1
|
Yang Q, Tang X, He Y, Yu X, Li Y, Wu Z. Cloning and characterization of the thioredoxin reductase 1 gene in Hyriopsis cumingii and its regulatory mechanism by Nrf2. FISH & SHELLFISH IMMUNOLOGY 2025; 156:110056. [PMID: 39608731 DOI: 10.1016/j.fsi.2024.110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
The thioredoxin system, consisting of thioredoxin reductases and thioredoxin, plays a crucial role in defending against oxidative stress. Despite its importance, limited research has been conducted on this system in bivalves. In this study, we aimed to clone and characterize the thioredoxin reductase 1 gene from Hyriopsis cumingii (HcTrxR1) and to elucidate its interaction with the nuclear factor erythroid 2-related factor 2 (Nrf2) of H. cumingii (HcNrf2) using a combination of gene cloning, bioinformatics, RNA interference (RNAi), activator/inhibitor treatments, and dual-luciferase reporter assays. We successfully cloned the full-length cDNA of HcTrxR1, which consisted of a 1788 bp open reading frame encoding a 595-amino acid protein. Sequence analysis revealed high conservation of HcTrxR1 compared to homologs in other bivalve species. The expression of HcTrxR1 mRNA was detected across various tissues, with the highest levels observed in the gonads and hemolymph. RNAi and activator/inhibitor experiments demonstrated that HcNrf2 positively regulated the expression of HcTrxR1. Dual-luciferase reporter assays identified two antioxidant response elements in the promoter region of HcTrxR1, which were critical for HcNrf2 binding and transcriptional activation. Additionally, a polyclonal antibody against the HcTrxR1 protein was generated and confirmed for specificity. These findings underscore the regulatory role of Nrf2 in the thioredoxin system of bivalves, offering novel insights into the antioxidant mechanisms in H. cumingii. The study provides a molecular framework that may inform environmental monitoring and conservation efforts in aquatic ecosystems.
Collapse
Affiliation(s)
- Qinglin Yang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Xiaoqi Tang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Yuzhuo He
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Xiaobo Yu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Yanhong Li
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Zhengli Wu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
O’Reilly A, Zhao W, Wickström S, Arnér ESJ, Kiessling R. Reactive oxygen species: Janus-faced molecules in the era of modern cancer therapy. J Immunother Cancer 2024; 12:e009409. [PMID: 39645234 PMCID: PMC11629020 DOI: 10.1136/jitc-2024-009409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024] Open
Abstract
Oxidative stress, that is, an unbalanced increase in reactive oxygen species (ROS), contributes to tumor-induced immune suppression and limits the efficacy of immunotherapy. Cancer cells have inherently increased ROS production, intracellularly through metabolic perturbations and extracellularly through activation of NADPH oxidases, which promotes cancer progression. Further increased ROS production or impaired antioxidant systems, induced, for example, by chemotherapy or radiotherapy, can preferentially kill cancer cells over healthy cells. Inflammatory cell-derived ROS mediate immunosuppressive effects of myeloid-derived suppressor cells and activated granulocytes, hampering antitumor effector cells such as T cells and natural killer (NK) cells. Cancer therapies modulating ROS levels in tumors may thus have entirely different consequences when targeting cancer cells versus immune cells. Here we discuss the possibility of developing more efficient cancer therapies based on reduction-oxidation modulation, as either monotherapies or in combination with immunotherapy. Short-term, systemic administration of antioxidants or drugs blocking ROS production can boost the immune system and act in synergy with immunotherapy. However, prolonged use of antioxidants can instead enhance tumor progression. Alternatives to systemic antioxidant administration are under development where gene-modified or activated T cells and NK cells are shielded ex vivo against the harmful effects of ROS before the infusion to patients with cancer.
Collapse
Affiliation(s)
- Aine O’Reilly
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, University College Cork, Cork, Ireland
- The Christie NHS Foundation Trust, Manchester, UK
| | - Wenchao Zhao
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Stina Wickström
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Patient area Head and Neck, Lung and Skin, Karolinska University Hospital, Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Selenoprotein Research and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Patient area Head and Neck, Lung and Skin, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Holendová B, Šalovská B, Benáková Š, Plecitá-Hlavatá L. Beyond glucose: The crucial role of redox signaling in β-cell metabolic adaptation. Metabolism 2024; 161:156027. [PMID: 39260557 DOI: 10.1016/j.metabol.2024.156027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE Redox signaling mediated by reversible oxidative cysteine thiol modifications is crucial for driving cellular adaptation to dynamic environmental changes, maintaining homeostasis, and ensuring proper function. This is particularly critical in pancreatic β-cells, which are highly metabolically active and play a specialized role in whole organism glucose homeostasis. Glucose stimulation in β-cells triggers signals leading to insulin secretion, including changes in ATP/ADP ratio and intracellular calcium levels. Additionally, lipid metabolism and reactive oxygen species (ROS) signaling are essential for β-cell function and health. METHODS We employed IodoTMT isobaric labeling combined with tandem mass spectrometry to elucidate redox signaling pathways in pancreatic β-cells. RESULTS Glucose stimulation significantly increases ROS levels in β-cells, leading to targeted reversible oxidation of proteins involved in key metabolic pathways such as glycolysis, the tricarboxylic acid (TCA) cycle, pyruvate metabolism, oxidative phosphorylation, protein processing in the endoplasmic reticulum (ER), and insulin secretion. Furthermore, the glucose-induced increase in reversible cysteine oxidation correlates with the presence of other post-translational modifications, including acetylation and phosphorylation. CONCLUSIONS Proper functioning of pancreatic β-cell metabolism relies on fine-tuned regulation, achieved through a sophisticated system of diverse post-translational modifications that modulate protein functions. Our findings demonstrate that glucose induces the production of ROS in pancreatic β-cells, leading to targeted reversible oxidative modifications of proteins. Furthermore, protein activity is modulated by acetylation and phosphorylation, highlighting the complexity of the regulatory mechanisms in β-cell function.
Collapse
Affiliation(s)
- Blanka Holendová
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| | - Barbora Šalovská
- Department of Genome Integrity, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic; Yale Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, USA
| | - Štěpánka Benáková
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
Rodrigo DCG, Udayantha HMV, Liyanage DS, Omeka WKM, Kodagoda YK, Hanchapola HACR, Dilshan MAH, Ganepola GANP, Warnakula WADLR, Kim G, Kim J, Lee J, Wan Q, Lee J. Functional characterization of peroxiredoxin 5 from yellowtail clownfish (Amphiprion clarkii): Immunological expression assessment, antioxidant activities, heavy metal detoxification, and nitrosative stress mitigation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 162:105289. [PMID: 39536807 DOI: 10.1016/j.dci.2024.105289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/10/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Peroxiredoxin 5 (Prdx5) is the last recognized member of Prdx family. It is a unique, atypical, 2-Cys antioxidant enzyme, protecting cells from death caused by reactive oxygen species (ROS). In this study, the Prdx5 ortholog of Amphiprion clarkii (AcPrdx5) was identified and characterized to explore its specific structural features and functional properties. The open reading frame of AcPrdx5 is 573 bp long and encodes 190 amino acids containing a mitochondrial targeting sequence, thioredoxin domain, and two conserved cysteine residues responsible for antioxidant function. The predicted molecular weight and theoretical isoelectric point of AcPrdx5 are 20.3 kDa and 9.01, respectively. AcPrdx5 sequences were found to be highly conserved across the other orthologs from various organisms and it distinctively clustered within the fish Prdx5 subclade of the phylogenetic tree. The expression of AcPrdx5 was ubiquitously detected among twelve tested tissues, with the highest level in the brain. Furthermore, the mRNA levels of AcPrdx5 in the blood and head-kidney tissues were significantly (p < 0.05) upregulated following polyinosinic-polycytidylic acid (Poly I:C), lipopolysaccharide (LPS), and Vibrio harveyi immune challenge. A concentration-dependent antioxidant potential of recombinant AcPrdx5 was observed in insulin disulfide bond reduction, heavy metal detoxification, free radical and hydrogen peroxide (H2O2) scavenging assays. Additionally, AcPrdx5 overexpression in fathead minnow (FHM) cells upregulated the antioxidant-associated gene (Rrm1, MAPK, SOD2, and PRDX1) expression after H2O2 treatment, and promoted cell viability upon arsenic (As) exposure. In macrophages, AcPrdx5 overexpression effectively suppressed substantial nitric oxide production under lipopolysaccharide treatment. Collectively, our results suggest that AcPrdx5 may play roles in both antioxidant defense system and innate immune response against pathogenic invasions in A. clarkii.
Collapse
Affiliation(s)
- D C G Rodrigo
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - H M V Udayantha
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - Y K Kodagoda
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - H A C R Hanchapola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - M A H Dilshan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - G A N P Ganepola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - W A D L R Warnakula
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - Jeongeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - Jihun Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, South Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, South Korea.
| |
Collapse
|
5
|
Medoro A, Jafar TH, Sallustio F, Scapagnini G, Saso L, Davinelli S. Computational Assessment of Carotenoids as Keap1-Nrf2 Protein-Protein Interaction Inhibitors: Implications for Antioxidant Strategies. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1681-1691. [PMID: 39523109 DOI: 10.1134/s0006297924100031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 11/16/2024]
Abstract
The Keap1-Nrf2 pathway is an essential system that maintains redox homeostasis and modulates key metabolic processes, including metabolism of amino acids to promote the synthesis of antioxidant enzymes. Inhibitors of the protein-protein interaction (PPI) between Keap1 and Nrf2 have emerged as a promising strategy for developing novel classes of antioxidant agents that selectively activate this pathway without off-target effects. Carotenoids, a large family of lipophilic isoprenoids synthesized by all photosynthetic organisms, are well-known for their antioxidant activities. However, the ability of carotenoids to inhibit the Keap1-Nrf2 PPI through the involvement of specific amino acid residues has not yet been revealed. We utilized molecular docking, molecular dynamic simulations, and pharmacokinetic prediction techniques to investigate the potential of eight oxygenated carotenoids, known as xanthophylls, to inhibit Keap1. Among the compounds investigated, fucoxanthin and astaxanthin established multiple hydrogen-bonding and hydrophobic interactions within the Kelch domain of Keap1, showing remarkable binding affinities. Furthermore, fucoxanthin and astaxanthin displayed the ability to form a stable complex with Keap1 and fit into the binding pocket of its Kelch domain. These analyses led to the identification of critical amino acid residues in the binding pocket of Keap1 which are involved in the interaction with carotenoid xanthophylls. Our analyses further revealed that fucoxanthin and astaxanthin demonstrate a favorable safety profile and possess pharmacokinetic properties consistent with acceptable drug-like characteristics. These findings lay the preliminary foundation for developing a novel class of Keap1-Nrf2 PPI inhibitors with potential applications against oxidative stress-related diseases.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Tassadaq Hussain Jafar
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Bari, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", La Sapienza University, Rome, 00185, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.
| |
Collapse
|
6
|
El Agaty SM, Khedr S, Mostafa DKM, Wanis NA, Abou-Bakr DA. Protective role of melatonin against diclofenac-induced acute kidney injury. Life Sci 2024; 353:122936. [PMID: 39094904 DOI: 10.1016/j.lfs.2024.122936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
Diclofenac (DF), a non-steroidal anti-inflammatory drug, is commonly used to relieve pain and inflammation. High doses of DF might induce acute kidney injury (AKI), particularly in elderly, a known vulnerable population. AIM We aimed to assess the protective role of melatonin (Mel) on DF-induced AKI in aged rats and to highlight the underpinning mechanisms include, oxidative stress and inflammation focusing on microRNA-34a (miR-34a), nuclear factor erythroid-2-related factor-2/hemeoxygenase-1 (Nrf2/HO-1) and NLR family-pyrin domain containing-3 (NLRP3) inflammasome pathways, and to elucidate the possibility of epithelial sodium channel (ENaC) involvement. MATERIALS AND METHODS Thirty old male Wistar rats were allocated randomly into 3 groups: Control, DF and Mel-DF groups. KEY FINDINGS Melatonin provided nephroprotective effects against DF-induced AKI via attenuating the expression of renal miR-34a and subsequently promoting the signaling of Nrf2/HO-1 with elevation of the antioxidant defense capacity and suppressing NLRP3 inflammasomes. Melatonin alleviated DF-induced hypernatremia via decreasing the ENaC expression. Renal histopathological examination revealed significant reduction in vascular congestion, mononuclear infiltration, glomerulo-tubular damage, fibrosis and TNF-α optical density. SIGNIFICANCE It can be assumed that melatonin is a promising safe therapeutic agent in controlling DF-induced AKI in elderly.
