1
|
Yu Y, Shen H, Qin Q, Wang J, Nie Y, Wen L, Tang Y, Qu M. The investigation of peripheral inflammatory and oxidative stress biomarkers in dementia with Lewy Bodies, compared with Alzheimer's Disease, and mild cognitive impairment. Neuroscience 2025; 568:209-218. [PMID: 39800047 DOI: 10.1016/j.neuroscience.2024.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/05/2024] [Accepted: 12/29/2024] [Indexed: 01/15/2025]
Abstract
Although inflammation and oxidative stress have been increasingly recognised as components of Alzheimer's disease (AD) and Parkinson's disease (PD) pathologies. Few studies have investigated peripheral inflammation, and none have examined oxidative stress in Dementia with Lewy bodies (DLB). The purpose of our study was to characterize and compare those biomarkers in DLB with those in AD and amnestic mild cognitive impairment (aMCI). Plasma samples were obtained from Chinese patients with DLB (n = 50), AD (n = 59), and aMCI (n = 30), and healthy controls (HCs) (n = 54). Peripheral inflammatory biomarkers, including interferon-gamma (IFN-γ), interleukins (IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12p70, IL-17A), tumor necrosis factor-alpha (TNF-α), and C-reactive protein (CRP). Oxidative stress markers, such as superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px), were also assessed. The findings revealed that DLB patients had higher IL-6 levels than AD and HCs and elevated IL-10 and IL-17A levels compared to HCs. In terms of oxidative stress, the levels of SOD were significantly lower and MDA were significantly higher in the DLB and AD compared with HCs. Significant positive correlations were found between Unified Parkinson's Disease Rating Scale (UPDRS) scores and CRP levels. Our study identifies a unique peripheral immune and oxidative stress profile in DLB, characterized by elevated IL-6, MDA, and reduced SOD levels, distinguishing it from AD. These findings, linked to α-synuclein (α-Syn) pathology, provide novel insights into DLB mechanisms and highlight potential biomarkers for disease monitoring, targeted therapies, and future clinical trials.
Collapse
Affiliation(s)
- Yueyi Yu
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Huixin Shen
- Departments of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Qi Qin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Yuting Nie
- Departments of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Lulu Wen
- Departments of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Miao Qu
- Departments of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Tavitian A, Lax E, Song W, Szyf M, Schipper HM. Hippocampal reelin and GAD67 gene expression and methylation in the GFAP.HMOX1 mouse model of schizophrenia. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119899. [PMID: 39798610 DOI: 10.1016/j.bbamcr.2025.119899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025]
Abstract
Schizophrenia is a complex neuropsychiatric disorder featuring enhanced brain oxidative stress and deficient reelin protein. GFAP.HMOX10-12m mice that overexpress heme oxygenase-1 (HO-1) in astrocytes manifest a schizophrenia-like neurochemical, neuropathological and behavioral phenotype including brain oxidative stress and reelin downregulation. We used RT-PCR, targeted bisulfite next-generation sequencing, immunohistochemistry and in situ hybridization on hippocampal tissue of GFAP.HMOX10-12m mice to delineate a possible molecular mechanism for the downregulation of reelin and to identify the neuronal and non-neuronal (glial) cell types expressing reelin in our model. We found reduced reelin and increased DNMT1 and TET1 mRNA expression in the hippocampus of male GFAP.HMOX10-12m mice and reduced GAD67 mRNA expression in females. These mRNA changes were accompanied by sexually dimorphic alterations in DNA methylation levels of Reln and Gad1 genes. Reelin protein was expressed by oligodendrocytes and GABAergic interneurons, but not by astrocytes or microglia in GFAP.HMOX10-12m and wild-type brains of both sexes. Reelin mRNA was also observed in oligodendrocytes. Moreover, a significant downregulation of reelin-expressing oligodendrocytes was detected in the hippocampal dentate gyrus of male GFAP.HMOX10-12m mice. These results suggest a novel mechanism for brain reelin depletion in schizophrenia. Containment of the astrocytic HO-1 cascade by pharmacological or other means may protect against stress-induced brain reelin depletion in schizophrenia and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ayda Tavitian
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Elad Lax
- Department of Molecular Biology, Ariel University, Ariel, Israel; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Wei Song
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Moshe Szyf
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.
| | - Hyman M Schipper
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Li D, Huang Y, Lu H, Zhou S, Feng S, Li H, Li X, Guo Y, Fu C, Chen G, Ning Y, Wu F, Liu L. Association between cognitive function, antioxidants, and clinical variables in Chinese patients with schizophrenia. BMC Psychiatry 2024; 24:912. [PMID: 39696133 DOI: 10.1186/s12888-024-06335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE Cognitive dysfunction is a prevalent and intricate manifestation of schizophrenia (SCZ) that may be associated with distinct clinical factors and the presence of antioxidants, which relationship is unclear. The study aimed to investigate cognitive function and its influencing factors in Chinese patients with SCZ. METHODS A group of 133 patients with SCZ and 120 healthy controls (HCs) were recruited. The MATRICS Consensus Cognitive Battery (MCCB) was utilized to evaluate cognitive ability, and the Positive and Negative Syndrome Scale (PANSS) was used to assess clinical symptoms. Levels of plasma superoxide dismutase (SOD), serum albumin (ALB) and uric acid (UA) were assessed. RESULTS Compared with HCs, patients with SCZ exhibited lower cognitive performance as indicated by MCCB scores, including the dimensions of speed of processing, attention/vigilance, working memory, verbal learning, and visual learning. In the SCZ group, total PANSS scores were negatively associated with all MCCB dimensions (all p < 0.05), except for the attention/vigilance score. The PANSS-negative and PANSS-cognitive subscores were negatively associated with speed of processing, verbal learning, and visual learning scores (all p < 0.05). The PANSS-excited subscores showed a negative correlation with working memory and visual learning scores (all p < 0.05). ALB levels significantly decreased, and their UA and SOD levels were notably elevated compared to HCs (all p < 0.05). ALB levels and PANSS-negative factors were correlated with to speed of processing, working memory, and visual learning dimensions. SOD levels were independent contributors to the attention/vigilance dimension. CONCLUSION The cognitive function was decreased in SCZ. The degree of cognitive impairment was closely related to ALB, SOD levels and negative clinical symptoms.
Collapse
Affiliation(s)
- Dan Li
- Department of Psychiatry, Guangzhou Civil Affairs Bureau Psychiatric Hospital, Guangzhou, 510430, China
| | - Yuanyuan Huang
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, China
| | - Hongxin Lu
- Department of Psychiatry, Longyan Third Hospital of Fujian Province Department of Psychiatric Medicine, Longyan, Fujian, 364030, China
| | - Sumiao Zhou
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, China
| | - Shixuan Feng
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, China
| | - Hehua Li
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, China
| | - Xuejing Li
- Department of Psychiatry, Guangzhou Civil Affairs Bureau Psychiatric Hospital, Guangzhou, 510430, China
| | - Yi Guo
- Department of Psychiatry, Guangzhou Civil Affairs Bureau Psychiatric Hospital, Guangzhou, 510430, China
| | - Chunlian Fu
- Department of Psychiatry, Guangzhou Civil Affairs Bureau Psychiatric Hospital, Guangzhou, 510430, China
| | - Guiying Chen
- Department of Psychiatry, Guangzhou Civil Affairs Bureau Psychiatric Hospital, Guangzhou, 510430, China
| | - Yuping Ning
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, China.
| | - Lianqi Liu
- Department of Psychiatry, Guangzhou Civil Affairs Bureau Psychiatric Hospital, Guangzhou, 510430, China.
| |
Collapse
|
4
|
Rarinca V, Vasile A, Visternicu M, Burlui V, Halitchi G, Ciobica A, Singeap AM, Dobrin R, Burlui E, Maftei L, Trifan A. Relevance of diet in schizophrenia: a review focusing on prenatal nutritional deficiency, obesity, oxidative stress and inflammation. Front Nutr 2024; 11:1497569. [PMID: 39734678 PMCID: PMC11673491 DOI: 10.3389/fnut.2024.1497569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/29/2024] [Indexed: 12/31/2024] Open
Abstract
Background/Objectives Schizophrenia is a complex mental disorder influenced by genetic and environmental factors, including dietary habits. Oxidative stress and inflammation play a crucial role in the pathophysiology of schizophrenia. Emerging research suggests that diet may affect schizophrenia through different biological mechanisms beyond oxidative stress and inflammation. In particular, epigenetic changes may alter the expression of genes related to neurodevelopment and neurotransmitter systems, while neuroplasticity plays a crucial role in brain adaptation and resilience to psychiatric disorders. Methods The literature search included the main available databases (Science Direct, PubMed and Google Scholar), considering the English language, and our screening was performed based on several words such as "schizophrenia", "diet", "nutrients", "obesity", "oxidative stress", "inflammation", "antioxidants" and "prenatal nutritional deficiency". The review focused specifically on studies examining the relevance of diet in schizophrenia, as well as prenatal nutritional deficiency, obesity, oxidative stress, and inflammation associated with this disorder. Results Following a review of the literature, it was found that nutritional deficiencies, including lack of omega-3 fatty acids, vitamins D, and B, during the prenatal and postnatal periods can have a negative impact on neurodevelopment and increase the risk of schizophrenia. Patients with schizophrenia have imbalances in antioxidant enzymes, such as glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), and reduced levels of antioxidants (vitamin E, vitamin C). These biochemical changes lead to an increase in markers of oxidative stress, including malondialdehyde (MDA). In addition, cytokine-mediated inflammation, microglial activation, and intestinal dysbiosis are associated with the onset of schizophrenia and the severity of schizophrenia symptoms. Currently, there is no universally accepted dietary regimen for control. However, various diets and nutritional methods are being researched and applied to alleviate the symptoms of schizophrenia and improve the overall health of patients, including the Mediterranean diet, the ketogenic diet, the gluten-free diet, and the DASH (Dietary Approaches to Stop Hypertension) diet. Conclusion A healthy diet, rich in anti-inflammatory nutrients and antioxidants, may help manage schizophrenia by reducing oxidative stress, preventing complications, and improving quality of life. Omega-3 fatty acids, vitamin D, and B vitamins are particularly important for brain development and function. In this review, we aim to analyze the literature on the influence of diet on schizophrenia, focusing on the role of prenatal nutritional deficiencies, obesity, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Viorica Rarinca
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, Iași, Romania
- Doctoral School of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iași, Iași, Romania
- Preclinical Department, Apollonia University, Iași, Romania
| | - Amalia Vasile
- Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Iași, Romania
| | - Malina Visternicu
- Doctoral School of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iași, Iași, Romania
- Preclinical Department, Apollonia University, Iași, Romania
| | - Vasile Burlui
- Preclinical Department, Apollonia University, Iași, Romania
| | | | - Alin Ciobica
- Preclinical Department, Apollonia University, Iași, Romania
- Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Iași, Romania
- CENEMED Platform for Interdisciplinary Research, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, Iași, Romania
- Romanian Academy of Scientists, Bucharest, Romania
| | - Ana-Maria Singeap
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
- Institute of Gastroenterology and Hepatology, “Sf. Spiridon”, Iași, Romania
| | - Romeo Dobrin
- “Socola” Psychiatric Institute, Iași, Romania
- “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | | | - Lucian Maftei
- SC MAKEUP SHOP SRL – Cosmetics Product Development Department, Iași, Romania
| | - Anca Trifan
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
- Institute of Gastroenterology and Hepatology, “Sf. Spiridon”, Iași, Romania
| |
Collapse
|
5
|
Cecerska-Heryć E, Polikowska A, Serwin N, Michalczyk A, Stodolak P, Goszka M, Zoń M, Budkowska M, Tyburski E, Podwalski P, Waszczuk K, Rudkowski K, Kucharska-Mazur J, Mak M, Samochowiec A, Misiak B, Sagan L, Samochowiec J, Dołęgowska B. The importance of oxidative biomarkers in diagnosis, treatment, and monitoring schizophrenia patients. Schizophr Res 2024; 270:44-56. [PMID: 38851167 DOI: 10.1016/j.schres.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
INTRODUCTION The etiology of schizophrenia (SCZ), an incredibly complex disorder, remains multifaceted. Literature suggests the involvement of oxidative stress (OS) in the pathophysiology of SCZ. OBJECTIVES Determination of selected OS markers and brain-derived neurotrophic factor (BDNF) in patients with chronic SCZ and those in states predisposing to SCZ-first episode psychosis (FP) and ultra-high risk (UHR). MATERIALS AND METHODS Determination of OS markers and BDNF levels by spectrophotometric methods and ELISA in 150 individuals (116 patients diagnosed with SCZ or in a predisposed state, divided into four subgroups according to the type of disorder: deficit schizophrenia, non-deficit schizophrenia, FP, UHR). The control group included 34 healthy volunteers. RESULTS Lower activities of analyzed antioxidant enzymes and GSH and TAC concentrations were found in all individuals in the study group compared to controls (p < 0.001). BDNF concentration was also lower in all groups compared to controls except in the UHR subgroup (p = 0.01). Correlations were observed between BDNF, R-GSSG, GST, GPx activity, and disease duration (p < 0.02). A small effect of smoking on selected OS markers was also noted (rho<0.06, p < 0.03). CONCLUSIONS OS may play an important role in the pathophysiology of SCZ before developing the complete clinical pattern of the disorder. The redox imbalance manifests itself with such severity in individuals with SCZ and in a state predisposing to the development of this psychiatric disease that natural antioxidant systems become insufficient to compensate against it completely. The discussed OS biomarkers may support the SCZ diagnosis and predict its progression.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland.
