
| | - Peter J Fashing
- Department of Anthropology, California State University Fullerton, Fullerton, CA, USA
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Nga Nguyen
- Department of Anthropology, California State University Fullerton, Fullerton, CA, USA
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Thore J Bergman
- Department of Ecology and Evolution, University of Michigan, Ann Arbor, MI, USA
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Jacinta C Beehner
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
31
|
Kauzálová T, Tomášek O, Mulder E, Verhulst S, Albrecht T. Telomere length is highly repeatable and shorter in individuals with more elaborate sexual ornamentation in a short-lived passerine. Mol Ecol 2022; 31:6172-6183. [PMID: 35150467 DOI: 10.1111/mec.16397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 01/31/2023]
Abstract
Quantifying an individual's state as a fitness proxy has proven challenging, but accumulating evidence suggests that telomere length and attrition may indicate individual somatic state and success at self-maintenance, respectively. Sexual ornamentation is also thought to signal phenotypic quality, but links between telomeres and sexual ornamentation have been little explored. To address this issue, we examined whether telomere length and dynamics are predicted by the expression of a sexually selected ornament, the length of the outermost tail feathers (streamers), using longitudinal data from a population of European barn swallows (Hirundo rustica). In 139 adult individuals, each measured twice, we further assessed associations of telomere length with age, sex, breeding status and survival. Telomere length showed high individual repeatability (R = .97) across years while shortening with age in both sexes. Telomere length and dynamics were not significantly associated with survival to the next year, remaining lifespan or reproduction status (comparing breeding and nonbreeding yearlings). Tail streamer length, a sexually selected trait in barn swallows, was negatively associated with telomere length, independent of sex. Thus, telomere length may reflect the costs of carrying an elaborated sexual ornament, although ornament size did not significantly predict telomere shortening. In conclusion, telomere length in adult barn swallows is a highly consistent trait that shows a negative relationship with sexual ornamentation, suggesting a trade-off between sexual ornamentation and telomere length.
Collapse
Affiliation(s)
- Tereza Kauzálová
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Oldřich Tomášek
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ellis Mulder
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Tomáš Albrecht
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic.,Department of Zoology, Faculty of Science, Charles University in Prague, Praha, Czech Republic
| |
Collapse
|
32
|
Sheldon EL, Eastwood JR, Teunissen N, Roast MJ, Aranzamendi NH, Fan M, Louise Hall M, Kingma SA, Verhulst S, Peters A. Telomere dynamics in the first year of life, but not later in life, predict lifespan in a wild bird. Mol Ecol 2022; 31:6008-6017. [PMID: 34850488 DOI: 10.1111/mec.16296] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/15/2021] [Accepted: 11/09/2021] [Indexed: 02/02/2023]
Abstract
Telomeres are protective, nucleoprotein structures at the end of chromosomes that have been associated with lifespan across taxa. However, the extent to which these associations can be attributed to absolute length vs. the rate of telomere shortening prior to sampling remains unresolved. In a longitudinal study, we examined the relationship between lifespan, telomere length and the rate of telomere shortening in wild, purple-crowned fairy-wrens (Malurus coronatus coronatus). To this end, we measured telomere length using quantitative polymerase chain reaction in the blood of 59 individuals sampled as nestlings and 4-14 months thereafter, and in 141 known-age individuals sampled on average three times across adulthood. We applied within-subject centring analyses to simultaneously test for associations between lifespan and average telomere length and telomere shortening. We reveal that the rate of telomere shortening and to a lesser extent telomere length in the first year of life independently predicted lifespan, with individuals with faster shortening rates and/or shorter telomeres living less long. In contrast, in adulthood neither telomere shortening nor telomere length predicted lifespan, despite a considerably larger data set. Our results suggest that telomere length measured very early in life (during development) and longitudinal assessments of telomere shortening during the first year of life constitute more useful biomarkers of total life expectancy than either telomere length measured after development, or telomere shortening later in adulthood.
