1
|
Mellouk A, Michel V, Lemâle O, Goossens T, Consuegra J. Glycerides of lauric acid supplementation in the chicken diet enhances the humoral and cellular immune response to infectious bronchitis virus. Vet Immunol Immunopathol 2024; 274:110802. [PMID: 38924873 DOI: 10.1016/j.vetimm.2024.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Controlling pathogenic infections while reducing antibiotic usage is an important challenge during poultry production. In addition to vaccination strategies, several solutions to enhance the immune response against pathogens are evaluated. In this study, we aim to determine the effects of the glycerides of lauric acid (GLA) supplementation in chickens' diets on humoral and cellular immune response pathogenic infections, using an in vivo model of infectious bronchitis virus (IBV). One-day-old Ross 308 broilers were vaccinated with live attenuated IBV and fed diets supplemented with or without GLA at 3 kg/ton. The levels of early (day 7) specific anti-IBV in sera were significantly increased in broilers fed GLA, compared to the control groups (P<0.05), showing a stronger primary humoral response. The secretion levels of main cytokines remained similar in spleens of all the experimental groups. However, the splenocytes from broilers fed GLA showed higher activation and effector abilities when measured by IFN-γ ELISpot in presence of N-261-280 IBV peptide or Concanavalin A (Con A), a pan T lymphocytes mitogen. In response to N-261-280 peptide, GLA group showed a 2-fold increase of spot numbers (P < 0.05) and 3-fold increase of spot surfaces (P < 0.01) compared to the control groups. Similarly, Con A stimulation showed a 2-fold increases in spot surfaces and numbers in the GLA supplemented group compared to the control group (P < 0.01). In summary, GLA supplementation in chicken feed enhances the primary humoral immune response and strengthen the T lymphocytes mediated cellular immune response. These findings demonstrate how GLA can improve chicken resilience against pathogenic challenges by enhancing their immune responses.
Collapse
Affiliation(s)
- Amine Mellouk
- Adisseo France S.A.S. European Laboratory of Innovation, Science & Expertise (ELISE), Department of R&I in Monogastric Animal Nutrition, 20 rue Prosper Monnet, Saint Fons 69190, France
| | - Virginie Michel
- Adisseo France S.A.S. European Laboratory of Innovation, Science & Expertise (ELISE), Department of R&I in Monogastric Animal Nutrition, 20 rue Prosper Monnet, Saint Fons 69190, France
| | - Olga Lemâle
- Adisseo France S.A.S. European Laboratory of Innovation, Science & Expertise (ELISE), Department of R&I in Monogastric Animal Nutrition, 20 rue Prosper Monnet, Saint Fons 69190, France
| | - Tim Goossens
- Adisseo France S.A.S. European Laboratory of Innovation, Science & Expertise (ELISE), Department of R&I in Monogastric Animal Nutrition, 20 rue Prosper Monnet, Saint Fons 69190, France
| | - Jessika Consuegra
- Adisseo France S.A.S. European Laboratory of Innovation, Science & Expertise (ELISE), Department of R&I in Monogastric Animal Nutrition, 20 rue Prosper Monnet, Saint Fons 69190, France.
| |
Collapse
|
2
|
Zhang W, Chen Y, Yang F, Zhang H, Su T, Wang J, Zhang Y, Song X. Antiviral effect of palmatine against infectious bronchitis virus through regulation of NF-κB/IRF7/JAK-STAT signalling pathway and apoptosis. Br Poult Sci 2024; 65:119-128. [PMID: 38166582 DOI: 10.1080/00071668.2023.2296929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/29/2023] [Indexed: 01/04/2024]
Abstract
1. Infectious bronchitis virus (IBV), a gamma-coronavirus, can infect chickens of all ages and leads to an acute contact respiratory infection. This study evaluated the anti-viral activity of palmatine, a natural non-flavonoid alkaloid, against IBV in chicken embryo kidney (CEK) cells.2. The half toxic concentration (CC50) of palmatine was 672.92 μM, the half inhibitory concentration (IC50) of palmatine against IBV was 7.76 μM and the selection index (SI) was 86.74.3. Mode of action assay showed that palmatine was able to directly inactivate IBV and inhibited the adsorption, penetration and intracellular replication of IBV.4. Palmatine significantly upregulated TRAF6, TAB1 and IKK-β compared with the IBV-infected group, leading to the increased expressions of pro-inflammatory cytokines IL-1β and TNF-α in the downstream NF-κB signalling pathway.5. Palmatine significantly up-regulated the levels of MDA5, MAVS, IRF7, IFN-α and IFN-β in the IRF7 pathway, inducing type I interferon production. It up-regulated the expression of 2'5'-oligoadenylate synthase (OAS) in the JAK-STAT pathway.6. IBV infection induced cell apoptosis and palmatine-treatment delayed the process of apoptosis by regulation of the expression of apoptosis-related genes (BAX, BCL-2, CASPASE-3 and CASPASE-8).7. Palmatine could exert anti-IBV activity through regulation of NF-κB/IRF7/JAK-STAT signalling pathways and apoptosis, providing a theoretical basis for the utilisation of palmatine to treat IBV infection.
Collapse
Affiliation(s)
- W Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Y Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - F Yang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - H Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - T Su
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - J Wang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Y Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - X Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Lai J, He X, Zhang R, Zhang L, Chen L, He F, Li L, Yang L, Ren T, Xiang B. Chicken Interferon-Alpha and -Lambda Exhibit Antiviral Effects against Fowl Adenovirus Serotype 4 in Leghorn Male Hepatocellular Cells. Int J Mol Sci 2024; 25:1681. [PMID: 38338959 PMCID: PMC10855402 DOI: 10.3390/ijms25031681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Hydropericardium hepatitis syndrome (HHS) is primarily caused by fowl adenovirus serotype 4 (FAdV-4), causing high mortality in chickens. Although vaccination strategies against FAdV-4 have been adopted, HHS still occurs sporadically. Furthermore, no effective drugs are available for controlling FAdV-4 infection. However, type I and III interferon (IFN) are crucial therapeutic agents against viral infection. The following experiments were conducted to investigate the inhibitory effect of chicken IFN against FadV-4. We expressed recombinant chicken type I IFN-α (ChIFN-α) and type III IFN-λ (ChIFN-λ) in Escherichia coli and systemically investigated their antiviral activity against FAdV-4 infection in Leghorn male hepatocellular (LMH) cells. ChIFN-α and ChIFN-λ dose dependently inhibited FAdV-4 replication in LMH cells. Compared with ChIFN-λ, ChIFN-α more significantly inhibited viral genome transcription but less significantly suppressed FAdV-4 release. ChIFN-α- and ChIFN-λ-induced IFN-stimulated gene (ISG) expression, such as PKR, ZAP, IRF7, MX1, Viperin, IFIT5, OASL, and IFI6, in LMH cells; however, ChIFN-α induced a stronger expression level than ChIFN-λ. Thus, our data revealed that ChIFN-α and ChIFN-λ might trigger different ISG expression levels, inhibiting FAdV-4 replication via different steps of the FAdV-4 lifecycle, which furthers the potential applications of IFN antiviral drugs in chickens.
Collapse
Affiliation(s)
- Jinyu Lai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China (L.Z.); (L.Y.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xingchen He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China (L.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Rongjie Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China (L.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Limei Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China (L.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Fengping He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China (L.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Lei Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China (L.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China (L.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China (L.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Gasmi A, Noor S, Menzel A, Khanyk N, Semenova Y, Lysiuk R, Beley N, Bolibrukh L, Gasmi Benahmed A, Storchylo O, Bjørklund G. Potential Drugs in COVID-19 Management. Curr Med Chem 2024; 31:3245-3264. [PMID: 37461346 DOI: 10.2174/0929867331666230717154101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/27/2023] [Accepted: 06/05/2023] [Indexed: 11/18/2023]
Abstract
The SARS-CoV-2 virus first emerged in China in December 2019 and quickly spread worldwide. Despite the absence of a vaccination or authorized drug specifically developed to combat this infection, certain medications recommended for other diseases have shown potential effectiveness in treating COVID-19, although without definitive confirmation. This review aims to evaluate the existing literature on the efficacy of these medications against COVID-19. The review encompasses various potential treatments, including antiviral medications, anti-malaria and anti-rheumatic drugs, vaccines, corticosteroids, non-steroidal anti-inflammatory drugs (NSAIDs), antipyretic and analgesic medicines, antiparasitic drugs, and statins. The analysis also addresses the potential benefits and drawbacks of these medications, as well as their effects on hypertension and diabetes. Although these therapies hold promise against COVID-19, further research, including suitable product production or clinical testing, is needed to establish their therapeutic efficacy.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Nataliia Khanyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Yuliya Semenova
- Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Nataliya Beley
- I. Ya. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | | | | | - Olha Storchylo
- Medical Chemistry Department, Odessa National Medical University, Odesa, Ukraine
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
5
|
Zhou P, Liu D, Zhang Q, Wu W, Chen D, Luo R. Antiviral effects of duck type I and type III interferons against Duck Tembusu virus in vitro and in vivo. Vet Microbiol 2023; 287:109889. [PMID: 37913673 DOI: 10.1016/j.vetmic.2023.109889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
Duck Tembusu Virus (DTMUV) is a newly emerging avian flavivirus that causes substantial economic losses to the duck industry in Asia by causing severe egg drop syndrome and fatal encephalitis in domestic ducks. During viral replication, host cells recognize the RNA structures produced by DTMUV, which triggers the production of interferons (IFNs) to inhibit viral replication. However, the function of duck type I and type III IFNs in inhibiting DTMUV infection remains largely unknown. In this study, we expressed and purified recombinant duck IFN-β (duIFN-β) and IFN-λ (duIFN-λ) in Escherichia coli and evaluated their antiviral activity against vesicular stomatitis virus (VSV). Furthermore, we found that both duIFN-β and duIFN-λ activated the ISRE promoter and induced the expression of ZAP, OAS, and RNaseL in duck embryo fibroblasts (DEFs). Notably, duIFN-β showed faster and more potent induction of ISGs in vitro and in vivo compared to duIFN-λ. Moreover, both duIFN-β and duIFN-λ showed high potential to inhibit DTMUV infection in DEFs, with duIFN-β demonstrating better antiviral efficacy than duIFN-λ against DTMUV in ducks. In conclusion, our results revealed that both duIFN-β and duIFN-λ can induce ISGs production and exhibit significant antiviral activity against DTMUV in vitro and in vivo, providing new insights for the development of antiviral therapeutic strategies in ducks.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Dejian Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Qingxiang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Wanrong Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Dong Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China.
| |
Collapse
|
6
|
Ghorbani A, Ngunjiri JM, Edward C Abundo M, Pantin-Jackwood M, Kenney SP, Lee CW. Development of in ovo-compatible NS1-truncated live attenuated influenza vaccines by modulation of hemagglutinin cleavage and polymerase acidic X frameshifting sites. Vaccine 2023; 41:1848-1858. [PMID: 36669965 DOI: 10.1016/j.vaccine.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023]
Abstract
Emerging avian influenza viruses pose a high risk to poultry production, necessitating the need for more broadly protective vaccines. Live attenuated influenza vaccines offer excellent protective efficacies but their use in poultry farms is discouraged due to safety concerns related to emergence of reassortant viruses. Vaccination of chicken embryos inside eggs (in ovo) induces early immunity in young chicks while reduces the safety concerns related to the use of live vaccines on farms. However, in ovo vaccination using influenza viruses severely affects the egg hatchability. We previously engineered a high interferon-inducing live attenuated influenza vaccine candidate with an enhanced protective efficacy in chickens. Here, we asked whether we could further modify this high interferon-inducing vaccine candidate to develop an in ovo-compatible live attenuated influenza vaccine. We first showed that the enhanced interferon responses induced by the vaccine is not enough to attenuate the virus in ovo. To reduce the pathogenicity of the virus for chicken embryos, we replaced the hemagglutinin cleavage site of the H7 vaccine virus (PENPKTR/GL) with that of the H6-subtype viruses (PQIETR/GL) and disrupted the ribosomal frameshifting site responsible for viral polymerase acidic X protein expression. In ovo vaccination of chickens with up to 105 median egg infectious dose of the modified vaccine had minimal effects on hatchability while protecting the chickens against a heterologous challenge virus at two weeks of age. This study demonstrates that targeted genetic mutations can be applied to further attenuate and enhance the safety of live attenuated influenza vaccines to develop future in ovo vaccines for poultry.
