1
|
Nagy A, Czitrovszky A, Lehoczki A, Farkas Á, Füri P, Osán J, Groma V, Kugler S, Micsinai A, Horváth A, Ungvári Z, Müller V. Creating respiratory pathogen-free environments in healthcare and nursing-care settings: a comprehensive review. GeroScience 2024:10.1007/s11357-024-01379-7. [PMID: 39392557 DOI: 10.1007/s11357-024-01379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
Hospital- and nursing-care-acquired infections are a growing problem worldwide, especially during epidemics, posing a significant threat to older adults in geriatric settings. Intense research during the COVID-19 pandemic highlighted the prominent role of aerosol transmission of pathogens. Aerosol particles can easily adsorb different airborne pathogens, carrying them for a long time. Understanding the dynamics of airborne pathogen transmission is essential for controlling the spread of many well-known pathogens, like the influenza virus, and emerging ones like SARS-CoV-2. Particles smaller than 50 to 100 µm remain airborne and significantly contribute to pathogen transmission. This review explores the journey of pathogen-carrying particles from formation in the airways, through airborne travel, to deposition in the lungs. The physicochemical properties of emitted particles depend on health status and emission modes, such as breathing, speaking, singing, coughing, sneezing, playing wind instruments, and medical interventions. After emission, sedimentation and evaporation primarily determine particle fate. Lung deposition of inhaled aerosol particles can be studied through in vivo, in vitro, or in silico methods. We discuss several numerical lung models, such as the Human Respiratory Tract Model, the LUng Dose Evaluation Program software (LUDEP), the Stochastic Lung Model, and the Computational Fluid Dynamics (CFD) techniques, and real-time or post-evaluation methods for detecting and characterizing these particles. Various air purification methods, particularly filtration, are reviewed for their effectiveness in healthcare settings. In the discussion, we analyze how this knowledge can help create environments with reduced PM2.5 and pathogen levels, enhancing safety in healthcare and nursing-care settings. This is particularly crucial for protecting older adults, who are more vulnerable to infections due to weaker immune systems and the higher prevalence of chronic conditions. By implementing effective airborne pathogen control measures, we can significantly improve health outcomes in geriatric settings.
Collapse
Affiliation(s)
- Attila Nagy
- Department of Applied and Nonlinear Optics, HUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós St. 29-33, 1121, Budapest, Hungary.
| | - Aladár Czitrovszky
- Department of Applied and Nonlinear Optics, HUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós St. 29-33, 1121, Budapest, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Árpád Farkas
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - Péter Füri
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - János Osán
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - Veronika Groma
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - Szilvia Kugler
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | | | - Alpár Horváth
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Zoltán Ungvári
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Bano A, Yadav P, Sharma M, Verma D, Vats R, Chaudhry D, Kumar P, Bhardwaj R. Extraction and characterization of exosomes from the exhaled breath condensate and sputum of lung cancer patients and vulnerable tobacco consumers-potential noninvasive diagnostic biomarker source. J Breath Res 2024; 18:046003. [PMID: 38988301 DOI: 10.1088/1752-7163/ad5eae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Noninvasive sample sources of exosomes, such as exhaled breath and sputum, which are in close proximity to the tumor microenvironment and may contain biomarkers indicative of lung cancer, are far more permissive than invasive sample sources for biomarker screening. Standardized exosome extraction and characterization approaches for low-volume noninvasive samples are critically needed. We isolated and characterized exhaled breath condensate (EBC) and sputum exosomes from healthy nonsmokers (n= 30), tobacco smokers (n= 30), and lung cancer patients (n= 40) and correlated the findings with invasive sample sources. EBC samples were collected by using commercially available R-Tubes. To collect sputum samples the participants were directed to take deep breaths, hold their breath, and cough in a collection container. Dynamic light scattering, nanoparticle tracking analysis, and transmission electron microscopy were used to evaluate the exosome morphology. Protein isolation, western blotting, exosome quantification via EXOCET, and Fourier transform infrared spectroscopy were performed for molecular characterization. Exosomes were successfully isolated from EBC and sputum samples, and their yields were adequate and sufficiently pure for subsequent downstream processing and characterization. The exosomes were confirmed based on their size, shape, and surface marker expression. Remarkably, cancer exosomes were the largest in size not only in the plasma subgroups, but also in the EBC (p < 0.05) and sputum (p= 0.0036) subgroups, according to our findings. A significant difference in exosome concentrations were observed between the control sub-groups (p < 0.05). Our research confirmed that exosomes can be extracted from noninvasive sources, such as EBC and sputum, to investigate lung cancer diagnostic biomarkers for research, clinical, and early detection in smokers.
Collapse
Affiliation(s)
- Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Pooja Yadav
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Megha Sharma
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Deepika Verma
- Department of Biochemistry, All India Institute of Medical Sciences, Delhi 110029, India
| | - Ravina Vats
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Dhruva Chaudhry
- Department of Pulmonary & Critical Care Medicine, Pt. B. D. Sharma PGIMS, Rohtak, Haryana 124001, India
| | - Pawan Kumar
- Department of Pulmonary & Critical Care Medicine, Pt. B. D. Sharma PGIMS, Rohtak, Haryana 124001, India
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
3
|
Asplin P, Mancy R, Finnie T, Cumming F, Keeling MJ, Hill EM. Symptom propagation in respiratory pathogens of public health concern: a review of the evidence. J R Soc Interface 2024; 21:20240009. [PMID: 39045688 PMCID: PMC11267474 DOI: 10.1098/rsif.2024.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
Symptom propagation occurs when the symptom set an individual experiences is correlated with the symptom set of the individual who infected them. Symptom propagation may dramatically affect epidemiological outcomes, potentially causing clusters of severe disease. Conversely, it could result in chains of mild infection, generating widespread immunity with minimal cost to public health. Despite accumulating evidence that symptom propagation occurs for many respiratory pathogens, the underlying mechanisms are not well understood. Here, we conducted a scoping literature review for 14 respiratory pathogens to ascertain the extent of evidence for symptom propagation by two mechanisms: dose-severity relationships and route-severity relationships. We identify considerable heterogeneity between pathogens in the relative importance of the two mechanisms, highlighting the importance of pathogen-specific investigations. For almost all pathogens, including influenza and SARS-CoV-2, we found support for at least one of the two mechanisms. For some pathogens, including influenza, we found convincing evidence that both mechanisms contribute to symptom propagation. Furthermore, infectious disease models traditionally do not include symptom propagation. We summarize the present state of modelling advancements to address the methodological gap. We then investigate a simplified disease outbreak scenario, finding that under strong symptom propagation, isolating mildly infected individuals can have negative epidemiological implications.