Collapse
Affiliation(s)
| | | | - Niki Teunissen
- School of Biological Sciences, Monash University, Clayton, Vic, Australia
| | | | | | - Marie Fan
- School of Biological Sciences, Monash University, Clayton, Vic, Australia
| | - Michelle Louise Hall
- Max Planck Institute for Ornithology, Vogelwarte Radolfzell, Radolfzell, Germany.,Bush Heritage Australia, Melbourne, Vic, Australia.,School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Sjouke Anne Kingma
- Max Planck Institute for Ornithology, Vogelwarte Radolfzell, Radolfzell, Germany
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Anne Peters
- School of Biological Sciences, Monash University, Clayton, Vic, Australia.,Max Planck Institute for Ornithology, Vogelwarte Radolfzell, Radolfzell, Germany
| |
Collapse
|
33
|
Ravindran S, Froy H, Underwood SL, Dorrens J, Seeker LA, Watt K, Wilbourn RV, Pilkington JG, Harrington L, Pemberton JM, Nussey DH. The association between female reproductive performance and leukocyte telomere length in wild Soay sheep. Mol Ecol 2022; 31:6184-6196. [PMID: 34514660 DOI: 10.1111/mec.16175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 08/03/2021] [Indexed: 01/31/2023]
Abstract
Telomere length (TL), typically measured across a sample of blood cells, has emerged as an exciting potential marker of physiological state and of the costs of investment in growth and reproduction within evolutionary ecology. While there is mounting evidence from studies of wild vertebrates that short TL predicts raised subsequent mortality risk, the relationship between reproductive investment and TL is less clear cut, and previous studies report both negative and positive associations. In this study, we examined the relationship between TL and different aspects of maternal reproductive performance in a free-living population of Soay sheep. We find evidence for shorter TL in females that bred, and thus paid any costs of gestation, compared to females that did not breed. However, we found no evidence for any association between TL and litter size. Furthermore, females that invested in gestation and lactation actually had longer TL than females who only invested in gestation because their offspring died shortly after birth. We used multivariate models to decompose these associations into among- and within-individual effects, and discovered that within-individual effects were driving both the negative association between TL and gestation, and the positive association between TL and lactation. This suggests that telomere dynamics may reflect recent physiologically costly investment or variation in physiological condition, depending on the aspect of reproduction being investigated. Our results highlight the physiological complexity of vertebrate reproduction, and the need to better understand how and why different aspects of physiological variation underpinning life histories impact blood cell TL.
Collapse
Affiliation(s)
- Sanjana Ravindran
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hannah Froy
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Centre for Biodiversity Dynamics, Institute for Biology, Norwegian University for Science and Technology (NTNU), Trondheim, Norway
| | - Sarah L Underwood
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jennifer Dorrens
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Luise A Seeker
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Kathryn Watt
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rachael V Wilbourn
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jill G Pilkington
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Lea Harrington
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Josephine M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Daniel H Nussey
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
34
|
Atema E, van Noordwijk AJ, Verhulst S. Telomere dynamics in relation to experimentally increased locomotion costs and fitness in great tits. Mol Ecol 2022; 31:6208-6215. [PMID: 34478576 PMCID: PMC9786264 DOI: 10.1111/mec.16162] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/06/2021] [Accepted: 08/20/2021] [Indexed: 02/02/2023]
Abstract
Evidence that telomere length (TL) and dynamics can be interpreted as proxy for 'life stress' experienced by individuals stems largely from correlational studies. We tested for effects of an experimental increase of workload on telomere dynamics by equipping male great tits (Parus major) with a 0.9 g backpack for a full year. In addition, we analysed associations between natural life-history variation, TL and TL dynamics. Carrying 5% extra weight for a year did not significantly accelerate telomere attrition. This agrees with our earlier finding that this experiment did not affect survival or future reproduction. Apparently, great tit males were able to compensate behaviourally or physiologically for the increase in locomotion costs we imposed. We found no cross-sectional association between reproductive success and TL, but individuals with higher reproductive success (number of recruits) lost fewer telomere base pairs in the subsequent year. We used the TRF method to measure TL, which method yields a TL distribution for each sample, and the association between reproductive success and telomere loss was more pronounced in the higher percentiles of the telomere distribution, in agreement with the higher impact of ageing on longer telomeres within individuals. Individuals with longer telomeres and less telomere shortening were more likely to survive to the next breeding season, but these patterns did not reach statistical significance. Whether successful individuals are characterized by losing fewer or more base pairs from their telomeres varies between species, and we discuss aspects of ecology and social organisation that may explain this variation.
Collapse
Affiliation(s)
- Els Atema
- GELIFESUniversity of GroningenGroningenthe Netherlands,Netherlands Institute of EcologyWageningenthe Netherlands
| | | | | |
Collapse
|
35
|
Sparks AM, Spurgin LG, van der Velde M, Fairfield EA, Komdeur J, Burke T, Richardson DS, Dugdale HL. Telomere heritability and parental age at conception effects in a wild avian population. Mol Ecol 2022; 31:6324-6338. [PMID: 33586226 DOI: 10.1111/mec.15804] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/31/2023]
Abstract
Individual variation in telomere length is predictive of health and mortality risk across a range of species. However, the relative influence of environmental and genetic variation on individual telomere length in wild populations remains poorly understood. Heritability of telomere length has primarily been calculated using parent-offspring regression which can be confounded by shared environments. To control for confounding variables, quantitative genetic "animal models" can be used, but few studies have applied animal models in wild populations. Furthermore, parental age at conception may also influence offspring telomere length, but most studies have been cross-sectional. We investigated within- and between-parental age at conception effects and heritability of telomere length in the Seychelles warbler using measures from birds caught over 20 years and a multigenerational pedigree. We found a weak negative within-paternal age at conception effect (as fathers aged, their offspring had shorter telomeres) and a weak positive between-maternal age at conception effect (females that survived to older ages had offspring with longer telomeres). Animal models provided evidence that heritability and evolvability of telomere length were low in this population, and that variation in telomere length was not driven by early-life effects of hatch period or parental identities. Quantitative polymerase chain reaction plate had a large influence on telomere length variation and not accounting for it in the models would have underestimated heritability. Our study illustrates the need to include and account for technical variation in order to accurately estimate heritability, as well as other environmental effects, on telomere length in natural populations.