Collapse
Affiliation(s)
- Amir Ghorbani
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA; Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - John M Ngunjiri
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - Michael Edward C Abundo
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - Mary Pantin-Jackwood
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA
| | - Scott P Kenney
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA; Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA.
| | - Chang-Won Lee
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA.
| |
Collapse
|
7
|
Efficacy of Two Vaccination Strategies against Infectious Bronchitis in Laying Hens. Vaccines (Basel) 2023; 11:vaccines11020338. [PMID: 36851216 PMCID: PMC9967544 DOI: 10.3390/vaccines11020338] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Vaccination remains the leading control method against infectious bronchitis (IB) in poultry despite the frequently observed IB outbreaks in vaccinated flocks. Here, two vaccination regimes were evaluated against challenge with the Massachusetts (Mass) infectious bronchitis virus (IBV) strain that was linked to egg production defects in Western Canada. One vaccination strategy included live attenuated IB vaccines only, and the other used both inactivated and live attenuated IB vaccines. The two immunization programs involved priming with a monovalent live attenuated IB vaccine (Mass serotype) at day-old, followed by intervals of bivalent live attenuated IB vaccines containing the Mass and Connecticut (Conn) serotypes given to the pullets at 2-, 5-, 9-, and 14-week-old. Inactivated IB vaccine (Mass serotype) was administrated to only one group of the vaccinated birds at 14-week-old. At the peak of lay, the hens were challenged with the Mass IBV isolate (15AB-01) via the oculo-nasal route. The efficacy of the vaccines was assessed following the challenge by observing clinical signs, egg production, egg quality parameters, seroconversion, and systemic T-cell subsets (CD4+ and CD8+ cells). Moreover, the viral genome loads in the oropharyngeal (OP) and cloacal (CL) swabs were quantified at predetermined time points. At 14 days post-infection (dpi), all the hens were euthanized, and different tissues were collected for genome load quantification and histopathological examination. Post-challenge, both vaccination regimes showed protection against clinical signs and exhibited significantly higher albumen parameters, higher anti-IBV serum antibodies, and significantly lower levels of IBV genome loads in OP swabs (at 3 and 7 dpi) and trachea and cecal tonsils compared to the mock-vaccinated challenged group. However, only the birds that received live attenuated plus inactivated IB vaccines had significantly lower IBV genome loads in CL swabs at 7 dpi, as well as decreased histopathological lesion scores and IBV genome loads in magnum compared to the mock-vaccinated challenged group, suggesting a slightly better performance for using live attenuated and inactivated IB vaccines in combination. Overall, the present findings show no significant difference in protection between the two vaccination regimes against the Mass IBV challenge in laying hens.
Collapse
|
8
|
Lu M, Lee Y, Lillehoj HS. Evolution of developmental and comparative immunology in poultry: The regulators and the regulated. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104525. [PMID: 36058383 DOI: 10.1016/j.dci.2022.104525] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Avian has a unique immune system that evolved in response to environmental pressures in all aspects of innate and adaptive immune responses, including localized and circulating lymphocytes, diversity of immunoglobulin repertoire, and various cytokines and chemokines. All of these attributes make birds an indispensable vertebrate model for studying the fundamental immunological concepts and comparative immunology. However, research on the immune system in birds lags far behind that of humans, mice, and other agricultural animal species, and limited immune tools have hindered the adequate application of birds as disease models for mammalian systems. An in-depth understanding of the avian immune system relies on the detailed studies of various regulated and regulatory mediators, such as cell surface antigens, cytokines, and chemokines. Here, we review current knowledge centered on the roles of avian cell surface antigens, cytokines, chemokines, and beyond. Moreover, we provide an update on recent progress in this rapidly developing field of study with respect to the availability of immune reagents that will facilitate the study of regulatory and regulated components of poultry immunity. The new information on avian immunity and available immune tools will benefit avian researchers and evolutionary biologists in conducting fundamental and applied research.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| |
Collapse
|
9
|
Oral immunization of recombinant Saccharomyces cerevisiae expressing fiber-2 of fowl adenovirus serotype 4 induces protective immunity against homologous infection. Vet Microbiol 2022; 271:109490. [PMID: 35709627 DOI: 10.1016/j.vetmic.2022.109490] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/27/2022] [Accepted: 06/04/2022] [Indexed: 11/22/2022]
Abstract
Hydropericardium-hepatitis syndrome (HHS) caused by fowl adenovirus (FAdV) serotype 4 strains is a highly contagious disease that causes significant economic loss to the global poultry industry. However, subunit vaccine against FAdV-4 infection is not yet commercially available to date. This study aims to explore the potential for oral immunization of recombinant Saccharomyces cerevisiae expressing Fiber-2 of FAdV-4 as a subunit vaccine. Here, we constructed recombinant S. cerevisiae (ST1814G/Fiber-2) expressing recombinant Fiber-2 (rFiber-2), which was displayed on the cell surface. To evaluate the immune response and protective effect of live recombinant S. cerevisiae, chickens were orally immunized with the constructed live ST1814G/Fiber-2, three times at 5-day intervals, and then challenged with FAdV-4. The results showed that oral administration of live ST1814G/Fiber-2 could stimulate the production of humoral immunity, enhance the body's antiviral activity and immune regulation ability, improve the composition of gut microbiota, provide protection against FAdV-4 challenge, reduce viral load in the liver, and alleviate the pathological damage of heart, liver, and spleen for chicken. In addition, we found the synergistic effect in combining the ST1814G/Fiber-2 yeast and inactivated vaccine to trigger stronger humoral immunity and mucosal immunity. Our results suggest that oral live ST1814G/Fiber-2 is a potentially safer auxiliary preparation strategy in controlling FAdV-4 infection.
Collapse
|
10
|
Ganapathy K. Infectious Bronchitis Virus Infection of Chicken: The Essential Role of Mucosal Immunity. Avian Dis 2021; 65:619-623. [DOI: 10.1637/aviandiseases-d-21-00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Kannan Ganapathy
- Institute of Infection, Veterinary & Ecology Sciences, University of Liverpool, Neston, Cheshire, CH64 7TE, United Kingdom
| |
Collapse
|
11
|
Bhuiyan MSA, Amin Z, Rodrigues KF, Saallah S, Shaarani SM, Sarker S, Siddiquee S. Infectious Bronchitis Virus (Gammacoronavirus) in Poultry Farming: Vaccination, Immune Response and Measures for Mitigation. Vet Sci 2021; 8:273. [PMID: 34822646 PMCID: PMC8623603 DOI: 10.3390/vetsci8110273] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Infectious bronchitis virus (IBV) poses significant financial and biosecurity challenges to the commercial poultry farming industry. IBV is the causative agent of multi-systemic infection in the respiratory, reproductive and renal systems, which is similar to the symptoms of various viral and bacterial diseases reported in chickens. The avian immune system manifests the ability to respond to subsequent exposure with an antigen by stimulating mucosal, humoral and cell-mediated immunity. However, the immune response against IBV presents a dilemma due to the similarities between the different serotypes that infect poultry. Currently, the live attenuated and killed vaccines are applied for the control of IBV infection; however, the continual emergence of IB variants with rapidly evolving genetic variants increases the risk of outbreaks in intensive poultry farms. This review aims to focus on IBV challenge-infection, route and delivery of vaccines and vaccine-induced immune responses to IBV. Various commercial vaccines currently have been developed against IBV protection for accurate evaluation depending on the local situation. This review also highlights and updates the limitations in controlling IBV infection in poultry with issues pertaining to antiviral therapy and good biosecurity practices, which may aid in establishing good biorisk management protocols for its control and which will, in turn, result in a reduction in economic losses attributed to IBV infection.
Collapse
Affiliation(s)
- Md. Safiul Alam Bhuiyan
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| | - Zarina Amin
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| | - Kenneth Francis Rodrigues
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| | - Suryani Saallah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| | - Sharifudin Md. Shaarani
- Food Biotechnology Program, Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Nilai 71800, Malaysia;
| | - Subir Sarker
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Shafiquzzaman Siddiquee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| |
Collapse
|
12
|
Zhang Y, Xu Z, Cao Y. Host Antiviral Responses against Avian Infectious Bronchitis Virus (IBV): Focus on Innate Immunity. Viruses 2021; 13:1698. [PMID: 34578280 PMCID: PMC8473314 DOI: 10.3390/v13091698] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022] Open
Abstract
Avian infectious bronchitis virus (IBV) is an important gammacoronavirus. The virus is highly contagious, can infect chickens of all ages, and causes considerable economic losses in the poultry industry worldwide. In the last few decades, numerous studies have been published regarding pathogenicity, vaccination, and host immunity-virus interaction. In particular, innate immunity serves as the first line of defense against invasive pathogens and plays an important role in the pathogenetic process of IBV infection. This review focuses on fundamental aspects of host innate immune responses after IBV infection, including identification of conserved viral structures and different components of host with antiviral activity, which could provide useful information for novel vaccine development, vaccination strategies, and intervention programs.
Collapse
Affiliation(s)
| | | | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; (Y.Z.); (Z.X.)
| |
Collapse
|
13
|
Interplay of the ubiquitin proteasome system and the innate immune response is essential for the replication of infectious bronchitis virus. Arch Virol 2021; 166:2173-2185. [PMID: 34037855 PMCID: PMC8150628 DOI: 10.1007/s00705-021-05073-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022]
Abstract
Infectious bronchitis virus (IBV) is the only coronavirus known to infect poultry. The replication and pathogenesis of IBV are poorly understood, mainly because of the unavailability of a robust cell culture system. Here, we report that an active ubiquitin proteasome system (UPS) is necessary for efficient replication of IBV in Vero cells. Synthesis of IBV-specific RNA as well as viral protein is hampered in the presence of chemical inhibitors specific for the UPS. Like other coronaviruses, IBV encodes a papain-like protease (PLpro) that exhibits in vitro deubiquitinase activity in addition to proteolytically processing the replicase polyprotein. Our results show that the IBV PLpro enzyme inhibits the synthesis of interferon beta (IFNβ) in infected chicken embryonic fibroblast (DF-1) cells and that this activity is enhanced in the presence of melanoma differentiation-associated protein 5 (MDA5) and TANK binding kinase 1 (TBK1). IBV PLpro, when overexpressed in DF-1 cells, deubiquitinates MDA5 and TBK1. Both of these proteins, along with other adapter molecules such as MAVS, IKKε, and IRF3, form a signaling cascade for the synthesis of IFNβ. Ubiquitination of MDA5 and TBK1 is essential for their activation, and their deubiquitination by IBV PLpro renders them unable to participate in antiviral signaling. This study shows for the first time that there is cross-talk between the UPS and the innate immune response during IBV infection and that the deubiquitinase activity of IBV PLpro is involved in its activity as an IFN antagonist. This insight will be useful for designing better antivirals targeting the catalytic activity of the IBV PLpro enzyme.