Collapse
Affiliation(s)
- Sahar Mohamed El Agaty
- Department of Medical Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Department of Medical Physiology, Faculty of Medicine, Galala University, Suez, Egypt; Basic Medical Sciences Department, Faculty of Pharmacy, King Salman International University, Sinai, Egypt
| | - Sherif Khedr
- Department of Medical Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Nardine Alfonse Wanis
- Department of Medical Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Doaa Ahmed Abou-Bakr
- Department of Medical Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Department of Medical Physiology, Faculty of Medicine, Armed Forces College of Medicine (AFCM), Cairo, Egypt.
| |
Collapse
|
7
|
Akter KA, Sharma S, Sifat AE, Zhang Y, Patel DK, Cucullo L, Abbruscato TJ. Metformin ameliorates neuroinflammatory environment for neurons and astrocytes during in vitro and in vivo stroke and tobacco smoke chemical exposure: Role of Nrf2 activation. Redox Biol 2024; 75:103266. [PMID: 39094400 PMCID: PMC11345405 DOI: 10.1016/j.redox.2024.103266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 08/04/2024] Open
Abstract
Despite the protective nature of the blood-brain barrier (BBB) and brain-protecting tissues, some types of CNS injury or stress can cause cerebral cytokine production and profound alterations in brain function. Neuroinflammation, which can also be accompanied by increased cerebral cytokine production, has a remarkable impact on the pathogenesis of many neurological illnesses, including loss of BBB integrity and ischemic stroke, yet effective treatment choices for these diseases are currently lacking. Although little is known about the brain effects of Metformin (MF), a commonly prescribed first-line antidiabetic drug, prior research suggested that it may be useful in preventing BBB deterioration and the increased risk of stroke caused by tobacco smoking (TS). Therefore, reducing neuroinflammation by escalating anti-inflammatory cytokine production and declining pro-inflammatory cytokine production could prove an effective therapeutic strategy for ischemic stroke. Hence, the current investigation was planned to explore the potential role of MF against stroke and TS-induced neuroinflammation and reactive oxygen species (ROS) production. Our studies revealed that MF suppressed releasing pro-inflammatory mediators like tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) by aiming at the nuclear factor kappa B (NF-κB) signaling pathway in primary neurons and astrocytes. MF also upregulated anti-inflammatory mediators, like interleukin-10 (IL-10), and interleukin-4 (IL-4), by upregulating the Nrf2-ARE signaling pathway. Adolescent mice receiving MF along with TS exposure also showed a notable decrease in NF-κB expression compared to the mice not treated with MF and significantly decreased the level of TNF-α, IL-1β, MCP-1, and MIP-2 and increased the levels of IL-10 and IL-4 through the activation of Nrf2-ARE signaling pathway. These results suggest that MF has anti-neuroinflammatory effects via inhibiting NF-κB signaling by activating Nrf2-ARE. These studies support that MF could be a strong candidate drug for treating and or preventing TS-induced neuroinflammation and ischemic stroke.
Collapse
Affiliation(s)
- Khondker Ayesha Akter
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States.
| | - Sejal Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States.
| | - Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States.
| | - Yong Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States.
| | - Dhaval Kumar Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States.
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States.
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States.
| |
Collapse
|
8
|
Sies H, Mailloux RJ, Jakob U. Fundamentals of redox regulation in biology. Nat Rev Mol Cell Biol 2024; 25:701-719. [PMID: 38689066 DOI: 10.1038/s41580-024-00730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Oxidation-reduction (redox) reactions are central to the existence of life. Reactive species of oxygen, nitrogen and sulfur mediate redox control of a wide range of essential cellular processes. Yet, excessive levels of oxidants are associated with ageing and many diseases, including cardiological and neurodegenerative diseases, and cancer. Hence, maintaining the fine-tuned steady-state balance of reactive species production and removal is essential. Here, we discuss new insights into the dynamic maintenance of redox homeostasis (that is, redox homeodynamics) and the principles underlying biological redox organization, termed the 'redox code'. We survey how redox changes result in stress responses by hormesis mechanisms, and how the lifelong cumulative exposure to environmental agents, termed the 'exposome', is communicated to cells through redox signals. Better understanding of the molecular and cellular basis of redox biology will guide novel redox medicine approaches aimed at preventing and treating diseases associated with disturbed redox regulation.
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Abir AH, Weckwerth L, Wilhelm A, Thomas J, Reichardt CM, Munoz L, Völkl S, Appelt U, Mroz M, Niesner R, Hauser A, Sophie Fischer R, Pracht K, Jäck HM, Schett G, Krönke G, Mielenz D. Metabolic profiling of single cells by exploiting NADH and FAD fluorescence via flow cytometry. Mol Metab 2024; 87:101981. [PMID: 38971403 PMCID: PMC11300934 DOI: 10.1016/j.molmet.2024.101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
OBJECTIVE The metabolism of different cells within the same microenvironment can differ and dictate physiological or pathological adaptions. Current single-cell analysis methods of metabolism are not label-free. METHODS The study introduces a label-free, live-cell analysis method assessing endogenous fluorescence of NAD(P)H and FAD in surface-stained cells by flow cytometry. RESULTS OxPhos inhibition, mitochondrial uncoupling, glucose exposure, genetic inactivation of glucose uptake and mitochondrial respiration alter the optical redox ratios of FAD and NAD(P)H as measured by flow cytometry. Those alterations correlate strongly with measurements obtained by extracellular flux analysis. Consequently, metabolically distinct live B-cell populations can be resolved, showing that human memory B-cells from peripheral blood exhibit a higher glycolytic flexibility than naïve B cells. Moreover, the comparison of blood-derived B- and T-lymphocytes from healthy donors and rheumatoid arthritis patients unleashes rheumatoid arthritis-associated metabolic traits in human naïve and memory B-lymphocytes. CONCLUSIONS Taken together, these data show that the optical redox ratio can depict metabolic differences in distinct cell populations by flow cytometry.
Collapse
Affiliation(s)
- Ariful Haque Abir
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Leonie Weckwerth
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Artur Wilhelm
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jana Thomas
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Clara M Reichardt
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Luis Munoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Uwe Appelt
- Flow cytometry core unit, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glückstr. 6, 91054 Erlangen, Germany
| | - Markus Mroz
- Flow cytometry core unit, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glückstr. 6, 91054 Erlangen, Germany
| | - Raluca Niesner
- Deutsches Rheumaforschungszentrum Berlin, Biophysikalische Analytik, Charitéplatz 1, 10117 Berlin, Germany; Freie Universität Berlin, Dynamisches und funktionelles in vivo Imaging, Adresse: Oertzenweg 19b, 14163 Berlin, Germany
| | - Anja Hauser
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Deutsches Rheumaforschungszentrum Berlin, Immundynamik, Charitéplatz 1, 10117 Berlin, Germany
| | - Rebecca Sophie Fischer
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Katharina Pracht
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany.
| |
Collapse
|
10
|
Benedusi M, Lee H, Lim Y, Valacchi G. Oxidative State in Cutaneous Melanoma Progression: A Question of Balance. Antioxidants (Basel) 2024; 13:1058. [PMID: 39334716 PMCID: PMC11428248 DOI: 10.3390/antiox13091058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Reactive oxygen species (ROS) are highly bioactive molecules involved not only in tissue physiology but also in the development of different human conditions, including premature aging, cardiovascular pathologies, neurological and neurodegenerative disorders, inflammatory diseases, and cancer. Among the different human tumors, cutaneous melanoma, the most aggressive and lethal form of skin cancer, is undoubtedly one of the most well-known "ROS-driven tumor", of which one of the main causes is represented by ultraviolet (UV) rays' exposure. Although the role of excessive ROS production in melanoma development in pro-tumorigenic cell fate is now well established, little is known about its contribution to the progression of the melanoma metastatic process. Increasing evidence suggests a dual role of ROS in melanoma progression: excessive ROS production may enhance cellular growth and promote therapeutic resistance, but at the same time, it can also have cytotoxic effects on cancer cells, inducing their apoptosis. In this context, the aim of the present work was to focus on the relationship between cell redox state and the signaling pathways directly involved in the metastatic processes. In addition, oxidative or antioxidant therapeutic strategies for metastatic melanoma were also reviewed and discussed.
Collapse
Affiliation(s)
- Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Giuseppe Valacchi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
11
|
Perween N, Pekhale K, Haval G, Sirkar G, Bose GS, Mittal SPK, Ghaskadbi S, Ghaskadbi SS. Identification and characterization of multidomain monothiol glutaredoxin 3 from diploblastic Hydra. Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110986. [PMID: 38703881 DOI: 10.1016/j.cbpb.2024.110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Intracellular antioxidant glutaredoxin controls cell proliferation and survival. Based on the active site, structure, and conserved domain motifs, it is classified into two classes. Class I contains dithiol Grxs with two cysteines in the consensus active site sequence CXXC, while class II has monothiol Grxs with one cysteine residue in the active site. Monothiol Grxs can also have an additional N-terminal thioredoxin (Trx)-like domain. Previously, we reported the characterization of Grx1 from Hydra vulgaris (HvGrx1), which is a dithiol isoform. Here, we report the molecular cloning, expression, analysis, and characterization of another isoform of Grx, which is the multidomain monothiol glutaredoxin-3 from Hydra vulgaris (HvGrx3). It encodes a protein with 303 amino acids and is significantly larger and more divergent than HvGrx1. In-silico analysis revealed that Grx1 and Grx3 have 22.5% and 9.9% identical nucleotide and amino acid sequences, respectively. HvGrx3 has two glutaredoxin domains and a thioredoxin-like domain at its amino terminus, unlike HvGrx1, which has a single glutaredoxin domain. Like other monothiol glutaredoxins, HvGrx3 failed to reduce glutathione-hydroxyethyl disulfide. In the whole Hydra, HvGrx3 was found to be expressed all over the body column, and treatment with H2O2 led to a significant upregulation of HvGrx3. When transfected in HCT116 (human colon cancer cells) cells, HvGrx3 enhanced cell proliferation and migration, indicating that this isoform could be involved in these cellular functions. These transfected cells also tolerate oxidative stress better.
Collapse
Affiliation(s)
- Nusrat Perween
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India; Department of Zoology, M.C.E. Society's Abeda Inamdar Senior College, Pune 411001, India. https://twitter.com/nusratperween13
| | - Komal Pekhale
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Gauri Haval
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India; Department of Zoology, Abasaheb Garware College, Pune 411004, India
| | - Gargi Sirkar
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Ganesh S Bose
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Smriti P K Mittal
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Surendra Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune 411004, India
| | - Saroj S Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
12
|
Cobley JN, Margaritelis NV, Chatzinikolaou PN, Nikolaidis MG, Davison GW. Ten "Cheat Codes" for Measuring Oxidative Stress in Humans. Antioxidants (Basel) 2024; 13:877. [PMID: 39061945 PMCID: PMC11273696 DOI: 10.3390/antiox13070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Formidable and often seemingly insurmountable conceptual, technical, and methodological challenges hamper the measurement of oxidative stress in humans. For instance, fraught and flawed methods, such as the thiobarbituric acid reactive substances assay kits for lipid peroxidation, rate-limit progress. To advance translational redox research, we present ten comprehensive "cheat codes" for measuring oxidative stress in humans. The cheat codes include analytical approaches to assess reactive oxygen species, antioxidants, oxidative damage, and redox regulation. They provide essential conceptual, technical, and methodological information inclusive of curated "do" and "don't" guidelines. Given the biochemical complexity of oxidative stress, we present a research question-grounded decision tree guide for selecting the most appropriate cheat code(s) to implement in a prospective human experiment. Worked examples demonstrate the benefits of the decision tree-based cheat code selection tool. The ten cheat codes define an invaluable resource for measuring oxidative stress in humans.