Collapse
Affiliation(s)
- Alexandra M Sparks
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Marco van der Velde
- Behavioural and Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | | | - Jan Komdeur
- Behavioural and Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Terry Burke
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich, UK.,Nature Seychelles, Victoria, Mahé, Republic of Seychelles
| | - Hannah L Dugdale
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK.,Behavioural and Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
36
|
Wood EM, Capilla-Lasheras P, Cram DL, Walker LA, York JE, Lange A, Hamilton PB, Tyler CR, Young AJ. Social dominance and rainfall predict telomere dynamics in a cooperative arid-zone bird. Mol Ecol 2022; 31:6141-6154. [PMID: 33657651 DOI: 10.1111/mec.15868] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 02/17/2021] [Indexed: 02/02/2023]
Abstract
In many vertebrate societies dominant individuals breed at substantially higher rates than subordinates, but whether this hastens ageing remains poorly understood. While frequent reproduction may trade off against somatic maintenance, the extraordinary fecundity and longevity of some social insect queens highlight that breeders need not always suffer more rapid somatic deterioration than their nonbreeding subordinates. Here, we used extensive longitudinal assessments of telomere dynamics to investigate the impact of dominance status on within-individual age-related changes in somatic integrity in a wild social bird, the white-browed sparrow-weaver (Plocepasser mahali). Dominant birds, who monopolise reproduction, had neither shorter telomeres nor faster telomere attrition rates over the long-term (1-5 years) than their subordinates. However, over shorter (half-year) time intervals dominants with shorter telomeres showed lower rates of telomere attrition (and evidence suggestive of telomere lengthening), while the same was not true among subordinates. Dominants may therefore invest more heavily in telomere length regulation (and/or somatic maintenance more broadly); a strategy that could mitigate the long-term costs of reproductive effort, leaving their long-term telomere dynamics comparable to those of subordinates. Consistent with the expectation that reproduction entails short-term costs to somatic integrity, telomere attrition rates were most severe for all birds during the breeding seasons of wetter years (rainfall is the key driver of reproductive activity in this arid-zone species). Our findings suggest that, even in vertebrate societies in which dominants monopolise reproduction, dominants may experience long-term somatic integrity trajectories indistinguishable from those of their nonreproductive subordinates.
Collapse
Affiliation(s)
- Emma M Wood
- Centre for Ecology & Conservation, University of Exeter, Penryn, UK
| | - Pablo Capilla-Lasheras
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Dominic L Cram
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Lindsay A Walker
- Geoffrey Pope, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Jenny E York
- Department of Zoology, University of Cambridge, Cambridge, UK.,Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Anke Lange
- Geoffrey Pope, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Patrick B Hamilton
- Geoffrey Pope, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Charles R Tyler
- Geoffrey Pope, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Andrew J Young
- Centre for Ecology & Conservation, University of Exeter, Penryn, UK
| |
Collapse
|
37
|
Pásztor K, Kőrösi Á, Gór Á, Szigeti V, Vajna F, Kis J. Phenotypic senescence in a natural insect population. Ecol Evol 2022; 12:e9668. [PMID: 36619713 PMCID: PMC9798249 DOI: 10.1002/ece3.9668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022] Open
Abstract
Senescence seems to be universal in living organisms and plays a major role in life-history strategies. Phenotypic senescence, the decline of body condition and/or performance with age, is a largely understudied component of senescence in natural insect populations, although it would be important to understand how and why insects age under natural conditions. We aimed (i) to investigate how body mass and thorax width change with age in a natural population of the univoltine Clouded Apollo butterfly (Parnassius mnemosyne, Lepidoptera: Papilionidae) and (ii) to assess the relationship of this change with sex and wing length. We studied a population between 2014 and 2020 using mark-recapture during the whole flight period each year. Repeated measurements of body mass and thorax width and single measurements of wing length were performed on marked individuals. We analyzed body mass and thorax width change with age (days since marking), wing length, and the date of the first capture. Both body mass and thorax width declined nonlinearly with age. Individuals appearing earlier in the flight period had significantly higher initial body mass and thorax width and their body mass declined faster than later ones. Initial body sizes of females were higher, but males' body sizes decreased slower. Initial thorax width showed higher annual variation than body mass. To our best knowledge, this is the first study that revealed phenotypic senescence in a natural butterfly population, using in vivo measurements. We found sexual differences in the rate of phenotypic senescence. Despite the annual variation of initial body sizes, the rate of senescence did not vary considerably across the years.
