1
|
Pal A, Maity P, Azaharuddin M, Chakrabarty S, Nandi S, Das A, Ghosh S, Sett U, Bandopadhyay P, Nandy S, Chowdhury J, Basu T. Silver nano-colloid particles embedded on Langmuir-Blodgett film matrix of stearic acid serving as a SERS active sensor for detecting the herbicide 'Paraquat'. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125514. [PMID: 39622119 DOI: 10.1016/j.saa.2024.125514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 01/29/2025]
Abstract
The herbicide Paraquat, widely used for efficient weed control, poses significant health risks to humans viz., severe toxicity to vital organs and induction of neurodegenerative disorder like Parkinson's disease, underscoring the urgent need for developing sensitive detection methods for the herbicide. This study aims at fabricating a novel SERS-active substrate SA-LB/Ag (silver nano-colloids adsorbed on Langmuir-Blodgett film of stearic acid), as a SERS based sensor having high sensitivity, uniformity, and reproducibility to detect ultra-trace amounts of paraquat. The sensor was built up by immersing bilayer LB films of SA in silver nano-colloid suspension, prepared by mixing silver nitrate and sodium borohydride with vigorous stirring. Quantitative evaluations establish a significant linear regression across the concentration spectrum (100 ppm to 75 ppb) of paraquat, with a remarkable 15 ppb limit of detection (LOD) value. In practical terms, this SERS based sensor exhibits notable proficiency in detecting paraquat residues in (a) agricultural water from rice and vegetable fields and environmental water from adjoining water-logged areas, and (b) soil extracts of the agricultural fields. Moreover, the minimum toxic concentration of paraquat at the developmental stage of zebrafish embryos and larvae is found to be approximately 20 ppb, implying that the SA-LB/Ag sensor is sensitive enough to determine the limiting toxic level of paraquat for animal systems. Thus, the designed sensor holds far-reaching implications in ensuring food safety, monitoring the environment, and framing regulatory measures for paraquat use.
Collapse
Affiliation(s)
- Anabadya Pal
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Priyabrata Maity
- Department of Physics, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Md Azaharuddin
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Soumajit Chakrabarty
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Susmita Nandi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Abhijit Das
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sourav Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Upasana Sett
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Pathikrit Bandopadhyay
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sanchita Nandy
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Joydeep Chowdhury
- Department of Physics, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Tarakdas Basu
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
2
|
Nurrohman DT, Cagayan GRA, Chiu NF. Characterization of SPR and cavity modes in one-dimensional (1D) gold nanograting chips: figure of merit analysis and implications for Raman signal enhancement. OPTICS EXPRESS 2025; 33:1542-1555. [PMID: 39876325 DOI: 10.1364/oe.547581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025]
Abstract
The optical properties of the 1D nanograting chip have been explored based on computational and experimental studies. Dispersion curve analysis demonstrates cavity and surface plasmon modes in the 1D nanograting chips with periods of 400 nm and 800 nm. In this grating period range, the cut-off period is at a grating period of 644 nm under excitation with a wavelength of 670 nm. Among the two investigated chips, the chip with a grating period of 800 nm is more promising for application as a dual-mode sensor based on SPR/Raman. By using the angle interrogation method, this chip has a figure of merit (FOM), which is 3.23 times higher than the 1D nanograting chip with a period of 400 nm. In the same system, Raman measurements have also been performed using Rhodamine 6 G (R6 G) as the standard material. The experimental results show that the Raman signal measured at the grating resonance angle shows higher intensity than the Raman measurement without Surface Plasmon Resonance (SPR) sensor. SPR-induced electromagnetic enhancement plays an important role in amplifying Raman signals in surface-enhanced Raman scattering (SERS) and this approach is very promising to be further developed to obtain sensors that are not only sensitive but also accurate.
Collapse
|
3
|
Xiao Y, Lan L, Ni Z, Tang X, Li G, Zhao X, Hao Q, Fan X, Qiu T. MXene-Based Micromotors: Active Molecular Enrichment and Selective Raman Enhancement. J Phys Chem Lett 2024; 15:12535-12542. [PMID: 39671145 DOI: 10.1021/acs.jpclett.4c03017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
This Letter introduces MXene-based rod-like micromotors, consisting of assembled Fe3O4@Ti2C core-shell nanospheres, that leverage external magnetic fields for active molecular enrichment and selective surface-enhanced Raman scattering (SERS) sensing. These micromotors enhance SERS performance by concentrating target molecules directly onto MXene surfaces during movement, enabling rapid and precise detection. Our investigation reveals how these micromotors optimize SERS through effective molecular manipulation and explores the selective Raman enhancement facilitated by the MXene-based platforms, demonstrating their significant potential in analytical applications.
Collapse
Affiliation(s)
- Yunfang Xiao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Leilei Lan
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China
| | - Ziheng Ni
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China
| | - Xiao Tang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Guoqun Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Xing Zhao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Qi Hao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Xingce Fan
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Teng Qiu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
4
|
Ushkov A, Dyubo D, Belozerova N, Kazantsev I, Yakubovsky D, Syuy A, Tikhonowski GV, Tselikov D, Martynov I, Ermolaev G, Grudinin D, Melentev A, Popov AA, Chernov A, Bolshakov AD, Vyshnevyy AA, Arsenin A, Kabashin AV, Tselikov GI, Volkov V. Tungsten Diselenide Nanoparticles Produced via Femtosecond Ablation for SERS and Theranostics Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:4. [PMID: 39791764 PMCID: PMC11721788 DOI: 10.3390/nano15010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
Due to their high refractive index, record optical anisotropy and a set of excitonic transitions in visible range at a room temperature, transition metal dichalcogenides have gained much attention. Here, we adapted a femtosecond laser ablation for the synthesis of WSe2 nanoparticles (NPs) with diameters from 5 to 150 nm, which conserve the crystalline structure of the original bulk crystal. This method was chosen due to its inherently substrate-additive-free nature and a high output level. The obtained nanoparticles absorb light stronger than the bulk crystal thanks to the local field enhancement, and they have a much higher photothermal conversion than conventional Si nanospheres. The highly mobile colloidal state of produced NPs makes them flexible for further application-dependent manipulations, which we demonstrated by creating substrates for SERS sensors.
Collapse
Affiliation(s)
- Andrei Ushkov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.U.); (D.D.); (N.B.); (D.Y.); (A.S.); (D.T.); (I.M.); (A.D.B.); (A.A.V.); (A.A.)
| | - Dmitriy Dyubo
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.U.); (D.D.); (N.B.); (D.Y.); (A.S.); (D.T.); (I.M.); (A.D.B.); (A.A.V.); (A.A.)
| | - Nadezhda Belozerova
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.U.); (D.D.); (N.B.); (D.Y.); (A.S.); (D.T.); (I.M.); (A.D.B.); (A.A.V.); (A.A.)
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - Ivan Kazantsev
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates; (I.K.); (G.V.T.); (G.E.); (D.G.); (G.I.T.)
| | - Dmitry Yakubovsky
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.U.); (D.D.); (N.B.); (D.Y.); (A.S.); (D.T.); (I.M.); (A.D.B.); (A.A.V.); (A.A.)
| | - Alexander Syuy
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.U.); (D.D.); (N.B.); (D.Y.); (A.S.); (D.T.); (I.M.); (A.D.B.); (A.A.V.); (A.A.)
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates; (I.K.); (G.V.T.); (G.E.); (D.G.); (G.I.T.)
| | - Gleb V. Tikhonowski
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates; (I.K.); (G.V.T.); (G.E.); (D.G.); (G.I.T.)
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), Moscow 115409, Russia;
| | - Daniil Tselikov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.U.); (D.D.); (N.B.); (D.Y.); (A.S.); (D.T.); (I.M.); (A.D.B.); (A.A.V.); (A.A.)
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), Moscow 115409, Russia;
| | - Ilya Martynov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.U.); (D.D.); (N.B.); (D.Y.); (A.S.); (D.T.); (I.M.); (A.D.B.); (A.A.V.); (A.A.)
| | - Georgy Ermolaev
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates; (I.K.); (G.V.T.); (G.E.); (D.G.); (G.I.T.)
| | - Dmitriy Grudinin
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates; (I.K.); (G.V.T.); (G.E.); (D.G.); (G.I.T.)
| | - Alexander Melentev
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.U.); (D.D.); (N.B.); (D.Y.); (A.S.); (D.T.); (I.M.); (A.D.B.); (A.A.V.); (A.A.)
| | - Anton A. Popov
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), Moscow 115409, Russia;
| | - Alexander Chernov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.U.); (D.D.); (N.B.); (D.Y.); (A.S.); (D.T.); (I.M.); (A.D.B.); (A.A.V.); (A.A.)
| | - Alexey D. Bolshakov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.U.); (D.D.); (N.B.); (D.Y.); (A.S.); (D.T.); (I.M.); (A.D.B.); (A.A.V.); (A.A.)
- Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 7–9, St. Petersburg 199034, Russia
- Center for Nanotechnologies, Alferov University, Khlopina 8/3, St. Petersburg 194021, Russia
- Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan 0025, Armenia
| | - Andrey A. Vyshnevyy
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.U.); (D.D.); (N.B.); (D.Y.); (A.S.); (D.T.); (I.M.); (A.D.B.); (A.A.V.); (A.A.)
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates; (I.K.); (G.V.T.); (G.E.); (D.G.); (G.I.T.)
| | - Aleksey Arsenin
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.U.); (D.D.); (N.B.); (D.Y.); (A.S.); (D.T.); (I.M.); (A.D.B.); (A.A.V.); (A.A.)
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates; (I.K.); (G.V.T.); (G.E.); (D.G.); (G.I.T.)
- Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan 0025, Armenia
| | - Andrei V. Kabashin
- National Center for Scientific Research, LP3, Aix-Marseille University, CNRS, 13288 Marseille, France;
| | - Gleb I. Tselikov
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates; (I.K.); (G.V.T.); (G.E.); (D.G.); (G.I.T.)
| | - Valentyn Volkov
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates; (I.K.); (G.V.T.); (G.E.); (D.G.); (G.I.T.)
| |
Collapse
|
5
|
Mahanty S, Majumder S, Paul R, Boroujerdi R, Valsami-Jones E, Laforsch C. A review on nanomaterial-based SERS substrates for sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:174252. [PMID: 38942304 DOI: 10.1016/j.scitotenv.2024.174252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/06/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024]
Abstract
The agricultural sector plays a pivotal role in driving the economy of many developing countries. Any dent in this economical structure may have a severe impact on a country's population. With rising climate change and increasing pollution, the agricultural sector is experiencing significant damage. Over time this cumulative damage will affect the integrity of food crops and create food security issues around the world. Therefore, an early warning system is needed to detect possible stress on food crops. Here we present a review of the recent developments in nanomaterial-based Surface Enhanced Raman Spectroscopy (SERS) substrates which could be utilized to monitor agricultural crop responses to natural and anthropogenic stress. Initially, our review delves into diverse and cost-effective strategies for fabricating SERS substrates, emphasizing their intelligent utilization across various agricultural scenarios. In the second phase of our review, we spotlight the specific application of SERS in addressing critical food security issues. By detecting nutrients, hormones, and effector molecules in plants, SERS provides valuable insights into plant health. Furthermore, our exploration extends to the detection of contaminants, chemicals, and foodborne pathogens within plants, showcasing the versatility of SERS in ensuring food safety. The cumulative knowledge derived from these discussions illustrates the transformative potential of SERS in bolstering the agricultural economy. By enhancing precision in nutrient management, monitoring plant health, and enabling rapid detection of harmful substances, SERS emerges as a pivotal tool in promoting sustainable and secure agricultural practices. Its integration into agricultural processes not only augments productivity but also establishes a robust defence against potential threats to crop yield and food quality. As SERS continues to evolve, its role in shaping the future of agriculture becomes increasingly pronounced, promising a paradigm shift in how we approach and address challenges in food production and safety.