Collapse
Affiliation(s)
- James N. Cobley
- The University of Dundee, Dundee DD1 4HN, UK
- Ulster University, Belfast BT15 1ED, Northern Ireland, UK;
| | - Nikos V. Margaritelis
- Aristotle University of Thessaloniki, 62122 Serres, Greece; (N.V.M.); (P.N.C.); (M.G.N.)
| | | | - Michalis G. Nikolaidis
- Aristotle University of Thessaloniki, 62122 Serres, Greece; (N.V.M.); (P.N.C.); (M.G.N.)
| | | |
Collapse
|
13
|
Vogelsang L, Eirich J, Finkemeier I, Dietz KJ. Specificity and dynamics of H 2O 2 detoxification by the cytosolic redox regulatory network as revealed by in vitro reconstitution. Redox Biol 2024; 72:103141. [PMID: 38599017 PMCID: PMC11022108 DOI: 10.1016/j.redox.2024.103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
The thiol redox state is a decisive functional characteristic of proteins in cell biology. Plasmatic cell compartments maintain a thiol-based redox regulatory network linked to the glutathione/glutathione disulfide couple (GSH/GSSG) and the NAD(P)H system. The basic network constituents are known and in vivo cell imaging with gene-encoded probes have revealed insight into the dynamics of the [GSH]2/[GSSG] redox potential, cellular H2O2 and NAD(P)H+H+ amounts in dependence on metabolic and environmental cues. Less understood is the contribution and interaction of the network components, also because of compensatory reactions in genetic approaches. Reconstituting the cytosolic network of Arabidopsis thaliana in vitro from fifteen recombinant proteins at in vivo concentrations, namely glutathione peroxidase-like (GPXL), peroxiredoxins (PRX), glutaredoxins (GRX), thioredoxins, NADPH-dependent thioredoxin reductase A and glutathione reductase and applying Grx1-roGFP2 or roGFP2-Orp1 as dynamic sensors, allowed for monitoring the response to a single H2O2 pulse. The major change in thiol oxidation as quantified by mass spectrometry-based proteomics occurred in relevant peptides of GPXL, and to a lesser extent of PRX, while other Cys-containing peptides only showed small changes in their redox state and protection. Titration of ascorbate peroxidase (APX) into the system together with dehydroascorbate reductase lowered the oxidation of the fluorescent sensors in the network but was unable to suppress it. The results demonstrate the power of the network to detoxify H2O2, the partially independent branches of electron flow with significance for specific cell signaling and the importance of APX to modulate the signaling without suppressing it and shifting the burden to glutathione oxidation.
Collapse
Affiliation(s)
- Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany; CeBiTec, Bielefeld University, 33615, Bielefeld, Germany.
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, 48149, Münster, Germany.
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, 48149, Münster, Germany.
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany; CeBiTec, Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
14
|
Lian J, Xu Y, Shi J, Liu P, Hua Y, Zhang C, Ren T, Su G, Cheng S, Nie Z, Jia T. Acteoside and isoacteoside alleviate renal dysfunction and inflammation in lipopolysaccharide-induced acute kidney injuries through inhibition of NF-κB signaling pathway. PLoS One 2024; 19:e0303740. [PMID: 38748639 PMCID: PMC11095724 DOI: 10.1371/journal.pone.0303740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
Acute kidney injury (AKI) is a sudden loss of renal function with a high mortality rate and inflammation is thought to be the underlying cause. The phenylpropanoid components acteoside (ACT) and isoacteoside (ISO), which were isolated from Cistanche deserticola Y.C.Ma, have been reported to have preventive effects against kidney disorders. This study aimed to investigate the anti-inflammatory properties and protective mechanisms of ACT and ISO. In this investigation, kidney function was assessed using a semi-automatic biochemical analyzer, histopathology was examined using Hematoxylin-Eosin staining and immunohistochemistry, and the concentration of inflammatory cytokines was assessed using an enzyme-linked immunosorbent assay (ELISA) test. In addition, using Western blot and q-PCR, the expression of proteins and genes connected to the NF-κB signaling pathway in mice with lipopolysaccharide (LPS)-induced AKI was found. The findings showed that under AKI intervention in LPS group, ACT group and ISO group, the expression of Rela (Rela gene is responsible for the expression of NFκB p65 protein) and Tlr4 mRNA was considerably elevated (P<0.01), which led to a significant improvement in the expression of MyD88, TLR4, Iκ-Bɑ and NF-κB p65 protein (P<0.001). The levels of Alb, Crea and BUN (P<0.001) increased along with the release of downstream inflammatory factors such as IL-1β, IL-6, Cys-C, SOD1 and TNF-α (P<0.001). More importantly, the study showed that ISO had a more favorable impact on LPS-induced AKI mice than ACT. In conclusion, by inhibiting NF-κB signaling pathway, ACT and ISO could relieve renal failure and inflammation in AKI, offering a fresh possibility for the therapeutic management of the condition.
Collapse
Affiliation(s)
- Jing Lian
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Yisheng Xu
- Waters Technology (Beijing) Co., Ltd., Beijing, China
| | - Ji Shi
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Pengpeng Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Yue Hua
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Chao Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Tianhang Ren
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Guoming Su
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Shizan Cheng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Zixuan Nie
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Tianzhu Jia
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
15
|
Castro H, Rocha MI, Duarte M, Vilurbina J, Gomes-Alves AG, Leao T, Dias F, Morgan B, Deponte M, Tomás AM. The cytosolic hyperoxidation-sensitive and -robust Leishmania peroxiredoxins cPRX1 and cPRX2 are both dispensable for parasite infectivity. Redox Biol 2024; 71:103122. [PMID: 38490068 PMCID: PMC10955670 DOI: 10.1016/j.redox.2024.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024] Open
Abstract
Typical two-cysteine peroxiredoxins (2-Cys-PRXs) are H2O2-metabolizing enzymes whose activity relies on two cysteine residues. Protists of the family Trypanosomatidae invariably express one cytosolic 2-Cys-PRX (cPRX1). However, the Leishmaniinae sub-family features an additional isoform (cPRX2), almost identical to cPRX1, except for the lack of an elongated C-terminus with a Tyr-Phe (YF) motif. Previously, cytosolic PRXs were considered vital components of the trypanosomatid antioxidant machinery. Here, we shed new light on the properties, functions and relevance of cPRXs from the human pathogen Leishmania infantum. We show first that LicPRX1 is sensitive to inactivation by hyperoxidation, mirroring other YF-containing PRXs participating in redox signaling. Using genetic fusion constructs with roGFP2, we establish that LicPRX1 and LicPRX2 can act as sensors for H2O2 and oxidize protein thiols with implications for signal transduction. Third, we show that while disrupting the LicPRX-encoding genes increases susceptibility of L. infantum promastigotes to external H2O2in vitro, both enzymes are dispensable for the parasites to endure the macrophage respiratory burst, differentiate into amastigotes and initiate in vivo infections. This study introduces a novel perspective on the functions of trypanosomatid cPRXs, exposing their dual roles as both peroxidases and redox sensors. Furthermore, the discovery that Leishmania can adapt to the absence of both enzymes has significant implications for our understanding of Leishmania infections and their treatment. Importantly, it questions the conventional notion that the oxidative response of macrophages during phagocytosis is a major barrier to infection and the suitability of cPRXs as drug targets for leishmaniasis.
Collapse
Affiliation(s)
- Helena Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Maria Inês Rocha
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Margarida Duarte
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Jordi Vilurbina
- Fachbereich Chemie, Abteilung Biochemie, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Ana Georgina Gomes-Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Teresa Leao
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Filipa Dias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Bruce Morgan
- Institut für Biochemie, Zentrum für Human und Molekularbiologie (ZHMB), Universität des Saarlandes, D-66123, Saarbrücken, Germany
| | - Marcel Deponte
- Fachbereich Chemie, Abteilung Biochemie, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Ana Maria Tomás
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
16
|
Radulescu D, Mihai FD, Trasca MET, Caluianu EI, Calafeteanu CDM, Radulescu PM, Mercut R, Ciupeanu-Calugaru ED, Marinescu GA, Siloşi CA, Nistor CCE, Danoiu S. Oxidative Stress in Military Missions-Impact and Management Strategies: A Narrative Analysis. Life (Basel) 2024; 14:567. [PMID: 38792589 PMCID: PMC11121804 DOI: 10.3390/life14050567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
This narrative review comprehensively examines the impact of oxidative stress on military personnel, highlighting the crucial role of physical exercise and tailored diets, particularly the ketogenic diet, in minimizing this stress. Through a meticulous analysis of the recent literature, the study emphasizes how regular physical exercise not only enhances cardiovascular, cognitive, and musculoskeletal health but is also essential in neutralizing the effects of oxidative stress, thereby improving endurance and performance during long-term missions. Furthermore, the implementation of the ketogenic diet provides an efficient and consistent energy source through ketone bodies, tailored to the specific energy requirements of military activities, and significantly contributes to the reduction in reactive oxygen species production, thus protecting against cellular deterioration under extreme stress. The study also underlines the importance of integrating advanced technologies, such as wearable devices and smart sensors that allow for the precise and real-time monitoring of oxidative stress and physiological responses, thus facilitating the customization of training and nutritional regimes. Observations from this review emphasize significant variability among individuals in responses to oxidative stress, highlighting the need for a personalized approach in formulating intervention strategies. It is crucial to develop and implement well-monitored, personalized supplementation protocols to ensure that each member of the military personnel receives a regimen tailored to their specific needs, thereby maximizing the effectiveness of measures to combat oxidative stress. This analysis makes a valuable contribution to the specialized literature, proposing a detailed framework for addressing oxidative stress in the armed forces and opening new directions for future research with the aim of optimizing clinical practices and improving the health and performance of military personnel under stress and specific challenges of the military field.
Collapse
Affiliation(s)
- Dumitru Radulescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Florina-Diana Mihai
- Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | - Major Emil-Tiberius Trasca
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Elena-Irina Caluianu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Captain Dan Marian Calafeteanu
- Department of Ortopedics, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania;
| | - Patricia-Mihaela Radulescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Razvan Mercut
- Department of Plastic and Reconstructive Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | | | - Georgiana-Andreea Marinescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Cristian-Adrian Siloşi
- Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | | | - Suzana Danoiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
17
|
Shen Z, Wu Y, Mana A, Yi C, Cairns B, Evason KJ, Chandrasekharan MB, Tantin D. Oct4 redox sensitivity potentiates reprogramming and differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.21.529404. [PMID: 36865286 PMCID: PMC9980064 DOI: 10.1101/2023.02.21.529404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The transcription factor Oct4/Pou5f1 is a component of the regulatory circuitry governing pluripotency and is widely used to induce pluripotency from somatic cells. Here we use domain swapping and mutagenesis to study Oct4s reprogramming ability, identifying a redox-sensitive DNA binding domain cysteine residue (Cys48) as a key determinant of reprogramming and differentiation. Oct4 Cys48 sensitizes the protein to oxidative inhibition of DNA binding activity and promotes oxidation-mediated protein ubiquitylation. Pou5f1C48S point mutation has little effect on undifferentiated embryonic stem cells (ESCs), but upon retinoic acid (RA) treatment causes retention of Oct4 expression, deregulated gene expression and aberrant differentiation. Pou5f1C48S ESCs also form less differentiated teratomas and contribute poorly to adult somatic tissues. Finally, we describe Pou5f1C48S (Janky) mice, which in the homozygous condition are severely developmentally restricted after E4.5. Rare animals bypassing this restriction appear normal at birth but are sterile. Collectively, these findings uncover a novel Oct4 redox mechanism involved in both entry into and exit from pluripotency.
Collapse
|
18
|
Doumi I, Lang L, Vileno B, Deponte M, Faller P. Glutathione Protects other Cellular Thiols against Oxidation by Cu II-Dp44mT. Chemistry 2024; 30:e202304212. [PMID: 38408264 DOI: 10.1002/chem.202304212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Indexed: 02/28/2024]
Abstract
Cu-thiosemicarbazones have been intensively investigated for their application in cancer therapy or as antimicrobials. Copper(II)-di-2-pyridylketone-4,4-dimethyl-thiosemicarbazone (CuII-Dp44mT) showed anticancer activity in the submicromolar concentration range in cell culture. The interaction of CuII-Dp44mT with thiols leading to their depletion or inhibition was proposed to be involved in this activity. Indeed, CuII-Dp44mT can catalyze the oxidation of thiols although with slow kinetics. The present work aims to obtain insights into the catalytic activity and selectivity of CuII-Dp44mT toward the oxidation of different biologically relevant thiols. Reduced glutathione (GSH), L-cysteine (Cys), N-acetylcysteine (NAC), D-penicillamine (D-Pen), and the two model proteins glutaredoxin (Grx) and thioredoxin (Trx) were investigated. CuII-Dp44mT catalyzed the oxidation of these thiols with different kinetics, with rates in the following order D-Pen>Cys≫NAC>GSH and Trx>Grx. CuII-Dp44mT was more efficient than CuII chloride for the oxidation of NAC and GSH, but not D-Pen and Cys. In mixtures of biologically relevant concentrations of GSH and either Cys, Trx, or Grx, the oxidation kinetics and spectral properties were similar to that of GSH alone, indicating that the interaction of these thiols with CuII-Dp44mT is dominated by GSH. Hence GSH could protect other thiols against potential deleterious oxidation by CuII-Dp44mT.
