1
|
Chokwassanasakulkit T, Oti VB, Idris A, McMillan NA. SiRNAs as antiviral drugs - Current status, therapeutic potential and challenges. Antiviral Res 2024; 232:106024. [PMID: 39454759 DOI: 10.1016/j.antiviral.2024.106024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Traditionally, antiviral drugs target viral enzymes and or structural proteins, identified through large drug screens or rational drug design. The screening, chemical optimisation, small animal toxicity studies and clinical trials mean time to market is long for a new compound, and in the event of a novel virus or pandemic, weeks, and months matter. Small interfering RNAs (siRNAs) as a gene silencing platform is an alluring alternative. SiRNAs are now approved for use in the clinic to treat a range of diseases, are cost effective, scalable, and can be easily programmed to target any viral target in a matter of days. Despite the large number of preclinical studies that clearly show siRNAs are highly effective antivirals this has not translated into clinical success with no products on the market. This review provides a comprehensive overview of both the clinical and preclinical work in this area and outlines the challenges the field faces going forward that need to be addressed in order to see siRNA antivirals become a clinical reality.
Collapse
Affiliation(s)
- Trairong Chokwassanasakulkit
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | - Victor Baba Oti
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | - Adi Idris
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Nigel Aj McMillan
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia.
| |
Collapse
|
2
|
Oti VB, Idris A, McMillan NAJ. Intranasal antivirals against respiratory syncytial virus: the current therapeutic development landscape. Expert Rev Anti Infect Ther 2024; 22:647-657. [PMID: 38973346 DOI: 10.1080/14787210.2024.2378185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION Respiratory syncytial virus (RSV) causes bronchiolitis and other respiratory issues in immunocompromised individuals, the elderly, and children. After six decades of research, we have only recently seen the approval of two RSV vaccines, Arexvy and Abrysvo. Direct-acting antivirals against RSV have been more difficult to develop with ribavirin and palivizumab giving very modest reductions in hospitalizations and no differences in mortality. Recently, nirsevimab was licensed and has proven to be much more effective when given prophylactically. These are delivered intravenously (IV) and intramuscularly (IM), but an intranasal (IN) antiviral has several advantages in terms of ease of use, lower resource need, and acting at the site of infection. AREAS COVERED In this paper, we review the available literature on the current pre-clinical research landscape of anti-RSV therapeutics tested for IN delivery. EXPERT OPINION As RSV is a respiratory virus that infects both the upper and lower respiratory tracts, efforts are focused on developing a therapeutic that can be delivered via the nasal route. The rationale is to directly target the replicating virus with an obvious respiratory tract tropism. This approach will not only pave the way for a nasal delivery approach aimed at reducing respiratory viral illness but also controlling aerosol virus transmission.
Collapse
Affiliation(s)
- Victor Baba Oti
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - Adi Idris
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Nigel A J McMillan
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
3
|
Motamedi H, Ari MM, Alvandi A, Abiri R. Principle, application and challenges of development siRNA-based therapeutics against bacterial and viral infections: a comprehensive review. Front Microbiol 2024; 15:1393646. [PMID: 38939184 PMCID: PMC11208694 DOI: 10.3389/fmicb.2024.1393646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
While significant progress has been made in understanding and applying gene silencing mechanisms and the treatment of human diseases, there have been still several obstacles in therapeutic use. For the first time, ONPATTRO, as the first small interfering RNA (siRNA) based drug was invented in 2018 for treatment of hTTR with polyneuropathy. Additionally, four other siRNA based drugs naming Givosiran, Inclisiran, Lumasiran, and Vutrisiran have been approved by the US Food and Drug Administration and the European Medicines Agency for clinical use by hitherto. In this review, we have discussed the key and promising advances in the development of siRNA-based drugs in preclinical and clinical stages, the impact of these molecules in bacterial and viral infection diseases, delivery system issues, the impact of administration methods, limitations of siRNA application and how to overcome them and a glimpse into future developments.
Collapse
Affiliation(s)
- Hamid Motamedi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhoushang Alvandi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ramin Abiri
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Shilovskiy IP, Nikolskii AA, Timotievich ED, Kovchina VI, Vishnyakova LI, Yumashev KV, Vinogradova KV, Kaganova MM, Brylina VE, Tyulyubaev VV, Rusak TE, Dyneva ME, Kurbacheva OM, Kudlay DA, Khaitov MR. IL-4 regulates neutrophilic pulmonary inflammation in a mouse model of bronchial asthma. Cytokine 2024; 178:156563. [PMID: 38479048 DOI: 10.1016/j.cyto.2024.156563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/14/2023] [Accepted: 02/28/2024] [Indexed: 04/12/2024]
Abstract
Neutrophilic pulmonary inflammation in asthmatics substantially exacerbates the severity of the disease leading to resistance to conventional corticosteroid therapy. Many studies established the involvement of Th1- and Th17-cells and cytokines produced by them (IFNg, IL-17A, IL-17F etc.) in neutrophilic pulmonary inflammation. Recent studies revealed that IL-4 - a Th2-cytokine regulates neutrophil effector functions and migration. It was showed that IL-4 substantially reduces neutrophilic inflammation of the skin in a mouse model of cutaneous bacterial infection and blood neutrophilia in a mouse model systemic bacterial infection. However, there are no data available regarding the influence of IL-4 on non-infectious pulmonary inflammation. In the current study we investigated the effects of IL-4 in a previously developed mouse model of neutrophilic bronchial asthma. We showed that systemic administration of IL-4 significantly restricts neutrophilic inflammation of the respiratory tract probably through the suppression of Th1-/Th17-immune responses and downregulation of CXCR2. Additionally, pulmonary neutrophilic inflammation could be alleviated by IL-4-dependant polarization of N2 neutrophils and M2 macrophages, expressing anti-inflammatory TGFβ. Considering these, IL-4 might be used for reduction of exaggerated pulmonary neutrophilic inflammation and overcoming corticosteroid insensitivity of asthma patients.
Collapse
Affiliation(s)
- I P Shilovskiy
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation.
| | - A A Nikolskii
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation
| | - E D Timotievich
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation
| | - V I Kovchina
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation
| | - L I Vishnyakova
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation
| | - K V Yumashev
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation
| | - K V Vinogradova
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation; Federal State Budgetary Educational Institution of Higher Education «Moscow state Academy of Veterinary Medicine and Biotechnology - MVA by K.I. Skryabin» of the Ministry of Agriculture of the Russian Federation, 109472, 23, Academician Scriabin St., Moscow, Russian Federation
| | - M M Kaganova
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation; Federal State Budgetary Educational Institution of Higher Education «Moscow state Academy of Veterinary Medicine and Biotechnology - MVA by K.I. Skryabin» of the Ministry of Agriculture of the Russian Federation, 109472, 23, Academician Scriabin St., Moscow, Russian Federation
| | - V E Brylina
- Federal State Budgetary Educational Institution of Higher Education «Moscow state Academy of Veterinary Medicine and Biotechnology - MVA by K.I. Skryabin» of the Ministry of Agriculture of the Russian Federation, 109472, 23, Academician Scriabin St., Moscow, Russian Federation
| | - V V Tyulyubaev
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenovskiy University), 119991, 2/4, Bolshaya Pirogovskaya, St., Moscow, Russian Federation
| | - T E Rusak
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenovskiy University), 119991, 2/4, Bolshaya Pirogovskaya, St., Moscow, Russian Federation
| | - M E Dyneva
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation
| | - O M Kurbacheva
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation
| | - D A Kudlay
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation
| | - M R Khaitov
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation; Federal State Autonomous Educational Institution of Higher Education «N.I. Pirogov Russian National Research Medical University» of the Ministry of Health of the Russian Federation, 117997, 1, Ostrovityanova St., Moscow, Russian Federation
| |
Collapse
|
5
|
Vu Thi H, Tran LT, Nguyen HQ, Chu DT. RNA therapeutics for respiratory diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 203:257-271. [PMID: 38360002 DOI: 10.1016/bs.pmbts.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
It has become increasingly common to utilize RNA treatment to treat respiratory illnesses. Experimental research on both people and animals has advanced quickly since the turn of the twenty-first century in an effort to discover a treatment for respiratory ailments that could not be accomplished with earlier techniques, specifically in treating prevalent respiratory diseases such as lung cancer, chronic obstructive pulmonary disease (COPD), respiratory infections caused by viruses, and asthma. This chapter has provided a comprehensive overview of the scientific evidence in applying RNA therapy to treat respiratory diseases. The chapter describes the development of this therapy for respiratory diseases. At the same time, the types of RNA therapy for respiratory diseases have been highlighted. In addition, the mechanism of this therapy for respiratory diseases has also been covered. These insights are indispensable if this therapy is to be developed widely.