Collapse
Affiliation(s)
- Shouvik Mahanty
- Department of Atomic Energy, Saha Institute of Nuclear Physics, Sector 1, AF Block, Bidhannagar, Kolkata 700064, West Bengal, India
| | - Santanu Majumder
- Department of Life and Environmental Sciences, Bournemouth University (Talbot Campus), Fern Barrow, Poole BH12 5BB, UK.
| | - Richard Paul
- Department of Life and Environmental Sciences, Bournemouth University (Talbot Campus), Fern Barrow, Poole BH12 5BB, UK
| | - Ramin Boroujerdi
- Department of Life and Environmental Sciences, Bournemouth University (Talbot Campus), Fern Barrow, Poole BH12 5BB, UK
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christian Laforsch
- Department of Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
6
|
Aboualigaledari N, Jayapalan A, Tukur P, Liu M, Tukur F, Zhang Y, Ducatte G, Verma M, Tarus J, Hunyadi Murph SE, Wei J. Surface-enhanced Raman scattering enhancement using a hybrid gold nanoparticles@carbon nanodot substrate for herbicide detection. Analyst 2024; 149:5277-5286. [PMID: 39269438 DOI: 10.1039/d4an00649f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The widespread distribution of herbicides in the environment poses a significant risk to human health and wildlife. Surface-enhanced Raman scattering (SERS) has emerged as a powerful technique for detecting and analyzing herbicides. However, developing a low-cost, highly sensitive, reproducible, stable, and Raman-active nanostructured substrate for herbicide detection remains a particular challenge. In this research, a nanohybrid substrate consisting of gold nanoparticles@carbon nanodots (AuNPs@CNDs) was synthesized by reducing HAuCl4 in the presence of CNDs at 100 °C. The optical, chemical, and physical properties of CNDs, AuNPs, and the hybrid AuNPs@CND substrates were thoroughly investigated using various techniques including UV-vis spectrometry, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and CytoViva darkfield and hyperspectral imaging. The SERS effect of the substrates was evaluated using rhodamine 6G (Rh6G), a Raman-active probe, and two groups of herbicides containing mesotrione or S-metolachlor. The results demonstrated a significant signal amplification in the SERS spectra of Rh6G and herbicide molecule detection using the AuNPs@CND substrate compared to bare CNDs and AuNPs alone. This suggests that the nanohybrid AuNPs@CND SERS substrate holds promise for the detection of herbicides and other organic compounds in environmental applications.
Collapse
Affiliation(s)
- Naghmeh Aboualigaledari
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA.
| | - Anitha Jayapalan
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA.
| | - Panesun Tukur
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA.
| | - Mengxin Liu
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA.
| | - Frank Tukur
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA.
| | - Yanling Zhang
- Syngenta Crop Protection Inc., Greensboro, NC 27409, USA
| | - Gerald Ducatte
- Syngenta Crop Protection Inc., Greensboro, NC 27409, USA
| | - Madan Verma
- Syngenta Crop Protection Inc., Greensboro, NC 27409, USA
| | - Janet Tarus
- Syngenta Crop Protection Inc., Greensboro, NC 27409, USA
| | - Simona E Hunyadi Murph
- Environmental and Legacy Management Department, Savannah River National Laboratory (SRNL), Aiken, SC, 29808, USA.
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA.
| |
Collapse
|
7
|
Prakash O, T A, Nagpal P, Perumal V, Karak S, Singh UB, Ghosh S. Highly sensitive label-free biomolecular detection using Au-WS 2 nanohybrid based SERS substrates. NANOSCALE ADVANCES 2024:d4na00464g. [PMID: 39372440 PMCID: PMC11447697 DOI: 10.1039/d4na00464g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Recent advancements in nanotechnology have led to the development of surface-enhanced Raman spectroscopy (SERS) based rapid and low-cost technologies for ultra-sensitive label-free detection and identification of molecular analytes. Herein, we utilized the synergistic plasmonic and chemical enhancement effects of Au-WS2 nanohybrids to attain the high-intensity Raman signals of targeted analytes. To develop these nanohybrids, a series of monodispersed Au nanoparticles (NPs) of varying diameters from 20 to 80 nm was chemically synthesized and successively blended with liquid-phase exfoliated WS2 nano-flakes of average lateral size 90 nm. They provided a maximum enhancement factor (EF) of ∼1.80 × 109 corresponding to the characteristic peaks at 1364 cm-1 and 1512 cm-1 for R6G analyte molecules. Theoretical studies based on the finite-difference time-domain simulations on Au-WS2 nanohybrid systems revealed a huge field-intensity enhancement with an EF of more than 1000 at the plasmonic hotspots, which was induced by the strong coupling of individual plasmon oscillations of the adjacent Au NPs upon light interactions. These electromagnetic effects along with the chemical enhancement effects of WS2 nanoflakes were found to be mainly responsible for such huge enhancement in Raman signals. Furthermore, these hybrids were successfully employed for achieving highly sensitive detection of the E. coli ATCC 35218 bacterial strain with a concentration of 104 CFU mL-1 in phosphate-buffered saline media, indicating their real capabilities for practical scenarios. The findings of the present study will indeed provide vital information in the development of innovative nanomaterial-based biosensors, that will offer new possibilities for addressing critical public health concerns.
Collapse
Affiliation(s)
- Om Prakash
- Nanostech Laboratory, Department of Physics, Indian Institute of Technology Delhi New Delhi 110016 India
| | - Abhijith T
- Organic and Hybrid Electronic Device Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Delhi New Delhi 110016 India
- Department of Nanoscience and Technology, PSG Institute of Advanced Studies Peelamedu Coimbatore Tamil Nadu 641004 India
| | - Priya Nagpal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi New Delhi 110016 India
| | - Vivekanandan Perumal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi New Delhi 110016 India
| | - Supravat Karak
- Organic and Hybrid Electronic Device Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Delhi New Delhi 110016 India
| | - Udai B Singh
- Department of Physics, Deen Dayal Upadhyaya Gorakhpur University Gorakhpur 273009 India
| | - Santanu Ghosh
- Nanostech Laboratory, Department of Physics, Indian Institute of Technology Delhi New Delhi 110016 India
| |
Collapse
|
8
|
Zheng D, Kashif MF, Piscopo L, Collard L, Ciracì C, De Vittorio M, Pisanello F. Tunable Nanoislands Decorated Tapered Optical Fibers Reveal Concurrent Contributions in Through-Fiber SERS Detection. ACS PHOTONICS 2024; 11:3774-3783. [PMID: 39310299 PMCID: PMC11413926 DOI: 10.1021/acsphotonics.4c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024]
Abstract
Creating plasmonic nanoparticles on a tapered optical fiber (TF) tip enables a remote surface-enhanced Raman scattering (SERS) sensing probe, ideal for challenging sampling scenarios like biological tissues, site-specific cells, on-site environmental monitoring, and deep brain structures. However, nanoparticle patterns fabricated from current bottom-up methods are mostly random, making geometry control difficult. Uneven statistical distribution, clustering, and multilayer deposition introduce uncertainty in correlating device performance with morphology. Ultimately, this limits the design of the best-performance remote SERS sensing probe. Here we employ a tunable solid-state dewetting method to create densely packed monolayer Au nanoislands with varied geometric parameters in direct contact with the silica TF surface. These patterns exhibit analyzable nanoparticle sizes, densities, and uniform distribution across the entire taper surface, enabling a systematic investigation of particle size, density, and analyte effects on the SERS performance of the through-fiber detection system. The study is focused on the SERS response of a widely employed benchmark molecule, rhodamine 6G (R6G), and serotonin, a highly relevant neurotransmitter for the neuroscience field. The numerical simulations and limit of detection (LOD) experiments on R6G show that the increase of the total near-field enhancement volume promotes the SERS sensitivity of the probe. However, we observed a different behavior for serotonin linked to its interaction with the nanoparticle's surface. The obtained LOD is as low as 10-7 M, a value not achieved so far in a through-fiber detection scheme. Therefore, our work offers a strategy to design nanoparticle-based remote SERS sensing probes and provides new clues to discover and understand intricate plasmonic-driven chemical reactions.
Collapse
Affiliation(s)
- Di Zheng
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- State
Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Fayyaz Kashif
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
| | - Linda Piscopo
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- Dipartimento
di Ingegneria Dell’Innovazione, Università
del Salento, 73100 Lecce, Italy
| | - Liam Collard
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- RAISE
Ecosystem, 16122 Genova, Italy
| | - Cristian Ciracì
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
| | - Massimo De Vittorio
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- Dipartimento
di Ingegneria Dell’Innovazione, Università
del Salento, 73100 Lecce, Italy
- RAISE
Ecosystem, 16122 Genova, Italy
| | - Ferruccio Pisanello
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- RAISE
Ecosystem, 16122 Genova, Italy
| |
Collapse
|
9
|
Tjardts T, Elis M, Shondo J, Voß L, Schürmann U, Faupel F, Kienle L, Veziroglu S, Aktas OC. Self-Modification of Defective TiO 2 under Controlled H 2/Ar Gas Environment and Dynamics of Photoinduced Surface Oxygen Vacancies. CHEMSUSCHEM 2024; 17:e202400046. [PMID: 38739088 DOI: 10.1002/cssc.202400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/18/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
In recent years, defective TiO2 has caught considerable research attention because of its potential to overcome the limits of low visible light absorption and fast charge recombination present in pristine TiO2 photocatalysts. Among the different synthesis conditions for defective TiO2, ambient pressure hydrogenation with the addition of Ar as inert gas for safety purposes has been established as an easy method to realize the process. Whether the Ar gas might still influence the resulting photocatalytic properties and defective surface layer remains an open question. Here, we reveal that the gas flow ratio between H2 and Ar has a crucial impact on the defective structure as well as the photocatalyic activity of TiO2. In particular, transmission electron microscopy (TEM) in combination with electron energy loss spectroscopy (EELS) revealed a larger width of the defective surface layer when using a H2/Ar (50 %-50 %) gas mixture over pure H2. A possible reason could be the increase in dynamic viscosity of the gas mixture when Ar is added. Additionally, photoinduced enhanced Raman spectroscopy (PIERS) is implemented as a complementary approach to investigate the dynamics of the defective structures under ambient conditions which cannot be effortlessly realized by vacuum techniques like TEM.