Collapse
Affiliation(s)
- Iman Doumi
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Lukas Lang
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, Erwin-Schrödinger Straße 54, D-67663, Kaiserslautern, Germany
| | - Bertrand Vileno
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Marcel Deponte
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, Erwin-Schrödinger Straße 54, D-67663, Kaiserslautern, Germany
| | - Peter Faller
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 rue Blaise Pascal, 67000, Strasbourg, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231, Paris, France
| |
Collapse
|
19
|
Yildirim S, Sengul E, Aksu EH, Cinar İ, Gelen V, Tekin S, Dag Y. Selenium reduces acrylamide-induced testicular toxicity in rats by regulating HSD17B1, StAR, and CYP17A1 expression, oxidative stress, inflammation, apoptosis, autophagy, and DNA damage. ENVIRONMENTAL TOXICOLOGY 2024; 39:1402-1414. [PMID: 37987225 DOI: 10.1002/tox.23996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/18/2023] [Accepted: 10/07/2023] [Indexed: 11/22/2023]
Abstract
This study investigated the effects of Selenium (Se) on testis toxicity induced by Acrylamide (ACR) in rats. In our study, 50 male adult rats were used, and the rats were divided into five groups; control, ACR, Se0.5 + ACR, Se1 + ACR, and Se1. Se and ACR treatments were applied for 10 days. On the 11th day of the experimental study, intracardiac blood samples from the rats were taken under anesthesia and euthanized. Sperm motility and morphology were evaluated. Dihydrotestosterone, FSH, and LH levels in sera were analyzed with commercial ELISA kits. MDA, GSH, TNF-α, IL-6, and IL-1β levels and SOD, GPx, and CAT, activities were measured to detect the level of oxidative stress and inflammation in rat testis tissues. Expression analysis of HSD17B1, StAR, CYP17A1, MAPk14, and P-53 as target mRNA levels were performed with Real Time-PCR System technology for each cDNA sample synthesized from rat testis RNA. Testicular tissues were evaluated by histopathological, immunohistochemical, and immunofluorescent examinations. Serum dihydrotestosterone and FSH levels decreased significantly in the ACR group compared to the control group, while LH levels increased and a high dose of Se prevented these changes caused by ACR. A high dose of Se prevented these changes caused by ACR. ACR-induced testicular oxidative stress, inflammation, apoptosis, changes in the expression of reproductive enzymes, some changes in sperm motility and morphology, DNA, and tissue damage, and Se administration prevented these pathologies caused by ACR. As a result of this study, it was determined that Se prevents oxidative stress, inflammation, apoptosis, autophagy, and DNA damage in testicular toxicity induced by ACR in rats.
Collapse
Affiliation(s)
- Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Emin Sengul
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
- Department of Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Emrah Hicazi Aksu
- Department of Andrology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - İrfan Cinar
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Volkan Gelen
- Department of Physiology, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey
| | - Samet Tekin
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Yusuf Dag
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
20
|
Dietz KJ, Vogelsang L. A general concept of quantitative abiotic stress sensing. TRENDS IN PLANT SCIENCE 2024; 29:319-328. [PMID: 37591742 DOI: 10.1016/j.tplants.2023.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Plants often encounter stress in their environment. For appropriate responses to particular stressors, cells rely on sensory mechanisms that detect emerging stress. Considering sensor and signal amplification characteristics, a single sensor system hardly covers the entire stress range encountered by plants (e.g., salinity, drought, temperature stress). A dual system comprising stress-specific sensors and a general quantitative stress sensory system is proposed to enable the plant to optimize its response. The quantitative stress sensory system exploits the redox and reactive oxygen species (ROS) network by altering the oxidation and reduction rates of individual redox-active molecules under stress impact. The proposed mechanism of quantitative stress sensing also fits the requirement of dealing with multifactorial stress conditions.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Bielefeld University, Biochemistry and Physiology of Plants, W5-134, 33615 Bielefeld, Germany.
| | - Lara Vogelsang
- Bielefeld University, Biochemistry and Physiology of Plants, W5-134, 33615 Bielefeld, Germany
| |
Collapse
|
21
|
Andrés CMC, Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-Lebeña E. Antioxidant Metabolism Pathways in Vitamins, Polyphenols, and Selenium: Parallels and Divergences. Int J Mol Sci 2024; 25:2600. [PMID: 38473850 DOI: 10.3390/ijms25052600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Free radicals (FRs) are unstable molecules that cause reactive stress (RS), an imbalance between reactive oxygen and nitrogen species in the body and its ability to neutralize them. These species are generated by both internal and external factors and can damage cellular lipids, proteins, and DNA. Antioxidants prevent or slow down the oxidation process by interrupting the transfer of electrons between substances and reactive agents. This is particularly important at the cellular level because oxidation reactions lead to the formation of FR and contribute to various diseases. As we age, RS accumulates and leads to organ dysfunction and age-related disorders. Polyphenols; vitamins A, C, and E; and selenoproteins possess antioxidant properties and may have a role in preventing and treating certain human diseases associated with RS. In this review, we explore the current evidence on the potential benefits of dietary supplementation and investigate the intricate connection between SIRT1, a crucial regulator of aging and longevity; the transcription factor NRF2; and polyphenols, vitamins, and selenium. Finally, we discuss the positive effects of antioxidant molecules, such as reducing RS, and their potential in slowing down several diseases.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain
| | | |
Collapse
|
22
|
Bae SJ, Lee WY, Bak SB, Lee SJ, Hwang SJ, Kim GW, Koo BS, Park SD, Yoo HH, Kim CO, Kang HW, Oh TW, Kim YW. Antioxidant Efficacy of Hwangryunhaedok-tang through Nrf2 and AMPK Signaling Pathway against Neurological Disorders In Vivo and In Vitro. Int J Mol Sci 2024; 25:2313. [PMID: 38396988 PMCID: PMC10889506 DOI: 10.3390/ijms25042313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) is a representative cause of dementia and is caused by neuronal loss, leading to the accumulation of aberrant neuritic plaques and the formation of neurofibrillary tangles. Oxidative stress is involved in the impaired clearance of amyloid beta (Aβ), and Aβ-induced oxidative stress causes AD by inducing the formation of neurofibrillary tangles. Hwangryunhaedok-tang (HHT, Kracie K-09®), a traditional herbal medicine prescription, has shown therapeutic effects on various diseases. However, the studies of HHT as a potential treatment for AD are insufficient. Therefore, our study identified the neurological effects and mechanisms of HHT and its key bioactive compounds against Alzheimer's disease in vivo and in vitro. In a 5xFAD mouse model, our study confirmed that HHT attenuated cognitive impairments in the Morris water maze (MWM) test and passive avoidance (PA) test. In addition, the prevention of neuron impairment, reduction in the protein levels of Aβ, and inhibition of cell apoptosis were confirmed with brain tissue staining. In HT-22 cells, HHT attenuates tBHP-induced cytotoxicity, ROS generation, and mitochondrial dysfunction. It was verified that HHT exerts a neuroprotective effect by activating signaling pathways interacting with Nrf2, such as MAPK/ERK, PI3K/Akt, and LKB1/AMPK. Among the components, baicalein, a bioavailable compound of HHT, exhibited neuroprotective properties and activated the Akt, AMPK, and Nrf2/HO-1 pathways. Our findings indicate a mechanism for HHT and its major bioavailable compounds to treat and prevent AD and suggest its potential.
Collapse
Affiliation(s)
- Su-Jin Bae
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
- College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Won-Yung Lee
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
- College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Seon Been Bak
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Seung Jin Lee
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Su-Jin Hwang
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea
| | - Geun-Woo Kim
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Byung-Soo Koo
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Sun-Dong Park
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Hye-Hyun Yoo
- College of Pharmacy, Hanyang University, Ansan 1558, Republic of Korea;
| | - Choon-Ok Kim
- Department of Clinical Pharmacology and Clinical Trials Center, Severance Hospital, Yonsei University Health System, Seoul 03722, Republic of Korea;
| | - Hyung Won Kang
- College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Tae-Woo Oh
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea
- Department of Korean Convergence Medical Science, University of Science & Technology (UST), Daejeon 34054, Republic of Korea
| | - Young Woo Kim
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| |
Collapse
|
23
|
Moghadam D, Zarei R, Rostami A, Samare-Najaf M, Ghojoghi R, Savardashtaki A, Jafarinia M, Vakili S, Irajie C. The Growth Inhibitory Effect of Resveratrol and Gallic Acid on Prostate Cancer Cell Lines through the Alteration of Oxidative Stress Balance: The Interplay between Nrf2, HO-1, and BACH1 Genes. Anticancer Agents Med Chem 2024; 24:1220-1232. [PMID: 38984567 DOI: 10.2174/0118715206317999240708062744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/24/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND The association between oxidative stress and prostate cancer (PC) has been demonstrated both epidemiologically and experimentally. Balance in reactive oxygen species (ROS) levels depends on multiple factors, such as the expression of Nrf2, HO-1, and BACH1 genes. Natural polyphenols, such as resveratrol (RSV) and gallic acid (GA), affect cellular oxidative profiles. OBJECTIVE The present study investigated the possible effects of GA and RSV on the oxidative profiles of PC3 and DU145 cells, as well as Nrf2, HO-1, and BACH1 gene expression to achieve an understanding of the mechanisms involved. METHODS PC3 and DU145 cells were treated with ascending concentrations of RSV and GA for 72 h. Then cell growth and mRNA expression of Nrf2, HO-1, and BACH1 genes were analyzed by real-time PCR. Various spectrophotometric analyses were performed to measure oxidative stress markers. RESULTS RSV and GA significantly decreased the growth of PC3 and DU145 cells compared to the control group in a concentration-dependent manner. RSV and GA also decreased ROS production in PC3 cells, but in DU145 cells, only the latter polyphenol significantly decreased ROS content. In addition, RSV and GA had ameliorating effects on SOD, GR, GPX, and CAT activities and GSH levels in both cell lines. Also, RSV and GA induced HO- 1 and Nrf2 gene expression in both cell lines. BACH1 gene expression was induced by RSV only at lower concentrations, in contrast to GA in both cell lines. CONCLUSION Our data suggest that RSV and GA can prevent the growth of prostate cancer cells by disrupting oxidative stress-related pathways, such as changes in Nrf2, HO-1, and BACH1 gene expression.
Collapse
Affiliation(s)
- Delaram Moghadam
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Zarei
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirabbas Rostami
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Samare-Najaf
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rozita Ghojoghi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Jafarinia
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
24
|
Li X, Qian K, Zhang Y, Zhang Y, Liu Y, Sun C, Jiao Y, Yu D, Geng F, Cao J, Zhang S. Ubiquitin-specific peptidase 47 (USP47) regulates cutaneous oxidative injury through nicotinamide nucleotide transhydrogenase (NNT). Toxicol Appl Pharmacol 2023; 480:116734. [PMID: 37924851 DOI: 10.1016/j.taap.2023.116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
Human skin is daily exposed to oxidative stresses in the environment such as physical stimulation, chemical pollutants and pathogenic microorganisms, which are likely to cause skin diseases. As important post-translational modifications, protein ubiquitination and deubiquitination play crucial roles in maintaining cellular homeostasis by the proteolytic removal of oxidized proteins. We have previously reported that the expression of ubiquitin-specific protease 47 (USP47), a kind of deubiquitinating enzymes (DUBs), was significantly elevated in response to oxidative stress. However, the role of USP47 in cutaneous oxidative injury remains unclear. Usp47 wild-type (Usp47+/+) mice and Usp47 knockout (Usp47-/-) mice were used to establish two animal models of oxidative skin damage: (1) radiation- and (2) imiquimod (IMQ)-induced skin injury. Loss of Usp47 consistently aggravated mouse skin damage in vivo. Subsequently, we screened 63 upregulated and 170 downregulated proteins between the skin tissues of wild-type and Usp47-/- mice after 35 Gy electron beam radiation using proteomic analysis. Among the dysregulated proteins, nicotinamide nucleotide transhydrogenase (NNT), which has been reported as a significant regulator of oxidative stress and redox homeostasis, was further investigated in detail. Results showed that NNT was regulated by USP47 through direct ubiquitination mediated degradation and involved in the pathogenesis of cutaneous oxidative injury. Knockdown of NNT expression dramatically limited the energy production ability, with elevated mitochondrial reactive oxygen species (ROS) accumulation and increased mitochondrial membrane potential in irradiated HaCaT cells. Taken together, our present findings illustrate the critical role of USP47 in oxidative skin damage by modulating NNT degradation and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Xiaoqian Li
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Kun Qian
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou 215123, China
| | - Yuehua Zhang
- Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yining Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yulan Liu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Chuntang Sun
- Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Jiao
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou 215123, China
| | - Daojiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Fenghao Geng
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Jianping Cao
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou 215123, China.