Collapse
Affiliation(s)
- Phoebe Asplin
- EPSRC & MRC Centre for Doctoral Training in Mathematics for Real-World Systems, University of Warwick, Coventry, UK
- Mathematics Institute, University of Warwick, Coventry, UK
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, University of Warwick, Coventry, UK
| | - Rebecca Mancy
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Glasgow, UK
| | - Thomas Finnie
- Data, Analytics and Surveillance, UK Health Security Agency, London, UK
| | - Fergus Cumming
- Foreign, Commonwealth and Development Office, London, UK
| | - Matt J. Keeling
- Mathematics Institute, University of Warwick, Coventry, UK
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, University of Warwick, Coventry, UK
- School of Life Sciences, University of Glasgow, Glasgow, UK
| | - Edward M. Hill
- Mathematics Institute, University of Warwick, Coventry, UK
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, University of Warwick, Coventry, UK
| |
Collapse
|
4
|
Obeid S, White P, Rosati Rowe J, Ilacqua V, Rawat MS, Ferro AR, Ahmadi G. Airborne respiratory aerosol transport and deposition in a two-person office using a novel diffusion-based numerical model. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:356-375. [PMID: 37337048 DOI: 10.1038/s41370-023-00546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND The COVID-19 pandemic was caused by the SARS-CoV-2 coronaviruses transmitted mainly through exposure to airborne respiratory droplets and aerosols carrying the virus. OBJECTIVE To assess the transport and dispersion of respiratory aerosols containing the SARS-CoV-2 virus and other viruses in a small office space using a diffusion-based computational modeling approach. METHODS A 3-D computational model was used to simulate the airflow inside the 70.2 m3 ventilated office. A novel diffusion model accounting for turbulence dispersion and gravitational sedimentation was utilized to predict droplet concentration transport and deposition. The numerical model was validated and used to investigate the influences of partition height and different ventilation rates on the concentration of respiratory aerosols of various sizes (1, 10, 20, and 50 µm) emitted by continuous speaking. RESULTS An increase in the hourly air change rate (ACH) from 2.0 to 5.6 decreased the 1 μm droplet concentration inside the office by a factor of 2.8 and in the breathing zone of the receptor occupant by a factor of 3.2. The concentration at the receptor breathing zone is estimated by the area-weighted average of a 1 m diameter circular disk, with its centroid at the center of the receptor mannequin mouth. While all aerosols were dispersed by airflow turbulence, the gravitational sedimentation significantly influenced the transport of larger aerosols in the room. The 1 and 10 μm aerosols remained suspended in the air and dispersed throughout the room. In contrast, the larger 20 and 50 μm aerosols deposited on the floor quickly due to the gravitational sedimentation. Increasing the partition between cubicles by 0.254 m (10") has little effect on the smaller aerosols and overall exposure. IMPACT This paper provides an efficient computational model for analyzing the concentration of different respiratory droplets and aerosols in an indoor environment. Thus, the approach could be used for assessing the influence of the spatial concentration variations on exposure for which the fully mixed model cannot be used.
Collapse
Affiliation(s)
- Sohaib Obeid
- Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY, 13699, USA
| | - Paul White
- U.S. Environmental Protection Agency (EPA), Office of Research and Development, Research Triangle Park, Washington, DC, NC, USA
| | - Jacky Rosati Rowe
- U.S. Environmental Protection Agency (EPA), Office of Research and Development, Research Triangle Park, Washington, DC, NC, USA
| | - Vito Ilacqua
- U.S. Environmental Protection Agency (EPA), Office of Research and Development, Research Triangle Park, Washington, DC, NC, USA
| | - Mahender Singh Rawat
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY, 13699, USA
| | - Andrea R Ferro
- Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY, 13699, USA
| | - Goodarz Ahmadi
- Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY, 13699, USA.
| |
Collapse
|
5
|
Tastassa AC, Sharaby Y, Lang-Yona N. Aeromicrobiology: A global review of the cycling and relationships of bioaerosols with the atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168478. [PMID: 37967625 DOI: 10.1016/j.scitotenv.2023.168478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Airborne microorganisms and biological matter (bioaerosols) play a key role in global biogeochemical cycling, human and crop health trends, and climate patterns. Their presence in the atmosphere is controlled by three main stages: emission, transport, and deposition. Aerial survival rates of bioaerosols are increased through adaptations such as ultra-violet radiation and desiccation resistance or association with particulate matter. Current research into modern concerns such as climate change, global gene transfer, and pathogenicity often neglects to consider atmospheric involvement. This comprehensive review outlines the transpiring of bioaerosols across taxa in the atmosphere, with significant focus on their interactions with environmental elements including abiotic factors (e.g., atmospheric composition, water cycle, and pollution) and events (e.g., dust storms, hurricanes, and wildfires). The aim of this review is to increase understanding and shed light on needed research regarding the interplay between global atmospheric phenomena and the aeromicrobiome. The abundantly documented bacteria and fungi are discussed in context of their cycling and human health impacts. Gaps in knowledge regarding airborne viral community, the challenges and importance of studying their composition, concentrations and survival in the air are addressed, along with understudied plant pathogenic oomycetes, and archaea cycling. Key methodologies in sampling, collection, and processing are described to provide an up-to-date picture of ameliorations in the field. We propose optimization to microbiological methods, commonly used in soil and water analysis, that adjust them to the context of aerobiology, along with other directions towards novel and necessary advancements. This review offers new perspectives into aeromicrobiology and calls for advancements in global-scale bioremediation, insights into ecology, climate change impacts, and pathogenicity transmittance.