Collapse
Affiliation(s)
- Tim Tjardts
- Chair for Multicomponent Materials, Department of Materials Science, Kiel University, Faculty of Engineering, Kaiserstraße 2, 24143, Kiel, Germany (Dr. Salih Veziroglu) (Prof. Dr.-Ing. Oral Cenk Aktas
| | - Marie Elis
- Synthesis and Real Structure, Department of Materials Science, Kiel University, Faculty of Engineering, Kaiserstraße 2, 24143, Kiel, Germany
| | - Josiah Shondo
- Chair for Multicomponent Materials, Department of Materials Science, Kiel University, Faculty of Engineering, Kaiserstraße 2, 24143, Kiel, Germany (Dr. Salih Veziroglu) (Prof. Dr.-Ing. Oral Cenk Aktas
| | - Lennart Voß
- Synthesis and Real Structure, Department of Materials Science, Kiel University, Faculty of Engineering, Kaiserstraße 2, 24143, Kiel, Germany
| | - Ulrich Schürmann
- Synthesis and Real Structure, Department of Materials Science, Kiel University, Faculty of Engineering, Kaiserstraße 2, 24143, Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian Albrechts-Platz 4, 24118, Kiel, Germany
| | - Franz Faupel
- Chair for Multicomponent Materials, Department of Materials Science, Kiel University, Faculty of Engineering, Kaiserstraße 2, 24143, Kiel, Germany (Dr. Salih Veziroglu) (Prof. Dr.-Ing. Oral Cenk Aktas
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian Albrechts-Platz 4, 24118, Kiel, Germany
| | - Lorenz Kienle
- Synthesis and Real Structure, Department of Materials Science, Kiel University, Faculty of Engineering, Kaiserstraße 2, 24143, Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian Albrechts-Platz 4, 24118, Kiel, Germany
| | - Salih Veziroglu
- Chair for Multicomponent Materials, Department of Materials Science, Kiel University, Faculty of Engineering, Kaiserstraße 2, 24143, Kiel, Germany (Dr. Salih Veziroglu) (Prof. Dr.-Ing. Oral Cenk Aktas
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian Albrechts-Platz 4, 24118, Kiel, Germany
| | - Oral Cenk Aktas
- Chair for Multicomponent Materials, Department of Materials Science, Kiel University, Faculty of Engineering, Kaiserstraße 2, 24143, Kiel, Germany (Dr. Salih Veziroglu) (Prof. Dr.-Ing. Oral Cenk Aktas
| |
Collapse
|
10
|
González-Martínez E, Beganovic NE, Moran-Mirabal JM. Benchtop Fabricated Nano-Roughened Microstructured Electrodes for Electrochemical and Surface-Enhanced Raman Scattering Sensing. SMALL METHODS 2024; 8:e2301215. [PMID: 38678536 DOI: 10.1002/smtd.202301215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Tailoring a material's surface with hierarchical structures from the micro- to the nanoscale is key for fabricating highly sensitive detection platforms. To achieve this, the fabrication method should be simple, inexpensive, and yield materials with a high density of surface features. Here, using benchtop fabrication techniques, gold surfaces with hierarchically structured roughness are generated for sensing applications. Hierarchical gold electrodes are prepared on pre-stressed polystyrene substrates via electroless deposition and amperometric pulsing. Electrodes fabricated using 1 mm H[AuCl₄] and roughened with 80 pulses revealed the highest electroactive surface area. These electrodes are used for enzyme-free detection of glucose in the presence of bovine serum albumin and achieved a limit of detection of 0.36 mm, below glucose concentrations in human blood. The surfaces nanoroughened with 100 pulses also showed excellent surface-enhanced Raman scattering (SERS) response for the detection of rhodamine 6G, with an enhancement factor of ≈2 × 106 compared to detection in solution, and for the detection of a self-assembled monolayer of thiophenol, with an enhancement factor of ≈30 compared to the response from microstructured gold surfaces. It is envisioned that the simplicity and low fabrication cost of these gold-roughened structures will expedite the development of electrochemical and SERS sensing devices.
Collapse
Affiliation(s)
- Eduardo González-Martínez
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Nadine E Beganovic
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Jose M Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
- Centre for Advanced Light Microscopy, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
- Brockhouse Institute for Materials Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| |
Collapse
|
11
|
Puravankara V, Manjeri A, Kulkarni MM, Kitahama Y, Goda K, Dwivedi PK, George SD. A Wettability Contrast SERS Droplet Assay for Multiplexed Analyte Detection. Anal Chem 2024; 96:9141-9150. [PMID: 38779970 PMCID: PMC11154665 DOI: 10.1021/acs.analchem.4c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Droplet assay platforms have emerged as a significant methodology, providing distinct advantages such as sample compartmentalization, high throughput, and minimal analyte consumption. However, inherent complexities, especially in multiplexed detection, remain a challenge. We demonstrate a novel strategy to fabricate a plasmonic droplet assay platform (PDAP) for multiplexed analyte detection, enabling surface-enhanced Raman spectroscopy (SERS). PDAP efficiently splits a microliter droplet into submicroliter to nanoliter droplets under gravity-driven flow by wettability contrast between two distinct regions. The desired hydrophobicity and adhesive contrast between the silicone oil-grafted nonadhesive hydrophilic zone with gold nanoparticles is attained through (3-aminopropyl) triethoxysilane (APTES) functionalization of gold nanoparticles (AuNPs) using a scotch-tape mask. The wettability contrast surface facilitates the splitting of aqueous droplets with various surface tensions (ranging from 39.08 to 72 mN/m) into ultralow volumes of nanoliters. The developed PDAP was used for the multiplexed detection of Rhodamine 6G (Rh6G) and Crystal Violet (CV) dyes. The limit of detection for 120 nL droplet using PDAP was found to be 134 pM and 10.1 nM for Rh6G and CV, respectively. These results align with those from previously reported platforms, highlighting the comparable sensitivity of the developed PDAP. We have also demonstrated the competence of PDAP by testing adulterant spiked milk and obtained very good sensitivity. Thus, PDAP has the potential to be used for the multiplexed screening of food adulterants.
Collapse
Affiliation(s)
- Vineeth Puravankara
- Centre
for Applied Nanosciences (CAN), Department of Atomic and Molecular
Physics, Manipal Academy of Higher Education, Manipal 576104, India
| | - Aravind Manjeri
- Centre
for Applied Nanosciences (CAN), Department of Atomic and Molecular
Physics, Manipal Academy of Higher Education, Manipal 576104, India
| | - Manish M. Kulkarni
- Centre
for Nanosciences, Indian Institute of Technology
Kanpur, Kanpur 208016, India
| | - Yasutaka Kitahama
- Department
of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Keisuke Goda
- Department
of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Prabhat K. Dwivedi
- Centre
for Nanosciences, Indian Institute of Technology
Kanpur, Kanpur 208016, India
| | - Sajan D. George
- Centre
for Applied Nanosciences (CAN), Department of Atomic and Molecular
Physics, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
12
|
Yuan W, Jiao K, Yuan H, Sun H, Lim EG, Mitrovic I, Duan S, Cong S, Yong R, Li F, Song P. Metal-Organic Frameworks/Heterojunction Structures for Surface-Enhanced Raman Scattering with Enhanced Sensitivity and Tailorability. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26374-26385. [PMID: 38716706 PMCID: PMC11129117 DOI: 10.1021/acsami.4c01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/24/2024]
Abstract
Metal-organic frameworks (MOFs), which are composed of crystalline microporous materials with metal ions, have gained considerable interest as promising substrate materials for surface-enhanced Raman scattering (SERS) detection via charge transfer. Research on MOF-based SERS substrates has advanced rapidly because of the MOFs' excellent structural tunability, functionalizable pore interiors, and ultrahigh surface-to-volume ratios. Compared with traditional noble metal SERS plasmons, MOFs exhibit better biocompatibility, ease of operation, and tailorability. However, MOFs cannot produce a sufficient limit of detection (LOD) for ultrasensitive detection, and therefore, developing an ultrasensitive MOF-based SERS substrate is imperative. To the best of our knowledge, this is the first study to develop an MOFs/heterojunction structure as an SERS enhancing material. We report an in situ ZIF-67/Co(OH)2 heterojunction-based nanocellulose paper (nanopaper) plate (in situ ZIF-67 nanoplate) as a device with an LOD of 0.98 nmol/L for Rhodamine 6G and a Raman enhancement of 1.43 × 107, which is 100 times better than that of the pure ZIF-67-based SERS substrate. Further, we extend this structure to other types of MOFs and develop an in situ HKUST-1 nanoplate (with HKUST-1/Cu(OH)2). In addition, we demonstrate that the formation of heterojunctions facilitates efficient photoinduced charge transfer for SERS detection by applying the Mx(OH)y-assisted (where M = Co, Cu, or other metals) MOFs/heterojunction structure. Finally, we successfully demonstrate the application of medicine screening on our nanoplates, specifically for omeprazole. The nanoplates we developed still maintain the tailorability of MOFs and perform high anti-interference ability. Our approach provides customizing options for MOF-based SERS detection, catering to diverse possibilities in future research and applications.
Collapse
Affiliation(s)
- Wenwen Yuan
- School
of Advanced Technology, Xi’an Jiaotong
- Liverpool University, Suzhou 215123, China
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 7ZX, U.K.
- State
Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Keran Jiao
- School
of Advanced Technology, Xi’an Jiaotong
- Liverpool University, Suzhou 215123, China
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 7ZX, U.K.
| | - Hang Yuan
- School
of Advanced Technology, Xi’an Jiaotong
- Liverpool University, Suzhou 215123, China
| | - Hongzhao Sun
- School
of Physical Science and Technology, Suzhou
University of Science and Technology, Suzhou 215009, China
| | - Eng Gee Lim
- School
of Advanced Technology, Xi’an Jiaotong
- Liverpool University, Suzhou 215123, China
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 7ZX, U.K.
| | - Ivona Mitrovic
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 7ZX, U.K.
| | - Sixuan Duan
- School
of Advanced Technology, Xi’an Jiaotong
- Liverpool University, Suzhou 215123, China
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 7ZX, U.K.
- Key
Laboratory of Bionic Engineering, Jilin
University, Changchun 130022, China
| | - Shan Cong
- School of
Nano-Tech and Nano-Bionics, University of
Science and Technology of China, Suzhou 215123, China
| | - Ruiqi Yong
- School
of Advanced Technology, Xi’an Jiaotong
- Liverpool University, Suzhou 215123, China
| | - Feifan Li
- School of
Nano-Tech and Nano-Bionics, University of
Science and Technology of China, Suzhou 215123, China
| | - Pengfei Song
- School
of Advanced Technology, Xi’an Jiaotong
- Liverpool University, Suzhou 215123, China
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 7ZX, U.K.
| |
Collapse
|
13
|
Mahadev AP, Kavitha C, Perutil JR, John NS, Sudheeksha HC. Flower-like Ag-decked non-stoichiometric Bi 2O 3-x/rGO hybrid nanocomposite SERS substrates for an effective detection of Rhodamine 6G dye molecules. RSC Adv 2024; 14:11951-11968. [PMID: 38623299 PMCID: PMC11017965 DOI: 10.1039/d4ra01286k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
In early years, SERS-active substrates were generally noble metals. However, their practical applications were limited due to their poor biocompatibility, low uniformity and high cost. Recently, the utilization of semiconductor SERS-active substrates has greatly expanded the applications of SERS in many fields. However, metal-free SERS-active substrates have a low enhancement factor (EF), which can be overcome by adjusting their oxygen deficiency or through the effective preparation of non-stoichiometric semiconducting oxide materials. This is the key strategy and may work as an efficient and simple way to achieve high sensitivity and obtain an enhancement factor (G-factor) comparable to that of noble metals. Here, we report the preparation of flower-like rGO-Bi2O3/Bi2O2.75 and rGO-Ag-Bi2O3/Bi2O2.75 hybrid thin film nanocomposites using a liquid/liquid interface method (LLI) for the first time. In addition to the synergic effect of different enhancement mechanisms, the 3-D flower-like morphology of the substrate shows more favourable properties to improve the G-factor due to the existence of more hotspots. The rGO-Ag-Bi2O3/Bi2O2.75 hybrid thin-film nanocomposites show an EF of 1.8 × 109 with a detection ability of up to 1 nM towards Rhodamine 6G (R6G), which is highly toxic to humans and the aquatic environment.
Collapse
Affiliation(s)
- Awati Prema Mahadev
- Department of Chemistry R&D, Physics R&D, Centre for Advanced Materials Research, B.M.S. Institute of Technology & Management, An Autonomous Under Visvesvaraya Technological University Bangalore 560064 India
| | - C Kavitha
- Department of Chemistry R&D, Physics R&D, Centre for Advanced Materials Research, B.M.S. Institute of Technology & Management, An Autonomous Under Visvesvaraya Technological University Bangalore 560064 India
| | - Jil Rose Perutil
- Centre for Nano and Soft Matter Sciences Shivanapura Bengaluru 562162 India
| | - Neena S John
- Centre for Nano and Soft Matter Sciences Shivanapura Bengaluru 562162 India
| | - H C Sudheeksha
- Horiba India Pvt. Ltd-IISc Industry Unit Bangalore 560012 India
| |
Collapse
|
14
|
Kim C, Hong B, Choi W. Surface-Enhanced Raman Spectroscopy (SERS) Investigation of a 3D Plasmonic Architecture Utilizing Ag Nanoparticles-Embedded Functionalized Carbon Nanowall. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2617. [PMID: 37836258 PMCID: PMC10574791 DOI: 10.3390/nano13192617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a highly sensitive technique for detecting DNA, proteins, and single molecules. The design of SERS substrates plays a crucial role, with the density of hotspots being a key factor in enhancing Raman spectra. In this study, we employed carbon nanowall (CNW) as the nanostructure and embedded plasmonic nanoparticles (PNPs) to increase hotspot density, resulting in robust Raman signals. To enhance the CNW's performance, we functionalized it via oxygen plasma and embedded silver nanoparticles (Ag NPs). The authors evaluated the substrate using rhodamine 6G (R6G) as a model target molecule, ranging in concentration from 10-6 M to 10-10 M for a 4 min exposure. Our analysis confirmed a proportional increase in Raman signal intensity with an increase in concentration. The CNW's large specific surface area and graphene domains provide dense hotspots and high charge mobility, respectively, contributing to both the electromagnetic mechanism (EM) and the chemical mechanism (CM) of SERS.