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China; Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang 621099, China.
| |
Collapse
|
25
|
Douradinha B. Does hydrogen peroxide contribute to the immunity against Malaria induced by whole attenuated plasmodial sporozoites? Mol Biochem Parasitol 2023; 256:111589. [PMID: 37604406 DOI: 10.1016/j.molbiopara.2023.111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Plasmodium sporozoites can block apoptotic pathways within host hepatocytes, ensuring the survival of the parasite. However, attenuated plasmodial sporozoites are unable to prevent apoptosis, which provides many parasite antigens to immune cells. This exposure leads to protection against Malaria in both human and animal models. If these hosts are later inoculated with infectious sporozoites, apoptosis of infected hepatocytes will occur, preventing parasite development. Considering that hydrogen peroxide can induce apoptosis, it is plausible that it plays a role in the mechanisms associated with the protection mediated by attenuated plasmodial sporozoites. Based on published results that describe the relationship between Plasmodium, hydrogen peroxide, and apoptosis, a rational explanation can be provided for this hypothesis.
Collapse
Affiliation(s)
- Bruno Douradinha
- Nykode Therapeutics ASA, Oslo Science Park, Gaustadalléen 21, Oslo 0349, Norway.
| |
Collapse
|
26
|
Bischoff E, Lang L, Zimmermann J, Luczak M, Kiefer AM, Niedner-Schatteburg G, Manolikakes G, Morgan B, Deponte M. Glutathione kinetically outcompetes reactions between dimedone and a cyclic sulfenamide or physiological sulfenic acids. Free Radic Biol Med 2023; 208:165-177. [PMID: 37541455 DOI: 10.1016/j.freeradbiomed.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Dimedone and its derivates are used as selective probes for the nucleophilic detection of sulfenic acids in biological samples. Qualitative analyses suggested that dimedone also reacts with cyclic sulfenamides. Furthermore, under physiological conditions, dimedone must compete with the highly concentrated nucleophile glutathione. We therefore quantified the reaction kinetics for a cyclic sulfenamide model peptide and the sulfenic acids of glutathione and a model peroxiredoxin in the presence or absence of dimedone and glutathione. We show that the cyclic sulfenamide is stabilized at lower pH and that it reacts with dimedone. While reactions between dimedone and sulfenic acids or the cyclic sulfenamide have similar rate constants, glutathione kinetically outcompetes dimedone as a nucleophile by several orders of magnitude. Our comparative in vitro and intracellular analyses challenge the selectivity of dimedone. Consequently, the dimedone labeling of cysteinyl residues inside living cells points towards unidentified reaction pathways or unknown, kinetically competitive redox species.
Collapse
Affiliation(s)
- Eileen Bischoff
- Fachbereich Chemie & Landesforschungszentrum OPTIMAS, RPTU Kaiserslautern, Erwin-Schrödinger Straße 54, D-67663, Kaiserslautern, Germany
| | - Lukas Lang
- Fachbereich Chemie & Landesforschungszentrum OPTIMAS, RPTU Kaiserslautern, Erwin-Schrödinger Straße 54, D-67663, Kaiserslautern, Germany
| | - Jannik Zimmermann
- Zentrum für Human- und Molekularbiologie (ZHMB), Universität des Saarlandes, Biochemie Campus, Geb. B2.2, D-66123, Saarbrücken, Germany
| | - Maximilian Luczak
- Fachbereich Chemie & Landesforschungszentrum OPTIMAS, RPTU Kaiserslautern, Erwin-Schrödinger Straße 54, D-67663, Kaiserslautern, Germany
| | - Anna Maria Kiefer
- Fachbereich Biologie, RPTU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663, Kaiserslautern, Germany
| | - Gereon Niedner-Schatteburg
- Fachbereich Chemie & Landesforschungszentrum OPTIMAS, RPTU Kaiserslautern, Erwin-Schrödinger Straße 54, D-67663, Kaiserslautern, Germany
| | - Georg Manolikakes
- Fachbereich Chemie & Landesforschungszentrum OPTIMAS, RPTU Kaiserslautern, Erwin-Schrödinger Straße 54, D-67663, Kaiserslautern, Germany
| | - Bruce Morgan
- Zentrum für Human- und Molekularbiologie (ZHMB), Universität des Saarlandes, Biochemie Campus, Geb. B2.2, D-66123, Saarbrücken, Germany
| | - Marcel Deponte
- Fachbereich Chemie & Landesforschungszentrum OPTIMAS, RPTU Kaiserslautern, Erwin-Schrödinger Straße 54, D-67663, Kaiserslautern, Germany.
| |
Collapse
|
27
|
Ates I, Yılmaz AD, Buttari B, Arese M, Saso L, Suzen S. A Review of the Potential of Nuclear Factor [Erythroid-Derived 2]-like 2 Activation in Autoimmune Diseases. Brain Sci 2023; 13:1532. [PMID: 38002492 PMCID: PMC10669303 DOI: 10.3390/brainsci13111532] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 11/26/2023] Open
Abstract
An autoimmune disease is the consequence of the immune system attacking healthy cells, tissues, and organs by mistake instead of protecting them. Inflammation and oxidative stress (OS) are well-recognized processes occurring in association with acute or chronic impairment of cell homeostasis. The transcription factor Nrf2 (nuclear factor [erythroid-derived 2]-like 2) is of major importance as the defense instrument against OS and alters anti-inflammatory activities related to different pathological states. Researchers have described Nrf2 as a significant regulator of innate immunity. Growing indications suggest that the Nrf2 signaling pathway is deregulated in numerous diseases, including autoimmune disorders. The advantageous outcome of the pharmacological activation of Nrf2 is an essential part of Nrf2-based chemoprevention and intervention in other chronic illnesses, such as neurodegeneration, cardiovascular disease, autoimmune diseases, and chronic kidney and liver disease. Nevertheless, a growing number of investigations have indicated that Nrf2 is already elevated in specific cancer and disease steps, suggesting that the pharmacological agents developed to mitigate the potentially destructive or transformative results associated with the protracted activation of Nrf2 should also be evaluated. The activators of Nrf2 have revealed an improvement in the progress of OS-associated diseases, resulting in immunoregulatory and anti-inflammatory activities; by contrast, the depletion of Nrf2 worsens disease progression. These data strengthen the growing attention to the biological properties of Nrf2 and its possible healing power on diseases. The evidence supporting a correlation between Nrf2 signaling and the most common autoimmune diseases is reviewed here. We focus on the aspects related to the possible effect of Nrf2 activation in ameliorating pathologic conditions based on the role of this regulator of antioxidant genes in the control of inflammation and OS, which are processes related to the progression of autoimmune diseases. Finally, the possibility of Nrf2 activation as a new drug development strategy to target pathogenesis is proposed.
Collapse
Affiliation(s)
- Ilker Ates
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey
| | - Ayşe Didem Yılmaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey; (A.D.Y.); (S.S.)
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Italian National Institute of Health, 00161 Rome, Italy;
| | - Marzia Arese
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzae Aldo Moro 5, 00185 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology ‘‘Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey; (A.D.Y.); (S.S.)
| |
Collapse
|
28
|
Xie X, Wang F, Ge W, Meng X, Fan L, Zhang W, Wang Z, Ding M, Gu S, Xing X, Sun X. Scutellarin attenuates oxidative stress and neuroinflammation in cerebral ischemia/reperfusion injury through PI3K/Akt-mediated Nrf2 signaling pathways. Eur J Pharmacol 2023; 957:175979. [PMID: 37611841 DOI: 10.1016/j.ejphar.2023.175979] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
Cerebral ischemia/reperfusion injury (CIRI) seriously threatens human life and health. Scutellarin (Scu) exhibits neuroprotective effects, but little is known about its underlying mechanism. Therefore, we explored its protective effect on CIRI and the underlying mechanism. Our results demonstrated that Scu rescued HT22 cells from cytotoxicity induced by oxygen and glucose deprivation/reoxygenation (OGD/R). Scu also showed antioxidant activity by promoting nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, upregulating heme oxygenase-1 (HO-1) expression, increasing superoxide dismutase (SOD) activity, and inhibiting reactive oxygen species (ROS) generation in vitro. Additionally, Scu reduced nuclear factor-kappa B (NF-κB) activity and the levels of pro-inflammatory factors. Interestingly, these effects were abolished by Nrf2 inhibition. Furthermore, Scu reduced infarct volume and blood-brain barrier (BBB) permeability, improved sensorimotor functions and depressive behaviors, and alleviated oxidative stress and neuroinflammation in rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). Mechanistically, Scu-induced Nrf2 nuclear accumulation and inactivation of NF-κB were accompanied by an enhanced level of phosphorylated protein kinase B (p-AKT) both in vitro and in vivo. Pharmacologically inhibiting the phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) pathway blocked Scu-induced Nrf2 nuclear translocation and inactivation of NF-κB, as well as its antioxidant and anti-inflammatory activities. In summary, these results suggest that Scu exhibits antioxidant, anti-inflammatory, and neuroprotective effects in CIRI through Nrf2 activation mediated by the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xueheng Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China
| | - Fan Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China
| | - Wenxiu Ge
- Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin, 150076, China
| | - Xiangbao Meng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China
| | - Lijuan Fan
- Kunming Longjin Pharmaceutical Co., Ltd, Kunming, 650503, China
| | - Wei Zhang
- Kunming Longjin Pharmaceutical Co., Ltd, Kunming, 650503, China
| | - Zhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China
| | - Meng Ding
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Shengliang Gu
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Xiaoyan Xing
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China.
| |
Collapse
|
29
|
Fang YH, Zhang YM, Yue SY, Peng JJ, Liu CX, Wang CH. Improving Catalytic Activity, Acid-Tolerance, and Thermal Stability of Glutathione Peroxidase by Systematic Site-Directed Selenocysteine Incorporation. Mol Biotechnol 2023; 65:1644-1652. [PMID: 36737554 DOI: 10.1007/s12033-023-00682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Glutathione peroxidase (GPx) is an important antioxidant enzyme. Selenocysteine (Sec)-containing GPxs (Sec-GPxs) are usually superior to their conventional cysteine-containing counterparts (Cys-GPxs), which make up the majority of the natural GPxs but display unsuitable activity and stability for industrial applications. This study first heterologously expressed and characterized a Cys-GPx from Lactococcus lactis (LlGPx), systematically exchanged all the three Cys to Sec and introduced an extra Sec. The results showed that the insertion of Sec at the active site could effectively increase the enzyme activity and confer a lower optimal pH value on the mutants. The double mutant C36U/L157U increased by 2.65 times (5.12 U/mg). The thermal stability of the C81U mutant was significantly improved. These results suggest that site-directed Sec incorporation can effectively improve the enzymatic properties of LlGPx, which may be also used for the protein engineering of other industrial enzymes containing catalytic or other functional cysteine residues.
Collapse
Affiliation(s)
- Yu-Hui Fang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yan-Mei Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shi-Yang Yue
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jing-Jing Peng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Chen-Xing Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Cheng-Hua Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue East Road, Nanning, 530004, China.
| |
Collapse
|
30
|
Vogelsang L, Dietz KJ. Regeneration of cytosolic thiol peroxidases. PHYSIOLOGIA PLANTARUM 2023; 175:e14042. [PMID: 37882285 DOI: 10.1111/ppl.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023]
Abstract
Three soluble type two peroxiredoxins (PRXIIB, C, D) and two glutathione peroxidase-like enzymes (GPXL2, 8) reside in the cytosol of Arabidopsis thaliana cells and function both as thiol-dependent antioxidants and redox sensors. Their primary substrate is H2 O2 , but they also accept other peroxides with a distinct preference between PRXII and GPXL. Less known is their regeneration specificity in the light of the large set of thiol reductases, namely eight annotated thioredoxin h isoforms (TRXh1-5, 7-9), a few TRX-like proteins, including CxxS1 (formerly TRXh6) and several glutaredoxins (GRX) associated with the cytosol. This study addressed this open question by in vitro enzyme tests using recombinant protein. GPXL2 and 8 exclusively accepted electrons from the TRX system, namely TRXh1-5 and TDX, while PRXIIB/C/D were efficiently regenerated with GRXC1 and C2 but not the TRX-like protein Picot1. They showed significant but low activity (<3% of GRXC2) with TRXh1-5 and TDX. A similar reduction efficiency with TRX was seen in the insulin assay, only TDX was less active. Finally, the reduction of oxidized cytosolic malate dehydrogenase 1, as measured by regained activity, showed an extremely broad ability to accept electrons from different TRXs and GRXs. The results demonstrate redundancy and specificity in the redox regulatory network of the cytosol.