| | - Aleksandra Polikowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, 71-460 Szczecin, Poland
| | - Patrycja Stodolak
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| | - Małgorzata Goszka
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| | - Martyn Zoń
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| | - Marta Budkowska
- Department of Analytical Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| | - Ernest Tyburski
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University of Szczecin, 71-460 Szczecin, Poland
| | - Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, 71-460 Szczecin, Poland
| | - Krzysztof Rudkowski
- Department of Psychiatry, Pomeranian Medical University of Szczecin, 71-460 Szczecin, Poland
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University of Szczecin, 71-460 Szczecin, Poland
| | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland
| | | | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University of Szczecin, 71-460 Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
6
|
Lorenc-Koci E, Górny M, Chwatko G, Kamińska K, Iciek M, Rogóż Z. The effect of phencyclidine-mediated blockade of NMDA receptors in the early postnatal period on glutathione and sulfur amino acid levels in the rat brain as a potential causative factor of schizophrenia-like behavior in adulthood. Pharmacol Rep 2024; 76:863-877. [PMID: 38904712 PMCID: PMC11294273 DOI: 10.1007/s43440-024-00607-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Phencyclidine, an NMDA receptor antagonist, is frequently used to model behavioral and neurochemical changes correlated with schizophrenia in laboratory animals. The present study aimed to examine the effects of repeated administration of phencyclidine during early postnatal development on the contents of glutathione and sulfur-containing amino acids, as well as the activity of antioxidant enzymes in the brain of 12-day-old rats, and schizophrenia-like symptoms in adulthood. METHODS Male Sprague-Dawley pups were administered phencyclidine (10 mg/kg) or saline subcutaneously on the postnatal days p2, p6, p9 and p12. In 12-day-old pups, 4 h after the last dose of phencyclidine, the levels of glutathione, cysteine, methionine, and homocysteine, and the enzymatic activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) were measured in the frontal cortex, hippocampus, and striatum. In 70-72-day-old rats, schizophrenia-like symptoms were assessed using behavioral tests. RESULTS Biochemical data showed that perinatal phencyclidine treatment significantly reduced glutathione and cysteine levels in all brain structures studied, methionine was diminished in the striatum, and homocysteine in both the frontal cortex and striatum. GR activity was increased in the frontal cortex while SODactivity was decreased in the hippocampus. Behaviorally, perinatal phencyclidine induced long-term deficits in social and cognitive function and a decrease in locomotor activity assessed as the time of walking. Finally, perinatal treatment with phencyclidine resulted in a significant reduction in body weight gain over time. CONCLUSION Our research provides further evidence for the usefulness of the phencyclidine-induced neurodevelopmental model of schizophrenia for studying the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Elżbieta Lorenc-Koci
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland.
| | - Magdalena Górny
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika Street, Kraków, 31-034, Poland
| | - Grażyna Chwatko
- Department of Environmental Chemistry, University of Łódź, 163 Pomorska Street, Łódź, 90-236, Poland
| | - Kinga Kamińska
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
| | - Małgorzata Iciek
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika Street, Kraków, 31-034, Poland
| | - Zofia Rogóż
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
| |
Collapse
|
7
|
Jiao S, Li N, Cao T, Wang L, Chen H, Lin C, Cai H. Differential impact of intermittent versus continuous treatment with clozapine on fatty acid metabolism in the brain of an MK-801-induced mouse model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111011. [PMID: 38642730 DOI: 10.1016/j.pnpbp.2024.111011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
Continuous antipsychotic treatment is often recommended to prevent relapse in schizophrenia. However, the efficacy of antipsychotic treatment appears to diminish in patients with relapsed schizophrenia and the underlying mechanisms are still unknown. Moreover, though the findings are inconclusive, several recent studies suggest that intermittent versus continuous treatment may not significantly differ in recurrence risk and therapeutic efficacy but potentially reduce the drug dose and side effects. Notably, disturbances in fatty acid (FA) metabolism are linked to the onset/relapse of schizophrenia, and patients with multi-episode schizophrenia have been reported to have reduced FA biosynthesis. We thus utilized an MK-801-induced animal model of schizophrenia to evaluate whether two treatment strategies of clozapine would affect drug response and FA metabolism differently in the brain. Schizophrenia-related behaviors were assessed through open field test (OFT) and prepulse inhibition (PPI) test, and FA profiles of prefrontal cortex (PFC) and hippocampus were analyzed by gas chromatography-mass spectrometry. Additionally, we measured gene expression levels of enzymes involved in FA synthesis. Both intermittent and continuous clozapine treatment reversed hypermotion and deficits in PPI in mice. Continuous treatment decreased total polyunsaturated fatty acids (PUFAs), saturated fatty acids (SFAs) and FAs in the PFC, whereas the intermittent administration increased n-6 PUFAs, SFAs and FAs compared to continuous administration. Meanwhile, continuous treatment reduced the expression of Fads1 and Elovl2, while intermittent treatment significantly upregulated them. This study discloses the novel findings that there was no significant difference in clozapine efficacy between continuous and intermittent administration, but intermittent treatment showed certain protective effects on phospholipid metabolism in the PFC.
Collapse
Affiliation(s)
- Shimeng Jiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Nana Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Liwei Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Hui Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Chenquan Lin
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China; National Clinical Research Center on Mental Disorders, Changsha, China.
| |
Collapse
|
8
|
Bhuia MS, Chowdhury R, Ara I, Mamun M, Rouf R, Khan MA, Uddin SJ, Shakil MAK, Habtemariam S, Ferdous J, Calina D, Sharifi-Rad J, Islam MT. Bioactivities of morroniside: A comprehensive review of pharmacological properties and molecular mechanisms. Fitoterapia 2024; 175:105896. [PMID: 38471574 DOI: 10.1016/j.fitote.2024.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Morroniside (MOR) is an iridoid glycoside and the main active principle of the medicinal plant, Cornus officinalis Sieb. This phytochemical is associated with numerous health benefits due to its antioxidant properties. The primary objective of the present study was to assess the pharmacological effects and underlying mechanisms of MOR, utilizing published data obtained from literature databases. Data collection involved accessing various sources, including PubMed/Medline, Scopus, Science Direct, Google Scholar, Web of Science, and SpringerLink. Our findings demonstrate that MOR can be utilized for the treatment of several diseases and disorders, as numerous studies have revealed its significant therapeutic activities. These activities encompass anti-inflammatory, antidiabetic, lipid-lowering capability, anticancer, trichogenic, hepatoprotective, gastroprotective, osteoprotective, renoprotective, and cardioprotective effects. MOR has also shown promising benefits against various neurological ailments, including Alzheimer's disease, Parkinson's disease, spinal cord injury, cerebral ischemia, and neuropathic pain. Considering these therapeutic features, MOR holds promise as a lead compound for the treatment of various ailments and disorders. However, further comprehensive preclinical and clinical trials are required to establish MOR as an effective and reliable therapeutic agent.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Iffat Ara
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Mamun
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Razina Rouf
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Muahmmad Ali Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | | | - Md Abdul Kader Shakil
- Research Center, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
9
|
Guan X, Chen Y, Wang X, Xiu M, Wu F, Zhang X. Total antioxidant capacity, obesity and clinical correlates in first-episode and drug-naïve patients with schizophrenia. Schizophr Res 2024; 264:81-86. [PMID: 38113675 DOI: 10.1016/j.schres.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/02/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Overweight/obesity is a growing concern in schizophrenia (SZ). A few studies have shown that excessive oxidative stress and abnormal antioxidants were associated with pathogenesis and psychiatric symptoms in first episode antipsychotics naïve (FEAN) patients with SZ. However, there is no study has explored the interrelationships between total antioxidant status (TAS) and the severity of psychiatric symptoms in the early stage of SZ. This study aimed to evaluate the impact of overweight/obesity on psychiatric symptoms in FEAN patients with SZ. METHODS A total of 241 patients with FEAN SZ and 119 healthy controls were recruited and symptoms were evaluated by the Positive and Negative Syndrome Scale (PANSS). TAS levels were also measured in patients and healthy controls. RESULTS We found a significant negative association between body mass index (BMI) and TAS in FEAN patients, but not in controls. In addition, BMI and TAS were negatively associated with psychiatric symptoms. Interestingly, further regression analysis revealed that the interaction between BMI and TAS was associated with the negative symptoms in the early stage of SZ. CONCLUSIONS Our study indicates that abnormal TAS levels interacting with overweight/obesity may be involved in the pathophysiology of SZ, in particular negative symptoms.
Collapse
Affiliation(s)
- Xiaoni Guan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Yuping Chen
- Qingdao Mental Health Center, Qingdao, China
| | - Xin Wang
- Qingdao Mental Health Center, Qingdao, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China; Department of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China.
| | - Xiangyang Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.
| |
Collapse
|
10
|
Gao Z, Xiu M, Liu J, Wu F, Zhang X. Smoking, Symptoms Improvement, and Total Antioxidant Capacity in Patients with Drug-naive First-episode Schizophrenia: A Prospective Cohort Study. Curr Neuropharmacol 2024; 22:1733-1741. [PMID: 37859307 PMCID: PMC11284715 DOI: 10.2174/1570159x22666231019105328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/08/2023] [Accepted: 04/26/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND It has been hypothesized that smoking is associated with the severity of negative symptoms. Until now, no studies have investigated whether the impact of smoking on negative symptoms is dependent on antioxidants. This study was designed to evaluate the effect of smoking on therapeutic response and total antioxidants capacity (TAOC) in antipsychotic-naïve first-episode (ANFE) patients. METHODS The severity of the patient's symptoms was assessed using the Positive and Negative Syndrome Scale (PANSS). A total of 237 ANFE patients were recruited and treated with risperidone (oral tablets, 4-6 mg/day twice a day) for 12 weeks. PANSS was assessed at baseline and a 12-week follow-up. Plasma TAOC levels were also assayed at baseline and week 12. RESULTS Relative to nonsmokers with ANFE SZ, smokers had higher PANSS negative subscores. There was no significant difference in TAOC changes after 12 weeks of treatment with risperidone between smokers and non-smokers. However, we found greater improvement in negative symptoms in smokers compared to non-smokers. Further analysis in smokers with SZ demonstrated that improvements in negative symptoms were not associated with changes in TAOC. CONCLUSION Our study suggested that smoking affected the severity of baseline negative symptoms and further contributed to their reduction after risperidone treatment. However, improvement in negative symptoms was not dependent on the changes in TAOC.
Collapse
Affiliation(s)
- Zhiyong Gao
- The Affiliated Kangning Hospital of Wenzhou Medical University Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, China
| | - Meihong Xiu
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Jiahong Liu
- The Affiliated Kangning Hospital of Wenzhou Medical University Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangyang Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| |
Collapse
|
11
|
Jiang Q, Zhang X, Lu X, Li Y, Lu C, Chi J, Ma Y, Shi X, Wang L, Li S. Genetic Susceptibility to Tardive Dyskinesia and Cognitive Impairments in Chinese Han Schizophrenia: Role of Oxidative Stress-Related and Adenosine Receptor Genes. Neuropsychiatr Dis Treat 2023; 19:2499-2509. [PMID: 38029048 PMCID: PMC10679515 DOI: 10.2147/ndt.s427557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Tardive dyskinesia (TD) is a severe rhythmic movement disorder caused by long-term antipsychotic medication in chronic patients with schizophrenia (SCZ). We aimed to investigate the association between polymorphisms in oxidative stress-related genes (GSTM1, SOD2, NOS1, and NOS3) and adenosine receptor gene (ADORA2A), as well as their interactions, with the occurrence and severity of TD, and cognitive impairments in a Chinese Han population of SCZ patients. Methods Two hundred and sixteen SCZ patients were recruited and divided into TD group (n=157) and non-TD group (n=59). DNA extraction was performed by a high-salt method, followed by SNP genotyping using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The severity of TD, psychopathology and cognitive functioning were assessed using the Abnormal Involuntary Movement Scale (AIMS), the Positive and Negative Syndrome Scale (PANSS) and the Repeated Battery for Assessment of Neuropsychological Status (RBANS), respectively. Results The combination of GSTM1-rs738491, NOS1-rs738409 and ADORA2A-rs229883 was identified as the best three-point model to predict TD occurrence (p=0.01). Additionally, GSTM-rs738491 CC or NOS3-rs1800779 AG genotypes may be protective factors for psychiatric symptoms in TD patients. TD patients carrying the NOS1-rs738409 AG or ADORA2A-rs229883 TT genotypes exhibited poorer cognitive performance. Conclusion Our findings suggest that the interaction of oxidative stress-related genes and adenosine receptor gene may play a role in the susceptibility and severity of TD in Chinese Han SCZ patient. Furthermore, these genes may also affect the psychiatric symptoms and cognitive function of TD patients.