Collapse
Affiliation(s)
- Ariel C Tastassa
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel
| | - Yehonatan Sharaby
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel
| | - Naama Lang-Yona
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel.
| |
Collapse
|
6
|
David SC, Vadas O, Glas I, Schaub A, Luo B, D'angelo G, Montoya JP, Bluvshtein N, Hugentobler W, Klein LK, Motos G, Pohl M, Violaki K, Nenes A, Krieger UK, Stertz S, Peter T, Kohn T. Inactivation mechanisms of influenza A virus under pH conditions encountered in aerosol particles as revealed by whole-virus HDX-MS. mSphere 2023; 8:e0022623. [PMID: 37594288 PMCID: PMC10597348 DOI: 10.1128/msphere.00226-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/23/2023] [Indexed: 08/19/2023] Open
Abstract
Multiple respiratory viruses, including influenza A virus (IAV), can be transmitted via expiratory aerosol particles, and aerosol pH was recently identified as a major factor influencing airborne virus infectivity. Indoors, small exhaled aerosols undergo rapid acidification to pH ~4. IAV is known to be sensitive to mildly acidic conditions encountered within host endosomes; however, it is unknown whether the same mechanisms could mediate viral inactivation within the more acidic aerosol micro-environment. Here, we identified that transient exposure to pH 4 caused IAV inactivation by a two-stage process, with an initial sharp decline in infectious titers mainly attributed to premature attainment of the post-fusion conformation of viral protein haemagglutinin (HA). Protein changes were observed by hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) as early as 10 s post-exposure to acidic conditions. Our HDX-MS data are in agreement with other more labor-intensive structural analysis techniques, such as X-ray crystallography, highlighting the ease and usefulness of whole-virus HDX-MS for multiplexed protein analyses, even within enveloped viruses such as IAV. Additionally, virion integrity was partially but irreversibly affected by acidic conditions, with a progressive unfolding of the internal matrix protein 1 (M1) that aligned with a more gradual decline in viral infectivity with time. In contrast, no acid-mediated changes to the genome or lipid envelope were detected. Improved understanding of respiratory virus fate within exhaled aerosols constitutes a global public health priority, and information gained here could aid the development of novel strategies to control the airborne persistence of seasonal and/or pandemic influenza in the future. IMPORTANCE It is well established that COVID-19, influenza, and many other respiratory diseases can be transmitted by the inhalation of aerosolized viruses. Many studies have shown that the survival time of these airborne viruses is limited, but it remains an open question as to what drives their infectivity loss. Here, we address this question for influenza A virus by investigating structural protein changes incurred by the virus under conditions relevant to respiratory aerosol particles. From prior work, we know that expelled aerosols can become highly acidic due to equilibration with indoor room air, and our results indicate that two viral proteins are affected by these acidic conditions at multiple sites, leading to virus inactivation. Our findings suggest that the development of air treatments to quicken the speed of aerosol acidification would be a major strategy to control infectious bioburdens in the air.
Collapse
Affiliation(s)
- Shannon C. David
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Oscar Vadas
- Protein Platform, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Irina Glas
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | - Aline Schaub
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Beiping Luo
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Giovanni D'angelo
- Laboratory of Lipid Cell Biology, School of Life Sciences, Interschool Institute of Bioengineering and Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jonathan Paz Montoya
- Laboratory of Lipid Cell Biology, School of Life Sciences, Interschool Institute of Bioengineering and Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nir Bluvshtein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Walter Hugentobler
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Liviana K. Klein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Ghislain Motos
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marie Pohl
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | - Kalliopi Violaki
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| | - Ulrich K. Krieger
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | - Thomas Peter
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Tamar Kohn
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
7
|
Evans DT, Nelson DJ, Pask ME, Haselton FR. A safer framework to evaluate characterization technologies of exhaled biologic materials using electrospun nanofibers. NANOSCALE 2023; 15:14822-14830. [PMID: 37655643 PMCID: PMC10530601 DOI: 10.1039/d3nr01859h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Exhaled biologic material is the source for the spread of many respiratory tract infections. To avoid the high-level of biosafety required to manage dangerous pathogens, we developed a safer framework using the endogenous surrogate targets RNase P and Streptococcus mitis as a means to sample exhaled biologics. Our exhalation collection scheme uses nanoscale fibrous poly(vinyl alcohol) substrates as facemask inserts. After a period of breathing or speaking, the inserts are removed and dissolved. RNase P RNA and S. mitis DNA are extracted for quantification by multiplexed RT-qPCR. Both surrogate biomarkers were detected in all samples obtained during breathing for at least five minutes or speaking for one minute. Phrases repeated 30 times had the most copies with 375 ± 247 of S. mitis and 54 ± 33 of RNase P. When the phrases were repeated just 5 times, the S. mitis copies collected were still detectable but at a significantly lower level of 11 ± 5 for S. mitis and 12 ± 9 for RNase P. These results demonstrate a collection and quantification framework that can be readily adapted to further characterize the exhalation of nanoscale biologic materials from healthy individuals, explore new collection designs safely, and serve as a method to incorporate sample controls for future pathogen exhalation studies.