Collapse
Affiliation(s)
- Chulsoo Kim
- Department of Electrical Engineering, Hanbat National University, Daejeon 34158, Republic of Korea;
| | - Byungyou Hong
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Wonseok Choi
- Department of Electrical Engineering, Hanbat National University, Daejeon 34158, Republic of Korea;
| |
Collapse
|
15
|
Gilic M, Ghobara M, Reissig L. Tuning SERS Signal via Substrate Structuring: Valves of Different Diatom Species with Ultrathin Gold Coating. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101594. [PMID: 37242011 DOI: 10.3390/nano13101594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
The discovered light modulation capabilities of diatom silicious valves make them an excellent toolkit for photonic devices and applications. In this work, a reproducible surface-enhanced Raman scattering (SERS) enhancement was achieved with hybrid substrates employing diatom silica valves coated with an ultrathin uniform gold film. Three structurally different hybrid substrates, based on the valves of three dissimilar diatom species, have been compared to elucidate the structural contribution to SERS enhancement. The comparative analysis of obtained results showed that substrates containing cylindrical Aulacoseira sp. valves achieved the highest enhancement, up to 14-fold. Numerical analysis based on the frequency domain finite element method was carried out to supplement the experimental results. Our results demonstrate that diatom valves of different shapes can enhance the SERS signal, offering a toolbox for SERS-based sensors, where the magnitude of the enhancement depends on valve geometry and ultrastructure.
Collapse
Affiliation(s)
- Martina Gilic
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Mohamed Ghobara
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Louisa Reissig
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
16
|
Ko TS, Lin ET, Ho YT, Deng CA. The Role of GaN in the Heterostructure WS 2/GaN for SERS Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3054. [PMID: 37109889 PMCID: PMC10143599 DOI: 10.3390/ma16083054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
In the application of WS2 as a surface-enhanced Raman scattering (SERS) substrate, enhancing the charge transfer (CT) opportunity between WS2 and analyte is an important issue for SERS efficiency. In this study, we deposited few-layer WS2 (2-3 layers) on GaN and sapphire substrates with different bandgap characteristics to form heterojunctions using a chemical vapor deposition. Compared with sapphire, we found that using GaN as a substrate for WS2 can effectively enhance the SERS signal, with an enhancement factor of 6.45 × 104 and a limit of detection of 5 × 10-6 M for probe molecule Rhodamine 6G according to SERS measurement. Analysis of Raman, Raman mapping, atomic force microscopy, and SERS mechanism revealed that The SERS efficiency increased despite the lower quality of the WS2 films on GaN compared to those on sapphire, as a result of the increased number of transition pathways present in the interface between WS2 and GaN. These carrier transition pathways could increase the opportunity for CT, thus enhancing the SERS signal. The WS2/GaN heterostructure proposed in this study can serve as a reference for enhancing SERS efficiency.
Collapse
Affiliation(s)
- Tsung-Shine Ko
- Department of Electronic Engineering, National Changhua University of Education, No. 2, Shi-Da Road, Changhua 50074, Taiwan; (E.-T.L.); (C.-A.D.)
| | - En-Ting Lin
- Department of Electronic Engineering, National Changhua University of Education, No. 2, Shi-Da Road, Changhua 50074, Taiwan; (E.-T.L.); (C.-A.D.)
| | - Yen-Teng Ho
- International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Chen-An Deng
- Department of Electronic Engineering, National Changhua University of Education, No. 2, Shi-Da Road, Changhua 50074, Taiwan; (E.-T.L.); (C.-A.D.)
| |
Collapse
|
17
|
Trinh BT, Cho H, Lee D, Omelianovych O, Kim T, Nguyen SK, Choi HS, Kim H, Yoon I. Dual-Functional Solar-to-Steam Generation and SERS Detection Substrate Based on Plasmonic Nanostructure. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1003. [PMID: 36985897 PMCID: PMC10054297 DOI: 10.3390/nano13061003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Solar-to-steam (STS) generation based on plasmonic materials has attracted significant attention as a green method for producing fresh water. Herein, a simple in situ method is introduced to fabricate Au nanoparticles (AuNPs) on cellulose filter papers as dual-functional substrates for STS generation and surface-enhanced Raman spectroscopy (SERS) sensing. The substrates exhibit 90% of broadband solar absorption between 350 and 1800 nm and achieve an evaporation rate of 0.96 kg·m-2·h-1 under 1-sun illumination, room temperature of 20 °C, and relative humidity of 40%. The STS generation of the substrate is stable during 30 h continuous operation. Enriched SERS hotspots between AuNPs endow the substrates with the ability to detect chemical contamination in water with ppb limits of detection for rhodamine 6G dye and melamine. To demonstrate dual-functional properties, the contaminated water was analyzed with SERS and purified by STS. The purified water was then analyzed with SERS to confirm its purity. The developed substrate can be an improved and suitable candidate for fresh water production and qualification.
Collapse
Affiliation(s)
- Ba Thong Trinh
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hanjun Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Deunchan Lee
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Oleksii Omelianovych
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Taehun Kim
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sy Khiem Nguyen
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ho-Suk Choi
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hongki Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Republic of Korea
| | - Ilsun Yoon
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
18
|
Jayan H, Sun DW, Pu H, Wei Q. Mesoporous silica coated core-shell nanoparticles substrate for size-selective SERS detection of chloramphenicol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121817. [PMID: 36084581 DOI: 10.1016/j.saa.2022.121817] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
With the growing popularity of the non-destructive technique, surface-enhanced Raman spectroscopy (SERS) demands a highly sensitive and reproducible plasmonic nanoparticles substrate. In this study, a novel bimetallic core-shell nanoparticles (Au@Ag@mSiO2NP) substrate consisting of a gold core, silver shell, and a mesoporous silica coating was synthesized. The mesoporous coating structure was created by employing template molecules such as surfactant and their subsequent removal allowing selective screening based on the size of analyte molecules. Results showed that the plasmonic substrate could selectively enhance small molecules by preventing large macromolecules to reach the exciting zone of the substrate core, achieving the detection of chloramphenicol in milk samples with a detection limit of 6.68 × 10-8 M. Moreover, the mesoporous coating provided additional stability to the Au@Ag nanoparticles, leading to the reusability of the substrate. Thus, this work offered a simple and smart Au@Ag@mSiO2NP substrate for effective SERS detection of analytes.
Collapse
Affiliation(s)
- Heera Jayan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland(1).
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Qingyi Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
19
|
Chang TH, Liu YT, Chang YC, Lo AY. Fabrication of Three-Dimensional ZnO: Ga@ITO@Ag SERS-Active Substrate for Sensitive and Repeatable Detectability. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:163. [PMID: 36616072 PMCID: PMC9823785 DOI: 10.3390/nano13010163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Vertically aligned ZnO: Ga nanotowers can be directly synthesized on a glass substrate with a ZnO seed film via the chemical bath method. A novel heterostructure of ZnO: Ga@ITO@Ag nanotowers was subsequently deposited in the ITO layer and Ag nanoparticles via the facile two-step ion-sputtering processes on the ZnO: Ga nanotowers. The appropriate ion-sputtering times of the ITO layer and Ag nanoparticles can benefit the fabrication of ZnO: Ga@ITO@Ag nanotowers with higher surface-enhanced Raman scattering (SERS) enhancement in detecting rhodamine 6G (R6G) molecules. Compared with ZnO: Ga@Ag nanotowers, ZnO: Ga@ITO@Ag nanotowers exhibited a high SERS enhancement factor of 2.25 × 108 and a lower detection limit (10-14 M) for detecting R6G molecules. In addition, the ITO layer used as an intermediate layer between ZnO: Ga nanotowers and Ag nanoparticles can improve SERS enhancement, sensitivity, uniformity, reusability, detection limit, and stability for detecting amoxicillin molecules. This phenomenon shall be ascribed to the ITO layer exhibiting a synergistic Raman enhancement effect through interfacial charge transfer for enhancing SERS activity. As a result, ZnO: Ga@ITO@Ag nanotowers can construct a three-dimensional SERS substrate for potential applications in environmentally friendly and cost-effective chemical or drug detection.
Collapse
Affiliation(s)
- Tung-Hao Chang
- Department of Radiation Oncology, Changhua Christian Hospital, Changhua 50006, Taiwan
- Department of Radiological Technology, Yuanpei University, Hsinchu 30015, Taiwan
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
| | - Yun-Ting Liu
- Department of Materials Science and Engineering, Feng Chia University, Taichung 407102, Taiwan
| | - Yu-Cheng Chang
- Department of Materials Science and Engineering, Feng Chia University, Taichung 407102, Taiwan
| | - An-Ya Lo
- Department of Chemical and Materials Engineering, National Chin-Yi University of Technology, Taichung 411030, Taiwan
| |
Collapse
|
20
|
Zhou T, Xu C, Ren W. Grain-Boundary-Induced Ultrasensitive Molecular Detection of Graphene Film. NANO LETTERS 2022; 22:9380-9388. [PMID: 36455614 DOI: 10.1021/acs.nanolett.2c03218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Graphene has been considered a promising platform for molecular detection due to the graphene-enhanced Raman scattering (GERS) effect. However, the GERS performance of pristine graphene is limited by a low chemically active surface and insufficient density of states (DOS). Although diverse defects have been introduced, it remains a great challenge to improve the enhancement performance. Here, we show that graphene grain boundaries (GBs) possess stronger adsorption capacity and more abundant DOS. Thus, GERS performance increases with the atomic percentage of GBs, which makes nanocrystalline graphene (NG) film a superior GERS substrate. For R6G as a probe molecule, a low detection limit of 3 × 10-10 M was achieved. Utilizing the high chemical activity of GBs, we also fabricated NG film decorated with Au particles using a one-step quenching strategy, and this hybrid film exhibits an extremely low limit of detection down to 5 × 10-11 M, outperforming all the reported graphene-based systems.
Collapse
Affiliation(s)
- Tianya Zhou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang110016, P. R. China
| | - Chuan Xu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang110016, P. R. China
| | - Wencai Ren
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang110016, P. R. China
| |
Collapse
|
21
|
Ag Nanoparticles Decorated CuO@RF Core-Shell Nanowires for High-Performance Surface-Enhanced Raman Spectroscopy Application. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238460. [PMID: 36500551 PMCID: PMC9736506 DOI: 10.3390/molecules27238460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 12/09/2022]
Abstract
Vertical-aligned CuO nanowires have been directly fabricated on Cu foil through a facile thermal oxidation process by a hotplate at 550 °C for 6 h under ambient conditions. The intermediate layer of resorcinol-formaldehyde (RF) and silver (Ag) nanoparticles can be sequentially deposited on Cu nanowires to form CuO@RF@Ag core-shell nanowires by a two-step wet chemical approach. The appropriate resorcinol weight and silver nitrate concentration can be favorable to grow the CuO@RF@Ag nanowires with higher surface-enhanced Raman scattering (SERS) enhancement for detecting rhodamine 6G (R6G) molecules. Compared with CuO@Ag nanowires grown by ion sputtering, CuO@RF@Ag nanowires exhibited a higher SERS enhancement factor of 5.33 × 108 and a lower detection limit (10-12 M) for detecting R6G molecules. This result is ascribed to the CuO@RF@Ag nanowires with higher-density hot spots and surface-active sites for enhanced high SERS enhancement, good reproducibility, and uniformity. Furthermore, the CuO@RF@Ag nanowires can also reveal a high-sensitivity SERS-active substrate for detecting amoxicillin (10-10 M) and 5-fluorouracil (10-7 M). CuO@RF@Ag nanowires exhibit a simple fabrication process, high SERS sensitivity, high reproducibility, high uniformity, and low detection limit, which are helpful for the practical application of SERS in different fields.
