1
|
Su H, Weng S, Luo L, Sun Q, Lin T, Ma H, He Y, Wu J, Wang H, Zhang W, Xu Y. Mycobacterium tuberculosis hijacks host macrophages-derived interleukin 16 to block phagolysosome maturation for enhancing intracellular growth. Emerg Microbes Infect 2024; 13:2322663. [PMID: 38380651 PMCID: PMC10911244 DOI: 10.1080/22221751.2024.2322663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/20/2024] [Indexed: 02/22/2024]
Abstract
The discovery of promising cytokines and clarification of their immunological mechanisms in controlling the intracellular fate of Mycobacterium tuberculosis (Mtb) are necessary to identify effective diagnostic biomarkers and therapeutic targets. To escape immune clearance, Mtb can manipulate and inhibit the normal host process of phagosome maturation. Phagosome maturation arrest by Mtb involves multiple effectors and much remains unknown about this important aspect of Mtb pathogenesis. In this study, we found that interleukin 16 (IL-16) is elevated in the serum samples of Tuberculosis (TB) patients and can serve as a specific target for treatment TB. There was a significant difference in IL-16 levels among active TB, latent TB infection (LTBI), and non-TB patients. This study first revealed that macrophages are the major source of IL-16 production in response to Mtb infection, and elucidated that IL-16 can promote Mtb intracellular survival by inhibiting phagosome maturation and suppressing the expression of Rev-erbα which can inhibit IL-10 secretion. The experiments using zebrafish larvae infected with M. marinum and mice challenged with H37Rv demonstrated that reducing IL-16 levels resulted in less severe pathology and improved survival, respectively. In conclusion, this study provided direct evidence that Mtb hijacks the host macrophages-derived interleukin 16 to enhance intracellular growth. It is suggesting the immunosuppressive role of IL-16 during Mtb infection, supporting IL-16 as a promising therapeutic target.
Collapse
Affiliation(s)
- Haibo Su
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Intensive Care Unit, the Second Affiliated Hospital, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Shufeng Weng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, People’s Republic of China
| | - Liulin Luo
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Qin Sun
- Shanghai Clinical Research Center for Infectious Disease (Tuberculosis), Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Taiyue Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Huixia Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yumo He
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jing Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, People’s Republic of China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Wenhong Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, People’s Republic of China
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Yao F, Zhang R, Lin Q, Xu H, Li W, Ou M, Huang Y, Li G, Xu Y, Song J, Zhang G. Plasma immune profiling combined with machine learning contributes to diagnosis and prognosis of active pulmonary tuberculosis. Emerg Microbes Infect 2024; 13:2370399. [PMID: 38888093 PMCID: PMC11225635 DOI: 10.1080/22221751.2024.2370399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/16/2024] [Indexed: 06/20/2024]
Abstract
Tuberculosis (TB) remains one of the deadliest chronic infectious diseases globally. Early diagnosis not only prevents the spread of TB but also ensures effective treatment. However, the absence of non-sputum-based diagnostic tests often leads to delayed TB diagnoses. Inflammation is a hallmark of TB, we aimed to identify biomarkers associated with TB based on immune profiling. We collected 222 plasma samples from healthy controls (HCs), disease controls (non-TB pneumonia; PN), patients with TB (TB), and cured TB cases (RxTB). A high-throughput protein detection technology, multiplex proximity extension assays (PEA), was applied to measure the levels of 92 immune proteins. Based on differential analysis and the correlation with TB severity, we selected 9 biomarkers (CXCL9, PDL1, CDCP1, CCL28, CCL23, CCL19, MMP1, IFNγ and TRANCE) and explored their diagnostic capabilities through 7 machine learning methods. We identified combination of these 9 biomarkers that distinguish TB cases from controls with an area under the receiver operating characteristic curve (AUROC) of 0.89-0.99, with a sensitivity of 82-93% at a specificity of 88-92%. Moreover, the model excels in distinguishing severe TB cases, achieving AUROC exceeding 0.95, sensitivities and specificities exceeding 93.3%. In summary, utilizing targeted proteomics and machine learning, we identified a 9 plasma proteins signature that demonstrates significant potential for accurate TB diagnosis and clinical outcome prediction.
Collapse
Affiliation(s)
- Fusheng Yao
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Ruiqi Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Qiao Lin
- The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, People’s Republic of China
| | - Hui Xu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Wei Li
- Zhuhai ICXIVD Biotechnology Co., Ltd, iCarbonX, Zhuhai, People’s Republic of China
| | - Min Ou
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Yiting Huang
- Zhuhai ICXIVD Biotechnology Co., Ltd, iCarbonX, Zhuhai, People’s Republic of China
| | - Guobao Li
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Yuzhong Xu
- The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, People’s Republic of China
| | - Jiaping Song
- Zhuhai ICXIVD Biotechnology Co., Ltd, iCarbonX, Zhuhai, People’s Republic of China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| |
Collapse
|
3
|
Guo S, Ouyang J, Hu Z, Cao T, Huang C, Mou J, Gu X, Liu J. Intranasal vaccination with engineered BCG expressing CCL2 induces a stronger immune barrier against Mycobacterium tuberculosis than BCG. Mol Ther 2024; 32:3990-4005. [PMID: 39295146 PMCID: PMC11573603 DOI: 10.1016/j.ymthe.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/14/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024] Open
Abstract
Intradermal Mycobacterium bovis Bacillus Calmette-Guérin (BCG) vaccination is currently the only licensed strategy for preventing tuberculosis (TB). It provides limited protection against pulmonary TB. To enhance the efficacy of BCG, we developed a recombinant BCG expressing exogenous monocyte chemoattractant CC chemokine ligand 2 (CCL2) called rBCG-CCL2. Co-culturing macrophages with rBCG-CCL2 enhances their abilities in migration, phagocytosis, and effector molecule expression. In the mouse model, intranasal vaccination with rBCG-CCL2 induced greater immune cell infiltration and a more extensive innate immune response in lung compared to vaccination with parental BCG, as determined by multiparameter flow cytometry, transcriptomic analysis, and pathological assessments. Moreover, rBCG-CCL2 induced a high frequency of activated macrophages and antigen-specific T helper 1 (Th1) and Th17 T cells in lungs. The enhanced immune microenvironment responded more effectively to intravenous challenge with Mycobacterium tuberculosis (Mtb) H37Ra, leading to significant reductions in H37Ra burden and pathological damage to the lungs and spleen. Intranasal rBCG-CCL2-vaccinated mice rapidly initiated pro-inflammatory Th1 cytokine release and reduced pathological damage to the lungs and spleen during the early stage of H37Ra challenge. The finding that co-expression of CCL2 synergistically enhances the immune barrier induced by BCG provides a model for defining immune correlates and mechanisms of vaccine-elicited protection against TB.
Collapse
Affiliation(s)
- Shaohua Guo
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jiangshan Ouyang
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Zhiming Hu
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Ting Cao
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Chunxu Huang
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jun Mou
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Xinxia Gu
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jie Liu
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China.
| |
Collapse
|
4
|
Yuk JM, Kim JK, Kim IS, Jo EK. TNF in Human Tuberculosis: A Double-Edged Sword. Immune Netw 2024; 24:e4. [PMID: 38455468 PMCID: PMC10917576 DOI: 10.4110/in.2024.24.e4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 03/09/2024] Open
Abstract
TNF, a pleiotropic proinflammatory cytokine, is important for protective immunity and immunopathology during Mycobacterium tuberculosis (Mtb) infection, which causes tuberculosis (TB) in humans. TNF is produced primarily by phagocytes in the lungs during the early stages of Mtb infection and performs diverse physiological and pathological functions by binding to its receptors in a context-dependent manner. TNF is essential for granuloma formation, chronic infection prevention, and macrophage recruitment to and activation at the site of infection. In animal models, TNF, in cooperation with chemokines, contributes to the initiation, maintenance, and clearance of mycobacteria in granulomas. Although anti-TNF therapy is effective against immune diseases such as rheumatoid arthritis, it carries the risk of reactivating TB. Furthermore, TNF-associated inflammation contributes to cachexia in patients with TB. This review focuses on the multifaceted role of TNF in the pathogenesis and prevention of TB and underscores the importance of investigating the functions of TNF and its receptors in the establishment of protective immunity against and in the pathology of TB. Such investigations will facilitate the development of therapeutic strategies that target TNF signaling, which makes beneficial and detrimental contributions to the pathogenesis of TB.
Collapse
Affiliation(s)
- Jae-Min Yuk
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
- Department of Infection Biology, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu 42601, Korea
| | - In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea
| |
Collapse
|
5
|
Kumar C, Shrivastava K, Singh A, Chauhan V, Giri A, Gupta S, Sharma NK, Bose M, Sharma S, Varma-Basil M. Expression of mammalian cell entry genes in clinical isolates of M. tuberculosis and the cell entry potential and immunological reactivity of the Rv0590A protein. Med Microbiol Immunol 2023; 212:407-419. [PMID: 37787822 DOI: 10.1007/s00430-023-00781-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/31/2023] [Indexed: 10/04/2023]
Abstract
Mammalian cell entry (mce) operons play a vital role in cell invasion and survival of M. tuberculosis. Of the mce genes, the function of Rv0590A is still unknown. The present study was performed to investigate the function and immunogenic properties of the protein Rv0590A. Human leukemia monocytic cell line (THP-1) derived macrophages were infected with M. tuberculosis H37Rv at 3, 6, and 24 h of infection. The maximum colony forming units (CFU) were observed at 6 h (p < 0.005), followed by 3 h after infection. M. tuberculosis H37Rv and clinical isolates representative of Delhi/CAS, EAI, Beijing, Haarlem and Euro-American-superlineage were included in the study for expression analysis of mce1A, mce2A, mce3A, mce4A, and Rv0590A genes. Maximum upregulation of all mce genes was observed at 3 h of infection. All the five clinical isolates and H37Rv upregulated Rv0590A at various time points. Macrophage infection with M. tuberculosis H37Rv-overexpressing Rv0590A gene showed higher intracellular CFU as compared to that of wild-type H37Rv. Further, purified Rv0590A protein stimulated the production of TNFα, IFNγ, and IL-10 in macrophages. Thus, Rv0590A was found to be involved in cell invasion and showed good immunological response.
Collapse
Affiliation(s)
- Chanchal Kumar
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
| | - Kamal Shrivastava
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
| | - Anupriya Singh
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
| | - Varsha Chauhan
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
- Maharshi Dayanand University, Rohtak, Haryana, India
| | - Astha Giri
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
- Deshbandhu College, University of Delhi, Delhi, India
| | - Shraddha Gupta
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
| | - Naresh Kumar Sharma
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
- University of Manitoba, Winnipeg, MB, Canada
| | - Mridula Bose
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
| | - Sadhna Sharma
- Department of Zoology, Miranda House, University of Delhi, Delhi, 110007, India
| | - Mandira Varma-Basil
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
6
|
Hashimoto T, Yoshida K, Yokoyama Y, Hashimoto N, Kaneshiro K, Yoshikawa T, Tateishi K, Terashima Y, Matsui K, Hashiramoto A. Tocilizumab suppresses NF-kappa B activation via toll-like receptor 9 signaling by reducing cell-free DNA in rheumatoid arthritis. Clin Exp Immunol 2023; 213:209-220. [PMID: 37279559 PMCID: PMC10361738 DOI: 10.1093/cei/uxad064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023] Open
Abstract
Endogenous DNA is released into the bloodstream as cell-free DNA (cfDNA) following cell death and is associated with various pathological conditions. However, their association with therapeutic drugs against rheumatoid arthritis (RA) remains unknown. Therefore, we investigated the significance of cfDNA in RA treated with tocilizumab and tumour necrosis factor inhibitor (TNF-I). Biological DMARDs (bDMARDs), including tocilizumab and TNF-I, were administered to 77 and 59 RA patients, respectively. Plasma cfDNA levels were measured at weeks 0, 4, and 12 by quantitative polymerase chain reaction. Disease activity was evaluated at the same time point using DAS28ESR. cfDNA levels from RA synovial cells treated with tocilizumab or etanercept for 24 h were measured. Human toll-like receptor 9 (hTLR9)-expressing HEK293 cells, which release secreted embryonic alkaline phosphatase (SEAP) upon NF-κB activation, were stimulated by cfDNA from RA patients, and subsequently, SEAP levels were determined. NF-κB translocation was evaluated by immunofluorescence staining with or without tocilizumab. The DAS28ESR significantly improved in both bDMARD groups at week 12. However, plasma cfDNA levels significantly decreased in the tocilizumab group at week 12 compared to that in week 0. cfDNA levels correlated with DAS28ESR in biological treatment-naïve patients administered tocilizumab. cfDNA levels in synovial cells were significantly suppressed by tocilizumab treatment and unaltered with etanercept. HEK293 cells released SEAP upon cfDNA stimulation, and the observed NF-κB nuclear translocation was suppressed by tocilizumab. Tocilizumab suppressed inflammation via the TLR9 pathway by decreasing cfDNA levels. Regulation of cfDNA may be a therapeutic target for RA.