Collapse
Affiliation(s)
- David T Evans
- Department of Biomedical Engineering, 5824 Stevenson Center, Vanderbilt University, Nashville, TN 37232, USA.
| | - Dalton J Nelson
- Department of Biomedical Engineering, 5824 Stevenson Center, Vanderbilt University, Nashville, TN 37232, USA.
| | - Megan E Pask
- Department of Biomedical Engineering, 5824 Stevenson Center, Vanderbilt University, Nashville, TN 37232, USA.
| | - Frederick R Haselton
- Department of Biomedical Engineering, 5824 Stevenson Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
8
|
Ghumra D, Shetty N, McBrearty KR, Puthussery JV, Sumlin BJ, Gardiner WD, Doherty BM, Magrecki JP, Brody DL, Esparza TJ, O’Halloran JA, Presti RM, Bricker TL, Boon ACM, Yuede CM, Cirrito JR, Chakrabarty RK. Rapid Direct Detection of SARS-CoV-2 Aerosols in Exhaled Breath at the Point of Care. ACS Sens 2023; 8:3023-3031. [PMID: 37498298 PMCID: PMC10463275 DOI: 10.1021/acssensors.3c00512] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Airborne transmission via virus-laden aerosols is a dominant route for the transmission of respiratory diseases, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Direct, non-invasive screening of respiratory virus aerosols in patients has been a long-standing technical challenge. Here, we introduce a point-of-care testing platform that directly detects SARS-CoV-2 aerosols in as little as two exhaled breaths of patients and provides results in under 60 s. It integrates a hand-held breath aerosol collector and a llama-derived, SARS-CoV-2 spike-protein specific nanobody bound to an ultrasensitive micro-immunoelectrode biosensor, which detects the oxidation of tyrosine amino acids present in SARS-CoV-2 viral particles. Laboratory and clinical trial results were within 20% of those obtained using standard testing methods. Importantly, the electrochemical biosensor directly detects the virus itself, as opposed to a surrogate or signature of the virus, and is sensitive to as little as 10 viral particles in a sample. Our platform holds the potential to be adapted for multiplexed detection of different respiratory viruses. It provides a rapid and non-invasive alternative to conventional viral diagnostics.
Collapse
Affiliation(s)
- Dishit
P. Ghumra
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Nishit Shetty
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Kevin R. McBrearty
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - Joseph V. Puthussery
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Benjamin J. Sumlin
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Woodrow D. Gardiner
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - Brookelyn M. Doherty
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - Jordan P. Magrecki
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - David L. Brody
- National
Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, United States
- Department
of Neurology, Uniformed Services University
of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Thomas J. Esparza
- National
Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, United States
| | - Jane A. O’Halloran
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
| | - Rachel M. Presti
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
| | - Traci L. Bricker
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
- Departments
Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Adrianus C. M. Boon
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
- Departments
Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Carla M. Yuede
- Department
of Psychiatry, Washington University School
of Medicine, Campus Box
8134, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - John R. Cirrito
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - Rajan K. Chakrabarty
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
9
|
Schijven JF, van Veen T, Delmaar C, Kos J, Vermeulen L, Roosien R, Verhoeven F, Schipper M, Peerlings B, Duizer E, Derei J, Lammen W, Bartels O, van der Ven H, Maas R, de Roda Husman AM. Quantitative Microbial Risk Assessment of Contracting COVID-19 Derived from Measured and Simulated Aerosol Particle Transmission in Aircraft Cabins. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87011. [PMID: 37589660 PMCID: PMC10434022 DOI: 10.1289/ehp11495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND SARS-CoV-2 can be effectively transmitted between individuals located in close proximity to each other for extended durations. Aircraft provide such conditions. Although high attack rates during flights were reported, little was known about the risk levels of aerosol transmission of SARS-CoV-2 in aircraft cabins. OBJECTIVES The major objective was to estimate the risk of contracting COVID-19 from transmission of aerosol particles in aircraft cabins. METHODS In two single-aisle and one twin-aisle aircraft, dispersion of generated aerosol particles over a seven-row economy class cabin section was measured under cruise and taxi conditions and simulated with a computational fluid dynamic model under cruise conditions. Using the aerosol particle dispersion data, a quantitative microbial risk assessment was conducted for scenarios with an asymptomatic infectious person expelling aerosol particles by breathing and speaking. Effects of flight conditions were evaluated using generalized additive mixed models. RESULTS Aerosol particle concentration decreased with increasing distance from the infectious person, and this decrease varied with direction. On a typical flight with an average shedder, estimated mean risk of contracting COVID-19 ranged from 1.3 × 10 - 3 to 9.0 × 10 - 2 . Risk increased to 7.7 × 10 - 2 with a super shedder (< 3 % of cases) on a long flight. Risks increased with increasing flight duration: 2-23 cruise flights of typical duration and 2-10 flights of longer duration resulted in at least 1 case of COVID-19 due to onboard aerosol transmission by one average shedder, and in the case of one super shedder, at least 1 case in 1-3 flights of typical duration cruise and 1 flight of longer duration. DISCUSSION Our findings indicate that the risk of contracting COVID-19 by aerosol transmission in an aircraft cabin is low, but it will not be zero. Testing before boarding may help reduce the chance of a (super)shedder boarding an aircraft and mask use further reduces aerosol transmission in the aircraft cabin. https://doi.org/10.1289/EHP11495.