Collapse
|
22
|
Premachandran S, Haldavnekar R, Das S, Venkatakrishnan K, Tan B. DEEP Surveillance of Brain Cancer Using Self-Functionalized 3D Nanoprobes for Noninvasive Liquid Biopsy. ACS NANO 2022; 16:17948-17964. [PMID: 36112671 DOI: 10.1021/acsnano.2c04187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Brain cancers, one of the most fatal malignancies, require accurate diagnosis for guided therapeutic intervention. However, conventional methods for brain cancer prognosis (imaging and tissue biopsy) face challenges due to the complex nature and inaccessible anatomy of the brain. Therefore, deep analysis of brain cancer is necessary to (i) detect the presence of a malignant tumor, (ii) identify primary or secondary origin, and (iii) find where the tumor is housed. In order to provide a diagnostic technique with such exhaustive information here, we attempted a liquid biopsy-based deep surveillance of brain cancer using a very minimal amount of blood serum (5 μL) in real time. We hypothesize that holistic analysis of serum can act as a reliable source for deep brain cancer surveillance. To identify minute amounts of tumor-derived material in circulation, we synthesized an ultrasensitive 3D nanosensor, adopted SERS as a diagnostic methodology, and undertook a DEEP neural network-based brain cancer surveillance. Detection of primary and secondary tumor achieved 100% accuracy. Prediction of intracranial tumor location achieved 96% accuracy. This modality of using patient sera for deep surveillance is a promising noninvasive liquid biopsy tool with the potential to complement current brain cancer diagnostic methodologies.
Collapse
Affiliation(s)
- Srilakshmi Premachandran
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Sunit Das
- Scientist, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Institute of Medical Sciences, Neurosurgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
23
|
Chang YL, Su CJ, Lu LC, Wan D. Aluminum Plasmonic Nanoclusters for Paper-Based Surface-Enhanced Raman Spectroscopy. Anal Chem 2022; 94:16319-16327. [DOI: 10.1021/acs.analchem.2c03014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Yu-Ling Chang
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Chiao-Jung Su
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30044, Taiwan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Li-Chia Lu
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Dehui Wan
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30044, Taiwan
| |
Collapse
|
24
|
Chang TH, Chang YC, Lee CI, Lin YR, Ko FH. Optimization Temperature Programming of Microwave-Assisted Synthesis ZnO Nanoneedle Arrays for Optical and Surface-Enhanced Raman Scattering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3989. [PMID: 36432278 PMCID: PMC9696083 DOI: 10.3390/nano12223989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
This study used a rapid and simple microwave-assisted synthesis method to grow ZnO nanoneedle arrays on the silicon substrate with the ZnO seed layer. The effects of reaction temperature and time on the lengths of ZnO nanoneedle arrays were investigated. The appropriate temperature programming step can grow the longer ZnO nanoneedle arrays at the same reaction time (25 min), which is 2.08 times higher than without the temperature programming step. The geometry of the ZnO nanoneedle arrays features a gradual decrease from the Si substrate to the surface, which provides an excellent progressive refractive index between Si and air, resulting in excellent antireflection properties over an extensive wavelength range. In addition, the ZnO nanoneedle arrays exhibit a suitable structure for uniform deposition of Ag nanoparticles, which can provide three-dimensional hot spots and surface active sites, resulting in higher surface-enhanced Raman scattering (SERS) enhancement, high uniformity, high reusability, and low detection limit for R6G molecule. The ZnO/Ag nanoneedle arrays can also reveal a superior SERS-active substrate detecting amoxicillin (10-8 M). These results are promising for applying the SERS technique for rapid low-concentration determination in different fields.
Collapse
Affiliation(s)
- Tung-Hao Chang
- Department of Radiation Oncology, Changhua Christian Hospital, Changhua 50006, Taiwan
- Department of Radiological Technology, Yuanpei University, Hsinchu 30015, Taiwan
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
| | - Yu-Cheng Chang
- Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan
| | - Chung-I Lee
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ying-Ru Lin
- Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Fu-Hsiang Ko
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
25
|
Wu HY, Lin HC, Liu YH, Chen KL, Wang YH, Sun YS, Hsu JC. Highly Sensitive, Robust, and Recyclable TiO 2/AgNP Substrate for SERS Detection. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196755. [PMID: 36235289 PMCID: PMC9571145 DOI: 10.3390/molecules27196755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022]
Abstract
Label-free biosensors provide an important platform for detecting chemical and biological substances without needing extra labeling agents. Unlike surface-based techniques such as surface plasmon resonance (SPR), interference, and ellipsometry, surface-enhanced Raman spectroscopy (SERS) possesses the advantage of monitoring analytes both on surfaces and in solutions. Increasing the SERS enhancement is crucial to preparing high-quality substrates without quickly losing their stability, sensitivity, and repeatability. However, fabrication methods based on wet chemistry, nanoimprint lithography, spark discharge, and laser ablation have drawbacks of waste of time, complicated processes, or nonreproducibility in surface topography. This study reports the preparation of recyclable TiO2/Ag nanoparticle (AgNP) substrates by using simple arc ion plating and direct-current (dc) magnetron sputtering technologies. The deposited anatase-phased TiO2 ensured the photocatalytic degradation of analytes. By measuring the Raman spectra of rhodamine 6G (R6G) in titrated concentrations, a limit of detection (LOD) of 10−8 M and a SERS enhancement factor (EF) of 1.01 × 109 were attained. Self-cleaning was performed via UV irradiation, and recyclability was achieved after at least five cycles of detection and degradation. The proposed TiO2/AgNP substrates have the potential to serve as eco-friendly SERS enhancers for label-free detection of various chemical and biological substances.
Collapse
Affiliation(s)
- Hsing-Yu Wu
- System Manufacturing Center, National Chung-Shan Institute of Science and Technology, New Taipei City 237209, Taiwan
- Center for Astronomical Physics and Engineering, Department of Optics and Photonics, National Central University, Taoyuan City 320317, Taiwan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Hung-Chun Lin
- Department of Physics, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yung-Hsien Liu
- System Manufacturing Center, National Chung-Shan Institute of Science and Technology, New Taipei City 237209, Taiwan
- Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan City 335009, Taiwan
| | - Kai-Lin Chen
- System Manufacturing Center, National Chung-Shan Institute of Science and Technology, New Taipei City 237209, Taiwan
| | - Yu-Hsun Wang
- Department of Physics, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yung-Shin Sun
- Department of Physics, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Correspondence: (Y.-S.S.); (J.-C.H.)
| | - Jin-Cherng Hsu
- Department of Physics, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Correspondence: (Y.-S.S.); (J.-C.H.)
| |
Collapse
|
26
|
Li H, Merkl P, Sommertune J, Thersleff T, Sotiriou GA. SERS Hotspot Engineering by Aerosol Self-Assembly of Plasmonic Ag Nanoaggregates with Tunable Interparticle Distance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201133. [PMID: 35670133 PMCID: PMC9353460 DOI: 10.1002/advs.202201133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/23/2022] [Indexed: 06/01/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful sensing technique. However, the employment of SERS sensors in practical applications is hindered by high fabrication costs from processes with limited scalability, poor batch-to-batch reproducibility, substrate stability, and uniformity. Here, highly scalable and reproducible flame aerosol technology is employed to rapidly self-assemble uniform SERS sensing films. Plasmonic Ag nanoparticles are deposited on substrates as nanoaggregates with fine control of their interparticle distance. The interparticle distance is tuned by adding a dielectric spacer during nanoparticle synthesis that separates the individual Ag nanoparticles within each nanoaggregate. The dielectric spacer thickness dictates the plasmonic coupling extinction of the deposited nanoaggregates and finely tunes the Raman hotspots. By systematically studying the optical and morphological properties of the developed SERS surfaces, structure-performance relationships are established and the optimal hot-spots occur for interparticle distance of 1 to 1.5 nm among the individual Ag nanoparticles, as also validated by computational modeling, are identified for the highest signal enhancement of a molecular Raman reporter. Finally, the superior stability and batch-to-batch reproducibility of the developed SERS sensors are demonstrated and their potential with a proof-of-concept practical application in food-safety diagnostics for pesticide detection on fruit surfaces is explored.
Collapse
Affiliation(s)
- Haipeng Li
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSE‐17177Sweden
| | - Padryk Merkl
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSE‐17177Sweden
| | | | - Thomas Thersleff
- Department of Materials and Environmental ChemistryStockholm UniversityStockholm10691Sweden
| | - Georgios A. Sotiriou
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSE‐17177Sweden
| |
Collapse
|
27
|
Selection of cryoprotectants for freezing and freeze-drying of gold nanoparticles towards further uses in various applications. Colloids Surf B Biointerfaces 2022; 217:112702. [PMID: 35863234 DOI: 10.1016/j.colsurfb.2022.112702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022]
Abstract
Recently, cryopreservation of AuNPs without aggregation has been attempted to improve their long-term stability. This study investigated criteria to select cryoprotectants for AuNPs using a variety of materials, including sugar (sucrose), surfactant (Tween 20), polymers (polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP)), and biopolymer (pectin). For cryoprotective performance, UV-vis spectroscopy reveals the potential of all cryoprotectants for preventing citrate-capped AuNPs (cit-AuNPs) from irreversible aggregation under freezing. While sucrose, PVP, and pectin were more suitable than Tween 20 and PVA as cryoprotectants for lyophilization of AuNPs with the maintained redispersability. For storage and further use, Luria-Bertani agar plate, dynamic light scattering (DLS), and transmission electron microscopy (TEM) results indicate impacts of the cryoprotectant coexisted with AuNPs after resuspension and imply that washing of the restored AuNPs is encouraged. Otherwise, running the restored AuNPs through applications, such as functionalization, protein conjugation, and surface-enhanced Raman scattering (SERS), without washing the cryoprotectant could lead to inaccurate results. This study also serves as a guideline for a comprehensive practice flow of AuNP handling, encompassing the synthesis step, cryopreservation, and use after resuspension.
Collapse
|
28
|
Cvjetinovic J, Merdalimova AA, Kirsanova MA, Somov PA, Nozdriukhin DV, Salimon AI, Korsunsky AM, Gorin DA. A SERS platform based on diatomite modified by gold nanoparticles using a combination of layer-by-layer assembly and a freezing-induced loading method. Phys Chem Chem Phys 2022; 24:8901-8912. [PMID: 35363241 DOI: 10.1039/d2cp00647b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Siliceous diatom frustules represent an up-and-coming platform for a range of bio-assisted nanofabrication processes able to overcome the complexity and high cost of current engineering technology solutions in terms of negligibly small power consumption and environmentally friendly processing combined with unique highly porous structures and properties. Herein, the modification of diatomite - a soft, loose, and fine-grained siliceous sedimentary rock composed of the remains of fossilized diatoms - with gold nanoparticles using layer-by-layer technology in combination with a freezing-induced loading approach is demonstrated. The obtained composite structures are characterized by dynamic light scattering, extinction spectroscopy, scanning (SEM) and transmission electron microscopy (TEM), and photoacoustic imaging techniques, and tested as a platform for surface-enhanced Raman scattering (SERS) using Rhodamine 6G. SEM, TEM, and energy dispersive X-ray spectroscopy (EDX) confirmed a dense coating of gold nanoparticles with an average size of 19 nm on the surface of the diatomite and within the pores. The photoacoustic signal excited at a wavelength of 532 nm increases with increasing loading cycles of up to three polyelectrolyte-gold nanoparticle bilayers. The hybrid materials based on diatomite modified with gold nanoparticles can be used as SERS substrates, but also as biosensors, catalysts, and platforms for advanced bioimaging.