Collapse
Affiliation(s)
- Teppei Hashimoto
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Kohsuke Yoshida
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yuichi Yokoyama
- Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Naonori Hashimoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Kenta Kaneshiro
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Takahiro Yoshikawa
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Koji Tateishi
- Department of Orthopedics, Konan Kakogawa Hospital, Kakogawa, Japan
| | | | - Kiyoshi Matsui
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Akira Hashiramoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
7
|
Cleverley TL, Peddineni S, Guarner J, Cingolani F, Garcia PK, Koehler H, Mocarski ES, Kalman D. The host-directed therapeutic imatinib mesylate accelerates immune responses to Mycobacterium marinum infection and limits pathology associated with granulomas. PLoS Pathog 2023; 19:e1011387. [PMID: 37200402 PMCID: PMC10231790 DOI: 10.1371/journal.ppat.1011387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/31/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Abstract
Infections caused by members of the mycobacterium tuberculosis complex [MTC] and nontuberculous mycobacteria [NTM] can induce widespread morbidity and mortality in people. Mycobacterial infections cause both a delayed immune response, which limits rate of bacterial clearance, and formation of granulomas, which contain bacterial spread, but also contribute to lung damage, fibrosis, and morbidity. Granulomas also limit access of antibiotics to bacteria, which may facilitate development of resistance. Bacteria resistant to some or all antibiotics cause significant morbidity and mortality, and newly developed antibiotics readily engender resistance, highlighting the need for new therapeutic approaches. Imatinib mesylate, a cancer drug used to treat chronic myelogenous leukemia [CML] that targets Abl and related tyrosine kinases, is a possible host-directed therapeutic [HDT] for mycobacterial infections, including those causing TB. Here, we use the murine Mycobacterium marinum [Mm] infection model, which induces granulomatous tail lesions. Based on histological measurements, imatinib reduces both lesion size and inflammation of surrounding tissue. Transcriptomic analysis of tail lesions indicates that imatinib induces gene signatures indicative of immune activation and regulation at early time points post infection that resemble those seen at later ones, suggesting that imatinib accelerates but does not substantially alter anti-mycobacterial immune responses. Imatinib likewise induces signatures associated with cell death and promotes survival of bone marrow-derived macrophages [BMDMs] in culture following infection with Mm. Notably, the capacity of imatinib to limit formation and growth of granulomas in vivo and to promote survival of BMDMs in vitro depends upon caspase 8, a key regulator of cell survival and death. These data provide evidence for the utility of imatinib as an HDT for mycobacterial infections in accelerating and regulating immune responses, and limiting pathology associated with granulomas, which may mitigate post-treatment morbidity.
Collapse
Affiliation(s)
- Tesia L. Cleverley
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Immunology and Molecular Pathogenesis Graduate Program, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Siri Peddineni
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jeannette Guarner
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Francesca Cingolani
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Pamela K. Garcia
- Immunology and Molecular Pathogenesis Graduate Program, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Heather Koehler
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Edward S. Mocarski
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Daniel Kalman
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
8
|
Chen YM, Liu PY, Tang KT, Liu HJ, Liao TL. TWEAK-Fn14 Axis Induces Calcium-Associated Autophagy and Cell Death To Control Mycobacterial Survival in Macrophages. Microbiol Spectr 2022; 10:e0317222. [PMID: 36321903 PMCID: PMC9769850 DOI: 10.1128/spectrum.03172-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Autophagy is a natural defense mechanism that protects the host against pathogens. We previously demonstrated that mycobacterial infection upregulated tumor necrosis factor-like weak inducer of apoptosis (TWEAK) to promote autophagy and mycobacterial autophagosome maturation through activation of AMP-activated protein kinase (AMPK). Fibroblast growth factor-inducible 14 (Fn14) is the receptor of TWEAK. But the role of Fn14 in mycobacterial infection remains elusive. Herein, we observed increased expression of Fn14 in peripheral blood mononuclear cells of active tuberculosis (TB) patients. Downregulation of cellular Fn14 enhanced mycobacterial survival in macrophages. Conversely, Fn14 overexpression inhibited mycobacterial growth, suggesting that Fn14 can inhibit mycobacterial infection. The in vitro results revealed that TWEAK-promoted mycobacterial phagosome maturation is Fn14-dependent. We demonstrated that TWEAK-Fn14 signaling promotes oxidative stress to enhance the expression of stromal interaction molecule 1 (STIM1) and its activation of the Ca2+ channel ORAI1. Elevated calcium influx stimulated the activation of CaMCCK2 (calcium/calmodulin-dependent protein kinase kinase 2) and its downstream effector AMPK, thus inducing autophagy in early infection. Persistently TWEAK-Fn14 signaling caused cell death in late infection by reducing mitochondrial membrane potential, leading to mitochondrial ROS accumulation, and activating cell death-associated proteins. Genetic Fn14 deficiency or TWEAK blockers decreased oxidative stress-induced calcium influx, thus suppressing autophagy and cell death in mycobacteria-infected macrophages, and resulting in elevated mycobacterial survival. We propose that the TWEAK-Fn14 axis and calcium influx could be manipulated for anti-TB therapeutic purposes. Our results offer a new molecular machinery to understand the association between the TWEAK-Fn14 axis, calcium influx, and mycobacterial infection. IMPORTANCE Tuberculosis remains a major cause of morbidity and mortality worldwide. We previously demonstrated a relationship between TWEAK and activation of the autophagic machinery, which promotes anti-mycobacterial immunity. The TWEAK-Fn14 axis is multi-functional and involved in the pathogenesis of many diseases, thus blockade of TWEAK-Fn14 axis has been considered as a potential therapeutic target. Here, we demonstrated that the TWEAK-Fn14 axis plays a novel role in anti-mycobacterial infection by regulating calcium-associated autophagy. Persistently, TWEAK-Fn14 signaling caused cell death in late infection by reducing mitochondrial membrane potential, leading to mitochondrial ROS accumulation, and activating cell death-associated proteins. TWEAK blocker or Fn14 deficiency could suppress oxidative stress and calcium-associated autophagy, resulting in elevated mycobacterial survival. We propose that the TWEAK-Fn14 axis and calcium influx could be manipulated for anti-TB therapeutic purposes. This study offers a new molecular machinery to understand the association between the TWEAK-Fn14 axis, calcium influx, and mycobacterial infection.
Collapse
Affiliation(s)
- Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
| | - Po-Yu Liu
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Division of Infection, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
| | - Kuo-Tung Tang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
| | - Hung-Jen Liu
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan, Republic of China
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
| |
Collapse
|
9
|
Nisa A, Kipper FC, Panigrahy D, Tiwari S, Kupz A, Subbian S. Different modalities of host cell death and their impact on Mycobacterium tuberculosis infection. Am J Physiol Cell Physiol 2022; 323:C1444-C1474. [PMID: 36189975 PMCID: PMC9662802 DOI: 10.1152/ajpcell.00246.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 11/22/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is the pathogen that causes tuberculosis (TB), a leading infectious disease of humans worldwide. One of the main histopathological hallmarks of TB is the formation of granulomas comprised of elaborately organized aggregates of immune cells containing the pathogen. Dissemination of Mtb from infected cells in the granulomas due to host and mycobacterial factors induces multiple cell death modalities in infected cells. Based on molecular mechanism, morphological characteristics, and signal dependency, there are two main categories of cell death: programmed and nonprogrammed. Programmed cell death (PCD), such as apoptosis and autophagy, is associated with a protective response to Mtb by keeping the bacteria encased within dead macrophages that can be readily phagocytosed by arriving in uninfected or neighboring cells. In contrast, non-PCD necrotic cell death favors the pathogen, resulting in bacterial release into the extracellular environment. Multiple types of cell death in the PCD category, including pyroptosis, necroptosis, ferroptosis, ETosis, parthanatos, and PANoptosis, may be involved in Mtb infection. Since PCD pathways are essential for host immunity to Mtb, therapeutic compounds targeting cell death signaling pathways have been experimentally tested for TB treatment. This review summarizes different modalities of Mtb-mediated host cell deaths, the molecular mechanisms underpinning host cell death during Mtb infection, and its potential implications for host immunity. In addition, targeting host cell death pathways as potential therapeutic and preventive approaches against Mtb infection is also discussed.
Collapse
Affiliation(s)
- Annuurun Nisa
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Franciele C Kipper
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Sangeeta Tiwari
- Department of Biological Sciences, Border Biomedical Research Center (BBRC), University of Texas, El Paso, Texas
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Townsville, Queensland, Australia
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| |
Collapse
|
10
|
Pagán AJ, Lee LJ, Edwards-Hicks J, Moens CB, Tobin DM, Busch-Nentwich EM, Pearce EL, Ramakrishnan L. mTOR-regulated mitochondrial metabolism limits mycobacterium-induced cytotoxicity. Cell 2022; 185:3720-3738.e13. [PMID: 36103894 PMCID: PMC9596383 DOI: 10.1016/j.cell.2022.08.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/17/2022] [Accepted: 08/16/2022] [Indexed: 02/01/2023]
Abstract
Necrosis of macrophages in the granuloma, the hallmark immunological structure of tuberculosis, is a major pathogenic event that increases host susceptibility. Through a zebrafish forward genetic screen, we identified the mTOR kinase, a master regulator of metabolism, as an early host resistance factor in tuberculosis. We found that mTOR complex 1 protects macrophages from mycobacterium-induced death by enabling infection-induced increases in mitochondrial energy metabolism fueled by glycolysis. These metabolic adaptations are required to prevent mitochondrial damage and death caused by the secreted mycobacterial virulence determinant ESAT-6. Thus, the host can effectively counter this early critical mycobacterial virulence mechanism simply by regulating energy metabolism, thereby allowing pathogen-specific immune mechanisms time to develop. Our findings may explain why Mycobacterium tuberculosis, albeit humanity's most lethal pathogen, is successful in only a minority of infected individuals.
Collapse
Affiliation(s)
- Antonio J. Pagán
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK,MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK,Department of Microbiology, University of Washington, Seattle, WA 98195, USA,Corresponding author
| | - Lauren J. Lee
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK,MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Joy Edwards-Hicks
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Cecilia B. Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - David M. Tobin
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Elisabeth M. Busch-Nentwich
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Erika L. Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Lalita Ramakrishnan
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK,MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK,Department of Microbiology, University of Washington, Seattle, WA 98195, USA,Corresponding author
| |
Collapse
|
11
|
Arish M, Naz F. Sphingosine-1-phosphate receptors 2 and 3 reprogram resting human macrophages into M1 phenotype following mycobacteria infection. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:110-117. [PMID: 35676924 PMCID: PMC9168381 DOI: 10.1016/j.crimmu.2022.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/14/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
Abstract
Mycobacteria tuberculosis (M.tb) the causative agent for tuberculosis has been accredited for a high rate of morbidity and mortality worldwide. The rise in MDR and XDR cases has further created new obstacles in achieving the "End TB Strategy", which is aimed for 2035. In this article, we have demonstrated the potential of sphingosine-1-phosphate (S1P) analogs in providing an anti-mycobacterial effector response by altering macrophage polarity into M1. Among S1PR1 and S1PR3 analogs, S1PR2 analogs proficiently favor selective polarization of infected human macrophages into M1 phenotypes, marked by increased expression of M1 markers and decreased M2 markers. Furthermore, S1PR1-3 analogs treated macrophages were also able to decrease the secretion of anti-inflammatory cytokine IL-10 and can induce NO secretion in infected macrophages. Lastly, only S1PR2-3 analogs were able to restrict the growth of mycobacteria in human macrophages. Taken together our study reflects the potential of S1PR2-3 analogs in providing host defenses following mycobacterial infection by favoring M1 macrophage polarization.
Collapse
Affiliation(s)
- Mohd Arish
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Farha Naz
- Centre of Interdisciplinary Research in Basic Science (CIRBSc), Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
12
|
Samtsov AV, Bakulev AL, Khairutdinov VR, Kokhan MM, Korotaeva TV, Minullin IK, Vylegzhanina OA, Dubenskiy VV, Khalilov BV, Khotko AA, Zykova OS, Chumachenko IV, Lukyanov AM, Artemeva AV, Pukhtinskaia PP. Long-term data on the proposed adalimumab biosimilar BCD-057 in patients with moderate to severe psoriasis: A randomized controlled trial. PLoS One 2022; 17:e0263214. [PMID: 35130291 PMCID: PMC8820628 DOI: 10.1371/journal.pone.0263214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/26/2021] [Indexed: 12/28/2022] Open
Abstract
Introduction
The objective of this study was to demonstrate that BCD-057 is similar to innovator adalimumab (iADA) in terms of efficacy, safety, and pharmacokinetics in steady state in the target population of patients with moderate to severe plaque psoriasis (NCT02762955).
Methods
Patients were randomized in 1:1 ratio to receive 80 mg of BCD-057 or iADA at week 0 and 40 mg thereafter every other week from week 1. At week 24 patients from iADA group were re-randomized (1:1) to continue iADA or to be switched to BCD-057. The primary efficacy endpoint was 75% improvement in Psoriasis Area and Severity Index from baseline (PASI 75), secondary endpoints included PASI percent improvement and relative change in affected Body Surface Area (BSA) from baseline at weeks 16, 24, 33, and 55. Safety was assessed through monitoring of adverse events (AEs) and antidrug antibodies. Pharmacokinetics was evaluated at steady state.
Results
Overall, 346 adult patients were included in the study (174/172 patients in BCD-057/iADA arms, respectively). At week 16 PASI 75 was achieved by 60.34% and 63.37% of patients in BCD-057 and iADA arms, respectively (p = 0.5622). Bounds of the calculated 95% confidence interval (CI) for the difference between PASI 75 responses in arms [-13.26%; 7.2%] fall within the equivalence margin [-15% to 15%] demonstrating equivalent efficacy of BCD-057 and iADA. At week 55 81.61%, 85.56%, and 80.49% of patients in BCD-057, iADA and iADA/BCD-057 arms achieved PASI 75. Comparison of the secondary endpoints did not show significant differences between arms. A comparable pharmacokinetics was shown at steady state. Safety profiles and proportions of patients with antidrug antibodies were similar between arms. The switch from the iADA to BCD-057 did not affect the immunogenicity profile.