Collapse
Affiliation(s)
- Kata Pásztor
- Doctoral School of Biological SciencesHungarian University of Agriculture and Life SciencesGödöllőHungary
| | - Ádám Kőrösi
- MTA‐ELTE‐MTM Ecology Research GroupBudapestHungary
- Büro Geyer und DolekWörthseeGermany
| | - Ádám Gór
- The Doctoral School of Veterinary ScienceUniversity of Veterinary Medicine BudapestBudapestHungary
| | - Viktor Szigeti
- Lendület Ecosystem Services Research GroupInstitute of Ecology and Botany, Centre for Ecological ResearchVácrátótHungary
| | - Flóra Vajna
- Lendület Ecosystem Services Research GroupInstitute of Ecology and Botany, Centre for Ecological ResearchVácrátótHungary
| | - János Kis
- Department of Ecology, Institute for BiologyUniversity of Veterinary Medicine BudapestBudapestHungary
| |
Collapse
|
38
|
Hau M, Deimel C, Moiron M. Great tits differ in glucocorticoid plasticity in response to spring temperature. Proc Biol Sci 2022; 289:20221235. [PMID: 36350212 PMCID: PMC9653245 DOI: 10.1098/rspb.2022.1235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/14/2022] [Indexed: 09/05/2023] Open
Abstract
Fluctuations in environmental temperature affect energy metabolism and stimulate the expression of reversible phenotypic plasticity in vertebrate behavioural and physiological traits. Changes in circulating concentrations of glucocorticoid hormones often underpin environmentally induced phenotypic plasticity. Ongoing climate change is predicted to increase fluctuations in environmental temperature globally, making it imperative to determine the standing phenotypic variation in glucocorticoid responses of free-living populations to evaluate their potential for coping via plastic or evolutionary changes. Using a reaction norm approach, we repeatedly sampled wild great tit (Parus major) individuals for circulating glucocorticoid concentrations during reproduction across five years to quantify individual variation in glucocorticoid plasticity along an environmental temperature gradient. As expected, baseline and stress-induced glucocorticoid concentrations increased with lower environmental temperatures at the population and within-individual level. Moreover, we provide unique evidence that individuals differ significantly in their plastic responses to the temperature gradient for both glucocorticoid traits, with some displaying greater plasticity than others. Average concentrations and degree of plasticity covaried for baseline glucocorticoids, indicating that these two reaction norm components are linked. Hence, individual variation in glucocorticoid plasticity in response to a key environmental factor exists in a wild vertebrate population, representing a crucial step to assess their potential to endure temperature fluctuations.
Collapse
Affiliation(s)
- Michaela Hau
- Max Planck Institute for Ornithology, Seewiesen, Germany
- University of Konstanz, Konstanz, Germany
| | | | - Maria Moiron
- Institute of Avian Research, Wilhelmshaven, Germany
| |
Collapse
|
39
|
Cope H, Ivimey-Cook ER, Moorad J. Triparental ageing in a laboratory population of an insect with maternal care. Behav Ecol 2022; 33:1123-1132. [PMID: 36518633 PMCID: PMC9735237 DOI: 10.1093/beheco/arac078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 09/10/2024] Open
Abstract
Parental age at reproduction influences offspring size and survival by affecting prenatal and postnatal conditions in a wide variety of species, including humans. However, most investigations into this manifestation of ageing focus upon maternal age effects; the effects of paternal age and interactions between maternal and paternal age are often neglected. Furthermore, even when maternal age effects are studied, pre- and post-natal effects are often confounded. Using a cross-fostered experimental design, we investigated the joint effects of pre-natal paternal and maternal and post-natal maternal ages on five traits related to offspring outcomes in a laboratory population of a species of burying beetle, Nicrophorus vespilloides. We found a significant positive effect of the age of the egg producer on larval survival to dispersal. We found more statistical evidence for interaction effects, which acted on larval survival and egg length. Both interaction effects were negative and involved the age of the egg-producer, indicating that age-related pre-natal maternal improvements were mitigated by increasing age in fathers and foster mothers. These results agree with an early study that found little evidence for maternal senescence, but it emphasizes that parental age interactions may be an important contributor to ageing patterns. We discuss how the peculiar life history of this species may promote selection to resist the evolution of parental age effects, and how this might have influenced our ability to detect senescence.