Collapse
Affiliation(s)
- Qiaona Jiang
- Department of Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Xiaofei Zhang
- Department of Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Xiaohui Lu
- Department of Psychiatry, Qingdao Mental Health Center, Qingdao, People’s Republic of China
| | - Yanzhe Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Chenghao Lu
- Department of Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Jinghui Chi
- Department of Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yanyan Ma
- Department of Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Xiaomei Shi
- Department of Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Lili Wang
- Department of Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Shen Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, People’s Republic of China
| |
Collapse
|
12
|
Carletti B, Banaj N, Piras F, Bossù P. Schizophrenia and Glutathione: A Challenging Story. J Pers Med 2023; 13:1526. [PMID: 38003841 PMCID: PMC10672475 DOI: 10.3390/jpm13111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Schizophrenia (SZ) is a devastating mental illness with a complex and heterogeneous clinical state. Several conditions like symptoms, stage and severity of the disease are only some of the variables that have to be considered to define the disorder and its phenotypes. SZ pathophysiology is still unclear, and the diagnosis is currently relegated to the analysis of clinical symptoms; therefore, the search for biomarkers with diagnostic relevance is a major challenge in the field, especially in the era of personalized medicine. Though the mechanisms implicated in SZ are not fully understood, some processes are beginning to be elucidated. Oxidative stress, and in particular glutathione (GSH) dysregulation, has been demonstrated to play a crucial role in SZ pathophysiology. In fact, glutathione is a leading actor of oxidative-stress-mediated damage in SZ and appears to reflect the heterogeneity of the disease. The literature reports differing results regarding the levels of glutathione in SZ patients. However, each GSH state may be a sign of specific symptoms or groups of symptoms, candidating glutathione as a biomarker useful for discriminating SZ phenotypes. Here, we summarize the literature about the levels of glutathione in SZ and analyze the role of this molecule and its potential use as a biomarker.
Collapse
Affiliation(s)
- Barbara Carletti
- Laboratory of Neuropsychiatry, Clinical Neuroscience and Neurorehabilitation Department, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy; (N.B.); (F.P.)
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Clinical Neuroscience and Neurorehabilitation Department, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy; (N.B.); (F.P.)
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Clinical Neuroscience and Neurorehabilitation Department, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy; (N.B.); (F.P.)
| | - Paola Bossù
- Laboratory of Experimental Neuropsychobiology, Clinical Neuroscience and Neurorehabilitation Department, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| |
Collapse
|
13
|
Karanikas E. The Gordian knot of the immune-redox systems' interactions in psychosis. Int Clin Psychopharmacol 2023; 38:285-296. [PMID: 37351570 DOI: 10.1097/yic.0000000000000481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
During the last decades the attempt to enlighten the pathobiological substrate of psychosis, from merely focusing on neurotransmitters, has expanded into new areas like the immune and redox systems. Indeed, the inflammatory hypothesis concerning psychosis etiopathology has exponentially grown with findings reflecting dysfunction/aberration of the immune/redox systems' effector components namely cytokines, chemokines, CRP, complement system, antibodies, pro-/anti-oxidants, oxidative stress byproducts just to name a few. Yet, we still lie far from comprehending the underlying cellular mechanisms, their causality directions, and the moderating/mediating parameters affecting these systems; let alone the inter-systemic (between immune and redox) interactions. Findings from preclinical studies on the stress field have provided evidence indicative of multifaceted interactions among the immune and redox components so tightly intertwined as a Gordian knot. Interestingly the literature concerning the interactions between these same systems in the context of psychosis appears minimal (if not absent) and ambiguous. This review attempts to draw a frame of the immune-redox systems' interactions starting from basic research on the stress field and expanding on clinical studies with cohorts with psychosis, hoping to instigate new avenues of research.
Collapse
Affiliation(s)
- Evangelos Karanikas
- Department of Psychiatry, 424 General Military Hospital, Ring Road, Nea Efkarpia, Thessaloniki, Greece
| |
Collapse
|
14
|
Epimakhova EV, Smirnova LP, Kazantseva DV, Kamaeva DA, Ivanova SA. Different Directions of Effects of Polyclonal IgG Antibodies from Patients with Schizophrenia and Healthy Individuals on Cell Death In Vitro: A Pilot Study. Curr Issues Mol Biol 2023; 45:3168-3179. [PMID: 37185730 PMCID: PMC10137166 DOI: 10.3390/cimb45040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 05/17/2023] Open
Abstract
Numerous studies indicate the involvemen of oxidative stress in the pathogenesis of schizophrenia. It has been shown that the serum pool of antibodies in patients with schizophrenia contains catalytically active antibodies (abzymes) that have a wide range of activities, including redox properties. In the present work, the effects of IgGs-having oxidoreductase activities-isolated from the serum of patients with schizophrenia and healthy individuals were studied in vitro. The IgGs were purified by affinity chromatography followed by an SDS-PAGE analysis of homogeneity in a 4-18% gradient gel. The catalase and superoxide dismutase (SOD) activities of the IgGs were measured spectrophotometrically using a kinetic module. Human neuroblastoma SH-SY5Y cells were cultured with IgG at a final concentration of 0.2 mg/mL for 24 h. In a parallel experiment, tert-butyl hydroperoxide was used as an oxidative stressor. The number of dead cells after incubation was determined with fluorescent dyes, propidium iodide and Hoechst, by high-throughput screening on the CellInsight CX7 platform. A cytotoxic effect of the IgG from the schizophrenia patients on SH-SY5Y cells was detected after 24 h incubation. A correlation was found between the SOD activity of the IgGs and IgG-induced cell death. Under the induced oxidative stress, the cytotoxic effect of the IgG from the patients with schizophrenia on the SH-SY5Y cell line was five times stronger. Meanwhile, the IgG from the healthy individuals exerted a cytoprotective effect on the cultured cells, accompanied by high catalase activity. Thus, the observed influence on cell viability depends on the catalytic properties of the abzymes.
Collapse
Affiliation(s)
- Elena V Epimakhova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str., 4, 634014 Tomsk, Russia
- Division of Biology and Genetics, Siberian State Medical University, Moskovsky Trakt, 2, 634050 Tomsk, Russia
| | - Liudmila P Smirnova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str., 4, 634014 Tomsk, Russia
| | - Daria V Kazantseva
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str., 4, 634014 Tomsk, Russia
| | - Daria A Kamaeva
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str., 4, 634014 Tomsk, Russia
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Str., 4, 634014 Tomsk, Russia
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky Trakt, 2, 634050 Tomsk, Russia
| |
Collapse
|
15
|
Gao Z, Xiu M, Liu J, Wu F, Zhang XY. Obesity, antioxidants and negative symptom improvement in first-episode schizophrenia patients treated with risperidone. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:17. [PMID: 36949120 PMCID: PMC10033648 DOI: 10.1038/s41537-023-00346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/10/2023] [Indexed: 03/24/2023]
Abstract
Negative symptoms remain a main therapeutic challenge in patients with schizophrenia (SZ). Obesity is associated with more severe negative symptoms after the first episode of psychosis. Oxidative stress caused by an impaired antioxidant defense system is involved in the pathophysiology of SZ. Yet, it is unclear regarding the role of obesity and antioxidants in negative symptom improvements in SZ. Therefore, this longitudinal study was designed to assess the impact of obesity on antioxidant defenses and negative symptom improvements in first-episode SZ patients. A total of 241 medication-naive and first-episode patients with SZ were treated with risperidone for 3 months. Outcome measures including symptoms, body weight, and total antioxidant status (TAS) levels were measured at baseline and the end of the third month. We found that after 12 weeks of treatment with risperidone, the body weight increased and clinical symptoms significantly improved. Baseline body mass index (BMI) was negatively correlated with negative symptom improvement after treatment and an increase in TAS was negatively associated with an increase in BMI only in the high BMI group. More importantly, the TAS × BMI interaction at baseline was an independent predictor of negative symptom improvement. Our longitudinal study indicates that the improvement in negative symptoms by risperidone was associated with baseline BMI and TAS levels in patients with SZ. Baseline BMI and TAS may be a predictor for negative improvement in SZ patients after risperidone treatment.
Collapse
Affiliation(s)
- Zhiyong Gao
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Jiahong Liu
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| | - Xiang-Yang Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.
| |
Collapse
|
16
|
Wang S, Yuan X, Pang L, Song P, Jia R, Song X. Establishment of an assistive diagnostic model for schizophrenia with oxidative stress biomarkers. Front Pharmacol 2023; 14:1158254. [PMID: 37007024 PMCID: PMC10050576 DOI: 10.3389/fphar.2023.1158254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Objective: In this study, alterations in oxidative stress-related indicators were evaluated in drug-naïve, first-episode schizophrenia (SCZ) patients, and the effectiveness of blood serum glucose, superoxide dismutase (SOD), bilirubin in the objective assistive diagnosis of schizophrenia was explored. Materials and methods: We recruited 148 drug-naïve, first-episode SCZ patients and 97 healthy controls (HCs). Blood biochemical indexes including blood glucose, SOD, bilirubin and homocysteine (HCY) in participants were measured, the indexes were compared between patients with SCZ and HCs. The assistive diagnostic model for SCZ was established on the basis of the differential indexes. Results: In SCZ patients, the blood serum levels of glucose, total (TBIL), indirect bilirubin (IBIL) and homocysteine (HCY) were significantly higher than those in HCs (p < 0.05), and the serum levels of SOD were significantly lower than those in HCs (p < 0.05). There was a negative correlation between SOD with the general symptom scores and total scores of PANSS. After risperidone treatment, the levels of uric acid (UA) and SOD tended to increase in patients with SCZ (p = 0.02, 0.19), and the serum levels of TBIL and HCY tended to decrease in patients with SCZ (p = 0.78, 0.16). The diagnostic model based on blood glucose, IBIL and SOD was internally cross-validated, and the accuracy was 77%, with an area under the curve (AUC) of 0.83. Conclusion: Our study demonstrated an oxidative state imbalance in drug-naïve, first-episode SCZ patients, which might be associated with the pathogenesis of the disease. Our study proved that glucose, IBIL and SOD may be potential biological markers of schizophrenia, and the model based on these markers can assist the early objective and accurate diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Shuying Wang
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China
| | - Xiuxia Yuan
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China
| | - Lijuan Pang
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China
| | - Peilun Song
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Rufei Jia
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China
| | - Xueqin Song
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Borkent J, Ioannou M, Folkertsma TS, Wardenaar KJ, Haarman BCM, van Goor H, Sommer IEC, Bourgonje AR. Serum free thiols in recently diagnosed patients with schizophrenia spectrum disorder: A potentially useful biomarker of oxidative stress. Psychiatry Res 2023; 321:115075. [PMID: 36764120 DOI: 10.1016/j.psychres.2023.115075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/13/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Schizophrenia spectrum disorders (SSD) have been linked to oxidative stress (OS). Recent findings from our group show that serum free thiols (R-SH, sulfhydryl groups) can function as an accurate biomarker of systemic OS, since they are readily oxidized by reactive species (ROS), thereby serving as potent antioxidants. The aim of this study is to investigate if reduced R-SH levels can be demonstrated in recently diagnosed patients with SSD compared to healthy controls (HC). In this study, 102 patients with recently diagnosed SSD (< three years), and 42 HC were included. Levels of R-SH were quantified and studied for correlations with age, C-reactive protein (CRP) as proxy of inflammation as well as body mass index (BMI) and total cholesterol as indices of metabolic health. R-SH levels were significantly lower in patients when compared to HC. When correcting for age the difference was borderline significant (p=0.05). Moreover, R-SH correlated significantly with age (r = -0.29) and CRP (r = -0.29) in patients with SSD, but not in the HC. R-SH levels are reduced in SSD as compared to HC and correlate negatively with CRP and age in SSD. Future studies are required to further investigate R-SH and its role in SSD.
Collapse
Affiliation(s)
- Jenny Borkent
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Groningen, the Netherlands.
| | - Magdalini Ioannou
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, the Netherlands
| | - Tessa S Folkertsma
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Groningen, the Netherlands
| | - Klaas J Wardenaar
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion regulation (ICPE), Groningen, the Netherlands
| | - Bartholomeus C M Haarman
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Iris E C Sommer
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Groningen, the Netherlands
| | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
18
|
Collins MA, Ji JL, Chung Y, Lympus CA, Afriyie-Agyemang Y, Addington JM, Goodyear BG, Bearden CE, Cadenhead KS, Mirzakhanian H, Tsuang MT, Cornblatt BA, Carrión RE, Keshavan M, Stone WS, Mathalon DH, Perkins DO, Walker EF, Woods SW, Powers AR, Anticevic A, Cannon TD. Accelerated cortical thinning precedes and predicts conversion to psychosis: The NAPLS3 longitudinal study of youth at clinical high-risk. Mol Psychiatry 2023; 28:1182-1189. [PMID: 36434057 PMCID: PMC10005940 DOI: 10.1038/s41380-022-01870-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022]
Abstract
Progressive grey matter loss has been demonstrated among clinical high-risk (CHR) individuals who convert to psychosis, but it is unknown whether these changes occur prior to psychosis onset. Identifying illness-related neurobiological mechanisms that occur prior to conversion is essential for targeted early intervention. Among participants in the third wave of the North American Prodrome Longitudinal Study (NAPLS3), this report investigated if steeper cortical thinning was observable prior to psychosis onset among CHR individuals who ultimately converted (CHR-C) and assessed the shortest possible time interval in which rates of cortical thinning differ between CHR-C, CHR non-converters (CHR-NC), and health controls (HC). 338 CHR-NC, 42 CHR-C, and 62 HC participants (age 19.3±4.2, 44.8% female, 52.5% racial/ethnic minority) completed up to 5 MRI scans across 8 months. Accelerated thinning among CHR-C compared to CHR-NC and HC was observed in multiple prefrontal, temporal, and parietal cortical regions. CHR-NC also exhibited accelerated cortical thinning compared to HC in several of these areas. Greater percent decrease in cortical thickness was observed among CHR-C compared to other groups across 2.9±1.8 months, on average, in several cortical areas. ROC analyses discriminating CHR-C from CHR-NC by percent thickness change in a left hemisphere region of interest, scanner, age, age2, and sex had an AUC of 0.74, with model predictive power driven primarily by percent thickness change. Findings indicate that accelerated cortical thinning precedes psychosis onset and differentiates CHR-C from CHR-NC and HC across short time intervals. Mechanisms underlying cortical thinning may provide novel treatment targets prior to psychosis onset.