Collapse
Affiliation(s)
- Julijana Cvjetinovic
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia.
| | - Anastasiia A Merdalimova
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia.
| | - Maria A Kirsanova
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia
| | - Pavel A Somov
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia
| | - Daniil V Nozdriukhin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia.
| | - Alexey I Salimon
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia
| | | | - Dmitry A Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia.
| |
Collapse
|
29
|
Park TH, Jeong DW, Lee JH, Jang DJ. Seed-assembly-mediated fabrication and application of highly branched gold nanoshells having hollow and porous morphologies. NANOTECHNOLOGY 2022; 33:155605. [PMID: 35043784 DOI: 10.1088/1361-6528/ac46b6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Highly branched gold nanoshells (BAuNSs) having hollow and porous morphologies have been fabricated via a seed-assembly-mediated strategy. Gold seed assemblies can be prepared by removal of SiO2nanotemplates with help of polyvinylpyrrolidone (PVP) molecules, which weakly link gold nanoparticles together even after SiO2etching. L-3,4-dihydroxy phenylalanine (L-DOPA) and AgNO3are employed as shape-directing agents to induce the anisotropic growth of gold. BAuNSs exhibit 7.4 and 4.4 times stronger activities than SiO2@Au nanoparticles in catalysis and surface-enhanced Raman scattering (SERS) applications, respectively, due to their large surface areas and numerous hot spots. It is necessary to find the optimal amount of gold deposition in fabrication to effectively utilize the hollow and porous morpologies of BAuNSs for catalysis and SERS applications. Overgrown nanobranches can fill the nanopores and nanogaps of BAuNSs, resulting in decrease of activities in applications. Overall, the seed-assembly-mediated fabrciation can be employed to produce plasmonic nanostructures having unique morphologies and high application activities.
Collapse
Affiliation(s)
- Tae-Hyeon Park
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Won Jeong
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Ho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Du-Jeon Jang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
30
|
He S, Wu D, Chen S, Liu K, Yang EH, Tian F, Du H. Au-on-Ag nanostructure for in-situSERS monitoring of catalytic reactions. NANOTECHNOLOGY 2022; 33:155701. [PMID: 34983032 DOI: 10.1088/1361-6528/ac47d2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Dual-functionality Au-on-Ag nanostructures (AOA) were fabricated on a silicon substrate by first immobilizing citrate-reduced Ag nanoparticles (Ag NPs, ∼43 nm in diameter), followed by depositing ∼7 nm Au nanofilms (Au NFs) via thermal evaporation. Au NFs were introduced for their catalytic activity in concave-convex nano-configuration. Ag NPs underneath were used for their significant enhancement factor (EF) in surface-enhanced Raman scattering (SERS)-based measurements of analytes of interest. Rhodamine 6G (R6G) was utilized as the Raman-probe to evaluate the SERS sensitivity of AOA. The SERS EF of AOA is ∼37 times than that of Au NPs. Using reduction of 4-nitrothiophenol (4-NTP) by sodium borohydride (NaBH4) as a model reaction, we demonstrated the robust catalytic activity of AOA as well as its capacity to continuously monitor via SERS the disappearance of reactant 4-NTP, emergence and disappearance of intermediate 4,4'-DMAB, and the appearance of product 4-ATP throughout the reduction process in real-time andin situ.
Collapse
Affiliation(s)
- Shuyue He
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030, United States of America
| | - Di Wu
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030, United States of America
| | - Siwei Chen
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States of America
| | - Kai Liu
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030, United States of America
| | - Eui-Hyeok Yang
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States of America
| | - Fei Tian
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030, United States of America
| | - Henry Du
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030, United States of America
| |
Collapse
|
31
|
Park J, Kim J, Park C, Lim JW, Yeom M, Song D, Kim E, Haam S. A flap endonuclease 1-assisted universal viral nucleic acid sensing system using surface-enhanced Raman scattering. Analyst 2022; 147:5028-5037. [DOI: 10.1039/d2an01123a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Flap endonuclease 1 recognizes a specific DNA structure and cleaves Raman tag-labeled probe molecules in a target-specific manner. With SERS-based sensing, the developed detection approach produces sensitive, quantitative, and multiplexable signals.
Collapse
Affiliation(s)
- Joowon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jinyoung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Woo Lim
- Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Minjoo Yeom
- Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Daesub Song
- Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunjung Kim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Department of Bioengineering and Nano-Bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
32
|
Merdalimova AA, Rudakovskaya PG, Ermatov TI, Smirnov AS, Kosolobov SS, Skibina JS, Demina PA, Khlebtsov BN, Yashchenok AM, Gorin DA. SERS Platform Based on Hollow-Core Microstructured Optical Fiber: Technology of UV-Mediated Gold Nanoparticle Growth. BIOSENSORS 2021; 12:19. [PMID: 35049647 PMCID: PMC8774134 DOI: 10.3390/bios12010019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/19/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for biosensing. However, SERS analysis has several concerns: the signal is limited by a number of molecules and the area of the plasmonic substrate in the laser hotspot, and quantitative analysis in a low-volume droplet is confusing due to the change of concentration during quick drying. The usage of hollow-core microstructured optical fibers (HC-MOFs) is thought to be an effective way to improve SERS sensitivity and limit of detection through the effective irradiation of a small sample volume filling the fiber capillaries. In this paper, we used layer-by-layer assembly as a simple method for the functionalization of fiber capillaries by gold nanoparticles (seeds) with a mean diameter of 8 nm followed by UV-induced chloroauric acid reduction. We also demonstrated a simple and quick technique used for the analysis of the SERS platform formation at every stage through the detection of spectral shifts in the optical transmission of HC-MOFs. The enhancement of the Raman signal of a model analyte Rhodamine 6G was obtained using such type of SERS platform. Thus, a combination of nanostructured gold coating as a SERS-active surface and a hollow-core fiber as a microfluidic channel and a waveguide is perspective for point-of-care medical diagnosis based on liquid biopsy and exhaled air analysis.
Collapse
Affiliation(s)
- Anastasiia A. Merdalimova
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 3 Nobel str, 121205 Moscow, Russia; (P.G.R.); (T.I.E.); (A.M.Y.)
| | - Polina G. Rudakovskaya
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 3 Nobel str, 121205 Moscow, Russia; (P.G.R.); (T.I.E.); (A.M.Y.)
| | - Timur I. Ermatov
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 3 Nobel str, 121205 Moscow, Russia; (P.G.R.); (T.I.E.); (A.M.Y.)
| | - Alexander S. Smirnov
- Center for Design, Manufacturing and Materials, Skolkovo Institute of Science and Technology, 1 Nobel str, 121205 Moscow, Russia; (A.S.S.); (S.S.K.)
| | - Sergey S. Kosolobov
- Center for Design, Manufacturing and Materials, Skolkovo Institute of Science and Technology, 1 Nobel str, 121205 Moscow, Russia; (A.S.S.); (S.S.K.)
| | - Julia S. Skibina
- SPE LLC Nanostructured Glass Technology, 101 50 Let Oktjabrja str, 410033 Saratov, Russia;
| | - Polina A. Demina
- FSRC “Crystallography and Photonics” RAS, 59 Leninsky pr., 119333 Moscow, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya str. 16/10, 117997 Moscow, Russia
| | - Boris N. Khlebtsov
- Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Institute of Biochemistry and Physiology of Plants and Microorganisms, 410049 Saratov, Russia;
| | - Alexey M. Yashchenok
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 3 Nobel str, 121205 Moscow, Russia; (P.G.R.); (T.I.E.); (A.M.Y.)
| | - Dmitry A. Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 3 Nobel str, 121205 Moscow, Russia; (P.G.R.); (T.I.E.); (A.M.Y.)
| |
Collapse
|
33
|
Influence of Ag Photodeposition Conditions over SERS Intensity of Ag/ZnO Microspheres for Nanomolar Detection of Methylene Blue. NANOMATERIALS 2021; 11:nano11123414. [PMID: 34947762 PMCID: PMC8705486 DOI: 10.3390/nano11123414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/24/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Abstract
Surface enhanced Raman spectroscopy (SERS) is considered a versatile and multifunctional technique with the ability to detect molecules of different species at very low molar concentration. In this work, hierarchical ZnO microspheres (ZnO MSs) and Ag/ZnO MSs were fabricated and decorated by hydrothermal and photodeposition methods, respectively. For Ag deposition, precursor molar concentration (1.9 and 9.8 mM) and UV irradiation time (5, 15, and 30 min) were evaluated by SEM, TEM, X-ray diffraction and Raman spectroscopy. X-ray diffraction showed a peak at 37.9° corresponding to the (111) plane of Ag, whose intensity increases as precursor concentration and UV irradiation time increases. SEM images confirmed the formation of ZnO MSs (from 2.5 to 4.5 µm) building by radially aligned two-dimensional ZnO nanosheets with thicknesses below 30 nm. The Raman spectra of Ag/ZnO MSs exhibited a vibration mode at 486 cm−1 which can be directly associated to Ag deposition on ZnO MSs surface. The performance of SERS substrate was evaluated using rhodamine 6G. The SERS substrate grown at 9.8 mM during 30 min showed the best SERS activity and the ability to detect methylene blue at 10−9 M.
Collapse
|
34
|
Daoudi K, Ramachandran K, Alawadhi H, Boukherroub R, Dogheche E, Khakani MAE, Gaidi M. Ultra-sensitive and fast optical detection of the spike protein of the SARS-CoV-2 using AgNPs/SiNWs nanohybrid based sensors. SURFACES AND INTERFACES 2021; 27:101454. [PMID: 34957346 PMCID: PMC8440322 DOI: 10.1016/j.surfin.2021.101454] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 05/18/2023]
Abstract
Severe acute respiratory syndrome SARS-CoV-2 virus led to notable challenges amongst researchers in view of development of new and fast detecting techniques. In this regard, surface-enhanced Raman spectroscopy (SERS) technique, providing a fingerprint characteristic for each material, would be an interesting approach. The current study encompasses the fabrication of a SERS sensor to study the SARS-CoV-2 S1 (RBD) spike protein of the SARS-CoV-2 virus family. The SERS sensor consists of a silicon nanowires (SiNWs) substrate decorated with plasmonic silver nanoparticles (AgNPs). Both SiNWs fabrication and AgNPs decoration were achieved by a relatively simple wet chemical processing method. The study deliberately projects the factors that influence the growth of silicon nanowires, uniform decoration of AgNPs onto the SiNWs matrix along with detection of Rhodamine-6G (R6G) to optimize the best conditions for enhanced sensing of the spike protein. Increasing the time period of etching process resulted in enhanced SiNWs' length from 0.55 to 7.34 µm. Furthermore, the variation of the immersion time in the decoration process of AgNPs onto SiNWs ensued the optimum time period for the enhancement in the sensitivity of detection. Tremendous increase in sensitivity of R6G detection was perceived on SiNWs etched for 2 min (length=0.90 µm), followed by 30s of immersion time for their optimal decoration by AgNPs. These SiNWs/AgNPs SERS-based sensors were able to detect the spike protein at a concentration down to 9.3 × 10-12 M. Strong and dominant peaks at 1280, 1404, 1495, 1541 and 1609 cm-1 were spotted at a fraction of a minute. Moreover, direct, ultra-fast, facile, and affordable optoelectronic SiNWs/AgNPs sensors tuned to function as a biosensor for detecting the spike protein even at a trace level (pico molar concentration). The current findings hold great promise for the utilization of SERS as an innovative approach in the diagnosis domain of infections at very early stages.