Collapse
|
14
|
Host immune response to infectious bronchitis virus Q1 in two commercial broiler chicken lines. Res Vet Sci 2021; 136:587-594. [PMID: 33892367 DOI: 10.1016/j.rvsc.2021.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/17/2021] [Accepted: 04/14/2021] [Indexed: 11/22/2022]
Abstract
This study investigated the pathogenesis of infectious bronchitis virus (Gammacoronavirus) strain Q1 in two commercial broiler chicken lines, and the host immune response to infection. Chicks from each line were grouped into either infected or control. Following Q1 infection at day-old, fast (Line-A) and slow (Line-B) growing chicks were monitored for clinical signs and body weights. At 3, 7, 9, 14, 21 and 28 days post infection (dpi), five birds were humanely euthanised, and trachea, kidney and proventriculus tissues were collected for quantitative RT-PCR and histopathology. Blood was collected weekly to determine IBV-specific ELISA antibody titres. Q1 infection significantly reduced the body weights of Line-A chicks at 14 and 21 dpi, but there were no significant differences in Line-B. Through qRT-PCR, significantly higher viral loads were found in the trachea, proventriculus and kidney tissues of Line-A chicks at 7-9 dpi. At day-old and at 28 dpi, the mean antibody titre in Line-B was notably higher than Line-A. Significant IFN-α mRNA expression was noted in the trachea and kidneys of Line-A, whereas no change occurred in Line-B. Chicks in Line-B, compared to those in Line-A, demonstrated a tissue-dependent increase of IFN-β, TLR3, IL-1β and IL-6 and LITAF gene transcription responses to IBV Q1. It appears that the level of maternal antibodies, growth rates, and other inherent host genetic factors could have influenced the differences in viral loads and immune responses.
Collapse
|
15
|
Keflie TS, Biesalski HK. Micronutrients and bioactive substances: Their potential roles in combating COVID-19. Nutrition 2021; 84:111103. [PMID: 33450678 PMCID: PMC7717879 DOI: 10.1016/j.nut.2020.111103] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The coronavirus disease 2019 (COVID-19) pandemic is seriously threatening public health and setting off huge economic crises across the world. In the absence of specific drugs for COVID-19, there is an urgent need to look for alternative approaches. Therefore, the aim of this paper was to review the roles of micronutrients and bioactive substances as potential alternative approaches in combating COVID-19. METHODS This review was based on the literature identified using electronic searches in different databases. RESULTS Vitamins (A, B, C, D, and E), minerals (selenium and zinc), and bioactive substances from curcumin, echinacea, propolis, garlic, soybean, green tea, and other polyphenols were identified as having potential roles in interfering with spike glycoproteins, angiotensin converting enzyme 2, and transmembrane protease serine 2 at the entry site, and inhibiting activities of papain-like protease, 3 chymotrypsin-like protease, and RNA-dependent RNA polymerase in the replication cycle of severe acute respiratory syndrome coronavirus 2. Having immunomodulating, antiinflammatory, antioxidant, and antiviral properties, such micronutrients and bioactive substances are consequently promising alterative nutritional approaches to combat COVID-19. CONCLUSIONS The roles of micronutrients and bioactive substances in the fight against COVID-19 are exciting areas of research. This review may suggest directions for further study.
Collapse
|
16
|
Ruan Z, Chen G, Xie T, Mo G, Wang G, Luo W, Li H, Shi M, Liu WS, Zhang X. Cytokine inducible SH2-containing protein potentiate J subgroup avian leukosis virus replication and suppress antiviral responses in DF-1 chicken fibroblast cells. Virus Res 2021; 296:198344. [PMID: 33636239 DOI: 10.1016/j.virusres.2021.198344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/26/2022]
Abstract
Cytokine-inducible Srchomology2 (SH2)-containing protein (CIS) belongs to the suppressors of cytokine signaling (SOCS) protein family function as a negative feedback loop inhibiting cytokine signal transduction. J subgroup avian leukosis virus (ALV-J), a commonly-seen avian virus with a feature of immunosuppression, poses an unmeasurable threat to the poultry industry across the world. However, commercial medicines or vaccines are still no available for this virus. This study aims to evaluate the potential effect of chicken CIS in antiviral response and its role on ALV-J replication. The results showed that ALV-J strain SCAU-HN06 infection induced CIS expression in DF-1 cells, which was derived from chicken embryo free of endogenous avian sarcoma-leukosis virus (ASLV) like sequences. By overexpressing CIS, the expression of chicken type I interferon (IFN-I) and interferon-stimulated genes (ISGs; PKR, ZAP, CH25H, CCL4, IFIT5, and ISG12) were both suppressed. Meanwhile, data showed that CIS overexpression also increased viral yield. Interestingly, knockdown of CIS enhanced induction of IFN-I and ISGs and inhibited viral replication. Collectively, we proved that modulation of CIS expression not only affected SCAU-HN06 replication in vitro but also altered the expression of IFN-I and ISGs that act as an essential part of antiviral innate immune system. Our data provide a potential target for developing antiviral agents for ALV-J.
Collapse
Affiliation(s)
- Zhuohao Ruan
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China; College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| | - Genghua Chen
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| | - Tingting Xie
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| | - Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| | - Guiyan Wang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| | - Wen Luo
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| | - Hongmei Li
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MA, 20742, USA.
| | - Wen-Sheng Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China; Guangdong Province Engineering Research Centre of Aquatic Immunization and Aquaculture Health Techniques, South China Agricultural University, Guangzhou, China.
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
17
|
Ghosh S, Malik YS. Drawing Comparisons between SARS-CoV-2 and the Animal Coronaviruses. Microorganisms 2020; 8:E1840. [PMID: 33238451 PMCID: PMC7700164 DOI: 10.3390/microorganisms8111840] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/01/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
The COVID-19 pandemic, caused by a novel zoonotic coronavirus (CoV), SARS-CoV-2, has infected 46,182 million people, resulting in 1,197,026 deaths (as of 1 November 2020), with devastating and far-reaching impacts on economies and societies worldwide. The complex origin, extended human-to-human transmission, pathogenesis, host immune responses, and various clinical presentations of SARS-CoV-2 have presented serious challenges in understanding and combating the pandemic situation. Human CoVs gained attention only after the SARS-CoV outbreak of 2002-2003. On the other hand, animal CoVs have been studied extensively for many decades, providing a plethora of important information on their genetic diversity, transmission, tissue tropism and pathology, host immunity, and therapeutic and prophylactic strategies, some of which have striking resemblance to those seen with SARS-CoV-2. Moreover, the evolution of human CoVs, including SARS-CoV-2, is intermingled with those of animal CoVs. In this comprehensive review, attempts have been made to compare the current knowledge on evolution, transmission, pathogenesis, immunopathology, therapeutics, and prophylaxis of SARS-CoV-2 with those of various animal CoVs. Information on animal CoVs might enhance our understanding of SARS-CoV-2, and accordingly, benefit the development of effective control and prevention strategies against COVID-19.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre 334, Saint Kitts and Nevis
| | - Yashpal S. Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana 141004, India;
| |
Collapse
|
18
|
Kooshkaki O, Derakhshani A, Conradie AM, Hemmat N, Barreto SG, Baghbanzadeh A, Singh PK, Safarpour H, Asadzadeh Z, Najafi S, Brunetti O, Racanelli V, Silvestris N, Baradaran B. Coronavirus Disease 2019: A Brief Review of the Clinical Manifestations and Pathogenesis to the Novel Management Approaches and Treatments. Front Oncol 2020; 10:572329. [PMID: 33194671 PMCID: PMC7658542 DOI: 10.3389/fonc.2020.572329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022] Open
Abstract
The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coronavirus disease 2019 (COVID-19) in China, which spread to the rest of the world, led the World Health Organization to classify it as a global pandemic. COVID-19 belongs to the Bettacoronavirus genus of the Coronaviridae family, and it mainly spreads through the respiratory tract. Studies have now confirmed a human-to-human transmission as the primary pathway of spread. COVID-19 patients with a history of diseases such as respiratory system diseases, immune deficiency, diabetes, cardiovascular disease, and cancer are prone to adverse events (admission to the intensive care unit requiring invasive ventilation or even death). The current focus has been on the development of novel therapeutics, including antivirals, monoclonal antibodies, and vaccines. However, although there is undoubtedly an urgent need to identify effective treatment options against infection with COVID-19, it is equally important to clarify management protocols for the other significant diseases from which these patients may suffer, including cancer. This review summarizes the current evidence regarding the epidemiology, pathogenesis, and management of patients with COVID-19. It also aims to provide the reader with insights into COVID-19 in pregnant patients and those with cancer, outlining necessary precautions relevant to cancer patients. Finally, we provide the available evidence on the latest potent antiviral drugs and vaccines of COVID-19 and the ongoing drug trials.
Collapse
Affiliation(s)
- Omid Kooshkaki
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | | | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Savio George Barreto
- Division of Surgery and Perioperative Medicine, Flinders Medical Centre, Adelaide, SA, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pankaj Kumar Singh
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Hossein Safarpour
- Cellularand Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari “AldoMoro”, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
- Department of Biomedical Sciences and Human Oncology, University of Bari “AldoMoro”, Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
M. Najimudeen S, H. Hassan MS, C. Cork S, Abdul-Careem MF. Infectious Bronchitis Coronavirus Infection in Chickens: Multiple System Disease with Immune Suppression. Pathogens 2020; 9:pathogens9100779. [PMID: 32987684 PMCID: PMC7598688 DOI: 10.3390/pathogens9100779] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
In the early 1930s, infectious bronchitis (IB) was first characterized as a respiratory disease in young chickens; later, the disease was also described in older chickens. The etiology of IB was confirmed later as being due to a coronavirus: the infectious bronchitis virus (IBV). Being a coronavirus, IBV is subject to constant genome change due to mutation and recombination, with the consequence of changing clinical and pathological manifestations. The potential use of live attenuated vaccines for the control of IBV infection was demonstrated in the early 1950s, but vaccine breaks occurred due to the emergence of new IBV serotypes. Over the years, various IBV genotypes associated with reproductive, renal, gastrointestinal, muscular and immunosuppressive manifestations have emerged. IBV causes considerable economic impacts on global poultry production due to its pathogenesis involving multiple body systems and immune suppression; hence, there is a need to better understand the pathogenesis of infection and the immune response in order to help developing better management strategies. The evolution of new strains of IBV during the last nine decades against vaccine-induced immune response and changing clinical and pathological manifestations emphasize the necessity of the rational development of intervention strategies based on a thorough understanding of IBV interaction with the host.