Collapse
Affiliation(s)
- Hue Vu Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Linh Thao Tran
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Huy Quang Nguyen
- LMI DRISA, Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
6
|
Miguel Pereira Souza L, Camacho Lima M, Filipe Silva Bezerra L, Silva Pimentel A. Transposition of polymer-encapsulated small interfering RNA through lung surfactant models at the air-water interface. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Shilovskiy I, Nikonova A, Barvinskaia E, Kaganova M, Nikolskii A, Vishnyakova L, Kovchina V, Yumashev K, Korneev A, Petukhova O, Kudlay D, Smirnov V, Andreev S, Kozhikhova K, Shatilov A, Shatilova A, Maerle A, Sergeev I, Trofimov D, Khaitov M. Anti-inflammatory effect of siRNAs targeted il-4 and il-13 in a mouse model of allergic rhinitis. Allergy 2022; 77:2829-2832. [PMID: 35538848 DOI: 10.1111/all.15366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/23/2022] [Accepted: 05/08/2022] [Indexed: 01/27/2023]
Affiliation(s)
| | - Alexandra Nikonova
- NRC Institute of Immunology FMBA, Moscow, Russia.,RUDN University, Moscow, Russia
| | | | | | | | | | | | | | | | | | - Dmitry Kudlay
- NRC Institute of Immunology FMBA, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Valeriy Smirnov
- NRC Institute of Immunology FMBA, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | | | | | - Artem Maerle
- NRC Institute of Immunology FMBA, Moscow, Russia
| | - Ilya Sergeev
- NRC Institute of Immunology FMBA, Moscow, Russia
| | | | - Musa Khaitov
- NRC Institute of Immunology FMBA, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
8
|
Gao J, Xia Z, Vohidova D, Joseph J, Luo JN, Joshi N. Progress in non-viral localized delivery of siRNA therapeutics for pulmonary diseases. Acta Pharm Sin B 2022; 13:1400-1428. [PMID: 37139423 PMCID: PMC10150162 DOI: 10.1016/j.apsb.2022.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/01/2022] Open
Abstract
Emerging therapies based on localized delivery of siRNA to lungs have opened up exciting possibilities for treatment of different lung diseases. Localized delivery of siRNA to lungs has shown to result in severalfold higher lung accumulation than systemic route, while minimizing non-specific distribution in other organs. However, to date, only 2 clinical trials have explored localized delivery of siRNA for pulmonary diseases. Here we systematically reviewed recent advances in the field of pulmonary delivery of siRNA using non-viral approaches. We firstly introduce the routes of local administration and analyze the anatomical and physiological barriers towards effective local delivery of siRNA in lungs. We then discuss current progress in pulmonary delivery of siRNA for respiratory tract infections, chronic obstructive pulmonary diseases, acute lung injury, and lung cancer, list outstanding questions, and highlight directions for future research. We expect this review to provide a comprehensive understanding of current advances in pulmonary delivery of siRNA.
Collapse
|
9
|
Ip S, Ms S, Av K, Aa N, Ed B, Vi K, Li V, Vn T, Kv Y, Mm K, Ve B, I S, A M, DA K, O P, M R K. The mixture of siRNAs targeted to IL-4 and IL-13 genes effectively reduces the airway hyperreactivity and allergic inflammation in a mouse model of asthma. Int Immunopharmacol 2021; 103:108432. [PMID: 34923422 DOI: 10.1016/j.intimp.2021.108432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Bronchial asthma (BA) is one of the most common chronic inflammatory disease of airways. There are huge experimental data indicating that Th2-cytokines IL-4 and IL-13 play a key role in BA pathogenesis. They are implicated in the IgE synthesis, eosinophil infiltration to the lungs and in the development of airway hyperreactivity (AHR), that makes these cytokines the promising targets. Neutralization of IL-4 and IL-13 or its common receptor chain (IL-4Rα) by monoclonal antibodies substantially reduce asthma symptoms. RNA interference provides a novel method for regulation of gene expression by siRNA molecules. In this study we evaluated whether the siRNA targeted to IL-4 and IL-13 reduce BA symptoms in mice model. Experimental BA was induced in BALB/c mice by sensitization to ovalbumin allergen followed by intranasal challenge. The intranasal delivery of siRNAs targeted to IL-4 and IL-13 inhibited the lung expression of these cytokines by more than 50% that led to the attenuation of AHR and pulmonary inflammation; the quantity of eosinophils in lungs which are one of the major inflammatory cells involved in allergic asthma pathogenesis decreased by more than 50% after siRNA treatment. These data support the possibility of a dual IL-4 and IL-13 inhibition by locally delivered siRNAs which in turn leads to the suppression of allergen-induced pulmonary inflammation and AHR.
Collapse
Affiliation(s)
- Shilovskiy Ip
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation.
| | - Sundukova Ms
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Korneev Av
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Nikolskii Aa
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Barvinskaya Ed
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Kovchina Vi
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Vishniakova Li
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Turenko Vn
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Yumashev Kv
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Kaganova Mm
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Brylina Ve
- Federal State Budgetary Educational Institution of Higher Education «Moscow state Academy of Veterinary Medicine and Biotechnology - MVA by K.I. Skryabin» of the Ministry of Agriculture of the Russian Federation, 109472, Moscow, Russian Federation
| | - Sergeev I
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Maerle A
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Kudlay DA
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenovskiy University), 119991, Moscow, Russian Federation
| | - Petukhova O
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Khaitov M R
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation; Federal State Autonomous Educational Institution of Higher Education «N.I. Pirogov Russian National Research Medical University» of the Ministry of Health of the Russian Federation, 117997, Moscow, Russian Federation
| |
Collapse
|
10
|
Tolksdorf B, Nie C, Niemeyer D, Röhrs V, Berg J, Lauster D, Adler JM, Haag R, Trimpert J, Kaufer B, Drosten C, Kurreck J. Inhibition of SARS-CoV-2 Replication by a Small Interfering RNA Targeting the Leader Sequence. Viruses 2021; 13:v13102030. [PMID: 34696460 PMCID: PMC8539227 DOI: 10.3390/v13102030] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected almost 200 million people worldwide and led to approximately 4 million deaths as of August 2021. Despite successful vaccine development, treatment options are limited. A promising strategy to specifically target viral infections is to suppress viral replication through RNA interference (RNAi). Hence, we designed eight small interfering RNAs (siRNAs) targeting the highly conserved 5′-untranslated region (5′-UTR) of SARS-CoV-2. The most promising candidate identified in initial reporter assays, termed siCoV6, targets the leader sequence of the virus, which is present in the genomic as well as in all subgenomic RNAs. In assays with infectious SARS-CoV-2, it reduced replication by two orders of magnitude and prevented the development of a cytopathic effect. Moreover, it retained its activity against the SARS-CoV-2 alpha variant and has perfect homology against all sequences of the delta variant that were analyzed by bioinformatic means. Interestingly, the siRNA was even highly active in virus replication assays with the SARS-CoV-1 family member. This work thus identified a very potent siRNA with a broad activity against various SARS-CoV viruses that represents a promising candidate for the development of new treatment options.
Collapse
Affiliation(s)
- Beatrice Tolksdorf
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany; (B.T.); (V.R.); (J.B.)
| | - Chuanxiong Nie
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (C.N.); (D.L.); (R.H.)
| | - Daniela Niemeyer
- German Centre for Infection Research (DZIF), Charitéplatz 1, 10117 Berlin, Germany; (D.N.); (C.D.)
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Viola Röhrs
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany; (B.T.); (V.R.); (J.B.)
| | - Johanna Berg
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany; (B.T.); (V.R.); (J.B.)
| | - Daniel Lauster
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (C.N.); (D.L.); (R.H.)
| | - Julia M. Adler
- Department of Veterinary Medicine, Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (J.M.A.); (J.T.); (B.K.)
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (C.N.); (D.L.); (R.H.)
| | - Jakob Trimpert
- Department of Veterinary Medicine, Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (J.M.A.); (J.T.); (B.K.)
| | - Benedikt Kaufer
- Department of Veterinary Medicine, Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (J.M.A.); (J.T.); (B.K.)
| | - Christian Drosten
- German Centre for Infection Research (DZIF), Charitéplatz 1, 10117 Berlin, Germany; (D.N.); (C.D.)