Collapse
Affiliation(s)
| | - Jie Lisa Ji
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Yoonho Chung
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Belmont, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Cole A Lympus
- Department of Psychology, Yale University, New Haven, CT, USA
| | | | - Jean M Addington
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Bradley G Goodyear
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
| | | | | | - Ming T Tsuang
- Department of Psychiatry, UCSD, San Diego, CA, USA
- Institute of Genomic Medicine, UCSD, La Jolla, CA, USA
| | | | - Ricardo E Carrión
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, USA
- Institute of Behavioral Science, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston, MA, USA
| | - Wiliam S Stone
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston, MA, USA
| | - Daniel H Mathalon
- Department of Psychiatry, UCSF, and SFVA Medical Center, San Francisco, CA, USA
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Elaine F Walker
- Departments of Psychology and Psychiatry, Emory University, Atlanta, GA, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Albert R Powers
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Alan Anticevic
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
19
|
Adrien V, Bosc N, Fumat H, Tessier C, Ferreri F, Mouchabac S, Tareste D, Nuss P. Higher stress response and altered quality of life in schizophrenia patients with low membrane levels of docosahexaenoic acid. Front Psychiatry 2023; 14:1089724. [PMID: 36816405 PMCID: PMC9937080 DOI: 10.3389/fpsyt.2023.1089724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Schizophrenia is a severe, chronic, and heterogeneous mental disorder that affects approximately 1% of the world population. Ongoing research aims at clustering schizophrenia heterogeneity into various "biotypes" to identify subgroups of individuals displaying homogeneous symptoms, etiopathogenesis, prognosis, and treatment response. The present study is in line with this approach and focuses on a biotype partly characterized by a specific membrane lipid composition. We have examined clinical and biological data of patients with stabilized schizophrenia, including the fatty acid content of their erythrocyte membranes, in particular the omega-3 docosahexaenoic acid (DHA). Two groups of patients of similar size were identified: the DHA- group (N = 19) with a lower proportion of membrane DHA as compared to the norm in the general population, and the DHAn group (N = 18) with a normal proportion of DHA. Compared to DHAn, DHA- patients had a higher number of hospitalizations and a lower quality of life in terms of perceived health and physical health. They also exhibited significant higher interleukin-6 and cortisol blood levels. These results emphasize the importance of measuring membrane lipid and immunoinflammatory biomarkers in stabilized patients to identify a specific subgroup and optimize non-pharmacological interventions. It could also guide future research aimed at proposing specific pharmacological treatments.
Collapse
Affiliation(s)
- Vladimir Adrien
- AP-HP, Sorbonne Université, Department of Psychiatry, Hôpital Saint-Antoine, Paris, France.,Infrastructure for Clinical Research in Neurosciences (iCRIN), Paris Brain Institute, Sorbonne Université, INSERM, CNRS, Paris, France.,Université Paris Cité, INSERM UMR-S 1266, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Nicolas Bosc
- AP-HP, Sorbonne Université, Department of Psychiatry, Hôpital Saint-Antoine, Paris, France
| | - Hugo Fumat
- Université Paris Cité, INSERM UMR-S 1266, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Cédric Tessier
- AP-HP, Sorbonne Université, Department of Psychiatry, Hôpital Saint-Antoine, Paris, France
| | - Florian Ferreri
- AP-HP, Sorbonne Université, Department of Psychiatry, Hôpital Saint-Antoine, Paris, France.,Infrastructure for Clinical Research in Neurosciences (iCRIN), Paris Brain Institute, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Stéphane Mouchabac
- AP-HP, Sorbonne Université, Department of Psychiatry, Hôpital Saint-Antoine, Paris, France.,Infrastructure for Clinical Research in Neurosciences (iCRIN), Paris Brain Institute, Sorbonne Université, INSERM, CNRS, Paris, France
| | - David Tareste
- Université Paris Cité, INSERM UMR-S 1266, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Philippe Nuss
- AP-HP, Sorbonne Université, Department of Psychiatry, Hôpital Saint-Antoine, Paris, France.,Centre de Recherche Saint-Antoine, INSERM UMR S938, Sorbonne Université, Paris, France
| |
Collapse
|
20
|
Marcolongo-Pereira C, Castro FCDAQ, Barcelos RM, Chiepe KCMB, Rossoni Junior JV, Ambrosio RP, Chiarelli-Neto O, Pesarico AP. Neurobiological mechanisms of mood disorders: Stress vulnerability and resilience. Front Behav Neurosci 2022; 16:1006836. [PMID: 36386785 PMCID: PMC9650072 DOI: 10.3389/fnbeh.2022.1006836] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/06/2022] [Indexed: 09/05/2023] Open
Abstract
Stress is an important factor in the development of several human pathologies. The response of rodents and humans to stress depends on many factors; some people and rodents develop stress-related mood disorders, such as depression and anxiety in humans, depression-like and anxiety-like behavior in mice and rats, while others report no new psychological symptoms in response to chronic or acute stress, and are considered susceptible and resilient to stress, respectively. Resilience is defined as the ability to thrive in the face of adversity and is a learned process that can help protect against occupational stressors and mental illnesses. There is growing interest in the underlying mechanisms involved in resilience and vulnerability to depression caused by stress, and some studies have demonstrated that individual variability in the way animals and humans respond to stress depends on several mechanisms, such as oxidative stress, neuronal plasticity, immunology and genetic factors, among others not discussed in this review, this review provides a general overview about this mechanism.
Collapse
Affiliation(s)
- Clairton Marcolongo-Pereira
- Coordenadoria de Pesquisa, Pós-Graduação e Extensão (CEPEG), Centro Universitário do Espírito Santo (UNESC), Colatina, Brazil
| | | | - Rafael Mazioli Barcelos
- Coordenadoria de Pesquisa, Pós-Graduação e Extensão (CEPEG), Centro Universitário do Espírito Santo (UNESC), Colatina, Brazil
| | | | - Joamyr Victor Rossoni Junior
- Coordenadoria de Pesquisa, Pós-Graduação e Extensão (CEPEG), Centro Universitário do Espírito Santo (UNESC), Colatina, Brazil
| | - Roberta Passamani Ambrosio
- Coordenadoria de Pesquisa, Pós-Graduação e Extensão (CEPEG), Centro Universitário do Espírito Santo (UNESC), Colatina, Brazil
| | - Orlando Chiarelli-Neto
- Coordenadoria de Pesquisa, Pós-Graduação e Extensão (CEPEG), Centro Universitário do Espírito Santo (UNESC), Colatina, Brazil
| | - Ana Paula Pesarico
- Curso de Medicina, Universidade Federal do Pampa (Unipampa), Bagé, Brazil
| |
Collapse
|
21
|
Coenzyme Q10 + alpha lipoic acid for chronic COVID syndrome. Clin Exp Med 2022:10.1007/s10238-022-00871-8. [PMID: 35994177 PMCID: PMC9395797 DOI: 10.1007/s10238-022-00871-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022]
Abstract
Chronic COVID syndrome is characterized by chronic fatigue, myalgia, depression and sleep disturbances, similar to chronic fatigue syndrome (CFS) and fibromyalgia syndrome. Implementations of mitochondrial nutrients (MNs) with diet are important for the clinical effects antioxidant. We examined if use of an association of coenzyme Q10 and alpha lipoic acid (Requpero®) could reduce chronic covid symptoms. The Requpero study is a prospective observational study in which 174 patients, who had developed chronic-covid syndrome, were divided in two groups: The first one (116 patients) received coenzyme Q10 + alpha lipoic acid, and the second one (58 patients) did not receive any treatment. Primary outcome was reduction in Fatigue Severity Scale (FSS) in treatment group compared with control group. complete FSS response was reached most frequently in treatment group than in control group. A FSS complete response was reached in 62 (53.5%) patients in treatment group and in two (3.5%) patients in control group. A reduction in FSS core < 20% from baseline at T1 (non-response) was observed in 11 patients in the treatment group (9.5%) and in 15 patients in the control group (25.9%) (p < 0.0001). To date, this is the first study that tests the efficacy of coenzyme Q10 and alpha lipoic acid in chronic Covid syndrome. Primary and secondary outcomes were met. These results have to be confirmed through a double blind placebo controlled trial of longer duration.
Collapse
|
22
|
Liu H, Yu R, Gao Y, Li X, Guan X, Thomas K, Xiu M, Zhang X. Antioxidant Enzymes and Weight Gain in Drug-naive First-episode Schizophrenia Patients Treated with Risperidone for 12 Weeks: A Prospective Longitudinal Study. Curr Neuropharmacol 2022; 20:1774-1782. [PMID: 34544343 PMCID: PMC9881063 DOI: 10.2174/1570159x19666210920090547] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Oxidative stress plays an important role in weight gain induced by antipsychotics in schizophrenia (SCZ). However, little is known about how antioxidant enzymes are involved in weight gain caused by risperidone monotherapy in antipsychotics-naïve first-episode (ANFE) patients with SCZ. Therefore, the main purpose of this study was to investigate the effects of risperidone on several antioxidant enzymes in patients with ANFE SCZ and the relationship between weight gain and changes in antioxidant enzyme activities. OBJECTIVE The activities of plasma superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as the levels of malondialdehyde (MDA) were measured in 225 ANFE patients and 125 healthy controls. METHODS Patients were treated with risperidone monotherapy for 12 weeks. Clinical symptoms, antioxidant enzyme activities, and MDA levels were measured at baseline and during follow-up. RESULTS Compared with healthy controls, the patients showed higher activities of SOD and CAT but lower MDA levels and GPx activity. At baseline, the CAT activity was associated with body weight or BMI. Further, based on a 7% weight increase from baseline to follow-up, we found 75 patients in the weight gain (WG) group and 150 patients in the non-WG group. Comparing SOD, CAT, GPx activities and MDA levels between the WG group and the non-WG group at baseline and during the 12-week follow-up, it was found that after treatment, the SOD activity in the WG group increased while the MDA level decreased in the non-WG group. Moreover, baseline SOD and GPx activities were predictors of weight gain at 12-week follow-up. CONCLUSION These results suggest that the antioxidant defense system may have predictive value for the weight gain of ANFE SCZ patients after risperidone treatment.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Psychiatry, Shandong Mental Health Center, Jinan, China;
| | - Rui Yu
- Qingdao Mental Health Center, Qingdao University, Qingdao, China;
| | - Yanan Gao
- Qingdao Mental Health Center, Qingdao University, Qingdao, China;
| | - Xirong Li
- Department of Psychiatry, Shandong Mental Health Center, Jinan, China;
| | - Xiaoni Guan
- Peking University HuiLong Guan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China;
| | - Kosten Thomas
- Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston,Texas;
| | - Meihong Xiu
- Peking University HuiLong Guan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China; ,Address correspondence to these authors at the CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Tel: (86-10) 64879520; E-mail: ; Peking University HuiLong Guan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China; Tel: (86-10) 83024429; E-mail:
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China,Address correspondence to these authors at the CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Tel: (86-10) 64879520; E-mail: ; Peking University HuiLong Guan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China; Tel: (86-10) 83024429; E-mail:
| |
Collapse
|
23
|
Wang X, Xiu M, Wang K, Su X, Li X, Wu F. Plasma linoelaidyl carnitine levels positively correlated with symptom improvement in olanzapine-treated first-episode drug-naïve schizophrenia. Metabolomics 2022; 18:50. [PMID: 35819637 DOI: 10.1007/s11306-022-01909-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Olanzapine (OLA) is one of the most commonly used second-generation antipsychotics for the treatment of schizophrenia. However, the heterogeneity of therapeutic response to OLA among schizophrenia patients deserves further exploration. The role of carnitine in the clinical response to OLA monotherapy remains unclear. OBJECTIVES The current study was designed to investigate whether carnitine and its derivatives are linked to the response to OLA treatment. Drug-naïve first-episode patients with schizophrenia were recruited and treated with OLA for 4 weeks. Psychiatric symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS) in pre and post treatment. RESULTS After treatment, we found a significant decrease in 2-Octenoylcarnitine levels and a significant increase in linoelaidyl carnitine, 11Z-Octadecenylcarnitine and 9-Decenoylcarnitine levels. Furthermore, baseline linoelaidyl carnitine levels were correlated with the reduction of PANSS positive symptom subscore. Linear regression and logistic regression analyses found that the baseline linoelaidyl carnitine level was a predictive marker for the therapeutic response to OLA monotherapy for 4 weeks. CONCLUSION Our pilot study suggests that linoelaidyl carnitine levels at baseline may have a predictive role for the improvement of positive symptoms after OLA monotherapy in the patients with schizophrenia.
Collapse
Affiliation(s)
- Xuan Wang
- Hebei Province Veterans Hospital, Baoding, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Keqiang Wang
- Hebei Province Veterans Hospital, Baoding, China
| | - Xiuru Su
- Hebei Province Veterans Hospital, Baoding, China
| | - Xirong Li
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Liwan District, Guangzhou, 510370, China.