Collapse
Affiliation(s)
- Jack F. Schijven
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
| | - Theo van Veen
- Royal Netherlands Aerospace Centre, Amsterdam, the Netherlands
| | - Christiaan Delmaar
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Johan Kos
- Royal Netherlands Aerospace Centre, Amsterdam, the Netherlands
| | - Lucie Vermeulen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Rui Roosien
- Royal Netherlands Aerospace Centre, Amsterdam, the Netherlands
| | | | - Maarten Schipper
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Bram Peerlings
- Royal Netherlands Aerospace Centre, Amsterdam, the Netherlands
| | - Erwin Duizer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Jonathan Derei
- Royal Netherlands Aerospace Centre, Amsterdam, the Netherlands
| | - Wim Lammen
- Royal Netherlands Aerospace Centre, Amsterdam, the Netherlands
| | - Onno Bartels
- Royal Netherlands Aerospace Centre, Amsterdam, the Netherlands
| | | | - Robert Maas
- Royal Netherlands Aerospace Centre, Amsterdam, the Netherlands
| | - Ana Maria de Roda Husman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
10
|
Manna A, De Forni D, Bartocci M, Pasculli N, Poddesu B, Lista F, De Santis R, Amatore D, Grilli G, Molinari F, Sangiovanni Vincentelli A, Lori F. SARS-CoV-2 Inactivation in Aerosol by Means of Radiated Microwaves. Viruses 2023; 15:1443. [PMID: 37515131 PMCID: PMC10386662 DOI: 10.3390/v15071443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 07/30/2023] Open
Abstract
Coronaviruses are a family of viruses that cause disease in mammals and birds. In humans, coronaviruses cause infections on the respiratory tract that can be fatal. These viruses can cause both mild illnesses such as the common cold and lethal illnesses such as SARS, MERS, and COVID-19. Air transmission represents the principal mode by which people become infected by SARS-CoV-2. To reduce the risks of air transmission of this powerful pathogen, we devised a method of inactivation based on the propagation of electromagnetic waves in the area to be sanitized. We optimized the conditions in a controlled laboratory environment mimicking a natural airborne virus transmission and consistently achieved a 90% (tenfold) reduction of infectivity after a short treatment using a Radio Frequency (RF) wave emission with a power level that is safe for people according to most regulatory agencies, including those in Europe, USA, and Japan. To the best of our knowledge, this is the first time that SARS-CoV-2 has been shown to be inactivated through RF wave emission under conditions compatible with the presence of human beings and animals. Additional in-depth studies are warranted to extend the results to other viruses and to explore the potential implementation of this technology in different environmental conditions.
Collapse
Affiliation(s)
- Antonio Manna
- Elettronica S.p.A., Via Tiburtina Valeria, Km 13.700, 00131 Rome, Italy
| | - Davide De Forni
- ViroStatics s.r.l., Viale Umberto I, 46, 07100 Sassari, Italy
| | - Marco Bartocci
- Elettronica S.p.A., Via Tiburtina Valeria, Km 13.700, 00131 Rome, Italy
| | - Nicola Pasculli
- Elettronica S.p.A., Via Tiburtina Valeria, Km 13.700, 00131 Rome, Italy
| | - Barbara Poddesu
- ViroStatics s.r.l., Viale Umberto I, 46, 07100 Sassari, Italy
| | - Florigio Lista
- Defense Institute for Biomedical Sciences, 00184 Rome, Italy
| | | | | | - Giorgia Grilli
- Defense Institute for Biomedical Sciences, 00184 Rome, Italy
| | | | - Alberto Sangiovanni Vincentelli
- Elettronica S.p.A., Via Tiburtina Valeria, Km 13.700, 00131 Rome, Italy
- Department of EECS, University of California, Berkeley, CA 94720, USA
| | - Franco Lori
- ViroStatics s.r.l., Viale Umberto I, 46, 07100 Sassari, Italy
| |
Collapse
|
11
|
Chang Y, Wang Y, Li W, Wei Z, Tang S, Chen R. Mechanisms, Techniques and Devices of Airborne Virus Detection: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5471. [PMID: 37107752 PMCID: PMC10138381 DOI: 10.3390/ijerph20085471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 05/11/2023]
Abstract
Airborne viruses, such as COVID-19, cause pandemics all over the world. Virus-containing particles produced by infected individuals are suspended in the air for extended periods, actually resulting in viral aerosols and the spread of infectious diseases. Aerosol collection and detection devices are essential for limiting the spread of airborne virus diseases. This review provides an overview of the primary mechanisms and enhancement techniques for collecting and detecting airborne viruses. Indoor virus detection strategies for scenarios with varying ventilations are also summarized based on the excellent performance of existing advanced comprehensive devices. This review provides guidance for the development of future aerosol detection devices and aids in the control of airborne transmission diseases, such as COVID-19, influenza and other airborne transmission viruses.
Collapse
Affiliation(s)
- Yuqing Chang
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; (Y.C.); (Y.W.); (S.T.)
| | - Yuqian Wang
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; (Y.C.); (Y.W.); (S.T.)
| | - Wen Li
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (W.L.); (Z.W.)
| | - Zewen Wei
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (W.L.); (Z.W.)
| | - Shichuan Tang
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; (Y.C.); (Y.W.); (S.T.)
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; (Y.C.); (Y.W.); (S.T.)
| |
Collapse
|
12
|
Lai J, Coleman KK, Tai SHS, German J, Hong F, Albert B, Esparza Y, Srikakulapu AK, Schanz M, Maldonado IS, Oertel M, Fadul N, Gold TL, Weston S, Mullins K, McPhaul KM, Frieman M, Milton DK. Exhaled Breath Aerosol Shedding of Highly Transmissible Versus Prior Severe Acute Respiratory Syndrome Coronavirus 2 Variants. Clin Infect Dis 2023; 76:786-794. [PMID: 36285523 PMCID: PMC9620356 DOI: 10.1093/cid/ciac846] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Aerosol inhalation is recognized as the dominant mode of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. Three highly transmissible lineages evolved during the pandemic. One hypothesis to explain increased transmissibility is that natural selection favors variants with higher rates of viral aerosol shedding. However, the extent of aerosol shedding of successive SARS-CoV-2 variants is unknown. We aimed to measure the infectivity and rate of SARS-CoV-2 shedding into exhaled breath aerosol (EBA) by individuals during the Delta and Omicron waves and compared those rates with those of prior SARS-CoV-2 variants from our previously published work. METHODS Individuals with coronavirus disease 2019 (COVID-19) (n = 93; 32 vaccinated and 20 boosted) were recruited to give samples, including 30-minute breath samples into a Gesundheit-II EBA sampler. Samples were quantified for viral RNA using reverse-transcription polymerase chain reaction and cultured for virus. RESULTS Alpha (n = 4), Delta (n = 3), and Omicron (n = 29) cases shed significantly more viral RNA copies into EBAs than cases infected with ancestral strains and variants not associated with increased transmissibility (n = 57). All Delta and Omicron cases were fully vaccinated and most Omicron cases were boosted. We cultured virus from the EBA of 1 boosted and 3 fully vaccinated cases. CONCLUSIONS Alpha, Delta, and Omicron independently evolved high viral aerosol shedding phenotypes, demonstrating convergent evolution. Vaccinated and boosted cases can shed infectious SARS-CoV-2 via EBA. These findings support a dominant role of infectious aerosols in transmission of SARS-CoV-2. Monitoring aerosol shedding from new variants and emerging pathogens can be an important component of future threat assessments and guide interventions to prevent transmission.