Collapse
Affiliation(s)
- Hilary Cope
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Edward R Ivimey-Cook
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jacob Moorad
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
40
|
Park YH, Shin D, Han CS. Polyandrous females but not monogamous females vary in reproductive ageing patterns in the bean bug Riptortus pedestris. BMC Ecol Evol 2022; 22:115. [PMID: 36217117 PMCID: PMC9549660 DOI: 10.1186/s12862-022-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND In general, reproductive performance exhibits nonlinear changes with age. Specifically, reproductive performance increases early in life, reaches a peak, and then declines later in life. Reproductive ageing patterns can also differ among individuals if they are influenced by individual-specific strategies of resource allocation between early-life reproduction and maintenance. In addition, the social environment, such as the number of available mates, can influence individual-specific resource allocation strategies and consequently alter the extent of individual differences in reproductive ageing patterns. That is, females that interact with more partners are expected to vary their copulation frequency, adopt a more flexible reproductive strategy and exhibit greater individual differences in reproductive ageing patterns. METHODS In this study, we evaluated the effect of mating with multiple males on both group- and individual-level reproductive ageing patterns in females of the bean bug Riptortus pedestris by ensuring that females experienced monogamous (one female with one male) or polyandrous conditions (one female with two males). RESULTS We found that group-level reproductive ageing patterns did not differ between monogamy-treatment and polyandry-treatment females. However, polyandry-treatment females exhibited among-individual variation in reproductive ageing patterns, while monogamy-treatment females did not. CONCLUSION Our findings provide the first empirical evidence regarding the influence of the social environment on individual variation in reproductive ageing patterns. We further suggest that the number of potential mates influences group- and individual-level reproductive ageing patterns, depending on which sex controls mating. We encourage future studies to consider interactions between species-specific mating systems and the social environment when evaluating group- and individual-level reproductive ageing patterns.
Collapse
Affiliation(s)
- Yi Hang Park
- grid.289247.20000 0001 2171 7818Department of Biology, Kyung Hee University, Seoul, Korea
| | - Donggyun Shin
- grid.289247.20000 0001 2171 7818Department of Biology, Kyung Hee University, Seoul, Korea
| | - Chang S. Han
- grid.289247.20000 0001 2171 7818Department of Biology, Kyung Hee University, Seoul, Korea
| |
Collapse
|
41
|
Mohring B, Angelier F, Jaatinen K, Steele B, Lönnberg E, Öst M. Drivers of within- and among-individual variation in risk-taking behaviour during reproduction in a long-lived bird. Proc Biol Sci 2022; 289:20221338. [PMID: 36126681 PMCID: PMC9489283 DOI: 10.1098/rspb.2022.1338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/30/2022] [Indexed: 01/17/2023] Open
Abstract
Plastic and selective mechanisms govern parental investment adjustments to predation threat. We investigated the relative importance of plasticity and selection in risk-taking propensity of incubating female common eiders Somateria mollissima facing unprecedented predation in SW Finland, Baltic Sea. Using a 12-year individual-based dataset, we examined within- and among-individual variation in flight initiation distance (FID), in relation to predation risk, nest detectability, individual traits and reproductive investment (NFID = 1009; Nindividual = 559). We expected females nesting in riskier environments (higher predation risk, lower nest concealment) to mitigate environmentally imposed risk by exhibiting longer FIDs, and females investing more in current reproduction (older, in better condition or laying larger clutches) to display shorter FIDs. The target of predation-adult or offspring-affected the mechanisms adapting risk-taking propensity; females plastically increased their FID under higher adult predation risk, while risk-avoiding breeders were predominant on islands with higher nest predation risk. Risk-taking females selected thicker nest cover, consistent with personality-matching habitat choice. Females plastically attenuated their anti-predator response (shorter FIDs) with advancing age, and females in better body condition were more risk-taking, a result explained by selection processes. Future research should consider predator type when investigating the fitness consequences of risk-taking strategies.
Collapse
Affiliation(s)
- Bertille Mohring
- Environmental and Marine Biology, Åbo Akademi University, 20500 Turku, Finland
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS – La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS – La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Kim Jaatinen
- Nature and Game Management Trust Finland, 10160 Degerby, Finland
| | - Ben Steele
- School of Arts and Sciences, Colby-Sawyer College, New London, NH 03257, USA
| | | | - Markus Öst
- Environmental and Marine Biology, Åbo Akademi University, 20500 Turku, Finland
- Novia University of Applied Sciences, 10600 Ekenäs, Finland
| |
Collapse
|
42
|
Environmental conditions experienced upon first breeding modulate costs of early breeding but not age-specific reproductive output in peregrine falcons. Sci Rep 2022; 12:16005. [PMID: 36163457 PMCID: PMC9512846 DOI: 10.1038/s41598-022-20240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022] Open
Abstract
Although once considered uncommon, there is growing evidence of widespread senescence in wildlife populations. However, few studies have examined the traits involved, inter-sexual differences, and environmental correlates of age-specific performance in raptors. We studied age-specific reproductive performance and actuarial senescence (decrease in survival probability with age) in a peregrine falcon population monitored for 21 years. We analysed changes with age in the number of offspring produced and incubation start date. We also inspected variation in lifespan and breeding lifespan (number of breeding occasions in a lifetime). In every case, we assessed associations between variations in traits and age, sex, recruitment age, and environmental conditions (cumulative rainfall during breeding season) experienced upon the first breeding attempt. We found scarce evidence for reproductive senescence. Only the incubation start date in females, which was delayed after approximately 8 cy (calendar years), suggested reproductive senescence in our study population. Regarding actuarial senescence, our data did not support it as we only found evidence of higher juvenile mortality. Furthermore, expected lifespan in peregrines recruited at 2 cy was associated with conditions experienced upon the first breeding attempt. The lifespan and breeding career of individuals recruited as yearlings and experiencing low rainfall upon first breeding did not significantly differ from those recruited as adults. However, those recruited as yearlings and experiencing poor environmental conditions upon the first breeding attempt showed reduced lifespan and breeding lifespan.