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jens Kurreck
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany; (B.T.); (V.R.); (J.B.)
- Correspondence: ; Tel.:+ 49-30-314-27581
| |
Collapse
|
11
|
Khaitov M, Nikonova A, Shilovskiy I, Kozhikhova K, Kofiadi I, Vishnyakova L, Nikolskii A, Gattinger P, Kovchina V, Barvinskaia E, Yumashev K, Smirnov V, Maerle A, Kozlov I, Shatilov A, Timofeeva A, Andreev S, Koloskova O, Kuznetsova N, Vasina D, Nikiforova M, Rybalkin S, Sergeev I, Trofimov D, Martynov A, Berzin I, Gushchin V, Kovalchuk A, Borisevich S, Valenta R, Khaitov R, Skvortsova V. Silencing of SARS-CoV-2 with modified siRNA-peptide dendrimer formulation. Allergy 2021; 76:2840-2854. [PMID: 33837568 PMCID: PMC8251148 DOI: 10.1111/all.14850] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Background First vaccines for prevention of Coronavirus disease 2019 (COVID‐19) are becoming available but there is a huge and unmet need for specific forms of treatment. In this study we aimed to evaluate the anti‐SARS‐CoV‐2 effect of siRNA both in vitro and in vivo. Methods To identify the most effective molecule out of a panel of 15 in silico designed siRNAs, an in vitro screening system based on vectors expressing SARS‐CoV‐2 genes fused with the firefly luciferase reporter gene and SARS‐CoV‐2‐infected cells was used. The most potent siRNA, siR‐7, was modified by Locked nucleic acids (LNAs) to obtain siR‐7‐EM with increased stability and was formulated with the peptide dendrimer KK‐46 for enhancing cellular uptake to allow topical application by inhalation of the final formulation – siR‐7‐EM/KK‐46. Using the Syrian Hamster model for SARS‐CoV‐2 infection the antiviral capacity of siR‐7‐EM/KK‐46 complex was evaluated. Results We identified the siRNA, siR‐7, targeting SARS‐CoV‐2 RNA‐dependent RNA polymerase (RdRp) as the most efficient siRNA inhibiting viral replication in vitro. Moreover, we showed that LNA‐modification and complexation with the designed peptide dendrimer enhanced the antiviral capacity of siR‐7 in vitro. We demonstrated significant reduction of virus titer and lung inflammation in animals exposed to inhalation of siR‐7‐EM/KK‐46 in vivo. Conclusions Thus, we developed a therapeutic strategy for COVID‐19 based on inhalation of a modified siRNA‐peptide dendrimer formulation. The developed medication is intended for inhalation treatment of COVID‐19 patients.
Collapse
Affiliation(s)
| | - Alexandra Nikonova
- NRC Institute of Immunology FMBA Moscow Russia
- Mechnikov Research Institute for Vaccines and Sera Moscow Russia
| | | | | | | | | | | | | | | | | | | | | | | | - Ivan Kozlov
- NRC Institute of Immunology FMBA Moscow Russia
| | | | | | | | | | - Nadezhda Kuznetsova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N. F.Gamaleya” of the Ministry of Health of the Russian Federation Moscow Russia
| | - Daria Vasina
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N. F.Gamaleya” of the Ministry of Health of the Russian Federation Moscow Russia
| | - Maria Nikiforova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N. F.Gamaleya” of the Ministry of Health of the Russian Federation Moscow Russia
| | | | | | | | | | - Igor Berzin
- Federal Medico‐biological Agency of Russia (FMBA Russia) Moscow Russia
| | - Vladimir Gushchin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N. F.Gamaleya” of the Ministry of Health of the Russian Federation Moscow Russia
| | - Aleksey Kovalchuk
- 48 Central Research Institute of the Ministry of Defense of the Russian Federation Moscow Russia
| | - Sergei Borisevich
- 48 Central Research Institute of the Ministry of Defense of the Russian Federation Moscow Russia
| | - Rudolf Valenta
- NRC Institute of Immunology FMBA Moscow Russia
- Medical University of Vienna Vienna Austria
| | | | | |
Collapse
|
12
|
Borochova K, Niespodziana K, Focke-Tejkl M, Hofer G, Keller W, Valenta R. Dissociation of the respiratory syncytial virus F protein-specific human IgG, IgA and IgM response. Sci Rep 2021; 11:3551. [PMID: 33574352 PMCID: PMC7878790 DOI: 10.1038/s41598-021-82893-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/20/2020] [Indexed: 01/30/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is one of the most important causes of severe respiratory tract infections in early childhood. The only prophylactic protection is the neutralizing antibody, palivizumab, which targets a conformational epitope of the RSV fusion (F) protein. The F protein is generated as a F0 precursor containing two furin cleavage sites allowing excision of the P27 fragment and then gives rise to a fusion-competent version consisting of the N-terminal F2 subunit and the a C-terminal F1 subunits linked by two disulphide bonds. To investigate natural human F-specific antibody responses, F2 conferring the species-specificity of RSV, was expressed in Escherichia coli. Furthermore, the F0 protein, comprising both subunits F2 and F1, was expressed as palivizumab-reactive glycoprotein in baculovirus-infected insect cells. Six overlapping F2-derived peptides lacking secondary structure were synthesized. The analysis of IgG, IgA and IgM responses of adult subjects to native versions and denatured forms of F2 and F0 and to unfolded F2-derived peptides revealed that mainly non-conformational F epitopes, some of which represented cryptic epitopes which are not exposed on the proteins were recognized. Furthermore, we found a dissociation of IgG, IgA and IgM antibody responses to F epitopes with F2 being a major target for the F-specific IgM response. The scattered and dissociated immune response to F may explain why the natural RSV-specific antibody response is only partially protective underlining the need for vaccines focusing human antibody responses towards neutralizing RSV epitopes.
Collapse
Affiliation(s)
- Kristina Borochova
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Katarzyna Niespodziana
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hofer
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia.
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia.
- Karl Landsteiner University of Health Sciences, Krems, Austria.
| |
Collapse
|
13
|
Ding L, Tang S, Wyatt TA, Knoell DL, Oupický D. Pulmonary siRNA delivery for lung disease: Review of recent progress and challenges. J Control Release 2021; 330:977-991. [PMID: 33181203 DOI: 10.1016/j.jconrel.2020.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/12/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Lung diseases are a leading cause of mortality worldwide and there exists urgent need for new therapies. Approval of the first siRNA treatments in humans has opened the door for further exploration of this therapeutic strategy for other disease states. Pulmonary delivery of siRNA-based biopharmaceuticals offers the potential to address multiple unmet medical needs in lung-related diseases because of the specific physiology of the lung and characteristic properties of siRNA. Inhalation-based siRNA delivery designed for efficient, targeted delivery to specific cells within the lung holds great promise. Efficient delivery of siRNA directly to the lung, however, is relatively complex. This review focuses on the barriers that impact pulmonary siRNA delivery and successful recent approaches to advance this field forward. We focus on the pulmonary barriers that affect siRNA delivery, the disease-dependent pathological changes and their role in pulmonary disease and impact on siRNA delivery, as well as the recent development on the pulmonary siRNA delivery systems.
Collapse
Affiliation(s)
- Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Siyuan Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Todd A Wyatt
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Nebraska Medical Center, Department of Veterans Affairs Nebraska, Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Daren L Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
14
|
Respiratory syncytial virus upregulates IL-33 expression in mouse model of virus-induced inflammation exacerbation in OVA-sensitized mice and in asthmatic subjects. Cytokine 2020; 138:155349. [PMID: 33132030 DOI: 10.1016/j.cyto.2020.155349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Bronchial asthma (BA) is a chronic disease of the airways. The great majority of BA exacerbations are associated with respiratory viral infections. Recent findings point out a possible role of proinflammatory cytokine interleukin-33 (IL-33) in the development of atopic diseases. Although, little is known about the role of IL-33 in virus-induced BA exacerbations. METHODS We used mouse models of RSV (respiratory syncytial virus)-induced inflammation exacerbation in OVA-sensitized mice and RSV infection alone in adult animals to characterize expression of il33 in the mouse lungs. Moreover, we studied the influence of il33 knockdown with intranasally administrated siRNA on the development of RSV-induced inflammation exacerbation. In addition, we evaluated the expression of IL33 in the ex vivo stimulated PBMCs from allergic asthma patients and healthy subjects with and without confirmed acute respiratory viral infection. RESULTS Using mouse models, we found that infection with RSV drives enhanced il33 mRNA expression in the mouse lung. Treatment with anti-il33 siRNA diminishes airway inflammation in the lungs (we found a decrease in the number of inflammatory cells in the lungs and in the severity of histopathological alterations) of mice with RSV-induced inflammation exacerbation, but do not influence viral load. Elevated level of the IL33 mRNA was detected in ex vivo stimulated blood lymphocytes of allergic asthmatics infected with respiratory viruses. RSV and rhinovirus were the most detected viruses in volunteers with symptoms of respiratory infection. CONCLUSION The present study provides additional evidence of the crucial role of the IL-33 in pathogenesis of RSV infection and virus-induced allergic bronchial asthma exacerbations.