Collapse
Affiliation(s)
- Jianyu Lai
- Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Kristen K Coleman
- Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - S H Sheldon Tai
- Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Jennifer German
- Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Filbert Hong
- Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Barbara Albert
- Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Yi Esparza
- Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Aditya K Srikakulapu
- Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Maria Schanz
- Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Isabel Sierra Maldonado
- Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Molly Oertel
- Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Naja Fadul
- Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - T Louie Gold
- Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Stuart Weston
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kristin Mullins
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kathleen M McPhaul
- Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Matthew Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Donald K Milton
- Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
| |
Collapse
|
13
|
Aganovic A, Cao G, Kurnitski J, Wargocki P. New dose-response model and SARS-CoV-2 quanta emission rates for calculating the long-range airborne infection risk. BUILDING AND ENVIRONMENT 2023; 228:109924. [PMID: 36531865 PMCID: PMC9747236 DOI: 10.1016/j.buildenv.2022.109924] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Predictive models for airborne infection risk have been extensively used during the pandemic, but there is yet still no consensus on a common approach, which may create misinterpretation of results among public health experts and engineers designing building ventilation. In this study we applied the latest data on viral load, aerosol droplet sizes and removal mechanisms to improve the Wells Riley model by introducing the following novelties i) a new model to calculate the total volume of respiratory fluid exhaled per unit time ii) developing a novel viral dose-based generation rate model for dehydrated droplets after expiration iii) deriving a novel quanta-RNA relationship for various strains of SARS-CoV-2 iv) proposing a method to account for the incomplete mixing conditions. These new approaches considerably changed previous estimates and allowed to determine more accurate average quanta emission rates including omicron variant. These quanta values for the original strain of 0.13 and 3.8 quanta/h for breathing and speaking and the virus variant multipliers may be used for simple hand calculations of probability of infection or with developed model operating with six size ranges of aerosol droplets to calculate the effect of ventilation and other removal mechanisms. The model developed is made available as an open-source tool.
Collapse
Affiliation(s)
- Amar Aganovic
- Department of Automation and Process Engineering, UiT The Arctic University of Norway, Tromsø, Norway
| | - Guangyu Cao
- Department of Energy and Process Engineering, Norwegian University of Science and Technology - NTNU, Trondheim, Norway
| | - Jarek Kurnitski
- REHVA Technology and Research Committee, Tallinn University of Technology, Tallinn, Estonia
| | - Pawel Wargocki
- Department of Civil Engineering, Technical University of Denmark, Copenhagen, Denmark
| |
Collapse
|
14
|
Schuchmann P, Scheuch G, Naumann R, Keute M, Lücke T, Zielen S, Brinkmann F. Exhaled aerosols among PCR-confirmed SARS-CoV-2-infected children. Front Pediatr 2023; 11:1156366. [PMID: 37152322 PMCID: PMC10160682 DOI: 10.3389/fped.2023.1156366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Background Available data on aerosol emissions among children and adolescents during spontaneous breathing are limited. Our aim was to gain insight into the role of children in the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and whether aerosol measurements among children can be used to help detect so-called superspreaders-infected individuals with extremely high numbers of exhaled aerosol particles. Methods In this prospective study, the aerosol concentrations of SARS-CoV-2 PCR-positive and SARS-CoV-2 PCR-negative children and adolescents (2-17 years) were investigated. All subjects were asked about their current health status and medical history. The exhaled aerosol particle counts of PCR-negative and PCR-positive subjects were measured using the Resp-Aer-Meter (Palas GmbH, Karlsruhe, Germany) and compared using linear regression. Results A total of 250 children and adolescents were included in this study, 105 of whom were SARS-CoV-2 positive and 145 of whom were SARS-CoV-2 negative. The median age in both groups was 9 years (IQR 7-11 years). A total of 124 (49.6%) participants were female, and 126 (50.4%) participants were male. A total of 81.9% of the SARS-CoV-2-positive group had symptoms of viral infection. The median particle count of all individuals was 79.55 particles/liter (IQR 44.55-141.15). There was a tendency for older children to exhale more particles (1-5 years: 79.54 p/L; 6-11 years: 77.96 p/L; 12-17 years: 98.63 p/L). SARS-CoV-2 PCR status was not a bivariate predictor (t = 0.82, p = 0.415) of exhaled aerosol particle count; however, SARS-CoV-2 status was shown to be a significant predictor in a multiple regression model together with age, body mass index (BMI), COVID-19 vaccination, and past SARS-CoV-2 infection (t = 2.81, p = 0.005). COVID-19 vaccination status was a highly significant predictor of exhaled aerosol particles (p < .001). Conclusion During SARS-CoV-2 infection, children and adolescents did not have elevated aerosol levels. In addition, no superspreaders were found.