Collapse
|
43
|
Albery GF, Clutton-Brock TH, Morris A, Morris S, Pemberton JM, Nussey DH, Firth JA. Ageing red deer alter their spatial behaviour and become less social. Nat Ecol Evol 2022; 6:1231-1238. [PMID: 35864228 PMCID: PMC10859100 DOI: 10.1038/s41559-022-01817-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 05/27/2022] [Indexed: 01/19/2023]
Abstract
Social relationships are important to many aspects of animals' lives, and an individual's connections may change over the course of their lifespan. Currently, it is unclear whether social connectedness declines within individuals as they age, and what the underlying mechanisms might be, so the role of age in structuring animal social systems remains unresolved, particularly in non-primates. Here we describe senescent declines in social connectedness using 46 years of data in a wild, individually monitored population of a long-lived mammal (European red deer, Cervus elaphus). Applying a series of spatial and social network analyses, we demonstrate that these declines occur because of within-individual changes in social behaviour, with correlated changes in spatial behaviour (smaller home ranges and movements to lower-density, lower-quality areas). These findings demonstrate that within-individual socio-spatial behavioural changes can lead older animals in fission-fusion societies to become less socially connected, shedding light on the ecological and evolutionary processes structuring wild animal populations.
Collapse
Affiliation(s)
- Gregory F Albery
- Department of Biology, Georgetown University, Washington DC, USA.
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.
- Wissenschaftskolleg zu Berlin, Berlin, Germany.
| | | | - Alison Morris
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Sean Morris
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | | | - Daniel H Nussey
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Josh A Firth
- Department of Zoology, University of Oxford, Oxford, UK
- Merton College, University of Oxford, Oxford, UK
| |
Collapse
|
44
|
Sanghvi K, Iglesias‐Carrasco M, Zajitschek F, Kruuk LEB, Head ML. Effects of developmental and adult environments on ageing. Evolution 2022; 76:1868-1882. [PMID: 35819127 PMCID: PMC9543291 DOI: 10.1111/evo.14567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 01/22/2023]
Abstract
Developmental and adult environments can interact in complex ways to influence the fitness of individuals. Most studies investigating effects of the environment on fitness focus on environments experienced and traits expressed at a single point in an organism's life. However, environments vary with time, so the effects of the environments that organisms experience at different ages may interact to affect how traits change throughout life. Here, we test whether thermal stress experienced during development leads individuals to cope better with thermal stress as adults. We manipulated temperature during both development and adulthood and measured a range of life-history traits, including senescence, in male and female seed beetles (Callosobruchus maculatus). We found that thermal stress during development reduced adult reproductive performance of females. In contrast, life span and age-dependent mortality were affected more by adult than developmental environments, with high adult temperatures decreasing longevity and increasing age-dependent mortality. Aside from an interaction between developmental and adult environments to affect age-dependent changes in male weight, we did not find any evidence of a beneficial acclimation response to developmental thermal stress. Overall, our results show that effects of developmental and adult environments can be both sex and trait specific, and that a full understanding of how environments interact to affect fitness and ageing requires the integrated study of conditions experienced during different stages of ontogeny.
Collapse
Affiliation(s)
- Krish Sanghvi
- Reserach School of BiologyAustralian National UniversityCanberraACT2601Australia
| | | | - Felix Zajitschek
- School of Biology Earth and Environmental SciencesUniversity of New South WalesSydneyNSW2052Australia
| | - Loeske E. B. Kruuk
- Reserach School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Megan L. Head
- Reserach School of BiologyAustralian National UniversityCanberraACT2601Australia
| |
Collapse
|
45
|
Mundinger C, Fleischer T, Scheuerlein A, Kerth G. Global warming leads to larger bats with a faster life history pace in the long-lived Bechstein's bat (Myotis bechsteinii). Commun Biol 2022; 5:682. [PMID: 35810175 PMCID: PMC9271042 DOI: 10.1038/s42003-022-03611-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/21/2022] [Indexed: 01/22/2023] Open
Abstract
Whether species can cope with environmental change depends considerably on their life history. Bats have long lifespans and low reproductive rates which make them vulnerable to environmental changes. Global warming causes Bechstein’s bats (Myotis bechsteinii) to produce larger females that face a higher mortality risk. Here, we test whether these larger females are able to offset their elevated mortality risk by adopting a faster life history. We analysed an individual-based 25-year dataset from 331 RFID-tagged wild bats and combine genetic pedigrees with data on survival, reproduction and body size. We find that size-dependent fecundity and age at first reproduction drive the observed increase in mortality. Because larger females have an earlier onset of reproduction and shorter generation times, lifetime reproductive success remains remarkably stable across individuals with different body sizes. Our study demonstrates a rapid shift to a faster pace of life in a mammal with a slow life history. Warming summers across a 25-year study are linked to larger body sizes in female bats, leading to a switch from a slow-reproducing, long-lived species to a faster pace of life.