Conclusion
Obtained data demonstrate that BCD-057 and iADA are highly similar in clinical efficacy, pharmacokinetics, safety, and immunogenicity in patients with moderate to severe plaque psoriasis.
Collapse
Affiliation(s)
- Alexey V. Samtsov
- Department of Dermatology, S.M. Kirov Military Medical Academy, Saint-Petersburg, Russia
| | - Andrey L. Bakulev
- Department of Dermatology, V.I. Razumovskiy Saratov State Medical University, Saratov, Russia
| | | | - Muza M. Kokhan
- Scientific Clinical Department, Ural Research Institute of Dermatovenereology and Immunopathology, Yekaterinburg, Russia
| | - Tat’yana V. Korotaeva
- Spondyloarthritis and Psoriatic Arthritis Laboratory, V.A. Nasonova Research Institute for Rheumatology, Moscow, Russia
| | - Iskander K. Minullin
- Head of Institution, Republican Clinical Dermatology and Venereology Clinic, Kazan, Russia
| | - Olga A. Vylegzhanina
- Diagnostic Center, Siberian Regional Medical Center of the Federal Medical and Biological Agency, Novosibirsk, Russia
| | | | - Bulat V. Khalilov
- Dermatovenerology Department, Kazan State Medical University, Kazan, Russia
| | - Alkes A. Khotko
- Department of Dermatology, Clinical Dermatology and Venereology Clinic of the Ministry of Healthcare of Krasnodar Region, Krasnodar, Russia
| | - Olga S. Zykova
- Department of Dermatology, Vitebsk Regional Clinical Center for Dermatology, Venereology and Cosmetology, Vitebsk, Republic of Belarus
| | - Irina V. Chumachenko
- Department of Dermatology, Mogilev Regional Dermatology and Venereology Clinic, Mogilev, Republic of Belarus
| | - Alexander M. Lukyanov
- Department of Dermatology, City Clinical Dermatology and Venereology Clinic, Minsk, Republic of Belarus
| | | | | |
Collapse
|
13
|
Sontyana B, Shrivastava R, Battu S, Ghosh S, Mukhopadhyay S. Phagosome maturation and modulation of macrophage effector function by intracellular pathogens: target for therapeutics. Future Microbiol 2021; 17:59-76. [PMID: 34877879 DOI: 10.2217/fmb-2021-0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Macrophages are important cells that regulate various innate functions. Macrophages after engulfment of pathogens proceed for phagosome maturation and finally fuse with lysosomes to kill pathogens. Although pathogen degradation is one of the important functions of phagosomes, various immune-effector functions of macrophages are also dependent on the phagosome maturation process. This review discusses signaling processes regulating phagosome maturation as well as various effector functions of macrophages such as apoptosis, antigen presentation, autophagy and inflammasome that are dependent on the phagosome maturation process. It also discusses strategies adopted by various intracellular pathogens to counteract these functions to evade intracellular destruction mechanisms. These studies may give direction for the development of new therapeutics to control various intracellular infections.
Collapse
Affiliation(s)
- Brahmaji Sontyana
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500039, Telangana, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Rohini Shrivastava
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500039, Telangana, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srikanth Battu
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500039, Telangana, India
| | - Sudip Ghosh
- Molecular Biology Unit, ICMR-National Institute of Nutrition, Jamai Osmania PO, Hyderabad, 500007, Telangana, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500039, Telangana, India
| |
Collapse
|
14
|
Kalra R, Tiwari D, Dkhar HK, Bhagyaraj E, Kumar R, Bhardwaj A, Gupta P. Host factors subverted by Mycobacterium tuberculosis: Potential targets for host directed therapy. Int Rev Immunol 2021; 42:43-70. [PMID: 34678117 DOI: 10.1080/08830185.2021.1990277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Despite new approaches in the diagnosis and treatment of tuberculosis (TB), it continues to be a major health burden. Several immunotherapies that potentiate the immune response have come up as adjuncts to drug therapies against drug resistant TB strains; however, there needs to be an urgent appraisal of host specific drug targets for improving their clinical management and to curtail disease progression. Presently, various host directed therapies (HDTs) exist (repurposed drugs, nutraceuticals, monoclonal antibodies and immunomodulatory agents), but these mostly address molecules that combat disease progression. AREAS COVERED The current review discusses major Mycobacterium tuberculosis (M. tuberculosis) survival paradigms inside the host and presents a plethora of host targets subverted by M. tuberculosis which can be further explored for future HDTs. The host factors unique to M. tuberculosis infection (in humans) have also been identified through an in-silico interaction mapping. EXPERT OPINION HDTs could become the next-generation adjunct therapies in order to counter antimicrobial resistance and virulence, as well as to reduce the duration of existing TB treatments. However, current scientific efforts are largely directed toward combatants rather than host molecules co-opted by M. tuberculosis for its survival. This might drive the immune system to a hyper-inflammatory condition; therefore, we emphasize that host factors subverted by M. tuberculosis, and their subsequent neutralization, must be considered for development of better HDTs.
Collapse
Affiliation(s)
- Rashi Kalra
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Drishti Tiwari
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Hedwin Kitdorlang Dkhar
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Ella Bhagyaraj
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Rakesh Kumar
- Bioinformatics Center, CSIR-Institute of Microbial Technology, Chandigarh-160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Anshu Bhardwaj
- Bioinformatics Center, CSIR-Institute of Microbial Technology, Chandigarh-160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Pawan Gupta
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
15
|
Handley G, Hand J. Adverse Effects of Immunosuppression: Infections. Handb Exp Pharmacol 2021; 272:287-314. [PMID: 34671868 DOI: 10.1007/164_2021_550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Immunosuppressive therapies are currently indicated for a wide range of diseases. As new agents emerge and indications evolve the landscape grows increasingly complex. Therapies can target pathologic immune system over-activation in rheumatologic or autoimmune disease, or conditioning and graft versus host disease (GVHD) prophylactic regimens may eliminate or inhibit host immune function to improve graft survival and risk of complication in solid organ transplantation (SOT) or hematopoietic stem cell transplantation (HSCT). With immunosuppressive therapy, infections occur. Complex disease states, host factors, and concomitant therapies contribute to a "net state" of immunosuppression that must be considered and may confound perceived increased infection risks in patients receiving treatment.
Collapse
Affiliation(s)
- Guy Handley
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jonathan Hand
- Department of Infectious Diseases, Ochsner Health, The University of Queensland School of Medicine, Ochsner Clinical School, New Orleans, LA, USA.
| |
Collapse
|
16
|
Banerjee R, Ali RAR, Wei SC, Adsul S. Biologics for the Management of Inflammatory Bowel Disease: A Review in Tuberculosis-Endemic Countries. Gut Liver 2021; 14:685-698. [PMID: 33191310 PMCID: PMC7667923 DOI: 10.5009/gnl19209] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/01/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022] Open
Abstract
The advent of biologics and biologic therapy has transformed the management of inflammatory bowel disease (IBD) with enhanced early and adequate responses to treatment, fewer hospitalizations, a reduced need for surgery, and unprecedented outcomes including complete mucosal and histologic healing. However, an important issue with the use of anti-tumor necrosis factor (anti-TNF) agents in IBD is the increased risk of tuberculosis (TB). This is compounded by the diagnostic dilemma when differentiating between Crohn’s disease and gastrointestinal TB, and the potentially serious consequences of initiating an incorrect treatment in the case of misdiagnosis. The interplay between IBD and TB is most relevant in Asia, where more than 60% of the 10.4 million new TB cases in 2016 were reported. A number of studies have reported an increased risk of TB with anti-TNF agents, including in patients who had tested negative for TB prior to treatment initiation. The limited evidence currently available regarding adhesion molecule antagonists such as vedolizumab suggests a comparatively lower risk of TB, thus making them a promising option for IBD management in TB-endemic regions. This comprehensive review examines the available literature on the risk of TB with the use of biologics in the TB-endemic regions of Asia, focusing on the diagnostic dilemma, the risk of reactivation, and the optimized management algorithms for latent and active disease.
Collapse
Affiliation(s)
- Rupa Banerjee
- IBD Center, Asian Institute of Gastroenterology, Hyderabad, India
| | - Raja Affendi Raja Ali
- Gastroenterology Unit, Department of Medicine, Faculty of Medicine, The National University of Malaysia, Kuala Lumpur, Malaysia
| | - Shu Chen Wei
- Department of Internal Medicine, IBD Clinical and Basic Research Integrated Center, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shashi Adsul
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| |
Collapse
|
17
|
Yang QY, Liu YJ, Xu Y, Zhang L, Wang CD. Monitoring frequency of interferon gamma release assay for tuberculosis surveillance following infliximab therapy in patients with Crohn's disease. J Dig Dis 2021; 22:473-480. [PMID: 34240823 DOI: 10.1111/1751-2980.13032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To characterize the pattern of positive conversion of interferon gamma release assay (IGRA) in patients with Crohn's disease (CD) during infliximab therapy in China, which has a high burden of tuberculosis. METHODS Eligible patients with CD who received serial IGRA screening during infliximab therapy from January 2015 to March 2020 were retrospectively included. The positive conversion rate of IGRA and the risk of subsequent tuberculosis of the patients were analyzed. RESULTS A total of 128 patients with CD were included, and the median time from the initiation of IFX treatment to positive conversion or the last follow-up test of IGRA was 43.6 weeks. At baseline 3.9% of the patients were positive for IGRA and received prophylactic anti-tuberculosis treatment. In the other 123 patients with negative IGRA at baseline, 6.5% had IGRA positive conversion during infliximab treatment, and one (12.5%) who was exposed to Mycobacterium tuberculosis was diagnosed as having active tuberculosis. The conversion rate at 40 weeks, 2 years and 3 years after treatment were 10.0% (6/60), 2.2% (1/46) and 5.9% (1/17), respectively. Age, sex, history of smoking and alcohol consumption, disease severity (Crohn's disease activity index score) and immunosuppressive therapy were not significantly associated with latent tuberculosis test conversion. CONCLUSIONS Positive conversion of IGRA occurs early during treatment with infliximab for CD and the monitoring frequency of IGRA should be appropriately increased at the early stage of treatment. Physicians should pay attention to patient's history of tuberculosis exposure and carry out surveillance in a timely fashion.
Collapse
Affiliation(s)
- Qin Yu Yang
- Department of Gastroenterology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yi Juan Liu
- Department of Gastroenterology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ye Xu
- Department of Gastroenterology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Lin Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Cheng Dang Wang
- Department of Gastroenterology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
18
|
Boumaza A, Mezouar S, Bardou M, Raoult D, Mège JL, Desnues B. Tumor Necrosis Factor Inhibitors Exacerbate Whipple's Disease by Reprogramming Macrophage and Inducing Apoptosis. Front Immunol 2021; 12:667357. [PMID: 34093562 PMCID: PMC8173622 DOI: 10.3389/fimmu.2021.667357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022] Open
Abstract
Tropheryma whipplei is the agent of Whipple’s disease, a rare systemic disease characterized by macrophage infiltration of the intestinal mucosa. The disease first manifests as arthralgia and/or arthropathy that usually precede the diagnosis by years, and which may push clinicians to prescribe Tumor necrosis factor inhibitors (TNFI) to treat unexplained arthralgia. However, such therapies have been associated with exacerbation of subclinical undiagnosed Whipple’s disease. The objective of this study was to delineate the biological basis of disease exacerbation. We found that etanercept, adalimumab or certolizumab treatment of monocyte-derived macrophages from healthy subjects significantly increased bacterial replication in vitro without affecting uptake. Interestingly, this effect was associated with macrophage repolarization and increased rate of apoptosis. Further analysis revealed that in patients for whom Whipple’s disease diagnosis was made while under TNFI therapy, apoptosis was increased in duodenal tissue specimens as compared with control Whipple’s disease patients who never received TNFI prior diagnosis. In addition, IFN-γ expression was increased in duodenal biopsy specimen and circulating levels of IFN-γ were higher in patients for whom Whipple’s disease diagnosis was made while under TNFI therapy. Taken together, our findings establish that TNFI aggravate/exacerbate latent or subclinical undiagnosed Whipple’s disease by promoting a strong inflammatory response and apoptosis and confirm that patients may be screened for T. whipplei prior to introduction of TNFI therapy.
Collapse
Affiliation(s)
- Asma Boumaza
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Soraya Mezouar
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Matthieu Bardou
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Jean-Louis Mège
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Benoit Desnues
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
19
|
Namdev P, Patel S, Sparling B, Garg A. Monocytic-Myeloid Derived Suppressor Cells of HIV-Infected Individuals With Viral Suppression Exhibit Suppressed Innate Immunity to Mycobacterium tuberculosis. Front Immunol 2021; 12:647019. [PMID: 33995365 PMCID: PMC8113814 DOI: 10.3389/fimmu.2021.647019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/06/2021] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis can occur during any stage of Human Immunodeficiency virus 1 (HIV) -infection including times when CD4+ T cell numbers have reconstituted and viral replication suppressed. We have previously shown that CD11b+CD33+CD14+HLA-DR-/lo monocytic myeloid-derived suppressor cells (MDSC) persist in HIV-infected individuals on combined anti-retroviral therapy (cART) and with virologic suppression. The response of MDSC to Mycobacterium tuberculosis (Mtb) is not known. In this study, we compared the anti-mycobacterial activity of MDSC isolated from HIV –infected individuals on cART with virologic suppression (HIV MDSC) and HIV-uninfected healthy controls (HIV (-) MDSC). Compared to HIV (-) MDSC, HIV MDSC produced significantly less quantities of anti-mycobacterial cytokines IL-12p70 and TNFα, and reactive oxygen species when cultured with infectious Mtb or Mtb antigens. Furthermore, HIV MDSC showed changes in the Toll-like receptor and IL-27 signaling, including reduced expression of MyD88 and higher levels of IL-27. Neutralizing IL-27 and overexpression of MyD88 synergistically controlled intracellular replication of Mtb in HIV MDSC. These results demonstrate that MDSC in fully suppressed HIV-infected individuals are permissive to Mtb and exhibit downregulated anti-mycobacterial innate immune activity through mechanisms involving IL-27 and TLR signaling. Our findings suggest MDSC as novel mediators of tuberculosis in HIV-Mtb co-infected individuals with virologic suppression.