Collapse
Affiliation(s)
- Pia Schuchmann
- Department of Children and Adolescents, University Children’s Hospital, Ruhr University of Bochum, Bochum, Germany
- Pediatric Practice (Dr. Voigt, Dr. Heier), Stadtbergen, Germany
- Correspondence: Pia Schuchmann
| | - Gerhard Scheuch
- GS Bio-Inhalation GmbH, Headquarters & Logistics, Gemuenden, Germany
| | | | - Marius Keute
- Independent Statistical Consultant, Warendorf, Germany
| | - Thomas Lücke
- Department of Children and Adolescents, University Children’s Hospital, Ruhr University of Bochum, Bochum, Germany
| | - Stefan Zielen
- Department for Children and Adolescents, Allergology, Pulmonology and Cystic Fibrosis, University Hospital, Goethe University, Frankfurt, Germany
| | - Folke Brinkmann
- Department of Pediatric Pneumology, University Children's Hospital, Ruhr University of Bochum, Bochum, Germany
- Department of Pediatric Pneumology and Allergology, University Children’s Hospital Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
15
|
Bahrami F, Batt T, Schudel S, Annaheim S, He W, Wang J, Rossi RM, Defraeye T. How long and effective does a mask protect you from an infected person who emits virus-laden particles: By implementing one-dimensional physics-based modeling. Front Public Health 2022; 10:991455. [PMID: 36311564 PMCID: PMC9614280 DOI: 10.3389/fpubh.2022.991455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/27/2022] [Indexed: 01/26/2023] Open
Abstract
SARS-CoV-2 spreads via droplets, aerosols, and smear infection. From the beginning of the COVID-19 pandemic, using a facemask in different locations was recommended to slow down the spread of the virus. To evaluate facemasks' performance, masks' filtration efficiency is tested for a range of particle sizes. Although such tests quantify the blockage of the mask for a range of particle sizes, the test does not quantify the cumulative amount of virus-laden particles inhaled or exhaled by its wearer. In this study, we quantify the accumulated viruses that the healthy person inhales as a function of time, activity level, type of mask, and room condition using a physics-based model. We considered different types of masks, such as surgical masks and filtering facepieces (FFPs), and different characteristics of public places such as office rooms, buses, trains, and airplanes. To do such quantification, we implemented a physics-based model of the mask. Our results confirm the importance of both people wearing a mask compared to when only one wears the mask. The protection time for light activity in an office room decreases from 7.8 to 1.4 h with surgical mask IIR. The protection time is further reduced by 85 and 99% if the infected person starts to cough or increases the activity level, respectively. Results show the leakage of the mask can considerably affect the performance of the mask. For the surgical mask, the apparent filtration efficiency reduces by 75% with such a leakage, which cannot provide sufficient protection despite the high filtration efficiency of the mask. The facemask model presented provides key input in order to evaluate the protection of masks for different conditions in public places. The physics-based model of the facemask is provided as an online application.
Collapse
Affiliation(s)
- Flora Bahrami
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland,ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Till Batt
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Seraina Schudel
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Simon Annaheim
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Weidong He
- Institute of Environmental Engineering, ETH Zurich, Zürich, Switzerland,Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zurich, Zürich, Switzerland,Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - René M. Rossi
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Thijs Defraeye
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland,*Correspondence: Thijs Defraeye
| |
Collapse
|
16
|
Stanislas TT, Bilba K, de Oliveira Santos RP, Onésippe-Potiron C, Savastano Junior H, Arsène MA. Nanocellulose-based membrane as a potential material for high performance biodegradable aerosol respirators for SARS-CoV-2 prevention: a review. CELLULOSE (LONDON, ENGLAND) 2022; 29:8001-8024. [PMID: 35990792 PMCID: PMC9383689 DOI: 10.1007/s10570-022-04792-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/02/2022] [Indexed: 05/14/2023]
Abstract
The controversy surrounding the transmission of COVID-19 in 2020 has revealed the need to better understand the airborne transmission route of respiratory viruses to establish appropriate strategies to limit their transmission. The effectiveness in protecting against COVID-19 has led to a high demand for face masks. This includes the single-use of non-degradable masks and Filtering Facepiece Respirators by a large proportion of the public, leading to environmental concerns related to waste management. Thus, nanocellulose-based membranes are a promising environmental solution for aerosol filtration due to their biodegradability, renewability, biocompatibility, high specific surface area, non-toxicity, ease of functionalization and worldwide availability. Although the technology for producing high-performance aerosol filter membranes from cellulose-based materials is still in its initial stage, several promising results show the prospects of the use of this kind of materials. This review focuses on the overview of nanocellulose-based filter media, including its processing, desirable characteristics and recent developments regarding filtration, functionalization, biodegradability, and mechanical behavior. The porosity control, surface wettability and surface functional groups resulting from the silylation treatment to improve the filtration capacity of the nanocellulose-based membrane is discussed. Future research trends in this area are planned to develop the air filter media by reinforcing the filter membrane structure of CNF with CNCs. In addition, the integration of sol-gel technology into the production of an air filter can tailor the pore size of the membrane for a viable physical screening solution in future studies. Graphical abstract
Collapse
Affiliation(s)
- Tido Tiwa Stanislas
- Laboratoire COVACHIM-M2E EA3592, UFR SEN, Université des Antilles, Campus de Fouillole, BP 250, 97157 Pointe-à-Pitre, Guadeloupe France
- Research Nucleus on Materials for Biosystems, Faculty of Animal Science and Food Engineering, University of São Paulo, Duque de Caxias Norte, 225, Pirassununga, SP 13635-900 Brazil
- Mechanic and Adapted Materials Laboratory, ENSET, University of Douala, P.O. BOX 1872, Douala, Cameroon
| | - Ketty Bilba