Collapse
Affiliation(s)
- Carolin Mundinger
- Applied Zoology and Nature Conservation, Zoological Institute and Museum, University of Greifswald, Loitzer Straße 26, 17489, Greifswald, Germany.
| | - Toni Fleischer
- Leipzig University Medical Center, Department of Psychiatry and Psychotherapy, Semmelweisstraße 10, 04103, Leipzig, Germany
| | - Alexander Scheuerlein
- Applied Zoology and Nature Conservation, Zoological Institute and Museum, University of Greifswald, Loitzer Straße 26, 17489, Greifswald, Germany
| | - Gerald Kerth
- Applied Zoology and Nature Conservation, Zoological Institute and Museum, University of Greifswald, Loitzer Straße 26, 17489, Greifswald, Germany
| |
Collapse
|
46
|
Brown TJ, Dugdale HL, Hammers M, Komdeur J, Richardson DS. Seychelles warblers with silver spoons: Juvenile body mass is a lifelong predictor of annual survival, but not annual reproduction or senescence. Ecol Evol 2022; 12:e9049. [PMID: 35813920 PMCID: PMC9251861 DOI: 10.1002/ece3.9049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/03/2022] Open
Abstract
The environment experienced during development, and its impact on intrinsic condition, can have lasting outcomes for individual phenotypes and could contribute to variation in adult senescence trajectories. However, the nature of this relationship in wild populations remains uncertain, owing to the difficulties in summarizing natal conditions and in long-term monitoring of individuals from free-roaming long-lived species. Utilizing a closely monitored, closed population of Seychelles warblers (Acrocephalus sechellensis), we determine whether juvenile body mass is associated with natal socioenvironmental factors, specific genetic traits linked to fitness in this system, survival to adulthood, and senescence-related traits. Juveniles born in seasons with higher food availability and into smaller natal groups (i.e., fewer competitors) were heavier. In contrast, there were no associations between juvenile body mass and genetic traits. Furthermore, size-corrected mass-but not separate measures of natal food availability, group size, or genetic traits-was positively associated with survival to adulthood, suggesting juvenile body mass is indicative of natal condition. Heavier juveniles had greater body mass and had higher rates of annual survival as adults, independent of age. In contrast, there was no association between juvenile mass and adult telomere length attrition (a measure of somatic stress) nor annual reproduction. These results indicate that juvenile body mass, while not associated with senescence trajectories, can influence the likelihood of surviving to old age, potentially due to silver-spoon effects. This study shows that measures of intrinsic condition in juveniles can provide important insights into the long-term fitness of individuals in wild populations.
Collapse
Affiliation(s)
- Thomas J. Brown
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Hannah L. Dugdale
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Martijn Hammers
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - David S. Richardson
- School of Biological SciencesUniversity of East AngliaNorwichUK
- Nature SeychellesVictoria, MahéSeychelles
| |
Collapse
|
47
|
Bichet C, Régis C, Gilot‐Fromont E, Cohas A. Variations in immune parameters with age in a wild rodent population and links with survival. Ecol Evol 2022; 12:e9094. [PMID: 35845372 PMCID: PMC9273568 DOI: 10.1002/ece3.9094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Recent findings suggest that immune functions do not unidirectionally deteriorate with age but that a potentially adaptive remodeling, where functions of the immune system get downregulated while others get upregulated with age could also occur. Scarce in wild populations, longitudinal studies are yet necessary to properly understand the patterns and consequences of age variations of the immune system in the wild. Meanwhile, it is challenging to understand if the observed variations in immune parameters with age are due to changes at the within-individual level or to selective (dis)appearance of individuals with peculiar immune phenotypes. Thanks to a long-term and longitudinal monitoring of a wild Alpine marmot population, we aimed to understand within- and between-individual variation in the immune phenotype with age, in order to improve our knowledge about the occurrence and the evolutionary consequences of such age variations in the wild. To do so, we recorded the age-specific leukocyte concentration and leukocyte profile in repeatedly sampled dominant individuals. We then tested whether the potential changes with age were attributable to within-individual variations and/or selective (dis)appearance. Finally, we investigated if the leukocyte concentration and profiles were correlated to the probability of death at a given age. The leukocyte concentration was stable with age, but the relative number of lymphocytes decreased, while the relative number of neutrophils increased, over the course of an individual's life. Moreover, between individuals of the same age, individuals with fewer lymphocytes but more neutrophils were more likely to die. Therefore, selective disappearance seems to play a role in the age variations of the immune parameters in this population. Further investigations linking age variations in immune phenotype to individual fitness are needed to understand whether remodeling of the immune system with age could or could not be adaptive.