Collapse
|
15
|
Li K, Zhang F, Wei L, Han Z, Liu X, Pan Y, Guo C, Han W. Recombinant Human Elafin Ameliorates Chronic Hyperoxia-Induced Lung Injury by Inhibiting Nuclear Factor-Kappa B Signaling in Neonatal Mice. J Interferon Cytokine Res 2020; 40:320-330. [PMID: 32460595 DOI: 10.1089/jir.2019.0241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The study aimed to investigate whether recombinant human elafin can prevent hyperoxia-induced pulmonary inflammation in newborn mice, and to explore the mechanism underlying the inhibitory effects of elafin on nuclear factor-kappa B (NF-κB) signaling pathway. Neonatal C57BL/6J mice were exposed to 85% O2 for 1, 3, 7, 14, or 21 days. Then, elafin was administered daily for 20 days through intraperitoneal injection. After treatment, morphometric analysis, quantitative real-time polymerase chain reaction, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and Western blotting were carried out to determine the key markers involved in inflammatory process and the potential signaling pathways in hyperoxia-exposed newborn mice treated with elafin. In neonatal bronchopulmonary dysplasia (BPD) mice, hyperoxia induced apoptosis by increasing Bcl-2-associated X protein expression, and triggered inflammation by upregulating the expression levels of interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor-α. Moreover, hyperoxia activated NF-κB signaling pathway by promoting the nuclear translocation of p65 in lung tissue. However, all these changes could be inhibited or reversed by elafin at least partially. Elafin reduced apoptosis, suppressed inflammation cytokines, and improved NF-κB p65 nuclear accumulation in hyperoxia-exposed neonatal mice, indicating that this recombinant protein can serve as a novel target for the treatment of BPD.
Collapse
Affiliation(s)
- Kexin Li
- Laboratory Animal Center, Chongqing Medical University, Chongqing, P.R. China
| | - Fengmei Zhang
- Laboratory Animal Center, Chongqing Medical University, Chongqing, P.R. China
| | - Li Wei
- Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, P.R. China
| | - Zhigang Han
- Laboratory Animal Center, Chongqing Medical University, Chongqing, P.R. China
| | - Xuwei Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Yongquan Pan
- Laboratory Animal Center, Chongqing Medical University, Chongqing, P.R. China
| | - Chunbao Guo
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Department of Hepatology and Liver Transplantation Center, Children's Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Wenli Han
- Laboratory Animal Center, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
16
|
Dua K, Wadhwa R, Singhvi G, Rapalli V, Shukla SD, Shastri MD, Gupta G, Satija S, Mehta M, Khurana N, Awasthi R, Maurya PK, Thangavelu L, S R, Tambuwala MM, Collet T, Hansbro PM, Chellappan DK. The potential of siRNA based drug delivery in respiratory disorders: Recent advances and progress. Drug Dev Res 2019; 80:714-730. [DOI: 10.1002/ddr.21571] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/11/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology Sydney Ultimo New South Wales Australia
- Centenary InstituteRoyal Prince Alfred Hospital Camperdown New South Wales Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and PharmacyUniversity of Newcastle Callaghan New South Wales Australia
| | - Ridhima Wadhwa
- Faculty of Life Sciences and BiotechnologySouth Asian University New Delhi India
| | - Gautam Singhvi
- Department of PharmacyBirla Institute of Technology and Science (BITS) Pilani India
| | | | - Shakti Dhar Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and PharmacyUniversity of Newcastle Callaghan New South Wales Australia
| | - Madhur D. Shastri
- School of Health Sciences, College of Health and MedicineUniversity of Tasmania Launceston Australia
| | - Gaurav Gupta
- School of PharmacySuresh Gyan Vihar University Jaipur India
| | - Saurabh Satija
- School of Pharmaceutical SciencesLovely Professional University Phagwara Punjab India
| | - Meenu Mehta
- School of Pharmaceutical SciencesLovely Professional University Phagwara Punjab India
| | - Navneet Khurana
- School of Pharmaceutical SciencesLovely Professional University Phagwara Punjab India
| | - Rajendra Awasthi
- Amity Institute of PharmacyAmity University Noida Uttar Pradesh India
| | - Pawan Kumar Maurya
- Department of BiochemistryCentral University of Haryana Mahendergarh Haryana India
| | - Lakshmi Thangavelu
- Nanobiomedicine Lab, Department of Pharmacology, Saveetha Dental CollegeSaveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu India
| | - Rajeshkumar S
- Nanobiomedicine Lab, Department of Pharmacology, Saveetha Dental CollegeSaveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu India
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical SciencesUlster University, Coleraine London United Kingdom of Great Britain and Northern Ireland
| | - Trudi Collet
- Inovative Medicines Group, Institute of Health and Biomedical InnovationQueensland University of Technology Brisbane Queensland Australia
| | - Philip M. Hansbro
- Centenary InstituteRoyal Prince Alfred Hospital Camperdown New South Wales Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and PharmacyUniversity of Newcastle Callaghan New South Wales Australia
- School of Life SciencesUniversity of Technology Sydney Sydney New South Wales Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of PharmacyInternational Medical University Kuala Lumpur Malaysia
| |
Collapse
|
17
|
Martín-Vicente M, Resino S, Martínez I. siRNA-Mediated Simultaneous Regulation of the Cellular Innate Immune Response and Human Respiratory Syncytial Virus Replication. Biomolecules 2019; 9:biom9050165. [PMID: 31035368 PMCID: PMC6572644 DOI: 10.3390/biom9050165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) infection is a common cause of severe lower respiratory tract diseases such as bronchiolitis and pneumonia. Both virus replication and the associated inflammatory immune response are believed to be behind these pathologies. So far, no vaccine or effective treatment is available for this viral infection. With the aim of finding new strategies to counteract HRSV replication and modulate the immune response, specific small interfering RNAs (siRNAs) were generated targeting the mRNA coding for the viral fusion (F) protein or nucleoprotein (N), or for two proteins involved in intracellular immune signaling, which are named tripartite motif-containing protein 25 (TRIM25) and retinoic acid-inducible gene-I (RIG-I). Furthermore, two additional bispecific siRNAs were designed that silenced F and TRIM25 (TRIM25/HRSV-F) or N and RIG-I (RIG-I/HRSV-N) simultaneously. All siRNAs targeting N or F, but not those silencing TRIM25 or RIG-I alone, significantly reduced viral titers. However, while siRNAs targeting F inhibited only the expression of the F mRNA and protein, the siRNAs targeting N led to a general inhibition of viral mRNA and protein expression. The N-targeting siRNAs also induced a drastic decrease in the expression of genes of the innate immune response. These results show that both virus replication and the early innate immune response can be regulated by targeting distinct viral products with siRNAs, which may be related to the different role of each protein in the life cycle of the virus.
Collapse
MESH Headings
- Base Sequence
- Cell Line, Tumor
- Gene Expression Regulation, Viral
- Gene Silencing
- Genome, Viral
- Humans
- Immunity, Innate/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- RNA, Viral/metabolism
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/growth & development
- Respiratory Syncytial Virus, Human/immunology
- Respiratory Syncytial Virus, Human/physiology
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Replication/physiology
Collapse
Affiliation(s)
- María Martín-Vicente
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain.
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain.