- Department of Biomedical Engineering, Guangzhou Medical University, Liwan District, Guangzhou, 510370, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Liwan District, Guangzhou, 510370, China.
| |
Collapse
|
24
|
Is there an association between inflammatory/anti-oxidant markers and the presence of psychotic symptoms or severity of illness in mood and psychotic disorders? A multi-centric study on a drug-free sample. Brain Behav Immun Health 2022; 22:100453. [PMID: 35403068 PMCID: PMC8990055 DOI: 10.1016/j.bbih.2022.100453] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
The immune and antioxidant systems are intimately connected and their role in the etiology of major psychiatric disorders is currently under study. The aim of this study was to evaluate the potential associations between inflammatory/antioxidant peripheral markers and presence of psychotic symptoms or severity of illness in patients affected by major psychiatric disorders. One hundred and twenty-six drug-free patients were included. A blood sample was collected to measure total/B/T lymphocytes and plasma levels of albumin, total bilirubin, uric acid, C-reactive protein, and vitamins A and E. Severity of illness was assessed using psychometric scales. Groups of patients divided according to diagnosis were compared in terms of measured markers using multivariate analyses of variance (MANOVAs). Linear and logistic regression analyses were performed to investigate the potential association between markers and severity of illness or presence/absence of psychotic symptoms. Albumin plasma levels were higher in patients with substance-induced psychotic disorder (SIPD) than subjects affected by schizophrenia (F = 4.923; p = 0.003). Lower vitamin E (OR = 0.81; p = 0.014) and T lymphocyte (OR = 0.99; p = 0.048) plasma levels were predictive of lifetime psychotic symptoms. Lower vitamin A levels were associated with higher Montgomery-Åsberg Depression Rating Scale scores (β = -24.26; p = 0.029), independent of diagnosis. Patients with SIPD may be less vulnerable to oxidative stress. The severity of depressive symptoms, inversely associated with vitamin A plasma levels, is likely to be modulated by the degree of inflammation. Patients presenting with lifetime psychotic symptoms may be more vulnerable to oxidative stress and may have a higher activation of humoral immunity.
Collapse
|
25
|
Boecking B, Klasing S, Walter M, Brueggemann P, Nyamaa A, Rose M, Mazurek B. Vascular-Metabolic Risk Factors and Psychological Stress in Patients with Chronic Tinnitus. Nutrients 2022; 14:nu14112256. [PMID: 35684056 PMCID: PMC9183085 DOI: 10.3390/nu14112256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Little is known about molecular correlates of chronic tinnitus. We examined interrelationships between vascular−metabolic risk factors, perceived stress, and other routine blood values in patients with chronic tinnitus. Two-hundred patients (51% female) were screened for 49 blood parameters pertaining to vascular−metabolic risk, immune function, and redox processes. They further completed perceived stress- and tinnitus-related distress questionnaires. Following descriptive analyses, gender-specific sets of age- and tinnitus-severity-adjusted regression models investigated associations between perceived stress and blood parameters. Patients reported mildly elevated levels of perceived stress. Elevated levels of total cholesterol (65% and 61% of female and male patients, respectively), non-HDL-c (43/50%), LDL-c (56/59%), and lipoprotein_a (28/14%) were accompanied by high rates of overweight (99/100%) and smoking (28/31%). A low-level inflammatory state was accompanied by reduced reactive oxygen species (ROS)-neutralizing capacity (reduced co-enzyme Q10 and SOD1 levels). Most vascular risk factors were not correlated with perceived stress, except for fibrinogen (ß = −0.34) as well as C-reactive protein (ß = −0.31, p < 0.05) in men, and MCV (ß = −0.26, p < 0.05) in women. Interrelations between blood parameters and stress levels need to be investigated within psychobehavioural frameworks across varying distress levels. Alongside psychological interventions, a low-level inflammatory state may be a route for pharmacological therapeutics.
Collapse
Affiliation(s)
- Benjamin Boecking
- Tinnitus Center, Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany; (B.B.); (S.K.); (P.B.); (A.N.)
| | - Sven Klasing
- Tinnitus Center, Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany; (B.B.); (S.K.); (P.B.); (A.N.)
| | - Michael Walter
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, 18057 Rostock, Germany;
| | - Petra Brueggemann
- Tinnitus Center, Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany; (B.B.); (S.K.); (P.B.); (A.N.)
| | - Amarjargal Nyamaa
- Tinnitus Center, Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany; (B.B.); (S.K.); (P.B.); (A.N.)
| | - Matthias Rose
- Medical Department, Division of Psychosomatic Medicine, Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Birgit Mazurek
- Tinnitus Center, Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany; (B.B.); (S.K.); (P.B.); (A.N.)
- Correspondence:
| |
Collapse
|
26
|
Rogóż Z, Lech MA, Chamera K, Wąsik A. The Effect of Glutathione Deficit During Early Postnatal Brain Development on the Prepulse Inhibition and Monoamine Levels in Brain Structures of Adult Sprague-Dawley Rats. Neurotox Res 2022; 40:733-750. [PMID: 35386024 DOI: 10.1007/s12640-022-00496-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Recent studies suggest that impaired glutathione synthesis and distorted dopaminergic transmission are important factors in the pathophysiology of schizophrenia. In the present study, on the postnatal days p5-p16, male pups were treated with the inhibitor of glutathione synthesis, L-buthionine-(S,R)- sulfoximine (BSO, 3.8 or 7.6 mmol/kg), and the dopamine uptake inhibitor, GBR 12,909 (5 mg/kg) alone or in combination, and prepulse inhibition of the acoustic startle response (PPI) was evaluated in adult 90-day-old rats. Moreover, the monoamine levels in the cortex and hippocampus of 16-day-old rats or 91-day-old rats were measured. The present results showed that administration of BSO at 3.8 mmol/kg led to a decreasing tendency in PPI for all tested prepulse intensities. In contrast, a combined treatment with BSO in both studied doses and GBR 12,909 did not induce significant deficits in PPI. Moreover, the results of biochemical studies indicated that treatment with BSO or GBR 12,909 alone induced a weak increase in the activity of dopaminergic, serotonergic, and noradrenergic systems in the frontal cortex and hippocampus of 16-day-old rats and 91-day-old rats. However, the combined administration of both substances allowed for maintaining the normal activity of monoaminergic systems in the rat brain. The most significant changes in the functioning of monoaminergic systems were observed in the frontal cortex of 16-day-old rats. Therefore, it seems that the frontal cortex of rat puppies is most sensitive to glutathione deficiencies resulting in increased oxidative stress in neurons. As a result, it can lead to cognitive and memory impairment.
Collapse
Affiliation(s)
- Zofia Rogóż
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, Poland
| | - Marta A Lech
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, Poland
| | - Katarzyna Chamera
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, Kraków, Poland
| | - Agnieszka Wąsik
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, Kraków, Poland.
| |
Collapse
|
27
|
Cuenod M, Steullet P, Cabungcal JH, Dwir D, Khadimallah I, Klauser P, Conus P, Do KQ. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry 2022; 27:1886-1897. [PMID: 34759358 PMCID: PMC9126811 DOI: 10.1038/s41380-021-01374-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
A growing body of evidence has emerged demonstrating a pathological link between oxidative stress and schizophrenia. This evidence identifies oxidative stress as a convergence point or "central hub" for schizophrenia genetic and environmental risk factors. Here we review the existing experimental and translational research pinpointing the complex dynamics of oxidative stress mechanisms and their modulation in relation to schizophrenia pathophysiology. We focus on evidence supporting the crucial role of either redox dysregulation, N-methyl-D-aspartate receptor hypofunction, neuroinflammation or mitochondria bioenergetics dysfunction, initiating "vicious circles" centered on oxidative stress during neurodevelopment. These processes would amplify one another in positive feed-forward loops, leading to persistent impairments of the maturation and function of local parvalbumin-GABAergic neurons microcircuits and myelinated fibers of long-range macrocircuitry. This is at the basis of neural circuit synchronization impairments and cognitive, emotional, social and sensory deficits characteristic of schizophrenia. Potential therapeutic approaches that aim at breaking these different vicious circles represent promising strategies for timely and safe interventions. In order to improve early detection and increase the signal-to-noise ratio for adjunctive trials of antioxidant, anti-inflammatory and NMDAR modulator drugs, a reverse translation of validated circuitry approach is needed. The above presented processes allow to identify mechanism based biomarkers guiding stratification of homogenous patients groups and target engagement required for successful clinical trials, paving the way towards precision medicine in psychiatry.
Collapse
Affiliation(s)
- Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland.
| |
Collapse
|
28
|
Sawa A, Yang K, Cascella NG. Paradigm shift on the concept of schizophrenia that matches with both academic and clinical needs. Schizophr Res 2022; 242:123-125. [PMID: 34991948 PMCID: PMC10503824 DOI: 10.1016/j.schres.2021.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 01/27/2023]
Affiliation(s)
- Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, United States; Department of Neuroscience, Johns Hopkins University School of Medicine, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, United States; Department of Genetic Medicine, Johns Hopkins University School of Medicine, United States; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, United States.
| | - Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, United States
| | - Nicola G Cascella
- Department of Psychiatry, Johns Hopkins University School of Medicine, United States
| |
Collapse
|
29
|
Manzoor S, Khan A, Hasan B, Mushtaq S, Ahmed N. Expression Analysis of 4-Hydroxynonenal Modified Proteins in Schizophrenia Brain; Relevance to Involvement in Redox Dysregulation. CURR PROTEOMICS 2022. [DOI: 10.2174/1570164618666210121151004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Oxidative damage contributes to the pathophysiology of schizophrenia (SZ). Redox imbalance may
lead to increased lipid peroxidation, which produces toxic aldehydes like 4-hydroxynonenal (4-HNE) ultimately leading to
oxidative stress. Conversely, implications of oxidative stress points towards an alteration in HNE-protein adducts and
activities of enzymatic and antioxidant systems in schizophrenia.
Objectives:
Present study focuses on identification of HNE-protein adducts and its related molecular consequences in
schizophrenia pathology due to oxidative stress, particularly lipid peroxidation.
Material and Methods:
Oxyblotting was performed on seven autopsied brain samples each from cortex and hippocampus
region of schizophrenia patients and their respective normal healthy controls. Additionally, thiobarbituric acid substances
(TBARS), reduced glutathione (GSH) levels and catalase (CAT) activities associated with oxidative stress, were also
estimated.
Results:
Obtained results indicates substantially higher levels of oxidative stress in schizophrenia patients than healthy
control group represented by elevated expression of HNE-protein adducts. Interestingly, hippocampus region of
schizophrenia brain shows increased HNE protein adducts compared to cortex. An increase in catalase activity (4.8876 ±
1.7123) whereas decrease in antioxidant GSH levels (0.213 ± 0.015µmol/ml) have been observed in SZ brain. Elevated
TBARS level (0.3801 ± 0.0532ug/ml) were obtained in brain regions SZ patients compared with their controls that reflects
an increased lipid peroxidation (LPO).
Conclusion:
Conclusion: We propose the role of HNE modified proteins possibly associated with the pathology of
schizophrenia. Our data revealed increase lipid peroxidation as a consequence of increased TBARS production.
Furthermore, altered cellular antioxidants pathways related to GSH and CAT also highlight the involvement of oxidative
stress in schizophrenia pathology.
Collapse
Affiliation(s)
- Sobia Manzoor
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Ayesha Khan
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Beena Hasan
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Shamim Mushtaq
- Department of Biochemistry, Ziauddin University, Karachi, Pakistan
| | - Nikhat Ahmed
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
30
|
Beeraka NM, Avila-Rodriguez MF, Aliev G. Recent Reports on Redox Stress-Induced Mitochondrial DNA Variations, Neuroglial Interactions, and NMDA Receptor System in Pathophysiology of Schizophrenia. Mol Neurobiol 2022; 59:2472-2496. [PMID: 35083660 DOI: 10.1007/s12035-021-02703-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
Schizophrenia (SZ) is a chronic psychiatric disorder affecting several people worldwide. Mitochondrial DNA (mtDNA) variations could invoke changes in the OXPHOS system, calcium buffering, and ROS production, which have significant implications for glial cell survival during SZ. Oxidative stress has been implicated in glial cells-mediated pathogenesis of SZ; the brain comparatively more prone to oxidative damage through NMDAR. A confluence of scientific evidence points to mtDNA alterations, Nrf2 signaling, dynamic alterations in dorsolateral prefrontal cortex (DLPFC), and provocation of oxidative stress that enhance pathophysiology of SZ. Furthermore, the alterations in excitatory signaling related to NMDAR signaling were particularly reported for SZ pathophysiology. Current review reported the recent evidence for the role of mtDNA variations and oxidative stress in relation to pathophysiology of SZ, NMDAR hypofunction, and glutathione deficiency. NMDAR system is influenced by redox dysregulation in oxidative stress, inflammation, and antioxidant mediators. Several studies have demonstrated the relationship of these variables on severity of pathophysiology in SZ. An extensive literature search was conducted using Medline, PubMed, PsycINFO, CINAHL PLUS, BIOSIS Preview, Google scholar, and Cochrane databases. We summarize consistent evidence pointing out a plausible model that may elucidate the crosstalk between mtDNA alterations in glial cells and redox dysregulation during oxidative stress and the perturbation of NMDA neurotransmitter system during current therapeutic modalities for the SZ treatment. This review can be beneficial for the development of promising novel diagnostics, and therapeutic modalities by ascertaining the mtDNA variations, redox state, and efficacy of pharmacological agents to mitigate redox dysregulation and augment NMDAR function to treat cognitive and behavioral symptoms in SZ.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Department of Human Anatomy, I M Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia.