Collapse
|
20
|
Development of antigen sandwich ELISA to detect interferon-alpha (IFN-α) using monoclonal antibodies in chicken. Vet Immunol Immunopathol 2020; 229:110124. [PMID: 32979613 DOI: 10.1016/j.vetimm.2020.110124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 11/22/2022]
Abstract
Interferon alpha (IFN-α) belongs to the type I interferon family which mediates an early innate immune response to viral infections. In the present study, we developed sandwich ELISA using specific mouse monoclonal antibodies (mAbs) to measure IFN-α production in chickens. Recombinant chicken IFN-α (chIFN-α) expressed in yeast were purchased from Kingfisher Biotech, and used to immunize the mice. Five mAbs which specifically recognize chicken IFN-α antigen were selected and characterized. For sandwich ELISA development, mAbs were labeled with biotin, followed by a pairing test to identify the best capture and detection antibodies. Two sets of mouse anti-chIFN-α mAb pairs were determined and a standard curve was established using recombinant chIFN-α. The sandwich ELISA effectively detected an increased IFN-α production in chicken macrophage cells stimulated by polyinosinic:polycytidylic acid (poly I:C), and its minimum detectable level was about 25 pg/mL. The anti-viral activity of chIFN-α against vesicular stomatitis virus was characterized in avian embryonic fibroblast and the mouse anti-chIFN-α mAbs which neutralize its activity were identified. The newly developed antigen sandwich ELISA developed in this study will be a useful tool to monitor IFN-α production in chickens.
Collapse
|
21
|
Fajgenbaum DC, Khor JS, Gorzewski A, Tamakloe MA, Powers V, Kakkis JJ, Repasky M, Taylor A, Beschloss A, Hernandez-Miyares L, Go B, Nimgaonkar V, McCarthy MS, Kim CJ, Pai RAL, Frankl S, Angelides P, Jiang J, Rasheed R, Napier E, Mackay D, Pierson SK. Treatments Administered to the First 9152 Reported Cases of COVID-19: A Systematic Review. Infect Dis Ther 2020; 9:435-449. [PMID: 32462545 PMCID: PMC7251321 DOI: 10.1007/s40121-020-00303-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
The emergence of SARS-CoV-2/2019 novel coronavirus (COVID-19) has created a global pandemic with no approved treatments or vaccines. Many treatments have already been administered to COVID-19 patients but have not been systematically evaluated. We performed a systematic literature review to identify all treatments reported to be administered to COVID-19 patients and to assess time to clinically meaningful response for treatments with sufficient data. We searched PubMed, BioRxiv, MedRxiv, and ChinaXiv for articles reporting treatments for COVID-19 patients published between 1 December 2019 and 27 March 2020. Data were analyzed descriptively. Of the 2706 articles identified, 155 studies met the inclusion criteria, comprising 9152 patients. The cohort was 45.4% female and 98.3% hospitalized, and mean (SD) age was 44.4 years (SD 21.0). The most frequently administered drug classes were antivirals, antibiotics, and corticosteroids, and of the 115 reported drugs, the most frequently administered was combination lopinavir/ritonavir, which was associated with a time to clinically meaningful response (complete symptom resolution or hospital discharge) of 11.7 (1.09) days. There were insufficient data to compare across treatments. Many treatments have been administered to the first 9152 reported cases of COVID-19. These data serve as the basis for an open-source registry of all reported treatments given to COVID-19 patients at www.CDCN.org/CORONA . Further work is needed to prioritize drugs for investigation in well-controlled clinical trials and treatment protocols.
Collapse
Affiliation(s)
- David C Fajgenbaum
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Johnson S Khor
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Gorzewski
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark-Avery Tamakloe
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria Powers
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Mileva Repasky
- Castleman Disease Collaborative Network, Philadelphia, PA, USA
| | - Anne Taylor
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Alexander Beschloss
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Beatrice Go
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivek Nimgaonkar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Casey J Kim
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruth-Anne Langan Pai
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah Frankl
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Philip Angelides
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joanna Jiang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rozena Rasheed
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erin Napier
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Duncan Mackay
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sheila K Pierson
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
22
|
Comparative Study of Protection against Newcastle Disease in Young Broilers Administered Natural Chicken Alpha Interferon via Oral and Intramuscular Routes. mSphere 2020; 5:5/4/e00585-20. [PMID: 32669457 PMCID: PMC7364220 DOI: 10.1128/msphere.00585-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Newcastle disease (ND) is an economically important contagious disease of wild and domestic birds worldwide. The disease causes severe economic losses in terms of production due to high mortality and morbidity in nonvaccinated chickens. Despite extensive vaccination approaches, Newcastle disease (ND) remains a permanent threat to the poultry industry worldwide. In the current study, we used natural chicken IFN-α as an innate immune modulator to counteract ND in chickens. We report that chIFN-α is effective in protecting the chickens against ND and also prevents shedding of the virus, which can then prevent further spread of the disease. We propose that in addition to vaccination, chIFN-α therapy could be an effective option for controlling ND in areas of endemicity. Despite extensive vaccination approaches, Newcastle disease (ND) remains a permanent threat to the poultry industry worldwide. Besides vaccination, there is a burgeoning demand for new antivirals for use in interventions to control ND. One strategy is to strengthen the host innate immunity via host-derived innate immune proteins. Type I interferons define one of the first lines of innate immune defense against viral infections. Chicken interferon alpha (chIFN-α) is one of the potent cytokines that trigger antiviral responses. In the current study, we investigated the therapeutic effect of natural chIFN-α administered via oral and intramuscular (i.m.) routes against ND in broiler chickens. Our results showed that the level of protection against ND in response to chIFN-α therapy was dependent on the route and dose of IFN administration. A better therapeutic effect was observed in chickens treated with chIFN-α via the oral route than in those treated via the i.m. route. Regardless of the administration route, double-dose chIFN-α (2,000-U) treatments provided better protection than single-dose (1,000-U) treatments. However, complete protection against ND was achieved in birds treated with repeated doses of chIFN-α via the oral route. Histopathology of trachea, proventriculus, spleen, and liver showed a significant improvement in ND-induced degenerative changes in double-dose IFN-treatment groups compared to single-dose groups. Results of the hemagglutination test demonstrated a decrease in ND virus (NDV) titer in IFN-treated groups. Also, double doses of chIFN-α via oral route resulted in early recovery in weight gain. We propose that chIFN-α therapy via oral route could be an important therapeutic tool to control NDV infection in chicken. IMPORTANCE Newcastle disease (ND) is an economically important contagious disease of wild and domestic birds worldwide. The disease causes severe economic losses in terms of production due to high mortality and morbidity in nonvaccinated chickens. Despite extensive vaccination approaches, Newcastle disease (ND) remains a permanent threat to the poultry industry worldwide. In the current study, we used natural chicken IFN-α as an innate immune modulator to counteract ND in chickens. We report that chIFN-α is effective in protecting the chickens against ND and also prevents shedding of the virus, which can then prevent further spread of the disease. We propose that in addition to vaccination, chIFN-α therapy could be an effective option for controlling ND in areas of endemicity.
Collapse
|
23
|
Tu H, Tu S, Gao S, Shao A, Sheng J. Current epidemiological and clinical features of COVID-19; a global perspective from China. J Infect 2020; 81:1-9. [PMID: 32315723 PMCID: PMC7166041 DOI: 10.1016/j.jinf.2020.04.011] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and represents a potentially fatal disease of great global public health importance. As of March 26, 2020, the outbreak of COVID-19 has resulted in 462,801 confirmed cases and 20,839 deaths globally, which is more than those caused by SARS and Middle East respiratory syndrome (MERS) in 2003 and 2013, respectively. The epidemic has posed considerable challenges worldwide. Under a strict mechanism of massive prevention and control, China has seen a rapid decrease in new cases of coronavirus; however, the global situation remains serious. Additionally, the origin of COVID-19 has not been determined and no specific antiviral treatment or vaccine is currently available. Based on the published data, this review systematically discusses the etiology, epidemiology, clinical characteristics, and current intervention measures related to COVID-19 in the hope that it may provide a reference for future studies and aid in the prevention and control of the COVID-19 epidemic.
Collapse
Affiliation(s)
- Huilan Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| | - Jifang Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
24
|
Guo G, Ye L, Pan K, Chen Y, Xing D, Yan K, Chen Z, Ding N, Li W, Huang H, Zhang L, Li X, Xue X. New Insights of Emerging SARS-CoV-2: Epidemiology, Etiology, Clinical Features, Clinical Treatment, and Prevention. Front Cell Dev Biol 2020; 8:410. [PMID: 32574318 PMCID: PMC7256189 DOI: 10.3389/fcell.2020.00410] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
Since the first reports that the novel coronavirus was showing human-to-human transmission characteristics and asymptomatic cases, the number of patients with associated pneumonia has continued to rise and the epidemic has grown. It now threatens the health and lives of people across the world. The governments of many countries have attached great importance to the prevention of SARS-CoV-2, via research into the etiology and epidemiology of this newly emerged disease. Clinical signs, treatment, and prevention characteristics of the novel coronavirus pneumonia have been receiving attention worldwide, especially from medical personnel. However, owing to the different experimental methods, sample sizes, sample sources, and research perspectives of various studies, results have been inconsistent, or relate to an isolated aspect of the virus or the disease it causes. Currently, systematic summary data on the novel coronavirus are limited. This review combines experimental and clinical evidence into a systematic analysis and summary of the current progress of research into SARS-CoV-2, from multiple perspectives, with the aim of gaining a better overall understanding of the disease. Our report provides important information for current clinicians, for the prevention and treatment of COVID-19 pneumonia.
Collapse
Affiliation(s)
- Gangqiang Guo
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Lele Ye
- Department of Gynecologic Oncology, Wenzhou Central Hospital, Wenzhou, China
| | - Kan Pan
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yu Chen
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Dong Xing
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Kejing Yan
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhiyuan Chen
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ning Ding
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Wenshu Li
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hong Huang
- Center for Health Assessment, Wenzhou Medical University, Wenzhou, China
| | - Lifang Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Virology, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China
- Institute of Virology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol 2020; 92:479-490. [PMID: 32052466 PMCID: PMC7166986 DOI: 10.1002/jmv.25707] [Citation(s) in RCA: 711] [Impact Index Per Article: 177.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022]
Abstract
An outbreak of a novel coronavirus (COVID‐19 or 2019‐CoV) infection has posed significant threats to international health and the economy. In the absence of treatment for this virus, there is an urgent need to find alternative methods to control the spread of disease. Here, we have conducted an online search for all treatment options related to coronavirus infections as well as some RNA‐virus infection and we have found that general treatments, coronavirus‐specific treatments, and antiviral treatments should be useful in fighting COVID‐19. We suggest that the nutritional status of each infected patient should be evaluated before the administration of general treatments and the current children's RNA‐virus vaccines including influenza vaccine should be immunized for uninfected people and health care workers. In addition, convalescent plasma should be given to COVID‐19 patients if it is available. In conclusion, we suggest that all the potential interventions be implemented to control the emerging COVID‐19 if the infection is uncontrollable.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
26
|
Barjesteh N, O'Dowd K, Vahedi SM. Antiviral responses against chicken respiratory infections: Focus on avian influenza virus and infectious bronchitis virus. Cytokine 2020; 127:154961. [PMID: 31901597 PMCID: PMC7129915 DOI: 10.1016/j.cyto.2019.154961] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
Abstract
Some of the respiratory viral infections in chickens pose a significant threat to the poultry industry and public health. In response to viral infections, host innate responses provide the first line of defense against viruses, which often act even before the establishment of the infection. Host cells sense the presence of viral components through germinal encoded pattern recognition receptors (PRRs). The engagement of PRRs with pathogen-associated molecular patterns leads to the induction of pro-inflammatory and interferon productions. Induced antiviral responses play a critical role in the outcome of the infections. In order to improve current strategies for control of viral infections or to advance new strategies aimed against viral infections, a deep understanding of host-virus interaction and induction of antiviral responses is required. In this review, we summarized recent progress in understanding innate antiviral responses in chickens with a focus on the avian influenza virus and infectious bronchitis virus.