Collapse
Affiliation(s)
- Priyanka Namdev
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Shiv Patel
- Franklin College of Arts and Sciences, University of Georgia, Athens, GA, United States
| | - Brandi Sparling
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ankita Garg
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
20
|
DiNardo AR, Nishiguchi T, Grimm SL, Schlesinger LS, Graviss EA, Cirillo JD, Coarfa C, Mandalakas AM, Heyckendorf J, Kaufmann SHE, Lange C, Netea MG, Van Crevel R. Tuberculosis endotypes to guide stratified host-directed therapy. MED 2021; 2:217-232. [PMID: 34693385 DOI: 10.1016/j.medj.2020.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
There is hope that host-directed therapy (HDT) for Tuberculosis (TB) can either shorten treatment duration, help cure drug resistant disease or limit the immunopathology. Many candidate HDT drugs have been proposed, however solid evidence only exists for a few select patient groups. The clinical presentation of TB is variable, with differences in severity, tissue pathology, and bacillary burden. TB clinical phenotypes likely determine the potential benefit of HDT. Underlying TB clinical phenotypes, there are TB "endotypes," defined as distinct molecular profiles, with specific metabolic, epigenetic, transcriptional, and immune phenotypes. TB endotypes can be characterized by either immunodeficiency or pathologic excessive inflammation. Additional factors, like comorbidities (HIV, diabetes, helminth infection), structural lung disease or Mycobacterial virulence also drive TB endotypes. Precise disease phenotyping, combined with in-depth immunologic and molecular profiling and multimodal omics integration, can identify TB endotypes, guide endotype-specific HDT, and improve TB outcomes, similar to advances in cancer medicine.
Collapse
Affiliation(s)
- Andrew R DiNardo
- The Global Tuberculosis Program, Texas Children's Hospital, Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Tomoki Nishiguchi
- The Global Tuberculosis Program, Texas Children's Hospital, Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Sandra L Grimm
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | | | - Edward A Graviss
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Jeffrey D Cirillo
- Department of Microbial and Molecular Pathogenesis, Texas A&M College of Medicine, Bryan, TX, USA
| | - Cristian Coarfa
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Anna M Mandalakas
- The Global Tuberculosis Program, Texas Children's Hospital, Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jan Heyckendorf
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF) Clinical Tuberculosis Unit, Borstel, Germany.,Respiratory Medicine & International Health, University of Lübeck, Lü beck, Germany
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany.,Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA.,Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Gö ttingen, Germany
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF) Clinical Tuberculosis Unit, Borstel, Germany.,Respiratory Medicine & International Health, University of Lübeck, Lü beck, Germany
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Reinout Van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
21
|
Crilly NP, Ayeh SK, Karakousis PC. The New Frontier of Host-Directed Therapies for Mycobacterium avium Complex. Front Immunol 2021; 11:623119. [PMID: 33552087 PMCID: PMC7862709 DOI: 10.3389/fimmu.2020.623119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/14/2020] [Indexed: 01/03/2023] Open
Abstract
Mycobacterium avium complex (MAC) is an increasingly important cause of morbidity and mortality, and is responsible for pulmonary infection in patients with underlying lung disease and disseminated disease in patients with AIDS. MAC has evolved various virulence strategies to subvert immune responses and persist in the infected host. Current treatment for MAC is challenging, requiring a combination of multiple antibiotics given over a long time period (for at least 12 months after negative sputum culture conversion). Moreover, even after eradication of infection, many patients are left with residual lung dysfunction. In order to address similar challenges facing the management of patients with tuberculosis, recent attention has focused on the development of novel adjunctive, host-directed therapies (HDTs), with the goal of accelerating the clearance of mycobacteria by immune defenses and reducing or reversing mycobacterial-induced lung damage. In this review, we will summarize the evidence supporting specific adjunctive, HDTs for MAC, with a focus on the repurposing of existing immune-modulatory agents targeting a variety of different cellular pathways. We also highlight areas meriting further investigation.
Collapse
Affiliation(s)
- Nathan P Crilly
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Samuel K Ayeh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Petros C Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
22
|
Pattanaik KP, Ganguli G, Naik SK, Sonawane A. Mycobacterium tuberculosis EsxL induces TNF-α secretion through activation of TLR2 dependent MAPK and NF-κB pathways. Mol Immunol 2021; 130:133-141. [PMID: 33419561 DOI: 10.1016/j.molimm.2020.11.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Mycobacterium tuberculosis (Mtb) employs distinct strategies to circumvent host immune responses during the infection process. Various Mtb cell-wall associated and secretory proteins are known to play a critical role in the orchestration of host innate immune responses through modulation of signaling pathways. Mtb genome encodes for 23 (EsxA-EsxW) proteins belonging to the ESAT-6 like family; however, most of them are functionally unknown. Here, we show that Mtb EsxL induces tumor necrosis factor-alpha (TNF-α) production by activating nuclear translocation of nuclear factor-κB (NF-κB) via interaction with Toll-like Receptor 2 (TLR2). Blocking or silencing of TLR2 abrogated nuclear translocation of NF-kB and TNF-α production. Treatment with recombinant purified EsxL (rEsxL) activated mitogen-activated protein kinase (MAPK) pathway by inducing the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 kinase (p38) pathways. At the same time, inhibition of ERK and p38 down-regulated the expression of TNF-α in rEsxL exposed murine macrophages. Besides TNF-α, EsxL also induced the production of IL-6 proinflammatory cytokine. Taken together, these results suggest that EsxL is able to induce TNF-α secretion via TLR2 through activation of NF-κB and MAPK signaling. This study will help in deducing therapeutic strategies for better control of the disease.
Collapse
Affiliation(s)
| | - Geetanjali Ganguli
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Sumanta Kumar Naik
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Avinash Sonawane
- Discipline of Biosciences and Biomedical Engineering, IIT Indore, Madhya Pradesh, India.
| |
Collapse
|
23
|
Various Forms of Tuberculosis in Patients with Inflammatory Bowel Diseases Treated with Biological Agents. Int J Inflam 2021; 2021:6284987. [PMID: 33489084 PMCID: PMC7803420 DOI: 10.1155/2021/6284987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/11/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Although there are undeniable advantages of treatment of the inflammatory bowel diseases, Crohn's disease, and ulcerative colitis, with biological agents, the increased susceptibility to tuberculosis should not be ignored. Tuberculosis is an infectious disease caused by the Mycobacterium tuberculosis complex which includes M. tuberculosis, M. bovis, and M. africanum. Primary tuberculosis is uncommon in the setting of inflammatory bowel disease: reactivation of latent tuberculosis is of greater concern. Consequently, latent infection should be excluded in patients who qualify for immunosuppressive treatments. Apart from the review of the literature, this article also presents three cases of different patterns of tuberculosis that occurred during treatment with infliximab, adalimumab, or vedolizumab. The first case reports a case of tuberculosis presenting as right middle lobe pneumonia. The second case featured miliary tuberculosis of the lungs with involvement of the mediastinal lymph nodes, liver, and spleen. The third patient developed a tuberculoma of the right parietal lobe and tuberculous meningitis. It is important to reiterate that every patient qualifying for a biologic agent should undergo testing to accurately identify latent tuberculosis, as well as precise monitoring for the possible development of one of the various forms or patterns of tuberculosis during treatment.
Collapse
|
24
|
Marinho FV, Fahel JS, de Araujo ACVSC, Diniz LTS, Gomes MTR, Resende DP, Junqueira-Kipnis AP, Oliveira SC. Guanylate binding proteins contained in the murine chromosome 3 are important to control mycobacterial infection. J Leukoc Biol 2020; 108:1279-1291. [PMID: 32620042 DOI: 10.1002/jlb.4ma0620-526rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/01/2020] [Accepted: 06/21/2020] [Indexed: 11/08/2022] Open
Abstract
Guanylate binding proteins (GBPs) are important effector molecules of autonomous response induced by proinflammatory stimuli, mainly IFNs. The murine GBPs clustered in chromosome 3 (GBPchr3) contains the majority of human homologous GBPs. Despite intense efforts, mycobacterial-promoted diseases are still a major public health problem. However, the combined importance of GBPchr3 during mycobacterial infection has been overlooked. This study addresses the influence of the GBPchr3 in host immunity against mycobacterial infection to elucidate the relationship between cell-intrinsic immunity and triggering of an efficient anti-mycobacterial immune response. Here we show that all GBPchr3 are up-regulated in lungs of mice during Mycobacterium bovis BCG infection, resembling tissue expression of IFN-γ. Mice deficient in GBPchr3 (GBPchr3-/- ) were more susceptible to infection, displaying diminished expression of autophagy-related genes (LC3B, ULK1, and ATG5) in lungs. Additionally, there was reduced proinflammatory cytokine production complementary to diminished numbers of myeloid cells in spleens of GBPchr3-/- . Higher bacterial burden in GBPchr3-/- animals correlated with increased number of tissue granulomas. Furthermore, absence of GBPchr3 hampered activation and production of TNF-α and IL-12 by dendritic cells. Concerning macrophages, lack of GBPs impaired their antimicrobial function, diminishing autophagy induction and intracellular killing efficiency. In contrast, single GBP2 deficiency did not contribute to in vivo bacterial control. In conclusion, this study shows that GBPchr3 are important not only to stimulate cell-intrinsic immunity but also for inducing an efficient immune response to control mycobacterial infection in vivo.
Collapse
Affiliation(s)
- Fabio V Marinho
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| | - Julia S Fahel
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| | - Ana Carolina V S C de Araujo
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| | - Lunna T S Diniz
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| | - Marco T R Gomes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| | - Danilo P Resende
- Tropical Institute of Pathology and Public Health, Department of Microbiology, Immunology, Parasitology and Pathology, Federal University of Goias, Goias, Goiania, Brazil
| | - Ana P Junqueira-Kipnis
- Tropical Institute of Pathology and Public Health, Department of Microbiology, Immunology, Parasitology and Pathology, Federal University of Goias, Goias, Goiania, Brazil
| | - Sergio C Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
25
|
Evangelatos G, Koulouri V, Iliopoulos A, Fragoulis GE. Tuberculosis and targeted synthetic or biologic DMARDs, beyond tumor necrosis factor inhibitors. Ther Adv Musculoskelet Dis 2020; 12:1759720X20930116. [PMID: 32612710 PMCID: PMC7309385 DOI: 10.1177/1759720x20930116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Patients with autoimmune rheumatic diseases (ARD) have an increased risk for tuberculosis (TB). The use of tumor necrosis factor inhibitors (TNFi) and glucocorticoids in these patients has been associated with an increased prevalence of latent TB reactivation. Over the last few years, several biologic disease-modifying anti-rheumatic drugs (bDMARDs), other than TNFi (e.g. rituximab, abatacept, tocilizumab, secukinumab) and targeted synthetic DMARDs (tsDMARDs) [e.g. apremilast, Janus kinase (JAK) inhibitors] have been used for the treatment of patients with ARD. For many of these drugs, especially the newer ones like JAK inhibitors or antibodies against interleukin (IL)-23, most data stem from randomized clinical trials and few are available from real life clinical experience. We sought to review the current evidence for TB risk in patients with ARD treated with tsDMARDs or bDMARDs, other than TNFi. It seems that some of these drugs are associated with a lower TB risk, indirectly compared with TNFi treatment. In fact, it appears that rituximab, apremilast and inhibitors of IL-17 and IL-23 might be safer, while more data are needed for JAK inhibitors. As seen in TNFi, risk for TB is more pronounced in TB-endemic areas. Screening for latent TB must precede initiation of any tsDMARDs or bDMARDs. The growing use of non-TNFi agents has raised the need for more real-life studies that would compare the risk for TB between TNFi and other treatment modalities for ARD. Knowledge about the TB-safety profile of these drugs could help in the decision of drug choice in patients with confirmed latent TB infection or in TB endemic areas.