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain.
| |
Collapse
|
18
|
Shilovskiy IP, Sundukova MS, Babakhin АА, Gaisina AR, Maerle AV, Sergeev IV, Nikolskiy AA, Barvinckaya ED, Kovchina VI, Kudlay DA, Nikonova AA, Khaitov MR. Experimental protocol for development of adjuvant-free murine chronic model of allergic asthma. J Immunol Methods 2019; 468:10-19. [PMID: 30880263 DOI: 10.1016/j.jim.2019.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 03/01/2019] [Accepted: 03/13/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mouse models of allergic asthma play a crucial role in exploring of asthma pathogenesis and testing of novel anti-inflammatory drugs. Widely used acute asthma models usually developed with adjuvant (aluminum hydroxide (alum)) do not reproduce one of the main asthma feature - airway remodeling while chronic asthma model mimic the pathophysiology of human disease. Moreover, the use of alum causes distress in experimental animals and impedes the test of adjuvant-containing drugs. In this study, we aimed to develop a chronic adjuvant-free asthma model with pronounced asthmatic phenotype. METHODS Female BALB/c mice were divided into 3 groups. The first group was sensitized with intraperitoneal injections of ovalbumin (OVA) emulsified in aluminum hydroxide on days 0, 14, 28 followed by two stages of intranasally challenge with OVA on days 41-43 and 62-64. The second group was subcutaneously sensitized with the same dose of OVA without adjuvant and challenged on the same days. The third group (negative control) included mice which did not received any kind of treatment (i.e. sensitization and challenge). Serum levels of OVA-specific IgE, IgG2a and IgG1 antibodies were detected by ELISA. Airway hyper-responsiveness was measured by non-invasive plethysmography on days 44 and 65. Bronchoalveolar lavage fluids (BALF) sampled in all groups on days 45 and 66 were analyzed by light microscopy. The left lung was removed for histological analysis. The IL-4 and IFNγ mRNA expression in BALF cells was evaluated by RT-PCR. RESULTS The OVA-specific IgE antibody response was two-fold increased in mice from adjuvant-free group compared to the adjuvant group that reflects reorientation of immune response towards Th2 phenotype. At the same time, the level of OVA-specific IgG1 and IgG2a antibodies was increased in the adjuvant group. Airway hyperresponsiveness to methacholine in mice of both experimental groups was two-fold higher than in control. Analysis of cell composition in BAL has shown a significant increase in eosinophil count in both experimental groups that indicate the development of allergic inflammation. Lung histology revealed airway remodeling in both experimental groups including goblet cell hyperplasia/metaplasia, thickening of airway walls, collagen deposition in the wall of distal airways. Additionally, the tendency to develop hypertrophy of bronchial smooth muscle layer was observed. Study of gene expression in BAL cells revealed the increase of IL-4 level in both adjuvant and adjuvant-free groups while IFNγ expression in both experimental groups was similar to control group. CONCLUSION We have developed a chronic adjuvant-free mouse asthma model which possesses all necessary features of the disease including airway remodeling and is more suitable for pre-clinical evaluation of novel therapeutic approaches including adjuvant-containing drugs.
Collapse
Affiliation(s)
- I P Shilovskiy
- National Research Center - Institute of immunology of Federal Medico-Biological Agency, 115478, 24, Kashirskoye Shosse, Moscow, Russia.
| | - M S Sundukova
- National Research Center - Institute of immunology of Federal Medico-Biological Agency, 115478, 24, Kashirskoye Shosse, Moscow, Russia
| | - А А Babakhin
- National Research Center - Institute of immunology of Federal Medico-Biological Agency, 115478, 24, Kashirskoye Shosse, Moscow, Russia
| | - A R Gaisina
- National Research Center - Institute of immunology of Federal Medico-Biological Agency, 115478, 24, Kashirskoye Shosse, Moscow, Russia
| | - A V Maerle
- National Research Center - Institute of immunology of Federal Medico-Biological Agency, 115478, 24, Kashirskoye Shosse, Moscow, Russia
| | - I V Sergeev
- National Research Center - Institute of immunology of Federal Medico-Biological Agency, 115478, 24, Kashirskoye Shosse, Moscow, Russia
| | - A A Nikolskiy
- National Research Center - Institute of immunology of Federal Medico-Biological Agency, 115478, 24, Kashirskoye Shosse, Moscow, Russia
| | - E D Barvinckaya
- National Research Center - Institute of immunology of Federal Medico-Biological Agency, 115478, 24, Kashirskoye Shosse, Moscow, Russia
| | - V I Kovchina
- National Research Center - Institute of immunology of Federal Medico-Biological Agency, 115478, 24, Kashirskoye Shosse, Moscow, Russia
| | - D A Kudlay
- National Research Center - Institute of immunology of Federal Medico-Biological Agency, 115478, 24, Kashirskoye Shosse, Moscow, Russia
| | - A A Nikonova
- National Research Center - Institute of immunology of Federal Medico-Biological Agency, 115478, 24, Kashirskoye Shosse, Moscow, Russia; Mechnikov Research Institute for vaccines and sera, 105064, 5A, M. Kazenny Per, Moscow, Russia
| | - M R Khaitov
- National Research Center - Institute of immunology of Federal Medico-Biological Agency, 115478, 24, Kashirskoye Shosse, Moscow, Russia
| |
Collapse
|
19
|
Kozhikhova KV, Andreev SM, Shilovskiy IP, Timofeeva AV, Gaisina AR, Shatilov AA, Turetskiy EA, Andreev IM, Smirnov VV, Dvornikov AS, Khaitov MR. A novel peptide dendrimer LTP efficiently facilitates transfection of mammalian cells. Org Biomol Chem 2019; 16:8181-8190. [PMID: 30357248 DOI: 10.1039/c8ob02039f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
One of the urgent problems of gene therapy is the search for effective transfection methods. Synthetic cationic peptides (CPs) are considered to be one of the most promising approaches for intracellular transport of oligonucleotides. Almost unlimited possibilities of the architectural design of CPs (linear and cyclic structures with a variation of chirality as well as dendrimers) make CPs an effective tunable carrier in this field. Cationic peptide dendrimers (PDs), as a relatively new direction, have significant advantages as gene delivery vehicles by virtue of non-natural ε-amide bonds that significantly increase their resistance to proteolysis. Moreover they also possess much lower cytotoxicity than linear peptides, which is crucial for the potential clinical application of CPs. In a further development of oligonucleotide delivery systems, we have synthesized a collection of 14 CPs, including linear peptides, lipopeptides and PDs. Their activity was evaluated by transfection of 293T cells with plasmids containing reporter genes encoding luciferase or a green fluorescent protein. The obtained results demonstrated that the greatest activity was exhibited by PDs, particularly LTP, an arginine-rich peptide dendrimer, which possesses low cytotoxic and hemolytic activity. The peptide exhibited high cell-penetrating activity, confirmed by fast dissipation of the membrane potential of cells probed by dis-C3-(5). The quantitative analysis of labelled LTP in tissue samples of mice revealed that the Cy5-LTP/siRNA complexes have a reasonable tropism to lung tissues.
Collapse
|
20
|
Nosova AS, Koloskova OO, Nikonova AA, Simonova VA, Smirnov VV, Kudlay D, Khaitov MR. Diversity of PEGylation methods of liposomes and their influence on RNA delivery. MEDCHEMCOMM 2019; 10:369-377. [PMID: 31015904 PMCID: PMC6457174 DOI: 10.1039/c8md00515j] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/10/2019] [Indexed: 12/18/2022]
Abstract
Gene therapy is a promising approach for personalized medicine, but its application in humans requires development of efficient and safe vehicles. PEGylated liposomes are some of the most suitable delivery systems for nucleic acids because of their stability under physiological conditions and prolonged circulation time, compared to conventional and other types of "stealth" liposomes. In vitro/in vivo activity of PEGylated liposomes is highly dependent on PEG motif abundance. The process of "stealth" coverage formation is a very important parameter for efficient transfection assays and further fate determination of the PEG layer after tissue penetration. In this review, we discuss the latest methods of PEGylated liposome preparation.
Collapse
Affiliation(s)
- A S Nosova
- NRC Institute of Immunology FMBA of Russia , Moscow , Russia .
| | - O O Koloskova
- NRC Institute of Immunology FMBA of Russia , Moscow , Russia .
| | - A A Nikonova
- NRC Institute of Immunology FMBA of Russia , Moscow , Russia .
- Mechnikov Research Institute of Vaccines and Sera , Moscow , Russia
| | - V A Simonova
- I. M. Sechenov First Moscow State Medical University , Moscow , Russia
| | - V V Smirnov
- NRC Institute of Immunology FMBA of Russia , Moscow , Russia .