Collapse
Affiliation(s)
- Neda Barjesteh
- Research Group on Infectious Diseases in Production Animals (GREMIP), and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.
| | - Kelsey O'Dowd
- Research Group on Infectious Diseases in Production Animals (GREMIP), and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Seyed Milad Vahedi
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
27
|
Chaturvedi P, Qayyumi B, Sharin F, Singh A, Tuljapurkar V. Management of COVID-19: A brief overview of the various treatment strategies. CANCER RESEARCH, STATISTICS, AND TREATMENT 2020. [DOI: 10.4103/crst.crst_187_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
28
|
Lee CC, Tung CY, Wu CC, Lin TL. AVIAN INNATE IMMUNITY WITH AN EMPHASIS ON CHICKEN MELANOMA DIFFERENTIATION-ASSOCIATED GENE 5 (MDA5). ACTA ACUST UNITED AC 2019. [DOI: 10.1142/s1682648519300016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Avian species have immune system to fight invading pathogens. The immune system comprises innate and adaptive immunity. Innate immunity relies on pattern recognition receptors to sense particular molecules present in pathogens, i.e. pathogen-associated molecular patterns (PAMPs), or danger signals in the environment, i.e. danger-associated molecular patterns (DAMPs). Cytoplasmic retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and nucleotide-binding oligomerization domain-like receptors (NLRs) are the sensors recognizing cytoplasmic PAMP and/or DAMP. Among common avian species, chickens do not have RIG-I whereas ducks and finches do. Therefore, the other RLR member, melanoma differentiation-associated gene 5 (MDA5), is believed to play an important role to recognize intracellular pathogens in chickens. Chicken MDA5 has been identified and its function determined. Chicken MDA5 maintains the same domain architecture compared with MDA5 analogs in other animal species. The expression of chicken MDA5 was upregulated when a synthetic double-stranded RNA (dsRNA), polyriboinosinic:polyribocytidylic acids (poly(I:C)), was transfected into chicken cells, whereas that did not change when cells were incubated with poly(I:C). The enhanced expression of chicken MDA5 in chicken cells upregulated the expression of chicken interferon-[Formula: see text] (IFN-[Formula: see text]). The infection of dsRNA infectious bursal disease virus (IBDV) in non-immune cells triggered the activation of chicken MDA5 signaling pathway, leading to the production of IFN-[Formula: see text] and subsequent response of IFN-stimulated genes. Furthermore, in immune cells like macrophages, chicken MDA5 participated in sensing the infection of IBDV by activating downstream antiviral genes and molecules and modulating adaptive immunity.On the contrary, one of cytoplasmic NLR member, NLR family pyrin domain containing 3 (NLRP3), was cloned and functionally characterized in chicken cells. Chicken NLRP3 conserved the same domain architecture compared with NLRP3 analogs in other animal species. Chicken NLRP3 was highly expressed in kidney, bursa of Fabricius and spleen. The production of mature chicken interleukin 1 [Formula: see text] (IL-1[Formula: see text] in chicken macrophages was stimulated by lipopolysaccharide (LPS) treatment followed by short ATP exposure.In summary, chicken MDA5 was a cytoplasmic dsRNA sensor that mediated the production of type I IFN upon ligand engagement, whereas NLRP3 sensed danger signals, such as ATP, in the cytoplasm and cleaved pro-IL-1[Formula: see text] to produce mature IL-1[Formula: see text]. Chicken MDA5 was not only involved in the activation of innate immune responses in non-immune and immune cells, but it also participated in modulating adaptive immunity in immune cells. Chicken NLRP3 participated in the production of mature chicken IL-1[Formula: see text] upon ligand engagement.
Collapse
Affiliation(s)
- Chih-Chun Lee
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chun-Yu Tung
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Ching Ching Wu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan 10617, R. O. C
| | - Tsang Long Lin
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
29
|
Quantitative analysis of Northern bobwhite (Colinus virginianus) cytokines and TLR expression to eyeworm (Oxyspirura petrowi) and caecal worm (Aulonocephalus pennula) glycoproteins. Parasitol Res 2019; 118:2909-2918. [PMID: 31418111 DOI: 10.1007/s00436-019-06418-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/02/2019] [Indexed: 12/31/2022]
Abstract
Helminth parasites have been a popular research topic due to their global prevalence and adverse effects on livestock and game species. The Northern bobwhite (Colinus virginianus), a popular game bird in the USA, is one species subject to helminth infection and has been experiencing a decline of > 4% annually over recent decades. In the Rolling Plains Ecoregion of Texas, the eyeworm (Oxyspirura petrowi) and caecal worm (Aulonocephalus pennula) helminths are found to be highly prevalent in bobwhite. While there have been increasing studies on the prevalence, pathology, and phylogeny of the eyeworm and caecal worm, there is still a need to investigate the bobwhite immune response to infection. This study utilizes previously sequenced bobwhite cytokines and toll-like receptors to develop and optimize qPCR primers and measure gene expression in bobwhite intramuscularly challenged with eyeworm and caecal worm glycoproteins. For the challenge experiments, separate treatments of eyeworm and caecal worm glycoproteins were administered to bobwhite on day 1 and day 21. Measurements of primary and secondary immune responses were taken at day 7 and day 28, respectively. Using the successfully optimized qPCR primers for TLR7, IL1β, IL6, IFNα, IFNγ, IL10, and β-actin, the gene expression analysis from the challenge experiments revealed that there was a measurable immune reaction in bobwhite in response to the intramuscular challenge of eyeworm and caecal worm glycoproteins.
Collapse
|
30
|
Zhao J, Yu HY, Zhao Y, Li FH, Zhou W, Xia BB, He ZY, Chen J, Jiang GT, Wang ML. Soluble expression, rapid purification, biological identification of chicken interferon-alpha using a thioredoxin fusion system in E. coli and its antiviral effects to H9N2 avian influenza virus. Prep Biochem Biotechnol 2019; 49:192-201. [PMID: 30734625 DOI: 10.1080/10826068.2019.1566150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this paper, we report a soluble expression based on Escherichia coli and two-step purification of a novel thioredoxin-tagged chicken interferon-α fusion protein (Trx-rChIFN-α) by using pET32a(+) expression system. The mature ChIFN-α gene was amplified by Reverse transcriptase-polymerase chain reaction (RT-PCR) and subcloned into pET-32a (+) vector prior to transformation into Rosetta (DE3) competent cells. After IPTG induction, the recombinant fusion protein was expressed efficiently in the soluble fraction. The protein purification was performed by nickel affinity chromatography and DEAE anion exchange chromatography. The purified product has a purity of 95% with a yield of 47.3 mg/L of culture. The specific activity of the fusion protein reaches to 2.0 × 107 IU/mg as determined in the CEF/VSV titration system. After excision of the Trx tag by enterokinase, the remaining solo protein was confirmed as rChIFN-α protein by SDS-PAGE, N-terminal sequencing and mass spectrometry. The effects of this Trx-rChIFN-α fusion protein against H9N2 influenza virus infection were also evaluated in ovo. The results showed that the Trx-rChIFN-α protein could significantly reduce the hemagglutination titer of H9N2 virus, and the H9N2 viruses HA gene copy numbers. These findings will enable us to produce large amount and bio-active rChIFN-α protein for future applications.
Collapse
Affiliation(s)
- Jun Zhao
- a Department of Microbiology , Anhui Medical University , Hefei , Anhui , P.R. China.,b Anhui JiuChuan Biotech Co., Ltd , Wuhu , Anhui , P.R. China.,c Wuhu Overseas Students Pioneer Park , Wuhu , Anhui , P.R. China.,d Wuhu Interferon Bio-products Industry Research Institute Co., Ltd , Wuhu , Anhui , P.R. China
| | - Hai-Yang Yu
- a Department of Microbiology , Anhui Medical University , Hefei , Anhui , P.R. China
| | - Yu Zhao
- b Anhui JiuChuan Biotech Co., Ltd , Wuhu , Anhui , P.R. China
| | - Feng-Hua Li
- e Dalian SanYi animal medicine Co., Ltd , Dalian , Liaoning , P.R. China
| | - Wei Zhou
- b Anhui JiuChuan Biotech Co., Ltd , Wuhu , Anhui , P.R. China
| | - Bin-Bin Xia
- d Wuhu Interferon Bio-products Industry Research Institute Co., Ltd , Wuhu , Anhui , P.R. China
| | - Zhi-Yuan He
- d Wuhu Interferon Bio-products Industry Research Institute Co., Ltd , Wuhu , Anhui , P.R. China
| | - Jason Chen
- a Department of Microbiology , Anhui Medical University , Hefei , Anhui , P.R. China.,f Department of Pathology and Cell Biology , Columbia University , New York , USA
| | - Guo-Tuo Jiang
- e Dalian SanYi animal medicine Co., Ltd , Dalian , Liaoning , P.R. China
| | - Ming-Li Wang
- a Department of Microbiology , Anhui Medical University , Hefei , Anhui , P.R. China.,b Anhui JiuChuan Biotech Co., Ltd , Wuhu , Anhui , P.R. China.,c Wuhu Overseas Students Pioneer Park , Wuhu , Anhui , P.R. China.,d Wuhu Interferon Bio-products Industry Research Institute Co., Ltd , Wuhu , Anhui , P.R. China
| |
Collapse
|
31
|
Abdul-Cader MS, De Silva Senapathi U, Ahmed-Hassan H, Sharif S, Abdul-Careem MF. Single stranded (ss)RNA-mediated antiviral response against infectious laryngotracheitis virus infection. BMC Microbiol 2019; 19:34. [PMID: 30736730 PMCID: PMC6368756 DOI: 10.1186/s12866-019-1398-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022] Open
Abstract
Background Single stranded ribonucleic acid (ssRNA) binds to toll-like receptor (TLR)7 leading to recruitment of immune cells and production of pro-inflammatory cytokines, which has been shown in mammals. In chickens, synthetic ssRNA analog, resiquimod, has been shown to elicit antiviral response against infectious bursal disease virus infection. The objective of this study was to determine the innate host responses activated by the pre-hatch in ovo administration of resiquimod against infectious laryngotracheitis virus (ILTV) infection in chickens post-hatch. Results First, we observed that in ovo treatment of resiquimod at embryo day (ED) 18 increases macrophage recruitment in respiratory and gastrointestinal tissues of chicken day 1 post-hatch in addition to interleukin (IL)-1β in lungs. Second, we observed that in ovo treatment of resiquimod reduces ILTV cloacal shedding at 7 days post-infection (dpi) when challenged at day 1 post-hatch coinciding with higher macrophage recruitment. In vitro, we found that resiquimod enhances production of nitric oxide (NO) and IL-1β and not type 1 interferon (IFN) activity in avian macrophages. Although, the antiviral response against ILTV is associated with the enhanced innate immune response, it is not dependent on any of the innate immune mediators observed as has been shown in vitro using avian macrophage. Conclusion This study provides insights into the mechanisms of antiviral response mediated by resiquimod, particularly against ILTV infection in chicken.