Collapse
Affiliation(s)
- Kais Daoudi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Laboratory of Nanomaterials, Nanotechnology and Energy, Department of Physics, Faculty of Sciences of Tunis, University of Tunis, El Manar, El Manar, Tunis 2092, Tunisia
| | - Krithikadevi Ramachandran
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hussain Alawadhi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rabah Boukherroub
- CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, University of Lille, Lille 59000, France
| | - Elhadj Dogheche
- Université Polytechnique Hauts de France, IEMN DOAE CNRS, Campus Le Mont Houy, Valenciennes Cedex 59309, France
| | - My Ali El Khakani
- Institut National de la Recherche Scientifique, INRS-Énergie, Matériaux et Télécommunications, 1650, Blvd. Lionel-Boulet, Varennes, QC J3X-1S2, Canada
| | - Mounir Gaidi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Laboratoire de Photovoltaïque Centre de Recherches et des Technologies de l'Energie, Technopole de Borj-Cédria, BP 95, Hammam-Lif 2050, Tunisia
| |
Collapse
|
35
|
Allen AC, Efrem M, Mahalingam U, Guarino-Hotz M, Foley AR, Raskatov JA, Song C, Lindley SA, Li J, Chen B, Zhang JZ. Hollow Gold Nanosphere Templated Synthesis of PEGylated Hollow Gold Nanostars and Use for SERS Detection of Amyloid Beta in Solution. J Phys Chem B 2021; 125:12344-12352. [PMID: 34726922 DOI: 10.1021/acs.jpcb.1c06776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hollow gold nanospheres (HGNs) have been used as the template for seed-mediated growth of multibranched hollow gold nanostars (HNS). The HGNs were synthesized via anerobic reduction of cobalt chloride to cobalt nanoparticles and then formation of a gold shell via galvanic replacement followed by the oxidation of the cobalt core. We obtained control of the inner core size of the HGNs by increasing the size of the sacrificial cobalt core and by varying the ratio of B(OH)3/BH4 using boric acid rather than 48 h aged borohydride. We synthesized the HNS by reducing Au3+ ions in the presence of Ag+ ions using ascorbic acid, creating a spiky morphology that varied with the Au3+/Ag+ ratio. A broadly tunable localized surface plasmon resonance was achieved through control of both the inner core and the spike length. Amyloid beta (Aβ) was conjugated to the HNS by using a heterobifunctional PEG linker and identified by the vibrational modes associated with the conjugated ring phenylalanine side chain. A bicinchoninic acid assay was used to determine the concentration of Aβ conjugated to HNS as 20 nM, which is below the level of Aβ that negatively affects long-term potentiation. Both the core size and spike length were shown to affect the optical properties of the resulting nanostructures. This HGN templated method introduced a new parameter for enhancing the plasmonic properties of gold nanostars, namely, the addition of a hollow core. Hollow gold nanostars are highly desirable for a wide range of applications, including high sensitivity disease detection and monitoring.
Collapse
Affiliation(s)
- A'Lester C Allen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Mekedlawit Efrem
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Umadevi Mahalingam
- Department of Physics, Mother Teresa Women's University, Kodaikanal 624 101, Tamil Nadu, India
| | - Melissa Guarino-Hotz
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Alejandro R Foley
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Jevgenij A Raskatov
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Chengyu Song
- National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sarah A Lindley
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Jing Li
- NASA Ames Research Center, Moffett Field, California 94035, United States
| | - Bin Chen
- NASA Ames Research Center, Moffett Field, California 94035, United States
| | - Jin Z Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| |
Collapse
|
36
|
Lee H, Yoo H, Moon G, Toh KA, Mochizuki K, Fujita K, Kim D. Super-resolved Raman microscopy using random structured light illumination: Concept and feasibility. J Chem Phys 2021; 155:144202. [PMID: 34654313 DOI: 10.1063/5.0064082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this article, we report the use of randomly structured light illumination for chemical imaging of molecular distribution based on Raman microscopy with improved image resolution. Random structured basis images generated from temporal and spectral characteristics of the measured Raman signatures were superposed to perform structured illumination microscopy (SIM) with the blind-SIM algorithm. For experimental validation, Raman signatures corresponding to Rhodamine 6G (R6G) in the waveband of 730-760 nm and Raman shift in the range of 1096-1634 cm-1 were extracted and reconstructed to build images of R6G. The results confirm improved image resolution using the concept and hints at super-resolution by almost twice better than the diffraction-limit.
Collapse
Affiliation(s)
- Hongki Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea
| | - Hajun Yoo
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea
| | - Gwiyeong Moon
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea
| | - Kar-Ann Toh
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea
| | - Kentaro Mochizuki
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, Osaka 565-0871, Japan and Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Osaka 565-0871, Japan
| | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
37
|
Singh J, Soni R. Efficient charge separation in Ag nanoparticles functionalized ZnO nanoflakes/CuO nanoflowers hybrids for improved photocatalytic and SERS activity. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Das S, Goswami LP, Gayathri J, Tiwari S, Saxena K, Mehta DS. Fabrication of low cost highly structured silver capped aluminium nanorods as SERS substrate for the detection of biological pathogens. NANOTECHNOLOGY 2021; 32:495301. [PMID: 34428748 DOI: 10.1088/1361-6528/ac2097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
We report the fabrication of low cost highly structured silver (Ag) capped aluminium (Al) nanorods (NRs) as surface enhanced Raman spectroscopy (SERS) substrate utilising the glancing angle deposition technique. The nano-capping of silver onto the Al NRs can concentrate the local electric field within the minimal volume that can serve as hotspots. The average size of the Ag nanocaps was 50 nm. The newly proposed nanoporous Ag capped Al NRs as SERS substrate could detect the Raman signal of rhodamine 6G (R6G) up to 10-15molar concentration. The significant enhancement in the Raman signal of 107was achieved for Ag capped Al NRs considering R6G as a probe molecule. Using the developed SERS substrate, we recorded Raman spectra forEscherichia colibacteria with its concentration varying from 108colony forming units per ml (CFU ml-1) up to 102CFU ml-1. All the reported Raman spectra were acquired by a portable handheld Raman spectrometer. Hence, this newly proposed low cost, effective SERS substrate can be used commercially for the onsite detection of clinical pathogens. The 3D finite difference time domain simulation model was performed for Ag capped Al nanostructure to understand the generation of hotspots. The simulated results show excellent agreement with the experimental results. We fabricated uncapped Ag nanorods of similar dimensions and performed the experimental measurements and simulations for comparison. We found a significant enhancement in Ag capped Al NRs compared to the long Ag NRs. The description of the Raman signal enhancement has been elaborated.
Collapse
Affiliation(s)
- Sathi Das
- Bio-photonics and Green Photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi-110016, India
| | - Laxman Prasad Goswami
- Department of Physics, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi-110016, India
| | - Jampana Gayathri
- Amity Institute of Renewable and Alternative Energy, Amity University, Uttar Pradesh, Sector-125 Noida-201303, India
| | - Shubham Tiwari
- Bio-photonics and Green Photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi-110016, India
| | - Kanchan Saxena
- Amity Institute of Renewable and Alternative Energy, Amity University, Uttar Pradesh, Sector-125 Noida-201303, India
| | - Dalip Singh Mehta
- Bio-photonics and Green Photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi-110016, India
| |
Collapse
|
39
|
Turan H, Calis B, Dizaji AN, Tarhan S, Mazlumoglu H, Aysin F, Yilmaz A, Yilmaz M. Poly(L-DOPA)-mediated bimetallic core-shell nanostructures of gold and silver and their employment in SERS, catalytic activity, and cell viability. NANOTECHNOLOGY 2021; 32:315702. [PMID: 33878753 DOI: 10.1088/1361-6528/abf9c7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Core-shell gold nanorod (AuNR)@silver (Ag) nanostructures with their unique properties have gained enormous interest and are widely utilized in various applications including sensor systems, catalytic reactions, diagnosis, and therapy. Despite the recent progress, simple, effective, low-cost, and easy-to-tune strategies are heavily required to fabricate these nanoparticles (NP) systems. For this, we propose the employment of the polymer of 3,4-dihydroxyphenyl-L-alanine (L-DOPA) as a ligand molecule. A conformal thin layer of polymer of L-DOPA (PLDOPA) with its various functional groups enabled the reduction of silver ions onto the AuNRs and stabilization of the resultant NPs without using any surfactant, reducing agent, and seed material. The shape and growth model of the AuNR@Ag nanostructures was manipulated by simply tuning the amount of silver ions. This procedure created different NP morphologies ranging from concentric to acentric/island shape core-shell nanostructures. Also, even at the highest Ag deposition, the PLDOPA layer is still conformally present onto the Au@Ag core-shell NRs. The unique properties of NP systems provided remarkable characteristics in surface-enhanced Raman spectroscopy, catalytic activity, and cell viability tests.
Collapse
Affiliation(s)
- Hasan Turan
- East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey
- Department of Nanoscience and Nanoengineering, Ataturk University, 25240 Erzurum, Turkey
| | - Baris Calis
- East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey
- Department of Molecular Biology and Genetics, Ataturk University, 25240 Erzurum, Turkey
| | - Araz Norouz Dizaji
- East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey
- Department of Chemical Engineering, Ataturk University, 25240 Erzurum, Turkey
| | - Seda Tarhan
- East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey
- Department of Chemical Engineering, Ataturk University, 25240 Erzurum, Turkey
| | | | - Ferhunde Aysin
- East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey
- Department of Biology, Ataturk University, 25240 Erzurum, Turkey
| | - Asli Yilmaz
- East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey
- Department of Molecular Biology and Genetics, Ataturk University, 25240 Erzurum, Turkey
| | - Mehmet Yilmaz
- East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey
- Department of Nanoscience and Nanoengineering, Ataturk University, 25240 Erzurum, Turkey
- Department of Chemical Engineering, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
40
|
Pekdemir S, Ipekci HH, Serhatlioglu M, Elbuken C, Onses MS. SERS-active linear barcodes by microfluidic-assisted patterning. J Colloid Interface Sci 2021; 584:11-18. [PMID: 33035799 DOI: 10.1016/j.jcis.2020.09.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022]
Abstract
Simple, low-cost, robust, and scalable fabrication of microscopic linear barcodes with high levels of complexity and multiple authentication layers is critical for emerging applications in information security and anti-counterfeiting. This manuscript presents a novel approach for fabrication of microscopic linear barcodes that can be visualized under Raman microscopy. Microfluidic channels are used as molds to generate linear patterns of end-grafted polymers on a substrate. These patterns serve as templates for area-selective binding of colloidal gold nanoparticles resulting in plasmonic arrays. The deposition of multiple taggant molecules on the plasmonic arrays via a second microfluidic mold results in a linear barcode with unique Raman fingerprints that are enhanced by the underlying plasmonic nanoparticles. The width of the bars is as small as 10 μm, with a total barcode length on the order of 100 μm. The simultaneous use of geometric and chemical security layers provides a high level of complexity challenging the counterfeiting of the barcodes. The additive, scalable, and inexpensive nature of the presented approach can be easily adapted to different colloidal nanomaterials and applications.
Collapse
Affiliation(s)
- Sami Pekdemir
- Department of Materials Science and Engineering, Erciyes University, Kayseri 38039, Turkey; ERNAM - Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey
| | - Hasan Hüseyin Ipekci
- ERNAM - Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey; Metallurgical and Materials Engineering, Faculty of Engineering and Architecture, Necmettin Erbakan University, Konya, 42090, Turkey
| | - Murat Serhatlioglu
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Caglar Elbuken
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey; Faculty of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland.
| | - M Serdar Onses
- Department of Materials Science and Engineering, Erciyes University, Kayseri 38039, Turkey; ERNAM - Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey; UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey.
| |
Collapse
|
41
|
Kim HS, Lee T, Yun J, Lee G, Hong Y. Cancer protein biomarker identification and quantification using nanoforest substrate and hand-held Raman spectrometer. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
42
|
Riswana Barveen N, Wang TJ, Chang YH. In-situ deposition of silver nanoparticles on silver nanoflowers for ultrasensitive and simultaneous SERS detection of organic pollutants. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
43
|
Huang HJ, Chang HW, Lin YW, Chuang SY, Lin YS, Shiao MH. Silicon-Based Ag Dendritic Nanoforests for Light-Assisted Bacterial Inhibition. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2244. [PMID: 33198184 PMCID: PMC7696993 DOI: 10.3390/nano10112244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
Silver dendritic nanoforests (Ag-DNFs) on silicon (Ag-DNFs/Si) were synthesized through the fluoride-assisted Galvanic replacement reaction (FAGRR) method. The synthesized Ag-DNFs/Si were characterized by scanning electron microscopy, energy-dispersive X-ray spectrometry, inductively coupled plasma mass spectrometry (ICP-MS), reflection absorbance spectrometry, surface-enhanced Raman scattering spectrometry, and X-ray diffractometry. The Ag+ concentration in ICP-MS measurements indicated 1.033 mg/cm2 of deposited Ag synthesized for 200 min on Si substrate. The optical absorbance spectra indicated the induced surface plasmon resonance of Ag DNFs increased with the thickness of the Ag DNFs layer. Surface-enhanced Raman scattering measurement and a light-to-heat energy conversion test presented the superior plasmonic response of Ag-DNFs/Si for advanced applications. The Ag-DNFs/Si substrate exhibited high antibacterial activity against Escherichia coli and Staphylococcus aureus. The large surface area of the dense crystal Ag DNFs layer resulted in high antibacterial efficiency. The plasmonic response in the metal-crystal Ag DNFs under external light illumination can supply energy to enhance bacterial inhibition. High-efficiency plasmonic heating by the dense Ag DNFs can lead to localized bacterial inhibition. Thus, the Ag-DNFs/Si substrate has excellent potential for antibacterial applications.