- I. M. Sechenov First Moscow State Medical University , Moscow , Russia
| | - D Kudlay
- NRC Institute of Immunology FMBA of Russia , Moscow , Russia .
| | - M R Khaitov
- NRC Institute of Immunology FMBA of Russia , Moscow , Russia .
| |
Collapse
|
21
|
Nosova AS, Koloskova OO, Nikonova AA, Simonova VA, Smirnov VV, Kudlay D, Khaitov MR. Diversity of PEGylation methods of liposomes and their influence on RNA delivery. MEDCHEMCOMM 2019. [DOI: 10.1039/c8md00515j%0a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A brief review and comparison of the methods of PEGylation of liposomal particles and their influence on the delivery of RNA.
Collapse
Affiliation(s)
- A. S. Nosova
- NRC Institute of Immunology FMBA of Russia
- Moscow
- Russia
| | | | - A. A. Nikonova
- NRC Institute of Immunology FMBA of Russia
- Moscow
- Russia
- Mechnikov Research Institute of Vaccines and Sera
- Moscow
| | - V. A. Simonova
- I. M. Sechenov First Moscow State Medical University
- Moscow
- Russia
| | - V. V. Smirnov
- NRC Institute of Immunology FMBA of Russia
- Moscow
- Russia
- I. M. Sechenov First Moscow State Medical University
- Moscow
| | - D. Kudlay
- NRC Institute of Immunology FMBA of Russia
- Moscow
- Russia
| | - M. R. Khaitov
- NRC Institute of Immunology FMBA of Russia
- Moscow
- Russia
| |
Collapse
|
22
|
Ha SG, Dileepan M, Ge XN, Kang BN, Greenberg YG, Rao A, Muralidhar G, Medina-Kauwe L, Thompson MA, Pabelick CM, O'Grady SM, Rao SP, Sriramarao P. Knob protein enhances epithelial barrier integrity and attenuates airway inflammation. J Allergy Clin Immunol 2018; 142:1808-1817.e3. [PMID: 29522849 PMCID: PMC6126992 DOI: 10.1016/j.jaci.2018.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 12/12/2017] [Accepted: 01/29/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Altered epithelial physical and functional barrier properties along with TH1/TH2 immune dysregulation are features of allergic asthma. Regulation of junction proteins to improve barrier function of airway epithelial cells has the potential for alleviation of allergic airway inflammation. OBJECTIVE We sought to determine the immunomodulatory effect of knob protein of the adenoviral capsid on allergic asthma and to investigate its mechanism of action on airway epithelial junction proteins and barrier function. METHODS Airway inflammation, including junction protein expression, was evaluated in allergen-challenged mice with and without treatment with knob. Human bronchial epithelial cells were exposed to knob, and its effects on expression of junction proteins and barrier integrity were determined. RESULTS Administration of knob to allergen-challenged mice suppressed airway inflammation (eosinophilia, airway hyperresponsiveness, and IL-5 levels) and prevented allergen-induced loss of airway epithelial occludin and E-cadherin expression. Additionally, knob decreased expression of TH2-promoting inflammatory mediators, specifically IL-33, by murine lung epithelial cells. At a cellular level, treatment of human bronchial epithelial cells with knob activated c-Jun N-terminal kinase, increased expression of occludin and E-cadherin, and enhanced epithelial barrier integrity. CONCLUSION Increased expression of junction proteins mediated by knob leading to enhanced epithelial barrier function might mitigate the allergen-induced airway inflammatory response, including asthma.
Collapse
Affiliation(s)
- Sung Gil Ha
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | - Mythili Dileepan
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | - Xiao Na Ge
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | - Bit Na Kang
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | - Yana G Greenberg
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | - Amrita Rao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | | | - Lali Medina-Kauwe
- Department of Biomedical Sciences, Cedars-Sinai Medical Center and Geffen School of Medicine, University of California-Los Angeles, Los Angeles, Calif
| | | | - Christina M Pabelick
- Departments of Anesthesiology and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minn
| | - Scott M O'Grady
- Departments of Animal Science and Integrative Biology and Physiology, University of Minnesota, St Paul, Minn
| | - Savita P Rao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | - P Sriramarao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn; Department of Medicine, University of Minnesota, Minneapolis, Minn.
| |
Collapse
|
23
|
Edwards MR, Walton RP, Jackson DJ, Feleszko W, Skevaki C, Jartti T, Makrinoti H, Nikonova A, Shilovskiy IP, Schwarze J, Johnston SL, Khaitov MR. The potential of anti-infectives and immunomodulators as therapies for asthma and asthma exacerbations. Allergy 2018; 73:50-63. [PMID: 28722755 PMCID: PMC7159495 DOI: 10.1111/all.13257] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2017] [Indexed: 12/30/2022]
Abstract
Asthma is responsible for approximately 25,000 deaths annually in Europe despite available medicines that maintain asthma control and reduce asthma exacerbations. Better treatments are urgently needed for the control of chronic asthma and reduction in asthma exacerbations, the major cause of asthma mortality. Much research spanning >20 years shows a strong association between microorganisms including pathogens in asthma onset, severity and exacerbation, yet with the exception of antibiotics, few treatments are available that specifically target the offending pathogens. Recent insights into the microbiome suggest that modulating commensal organisms within the gut or lung may also be a possible way to treat/prevent asthma. The European Academy of Allergy & Clinical Immunology Task Force on Anti-infectives in Asthma was initiated to investigate the potential of anti-infectives and immunomodulators in asthma. This review provides a concise summary of the current literature and aimed to identify and address key questions that concern the use of anti-infectives and both microbe- and host-based immunomodulators and their feasibility for use in asthma.
Collapse
Affiliation(s)
- M. R. Edwards
- Airway Disease Infection Section National Heart Lung Institute Imperial College London London UK
- MRC and Asthma UK Centre for Allergic Mechanisms of Asthma London UK
| | - R. P. Walton
- Airway Disease Infection Section National Heart Lung Institute Imperial College London London UK
- MRC and Asthma UK Centre for Allergic Mechanisms of Asthma London UK
| | - D. J. Jackson
- Airway Disease Infection Section National Heart Lung Institute Imperial College London London UK
- MRC and Asthma UK Centre for Allergic Mechanisms of Asthma London UK
- Division of Asthma, Allergy & Lung Biology King's College London & Guy's and St Thomas' NHS Trust London UK
| | - W. Feleszko
- Department of Pediatric Respiratory Diseases and Allergy The Medical University of Warsaw Warsaw Poland
| | - C. Skevaki
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics Philipps University Marburg & University Hospital Giessen Marburg Germany
| | - T. Jartti
- The Department of Pediatrics Turku University Hospital Turku Finland
| | - H. Makrinoti
- Airway Disease Infection Section National Heart Lung Institute Imperial College London London UK
- MRC and Asthma UK Centre for Allergic Mechanisms of Asthma London UK
| | - A. Nikonova
- National Research Center Institute of Immunology of Federal Medicobiological Agency Moscow Russia
- Mechnikov Research Institute of Vaccines and Sera Moscow Russia
| | - I. P. Shilovskiy
- National Research Center Institute of Immunology of Federal Medicobiological Agency Moscow Russia
| | - J. Schwarze
- Centre for Inflammation Research University of Edinburgh The Queens Medical Research Institute Edinburgh Edinburgh UK
| | - S. L. Johnston
- Airway Disease Infection Section National Heart Lung Institute Imperial College London London UK
- MRC and Asthma UK Centre for Allergic Mechanisms of Asthma London UK
| | - M. R. Khaitov
- National Research Center Institute of Immunology of Federal Medicobiological Agency Moscow Russia
| | | |
Collapse
|
24
|
Ratemi E, Sultana Shaik A, Al Faraj A, Halwani R. Alternative approaches for the treatment of airway diseases: focus on nanoparticle medicine. Clin Exp Allergy 2017; 46:1033-42. [PMID: 27404025 DOI: 10.1111/cea.12771] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite the various treatment options and international guidelines currently available for the appropriate therapeutic management of asthma, a large population of patients with asthma continues to have poorly controlled disease. There is therefore a need for novel approaches to achieve better asthma control, especially for severe asthmatics. This review discusses the use of nanoparticles for the specific targeting of inflammatory pathways as a promising approach for the effective control of severe persistent asthma as well as other chronic inflammatory diseases.