Collapse
Affiliation(s)
- Mohamed Sarjoon Abdul-Cader
- Faculty of Veterinary Medicine, Health Research Innovation Center 2C53, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Upasama De Silva Senapathi
- Faculty of Veterinary Medicine, Health Research Innovation Center 2C53, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Hanaa Ahmed-Hassan
- Faculty of Veterinary Medicine, Health Research Innovation Center 2C53, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Shayan Sharif
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Mohamed Faizal Abdul-Careem
- Faculty of Veterinary Medicine, Health Research Innovation Center 2C53, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
32
|
RETRACTED: Evaluation of imidazole and its derivative against Newcastle disease virus infection in chicken: A drug repurposing approach. Virus Res 2019; 260:114-122. [DOI: 10.1016/j.virusres.2018.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 11/20/2022]
|
33
|
Garrido D, Alber A, Kut E, Chanteloup NK, Lion A, Trotereau A, Dupont J, Tedin K, Kaspers B, Vervelde L, Trapp S, Schouler C, Guabiraba R. The role of type I interferons (IFNs) in the regulation of chicken macrophage inflammatory response to bacterial challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:156-170. [PMID: 29729283 DOI: 10.1016/j.dci.2018.04.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/29/2018] [Accepted: 04/29/2018] [Indexed: 06/08/2023]
Abstract
Mammalian type I interferons (IFNα/β) are known to modulate inflammatory processes in addition to their antiviral properties. Indeed, virus-induced type I interferons regulate the mammalian phagocyte immune response to bacteria during superinfections. However, it remains unresolved whether type I IFNs similarly impact the chicken macrophage immune response. We first evidenced that IFNα and IFNβ act differently in terms of gene expression stimulation and activation of intracellular signaling pathways in chicken macrophages. Next, we showed that priming of chicken macrophages with IFNα increased bacteria uptake, boosted bacterial-induced ROS/NO production and led to an increased transcriptional expression or production of NOS2/NO, IL1B/IL-1β and notably IFNB/IFNβ. Neutralization of IFNβ during bacterial challenge limited IFNα-induced augmentation of the pro-inflammatory response. In conclusion, we demonstrated that type I IFNs differently regulate chicken macrophage functions and drive a pro-inflammatory response to bacterial challenge. These findings shed light on the diverse functions of type I IFNs in chicken macrophages.
Collapse
Affiliation(s)
| | - Andreas Alber
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Emmanuel Kut
- ISP, INRA, Université de Tours, 37380, Nouzilly, France
| | | | - Adrien Lion
- ISP, INRA, Université de Tours, 37380, Nouzilly, France
| | | | - Joëlle Dupont
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France
| | - Karsten Tedin
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Germany
| | - Bernd Kaspers
- Department of Veterinary Sciences, Institute for Animal Physiology, Ludwig-Maximilians-University, Munich, Germany
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Sascha Trapp
- ISP, INRA, Université de Tours, 37380, Nouzilly, France
| | | | | |
Collapse
|
34
|
Ahmed-Hassan H, Abdul-Cader MS, Sabry MA, Hamza E, Abdul-Careem MF. Toll-like receptor (TLR)4 signalling induces myeloid differentiation primary response gene (MYD) 88 independent pathway in avian species leading to type I interferon production and antiviral response. Virus Res 2018; 256:107-116. [PMID: 30098398 DOI: 10.1016/j.virusres.2018.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Abstract
Engagement of toll-like receptor (TLR)4 ligand, lipopolysaccharide (LPS) with TLR4 in mammals activates two downstream intracellular signaling routes; the myeloid differentiation primary response gene (MyD)88 dependent and independent pathways. However, existence of the later pathway leading to production of type I interferons (IFNs) in avian species has been debated due to conflicting observations. The objective of our study was to investigate whether LPS induces type I IFN production in chicken macrophages leading to antiviral response attributable to type I IFN. We found that LPS elicits type I IFN response dominated by IFN-β production. We also found that reduction in infectious laryngotracheitis virus (ILTV) replication by LPS-mediated antiviral response is attributable to type I IFNs in addition to nitric oxide (NO). Our findings imply that LPS elicits both MyD88 dependent and independent pathways in chicken macrophages consequently eliciting anti-ILTV response attributable to production of both type I IFNs and NO.
Collapse
Affiliation(s)
- Hanaa Ahmed-Hassan
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Zoonoses Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mohamed Sarjoon Abdul-Cader
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Maha Ahmed Sabry
- Zoonoses Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Eman Hamza
- Zoonoses Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mohamed Faizal Abdul-Careem
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
35
|
Ahmed-Hassan H, Abdul-Cader MS, Ahmed Sabry M, Hamza E, Sharif S, Nagy E, Abdul-Careem MF. Double-Stranded Ribonucleic Acid-Mediated Antiviral Response Against Low Pathogenic Avian Influenza Virus Infection. Viral Immunol 2018; 31:433-446. [PMID: 29813000 DOI: 10.1089/vim.2017.0142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Toll-like receptor (TLR)3 signaling pathway is known to induce type 1 interferons (IFNs) and proinflammatory mediators leading to antiviral response against many viral infections. Double-stranded ribonucleic acid (dsRNA) has been shown to act as a ligand for TLR3 and, as such, has been a focus as a potential antiviral agent in many host-viral infection models. Yet, its effectiveness and involved mechanisms as a mediator against low pathogenic avian influenza virus (LPAIV) have not been investigated adequately. In this study, we used avian fibroblasts to verify whether dsRNA induces antiviral response against H4N6 LPAIV and clarify whether type 1 IFNs and proinflammatory mediators such as interleukin (IL)-1β are contributing to the dsRNA-mediated antiviral response against H4N6 LPAIV. We found that dsRNA induces antiviral response in avian fibroblasts against H4N6 LPAIV infection. The treatment of avian fibroblasts with dsRNA increases the expressions of TLR3, IFN-α, IFN-β, and IL-1β. We also confirmed that this antiviral response elicited against H4N6 LPAIV infection correlates, but is not attributable to type 1 IFNs or IL-1β. Our findings imply that the TLR3 ligand, dsRNA, can elicit antiviral response in avian fibroblasts against LPAIV infection, highlighting potential value of dsRNA as an antiviral agent against LPAIV infections. However, further investigations are required to determine the potential role of other innate immune mediators or combination of the tested cytokines in the dsRNA-mediated antiviral response against H4N6 LPAIV infection.
Collapse
Affiliation(s)
- Hanaa Ahmed-Hassan
- 1 Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Health Research Innovation Center 2C53, University of Calgary , Calgary, Alberta, Canada .,2 Zoonoses Department, Faculty of Veterinary Medicine, Cairo University , Giza, Egypt
| | - Mohamed Sarjoon Abdul-Cader
- 1 Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Health Research Innovation Center 2C53, University of Calgary , Calgary, Alberta, Canada
| | - Maha Ahmed Sabry
- 2 Zoonoses Department, Faculty of Veterinary Medicine, Cairo University , Giza, Egypt
| | - Eman Hamza
- 2 Zoonoses Department, Faculty of Veterinary Medicine, Cairo University , Giza, Egypt
| | - Shayan Sharif
- 3 Department of Pathobiology, University of Guelph , Guelph, Ontario, Canada
| | - Eva Nagy
- 3 Department of Pathobiology, University of Guelph , Guelph, Ontario, Canada
| | - Mohamed Faizal Abdul-Careem
- 1 Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Health Research Innovation Center 2C53, University of Calgary , Calgary, Alberta, Canada
| |
Collapse
|
36
|
Li H, Liu X, Chen F, Zuo K, Wu C, Yan Y, Chen W, Lin W, Xie Q. Avian Influenza Virus Subtype H9N2 Affects Intestinal Microbiota, Barrier Structure Injury, and Inflammatory Intestinal Disease in the Chicken Ileum. Viruses 2018; 10:v10050270. [PMID: 29783653 PMCID: PMC5977263 DOI: 10.3390/v10050270] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/26/2022] Open
Abstract
Avian influenza virus subtype H9N2 (H9N2 AIV) has caused significant losses to the poultry industry due to the high mortality associated with secondary infections attributable to E. coli. This study tries to address the underlying secondary mechanisms after H9N2 AIV infection. Initially, nine day-old specific pathogen-free chickens were assigned to control (uninfected) and H9N2-infected groups, respectively. Using Illumina sequencing, histological examination, and quantitative real-time PCR, it was found that H9N2 AIV caused intestinal microbiota disorder, injury, and inflammatory damage to the intestinal mucosa. Notably, the genera Escherichia, especially E. coli, significantly increased (p < 0.01) at five days post-infection (dpi), while Lactobacillus, Enterococcus, and other probiotic organisms were significantly reduced (p < 0.01). Simultaneously, the mRNA expression of tight junction proteins (ZO-1, claudin 3, and occludin), TFF2, and Muc2 were significantly reduced (p < 0.01), indicating the destruction of the intestinal epithelial cell tight junctions and the damage of mucin layer construction. Moreover, the mRNA expression of proinflammatory cytokines IFN-γ, IL-22, IFN-α, and IL-17A in intestinal epithelial cells were significantly upregulated, resulting in the inflammatory response and intestinal injury. Our findings may provide a theoretical basis for observed gastroenteritis-like symptoms such as diarrhea and secondary E. coli infection following H9N2 AIV infection.
Collapse
Affiliation(s)
- Hongxin Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China.
| | - Xiaolin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China.
| | - Feiyang Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China.
| | - Kejing Zuo
- Veterinary Laboratory, Guangzhou Zoo, Guangzhou 510642, China.
| | - Che Wu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China.
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China.
| | - Yiming Yan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China.
| | - Weiguo Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China.
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China.
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China.
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China.
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China.
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China.
| |
Collapse
|
37
|
Ahmed-Hassan H, Abdul-Cader MS, De Silva Senapathi U, Sabry MA, Hamza E, Nagy E, Sharif S, Abdul-Careem MF. Potential mediators of in ovo delivered double stranded (ds) RNA-induced innate response against low pathogenic avian influenza virus infection. Virol J 2018. [PMID: 29530062 PMCID: PMC5848551 DOI: 10.1186/s12985-018-0954-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Toll like receptor (TLR) 3 is a critically important innate pattern recognizing receptor that senses many viral infections. Although, it has been shown that double stranded (ds) RNA can be used for the stimulation of TLR3 signaling pathway in a number of host-viral infection models, it’s effectiveness as an antiviral agent against low pathogenic avian influenza virus (LPAIV) needs further investigation. Methods In this study, first, we delivered TLR3 ligand, dsRNA, in ovo at embryo day (ED)18 since in ovo route is routinely used for vaccination against poultry viral and parasitic infections and infected with H4N6 LPAIV 24-h post-treatment. A subset of in ovo dsRNA treated and control groups were observed for the expressions of TLR3 and type I interferon (IFN)s, mRNA expression of interleukin (IL)-1β and macrophage recruitment coinciding with the time of H4N6 LPAIV infection (24 h post-treatment). Additionally, Day 1 chickens were given dsRNA intra-tracheally along with a control group and a subset of chickens were infected with H4N6 LPAIV 24-h post-treatment whereas the rest of the animals were observed for macrophage and type 1 IFN responses coinciding with the time of viral infection. Results Our results demonstrate that the pre-hatch treatment of eggs with dsRNA reduces H4N6 replication in lungs. Further studies revealed that in ovo delivery of dsRNA increases TLR3 expression, type I IFN production and number of macrophages in addition to mRNA expression of IL-1β in lung 24-h post-treatment. The same level of induction of innate response was not evident in the spleen. Moreover, we discovered that dsRNA elicits antiviral response against LPAIV correlating with type I IFN activity in macrophages in vitro. Post-hatch, we found no difference in H4N6 LPAIV genome loads between dsRNA treated and control chickens although we observed higher macrophage recruitment and IFN-β response coinciding with the time of viral infection. Conclusions Our findings imply that the TLR3 ligand, dsRNA has antiviral activity in ovo and in vitro but not in chickens post-hatch and dsRNA-mediated innate host response is characterized by macrophage recruitment and expressions of TLR3 and type 1 IFNs.