Collapse
Affiliation(s)
- Coraline Bichet
- Centre d'Etudes Biologiques de ChizéCNRS‐La Rochelle UniversitéVilliers‐en‐BoisFrance
- Institut für Vogelforschung "Vogelwarte Helgoland" (Institute of Avian Research)WilhelmshavenGermany
- UMR‐CNRS 5558, Laboratoire Biométrie et Biologie ÉvolutiveUniversité Claude Bernard Lyon 1VilleurbanneFrance
| | - Corinne Régis
- UMR‐CNRS 5558, Laboratoire Biométrie et Biologie ÉvolutiveUniversité Claude Bernard Lyon 1VilleurbanneFrance
| | - Emmanuelle Gilot‐Fromont
- UMR‐CNRS 5558, Laboratoire Biométrie et Biologie ÉvolutiveUniversité Claude Bernard Lyon 1VilleurbanneFrance
- Université de Lyon, VetAgro SupMarcy‐l'EtoileFrance
| | - Aurélie Cohas
- UMR‐CNRS 5558, Laboratoire Biométrie et Biologie ÉvolutiveUniversité Claude Bernard Lyon 1VilleurbanneFrance
- Institut Universitaire de France (IUF)ParisFrance
| |
Collapse
|
48
|
Kappeler PM, Pethig L, Prox L, Fichtel C. Reproductive Senescence in Two Lemur Lineages. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.894344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The relationship between age and reproductive performance is highly variable across species. Humans and some cetaceans exhibit an extreme form of reproductive senescence in that female reproduction ceases years or even decades before average life expectancy is reached. However, neither the existence of reproductive senescence in some taxa nor its absence in others is fully understood. Comparative data from other long-lived mammals may contribute to a more comprehensive understanding of the evolution of menopause, but data from wild primates, in particular, are scarce. We therefore investigated age-related female reproductive performance in two wild sympatric populations of Malagasy primates: Verreaux’s sifakas (Propithecus verreauxi) and redfronted lemurs (Eulemur rufifrons), which have a maximal longevity of more than 20 years. Based on 25 years of long-term demographic data, we extracted information on reproductive output of 38 female Verreaux’s sifakas and 42 female redfronted lemurs. We modeled variation in female reproductive performance and interbirth intervals as a function of age, the number of adult females within a group to account for female competition, and rainfall as a proxy for annual variation in food availability. We also compared our results for these two species with data on captive populations of the same two genera that are buffered from fluctuations in environmental variables. Our analyses disclosed statistical evidence for reproductive senescence in three out of four populations (captive Coquerel’s sifakas, wild redfronted lemurs, and captive red lemurs) but not for wild Verreaux’s sifakas. Compared to wild populations, reproductive senescence was therefore not less pronounced in captive animals, even though the latter are buffered from environmental adversities. In wild redfronted lemurs, mothers were more likely to give birth in years with more rainfall, but neither the number of co-resident females, nor annual rainfall did predict variation in the probability of giving birth in wild Verreaux’s sifakas. Thus, our study contributes valuable comparative information on reproductive senescence in a basal group of primates, and offers insights into the modulating effects of environmental, social and phylogenetic factors on patterns and dynamics of age-specific female reproduction.
Collapse
|
49
|
Sex-specific reproductive strategies in wild yellow-bellied marmots (Marmota flaviventer): senescence and genetic variance in annual reproductive success differ between the sexes. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03191-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
50
|
Gerritsma YH, Driessen MMG, Tangili M, de Boer SF, Verhulst S. Experimentally manipulated food availability affects offspring quality but not quantity in zebra finch meso-populations. Oecologia 2022; 199:769-783. [PMID: 35614323 PMCID: PMC9465982 DOI: 10.1007/s00442-022-05183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
Food availability modulates survival, reproduction and thereby population size. In addition to direct effects, food availability has indirect effects through density of conspecifics and predators. We tested the prediction that food availability in isolation affects reproductive success by experimentally manipulating food availability continuously for 3 years in zebra finches (Taeniopygia guttata) housed in outdoor aviaries. To this end, we applied a technique that mimics natural variation in food availability: increasing the effort required per food reward without affecting diet. Lower food availability resulted in a slight delay of start of laying and fewer clutches per season, but did not affect clutch size or number of offspring reared per annum. However, increasing foraging costs substantially reduced offspring growth. Thus, food availability in isolation did not impact the quantity of offspring reared, at the expense of offspring quality. Growth declined strongly with brood size, and we interpret the lack of response with respect to offspring number as an adaptation to environments with low predictability, at the time of egg laying, of food availability during the period of peak food demand, typically weeks later. Manipulated natal brood size of the parents did not affect reproductive success. Individuals that were more successful reproducers were more likely to survive to the next breeding season, as frequently found in natural populations. We conclude that the causal mechanisms underlying associations between food availability and reproductive success in natural conditions may be more complex than usually assumed. Experiments in semi-natural meso-populations can contribute to further unravelling these mechanisms.
Collapse
|