Collapse
Affiliation(s)
- E Ratemi
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City, Saudi Arabia
| | - A Sultana Shaik
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Prince Naif Health Research Center, King Saud University Medical City, Riyadh, Saudi Arabia
| | - A Al Faraj
- Department of Radiological Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - R Halwani
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Phosphatase wild-type p53-induced phosphatase 1 controls the development of T H9 cells and allergic airway inflammation. J Allergy Clin Immunol 2017; 141:2168-2181. [PMID: 28732646 DOI: 10.1016/j.jaci.2017.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 06/02/2017] [Accepted: 06/20/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Allergic asthma is one of the most common diseases worldwide, resulting in a burden of diseases. No available therapeutic regimens can cure asthma thus far. OBJECTIVE We sought to identify new molecular targets for TH9 cell-mediated allergic airway inflammation. METHODS Wild-type p53-induced phosphatase 1 (Wip1) gene knockout mice, Wip1 inhibitor-treated mice, and ovalbumin-induced allergic airway inflammation mouse models were used to characterize the roles of Wip1 in allergic airway inflammation. The induction of TH cell subsets in vitro, real-time PCR, immunoblots, luciferase assays, and chromatin immunoprecipitation assays were used to determine the regulatory pathways of Wip1 in TH9 differentiation. RESULTS Here we demonstrate that Wip1-deficient mice are less prone to allergic airway inflammation, as indicated by the decreased pathologic alterations in lungs. Short-term treatment with a Wip1-specific inhibitor significantly ameliorates allergic inflammation progression. Intriguingly, Wip1 selectively impaired TH9 but not TH1, TH2, and TH17 cell differentiation. Biochemical assays show that Wip1 deficiency increases c-Jun/c-Fos activity in a c-Jun N-terminal kinase-dependent manner and that c-Jun/c-Fos directly binds to Il9 promoter and inhibits Il9 transcription. CONCLUSION Wip1 controls TH9 cell development through regulating c-Jun/c-Fos activity on the Il9 promoter and is important for the pathogenesis of allergic airway inflammation. These findings shed light on the previously unrecognized roles of Wip1 in TH9 cell differentiation. The inhibitory effects of a Wip1 inhibitor on the pathogenesis of allergic airway inflammation can have important implications for clinical application of Wip1 inhibitors in allergy therapies.
Collapse
|
26
|
Malekshahi SS, Salimi V, Arefian E, Fatemi-Nasab G, Adjaminejad-Fard S, Yavarian J, Mokhtari-Azad T. Inhibition of Respiratory Syncytial Virus Replication by Simultaneous Targeting of mRNA and Genomic RNA Using Dual-Targeting siRNAs. Mol Biotechnol 2017; 58:767-775. [PMID: 27766578 DOI: 10.1007/s12033-016-9976-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We attempted to generate siRNAs with two active strands, which can simultaneously knock down the expression of mRNA and viral genomic RNA. In this study, short hairpin RNAs (shRNAs) against N and F genes were used. Expression of F and N mRNA transcripts as well as genomic RNA was determined with relative real-time RT-PCR. The RSV load in infected cell culture supernatant was determined by absolute quantitative real-time PCR. We found that (i) in the presence of shRNA-N, a greater reduction in viral genomic RNA was found; (ii) the level of expression at MOI 0.01 was reduced more than MOI 0.1; (iii) reduction in N transcript was greater than F; and (iv) finally, in combination pre-treatment with two shRNAs, the reduction was not significant as compared to single shRNA transfection. shRNAs also inhibited the production of RSV progeny as shown by viral load in infected HEp-2 cells. (i) Virus load reduction was greater at MOI 0.01 than 0.1 and (ii) significant load reduction was not seen with combination shRNA pre-treatment. The antiviral potency was also confirmed by plaque assay and western blot analysis. Our results provided further evidence that RNAi could be a powerful treatment option against respiratory viruses.
Collapse
Affiliation(s)
| | - Vahid Salimi
- Virology Department, School of Public Health, Tehran University of Medical Science, Porsina Ave, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ghazal Fatemi-Nasab
- Virology Department, School of Public Health, Tehran University of Medical Science, Porsina Ave, Tehran, Iran
| | - Sarvin Adjaminejad-Fard
- Virology Department, School of Public Health, Tehran University of Medical Science, Porsina Ave, Tehran, Iran
| | - Jila Yavarian
- Virology Department, School of Public Health, Tehran University of Medical Science, Porsina Ave, Tehran, Iran
| | - Talat Mokhtari-Azad
- Virology Department, School of Public Health, Tehran University of Medical Science, Porsina Ave, Tehran, Iran.
| |
Collapse
|
27
|
|
28
|
Oligonucleotide Therapy for Obstructive and Restrictive Respiratory Diseases. Molecules 2017; 22:molecules22010139. [PMID: 28106744 PMCID: PMC6155767 DOI: 10.3390/molecules22010139] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/05/2017] [Accepted: 01/08/2017] [Indexed: 12/21/2022] Open
Abstract
Inhaled oligonucleotide is an emerging therapeutic modality for various common respiratory diseases, including obstructive airway diseases like asthma and chronic obstructive pulmonary disease (COPD) and restrictive airway diseases like idiopathic pulmonary fibrosis (IPF). The advantage of direct accessibility for oligonucleotide molecules to the lung target sites, bypassing systemic administration, makes this therapeutic approach promising with minimized potential systemic side effects. Asthma, COPD, and IPF are common chronic respiratory diseases, characterized by persistent airway inflammation and dysregulated tissue repair and remodeling, although each individual disease has its unique etiology. Corticosteroids have been widely prescribed for the treatment of asthma, COPD, and IPF. However, the effectiveness of corticosteroids as an anti-inflammatory drug is limited by steroid resistance in severe asthma, the majority of COPD cases, and pulmonary fibrosis. There is an urgent medical need to develop target-specific drugs for the treatment of these respiratory conditions. Oligonucleotide therapies, including antisense oligonucleotide (ASO), small interfering RNA (siRNA), and microRNA (miRNA) are now being evaluated both pre-clinically and clinically as potential therapeutics. The mechanisms of action of ASO and siRNA are highly target mRNA specific, ultimately leading to target protein knockdown. miRNA has both biomarker and therapeutic values, and its knockdown by a miRNA antagonist (antagomir) has a broader but potentially more non-specific biological outcome. This review will compile the current findings of oligonucleotide therapeutic targets, verified in various respiratory disease models and in clinical trials, and evaluate different chemical modification approaches to improve the stability and potency of oligonucleotides for the treatment of respiratory diseases.
Collapse
|
29
|
Lan F, Zhang N, Gevaert E, Zhang L, Bachert C. Viruses and bacteria in Th2-biased allergic airway disease. Allergy 2016; 71:1381-92. [PMID: 27188632 DOI: 10.1111/all.12934] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 01/24/2023]
Abstract
Allergic airway diseases are typically characterized by a type 2-biased inflammation. Multiple distinct viruses and bacteria have been detected in the airways. Recently, it has been confirmed that the microbiome of allergic individuals differs from that of healthy subjects, showing a close relationship with the type 2 response in allergic airway disease. In this review, we summarize the recent findings on the prevalence of viruses and bacteria in type 2-biased airway diseases and on the mechanisms employed by viruses and bacteria in propagating type 2 responses. The understanding of the microbial composition and postinfectious immune programming is critical for the reconstruction of the normal microflora and immune status in allergic airway diseases.
Collapse
Affiliation(s)
- F. Lan
- Upper Airways Research Laboratory; ENT Department; Ghent University; Gent Belgium
- Department of Otolaryngology Head and Neck Surgery; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - N. Zhang
- Upper Airways Research Laboratory; ENT Department; Ghent University; Gent Belgium
| | - E. Gevaert
- Upper Airways Research Laboratory; ENT Department; Ghent University; Gent Belgium
| | - L. Zhang
- Department of Otolaryngology Head and Neck Surgery; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - C. Bachert
- Upper Airways Research Laboratory; ENT Department; Ghent University; Gent Belgium
- Division of ENT Diseases; Clintec; Karolinska Institute; Stockholm Sweden
| |
Collapse
|
30
|
Delivery of RNAi Therapeutics to the Airways-From Bench to Bedside. Molecules 2016; 21:molecules21091249. [PMID: 27657028 PMCID: PMC6272875 DOI: 10.3390/molecules21091249] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
RNA interference (RNAi) is a potent and specific post-transcriptional gene silencing process. Since its discovery, tremendous efforts have been made to translate RNAi technology into therapeutic applications for the treatment of different human diseases including respiratory diseases, by manipulating the expression of disease-associated gene(s). Similar to other nucleic acid-based therapeutics, the major hurdle of RNAi therapy is delivery. Pulmonary delivery is a promising approach of delivering RNAi therapeutics directly to the airways for treating local conditions and minimizing systemic side effects. It is a non-invasive route of administration that is generally well accepted by patients. However, pulmonary drug delivery is a challenge as the lungs pose a series of anatomical, physiological and immunological barriers to drug delivery. Understanding these barriers is essential for the development an effective RNA delivery system. In this review, the different barriers to pulmonary drug delivery are introduced. The potential of RNAi molecules as new class of therapeutics, and the latest preclinical and clinical studies of using RNAi therapeutics in different respiratory conditions are discussed in details. We hope this review can provide some useful insights for moving inhaled RNAi therapeutics from bench to bedside.