Collapse
Affiliation(s)
- Gerasimos Evangelatos
- Rheumatology Department, 417 Army Share Fund Hospital (NIMTS), Monis Petraki 10-12, Athens, 11521, Greece
| | - Vasiliki Koulouri
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexios Iliopoulos
- Rheumatology Department, 417 Army Share Fund Hospital (NIMTS), Athens, Greece
| | - George E Fragoulis
- Rheumatology Unit, First Department of Propaedeutic Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
26
|
Schick J, Schäfer J, Alexander C, Dichtl S, Murray PJ, Christensen D, Sorg U, Pfeffer K, Schleicher U, Lang R. Cutting Edge: TNF Is Essential for Mycobacteria-Induced MINCLE Expression, Macrophage Activation, and Th17 Adjuvanticity. THE JOURNAL OF IMMUNOLOGY 2020; 205:323-328. [PMID: 32540999 DOI: 10.4049/jimmunol.2000420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/19/2020] [Indexed: 02/04/2023]
Abstract
TNF blockade is a successful treatment for human autoimmune disorders like rheumatoid arthritis and inflammatory bowel disease yet increases susceptibility to tuberculosis and other infections. The C-type lectin receptors (CLR) MINCLE, MCL, and DECTIN-2 are expressed on myeloid cells and sense mycobacterial cell wall glycolipids. In this study, we show that TNF is sufficient to upregulate MINCLE, MCL, and DECTIN-2 in macrophages. TNF signaling through TNFR1 p55 was required for upregulation of these CLR and for cytokine secretion in macrophages stimulated with the MINCLE ligand trehalose-6,6-dibehenate or infected with Mycobacterium bovis bacillus Calmette-Guérin. The Th17 response to immunization with the MINCLE-dependent adjuvant trehalose-6,6-dibehenate was specifically abrogated in TNF-deficient mice and strongly attenuated by TNF blockade with etanercept. Together, interference with production or signaling of TNF antagonized the expression of DECTIN-2 family CLR, thwarting vaccine responses and possibly increasing infection risk.
Collapse
Affiliation(s)
- Judith Schick
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Johanna Schäfer
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christian Alexander
- Zelluläre Mikrobiologie, Forschungszentrum Borstel, Leibniz Lungenzentrum, 23845 Borstel, Germany
| | - Stefanie Dichtl
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Peter J Murray
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Dennis Christensen
- Adjuvant Research, Department of Infectious Disease Immunology, Statens Serum Institute, 2300 Copenhagen, Denmark; and
| | - Ursula Sorg
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Heinrich Heine Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Klaus Pfeffer
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Heinrich Heine Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Ulrike Schleicher
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Roland Lang
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| |
Collapse
|
27
|
Zhang N, Wang Z, Zhao Y. Selective inhibition of Tumor necrosis factor receptor-1 (TNFR1) for the treatment of autoimmune diseases. Cytokine Growth Factor Rev 2020; 55:80-85. [PMID: 32327345 DOI: 10.1016/j.cytogfr.2020.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
Anti-TNF biologics have achieved great success in the treatment of autoimmune diseases and have been the most selling biologics on market. However, the anti-TNF biologics have shown some disadvantages such as poor efficacy to some patients and high risk of infection and malignancies during clinical application. Current anti-TNF biologics are antibodies or antibody fragments that bind to TNF-α and subsequently block both TNF-TNFR1 and TNF-TNFR2 signaling. Transgenic animal studies indicate that TNFR1 signaling is responsible for chronic inflammation and cell apoptosis whereas TNFR2 signaling regulates tissue regeneration and inflammation. Recent studies propose to selectively inhibit TNFR1 to enhance efficacy and avoid side effects. In this review, we introduce the biology of TNF-TNFR1 and TNF-TNFR2 signaling, the advantages of selective inhibition of TNF-TNFR1 signaling and research updates on the development of selective inhibitors for TNF-TNFR1 signaling. Antibodies, small molecules and aptamers that selectively inhibit TNFR1 have showed therapeutic potential and less side effects in preclinical studies. Development of selective inhibitors for TNFR1 is a good strategy to enhance the efficacy and reduce the side effects of anti-TNF inhibitors and will be a trend for next-generation of anti-TNF inhibitors.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, HeNan Province, Zhengzhou 450001, Henan, PR China; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, HeNan Province, Zhengzhou 450001, Henan, PR China
| | - Ziyi Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Yongxing Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, HeNan Province, Zhengzhou 450001, Henan, PR China; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, HeNan Province, Zhengzhou 450001, Henan, PR China.
| |
Collapse
|
28
|
Kamboj D, Gupta P, Basil MV, Mohan A, Guleria R, Bhatnagar A, Mehta G, Kumar P, Saurabh A, Deepak R, Thakral D, Misra P, Tandon R, Gupta UD, Mitra DK. Improved Mycobacterium tuberculosis clearance after the restoration of IFN‐γ
+
TNF‐α
+
CD4
+
T cells: Impact of PD‐1 inhibition in active tuberculosis patients. Eur J Immunol 2020; 50:736-747. [DOI: 10.1002/eji.201948283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/30/2019] [Accepted: 02/28/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Divya Kamboj
- Department of Transplant Immunology & ImmunogeneticsAll India Institute of Medical Sciences New Delhi India
| | - Pushpa Gupta
- Animal Experimentation LaboratoryNational JALMA Institute for Leprosy and other Mycobacterial Diseases Agra India
| | - Mandira Varma Basil
- Department of MicrobiologyVallabhbhai Patel Chest InstituteUniversity of Delhi Delhi India
| | - Anant Mohan
- Department of Pulmonary Medicine & Sleep DisordersAll India Institute of Medical Sciences New Delhi India
| | - Randeep Guleria
- Department of Pulmonary Medicine & Sleep DisordersAll India Institute of Medical Sciences New Delhi India
| | - Anuj Bhatnagar
- Department of Chest & TuberculosisRajan Babu TB Hospital Delhi India
| | - Girija Mehta
- Department of Transplant Immunology & ImmunogeneticsAll India Institute of Medical Sciences New Delhi India
| | - Prabin Kumar
- Department of Transplant Immunology & ImmunogeneticsAll India Institute of Medical Sciences New Delhi India
| | - Abhinav Saurabh
- Department of Transplant Immunology & ImmunogeneticsAll India Institute of Medical Sciences New Delhi India
| | - Rakesh Deepak
- Department of Transplant Immunology & ImmunogeneticsAll India Institute of Medical Sciences New Delhi India
| | - Deepshi Thakral
- Department of Transplant Immunology & ImmunogeneticsAll India Institute of Medical Sciences New Delhi India
| | - Pragya Misra
- Department of Transplant Immunology & ImmunogeneticsAll India Institute of Medical Sciences New Delhi India
| | - Rati Tandon
- Jamia Hamdard‐Institute of Molecular MedicineJamia Hamdard University New Delhi India
| | - Umesh D Gupta
- Animal Experimentation LaboratoryNational JALMA Institute for Leprosy and other Mycobacterial Diseases Agra India
| | - Dipendra Kumar Mitra
- Department of Transplant Immunology & ImmunogeneticsAll India Institute of Medical Sciences New Delhi India
| |
Collapse
|
29
|
Arbués A, Brees D, Chibout SD, Fox T, Kammüller M, Portevin D. TNF-α antagonists differentially induce TGF-β1-dependent resuscitation of dormant-like Mycobacterium tuberculosis. PLoS Pathog 2020; 16:e1008312. [PMID: 32069329 PMCID: PMC7048311 DOI: 10.1371/journal.ppat.1008312] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/28/2020] [Accepted: 01/08/2020] [Indexed: 12/19/2022] Open
Abstract
TNF-α- as well as non-TNF-α-targeting biologics are prescribed to treat a variety of immune-mediated inflammatory disorders. The well-documented risk of tuberculosis progression associated with anti-TNF-α treatment highlighted the central role of TNF-α for the maintenance of protective immunity, although the rate of tuberculosis detected among patients varies with the nature of the drug. Using a human, in-vitro granuloma model, we reproduce the increased reactivation rate of tuberculosis following exposure to Adalimumab compared to Etanercept, two TNF-α-neutralizing biologics. We show that Adalimumab, because of its bivalence, specifically induces TGF-β1-dependent Mycobacterium tuberculosis (Mtb) resuscitation which can be prevented by concomitant TGF-β1 neutralization. Moreover, our data suggest an additional role of lymphotoxin-α–neutralized by Etanercept but not Adalimumab–in the control of latent tuberculosis infection. Furthermore, we show that, while Secukinumab, an anti-IL-17A antibody, does not revert Mtb dormancy, the anti-IL-12-p40 antibody Ustekinumab and the recombinant IL-1RA Anakinra promote Mtb resuscitation, in line with the importance of these pathways in tuberculosis immunity. Mycobacterium tuberculosis (Mtb) is the world’s leading infectious killer. Multi-cellular immune structures called granulomas may constitute a latent form of Mtb infection and a potential reservoir for future cases. Post-marketing surveillance data suggested that Mtb protective immunity is unequally impacted by different TNF-α-targeting drugs used to treat inflammatory disorders. We used an in-vitro granuloma model to reproduce these clinical observations and gain mechanistic insights and, in addition, to assess the risk of tuberculosis reactivation associated with the use of other immunomodulatory drugs. These results may inspire pharmacologists to design future drug-development strategies of biologics in particular, while immunologists and microbiologists will find a relevant experimental approach to disentangle the complex interactions involved in Mtb protective immunity and immunopathogenesis.
Collapse
Affiliation(s)
- Ainhoa Arbués
- Department of Medical Parasitology & Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Dominique Brees
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Todd Fox
- Novartis Pharma AG, Basel, Switzerland
| | - Michael Kammüller
- Novartis Institutes for Biomedical Research, Basel, Switzerland
- * E-mail: (MK); (DP)
| | - Damien Portevin
- Department of Medical Parasitology & Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail: (MK); (DP)
| |
Collapse
|
30
|
Menikdiwela KR, Ramalingam L, Rasha F, Wang S, Dufour JM, Kalupahana NS, Sunahara KKS, Martins JO, Moustaid-Moussa N. Autophagy in metabolic syndrome: breaking the wheel by targeting the renin-angiotensin system. Cell Death Dis 2020; 11:87. [PMID: 32015340 PMCID: PMC6997396 DOI: 10.1038/s41419-020-2275-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022]
Abstract
Metabolic syndrome (MetS) is a complex, emerging epidemic which disrupts the metabolic homeostasis of several organs, including liver, heart, pancreas, and adipose tissue. While studies have been conducted in these research areas, the pathogenesis and mechanisms of MetS remain debatable. Lines of evidence show that physiological systems, such as the renin-angiotensin system (RAS) and autophagy play vital regulatory roles in MetS. RAS is a pivotal system known for controlling blood pressure and fluid balance, whereas autophagy is involved in the degradation and recycling of cellular components, including proteins. Although RAS is activated in MetS, the interrelationship between RAS and autophagy varies in glucose homeostatic organs and their cross talk is poorly understood. Interestingly, autophagy is attenuated in the liver during MetS, whereas autophagic activity is induced in adipose tissue during MetS, indicating tissue-specific discordant roles. We discuss in vivo and in vitro studies conducted in metabolic tissues and dissect their tissue-specific effects. Moreover, our review will focus on the molecular mechanisms by which autophagy orchestrates MetS and the ways future treatments could target RAS in order to achieve metabolic homeostasis.
Collapse
Affiliation(s)
- Kalhara R Menikdiwela
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Fahmida Rasha
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Jannette M Dufour
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Nishan S Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
- Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Karen K S Sunahara
- Department of Experimental Physiopatholgy, Medical School University of São Paulo, São Paulo, Brazil
| | - Joilson O Martins
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University Sao Paulo (FCF/USP), São Paulo, Brazil
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA.
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
31
|
MicroRNA-889 Inhibits Autophagy To Maintain Mycobacterial Survival in Patients with Latent Tuberculosis Infection by Targeting TWEAK. mBio 2020; 11:mBio.03045-19. [PMID: 31992621 PMCID: PMC6989109 DOI: 10.1128/mbio.03045-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Autophagy plays an important role in protecting the host against pathogens. Mycobacterium tuberculosis can suppress autophagy and then remain dormant and survive within the host for an extended period, which is responsible for latent tuberculosis infection (LTBI). Here, we explored the role of microRNAs (miRNAs) in LTBI. The miRNA profiles were explored using the next-generation sequencing approach, followed by quantitative reverse transcription-PCR validation. The biological function of candidate miRNA was evaluated using immunoblotting, immunofluorescence techniques, and enzyme-linked immunosorbent assay in an in vitro human TB granuloma model. An increased miR-889 expression was observed in patients with LTBI compared with that in patients without infection. The reporter assay identified tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) as the target of miR-889. Mycobacterial infection induced TWEAK upregulation in the early phase. TWEAK induced autophagy and promoted mycobacterial autophagosome maturation through activation of AMP-activated protein kinase (AMPK). Upon entry to LTBI status, elevated miR-889 levels were associated with TNF alpha (TNF-α) and granuloma formation/maintenance. MiR-889 inhibited autophagy via posttranscriptional suppression of TWEAK expression to maintain mycobacterial survival in granulomas. Adalimumab (anti-TNF-α monoclonal antibody) treatment reduced levels of both TNF-α and miR-889 and caused granuloma destruction and LTBI reactivation. The circulating miR-889 and TWEAK levels were correlated with LTBI and subsequently associated with anti-TNF-α-related LTBI reactivation in patients. We propose that miR-889 and TWEAK can act as targets that can be manipulated for antimycobacterial therapeutic purposes and act as candidate biomarkers for LTBI and LTBI reactivation, respectively.IMPORTANCE TB remains a leading cause of morbidity and mortality worldwide. Approximately one-quarter of the world's population has latent TB infection. TWEAK is a multiple-function cytokine and may be used as a target for the treatment of rheumatic diseases, cardiovascular diseases, and renal diseases. Here, we demonstrated a novel relationship between TWEAK and activation of the autophagic machinery which promotes antimycobacterial immunity. Additionally, TB infection is highly dynamic and determined by the interaction between the host and mycobacterium. We demonstrated a mechanism of fine-tuned balance between the mycobacterium and host for granuloma formation and/or maintenance in LTBI status. Once patients entered LTBI status, the upregulation of miR-889 was associated with TNF-α levels and granuloma formation to maintain mycobacterial survival. Adalimumab (a TNF-α inhibitor) reduced both TNF-α and miR-889 levels and caused LTBI reactivation and, thus, TWEAK enhancement. MiR-889 and TWEAK may become potential diagnostic biomarkers or therapeutic targets for LTBI and LTBI reactivation, respectively.