| | - Marco F Avila-Rodriguez
- Faculty of Health Sciences, Department of Clinical Sciences, Barrio Santa Helena, University of Tolima, 730006, Ibagué, Colombia
| | - Gjumrakch Aliev
- Department of Human Anatomy, I M Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia.,Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia.,Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russia.,GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA
| |
Collapse
|
31
|
Gong Y, Lu Z, Kang Z, Feng X, Zhang Y, Sun Y, Chen W, Xun G, Yue W. Peripheral non-enzymatic antioxidants as biomarkers for mood disorders: Evidence from a machine learning prediction model. Front Psychiatry 2022; 13:1019618. [PMID: 36419979 PMCID: PMC9676245 DOI: 10.3389/fpsyt.2022.1019618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Oxidative stress is related to the pathogenesis of mood disorders, and the level of oxidative stress may differ between bipolar disorder (BD) and major depressive disorder (MDD). This study aimed to detect the differences in non-enzymatic antioxidant levels between BD and MDD and assess the predictive values of non-enzymatic antioxidants in mood disorders by applying a machine learning model. METHODS Peripheral uric acid (UA), albumin (ALB), and total bilirubin (TBIL) were measured in 1,188 participants (discover cohort: 157 with BD and 544 with MDD; validation cohort: 119 with BD and 95 with MDD; 273 healthy controls). An extreme gradient boosting (XGBoost) model and a logistic regression model were used to assess the predictive effect. RESULTS All three indices differed between patients with mood disorders and healthy controls; in addition, the levels of UA in patients with BD were higher than those of patients with MDD. After treatment, UA levels increased in the MDD group, while they decreased in the BD group. Finally, we entered age, sex, UA, ALB, and TBIL into the XGBoost model. The area under the curve (AUC) of the XGBoost model for distinguishing between BD and MDD reached 0.849 (accuracy = 0.808, 95% CI = 0.719-0.878) and for distinguishing between BD with depression episode (BD-D) and MDD was 0.899 (accuracy = 0.891, 95% CI = 0.856-0.919). The models were validated in the validation cohort. The most important feature distinguishing between BD and MDD was UA. CONCLUSION Peripheral non-enzymatic antioxidants, especially the UA, might be a potential biomarker capable of distinguishing between BD and MDD.
Collapse
Affiliation(s)
- Yuandong Gong
- Shandong Mental Health Center, Shandong University, Jinan, China
| | - Zhe Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China.,NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Zhewei Kang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China.,NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Xiaoyang Feng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China.,NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Yuyanan Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China.,NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Yaoyao Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China.,NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Weimin Chen
- Shandong Mental Health Center, Shandong University, Jinan, China
| | - Guanglei Xun
- Shandong Mental Health Center, Shandong University, Jinan, China
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China.,NHC Key Laboratory of Mental Health, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
32
|
Mitochondrial Oxidative Stress-A Causative Factor and Therapeutic Target in Many Diseases. Int J Mol Sci 2021; 22:ijms222413384. [PMID: 34948180 PMCID: PMC8707347 DOI: 10.3390/ijms222413384] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
The excessive formation of reactive oxygen species (ROS) and impairment of defensive antioxidant systems leads to a condition known as oxidative stress. The main source of free radicals responsible for oxidative stress is mitochondrial respiration. The deleterious effects of ROS on cellular biomolecules, including DNA, is a well-known phenomenon that can disrupt mitochondrial function and contribute to cellular damage and death, and the subsequent development of various disease processes. In this review, we summarize the most important findings that implicated mitochondrial oxidative stress in a wide variety of pathologies from Alzheimer disease (AD) to autoimmune type 1 diabetes. This review also discusses attempts to affect oxidative stress as a therapeutic avenue.
Collapse
|
33
|
Jamilian H, Ghaderi A. The Effects of Probiotic and Selenium Co-supplementation on Clinical and Metabolic Scales in Chronic Schizophrenia: a Randomized, Double-blind, Placebo-Controlled Trial. Biol Trace Elem Res 2021; 199:4430-4438. [PMID: 33409919 DOI: 10.1007/s12011-020-02572-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022]
Abstract
This study evaluated the effects of probiotic and selenium co-supplementation on clinical and metabolic symptoms in patients with chronic schizophrenia. A randomized, double-blind, placebo-controlled trial was conducted among 60 people with chronic schizophrenia to receive either 8 × 109 CFU/day probiotic plus 200 μg/day selenium (n = 30) or placebo (n = 30) for 12 weeks. Probiotic and selenium co-supplementation resulted in a significant improvement in the general Positive and Negative Syndrome Scale (PANSS) score (β - 1.29; 95% CI, - 2.48, - 0.10; P = 0.03) compared with the placebo. Compared with the placebo, probiotic and selenium co-supplementation resulted in a significant elevation in total antioxidant capacity (β 91.09 mmol/L; 95% CI, 35.89, 146.30; P = 0.002) and total glutathione (β 96.50 μmol/L; 95% CI, 26.13, 166.87; P = 0.008) and a significant reduction in high-sensitivity C-reactive protein levels (β - 1.44 mg/L; 95% CI, - 2.22, - 0.66; P = 0.001). Additionally, co-supplementation significantly decreased fasting glucose (β - 7.40 mg/dL; 95% CI, - 10.15, - 4.64; P < 0.001), insulin levels (β - 1.46 μIU/mL; 95% CI, - 2.35, - 0.57; P = 0.002), and homeostasis model of assessment-insulin resistance (β - 0.51; 95% CI, - 0.72, - 0.29; P < 0.001) and a significant increase in quantitative insulin sensitivity check index (β 0.01; 95% CI, 0.006, 0.01; P < 0.001) compared with the placebo. Probiotic and selenium co-supplementation for 12 weeks to patients with chronic schizophrenia had beneficial effects on the general PANSS score and some metabolic profiles. http://www.irct.ir , identifier IRCT20170513033941N41.
Collapse
Affiliation(s)
- Hamidreza Jamilian
- Department of Psychiatry, Arak University of Medical Sciences, Arak, Iran
| | - Amir Ghaderi
- Clinical Research Development Unit-Matini/Kargarnejad Hospital, Kashan University of Medical Sciences, Kashan, IR, Iran.
- Department of Addiction studies, School of Medical, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
34
|
Klimczak P, Rizzo A, Castillo-Gómez E, Perez-Rando M, Gramuntell Y, Beltran M, Nacher J. Parvalbumin Interneurons and Perineuronal Nets in the Hippocampus and Retrosplenial Cortex of Adult Male Mice After Early Social Isolation Stress and Perinatal NMDA Receptor Antagonist Treatment. Front Synaptic Neurosci 2021; 13:733989. [PMID: 34630066 PMCID: PMC8493248 DOI: 10.3389/fnsyn.2021.733989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Both early life aversive experiences and intrinsic alterations in early postnatal neurodevelopment are considered predisposing factors for psychiatric disorders, such as schizophrenia. The prefrontal cortex and the hippocampus have protracted postnatal development and are affected in schizophrenic patients. Interestingly, similar alterations have been observed in the retrosplenial cortex (RSC). Studies in patients and animal models of schizophrenia have found alterations in cortical parvalbumin (PV) expressing interneurons, making them good candidates to study the etiopathology of this disorder. Some of the alterations observed in PV+ interneurons may be mediated by perineuronal nets (PNNs), specialized regions of the extracellular matrix, which frequently surround these inhibitory neurons. In this study, we have used a double hit model (DHM) combining a single perinatal injection of an NMDAR antagonist (MK801) to disturb early postnatal development and post-weaning social isolation as an early life aversive experience. We have investigated PV expressing interneurons and PNNs in the hippocampus and the RSC of adult male mice, using unbiased stereology. In the CA1, but not in the CA3 region, of the hippocampus, the number of PNNs and PV + PNN+ cells was affected by the drug treatment, and a significant decrease of these parameters was observed in the groups of animals that received MK801. The percentage of PNNs surrounding PV+ cells was significantly decreased after treatment in both hippocampal regions; however, the impact of isolation was observed only in CA1, where isolated animals presented lower percentages. In the RSC, we observed significant effects of isolation, MK801 and the interaction of both interventions on the studied parameters; in the DHM, we observed a significantly lower number of PV+, PNNs, and PV+PNN+cells when compared to control mice. Similar significant decreases were observed for the groups of animals that were just isolated or treated with MK801. To our knowledge, this is the first report on such alterations in the RSC in an animal model combining neurodevelopmental alterations and aversive experiences during infancy/adolescence. These results show the impact of early-life events on different cortical regions, especially on the structure and plasticity of PV+ neurons and their involvement in the emergence of certain psychiatric disorders.
Collapse
Affiliation(s)
- Patrycja Klimczak
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.,Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Arianna Rizzo
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Esther Castillo-Gómez
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.,Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Marta Perez-Rando
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.,Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Yaiza Gramuntell
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Marc Beltran
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Juan Nacher
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.,Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| |
Collapse
|
35
|
Zhu M, Liu Z, Guo Y, Sultana MS, Wu K, Lang X, Lv Q, Huang X, Yi Z, Li Z. Sex difference in the interrelationship between TNF-α and oxidative stress status in first-episode drug-naïve schizophrenia. J Neuroinflammation 2021; 18:202. [PMID: 34526062 PMCID: PMC8444364 DOI: 10.1186/s12974-021-02261-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Background Increasing evidence indicates that dysregulated TNF-α and oxidative stress (OxS) contribute to the pathophysiology of schizophrenia. Additionally, previous evidence has demonstrated sex differences in many aspects of schizophrenia including clinical characteristics, cytokines, and OxS markers. However, to the best of our knowledge, there is no study investigating sex differences in the association between TNF-α, the OxS system, and their interaction with clinical symptoms in schizophrenia patients, especially in first-episode drug-naïve (FEDN) patients. Methods A total of 119 FEDN schizophrenia patients and 135 healthy controls were recruited for this study. Serum TNF-α, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and malondialdehyde (MDA) were measured. The Positive and Negative Syndrome Scale (PANSS) was applied to evaluate psychotic symptoms. Two-way ANOVA, partial correlation analysis, and multivariate regression analysis were performed. Results A sex difference in MDA levels was demonstrated only in healthy controls (F = 7.06, pBonferroni = 0.045) and not seen in patients. Furthermore, only male patients had higher MDA levels than male controls (F = 8.19, pBonferroni = 0.03). Additionally, sex differences were observed in the association of TNF-α and MDA levels with psychotic symptoms (all pBonferroni < 0.05). The interaction of TNF-α and MDA was only associated with general psychopathology symptom in male patients (B = − 0.07, p = 0.02). Conclusion Our results demonstrate the sex difference in the relationship between TNF-α, MDA, and their interaction with psychopathological symptoms of patients with schizophrenia.
Collapse
Affiliation(s)
- Minghuan Zhu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai, 200030, China.,Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Zhenjing Liu
- Qingdao Mental Health Center, Qingdao University, Qingdao, China
| | - Yanhong Guo
- Qingdao Mental Health Center, Qingdao University, Qingdao, China
| | - Mst Sadia Sultana
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Kang Wu
- Department of Laboratory Medicine, Shanghai Changhai Hospital, Shanghai, China
| | - Xiaoe Lang
- Department of Psychiatry, The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Qinyu Lv
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai, 200030, China
| | - Xiao Huang
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Zhenghui Yi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai, 200030, China.
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Guangzhou, 510370, China.
| |
Collapse
|
36
|
Murray AJ, Rogers JC, Katshu MZUH, Liddle PF, Upthegrove R. Oxidative Stress and the Pathophysiology and Symptom Profile of Schizophrenia Spectrum Disorders. Front Psychiatry 2021; 12:703452. [PMID: 34366935 PMCID: PMC8339376 DOI: 10.3389/fpsyt.2021.703452] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is associated with increased levels of oxidative stress, as reflected by an increase in the concentrations of damaging reactive species and a reduction in anti-oxidant defences to combat them. Evidence has suggested that whilst not the likely primary cause of schizophrenia, increased oxidative stress may contribute to declining course and poor outcomes associated with schizophrenia. Here we discuss how oxidative stress may be implicated in the aetiology of schizophrenia and examine how current understanding relates associations with symptoms, potentially via lipid peroxidation induced neuronal damage. We argue that oxidative stress may be a good target for future pharmacotherapy in schizophrenia and suggest a multi-step model of illness progression with oxidative stress involved at each stage.