Collapse
Affiliation(s)
- Hung Ji Huang
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 300092, Taiwan;
| | - Han-Wei Chang
- Department of Chemical Engineering, National United University, Miaoli 360001, Taiwan; (H.-W.C.); (S.-Y.C.)
| | - Yang-Wei Lin
- Department of Chemistry, National Changhua University of Education, Changhua 500207, Taiwan;
| | - Shao-Yi Chuang
- Department of Chemical Engineering, National United University, Miaoli 360001, Taiwan; (H.-W.C.); (S.-Y.C.)
| | - Yung-Sheng Lin
- Department of Chemical Engineering, National United University, Miaoli 360001, Taiwan; (H.-W.C.); (S.-Y.C.)
| | - Ming-Hua Shiao
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 300092, Taiwan;
| |
Collapse
|
44
|
Calligraphed Selective Plasmonic Arrays on Paper Platforms for Complementary Dual Optical "ON/OFF Switch" Sensing. NANOMATERIALS 2020; 10:nano10061025. [PMID: 32471140 PMCID: PMC7352805 DOI: 10.3390/nano10061025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022]
Abstract
Designing innovative (nano)detection platforms, respecting their low-cost and fabrication simplicity, capable to chemically detect multiple target analytes by employing the same engineered device, is still a great challenge in the multiplexed biosensor development. In this scientific context, in the current manuscript, we exploit the low-cost plasmonic calligraphy as a versatile approach to directly draw continuous plasmonic lines on Whatman paper using a regular ballpoint pen successively filled with two different anisotropic nanoparticles shapes (gold bipyramids—AuBPs and gold nanorods—AuNRs) as colloidal inks. After the efficient immobilization of the positively-charged AuBPs and AuNRs onto the paper fibres, proved by Scanning Electron Microscopy (SEM) investigations, the specificity of our as-calligraphed-paper platform is ensured by coating the selected lines with a thin layer of anionic poly(styrene sulfonate) polyelectrolyte, creating, consequently, a well-defined plasmonic array of charge-selective regions. Finally, the functionality of the well-isolated and as-miniaturized active plasmonic array is, subsequently, tested using the anionic Rose-Bengal and cationic Rhodamine 6G target analytes and proved by complementary dual optical “ON/OFF Switch” sensing (i.e. Surface-enhanced Raman Scattering sensing/metal-enhanced fluorescence sensing) onto the same plasmonic line, developing thus a simple multiplexed plasmonic array platform, which could further facilitate the well-desired biomarker detection in complex mixtures.
Collapse
|
45
|
Juneja S, Bhattacharya J. Biosynthetically grown dendritic silver nanostructures for visible Surface Enhanced Resonance Raman Spectroscopy (v-SERRS). NEW J CHEM 2020. [DOI: 10.1039/d0nj03040f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple approach to achieve high SERS enhancement for bio-analyte detection at visible wavelength through a resonance Raman (RR) effect has been proposed in this study.
Collapse
Affiliation(s)
- Subhavna Juneja
- NanoBiotechnology Lab, School of Biotechnology
- Jawaharlal Nehru University
- India
| | | |
Collapse
|
46
|
A Spectroscopic Study of Solid-Phase Chitosan/Cyclodextrin-Based Electrospun Fibers. FIBERS 2019. [DOI: 10.3390/fib7050048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, chitosan (chi)/hydroxypropyl-β-cyclodextrin (HPCD) 2:20 and 2:50 Chi:HPCD fibers were assembled via an electrospinning process that contained a mixture of chitosan and HPCD with trifluoroacetic acid (TFA) as a solvent. Complementary thermal analysis (thermal gravimetric analysis (TGA)/differential scanning calorimetry (DSC)) and spectroscopic methods (Raman/IR/NMR) were used to evaluate the structure and composition of the fiber assemblies. This study highlights the multifunctional role of TFA as a solvent, proton donor and electrostatically bound pendant group to chitosan, where the formation of a ternary complex occurs via supramolecular host–guest interactions. This work contributes further insight on the formation and stability of such ternary (chitosan + HPCD + solvent) electrospun fibers and their potential utility as “smart” fiber coatings for advanced applications.
Collapse
|
47
|
Lee J, Min K, Kim Y, Yu HK. Surface-Enhanced Raman Spectroscopy (SERS) Study Using Oblique Angle Deposition of Ag Using Different Substrates. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1581. [PMID: 31091815 PMCID: PMC6566392 DOI: 10.3390/ma12101581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 11/26/2022]
Abstract
The oblique angle deposition of Ag with different deposition rates and substrates was studied for surface-enhanced Raman spectroscopy (SERS) efficiency. The deposition rate for the Ag substrate with maximum SERS efficiency was optimized to 2.4 Å/s. We also analyzed the morphology of Ag nanorods deposited at the same rate on various substrates and compared their SERS intensities. Ag deposited on SiO2, sapphire, and tungsten showed straight nanorods shape and showed relatively high SERS efficiency. However, Ag deposited on graphene or plasma-treated SiO2 substrate was slightly or more aggregated (due to high surface energy) and showed low SERS efficiency.
Collapse
Affiliation(s)
- Jaeyeong Lee
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Korea.
| | - Kyungchan Min
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
| | - Youngho Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Korea.
| | - Hak Ki Yu
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
48
|
Caro C, Quaresma P, Pereira E, Franco J, Pernia Leal M, García-Martín ML, Royo JL, Oliva-Montero JM, Merkling PJ, Zaderenko AP, Pozo D, Franco R. Synthesis and Characterization of Elongated-Shaped Silver Nanoparticles as a Biocompatible Anisotropic SERS Probe for Intracellular Imaging: Theoretical Modeling and Experimental Verification. NANOMATERIALS 2019; 9:nano9020256. [PMID: 30781838 PMCID: PMC6409692 DOI: 10.3390/nano9020256] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/01/2019] [Accepted: 02/09/2019] [Indexed: 01/07/2023]
Abstract
Progress in the field of biocompatible SERS nanoparticles has promising prospects for biomedical applications. In this work, we have developed a biocompatible Raman probe by combining anisotropic silver nanoparticles with the dye rhodamine 6G followed by subsequent coating with bovine serum albumin. This nanosystem presents strong SERS capabilities in the near infrared (NIR) with a very high (2.7 × 107) analytical enhancement factor. Theoretical calculations reveal the effects of the electromagnetic and chemical mechanisms in the observed SERS effect for this nanosystem. Finite element method (FEM) calculations showed a considerable near field enhancement in NIR. Using density functional quantum chemical calculations, the chemical enhancement mechanism of rhodamine 6G by interaction with the nanoparticles was probed, allowing us to calculate spectra that closely reproduce the experimental results. The nanosystem was tested in cell culture experiments, showing cell internalization and also proving to be completely biocompatible, as no cell death was observed. Using a NIR laser, SERS signals could be detected even from inside cells, proving the applicability of this nanosystem as a biocompatible SERS probe.
Collapse
Affiliation(s)
- Carlos Caro
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Seville, Spain.
- Departamento de Química, UCIBIO, REQUIMTE, Faculdade de Ciências, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
- CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine, Av. Americo Vespucio, 24, 41092 Sevilla, Spain.
- BIONAND, Andalusian Centre for Nanomedicine and Biotechnology, Junta de Andalucía, Universidad de Málaga, 29590 Málaga, Spain.
| | - Pedro Quaresma
- Departamento de Química e Bioquímica, LAQV-REQUIMTE, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
| | - Eulália Pereira
- Departamento de Química e Bioquímica, LAQV-REQUIMTE, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
| | - Jaime Franco
- CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine, Av. Americo Vespucio, 24, 41092 Sevilla, Spain.
- Department of Medical Biochemistry, Molecular Biology and Immunology, Universidad de Sevilla, Av. Sanchez Pizjuan, 4, 41009 Sevilla, Spain.
| | - Manuel Pernia Leal
- BIONAND, Andalusian Centre for Nanomedicine and Biotechnology, Junta de Andalucía, Universidad de Málaga, 29590 Málaga, Spain.
- Department of Organic and Pharmaceutical Chemistry, Universidad de Sevilla, 41012 Seville, Spain.
| | - Maria Luisa García-Martín
- BIONAND, Andalusian Centre for Nanomedicine and Biotechnology, Junta de Andalucía, Universidad de Málaga, 29590 Málaga, Spain.
| | - Jose Luis Royo
- Department of Biochemistry, Molecular Biology and Immunology, Universidad de Málaga, 29071 Málaga, Spain.
| | - Jose Maria Oliva-Montero
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Seville, Spain.
| | - Patrick Jacques Merkling
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Seville, Spain.
| | - Ana Paula Zaderenko
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Seville, Spain.
| | - David Pozo
- CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine, Av. Americo Vespucio, 24, 41092 Sevilla, Spain.
- Department of Medical Biochemistry, Molecular Biology and Immunology, Universidad de Sevilla, Av. Sanchez Pizjuan, 4, 41009 Sevilla, Spain.
| | - Ricardo Franco
- Departamento de Química, UCIBIO, REQUIMTE, Faculdade de Ciências, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
49
|
Talib AJ, Fisher A, Voronine DV, Sinyukov AM, Bustamante Lopez SC, Ambardar S, Meissner KE, Scully MO, Sokolov AV. Fluorescence imaging of stained red blood cells with simultaneous resonance Raman photostability analysis. Analyst 2019; 144:4362-4370. [DOI: 10.1039/c9an00757a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Simultaneous fluorescence and resonance Raman imaging of R6G-stained red blood cells with optimal laser power.
Collapse
Affiliation(s)
- Ansam J. Talib
- Institute for Quantum Science and Engineering
- Texas A&M University
- College Station
- USA
- Department of Physics
| | - Andrew Fisher
- Department of Physics
- Centre for Nanohealth
- Swansea University
- Wales
- UK
| | - Dmitri V. Voronine
- Department of Physics
- University of South Florida
- Tampa
- USA
- Department of Medical Engineering
| | | | - Sandra C. Bustamante Lopez
- Institute for Quantum Science and Engineering
- Texas A&M University
- College Station
- USA
- Department of Physics
| | - Sharad Ambardar
- Department of Physics
- University of South Florida
- Tampa
- USA
- Department of Medical Engineering
| | | | - Marlan O. Scully
- Institute for Quantum Science and Engineering
- Texas A&M University
- College Station
- USA
- Department of Physics
| | - Alexei V. Sokolov
- Institute for Quantum Science and Engineering
- Texas A&M University
- College Station
- USA
- Department of Physics
| |
Collapse
|
50
|
Highly ordered Au-decorated Ag nanorod arrays as an ultrasensitive and reusable substrate for surface enhanced Raman scattering. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.10.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|