Collapse
Affiliation(s)
- Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
31
|
Orešić T, Bubanović S, Ramić S, Šarčević B, Čipak Gašparović A. Nuclear localization of NRF2 in stroma of HER2 positive and triple-negative breast cancer. Pathol Res Pract 2023; 248:154662. [PMID: 37421843 DOI: 10.1016/j.prp.2023.154662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
Breast cancer is one of the leading causes of cancer-related mortality in women. During tumor growth, periods of hypoxia are followed by reoxygenation due to neovascularisation leading to disturbed redox homeostasis. ROS (Reactive Oxygen Species) produced under hypoxia activate HIF1α. ROS can also activate the major antioxidant transcription factor NRF2, but also cause damage to biomolecules. Lipids are susceptible to peroxidation, as evidenced by the formation of reactive aldehydes, among which, HNE (4-hydroxynonenal) is the most studied one. Knowing that HIF1α (Hypoxia Inducing Factor 1α) is associated with breast cancer malignancy, we aimed to investigate its correlation with HNE and NRF2 (Nuclear factor erythroid 2-related factor 2). Our results show that HIF1α is activated in breast cancer, indicating an increase in ROS but not followed by HNE production. On the other hand, NRF2 was increased in all types of breast cancer suggesting that oxidative stress is present in these pathologies, but also supporting HIF1α. Interestingly, NRF2 was activated in HER2 positive and TNBC, indicating the role of stromal NRF2 in breast cancer malignancy.
Collapse
Affiliation(s)
- Tomislav Orešić
- University Hospital for Tumors, University Hospital Centre "Sestre milosrdnice", Ilica 197, HR-10000 Zagreb, Croatia.
| | - Sanda Bubanović
- University Hospital for Tumors, University Hospital Centre "Sestre milosrdnice", Ilica 197, HR-10000 Zagreb, Croatia.
| | - Snježana Ramić
- University Hospital for Tumors, University Hospital Centre "Sestre milosrdnice", Ilica 197, HR-10000 Zagreb, Croatia.
| | - Božena Šarčević
- University Hospital for Tumors, University Hospital Centre "Sestre milosrdnice", Ilica 197, HR-10000 Zagreb, Croatia.
| | | |
Collapse
|
32
|
Pang B, Zhao R, Peng B, Bao L, Geng Z, Li S, Xu Y, Zhou L, Guo S, Cui X, Sun J. Pharmacological effects and mechanism of Kaihoujian Throat Spray (children's type) in the treatment of pediatric acute pharyngitis and tonsillitis. Heliyon 2023; 9:e17802. [PMID: 37539230 PMCID: PMC10395134 DOI: 10.1016/j.heliyon.2023.e17802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023] Open
Abstract
Context Kaihoujian Throat Spray children's type (KHJSC) is a Chinese medicine prescription for treating pediatric acute pharyngitis and tonsillitis (APT). However, its relevant mechanisms remain unclear. Objective To investigate the pharmacological effects of KHJSC on APT in vitro and in vivo, and explore the possible mechanism and target proteins. Materials and methods The antiviral and antibacterial effects in vitro were evaluated by IC50 and MICs. Thirty-six Japanese white rabbits were averagely divided into control group, model group, amoxicillin group and 3 dose groups of KHJSC (720, 540 and 360 μL/kg/d). The model rabbits were injected with β-hemolytic Streptococcus solution into the tonsils for 2 consecutive days. KHJSC treatment started on the third day. The whole blood, serum, tonsil tissues and pharyngeal mucosa tissues were collected for routine blood tests, proteomic, ELISA and other tests on the sixth day. Results The IC50 of KHJSC on HCoV-229E, influenza PR8 and Ad3 were 1.99, 1.99 and 4.49 mg/mL, respectively; MICs of MDR-PA, MRSA and β-hemolytic Streptococcus were 350, 350, and 175 mg/mL. KHJSC markedly decreased the number of white blood cells, lymphocytes, neutrophils, and the level of IL-1β, IL-5, IL-6, IL-18, TNF-α and MCP-1; increased the content of IL-2 and IFN-γ. Proteomic analysis and ELISA revealed that PI3K-Akt signaling pathway, NF-κB signaling pathway and Toll-like receptor signaling pathway were the potential mechanisms of KHJSC against APT. Discussion and conclusion These results provided the reference and scientific basis for the application of KHJSC in clinic and further mechanisms study.
Collapse
Affiliation(s)
- Bo Pang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ronghua Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lei Bao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zihan Geng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuran Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yingli Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lirun Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shanshan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaolan Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
33
|
Seo S, Kim Y, Park K. NPR1 Translocation from Chloroplast to Nucleus Activates Plant Tolerance to Salt Stress. Antioxidants (Basel) 2023; 12:antiox12051118. [PMID: 37237984 DOI: 10.3390/antiox12051118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Chloroplasts play crucial roles in biotic and abiotic stress responses, regulated by nuclear gene expression through changes in the cellular redox state. Despite lacking the N-terminal chloroplast transit peptide (cTP), nonexpressor of pathogenesis-related genes 1 (NPR1), a redox-sensitive transcriptional coactivator was consistently found in the tobacco chloroplasts. Under salt stress and after exogenous application of H2O2 or aminocyclopropane-1-carboxylic acid, an ethylene precursor, transgenic tobacco plants expressing green fluorescent protein (GFP)-tagged NPR1 (NPR1-GFP) showed significant accumulation of monomeric nuclear NPR1, irrespective of the presence of cTP. Immunoblotting and fluorescence image analyses indicated that NPR1-GFP, with and without cTP, had similar molecular weights, suggesting that the chloroplast-targeted NPR1-GFP is likely translocated from the chloroplasts to the nucleus after processing in the stroma. Translation in the chloroplast is essential for nuclear NPR1 accumulation and stress-related expression of nuclear genes. An overexpression of chloroplast-targeted NPR1 enhanced stress tolerance and photosynthetic capacity. In addition, compared to the wild-type lines, several genes encoding retrograde signaling-related proteins were severely impaired in the Arabidopsis npr1-1 mutant, but were enhanced in NPR1 overexpression (NPR1-Ox) transgenic tobacco line. Taken together, chloroplast NPR1 acts as a retrograding signal that enhances the adaptability of plants to adverse environments.
Collapse
Affiliation(s)
- Soyeon Seo
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Jeollanam-do, Republic of Korea
| | - Yumi Kim
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Jeollanam-do, Republic of Korea
| | - Kyyoung Park
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Jeollanam-do, Republic of Korea
| |
Collapse
|
34
|
Lee J, Hyun DH. The Interplay between Intracellular Iron Homeostasis and Neuroinflammation in Neurodegenerative Diseases. Antioxidants (Basel) 2023; 12:antiox12040918. [PMID: 37107292 PMCID: PMC10135822 DOI: 10.3390/antiox12040918] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Iron is essential for life. Many enzymes require iron for appropriate function. However, dysregulation of intracellular iron homeostasis produces excessive reactive oxygen species (ROS) via the Fenton reaction and causes devastating effects on cells, leading to ferroptosis, an iron-dependent cell death. In order to protect against harmful effects, the intracellular system regulates cellular iron levels through iron regulatory mechanisms, including hepcidin-ferroportin, divalent metal transporter 1 (DMT1)-transferrin, and ferritin-nuclear receptor coactivator 4 (NCOA4). During iron deficiency, DMT1-transferrin and ferritin-NCOA4 systems increase intracellular iron levels via endosomes and ferritinophagy, respectively. In contrast, repleting extracellular iron promotes cellular iron absorption through the hepcidin-ferroportin axis. These processes are regulated by the iron-regulatory protein (IRP)/iron-responsive element (IRE) system and nuclear factor erythroid 2-related factor 2 (Nrf2). Meanwhile, excessive ROS also promotes neuroinflammation by activating the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). NF-κB forms inflammasomes, inhibits silent information regulator 2-related enzyme 1 (SIRT1), and induces pro-inflammatory cytokines (IL-6, TNF-α, and IL-1β). Furthermore, 4-hydroxy-2,3-trans-nonenal (4-HNE), the end-product of ferroptosis, promotes the inflammatory response by producing amyloid-beta (Aβ) fibrils and neurofibrillary tangles in Alzheimer's disease, and alpha-synuclein aggregation in Parkinson's disease. This interplay shows that intracellular iron homeostasis is vital to maintain inflammatory homeostasis. Here, we review the role of iron homeostasis in inflammation based on recent findings.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dong-Hoon Hyun
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
35
|
Zhao S, Zhou L, Wang Q, Cao JH, Chen Y, Wang W, Zhu BD, Wei ZH, Li R, Li CY, Zhou GY, Tan ZJ, Zhou HP, Li CX, Gao HK, Qin XJ, Lian K. Elevated branched-chain amino acid promotes atherosclerosis progression by enhancing mitochondrial-to-nuclear H2O2-disulfide HMGB1 in macrophages. Redox Biol 2023; 62:102696. [PMID: 37058999 PMCID: PMC10130699 DOI: 10.1016/j.redox.2023.102696] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
As the essential amino acids, branched-chain amino acid (BCAA) from diets is indispensable for health. BCAA supplementation is often recommended for patients with consumptive diseases or healthy people who exercise regularly. Latest studies and ours reported that elevated BCAA level was positively correlated with metabolic syndrome, diabetes, thrombosis and heart failure. However, the adverse effect of BCAA in atherosclerosis (AS) and its underlying mechanism remain unknown. Here, we found elevated plasma BCAA level was an independent risk factor for CHD patients by a human cohort study. By employing the HCD-fed ApoE-/- mice of AS model, ingestion of BCAA significantly increased plaque volume, instability and inflammation in AS. Elevated BCAA due to high dietary BCAA intake or BCAA catabolic defects promoted AS progression. Furthermore, BCAA catabolic defects were found in the monocytes of patients with CHD and abdominal macrophages in AS mice. Improvement of BCAA catabolism in macrophages alleviated AS burden in mice. The protein screening assay revealed HMGB1 as a potential molecular target of BCAA in activating proinflammatory macrophages. Excessive BCAA induced the formation and secretion of disulfide HMGB1 as well as subsequent inflammatory cascade of macrophages in a mitochondrial-nuclear H2O2 dependent manner. Scavenging nuclear H2O2 by overexpression of nucleus-targeting catalase (nCAT) effectively inhibited BCAA-induced inflammation in macrophages. All of the results above illustrate that elevated BCAA promotes AS progression by inducing redox-regulated HMGB1 translocation and further proinflammatory macrophage activation. Our findings provide novel insights into the role of animo acids as the daily dietary nutrients in AS development, and also suggest that restricting excessive dietary BCAA consuming and promoting BCAA catabolism may serve as promising strategies to alleviate and prevent AS and its subsequent CHD.