Collapse
Affiliation(s)
- Alex J. Murray
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
| | - Jack C. Rogers
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
| | - Mohammad Zia Ul Haq Katshu
- Institute of Mental Health, Division of Mental Health and Neurosciences University of Nottingham, Nottingham, United Kingdom
- Nottinghamshire Healthcare National Health Service Foundation Trust, Nottingham, United Kingdom
| | - Peter F. Liddle
- Institute of Mental Health, Division of Mental Health and Neurosciences University of Nottingham, Nottingham, United Kingdom
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
- Early Intervention Service, Birmingham Women's and Children's National Health Service Foundation Trust, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
37
|
Ventriglio A, Bellomo A, Favale D, Bonfitto I, Vitrani G, Di Sabatino D, Cuozzo E, Di Gioia I, Mauro P, Giampaolo P, Alessandro V, De Berardis D. Oxidative Stress in the Early Stage of Psychosis. Curr Top Med Chem 2021; 21:1457-1470. [PMID: 34218786 DOI: 10.2174/1568026621666210701105839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the past few decades, increasing evidence in the literature has appeared describing the role of the antioxidant defense system and redox signaling in the multifactorial pathophysiology of psychosis. It is of interest to clinicians and researchers alike that abnormalities of the antioxidant defense system are associated with alterations of cellular membranes, immune functions and neurotransmission, all of which have some clinical implications. METHODS This narrative review summarizes the evidence regarding oxidative stress in the early stages of psychosis. We included 136 peer-reviewed articles published from 2007 to 2020 on PubMed EMBASE, The Cochrane Library and Google Scholar. RESULTS Patients affected by psychotic disorders show a decreased level of non-enzymatic antioxidants, an increased level of lipid peroxides, nitric oxides, and a homeostatic imbalance of purine catabolism. In particular, a significantly reduced antioxidant defense has been described in the early onset first episode of psychosis, including reduced levels of glutathione. Also, it has been shown that a decreased basal low -antioxidant capacity correlates with cognitive deficits and negative symptoms, mostly related to glutamate-receptor hypofunction. In addition, atypical antipsychotic drugs seem to show significant antioxidant activity. These factors are critical in order to treat cases of first-onset psychosis effectively. CONCLUSION This systematic review indicates the importance that must be given to anti-oxidant defense systems.
Collapse
Affiliation(s)
- Antonio Ventriglio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonello Bellomo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Donato Favale
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Iris Bonfitto
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giovanna Vitrani
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Dario Di Sabatino
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Edwige Cuozzo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Ilaria Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Pettorruso Mauro
- Department of Neurosciences, Imaging and Clinical Sciences, Univerity of Chieti, Italy
| | - Perna Giampaolo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | | |
Collapse
|
38
|
Lech MA, Leśkiewicz M, Kamińska K, Rogóż Z, Lorenc-Koci E. Glutathione Deficiency during Early Postnatal Development Causes Schizophrenia-Like Symptoms and a Reduction in BDNF Levels in the Cortex and Hippocampus of Adult Sprague-Dawley Rats. Int J Mol Sci 2021; 22:ijms22126171. [PMID: 34201038 PMCID: PMC8229148 DOI: 10.3390/ijms22126171] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Growing body of evidence points to dysregulation of redox status in the brain as an important factor in the pathogenesis of schizophrenia. The aim of our study was to evaluate the effects of l-buthionine-(S,R)-sulfoximine (BSO), a glutathione (GSH) synthesis inhibitor, and 1-[2-Bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine dihydrochloride (GBR 12909), a dopamine reuptake inhibitor, given alone or in combination, to Sprague–Dawley pups during early postnatal development (p5–p16), on the time course of the onset of schizophrenia-like behaviors, and on the expression of brain-derived neurotrophic factor (BDNF) mRNA and its protein in the prefrontal cortex (PFC) and hippocampus (HIP) during adulthood. BSO administered alone decreased the levels of BDNF mRNA and its protein both in the PFC and HIP. Treatment with the combination of BSO + GBR 12909 also decreased BDNF mRNA and its protein in the PFC, but in the HIP, only the level of BDNF protein was decreased. Schizophrenia-like behaviors in rats were assessed at three time points of adolescence (p30, p42–p44, p60–p62) and in early adulthood (p90–p92) using the social interaction test, novel object recognition test, and open field test. Social and cognitive deficits first appeared in the middle adolescence stage and continued to occur into adulthood, both in rats treated with BSO alone or with the BSO + GBR 12909 combination. Behavior corresponding to positive symptoms in humans occurred in the middle adolescence period, only in rats treated with BSO + GBR 12909. Only in the latter group, amphetamine exacerbated the existing positive symptoms in adulthood. Our data show that rats receiving the BSO + GBR 12909 combination in the early postnatal life reproduced virtually all symptoms observed in patients with schizophrenia and, therefore, can be considered a valuable neurodevelopmental model of this disease.
Collapse
Affiliation(s)
- Marta Anna Lech
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (M.A.L.); (K.K.); (Z.R.)
| | - Monika Leśkiewicz
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland;
| | - Kinga Kamińska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (M.A.L.); (K.K.); (Z.R.)
| | - Zofia Rogóż
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (M.A.L.); (K.K.); (Z.R.)
| | - Elżbieta Lorenc-Koci
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
- Correspondence: ; Tel.: +48-126-623-272
| |
Collapse
|
39
|
Almulla AF, Moustafa SR, Al-Dujaili AH, Al-Hakeim HK, Maes M. Lowered serum cesium levels in schizophrenia: association with immune-inflammatory biomarkers and cognitive impairments. ACTA ACUST UNITED AC 2021; 43:131-137. [PMID: 32556004 PMCID: PMC8023164 DOI: 10.1590/1516-4446-2020-0908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/09/2020] [Indexed: 12/28/2022]
Abstract
Objectives: A previous study has shown that schizophrenia (SCZ) is accompanied by lowered levels of trace/metal elements, including cesium. However, it is not clear whether changes in cesium, rubidium, and rhenium are associated with activated immune-inflammatory pathways, cognitive impairments, and the symptomatology of SCZ. Methods: This study measured cesium, rubidium, and rhenium, cognitive impairments (using the Brief Assessment of Cognition in Schizophrenia [BACS]), and the levels of cytokines/chemokines interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and eotaxin (CCL11) in 120 patients with SCZ and 54 healthy controls. Severity of illness was assessed using the Brief Psychiatric Rating Scale (BPRS), the Scale for the Assessment of Negative Symptoms (SANS), the Fibromyalgia and Chronic Fatigue Syndrome Rating (FF) Scale, and the Hamilton Depression Rating Scale (HAM-D). Results: Serum cesium was significantly lower in patients with SCZ as compared with controls. Further, serum cesium was significantly and inversely associated with CCL11 and TNF-α, but not IL-1β, in patients with SCZ; significant inverse associations were also noted between serum cesium levels and BPRS, FF, HAM-D, and SANS scores. Finally, cesium was positively correlated with neurocognitive probe results including the Tower of London, Symbol Coding, Controlled Word Association, Category Instances, Digit Sequencing Task, and List Learning tests. Conclusion: The results suggest that lowered serum cesium levels may play a role in the pathophysiology of SCZ, contributing to specific symptom domains including negative, depressive and fatigue symptoms, neurocognitive impairments (spatial working, episodic, and semantic memory and executive functions), and neuroimmune pathways.
Collapse
Affiliation(s)
- Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Shatha R Moustafa
- Clinical Analysis Department, College of Pharmacy, Hawler Medical University, Havalan City, Erbil, Iraq
| | - Arafat H Al-Dujaili
- Senior Clinical Psychiatrist at the Faculty of Medicine, University of Kufa, Najaf, Iraq
| | - Hussein K Al-Hakeim
- Department of Chemistry, College of Science, University of Kufa, Najaf, Iraq
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.,IMPACT Strategic Research Centre, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
40
|
Li XR, Xiu MH, Guan XN, Wang YC, Wang J, Leung E, Zhang XY. Altered Antioxidant Defenses in Drug-Naive First Episode Patients with Schizophrenia Are Associated with Poor Treatment Response to Risperidone: 12-Week Results from a Prospective Longitudinal Study. Neurotherapeutics 2021; 18:1316-1324. [PMID: 33791970 PMCID: PMC8423973 DOI: 10.1007/s13311-021-01036-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Abnormal redox regulation is thought to contribute to schizophrenia (SCZ). Accumulating studies have shown that the plasma antioxidant enzyme activity is closely associated with the course and outcome in antipsychotics-naïve first-episode (ANFE) patients with SCZ. The main purpose of this study was to investigate the effect of risperidone on oxidative stress markers in ANFE patients and the relationship between risperidone response and changes in oxidative stress markers. Plasma activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) enzyme, total antioxidant status (TAS), and malondialdehyde (MDA) levels were measured in 354 ANFE patients and 152 healthy controls. The clinical symptoms were evaluated by the Positive and Negative Syndrome Scale (PANSS). Patients received risperidone monotherapy for 12 weeks and oxidative stress markers and PANSS were measured at baseline and at follow-up. Compared with healthy controls, the patients exhibited higher activities of SOD, CAT, and TAS levels, but lower MDA levels and GPx activity. A comparison between 168 responders and 50 non-responders at baseline and 12-week follow-up showed that GPx activity decreased in both groups after treatment. Moreover, GPx activity decreased less in responders and was higher in responders than in non-responders at follow-up. These results demonstrate that the redox regulatory system and antioxidant defense enzymes may have predictive value for the response of ANFE patients to risperidone treatment.
Collapse
Affiliation(s)
- Xi Rong Li
- Department of Sleep Medicine, Shandong Mental Health Center, Jinan, China
| | - Mei Hong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Changping District, Beijing, 100096, China.
| | - Xiao Ni Guan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Changping District, Beijing, 100096, China
| | - Yue Chan Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Changping District, Beijing, 100096, China
| | - Jun Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Changping District, Beijing, 100096, China
| | - Edison Leung
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Xiang Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
41
|
Determinants of Schizophrenia Endophenotypes Based on Neuroimaging and Biochemical Parameters. Biomedicines 2021; 9:biomedicines9040372. [PMID: 33916324 PMCID: PMC8066217 DOI: 10.3390/biomedicines9040372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022] Open
Abstract
Despite extensive research, there is no convincing evidence of a reliable diagnostic biomarker for schizophrenia beyond clinical observation. Disorders of glutamatergic neurotransmission associated with N-methyl-D-aspartate (NMDA) receptor insufficiency, neuroinflammation, and redox dysregulation are the principal common mechanism linking changes in the periphery with the brain, ultimately contributing to the emergence of negative symptoms of schizophrenia that underlie differential diagnosis. The aim of the study was to evaluate the influence of these systems via peripheral and cerebral biochemical indices in relation to the patient's clinical condition. Using neuroimaging diagnostics, we were able to define endophenotypes of schizophrenia based on objective laboratory data that form the basis of a personalized approach to diagnosis and treatment. The two distinguished endophenotypes differed in terms of the quality of life, specific schizophrenia symptoms, and glutamatergic neurotransmission metabolites in the anterior cingulate gyrus. Our results, as well as further studies of the excitatory or inhibitory balance of microcircuits, relating the redox systems on the periphery with the distant regions of the brain might allow for predicting potential biomarkers of neuropsychiatric diseases, including schizophrenia. To the best of our knowledge, our study is the first to identify an objective molecular biomarker of schizophrenia outcome.
Collapse
|
42
|
Ermakov EA, Dmitrieva EM, Parshukova DA, Kazantseva DV, Vasilieva AR, Smirnova LP. Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8881770. [PMID: 33552387 PMCID: PMC7847339 DOI: 10.1155/2021/8881770] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/15/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Schizophrenia is recognized to be a highly heterogeneous disease at various levels, from genetics to clinical manifestations and treatment sensitivity. This heterogeneity is also reflected in the variety of oxidative stress-related mechanisms contributing to the phenotypic realization and manifestation of schizophrenia. At the molecular level, these mechanisms are supposed to include genetic causes that increase the susceptibility of individuals to oxidative stress and lead to gene expression dysregulation caused by abnormal regulation of redox-sensitive transcriptional factors, noncoding RNAs, and epigenetic mechanisms favored by environmental insults. These changes form the basis of the prooxidant state and lead to altered redox signaling related to glutathione deficiency and impaired expression and function of redox-sensitive transcriptional factors (Nrf2, NF-κB, FoxO, etc.). At the cellular level, these changes lead to mitochondrial dysfunction and metabolic abnormalities that contribute to aberrant neuronal development, abnormal myelination, neurotransmitter anomalies, and dysfunction of parvalbumin-positive interneurons. Immune dysfunction also contributes to redox imbalance. At the whole-organism level, all these mechanisms ultimately contribute to the manifestation and development of schizophrenia. In this review, we consider oxidative stress-related mechanisms and new treatment perspectives associated with the correction of redox imbalance in schizophrenia. We suggest that not only antioxidants but also redox-regulated transcription factor-targeting drugs (including Nrf2 and FoxO activators or NF-κB inhibitors) have great promise in schizophrenia. But it is necessary to develop the stratification criteria of schizophrenia patients based on oxidative stress-related markers for the administration of redox-correcting treatment.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena M. Dmitrieva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | - Daria A. Parshukova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | | | | | - Liudmila P. Smirnova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| |
Collapse
|
43
|
Topology predicts long-term functional outcome in early psychosis. Mol Psychiatry 2021; 26:5335-5346. [PMID: 32632207 PMCID: PMC8589664 DOI: 10.1038/s41380-020-0826-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 12/02/2022]
Abstract
Early intervention in psychosis is crucial to improving patient response to treatment and the functional deficits that critically affect their long-term quality of life. Stratification tools are needed to personalize functional deficit prevention strategies at an early stage. In the present study, we applied topological tools to analyze symptoms of early psychosis patients, and detected a clear stratification of the cohort into three groups. One of the groups had a significantly better psychosocial outcome than the others after a 3-year clinical follow-up. This group was characterized by a metabolic profile indicative of an activated antioxidant response, while that of the groups with poorer outcome was indicative of oxidative stress. We replicated in a second cohort the finding that the three distinct clinical profiles at baseline were associated with distinct outcomes at follow-up, thus validating the predictive value of this new stratification. This approach could assist in personalizing treatment strategies.