Collapse
|
32
|
Gautam US, Mehra S, Kumari P, Alvarez X, Niu T, Tyagi JS, Kaushal D. Mycobacterium tuberculosis sensor kinase DosS modulates the autophagosome in a DosR-independent manner. Commun Biol 2019; 2:349. [PMID: 31552302 PMCID: PMC6754383 DOI: 10.1038/s42003-019-0594-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 09/03/2019] [Indexed: 01/03/2023] Open
Abstract
Dormancy is a key characteristic of the intracellular life-cycle of Mtb. The importance of sensor kinase DosS in mycobacteria are attributed in part to our current findings that DosS is required for both persistence and full virulence of Mtb. Here we show that DosS is also required for optimal replication in macrophages and involved in the suppression of TNF-α and autophagy pathways. Silencing of these pathways during the infection process restored full virulence in MtbΔdosS mutant. Notably, a mutant of the response regulator DosR did not exhibit the attenuation in macrophages, suggesting that DosS can function independently of DosR. We identified four DosS targets in Mtb genome; Rv0440, Rv2859c, Rv0994, and Rv0260c. These genes encode functions related to hypoxia adaptation, which are not directly controlled by DosR, e.g., protein recycling and chaperoning, biosynthesis of molybdenum cofactor and nitrogen metabolism. Our results strongly suggest a DosR-independent role for DosS in Mtb.
Collapse
Affiliation(s)
- Uma S. Gautam
- Tulane National Primate Research Center, Covington, LA 70433 USA
- Present Address: Duke Human Vaccine Institute, Duke University School of Medicine, 909 S. LaSalle St., Durham, NC 27710 USA
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, LA 70433 USA
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803 USA
- Center for Experimental Infectious Diseases Research, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803 USA
| | - Priyanka Kumari
- All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Xavier Alvarez
- Tulane National Primate Research Center, Covington, LA 70433 USA
| | - Tianhua Niu
- Department of Biochemistry, Tulane University School of Medicine, New Orleans, 70112 LA USA
| | - Jaya S. Tyagi
- All India Institute of Medical Sciences, New Delhi, 110029 India
- Centre for Bio-design and Diagnostics, Translational Health Science and Technology Institute Faridabad, Haryana, 121001 India
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, LA 70433 USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, 70112 LA USA
| |
Collapse
|
33
|
Agarwal RG, Sharma P, Nyati KK. microRNAs in Mycobacterial Infection: Modulation of Host Immune Response and Apoptotic Pathways. Immune Netw 2019; 19:e30. [PMID: 31720041 PMCID: PMC6829074 DOI: 10.4110/in.2019.19.e30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 01/02/2023] Open
Abstract
Our current knowledge of mycobacterial infections in humans has progressively increased over the past few decades. The infection of Mycobacterium tuberculosis causes tuberculosis (TB) disease, which has reasoned for excessive morbidity and mortality worldwide, and has become a foremost issue of health problem globally. Mycobacterium leprae, another member of the family Mycobacteriaceae, is responsible for causing a chronic disease known as leprosy that mainly affects mucosa of the upper respiratory tract, skin, peripheral nerves, and eyes. Ample amount of existing data suggests that pathogenic mycobacteria have skilled in utilizing different mechanisms to escape or offset the host immune responses. They hijack the machinery of immune cells through the modulation of microRNAs (miRs), which regulate gene expression and immune responses of the host. Evidence shows that miRs have now gained considerable attention in the research, owing to their involvement in a broad range of inflammatory processes that are further implicated in the pathogenesis of several diseases. However, the knowledge of functions of miRs during mycobacterial infections remains limited. This review summarises recent findings of differential expression of miRs, which are used to good advantage by mycobacteria in offsetting host immune responses generated against them.
Collapse
Affiliation(s)
- Riddhi Girdhar Agarwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Kishan Kumar Nyati
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| |
Collapse
|
34
|
Geesala R, Issuree PD, Maretzky T. Novel functions of inactive rhomboid proteins in immunity and disease. J Leukoc Biol 2019; 106:823-835. [PMID: 31369701 DOI: 10.1002/jlb.3vmr0219-069r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/03/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022] Open
Abstract
iRhoms are related to a family of intramembrane serine proteinases called rhomboids but lack proteolytic activity. In mammals, there are two iRhoms, iRhom1 and iRhom2, which have similar domain structures and overlapping specificities as well as distinctive functions. These catalytically inactive rhomboids are essential regulators for the maturation and trafficking of the disintegrin metalloprotease ADAM17 from the endoplasmic reticulum to the cell surface, and are required for the cleavage and release of a variety of membrane-associated proteins, including the IL-6 receptor, l-selectin, TNF, and EGFR ligands. iRhom2-dependent regulation of ADAM17 function has been recently implicated in the development and progression of several autoimmune diseases including rheumatoid arthritis, lupus nephritis, as well as hemophilic arthropathy. In this review, we discuss our current understanding of iRhom biology, their implications in autoimmune pathologies, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Ramasatyaveni Geesala
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| | - Priya D Issuree
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| | - Thorsten Maretzky
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
35
|
Guo Y, Zhang X, Wu T, Hu X, Su J, Chen X. Autophagy in Skin Diseases. Dermatology 2019; 235:380-389. [PMID: 31269494 DOI: 10.1159/000500470] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/15/2019] [Indexed: 11/19/2022] Open
Abstract
Autophagy, or self-eating, is an evolutionarily conserved process in which cytosol and organelles are sequestered within double-membrane vesicles that deliver the contents to the lysosome/vacuole for the degradation and recycling of cytoplasmic components in eukaryotes. It is well recognized that autophagy plays an important role in maintaining cellular homeostasis under physiological and pathophysiological con-ditions and the upregulation of autophagy may serve as an adaptive process to provide nutrients and energy when under stresses. Recently, studies have illustrated that autophagy is intricately related to skin diseases. This review provides a brief synopsis of the process of autophagy and aims to elucidate the roles of autophagy in different skin diseases and to highlight the need for increased research in the field.
Collapse
Affiliation(s)
- Yeye Guo
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Xu Zhang
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Tianhao Wu
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Xing Hu
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Juan Su
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China, .,Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China,
| | - Xiang Chen
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| |
Collapse
|
36
|
Zhang X, Su L, Huang H, Jiang M, Liu S, Li Y, Liu T, Zhou Y, Tang T, Mahdy SE, Wang C. Coating With Chitooligosaccharides Enhances the Cytokine Induction of Listeria ivanovii-Based Vaccine Strain. J Pharm Sci 2019; 108:2926-2933. [PMID: 30995448 DOI: 10.1016/j.xphs.2019.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 11/28/2022]
Abstract
Listeria ivanovi (LI) is an available live bacterial vaccine vector. This work attempted to coat LI-based vaccine candidates (LI-Rv0129c) with chitooligosaccharides (COSs) as an adjuvant to enhance the cellular immune responses induced. COS-bacteria composite was achieved by mixing the bacteria suspension with equal volume of COS solution, and this process accompanied with the increase of bacteria superficial zeta potential and formation of special superficial configurations. COS coating improved the ratio swallowed by the macrophage-like RAW264.7 cells from 0.54% to 2.88% (p < 0.001). In vivo, the COS-coated LI-Rv0129c strain did elicit significantly higher specific CD4+ IFN-γ, CD4+ TNF-α or CD8+ IFN-γ secretion (0.91%, 1.00%, 0.30%, respectively) than naked LI-Rv0129c (0.32%, 0.38%, 0.07%, respectively) (p < 0.01). These results demonstrated that COS is a promising adjuvant to enhance the protective cellular immune responses induced by LI-based vaccine strains. Our work provided a notion for developing adjuvant for Listeria and other bacterial vector-based vaccines.
Collapse
Affiliation(s)
- Xiang Zhang
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China; Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, China
| | - Lin Su
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China; Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, China
| | - Huan Huang
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China; Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, China
| | - Mingjuan Jiang
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China; Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, China
| | - Sijing Liu
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China; Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, China
| | - Yongyu Li
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China; Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, China
| | - Ting Liu
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China; Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, China
| | - Yuzhen Zhou
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China; Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, China
| | - Tian Tang
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China; Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, China
| | - Safy Eidin Mahdy
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China; Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, China
| | - Chuan Wang
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China; Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, China.
| |
Collapse
|
37
|
Ben Azzouz E, Boumaza A, Mezouar S, Bardou M, Carlini F, Picard C, Raoult D, Mège JL, Desnues B. Tropheryma whipplei Increases Expression of Human Leukocyte Antigen-G on Monocytes to Reduce Tumor Necrosis Factor and Promote Bacterial Replication. Gastroenterology 2018; 155:1553-1563. [PMID: 30076840 DOI: 10.1053/j.gastro.2018.07.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/10/2018] [Accepted: 07/27/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Infection with Tropheryma whipplei has a range of effects-some patients can be chronic carriers without developing any symptoms, whereas others can develop systemic Whipple disease, characterized by a lack a protective inflammatory immune response. Alterations in HLA-G function have been associated with several diseases. We investigated the role of HLA-G during T whipplei infection. METHODS Sera, total RNA, and genomic DNA were collected from peripheral blood from 22 patients with classic Whipple's disease, 19 patients with localized T whipplei infections, and 21 asymptomatic carriers. Levels of soluble HLA-G in sera were measured by enzyme-linked immuosorbent assay, and expressions of HLA-G and its isoforms were monitored by real-time polymerase chain reaction. HLA-G alleles were identified and compared with a population of voluntary bone marrow donors. Additionally, monocytes from healthy subjects were stimulated with T whipplei, and HLA-G expression was monitored by real-time polymerase chain reaction and flow cytometry. Bacterial replication was assessed by polymerase chain reaction in the presence of HLA-G or inhibitor of tumor necrosis factor (TNF) (etanercept). RESULTS HLA-G mRNAs and levels of soluble HLA-G were significantly increased in sera from patients with chronic T whipplei infection compared with sera from asymptomatic carriers and control individuals. No specific HLA-G haplotypes were associated with disease or T whipplei infection. However, T whipplei infection of monocytes induced expression of HLA-G, which was associated with reduced secretion of TNF compared with noninfected monocytes. A neutralizing antibody against HLA-G increased TNF secretion by monocytes in response to T whipplei, and a TNF inhibitor promoted bacteria replication. CONCLUSIONS Levels of HLA-G are increased in sera from patients with T whipplei tissue infections, associated with reduced production of TNF by monocytes. This might promote bacteria colonization in patients.
Collapse
Affiliation(s)
- Eya Ben Azzouz
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France
| | - Asma Boumaza
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France
| | - Soraya Mezouar
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France
| | - Matthieu Bardou
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France
| | | | - Christophe Picard
- Aix-Marseille Univ, CNRS, EFS, ADES UMR 7268, Marseille, France; Laboratoire d'immunogénétique, Établissement Français du Sang Provence Alpes Côte d'Azur Corse, Marseille, France
| | - Didier Raoult
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France
| | - Jean-Louis Mège
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France
| | - Benoit Desnues
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France.
| |
Collapse
|
38
|
Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev 2018; 44:38-50. [PMID: 30340925 DOI: 10.1016/j.cytogfr.2018.10.002] [Citation(s) in RCA: 551] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 02/05/2023]
Abstract
Osteoarthritis (OA), characterized by joint malfunction and chronic disability, is the most common form of arthritis. Clinical and animal experiments reveal that age-related OA is associated with many factors such as age, sex, trauma, and obesity. One of the most influential and modifiable risk factors is obesity. Obesity not only increases mechanical stress on the tibiofemoral cartilage, but also leads to a higher prevalence of OA in non-weight-bearing areas. There is a link between obesity and inflammation. Adipose tissues play a crucial role in this context because they are the major source of cytokines, chemokines, and metabolically-active mediators named adipokines. The adipokines, including adiponectin and leptin, have been demonstrated to regulate inflammatory immune responses in cartilage. Obese people and animals show a higher level of serum tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL)-1β and IL-6, all of which are produced by macrophages derived from adipose tissue. These pro-inflammatory cytokines regulate the proliferation and apoptosis of adipocytes, promote lipolysis, inhibit lipid synthesis and decrease blood lipids through autocrine and paracrine mechanisms. Elevated levels of TNF-α, IL-1 and IL-6 have been found in the synovial fluid, synovial membrane, subchondral bone and cartilage of OA patients, confirming their important roles in OA pathogenesis. TNF-α, IL-6 and IL-1 are the factors released by fat to negatively regulate cartilage directly. Moreover, TNF-α, IL-1 and IL-6 can induce the production of other cytokines, matrix metalloproteinases (MMPs) and prostaglandins and inhibit the synthesis of proteoglycans and type II collagen; thus, they play a pivotal role in cartilage matrix degradation and bone resorption in OA. Activated chondrocytes also produce MMP-1, MMP-3, MMP-13, and aggrecanase 1 and 2 (ADAMTS-4, ADAMTS-5). In addition, IL-1, TNF-α and IL-6 may cause OA indirectly by regulating release of adiponectin and leptin from adipocytes. In this review, we first summarize the relationship between obesity and inflammation. Then we summarize the roles of IL-1, TNF-α and IL-6 in OA. We further discuss how IL-1, TNF-α and IL-6 regulate the communication between fat and OA, and their pathological roles in obesity-related OA. Lastly, we discuss the possibility of using the pro-inflammatory signaling pathway as a therapeutic target to develop drugs for obesity-related OA.