Collapse
Affiliation(s)
- Hanaa Ahmed-Hassan
- Department of Ecosystem and Public Health, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Zoonoses Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed Sarjoon Abdul-Cader
- Department of Ecosystem and Public Health, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Upasama De Silva Senapathi
- Department of Ecosystem and Public Health, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Maha Ahmed Sabry
- Zoonoses Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Eman Hamza
- Zoonoses Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Eva Nagy
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Mohamed Faizal Abdul-Careem
- Department of Ecosystem and Public Health, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
38
|
Innate antiviral immune response against infectious bronchitis virus and involvement of prostaglandin E2 in the uterine mucosa of laying hens. Theriogenology 2018; 110:122-129. [PMID: 29407895 DOI: 10.1016/j.theriogenology.2017.12.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/31/2017] [Accepted: 12/31/2017] [Indexed: 11/23/2022]
Abstract
Infectious bronchitis virus (IBV) is an enveloped RNA virus that causes deformities in eggshells. The aim of this study was to investigate the innate immune response to IBV, and to determine whether prostaglandin (PG) E2, which is synthesized during inflammation, is involved in the innate immune response in the uterine mucosa. The effects of intra-oviductal inoculation with attenuated IBV (aIBV) on the expression of viral RNA recognition receptors and innate antiviral factors were examined by real-time PCR and immunohistochemistry, and on PGE2 levels by ELISA. Then, the effects of PGE2 on the expression of innate antiviral factors in cultured uterine mucosal cells were examined. The results showed that the expression of RNA virus pattern recognition receptors (TLR3, 7, and MDA5), antimicrobial peptides (avian β-defensins, including AvBD1, 2, 4-6 and cathelicidins, including CATH1 and 3), and interferons (IFNα, β, γ, λ) were upregulated, and the expression of cyclooxygenase 2 (PG synthase) and the level of PGE2 were increased in the uterine mucosa following aIBV inoculation. The number of AvBD2-positive cells in the mucosa also increased in response to aIBV. In cultured mucosal cells (mainly epithelial), the expression of AvBD4, 10-13 and IFNα, β, and λ was upregulated following incubation with 500 nM PGE2. These results suggest that the expression of viral RNA-recognition receptors, AvBDs, CATHs, and IFNs and PGE2 are induced by the IBV antigen, and that the expression of a different set of AvBDs is also induced by PGE2 in the cultured uterine mucosal cells. These antiviral factors may play a role in the protection of the uterine mucosa from IBV infection.
Collapse
|
39
|
Yu L, Zhang X, Wu T, Su J, Wang Y, Wang Y, Ruan B, Niu X, Wu Y. Avian infectious bronchitis virus disrupts the melanoma differentiation associated gene 5 (MDA5) signaling pathway by cleavage of the adaptor protein MAVS. BMC Vet Res 2017; 13:332. [PMID: 29132350 PMCID: PMC5683607 DOI: 10.1186/s12917-017-1253-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/31/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Melanoma differentiation associated gene 5 (MDA5) and retinoic acid-inducible gene-I (RIG-I) selectively sense cytoplasmic viral RNA to induce an antiviral immune response. Infectious bronchitis virus (IBV) is one of the most important infectious agents in chickens, and in chicken cells, it can be recognized by MDA5 to activate interferon production. RIG-I is considered to be absent in chickens. However, the absence of RIG-I in chickens raises the question of whether this protein influences the antiviral immune response against IBV infection. RESULTS Here, we showed that chicken cells transfected with domestic goose RIG-I (dgRIG-I) exhibited increased IFN-β activity after IBV infection. We also found that IBV can cleave MAVS, an adaptor protein downstream of RIG-I and MDA5 that acts as a platform for antiviral innate immunity at an early stage of infection. CONCLUSIONS Although chicken MDA5 (chMDA5) is functionally active during IBV infection, the absence of RIG-I may increase the susceptibility of chickens to IBV infection, and IBV may disrupt the activation of the host antiviral response through the cleavage of MAVS.
Collapse
Affiliation(s)
- Liping Yu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Tianqi Wu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Jin Su
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yuyang Wang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yuexin Wang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Baoyang Ruan
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaosai Niu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yantao Wu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
40
|
ZHAO J, YU HY, ZHANG JL, WANG XM, LI JP, HU T, HU Y, WANG ML, SHEN YZ, XU JD, HAN GX, CHEN J. Pharmacokinetic studies of the recombinant chicken interferon-α in broiler chickens. J Vet Med Sci 2017; 79:314-319. [PMID: 27890904 PMCID: PMC5326936 DOI: 10.1292/jvms.15-0681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 11/04/2016] [Indexed: 01/06/2023] Open
Abstract
In this study, 24 male and female broiler chickens at 30-day-old were divided into three groups with 8 animals in each group. The animals were administered with recombinant chicken interferon-α (rChIFN-α) at a dose of 1.0 × 106 IU/kg intravenously, intramuscularly or subcutaneously, respectively. Serum samples were collected at different time points post administration, and the titers of rChIFN-α in the blood were determined by cytopathic effect inhibition assay. The results showed that the pharmacokinetic characteristics of rChIFN-α by intramuscular injection and subcutaneous injection were fitted to one compartment open model, and the Tmax was 3.21 ± 0.79 hr and 3.95 ± 0.85 hr, respectively, and the elimination half-life (T1/2) was 6.20 ± 2.77 hr and 5.03 ± 3.70 hr, respectively. In contrast, the pharmacokinetics of rChIFN-α via intravenous injection was in line with the open model of two-compartment and was eliminated in the first order, and the elimination half-life (T1/2) was 4.61 ± 0.84 hr. In addition, compared with those in the intravenous group and the subcutaneous group, the bioavailability of rChIFN-α in the intramuscular group was 82.80%. In conclusion, rChIFN-α was rapidly absorbed and slowly eliminated after intramuscular administration of single dose of rChIFN-α aqueous formulations. Thus, rChIFN-α can be used as a commonly-used therapeutic agent.
Collapse
Affiliation(s)
- Jun ZHAO
- Wuhu Overseas Students Pioneer Park, Wuhu, Anhui Province,
241000, China
- Department of Microbiology, Anhui Medical University, Hefei,
Anhui Province, 230032, China
| | - Hai-Yang YU
- Department of Microbiology, Anhui Medical University, Hefei,
Anhui Province, 230032, China
| | - Jun-Ling ZHANG
- Department of Microbiology, Anhui Medical University, Hefei,
Anhui Province, 230032, China
| | - Xing-Man WANG
- Department of Microbiology, Anhui Medical University, Hefei,
Anhui Province, 230032, China
| | - Jin-Pei LI
- Department of Microbiology, Anhui Medical University, Hefei,
Anhui Province, 230032, China
| | - Tao HU
- Department of Microbiology, Anhui Medical University, Hefei,
Anhui Province, 230032, China
| | - Yong HU
- Department of Microbiology, Anhui Medical University, Hefei,
Anhui Province, 230032, China
| | - Ming-Li WANG
- Wuhu Overseas Students Pioneer Park, Wuhu, Anhui Province,
241000, China
- Department of Microbiology, Anhui Medical University, Hefei,
Anhui Province, 230032, China
| | - Yong-Zhou SHEN
- Anhui JiuChuan Biotech Co., Ltd., Wuhu, Anhui Province,
241007, China
| | - Jing-Dong XU
- Anhui JiuChuan Biotech Co., Ltd., Wuhu, Anhui Province,
241007, China
| | - Guo-Xiang HAN
- Anhui JiuChuan Biotech Co., Ltd., Wuhu, Anhui Province,
241007, China
| | - Jason CHEN
- Department of Microbiology, Anhui Medical University, Hefei,
Anhui Province, 230032, China
- Department of Pathology & Cell Biology, Columbia
University, New York 10032, U.S.A
| |
Collapse
|
41
|
Santhakumar D, Rubbenstroth D, Martinez-Sobrido L, Munir M. Avian Interferons and Their Antiviral Effectors. Front Immunol 2017; 8:49. [PMID: 28197148 PMCID: PMC5281639 DOI: 10.3389/fimmu.2017.00049] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/12/2017] [Indexed: 12/12/2022] Open
Abstract
Interferon (IFN) responses, mediated by a myriad of IFN-stimulated genes (ISGs), are the most profound innate immune responses against viruses. Cumulatively, these IFN effectors establish a multilayered antiviral state to safeguard the host against invading viral pathogens. Considerable genetic and functional characterizations of mammalian IFNs and their effectors have been made, and our understanding on the avian IFNs has started to expand. Similar to mammalian counterparts, three types of IFNs have been genetically characterized in most avian species with available annotated genomes. Intriguingly, chickens are capable of mounting potent innate immune responses upon various stimuli in the absence of essential components of IFN pathways including retinoic acid-inducible gene I, IFN regulatory factor 3 (IRF3), and possibility IRF9. Understanding these unique properties of the chicken IFN system would propose valuable targets for the development of potential therapeutics for a broader range of viruses of both veterinary and zoonotic importance. This review outlines recent developments in the roles of avian IFNs and ISGs against viruses and highlights important areas of research toward our understanding of the antiviral functions of IFN effectors against viral infections in birds.
Collapse
Affiliation(s)
| | - Dennis Rubbenstroth
- Institute for Virology, Faculty of Medicine, University Medical Center, University of Freiburg , Freiburg , Germany
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center , Rochester, NY , USA
| | | |
Collapse
|
42
|
Recombinant chicken interferon-alpha inhibits the replication of exogenous avian leukosis virus (ALV) in DF-1 cells. Mol Immunol 2016; 76:62-9. [DOI: 10.1016/j.molimm.2016.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 02/06/2023]
|
43
|
Cross-Species Antiviral Activity of Goose Interferons against Duck Plague Virus Is Related to Its Positive Self-Feedback Regulation and Subsequent Interferon Stimulated Genes Induction. Viruses 2016; 8:v8070195. [PMID: 27438848 PMCID: PMC4974530 DOI: 10.3390/v8070195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/16/2022] Open
Abstract
Interferons are a group of antiviral cytokines acting as the first line of defense in the antiviral immunity. Here, we describe the antiviral activity of goose type I interferon (IFNα) and type II interferon (IFNγ) against duck plague virus (DPV). Recombinant goose IFNα and IFNγ proteins of approximately 20 kDa and 18 kDa, respectively, were expressed. Following DPV-enhanced green fluorescent protein (EGFP) infection of duck embryo fibroblast cells (DEFs) with IFNα and IFNγ pre-treatment, the number of viral gene copies decreased more than 100-fold, with viral titers dropping approximately 100-fold. Compared to the control, DPV-EGFP cell positivity was decreased by goose IFNα and IFNγ at 36 hpi (3.89%; 0.79%) and 48 hpi (17.05%; 5.58%). In accordance with interferon-stimulated genes being the “workhorse” of IFN activity, the expression of duck myxovirus resistance (Mx) and oligoadenylate synthetases-like (OASL) was significantly upregulated (p < 0.001) by IFN treatment for 24 h. Interestingly, duck cells and goose cells showed a similar trend of increased ISG expression after goose IFNα and IFNγ pretreatment. Another interesting observation is that the positive feedback regulation of type I IFN and type II IFN by goose IFNα and IFNγ was confirmed in waterfowl for the first time. These results suggest that the antiviral activities of goose IFNα and IFNγ can likely be attributed to the potency with which downstream genes are induced by interferon. These findings will contribute to our understanding of the functional significance of the interferon antiviral system in aquatic birds and to the development of interferon-based prophylactic and therapeutic approaches against viral disease.