Collapse
|
44
|
Caruso G, Grasso M, Fidilio A, Tascedda F, Drago F, Caraci F. Antioxidant Properties of Second-Generation Antipsychotics: Focus on Microglia. Pharmaceuticals (Basel) 2020; 13:ph13120457. [PMID: 33322693 PMCID: PMC7764768 DOI: 10.3390/ph13120457] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Recent studies suggest a primary role of oxidative stress in an early phase of the pathogenesis of schizophrenia and a strong neurobiological link has been found between dopaminergic system dysfunction, microglia overactivation, and oxidative stress. Different risk factors for schizophrenia increase oxidative stress phenomena raising the risk of developing psychosis. Oxidative stress induced by first-generation antipsychotics such as haloperidol significantly contributes to the development of extrapyramidal side effects. Haloperidol also exerts neurotoxic effects by decreasing antioxidant enzyme levels then worsening pro-oxidant events. Opposite to haloperidol, second-generation antipsychotics (or atypical antipsychotics) such as risperidone, clozapine, and olanzapine exert a strong antioxidant activity in experimental models of schizophrenia by rescuing the antioxidant system, with an increase in superoxide dismutase and glutathione (GSH) serum levels. Second-generation antipsychotics also improve the antioxidant status and reduce lipid peroxidation in schizophrenic patients. Interestingly, second-generation antipsychotics, such as risperidone, paliperidone, and in particular clozapine, reduce oxidative stress induced by microglia overactivation, decreasing the production of microglia-derived free radicals, finally protecting neurons against microglia-induced oxidative stress. Further, long-term clinical studies are needed to better understand the link between oxidative stress and the clinical response to antipsychotic drugs and the therapeutic potential of antioxidants to increase the response to antipsychotics.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (F.C.)
- Correspondence: or
| | - Margherita Grasso
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (F.C.)
- Department of Laboratories, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Annamaria Fidilio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.F.); (F.D.)
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.F.); (F.D.)
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (F.C.)
- Department of Laboratories, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| |
Collapse
|
45
|
Identification of a functional SNP rs7304782 at schizophrenia risk locus 12q24.31 and validation of its association with schiz ophrenia in Chinese populations. Psychiatry Res 2020; 294:113491. [PMID: 33070109 DOI: 10.1016/j.psychres.2020.113491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
Recent genome-wide association studies (GWAS) have identified multiple schizophrenia-associated risk loci. However, the potential functional (or causal) variant remains largely unknown for each of the identified risk locus. In this study, we utilized different functional annotation approaches (i.e., CADD, Eigen, GWAVA, RegulomeDB and LINSIGHT) to prioritize the most possible functional variant at schizophrenia risk locus 12q24.31, a risk locus that showed genome-wide significant association with schizophrenia. We found that four functional annotation methods prioritized rs7304782 as a potential functional variant at 12q24.31, suggesting the potential functional consequence of rs7304782. Consistent with the functional annotation, reporter gene assays showed that different allele of rs7304782 affected the luciferase activity significantly, further supporting that rs7304782 is a functional variant. We further performed genetic association study and validated that rs7304782 is also associated with schizophrenia in Chinese population (N=4,291 cases and 7,847 controls), with the same risk allele as in European population. Expression quantitative trait loci (eQTL) analysis indicated that rs7304782 was significantly associated with the expression of OGFOD2 in human brain tissues. Of note, differential expression analysis indicated that OGFOD2 was significantly down-regulated in schizophrenia cases compared with controls. Our study identified a potential functional variant (i.e., rs7304782) at schizophrenia risk locus 12q24.31 and suggested that this functional variant may confer schizophrenia risk through regulating OGFOD2 expression.
Collapse
|
46
|
Xiu MH, Li Z, Chen DC, Chen S, Curbo ME, Wu HE, Tong YS, Tan SP, Zhang XY. Interrelationships Between BDNF, Superoxide Dismutase, and Cognitive Impairment in Drug-Naive First-Episode Patients With Schizophrenia. Schizophr Bull 2020; 46:1498-1510. [PMID: 32390043 PMCID: PMC7707068 DOI: 10.1093/schbul/sbaa062] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pathogenesis and etiology of schizophrenia (SCZ) remains unclear. Accumulating studies showed that complex interrelationships between brain-derived neurotrophic factor (BDNF) and an imbalanced redox system has a crucial role in the psychopathology of SCZ. However, the influence of the interrelationships of BDNF and superoxide dismutase (SOD) on cognitive impairment and clinical symptomatology in drug-naive first-episode (DNFE) SCZ patients has not been studied thoroughly. Serum BDNF levels, plasma total SOD, manganese-SOD (Mn-SOD), copper/zinc-containing SOD (CuZn-SOD) activities, and malondialdehyde (MDA) levels were measured in 327 DNFE patients with SCZ and 391 healthy controls. Cognitive functions were measured using the Repeatable Battery for the Assessment of Neuropsychological status (RBANS) and clinical symptoms were evaluated by the Positive and Negative Syndrome Scale (PANSS). Compared with the controls, the DNFE patients had increased activities of total SOD and CuZn-SOD, and reduced levels of BDNF and MDA. BDNF levels were positively correlated with CuZn-SOD activity in patients. In addition, we found that elevated Mn-SOD and CuZn-SOD activities were related to PANSS depression factor. Moreover, an interactive effect of BDNF levels and Mn-SOD activity was associated with attentional index score in the patients. Therefore, our findings suggested that interrelationships between BDNF and antioxidant mechanisms might underlie the pathological mechanisms of cognitive impairments and symptomatology in the DNFE patients with SCZ.
Collapse
Affiliation(s)
- Mei Hong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Zezhi Li
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Da Chun Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Maile E Curbo
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX
| | - Hanjing Emily Wu
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX
| | - Yong Sheng Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Shu Ping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Xiang Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Guidara W, Messedi M, Naifar M, Maalej M, Grayaa S, Omri S, Ben Thabet J, Maalej M, Charfi N, Ayadi F. Predictive value of oxidative stress biomarkers in drug‑free patients with schizophrenia and schizo-affective disorder. Psychiatry Res 2020; 293:113467. [PMID: 33198042 DOI: 10.1016/j.psychres.2020.113467] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/15/2020] [Indexed: 12/23/2022]
Abstract
Several studies have suggested that oxidative stress may represent one of the primary etiological mechanisms of schizophrenia (SZ) and schizoaffective disorder (SAD) which can be targeted by therapeutic intervention. The present study was conducted over a period of 24 months, between June 2016 and June 2018. All enrolled subjects were Tunisian, forty five drug‑free male patients with SZ (mean age: 37.6 years), twenty one drug‑free male patients with SAD (mean age: 28.8 years) and hundred and one age and gender matched controls (mean age: 34.2 years) were enrolled in the study. Plasma reduced glutathione (GSH) and Total thiols levels were significantly decreased in patients compared to controls (respectively p<0.001; p=0.050). In addition, malondialdehyde (MDA), advanced oxidation protein products (AOPP) and protein carbonyls (PC) concentrations and glutathione peroxidase (GSH-Px) activity were significantly increased in patients compared to controls (p<0.001; p<0.001; p<0.001 and p=0.003 respectively). The binary logistic regression analysis revealed that MDA, AOPP, PC and GSH-Px could be considered as independent risk factors for SZ and SAD. When using ROC analysis, a remarkable increase in the area under the curve (AUC) with higher sensitivity (Se) and specificity (Sp) for MDA, AOPP, PC and GSH-Px combined markers was observed. The present study indicated that the identification of the predictive value of this four-selected biomarkers related to oxidative stress in drug free patients should lead to a better identification of the etiological mechanism of SZ or SAD.
Collapse
Affiliation(s)
- Wassim Guidara
- Laboratory of research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia.
| | - Meriam Messedi
- Laboratory of research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Manel Naifar
- Laboratory of Biochemistry, University of Sfax & Habib Bourguiba Hospital, Sfax, Tunisia
| | - Manel Maalej
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Sahar Grayaa
- Laboratory of research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Sana Omri
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Jihène Ben Thabet
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Mohamed Maalej
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Nada Charfi
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Fatma Ayadi
- Laboratory of research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia; Laboratory of Biochemistry, University of Sfax & Habib Bourguiba Hospital, Sfax, Tunisia
| |
Collapse
|
48
|
Madireddy S, Madireddy S. Regulation of Reactive Oxygen Species-Mediated Damage in the Pathogenesis of Schizophrenia. Brain Sci 2020; 10:brainsci10100742. [PMID: 33081261 PMCID: PMC7603028 DOI: 10.3390/brainsci10100742] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The biochemical integrity of the brain is paramount to the function of the central nervous system, and oxidative stress is a key contributor to cerebral biochemical impairment. Oxidative stress, which occurs when an imbalance arises between the production of reactive oxygen species (ROS) and the efficacy of the antioxidant defense mechanism, is believed to play a role in the pathophysiology of various brain disorders. One such disorder, schizophrenia, not only causes lifelong disability but also induces severe emotional distress; however, because of its onset in early adolescence or adulthood and its progressive development, consuming natural antioxidant products may help regulate the pathogenesis of schizophrenia. Therefore, elucidating the functions of ROS and dietary antioxidants in the pathogenesis of schizophrenia could help formulate improved therapeutic strategies for its prevention and treatment. This review focuses specifically on the roles of ROS and oxidative damage in the pathophysiology of schizophrenia, as well as the effects of nutrition, antipsychotic use, cognitive therapies, and quality of life on patients with schizophrenia. By improving our understanding of the effects of various nutrients on schizophrenia, it may become possible to develop nutritional strategies and supplements to treat the disorder, alleviate its symptoms, and facilitate long-term recovery.
Collapse
Affiliation(s)
- Samskruthi Madireddy
- Independent Researcher, 1353 Tanaka Drive, San Jose, CA 95131, USA
- Correspondence: ; Tel.: +1-408-9214162
| | - Sahithi Madireddy
- Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA;
| |
Collapse
|
49
|
Seabra G, de Almeida V, Reis-de-Oliveira G, Crunfli F, Antunes ASLM, Martins-de-Souza D. Ubiquitin-proteasome system, lipid metabolism and DNA damage repair are triggered by antipsychotic medication in human oligodendrocytes: implications in schizophrenia. Sci Rep 2020; 10:12655. [PMID: 32724114 PMCID: PMC7387551 DOI: 10.1038/s41598-020-69543-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a chronic, severe and disabling psychiatric disorder, whose treatment is based on psychosocial interventions and the use of antipsychotic drugs. While the effects of these drugs are well elucidated in neuronal cells, they are still not so clear in oligodendrocytes, which play a vital role in schizophrenia. Thus, we aimed to characterize biochemical profiles by proteomic analyses of human oligodendrocytes (MO3.13) which were matured using a protocol we developed and treated with either haloperidol (a typical antipsychotic), clozapine (an atypical antipsychotic) or a clozapine + D-serine co-treatment, which has emerged lately as an alternative type of treatment. This was accomplished by employing shotgun proteomics, using nanoESI-LC-MS/MS label-free quantitation. Proteomic analysis revealed biochemical pathways commonly affected by all tested antipsychotics were mainly associated to ubiquitination, proteasome degradation, lipid metabolism and DNA damage repair. Clozapine and haloperidol treatments also affected proteins involved with the actin cytoskeleton and with EIF2 signaling. In turn, metabolic processes, especially the metabolism of nitrogenous compounds, were a predominant target of modulation of clozapine + D-serine treatment. In this context, we seek to contribute to the understanding of the biochemical and molecular mechanisms involved in the action of antipsychotics on oligodendrocytes, along with their possible implications in schizophrenia.
Collapse
Affiliation(s)
- Gabriela Seabra
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - André Saraiva Leão Marcelo Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
| |
Collapse
|
50
|
Sokolova SV, Sozarukova MM, Khannanova AN, Grishina NK, Portnova GV, Proskurnina EV. [Antioxidant status in patients with paranoid schizophrenia and Alzheimer disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:82-87. [PMID: 32678552 DOI: 10.17116/jnevro202012006182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To study the antioxidant profile of blood plasma in patients with paranoid schizophrenia and Alzheimer disease (AD). MATERIAL AND METHODS Thirty-three patients with paranoid schizophrenia and 18 patients with AD were included in the study. Patients with schizophrenia were stratified into two subgroups by response to therapy. The indicators of the antioxidant profile were determined using methods based on chemiluminometry and spectrofluorimetry. RESULTS Systemic oxidative stress due to insufficiency of low molecular weight plasma antioxidants is not determined neither in AD nor in treatment resistant schizophrenia. At the same time, a «thiol» oxidative stress, which indirectly indicates a deficiency of the glutathione system, is present in both groups. In patients with paranoid schizophrenia responsive to treatment, systemic oxidative stress is more pronounced and «thiol» oxidative stress is less significant. Among the antipsychotics studied, haloperidol, zuclopenthixol, risperidone and ziprasidone do not exhibit antioxidant properties, but periciazine, clozapine and especially chlorpromazine exhibit strong antioxidant properties, but they unlikely affect the antioxidant potential of blood plasma. CONCLUSIONS The glutathione part of the antioxidant system is mostly affected, but systemic oxidative stress is not significant in patients with treatment resistant paranoid schizophrenia and AD. Oxidative disorders are more pronounced in treatment responsive paranoid schizophrenia.
Collapse
Affiliation(s)
- S V Sokolova
- Lomonosov Moscow State University, Medical Research and Educational Center, Moscow, Russia
| | - M M Sozarukova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A N Khannanova
- Gilyarovsky Psychiatric Hospital, the branch of the Psychiatric Clinical Hospital No. 4 of the Moscow Health Department, Moscow, Russia
| | - N K Grishina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - G V Portnova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|