Collapse
|
31
|
Man DK, Chow MY, Casettari L, Gonzalez-Juarrero M, Lam JK. Potential and development of inhaled RNAi therapeutics for the treatment of pulmonary tuberculosis. Adv Drug Deliv Rev 2016; 102:21-32. [PMID: 27108702 DOI: 10.1016/j.addr.2016.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/05/2016] [Accepted: 04/13/2016] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB), caused by the infection of Mycobacterium tuberculosis (Mtb), continues to pose a serious threat to public health, and the situation is worsening with the rapid emergence of multidrug resistant (MDR) TB. Current TB regimens require long duration of treatment, and their toxic side effects often lead to poor adherence and low success rates. There is an urgent need for shorter and more effective treatment for TB. In recent years, RNA interference (RNAi) has become a powerful tool for studying gene function by silencing the target genes. The survival of Mtb in host macrophages involves the attenuation of the antimicrobial responses mounted by the host cells. RNAi technology has helped to improve our understanding of how these bacilli interferes with the bactericidal effect and host immunity during TB infection. It has been suggested that the host-directed intervention by modulation of host pathways can be employed as a novel and effective therapy against TB. This therapeutic approach could be achieved by RNAi, which holds enormous potential beyond a laboratory to the clinic. RNAi therapy targeting TB is being investigated for enhancing host antibacterial capacity or improving drug efficacy on drug resistance strains while minimizing the associated adverse effects. One of the key challenges of RNAi therapeutics arises from the delivery of the RNAi molecules into the target cells, and inhalation could serve as a direct administration route for the treatment of pulmonary TB in a non-invasive manner. However, there are still major obstacles that need to be overcome. This review focuses on the RNAi candidates that are currently explored for the treatment of TB and discusses the major barriers of pulmonary RNAi delivery. From this, we hope to stimulate further studies of local RNAi therapeutics for pulmonary TB treatment.
Collapse
|
32
|
Kumar RK, Herbert C, Foster PS. Mouse models of acute exacerbations of allergic asthma. Respirology 2016; 21:842-9. [PMID: 26922049 DOI: 10.1111/resp.12760] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/29/2015] [Accepted: 01/23/2016] [Indexed: 12/24/2022]
Abstract
Most of the healthcare costs associated with asthma relate to emergency department visits and hospitalizations because of acute exacerbations of underlying chronic disease. Development of appropriate animal models of acute exacerbations of asthma is a necessary prerequisite for understanding pathophysiological mechanisms and assessing potential novel therapeutic approaches. Most such models have been developed using mice. Relatively few mouse models attempt to simulate the acute-on-chronic disease that characterizes human asthma exacerbations. Instead, many reported models involve relatively short-term challenge with an antigen to which animals are sensitized, followed closely by an unrelated triggering agent, so are better described as models of potentiation of acute allergic inflammation. Triggers for experimental models of asthma exacerbations include (i) challenge with high levels of the sensitizing allergen (ii) infection by viruses or fungi, or challenge with components of these microorganisms (iii) exposure to environmental pollutants. In this review, we examine the strengths and weaknesses of published mouse models, their application for investigation of novel treatments and potential future developments.
Collapse
Affiliation(s)
- Rakesh K Kumar
- Department of Pathology, School of Medical Sciences, UNSW Australia, Sydney
| | - Cristan Herbert
- Department of Pathology, School of Medical Sciences, UNSW Australia, Sydney
| | - Paul S Foster
- Centre for Asthma and Respiratory Disease, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| |
Collapse
|
33
|
Xie Y, Merkel OM. Pulmonary Delivery of siRNA via Polymeric Vectors as Therapies of Asthma. Arch Pharm (Weinheim) 2015; 348:681-8. [PMID: 26148454 PMCID: PMC4665213 DOI: 10.1002/ardp.201500120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/18/2015] [Accepted: 06/23/2015] [Indexed: 01/09/2023]
Abstract
Asthma is a chronic inflammatory disease. Despite the fact that current therapies, such as the combination of inhaled corticosteroids and β2-agonists, can control the symptoms of asthma in most patients, there is still an urgent need for an alternative anti-inflammatory therapy for patients who suffer from severe asthma but lack acceptable response to conventional therapies. Many molecular factors are involved in the inflammatory process in asthma, and thus blocking the function of these factors could efficiently alleviate airway inflammation. RNA interference (RNAi) is often thought to be the answer in the search for more efficient and biocompatible treatments. However, difficulties of efficient delivery of small interference RNA (siRNA), the key factor in RNAi, to target cells and tissues have limited its clinical application. In this review, we summarize cytokines and chemokines, transcription factors, tyrosine kinases, and costimulatory factors that have been reported as targets of siRNA-mediated treatment in experimental asthma. Additionally, we conclude several targeted delivery systems of siRNA to specific cells such as T cells, macrophages, and dendritic cells, which could potentially be applied in asthma therapy.
Collapse
Affiliation(s)
- Yuran Xie
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Science, Wayne State University, Detroit, MI 48201
| | - Olivia M Merkel
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Science, Wayne State University, Detroit, MI 48201
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| |
Collapse
|
34
|
Type-I interferons induce lung protease responses following respiratory syncytial virus infection via RIG-I-like receptors. Mucosal Immunol 2015; 8:161-75. [PMID: 25005357 PMCID: PMC4268269 DOI: 10.1038/mi.2014.54] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 02/04/2023]
Abstract
The role of proteases in viral infection of the lung is poorly understood. Thus, we examined matrix metalloproteinases (MMPs) and cathepsin proteases in respiratory syncytial virus (RSV)-infected mouse lungs. RSV-induced gene expression for MMPs -2, -3, -7, -8, -9, -10, -12, -13, -14, -16, -17, -19, -20, -25, -27, and -28 and cathepsins B, C, E, G, H, K, L1, S, W, and Z in the airways of Friend leukemia virus B sensitive strain mice. Increased proteases were present in the bronchoalveolar lavage fluid (BALF) and lung tissue during infection. Mitochondrial antiviral-signaling protein (MAVS) and TIR-domain-containing adapter-inducing interferon-β-deficient mice were exposed to RSV. Mavs-deficient mice had significantly lower expression of airway MMP-2, -3, -7, -8, -9, -10, -12, -13, and -28 and cathepsins C, G, K, S, W, and Z. In lung epithelial cells, retinoic acid-inducible gene-1 (RIG-I) was identified as the major RIG-I-like receptor required for RSV-induced protease expression via MAVS. Overexpression of RIG-I or treatment with interferon-β in these cells induced MMP and cathepsin gene and protein expression. The significance of RIG-1 protease induction was demonstrated by the fact that inhibiting proteases with batimastat, E64 or ribavirin prevented airway hyperresponsiveness and enhanced viral clearance in RSV-infected mice.
Collapse
|
35
|
Key mediators in the immunopathogenesis of allergic asthma. Int Immunopharmacol 2014; 23:316-29. [PMID: 24933589 DOI: 10.1016/j.intimp.2014.05.034] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
Abstract
Asthma is described as a chronic inflammatory disorder of the conducting airways. It is characterized by reversible airway obstruction, eosinophil and Th2 infiltration, airway hyper-responsiveness and airway remodeling. Our findings to date have largely been dependent on work done using animal models, which have been instrumental in broadening our understanding of the mechanism of the disease. However, using animals to model a uniquely human disease is not without its drawbacks. This review aims to examine some of the key mediators and cells of allergic asthma learned from animal models and shed some light on emerging mediators in the pathogenesis allergic airway inflammation in acute and chronic asthma.
Collapse
|