Collapse
|
44
|
Mycoplasma gallisepticum modifies the pathogenesis of influenza A virus in the avian tracheal epithelium. Int J Med Microbiol 2016; 306:174-86. [PMID: 27079856 DOI: 10.1016/j.ijmm.2016.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/30/2016] [Accepted: 04/03/2016] [Indexed: 11/24/2022] Open
Abstract
Multiple respiratory infections have a significant impact on health and economy. Pathogenesis of co-infecting viruses and bacteria and their interaction with mucosal surfaces are poorly characterized. In this study we established a co-infection model based on pre-incubation of tracheal organ cultures (TOC) with Mycoplasma (M.) gallisepticum and a subsequent infection with avian influenza virus (AIV). Mycoplasma gallisepticum modified the pathogenesis of AIV as demonstrated in TOC of two different avian species (chickens and turkeys). Co-infection promoted bacterial growth in tracheal epithelium. Depending on the interaction time of M. gallisepticum with the host cells, AIV replication was either promoted or suppressed. M. gallisepticum inhibited the antiviral gene expression and affected AIV attachment to the host cell by desialylation of α-2,3 linked sialic acids. Ultrastructural analysis of co-infected TOC suggests that both pathogens may attach to and possibly infect the same epithelial cell. The obtained results contribute to better understanding of the interaction dynamics between M. gallisepticum and AIV. They highlight the importance of the time interval between infections as well as the biological properties of the involved pathogens as influencing factors in the outcome of respiratory infections.
Collapse
|
45
|
Yu K, Deng S, Wang H, Zhang Y, Chen X, Wang K, Hu R, Lian Z, Li N. Small interfering RNA expression inhibits avian infectious bronchitis virus replication and inflammatory response. Antivir Ther 2016; 21:469-479. [PMID: 26835751 DOI: 10.3851/imp3027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2016] [Indexed: 12/09/2022]
Abstract
BACKGROUND Avian infectious bronchitis virus (IBV) is a major cause of poor weight gain and mortality among chicks. METHODS A lentivirus vector was used to generate transgenic chickens expressing small interfering RNA (siRNA) targeting the M protein of IBV. Offspring of generation 0 (G0) were screened to identify G1 transgenic chickens (Tg). Monocytes from G1 Tg were stimulated with IBV in vitro. RESULTS Monocytes producing siRNA efficiently inhibit IBV replication. Expression of inflammatory cytokines, Mx protein and nitric oxide levels were lower in early IBV infection in Tg. In vivo experiments show that siRNA expression inhibits IBV replication, significantly decreases mortality and increases weight gain. Inflammatory responses and oxidative damage were significantly decreased, yielding minimal tissue injury. The inflammatory responses indicate that the cellular immune response is most effective during the initial stage, while the humoral immune response is more significant in later stages of infection. CONCLUSIONS Small interfering RNA expression inhibits avian IBV replication and inflammatory response.
Collapse
Affiliation(s)
- Kun Yu
- National Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shoulong Deng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hai Wang
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yi Zhang
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xuehui Chen
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kejun Wang
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Rui Hu
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengxing Lian
- National Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Li
- National Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
46
|
Kuo HP, Chung CL, Hung YF, Lai YS, Chiou PP, Lu MW, Kong ZL. Comparison of the responses of different recombinant fish type I interferons against betanodavirus infection in grouper. FISH & SHELLFISH IMMUNOLOGY 2016; 49:143-153. [PMID: 26691305 DOI: 10.1016/j.fsi.2015.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
The nervous necrosis virus (NNV) is an aquatic virus that can infect more than 30 species including the grouper, which is a valuable fish species in Taiwan. NNV causes up to 90-100% mortality in the aquaculture industry. Interferons (IFNs) are a family of cytokines that stimulate the expression of numerous proteins to protect the host against viruses and possess very unique specific characteristics in fish. The cross-reactivity of heterologous IFNs on grouper cells and larvae has not been well-studied to date. To evaluate and compare the anti-NNV effect of different fish IFNs in grouper, we successfully synthesized, subcloned, expressed and purified several fish type I IFNs in the present study: grouper (gIFN), salmon (sIFN), seabass (sbIFN) and tilapia (tpIFN). The gIFN and sIFN proteins up-regulated myxovirus resistance protein (Mx) gene expression in grouper kidney (GK) cells, but similar effects were not observed for sbIFN and tpIFN. Following co- and pre-treatment with the 4 types of IFNs with NNV infection in GK cells, sIFN exhibited the strongest antiviral ability to suppress NNV gene replication (especially at 24 h) and significantly reduced the cytopathic effect (CPE) at 72 h, followed by gIFN. Unsurprisingly, sbIFN and tpIFN had no significant effect on CPE but slightly suppressed NNV gene replication. The cytotoxicity of these four fish IFNs on GK cells was also examined for the first time. In the in vivo test, we confirmed that gIFN and sIFN had a significant protective effect against NNV when administered by intraperitoneal (IP) injection and the oral route in Malabar grouper (Epinephelus malabaricus) larvae. This study compared the protective effects of IFNs from various fish species against NNV and demonstrated crosstalk between sIFN and grouper cells for the first time. These results provide information concerning the efficacy of fish IFNs for possible therapeutic applications.
Collapse
Affiliation(s)
- Hsiang-Ping Kuo
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan, ROC; COO of Sea Party International Co., Ltd., Taipei 104, Taiwan, ROC
| | - Chia-Ling Chung
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | - Yu-Fang Hung
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | - Yu-Shen Lai
- Institute of Biotechnology, National Ilan University, Ilan 260, Taiwan, ROC
| | - Pinwen P Chiou
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | - Ming-Wei Lu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan, ROC; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, ROC.
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan, ROC.
| |
Collapse
|
47
|
Zhang Q, Shi K, Yoo D. Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1. Virology 2016; 489:252-68. [PMID: 26773386 PMCID: PMC7111358 DOI: 10.1016/j.virol.2015.12.010] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 10/20/2015] [Accepted: 12/19/2015] [Indexed: 12/25/2022]
Abstract
Type I interferons (IFN-α/β) are the major components of the innate immune response of hosts, and in turn many viruses have evolved to modulate the host response during infection. We found that the IFN-β production was significantly suppressed during PEDV infection in cells. To identify viral IFN antagonists and to study their suppressive function, viral coding sequences for the entire structural and nonstructural proteins were cloned and expressed. Of 16 PEDV nonstructural proteins (nsps), nsp1, nsp3, nsp7, nsp14, nsp15 and nsp16 were found to inhibit the IFN-β and IRF3 promoter activities. The sole accessory protein ORF3, structure protein envelope (E), membrane (M), and nucleocapsid (N) protein were also shown to inhibit such activities. PEDV nsp1 did not interfere the IRF3 phosphorylation and nuclear translocation but interrupted the enhanceosome assembly of IRF3 and CREB-binding protein (CBP) by degrading CBP. A further study showed that the CBP degradation by nsp1 was proteasome-dependent. Our data demonstrate that PEDV modulates the host innate immune responses by degrading CBP and suppressing ISGs expression.
Collapse
Affiliation(s)
- Qingzhan Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana 61802, IL, USA
| | - Kaichuang Shi
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana 61802, IL, USA
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana 61802, IL, USA.
| |
Collapse
|
48
|
Infectious Bronchitis Coronavirus Inhibits STAT1 Signaling and Requires Accessory Proteins for Resistance to Type I Interferon Activity. J Virol 2015; 89:12047-57. [PMID: 26401035 DOI: 10.1128/jvi.01057-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/08/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED The innate immune response is the first line of defense against viruses, and type I interferon (IFN) is a critical component of this response. Similar to other viruses, the gammacoronavirus infectious bronchitis virus (IBV) has evolved under evolutionary pressure to evade and counteract the IFN response to enable its survival. Previously, we reported that IBV induces a delayed activation of the IFN response. In the present work, we describe the resistance of IBV to IFN and the potential role of accessory proteins herein. We show that IBV is fairly resistant to the antiviral state induced by IFN and identify that viral accessory protein 3a is involved in resistance to IFN, as its absence renders IBV less resistant to IFN treatment. In addition to this, we found that independently of its accessory proteins, IBV inhibits IFN-mediated phosphorylation and translocation of STAT1. In summary, we show that IBV uses multiple strategies to counteract the IFN response. IMPORTANCE In the present study, we show that infectious bronchitis virus (IBV) is resistant to IFN treatment and identify a role for accessory protein 3a in the resistance against the type I IFN response. We also demonstrate that, in a time-dependent manner, IBV effectively interferes with IFN signaling and that its accessory proteins are dispensable for this activity. This study demonstrates that the gammacoronavirus IBV, similar to its mammalian counterparts, has evolved multiple strategies to efficiently counteract the IFN response of its avian host, and it identifies accessory protein 3a as multifaceted antagonist of the avian IFN system.
Collapse
|
49
|
Chhabra R, Chantrey J, Ganapathy K. Immune Responses to Virulent and Vaccine Strains of Infectious Bronchitis Viruses in Chickens. Viral Immunol 2015; 28:478-88. [PMID: 26301315 DOI: 10.1089/vim.2015.0027] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Infectious bronchitis (IB) is an acute and highly contagious chicken viral disease, causing severe economic losses to poultry producers worldwide. In the last few decades, infectious bronchitis virus (IBV) has been extensively studied, but knowledge of immune responses to virulent or vaccine strains of IBVs remains limited. This review focuses on fundamental aspects of immune responses against IBV, including the role of pattern recognition receptors (PRRs) in identification of conserved viral structures and the role of different components of innate immunity (e.g., heterophils, macrophages, dendritic cells, acute phase protein, and cytokines). Studies on adaptive immune activation and the role of humoral and cellular immunity in IBV clearance are also reviewed. Multiple interlinking immune responses are essential for protection against virulent IBVs, including passive, innate, adaptive, and effector T cells active at mucosal surfaces. Although the development of approaches for chicken transcriptome and proteome analyses have greatly helped the understanding of the underlying genetic mechanisms for immunity, there are still major knowledge gaps, such as the role of mucosal and cellular responses to IBVs. In view of recent reports of emergent IBV variants in many countries, there is renewed interest in a more complete understanding of poultry immune responses to both virulent and vaccine strains of IBVs. This will be critical for developing new vaccine or vaccination strategies and other intervention programs.
Collapse
Affiliation(s)
- Rajesh Chhabra
- 1 University of Liverpool, Institute of Infection and Global Health , School of Veterinary Science, Neston, United Kingdom .,2 College Central Laboratory, Lala Lajpat Rai University of Veterinary & Animal Sciences (LUVAS) , Hisar, India
| | - Julian Chantrey
- 1 University of Liverpool, Institute of Infection and Global Health , School of Veterinary Science, Neston, United Kingdom
| | - Kannan Ganapathy
- 1 University of Liverpool, Institute of Infection and Global Health , School of Veterinary Science, Neston, United Kingdom
| |
Collapse
|
50
|
Sachan S, Ramakrishnan S, Annamalai A, Sharma BK, Malik H, Saravanan B, Jain L, Saxena M, Kumar A, Krishnaswamy N. Adjuvant potential of resiquimod with inactivated Newcastle disease vaccine and its mechanism of action in chicken. Vaccine 2015; 33:4526-32. [DOI: 10.1016/j.vaccine.2015.07.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/20/2015] [Accepted: 07/07/2015] [Indexed: 11/26/2022]
|