Collapse
|
39
|
Sator P. Safety and tolerability of adalimumab for the treatment of psoriasis: a review summarizing 15 years of real-life experience. Ther Adv Chronic Dis 2018; 9:147-158. [PMID: 30065812 DOI: 10.1177/2040622318772705] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/23/2018] [Indexed: 12/15/2022] Open
Abstract
Biologic therapies like adalimumab are the gold standard for psoriasis treatment with efficacy and safety profiles allowing for long-term treatment. However, adalimumab cannot be used in all patients and may cause adverse drug reactions. This study reviews conditions that might limit the use of adalimumab under real-life conditions. Local injection site reactions affect 12-37% of patients but rarely require specific therapy. Dermatological adverse events (AEs) include the paradoxical psoriasis and tend to respond to adequate therapy without adalimumab discontinuation. Adalimumab increases the risk for infections; latent chronic infections like tuberculosis or hepatitis B/C impose the highest risk for serious AEs. However, administration of adalimumab may still be possible under appropriate monitoring or prophylactic therapy. Some studies indicate an increased risk of malignancies in patients with psoriasis exposed to adalimumab. Here, the causal relationship is unclear since both psoriasis and some first-line therapies increase the risk of malignancies. Depression frequently coincides with psoriasis and may respond to adalimumab as well. Cardiovascular diseases are contraindications for adalimumab, but evidence suggests that adalimumab may still be a treatment option. Overall AE rates range from 245 to 399 per 100 patient years (serious AEs: 6-23; death: 1-2). Thus, adalimumab is slightly less safe than ustekinumab and infliximab but exhibits superior effectiveness and drug survival. Adalimumab is safe for pregnant women during the first trimester, for children up to 4 years and for the elderly. Thus, in spite of several conditions that require specific attention, the favourable safety and tolerability of adalimumab for the treatment of psoriasis is confirmed.
Collapse
Affiliation(s)
- Paul Sator
- Department for Dermatology, Krankenhaus Hietzing, Austria
| |
Collapse
|
40
|
Segura-Cerda CA, Aceves-Sánchez MDJ, Marquina-Castillo B, Mata-Espinoza D, Barrios-Payán J, Vega-Domínguez PJ, Pedroza-Roldán C, Bravo-Madrigal J, Vallejo-Cardona AA, Hernández-Pando R, Flores-Valdez MA. Immune response elicited by two rBCG strains devoid of genes involved in c-di-GMP metabolism affect protection versus challenge with M. tuberculosis strains of different virulence. Vaccine 2018; 36:2069-2078. [PMID: 29550192 DOI: 10.1016/j.vaccine.2018.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/22/2018] [Accepted: 03/07/2018] [Indexed: 12/20/2022]
Abstract
Pellicles, a type of biofilm, have gathered a renewed interest in the field of tuberculosis as a structure that mimics some characteristics occurring during M. tuberculosis infection, such as antibiotic recalcitrance and chronicity of infection, and as a source of antigens for humoral response in infected guinea pigs. In other bacteria, it has been well documented that the second messenger c-di-GMP modulates the transition from planktonic cells to biofilm formation. In this work, we used the live vaccine Mycobacterium bovis BCG to determine whether deletion of genes involved in c-di-GMP metabolism would affect interaction with macrophages, capacity to induce immune response in a murine cell line and mice, and how the protein profile was modified when grown as surface pellicles. We found that deletion of the BCG1419c (Delta c-di-GMP phosphodiesterase, ΔPDE) gene, or deletion of the BCG1416c (Delta c-di-GMP diguanylate cyclase, ΔDGC) gene, altered production of TNF-α, IL-6, and IL-1β, in murine macrophages, and resulted in attenuation in intra-macrophage replication. Moreover, in addition to the improved immunogenicity of the BCGΔBCG1419c mutant already reported, deletion of the BCG1416c gene leads to increased T CD4+ and T CD8+ activation. This correlated with protection versus lethality in mice infected with the highly virulent M. tuberculosis 5186 afforded by vaccination with all the tested BCG strains, and controlled the growth of the mildly virulent M. tuberculosis H37Rv in lungs by vaccination with BCGΔBCG1419c during chronic late infection from 4 to 6 months after challenge. Furthermore, when grown as surface pellicles, a condition used to manufacture BCG vaccine, in comparison to BCG wild type, both rBCGs changed expression of antigenic proteins such as DnaK, HbhA, PstS2, 35KDa antigen, GroEL2, as well as AcpM, a protein involved in synthesis of mycolic acids, molecules relevant to modulate inflammatory responses.
Collapse
Affiliation(s)
- Cristian Alfredo Segura-Cerda
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Guadalajara, Jalisco, Mexico
| | - Michel de Jesús Aceves-Sánchez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Guadalajara, Jalisco, Mexico
| | - Brenda Marquina-Castillo
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Dulce Mata-Espinoza
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Jorge Barrios-Payán
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Perla Jazmín Vega-Domínguez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Guadalajara, Jalisco, Mexico
| | - César Pedroza-Roldán
- Departamento de Medicina Veterinaria, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Jorge Bravo-Madrigal
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Guadalajara, Jalisco, Mexico
| | - Alba Adriana Vallejo-Cardona
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Guadalajara, Jalisco, Mexico
| | - Rogelio Hernández-Pando
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Mario Alberto Flores-Valdez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Guadalajara, Jalisco, Mexico.
| |
Collapse
|
41
|
McConachie SM, Wilhelm SM, Bhargava A, Kale-Pradhan PB. Biologic-Induced Infections in Inflammatory Bowel Disease: The TNF-α Antagonists. Ann Pharmacother 2018; 52:571-579. [DOI: 10.1177/1060028018754896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objective: To review the mechanism and association of infectious risk among the tumor-necrosis factor α (TNF-α) antagonists used in inflammatory bowel disease. Data Sources: A PubMed literature search was performed using the following search terms: infliximab, adalimumab, certolizumab, golimumab, inflammatory bowel disease, crohn’s, ulcerative colitis, adverse effects, adverse events, safety, and infection. Study Selection and Data Extraction: Meta-analyses and cohort studies with outcomes pertaining to quantitative infectious risk were reviewed. Case reports and case series describing association between TNF-α inhibitors and infection were also reviewed. Data Synthesis: A total of 7 recent meta-analyses of randomized trials demonstrate inconclusive association of infection with TNF-α antagonists. Registry data suggest that medications carry an independent risk of opportunistic infections. Risk factors for infection include older age, malnutrition, diabetes, and possibly combination therapy. Reported infections vary widely but include intracellular and granulomatous bacteria, viruses, and fungi. Conclusion: TNF-α antagonists are associated with an increased risk of opportunistic infection, although this risk has not been demonstrated conclusively in randomized controlled trials. Knowledge of concomitant risk factors, mechanism of infectious risk, and available treatment options can improve patient care in the clinical setting.
Collapse
Affiliation(s)
- Sean M. McConachie
- Wayne State University, Detroit, MI, USA
- Harper University Hospital, Detroit, MI, USA
| | | | | | | |
Collapse
|
42
|
Boortalary T, Misra K, McNish S, Jones D, Shanmugam VK. Prevalence of positive QuantiFERON gold in-tube testing in hidradenitis suppurativa. J DERMATOL TREAT 2018; 29:637-640. [PMID: 29325465 DOI: 10.1080/09546634.2018.1425360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIM Hidradenitis suppurativa (HS) is a chronic, recurrent, inflammatory disease of the apocrine sweat glands. Tumor necrosis factor-alpha (TNF-α) inhibitors are commonly used to treat HS. However, prior to initiating therapy patients must be screened for mycobacterium tuberculosis (mTB) exposure. Several mTB screening tests based on interferon gamma release assays are commercially available, but the performance of these assays in the HS population is unknown. The purpose of this study was to investigate the performance of the QuantiFERON gold in-tube assay (QFT-GIT) in a cohort of patients with HS. METHODS This prospective study was conducted through the Wound Etiology and Healing (WE-HEAL) study. QFTGIT testing was performed using a commercial laboratory. Patients with positive test results underwent follow-up testing to evaluate for latent tuberculosis infection (LTBI). Data were collected on demographics and disease activity scores including Hurley stage, HS Sartorius score (HSS) and active nodule (AN) count. RESULTS Of the 69 patients with a confirmed diagnosis of HS, seven (10.1%) tested QFT-GIT positive and 5.8% were diagnosed with LTBI. CONCLUSIONS QFT-GIT results did not correlate with demographic characteristics or HS disease activity.
Collapse
Affiliation(s)
- Tina Boortalary
- a Division of Rheumatology, Ideas to Health Laboratory , The George Washington University, School of Medicine and Health Sciences , Washington , DC , USA
| | - Kanchan Misra
- a Division of Rheumatology, Ideas to Health Laboratory , The George Washington University, School of Medicine and Health Sciences , Washington , DC , USA
| | - Sean McNish
- a Division of Rheumatology, Ideas to Health Laboratory , The George Washington University, School of Medicine and Health Sciences , Washington , DC , USA
| | - Derek Jones
- a Division of Rheumatology, Ideas to Health Laboratory , The George Washington University, School of Medicine and Health Sciences , Washington , DC , USA
| | - Victoria K Shanmugam
- a Division of Rheumatology, Ideas to Health Laboratory , The George Washington University, School of Medicine and Health Sciences , Washington , DC , USA
| |
Collapse
|
43
|
Warsinske HC, Pienaar E, Linderman JJ, Mattila JT, Kirschner DE. Deletion of TGF-β1 Increases Bacterial Clearance by Cytotoxic T Cells in a Tuberculosis Granuloma Model. Front Immunol 2017; 8:1843. [PMID: 29326718 PMCID: PMC5742530 DOI: 10.3389/fimmu.2017.01843] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/06/2017] [Indexed: 01/10/2023] Open
Abstract
Mycobacterium tuberculosis is the pathogenic bacterium that causes tuberculosis (TB), one of the most lethal infectious diseases in the world. The only vaccine against TB is minimally protective, and multi-drug resistant TB necessitates new therapeutics to treat infection. Developing new therapies requires a better understanding of the complex host immune response to infection, including dissecting the processes leading to formation of granulomas, the dense cellular lesions associated with TB. In this work, we pair experimental and computational modeling studies to explore cytokine regulation in the context of TB. We use our next-generation hybrid multi-scale model of granuloma formation (GranSim) to capture molecular, cellular, and tissue scale dynamics of granuloma formation. We identify TGF-β1 as a major inhibitor of cytotoxic T-cell effector function in granulomas. Deletion of TGF-β1 from the system results in improved bacterial clearance and lesion sterilization. We also identify a novel dichotomous regulation of cytotoxic T cells and macrophages by TGF-β1 and IL-10, respectively. These findings suggest that increasing cytotoxic T-cell effector functions may increase bacterial clearance in granulomas and highlight potential new therapeutic targets for treating TB.
Collapse
Affiliation(s)
- Hayley C Warsinske
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Elsje Pienaar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, United States
| | - Denise E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
44
|
Disseminated cryptococcosis in a patient taking tocilizumab for Castleman's disease. J Infect Chemother 2017; 24:138-141. [PMID: 29021093 DOI: 10.1016/j.jiac.2017.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 01/10/2023]
Abstract
Infections occur more frequently in patients receiving biologics. However, cryptococcal infection is uncommon in patients receiving tocilizumab, an interleukin-6 inhibitor, in contrast to patients receiving tumor necrosis factor-α inhibitors. In this report, we describe a case of disseminated cryptococcosis in a 55-year-old man who was receiving tocilizumab every 2 weeks along with daily prednisolone and cyclosporine for Castleman's disease. He initially developed cellulitis on both upper limbs, and his condition worsened despite antibacterial therapy. Chest X-ray scanning and computed tomography demonstrated bilateral pulmonary infiltration. Cryptococcus neoformans was detected in blood, skin, and sputum cultures. He was diagnosed with disseminated cryptococcosis, and successfully treated with liposomal amphotericin B for a week followed by oral fluconazole for 11 months. The findings of this study indicate that cryptococcosis should be considered during the differential diagnosis of infection in patients receiving tocilizumab, especially in the presence of other risk factors for infections or a short tocilizumab dosing interval.
Collapse
|
45
|
Khan A, Jagannath C. Analysis of host-pathogen modulators of autophagy during Mycobacterium Tuberculosis infection and therapeutic repercussions. Int Rev Immunol 2017; 36:271-286. [PMID: 28976784 DOI: 10.1080/08830185.2017.1356924] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mycobacterium tuberculosis is one of the most deadly human pathogens known today in modern world, responsible for about 1.5 million deaths annually. Development of TB disease occurs only in 1 out of 10 individuals exposed to the pathogen which indicates that the competent host defense mechanisms exist in majority of the hosts to control the infection. In the last decade, autophagy has emerged as a key host immune defense mechanism against intracellular M. tuberculosis infection. Autophagy has been demonstrated not only as an effective antimicrobial mechanism for the clearance of M. tuberculosis, but the process has also been suggested to prevent excessive inflammation to avoid the adverse effects of infection on host. Nevertheless, increasing evidences also show that in order to enhance its intracellular survival, M. tuberculosis has also evolved multiple strategies to compromise the optimal functioning of host autophagic machinery. This review describes an overview of the various host signaling pathways such as pattern recognition receptors, cytokines, nutrient starvation and other cellular stress that have been implicated in induction of autophagy during M. tuberculosis infection. The review also chalk out the complex interplay of several bacterial factors of M. tuberculosis that are known to be involved in compromising autophagy mediated defense of the host. A comprehensive understanding of the interaction of bacterial and host factors at the intersections of autophagic pathways could provide integrative insights for the development of autophagy-based prophylactics and novel therapeutic interventions for TB.