Collapse
|
36
|
Perrelli A, Ferraris C, Berni E, Glading AJ, Retta SF. KRIT1: A Traffic Warden at the Busy Crossroads Between Redox Signaling and the Pathogenesis of Cerebral Cavernous Malformation Disease. Antioxid Redox Signal 2023; 38:496-528. [PMID: 36047808 PMCID: PMC10039281 DOI: 10.1089/ars.2021.0263] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 12/18/2022]
Abstract
Significance: KRIT1 (Krev interaction trapped 1) is a scaffolding protein that plays a critical role in vascular morphogenesis and homeostasis. Its loss-of-function has been unequivocally associated with the pathogenesis of Cerebral Cavernous Malformation (CCM), a major cerebrovascular disease of genetic origin characterized by defective endothelial cell-cell adhesion and ensuing structural alterations and hyperpermeability in brain capillaries. KRIT1 contributes to the maintenance of endothelial barrier function by stabilizing the integrity of adherens junctions and inhibiting the formation of actin stress fibers. Recent Advances: Among the multiple regulatory mechanisms proposed so far, significant evidence accumulated over the past decade has clearly shown that the role of KRIT1 in the stability of endothelial barriers, including the blood-brain barrier, is largely based on its involvement in the complex machinery governing cellular redox homeostasis and responses to oxidative stress and inflammation. KRIT1 loss-of-function has, indeed, been demonstrated to cause an impairment of major redox-sensitive mechanisms involved in spatiotemporal regulation of cell adhesion and signaling, which ultimately leads to decreased cell-cell junction stability and enhanced sensitivity to oxidative stress and inflammation. Critical Issues: This review explores the redox mechanisms that influence endothelial cell adhesion and barrier function, focusing on the role of KRIT1 in such mechanisms. We propose that this supports a novel model wherein redox signaling forms the common link between the various pathogenetic mechanisms and therapeutic approaches hitherto associated with CCM disease. Future Directions: A comprehensive characterization of the role of KRIT1 in redox control of endothelial barrier physiology and defense against oxy-inflammatory insults will provide valuable insights into the development of precision medicine strategies. Antioxid. Redox Signal. 38, 496-528.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Chiara Ferraris
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Elisa Berni
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Angela J. Glading
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|
37
|
Vargas-Pozada EE, Ramos-Tovar E, Acero-Hernández C, Cardoso-Lezama I, Galindo-Gómez S, Tsutsumi V, Muriel P. The antioxidant and anti-inflammatory activities of caffeine effectively attenuate nonalcoholic steatohepatitis and thioacetamide-induced hepatic injury in male rats. Can J Physiol Pharmacol 2023; 101:147-159. [PMID: 36744700 DOI: 10.1139/cjpp-2022-0303] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The antioxidant effect of caffeine, associated with its ability to upregulate the nuclear factor-E2-related factor-2 (Nrf2)-signaling pathway, was explored as a possible mechanism for the attenuation of liver damage. Nonalcoholic steatohepatitis (NASH) was induced in rats by the administration of a high-fat, high-sucrose, high-cholesterol diet (HFSCD) for 15 weeks. Liver damage was induced in rats by intraperitoneal administration of thioacetamide (TAA) for six weeks. Caffeine was administered orally at a daily dose of 50 mg/kg body weight during the period of NASH induction to evaluate its ability to prevent disease development. Meanwhile, rats received TAA for three weeks, after which 50 mg/kg caffeine was administered daily for three weeks with TAA to evaluate its capacity to interfere with the progression of hepatic injury. HFSCD administration induced hepatic steatosis, decreased Nrf2 levels, increased oxidative stress, induced the activation of nuclear factor-κB (NF-κB), and elevated proinflammatory cytokine levels, leading to hepatic damage. TAA administration produced similar effects, excluding steatosis. Caffeine increased Nrf2 levels; attenuated oxidative stress markers, including malondialdehyde and 4-hydroxynonenal; restored normal, reduced glutathione levels; and reduced NF-κB activation, inflammatory cytokine levels, and damage. Our findings suggest that caffeine may be useful in the treatment of human liver diseases.
Collapse
Affiliation(s)
- Eduardo E Vargas-Pozada
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Erika Ramos-Tovar
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Consuelo Acero-Hernández
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Irina Cardoso-Lezama
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Silvia Galindo-Gómez
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Víctor Tsutsumi
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 14-740, Mexico
| |
Collapse
|
38
|
Celastrol suppresses colorectal cancer via covalent targeting peroxiredoxin 1. Signal Transduct Target Ther 2023; 8:51. [PMID: 36732502 PMCID: PMC9895061 DOI: 10.1038/s41392-022-01231-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/19/2022] [Accepted: 10/11/2022] [Indexed: 02/04/2023] Open
Abstract
As a terpenoids natural product isolated from the plant Thunder God Vine, Celastrol is widely studied for its pharmacological activities, including anti-tumor activities. The clinical application of Celastrol is strictly limited due to its severe side effects, whereas previously revealed targets and mechanism of Celastrol seldom reduce its in vivo toxicity via structural optimization. Target identification has a far-reaching influence on the development of innovative drugs, and omics data has been widely used for unbiased target prediction. However, it is difficult to enrich target of specific phenotype from thousands of genes or proteins, especially for natural products with broad promising activities. Here, we developed a text-mining-based web-server tool to enrich targets from omics data of inquired compounds. Then peroxiredoxin 1 (PRDX1) was identified as the ROS-manipulating target protein of Celastrol in colorectal cancer. Our solved high-resolution crystal structure revealed the unique covalent binding mode of Celastrol with PRDX1. New derivative compound 19-048 with improved potency against PRDX1 and selectivity towards PRDX2~PRDX6 were synthesized based on crystal structure analysis. Both Celastrol and 19-048 effectively suppressed the proliferation of colorectal cancer cells. The anti-tumor efficacy of Celastrol and 19-048 was significantly diminished on xenograft nude mice bearing PRDX1 knock-down colorectal cancer cells. Several downstream genes of p53 signaling pathway were dramatically up-regulated with Celastrol or 19-048 treatment. Our findings reveal that the side effects of Celastrol could be reduced via structural modification, and PRDX1 inhibition is promising for the treatment of colorectal cancer.
Collapse
|
39
|
Akintoye OO, Ajibare AJ, Folawiyo MA, Jimoh-Abdulghaffaar HO, Asuku A, Owolabi GA, Babalola KT. Zinc supplement reverses short-term memory deficit in sodium benzoate-induced neurotoxicity in male Wistar rats by enhancing anti-oxidative capacity via Nrf 2 up-regulation. Behav Brain Res 2023; 437:114163. [PMID: 36265761 DOI: 10.1016/j.bbr.2022.114163] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Sodium benzoate (SB) is a commonly-used food preservative, with a controversial report to its neurological benefit and toxicity. Zinc (Zn) is a trace element that plays a crucial role in memory, inflammation and oxidative stress. This study was to investigate the effect of SB on rat cognition and memory and the possible modulatory effect of Zn supplement. Twenty four male Wistar rats were divided into four groups of six animals each. Animals in groups 1-4 were treated with normal saline 1 ml/kg, SB 200 mg/kg, zinc sulphate 10 ml/kg and SB 200 mg/kg + zinc sulphate 10 ml/kg/day daily respectively for three weeks. After treatment, the animals were subjected to different behavioural tests, and then sacrificed. Their blood samples were collected for catalase(CAT), superoxide dismutase(SOD) and interleukin-1B(IL-1B) assay. Brain samples were also collected for nuclear factor-erythroid-related factor 2(Nrf2), and acetylcholinesterase (AchE) mRNA gene expression. The serum levels of CAT and SOD were (p < 0.0001; p < 0.0001) reduced in the SB only-treated group compared to the other groups. Nrf2 gene expression was totally shut down in the SB only-treated group but, up-regulated in the Zn-treated groups (p < 0.0001). The serum level of IL-1B was higher in the SB only-treated group compared to the other groups. SB-treated group spent longer time in the close arm (p = <0.0001), shorter time in the open arm (p = <0.0001) and had higher anxiety index (p = 0.0045) than the Zn-treated groups. Conclusively, Zinc improves memory deficit, has anxiolytic, anti-oxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- O O Akintoye
- Physiology Department, Faculty of Basic Medical Sciences, College of Medicine, Ekiti State University, Nigeria.
| | - A J Ajibare
- Physiology Department, Faculty of Basic Medical Sciences, College of Medicine, Ekiti State University, Nigeria
| | - M A Folawiyo
- Physiology Department, Faculty of Basic Medical Sciences, College of Medicine, Ekiti State University, Nigeria
| | - H O Jimoh-Abdulghaffaar
- Physiology Department, Faculty of Basic Medical Sciences, College of Health Science, University of Ilorin, Nigeria
| | - A Asuku
- Department of Medical Biotechnology, Bioresources Development Centre, National Biotechnology Development Agrncy, Ogbomoso, Nigeria
| | - G A Owolabi
- Physiology Department, Faculty of Basic Medical Sciences, College of Medicine, Ekiti State University, Nigeria
| | - K T Babalola
- Physiology Department, Faculty of Basic Medical Sciences, College of Medicine, Leadcity University, Ibadan, Nigeria
| |
Collapse
|
40
|
Hou W, Yang S, Lu J, Shi Y, Chen J, Chen D, Wang F, Liu L. Hypothermic machine perfusion alleviates ischemia-reperfusion injury of intestinal transplantation in pigs. Front Immunol 2023; 14:1117292. [PMID: 36926337 PMCID: PMC10011072 DOI: 10.3389/fimmu.2023.1117292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Background Intestinal transplantation (IT) has become an important procedure for the treatment of irreversible intestinal failure. However, IT is extremely vulnerable to ischemia-reperfusion injury (IRI). Due to the limitations of static cold storage (SCS), hypothermic machine perfusion (HMP) is rapidly gaining popularity. In this study, the intestinal HMP system is established and HMP is compared with SCS. Methods An intestinal HMP system was built. Ten miniature pigs were randomly divided into the HMP and SCS groups, and their intestines were perfused using the HMP device and SCS, respectively, followed by orthotopic auto-transplantation. Analysis was done on the grafts between the two groups. Results Operation success rates of the surgery were 100% in both groups. The 7-day survival rate was 100% in the HMP group, which was significantly higher than that of the SCS group (20%, P< 0.05). The pathological results showed that fewer injuries of grafts were in the HMP group. Endotoxin (ET), IL-1, IL-6, IFN-γ and TNF-α levels in the HMP group were significantly lower than in the SCS group (P<0.05), whereas IL-10 levels were significantly higher (P<0.05).The intestinal expression levels of ZO-1 and Occludin were higher in the HMP group compared to the SCS group, whereas Toll-like receptor 4 (TLR4), nuclear factor kappa B (NFκB), and caspase-3 were lower. Conclusions In this study, we established a stable intestinal HMP system and demonstrated that HMP could significantly alleviate intestinal IRI and improve the outcome after IT.
Collapse
Affiliation(s)
- Wen Hou
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Shuang Yang
- National Health Commission's Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Jiansen Lu
- First Central Clinical Institute, Tianjin Medical University, Tianjin, China
| | - Yuan Shi
- Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, Tianjin, China
| | - Jing Chen
- Organ Transplant Department, Tianjin First Central Hospital, Tianjin, China
| | - Decheng Chen
- First Central Clinical Institute, Tianjin Medical University, Tianjin, China
| | - Fei Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Lei Liu
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China.,Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, Tianjin, China.,Organ Transplant Department, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
41
|
Bukke VN, Moola A, Serviddio G, Vendemiale G, Bellanti F. Nuclear factor erythroid 2-related factor 2-mediated signaling and metabolic associated fatty liver disease. World J Gastroenterol 2022; 28:6909-6921. [PMID: 36632321 PMCID: PMC9827579 DOI: 10.3748/wjg.v28.i48.6909] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/05/2022] [Accepted: 11/23/2022] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress is a key driver in the development and progression of several diseases, including metabolic associated fatty liver disease (MAFLD). This condition includes a wide spectrum of pathological injuries, extending from simple steatosis to inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. Excessive buildup of lipids in the liver is strictly related to oxidative stress in MAFLD, progressing to liver fibrosis and cirrhosis. The nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of redox homeostasis. NRF2 plays an important role for cellular protection by inducing the expression of genes related to antioxidant, anti-inflammatory, and cytoprotective response. Consistent evidence demonstrates that NRF2 is involved in every step of MAFLD deve-lopment, from simple steatosis to inflammation, advanced fibrosis, and ini-tiation/progression of hepatocellular carcinoma. NRF2 activators regulate lipid metabolism and oxidative stress alleviating the fatty liver disease by inducing the expression of cytoprotective genes. Thus, modulating NRF2 activation is crucial not only in understanding specific mechanisms underlying MAFLD progression but also to characterize effective therapeutic strategies. This review outlined the current knowledge on the effects of NRF2 pathway, modulators, and mechanisms involved in the therapeutic implications of liver steatosis, inflammation, and fibrosis in MAFLD.
Collapse
Affiliation(s)
- Vidyasagar Naik Bukke
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Archana Moola
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| |
Collapse
|
42
|
Affiliation(s)
- Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, CeBiTec, Bielefeld University, Bielefeld, Germany.
| | - Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
43
|
Lee SM, Koh DH, Jun DW, Roh YJ, Kang HT, Oh JH, Kim HS. Auranofin attenuates hepatic steatosis and fibrosis in nonalcoholic fatty liver disease via NRF2 and NF- κB signaling pathways. Clin Mol Hepatol 2022; 28:827-840. [PMID: 35730208 PMCID: PMC9597229 DOI: 10.3350/cmh.2022.0068] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/18/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND/AIMS We aim to evaluate the effects of auranofin, a known antioxidant, on hepatic steatosis, inflammation, and fibrosis, contributing to non-alcoholic steatohepatitis (NASH) development in vivo and in vitro. METHODS Transcriptome analysis of LX-2 cells was that expression patterns of genes changed by auranofin, and their related pathways were estimated. We used the gene set enrichment analysis (GSEA) program to determine the pathway involved in overall genetic change. In vitro, LX-2 and HepG2 cells were treated with transforming growth factor (TGF)-β1 and palmitic acid (PA), respectively, and the antifibrotic and antiadipogenic effect function of auranofin was evaluated. RESULTS Transcriptome analysis revealed that auranofin decreased the expression of 15 genes, including thrombospondin 1, endothelin 1 (ET-1), fibronectin 1, and LOX. The molecular functions of these genes are involved in collagen binding. GSEA of the overall gene expression pattern revealed that many genes increased in the reactive oxygen species pathway and decreased in the inflammatory response. Auranofin decreased nuclear factor kappa B (NF-κB) and IκBα in TGF-β1-induced LX-2 cells, thereby reducing ET-1 and fibrosis. Furthermore, increased pNRF2 in PA-induced HepG2 cells led to increased antioxidant marker expression and decreased lipid accumulation. In the bile duct ligation model mice, auranofin reduced the fibrosis area and increased the survival rate. Auranofin reduced liver fibrosis and lipid accumulation in NASH model mice fed on a Western diet. CONCLUSION Auranofin inhibits lipogenesis and fibrosis formation and is a proposed candidate for NASH treatment.
Collapse
Affiliation(s)
- Seung Min Lee
- Department of Translational Medicine, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Korea
| | - Dong Hee Koh
- Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| | - Dae Won Jun
- Department of Translational Medicine, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Korea,Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Korea,Corresponding author : Dae Won Jun Department of Internal Medicine, Hanyang University College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea Tel: +82-2-2290-8338, Fax: +82-2-972-0068, E-mail:
| | - Yoon Jin Roh
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea,Yoon Jin Roh Department of Dermatology, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea Tel: +82-2-6299-3088, E-mail:
| | - Hyeon Tae Kang
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, Korea
| | - Ju Hee Oh
- Department of Translational Medicine, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Korea
| | - Hyun Sung Kim
- Department of pathology, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
44
|
Ishii T, Warabi E, Mann GE. Mechanisms underlying Nrf2 nuclear translocation by non-lethal levels of hydrogen peroxide: p38 MAPK-dependent neutral sphingomyelinase2 membrane trafficking and ceramide/PKCζ/CK2 signaling. Free Radic Biol Med 2022; 191:191-202. [PMID: 36064071 DOI: 10.1016/j.freeradbiomed.2022.08.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
Hydrogen peroxide is an aerobic metabolite playing a central role in redox signaling and oxidative stress. H2O2 could activate redox sensitive transcription factors, such as Nrf2, AP-1 and NF-κB by different manners. In some cells, treatment with non-lethal levels of H2O2 induces rapid activation of Nrf2, which upregulates expression of a set of genes involved in glutathione (GSH) synthesis and defenses against oxidative damage. It depends on two steps, the rapid translational activation of Nrf2 and facilitation of Nrf2 nuclear translocation. We review the molecular mechanisms by which H2O2 induces nuclear translocation of Nrf2 in cultured cells by highlighting the role of neutral sphingomyelinase 2 (nSMase2), a GSH sensor. H2O2 enters cells through aquaporin channels in the plasma membrane and is rapidly reduced to H2O by GSH peroxidases to consume cellular GSH, resulting in nSMase2 activation to generate ceramide. H2O2 also activates p38 MAP kinase, which enhances transfer of nSMase2 from perinuclear regions to plasma membrane lipid rafts to accelerate ceramide generation. Low levels of ceramide activate PKCζ, which then activates casein kinase 2 (CK2). These protein kinases are able to phosphorylate Nrf2 to stabilize and activate it. Notably, Nrf2 also binds to caveolin-1 (Cav1), which protects Nrf2 from Keap1-mediated degradation and limits Nrf2 nuclear translocation. We propose that Cav1serves as a signaling hub for the control of H2O2-mediated phosphorylation of Nrf2 by kinases, which results in release of Nrf2 from Cav1 to facilitate nuclear translocation. In summary, H2O2 induces GSH depletion which is recovered by Nrf2 activation dependent on p38/nSMase2/ceramide signaling.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
45
|
Hao H, Xie F, Xu F, Wang Q, Wu Y, Zhang D. LipoxinA 4 analog BML-111 protects podocytes cultured in high-glucose medium against oxidative injury via activating Nrf2 pathway. Int Immunopharmacol 2022; 111:109170. [PMID: 36007391 DOI: 10.1016/j.intimp.2022.109170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 12/14/2022]
Abstract
Numerous studies have shown that the activation of the Nrf2 pathway alleviates oxidative stress and podocyte damage. Emerging evidence indicates that the dual anti-inflammatory and pro-resolution lipid mediator, lipoxin A4 (LXA4), has antioxidant activity. The aim of the present study was to confirm that BML-111, an analog of LXA4, prevents oxidative injury in diabetic podocytes via the regulation of the Nrf2 pathway. Here, we found that BML-111 inhibited high glucose (HG)-induced oxidative injury in the podocyte cell line, MPC5, in vitro, through activating Nrf2. Mechanistically, BML-111 significantly activated Nrf2 and its phase II enzymes, including Nqo1 and Ho-1. Moreover, BML-111 suppressed the migration of MPC5 cells. Additionally, BML-111 decreased the expression of Vcam, Icam and inflammatory cytokines (Il-1α, Il-6, and Tnf) in MPC5 cells. Importantly, BML-111 ameliorated blood glucose levels (approximately 75% of that in the SMZ group) and kidney damage by activating Nrf2, and its phase II enzymes, in diabetic mice. These effects are mainly mediated by Fpr2, a specific LXA4 receptor. Our findings demonstrate that BML-111 alleviates the injury of diabetic podocytes and kidneys by regulating the Nrf2 pathway.
Collapse
Affiliation(s)
- Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, PR China
| | - Fangping Xie
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Fen Xu
- Medical Examination Center, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, PR China
| | - Qingyu Wang
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yun Wu
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, PR China
| | - Dongxin Zhang
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| |
Collapse
|
46
|
Chakraborty S, Sircar E, Bhattacharyya C, Choudhuri A, Mishra A, Dutta S, Bhatta S, Sachin K, Sengupta R. S-Denitrosylation: A Crosstalk between Glutathione and Redoxin Systems. Antioxidants (Basel) 2022; 11:1921. [PMID: 36290644 PMCID: PMC9598160 DOI: 10.3390/antiox11101921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 08/27/2023] Open
Abstract
S-nitrosylation of proteins occurs as a consequence of the derivatization of cysteine thiols with nitric oxide (NO) and is often associated with diseases and protein malfunction. Aberrant S-nitrosylation, in addition to other genetic and epigenetic factors, has gained rapid importance as a prime cause of various metabolic, respiratory, and cardiac disorders, with a major emphasis on cancer and neurodegeneration. The S-nitrosoproteome, a term used to collectively refer to the diverse and dynamic repertoire of S-nitrosylated proteins, is relatively less explored in the field of redox biochemistry, in contrast to other covalently modified versions of the same set of proteins. Advancing research is gradually unveiling the enormous clinical importance of S-nitrosylation in the etiology of diseases and is opening up new avenues of prompt diagnosis that harness this phenomenon. Ever since the discovery of the two robust and highly conserved S-nitrosoglutathione reductase and thioredoxin systems as candidate denitrosylases, years of rampant speculation centered around the identification of specific substrates and other candidate denitrosylases, subcellular localization of both substrates and denitrosylases, the position of susceptible thiols, mechanisms of S-denitrosylation under basal and stimulus-dependent conditions, impact on protein conformation and function, and extrapolating these findings towards the understanding of diseases, aging and the development of novel therapeutic strategies. However, newer insights in the ever-expanding field of redox biology reveal distinct gaps in exploring the crucial crosstalk between the redoxins/major denitrosylase systems. Clarifying the importance of the functional overlap of the glutaredoxin, glutathione, and thioredoxin systems and examining their complementary functions as denitrosylases and antioxidant enzymatic defense systems are essential prerequisites for devising a rationale that could aid in predicting the extent of cell survival under high oxidative/nitrosative stress while taking into account the existence of the alternative and compensatory regulatory mechanisms. This review thus attempts to highlight major gaps in our understanding of the robust cellular redox regulation system, which is upheld by the concerted efforts of various denitrosylases and antioxidants.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Esha Sircar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Camelia Bhattacharyya
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Ankita Choudhuri
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Akansha Mishra
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Sreejita Dutta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Sneha Bhatta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Kumar Sachin
- Department of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| |
Collapse
|
47
|
Jasmine S, Thangavelu A, Veeravarmal V, Vijayakumar N, Khan JM, Ahmad A. Quantitative assessment of platelet rich fibrin for the repair of extraction socket in a rat model. Int J Biol Macromol 2022; 222:1168-1174. [PMID: 36179874 DOI: 10.1016/j.ijbiomac.2022.09.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022]
Abstract
The present study evaluated the quantitative effects of platelet-rich fibrin (PRF) for the repair of extraction socket in Sprague Dawley (SD) rat model by assessing several key clinical parameters. Seventy two male SD rats were subjected to surgical extraction of the maxillary right incisor. Rats were randomly divided into four groups with eighteen rats in each group based on the treatment received: extraction socket without treatment of PRF was taken as control (group I). Extraction socket implanted with 0.1, 0.2, and 0.4 mL of PRF was taken as study groups (groups II, III, and IV). The obtained results demonstrated that, low dose of PRF efficiently enhanced the natural healing cascade. Whereas, high dose interfered with native tissue contribution and altered the natural healing process. The beneficial effects of quantity-based application of PRF may raise the possibility of a new approach as complementary therapy besides conventional treatment.
Collapse
Affiliation(s)
- Sharmila Jasmine
- Department of Oral Maxillofacial surgery, Rajas Dental College and Hospital, Kavalkinaru, Tirunelveli 627105, Tamil Nadu, India.
| | - Annamalai Thangavelu
- Department of Oral Maxillofacial surgery, Rajah Muthiah Dental College and Hospital, Annamalai University, Annamalainagar - 608002, Chidambaram, Tamil Nadu, India
| | - Veeran Veeravarmal
- Department of Oral Maxillofacial Pathology and Oral Microbiology, Rajah Muthiah Dental College and Hospital, Annamalai University, Annamalainagar - 608002, Chidambaram, Tamil Nadu, India
| | - Natesan Vijayakumar
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar - 608002, Chidambaram, Tamilnadu, India
| | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Anis Ahmad
- Miller School of Medicine, University of Miami, FL-33136, USA
| |
Collapse
|
48
|
Garrido Ruiz D, Sandoval-Perez A, Rangarajan AV, Gunderson EL, Jacobson MP. Cysteine Oxidation in Proteins: Structure, Biophysics, and Simulation. Biochemistry 2022; 61:2165-2176. [PMID: 36161872 PMCID: PMC9583617 DOI: 10.1021/acs.biochem.2c00349] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Cysteine side chains
can exist in distinct oxidation
states depending
on the pH and redox potential of the environment, and cysteine oxidation
plays important yet complex regulatory roles. Compared with the effects
of post-translational modifications such as phosphorylation, the effects
of oxidation of cysteine to sulfenic, sulfinic, and sulfonic acid
on protein structure and function remain relatively poorly characterized.
We present an analysis of the role of cysteine reactivity as a regulatory
factor in proteins, emphasizing the interplay between electrostatics
and redox potential as key determinants of the resulting oxidation
state. A review of current computational approaches suggests underdeveloped
areas of research for studying cysteine reactivity through molecular
simulations.
Collapse
Affiliation(s)
- Diego Garrido Ruiz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Angelica Sandoval-Perez
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Amith Vikram Rangarajan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Emma L Gunderson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| |
Collapse
|
49
|
Sun Q, Xu W, Piao J, Su J, Ge T, Cui R, Yang W, Li B. Transcription factors are potential therapeutic targets in epilepsy. J Cell Mol Med 2022; 26:4875-4885. [PMID: 36065764 PMCID: PMC9549512 DOI: 10.1111/jcmm.17518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022] Open
Abstract
Academics generally believe that imbalance between excitation and inhibition of the nervous system is the root cause of epilepsy. However, the aetiology of epilepsy is complex, and its pathogenesis remains unclear. Many studies have shown that epilepsy is closely related to genetic factors. Additionally, the involvement of a variety of tumour‐related transcription factors in the pathogenesis of epilepsy has been confirmed, which also confirms the heredity of epilepsy. In this review, we summarize the existing research on a variety of transcription factors and epilepsy and present relevant evidence related to transcription factors that may be targets in epilepsy. This information is of great significance for revealing the in‐depth molecular and cellular mechanisms of epilepsy.
Collapse
Affiliation(s)
- Qihan Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wenbo Xu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Jingjing Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Jingyun Su
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
50
|
Mukherjee S, Dutta A, Chakraborty A. The interaction of oxidative stress with MAPK, PI3/AKT, NF-κB, and DNA damage kinases influences the fate of γ-radiation-induced bystander cells. Arch Biochem Biophys 2022; 725:109302. [DOI: 10.1016/j.abb.2022.109302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/27/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022]
|