Collapse
Affiliation(s)
- Arshad Khan
- a Department of Pathology and Laboratory Medicine, McGovern Medical School , University of Texas Health Sciences Center-Houston , Houston TX
| | - Chinnaswamy Jagannath
- a Department of Pathology and Laboratory Medicine, McGovern Medical School , University of Texas Health Sciences Center-Houston , Houston TX
| |
Collapse
|
46
|
Arcos J, Sasindran SJ, Moliva JI, Scordo JM, Sidiki S, Guo H, Venigalla P, Kelley HV, Lin G, Diangelo L, Silwani SN, Zhang J, Turner J, Torrelles JB. Mycobacterium tuberculosis cell wall released fragments by the action of the human lung mucosa modulate macrophages to control infection in an IL-10-dependent manner. Mucosal Immunol 2017; 10:1248-1258. [PMID: 28000679 PMCID: PMC5479761 DOI: 10.1038/mi.2016.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 10/31/2016] [Indexed: 02/04/2023]
Abstract
Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis, is a major public health challenge facing the world. During infection, M.tb is deposited in the lung alveolar space where it comes in contact with the lung mucosa, known as alveolar lining fluid (ALF), an environment that M.tb encounters at different stages of the infection and disease. ALF is abundant in homeostatic and antimicrobial hydrolytic enzymes, also known as hydrolases. Here we demonstrate that ALF hydrolases, at their physiological concentrations and upon contact with M.tb, release M.tb cell envelope fragments into the milieu. These released fragments are bioactive, but non-cytotoxic, regulate the function of macrophages, and thus are capable of modulating the immune response contributing to the control of M.tb infection by human macrophages. Specifically, macrophages exposed to fragments derived from the exposure of M.tb to ALF were able to control the infection primarily by increasing phagosome-lysosome fusion and acidification events. This enhanced control was found to be dependent on fragment-induced interleukin-10 (IL-10) production but also involves the STAT3 signaling pathway in an IL-10-independent manner. Collectively our data indicate that M.tb fragments released upon contact with lung mucosa hydrolases participate in the host immune response to M.tb infection through innate immune modulation.
Collapse
Affiliation(s)
- Jesus Arcos
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Smitha J. Sasindran
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Juan I. Moliva
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Julia M. Scordo
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Sabeen Sidiki
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Hui Guo
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Poornima Venigalla
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Holden V. Kelley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Guoxin Lin
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Lauren Diangelo
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Sayeed N. Silwani
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Jian Zhang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, 43210, US
| | - Joanne Turner
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, 43210, US
| | - Jordi B. Torrelles
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, 43210, US
| |
Collapse
|
47
|
Pienaar E, Sarathy J, Prideaux B, Dietzold J, Dartois V, Kirschner DE, Linderman JJ. Comparing efficacies of moxifloxacin, levofloxacin and gatifloxacin in tuberculosis granulomas using a multi-scale systems pharmacology approach. PLoS Comput Biol 2017; 13:e1005650. [PMID: 28817561 PMCID: PMC5560534 DOI: 10.1371/journal.pcbi.1005650] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/26/2017] [Indexed: 12/19/2022] Open
Abstract
Granulomas are complex lung lesions that are the hallmark of tuberculosis (TB). Understanding antibiotic dynamics within lung granulomas will be vital to improving and shortening the long course of TB treatment. Three fluoroquinolones (FQs) are commonly prescribed as part of multi-drug resistant TB therapy: moxifloxacin (MXF), levofloxacin (LVX) or gatifloxacin (GFX). To date, insufficient data are available to support selection of one FQ over another, or to show that these drugs are clinically equivalent. To predict the efficacy of MXF, LVX and GFX at a single granuloma level, we integrate computational modeling with experimental datasets into a single mechanistic framework, GranSim. GranSim is a hybrid agent-based computational model that simulates granuloma formation and function, FQ plasma and tissue pharmacokinetics and pharmacodynamics and is based on extensive in vitro and in vivo data. We treat in silico granulomas with recommended daily doses of each FQ and compare efficacy by multiple metrics: bacterial load, sterilization rates, early bactericidal activity and efficacy under non-compliance and treatment interruption. GranSim reproduces in vivo plasma pharmacokinetics, spatial and temporal tissue pharmacokinetics and in vitro pharmacodynamics of these FQs. We predict that MXF kills intracellular bacteria more quickly than LVX and GFX due in part to a higher cellular accumulation ratio. We also show that all three FQs struggle to sterilize non-replicating bacteria residing in caseum. This is due to modest drug concentrations inside caseum and high inhibitory concentrations for this bacterial subpopulation. MXF and LVX have higher granuloma sterilization rates compared to GFX; and MXF performs better in a simulated non-compliance or treatment interruption scenario. We conclude that MXF has a small but potentially clinically significant advantage over LVX, as well as LVX over GFX. We illustrate how a systems pharmacology approach combining experimental and computational methods can guide antibiotic selection for TB. Tuberculosis (TB) is caused by infection with the bacterium Mycobacterium tuberculosis (Mtb) and kills 1.5 million people each year. TB requires at least 6 months of treatment with up to four drugs, and is characterized by formation of granulomas in patient lungs. Granulomas are spherical collections of host cells and bacteria. Fluoroquinolones (FQs) are a class of drug that could help shorten TB treatment. Three FQs that are used to treat TB are: moxifloxacin (MXF), levofloxacin (LVX) or gatifloxacin (GFX). To date, it is unclear if one FQ is better than the others at treating TB, in part because little is known about how these drugs distribute and work inside the lung granulomas. We use computer simulations of Mtb infection and FQ treatment within granulomas to predict which FQ is better and why. Our computer model is calibrated to multiple experimental data sets. We compare the three FQs by multiple metrics, and predict that MXF is better than LVX and GFX because it kills bacteria more quickly, and it works better when patients miss doses. However, all three FQs are unable to kill a part of the bacterial population living in the center of granulomas. Our results can now inform future experimental studies.
Collapse
Affiliation(s)
- Elsje Pienaar
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jansy Sarathy
- Public Health Research Institute and New Jersey Medical School, Rutgers, Newark, New Jersey, United States of America
| | - Brendan Prideaux
- Public Health Research Institute and New Jersey Medical School, Rutgers, Newark, New Jersey, United States of America
| | - Jillian Dietzold
- Department of Medicine, Division of Infectious Disease, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Véronique Dartois
- Public Health Research Institute and New Jersey Medical School, Rutgers, Newark, New Jersey, United States of America
| | - Denise E. Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jennifer J. Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
48
|
Mishra A, Akhtar S, Jagannath C, Khan A. Pattern recognition receptors and coordinated cellular pathways involved in tuberculosis immunopathogenesis: Emerging concepts and perspectives. Mol Immunol 2017; 87:240-248. [PMID: 28514713 DOI: 10.1016/j.molimm.2017.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 01/04/2023]
Abstract
Pattern Recognition Receptors (PRRs) play a central role in the recognition of numerous pathogens, including Mycobacterium tuberculosis, resulting in activation of innate and adaptive immune responses. Besides Toll Like Receptors, C-type Lectin Receptors and Nod Like Receptors are now being recognized for their involvement in inducing immune response against M. tuberculosis infection. Although, a functional redundancy of the PRRs has also been reported in many studies, emerging evidences support the notion that a cooperative and coordinated response generated by these receptors is critical to sustain the full immune control of M. tuberculosis infection. Many of the PRRs are now found to be involved in various cellular host defenses, such as inflammasome activation, phagosome biogenesis, endosomal trafficking, and antigen processing pathways that are all very critical for an effective immune response against M. tuberculosis. In support, polymorphism in several of these receptors has also been found associated with increased susceptibility to tuberculosis in humans. Nonetheless, increasing evidences also show that in order to enhance its intracellular survival, M. tuberculosis has also evolved multiple strategies to subvert and reprogram PPR-mediated immune responses. In light of these findings, this review analyzes the interaction of bacterial and host factors at the intersections of PRR signaling pathways that could provide integrative insights for the development of better vaccines and therapeutics for tuberculosis.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Shamim Akhtar
- Department of Microbiology, Dr. D.Y. Patil College of Arts Commerce and Science, Saint Tukaram Nagar, Pimpri, Pune, 411018, India
| | - Chinnaswamy Jagannath
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Sciences Center-Houston, Houston, TX, 77030, USA
| | - Arshad Khan
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Sciences Center-Houston, Houston, TX, 77030, USA.
| |
Collapse
|
49
|
Dodd CE, Pyle CJ, Glowinski R, Rajaram MVS, Schlesinger LS. CD36-Mediated Uptake of Surfactant Lipids by Human Macrophages Promotes Intracellular Growth of Mycobacterium tuberculosis. THE JOURNAL OF IMMUNOLOGY 2016; 197:4727-4735. [PMID: 27913648 DOI: 10.4049/jimmunol.1600856] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/19/2016] [Indexed: 12/22/2022]
Abstract
Mycobacterium tuberculosis imposes a large global health burden as the airborne agent of tuberculosis. Mycobacterium tuberculosis has been flourishing in human populations for millennia and is therefore highly adapted to the lung environment. Alveolar macrophages, a major host cell niche for M. tuberculosis, are not only phagocytose inhaled microbes and particulate matter but are also crucial in catabolizing lung surfactant, a lipid-protein complex that lines the alveolar spaces. Because macrophage host defense properties can be regulated by surfactant and M. tuberculosis can use host lipids as a carbon source during infection, we sought to determine the receptor(s) involved in surfactant lipid uptake by human macrophages and whether the presence of those lipids within macrophages prior to infection with M. tuberculosis enhances bacterial growth. We show that preformed scavenger receptor CD36 is redistributed to the cell membrane following exposure to surfactant lipids and surfactant protein A. Subsequently, surfactant lipids and/or surfactant protein A enhance CD36 transcript and protein levels. We show that CD36 participates in surfactant lipid uptake by human macrophages, as CD36 knockdown reduces uptake of dipalmitoylphosphatidylcholine, the most prevalent surfactant lipid species. Finally, exposing human macrophages to surfactant lipids prior to infection augments M. tuberculosis growth in a CD36-dependent manner. Thus, we provide evidence that CD36 mediates surfactant lipid uptake by human macrophages and that M. tuberculosis exploits this function for growth.
Collapse
Affiliation(s)
- Claire E Dodd
- Department of Microbiology, The Ohio State University, Columbus, OH 43210; and.,The Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Charlie J Pyle
- The Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Rebecca Glowinski
- The Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Murugesan V S Rajaram
- The Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Larry S Schlesinger
- Department of Microbiology, The Ohio State University, Columbus, OH 43210; and .,The Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
50
|
Targeting Mycobacterium tuberculosis Tumor Necrosis Factor Alpha-Downregulating Genes for the Development of Antituberculous Vaccines. mBio 2016; 7:mBio.01023-15. [PMID: 27247233 PMCID: PMC4895118 DOI: 10.1128/mbio.01023-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor alpha (TNF) plays a critical role in the control of Mycobacterium tuberculosis, in part by augmenting T cell responses through promoting macrophage phagolysosomal fusion (thereby optimizing CD4+ T cell immunity by enhancing antigen presentation) and apoptosis (a process that can lead to cross-priming of CD8+ T cells). M. tuberculosis can evade antituberculosis (anti-TB) immunity by inhibiting host cell TNF production via expression of specific mycobacterial components. We hypothesized that M. tuberculosis mutants with an increased capacity to induce host cell TNF production (TNF-enhancing mutants) and thus with enhanced immunogenicity can be useful for vaccine development. To identify mycobacterial genes that regulate host cell TNF production, we used a TNF reporter macrophage clone to screen an H37Rv M. tuberculosis cosmid library constructed in M. smegmatis. The screen has identified a set of TNF-downregulating mycobacterial genes that, when deleted in H37Rv, generate TNF-enhancing mutants. Analysis of mutants disrupted for a subset of TNF-downregulating genes, annotated to code for triacylglycerol synthases and fatty acyl-coenzyme A (acyl-CoA) synthetase, enzymes that concern lipid biosynthesis and metabolism, has revealed that these strains can promote macrophage phagolysosomal fusion and apoptosis better than wild-type (WT) bacilli. Immunization of mice with the TNF-enhancing M. tuberculosis mutants elicits CD4+ and CD8+ T cell responses that are superior to those engendered by WT H37Rv. The results suggest that TNF-upregulating M. tuberculosis genes can be targeted to enhance the immunogenicity of mycobacterial strains that can serve as the substrates for the development of novel anti-TB vaccines. One way to control tuberculosis (TB), which remains a major global public health burden, is by immunization with an effective vaccine. The efficacy of Mycobacterium bovis BCG, the only currently approved TB vaccine, is inconsistent. Tumor necrosis factor alpha (TNF) is a cytokine that plays an important role in controlling TB. M. tuberculosis, the causative agent of TB, can counter this TNF-based defense by decreasing host cell TNF production. This study identified M. tuberculosis genes that can mediate inhibition of TNF production by macrophage (an immune cell critical to the control of TB). We have knocked out a number of these genes to generate M. tuberculosis mutants that can enhance macrophage TNF production. Immunization with these mutants in mice triggered a T cell response stronger than that elicited by the parental bacillus. Since T cell immunity is pivotal in controlling M. tuberculosis, the TNF-enhancing mutants can be used to develop novel TB vaccines.
Collapse
|