- Laboratoire COVACHIM-M2E EA3592, UFR SEN, Université des Antilles, Campus de Fouillole, BP 250, 97157 Pointe-à-Pitre, Guadeloupe France
| | - Rachel Passos de Oliveira Santos
- Research Nucleus on Materials for Biosystems, Faculty of Animal Science and Food Engineering, University of São Paulo, Duque de Caxias Norte, 225, Pirassununga, SP 13635-900 Brazil
| | - Cristel Onésippe-Potiron
- Laboratoire COVACHIM-M2E EA3592, UFR SEN, Université des Antilles, Campus de Fouillole, BP 250, 97157 Pointe-à-Pitre, Guadeloupe France
| | - Holmer Savastano Junior
- Research Nucleus on Materials for Biosystems, Faculty of Animal Science and Food Engineering, University of São Paulo, Duque de Caxias Norte, 225, Pirassununga, SP 13635-900 Brazil
| | - Marie-Ange Arsène
- Laboratoire COVACHIM-M2E EA3592, UFR SEN, Université des Antilles, Campus de Fouillole, BP 250, 97157 Pointe-à-Pitre, Guadeloupe France
| |
Collapse
|
17
|
Jimenez JL, Marr LC, Randall K, Ewing ET, Tufekci Z, Greenhalgh T, Tellier R, Tang JW, Li Y, Morawska L, Mesiano‐Crookston J, Fisman D, Hegarty O, Dancer SJ, Bluyssen PM, Buonanno G, Loomans MGLC, Bahnfleth WP, Yao M, Sekhar C, Wargocki P, Melikov AK, Prather KA. What were the historical reasons for the resistance to recognizing airborne transmission during the COVID-19 pandemic? INDOOR AIR 2022; 32:e13070. [PMID: 36040283 PMCID: PMC9538841 DOI: 10.1111/ina.13070] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 05/05/2023]
Abstract
The question of whether SARS-CoV-2 is mainly transmitted by droplets or aerosols has been highly controversial. We sought to explain this controversy through a historical analysis of transmission research in other diseases. For most of human history, the dominant paradigm was that many diseases were carried by the air, often over long distances and in a phantasmagorical way. This miasmatic paradigm was challenged in the mid to late 19th century with the rise of germ theory, and as diseases such as cholera, puerperal fever, and malaria were found to actually transmit in other ways. Motivated by his views on the importance of contact/droplet infection, and the resistance he encountered from the remaining influence of miasma theory, prominent public health official Charles Chapin in 1910 helped initiate a successful paradigm shift, deeming airborne transmission most unlikely. This new paradigm became dominant. However, the lack of understanding of aerosols led to systematic errors in the interpretation of research evidence on transmission pathways. For the next five decades, airborne transmission was considered of negligible or minor importance for all major respiratory diseases, until a demonstration of airborne transmission of tuberculosis (which had been mistakenly thought to be transmitted by droplets) in 1962. The contact/droplet paradigm remained dominant, and only a few diseases were widely accepted as airborne before COVID-19: those that were clearly transmitted to people not in the same room. The acceleration of interdisciplinary research inspired by the COVID-19 pandemic has shown that airborne transmission is a major mode of transmission for this disease, and is likely to be significant for many respiratory infectious diseases.
Collapse
Affiliation(s)
- Jose L. Jimenez
- Department of Chemistry and Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderColoradoUSA
| | - Linsey C. Marr
- Department of Civil and Environmental EngineeringVirginia TechBlacksburgVirginiaUSA
| | | | | | - Zeynep Tufekci
- School of JournalismColumbia UniversityNew YorkNew YorkUSA
| | - Trish Greenhalgh
- Department of Primary Care Health SciencesMedical Sciences DivisionUniversity of OxfordOxfordUK
| | | | - Julian W. Tang
- Department of Respiratory SciencesUniversity of LeicesterLeicesterUK
| | - Yuguo Li
- Department of Mechanical EngineeringUniversity of Hong KongHong KongChina
| | - Lidia Morawska
- International Laboratory for Air Quality and HeathQueensland University of TechnologyBrisbaneQueenslandAustralia
| | | | - David Fisman
- Dalla Lana School of Public HealthUniversity of TorontoTorontoOntarioCanada
| | - Orla Hegarty
- School of Architecture, Planning & Environmental PolicyUniversity College DublinDublinIreland
| | - Stephanie J. Dancer
- Department of MicrobiologyHairmyres Hospital, Glasgow, and Edinburgh Napier UniversityGlasgowUK
| | - Philomena M. Bluyssen
- Faculty of Architecture and the Built EnvironmentDelft University of TechnologyDelftThe Netherlands
| | - Giorgio Buonanno
- Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoItaly
| | - Marcel G. L. C. Loomans
- Department of the Built EnvironmentEindhoven University of Technology (TU/e)EindhovenThe Netherlands
| | - William P. Bahnfleth
- Department of Architectural EngineeringThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Maosheng Yao
- College of Environmental Sciences and EngineeringPeking UniversityBeijingChina
| | - Chandra Sekhar
- Department of the Built EnvironmentNational University of SingaporeSingaporeSingapore
| | - Pawel Wargocki
- Department of Civil EngineeringTechnical University of DenmarkLyngbyDenmark
| | - Arsen K. Melikov
- Department of Civil EngineeringTechnical University of DenmarkLyngbyDenmark
| | - Kimberly A. Prather
- Scripps Institution of OceanographyUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
18
|
Schuit MA, Larason TC, Krause ML, Green BM, Holland BP, Wood SP, Grantham S, Zong Y, Zarobila CJ, Freeburger DL, Miller DM, Bohannon JK, Ratnesar-Shumate SA, Blatchley ER, Li X, Dabisch PA, Miller CC. SARS-CoV-2 inactivation by ultraviolet radiation and visible light is dependent on wavelength and sample matrix. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112503. [PMID: 35779426 PMCID: PMC9221687 DOI: 10.1016/j.jphotobiol.2022.112503] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/19/2022] [Accepted: 06/18/2022] [Indexed: 11/11/2022]
Abstract
Numerous studies have demonstrated that SARS-CoV-2 can be inactivated by ultraviolet (UV) radiation. However, there are few data available on the relative efficacy of different wavelengths of UV radiation and visible light, which complicates assessments of UV decontamination interventions. The present study evaluated the effects of monochromatic radiation at 16 wavelengths from 222 nm through 488 nm on SARS-CoV-2 in liquid aliquots and dried droplets of water and simulated saliva. The data were used to generate a set of action spectra which quantify the susceptibility of SARS-CoV-2 to genome damage and inactivation across the tested wavelengths. UVC wavelengths (≤280 nm) were most effective for inactivating SARS-CoV-2, although inactivation rates were dependent on sample type. Results from this study suggest that UV radiation can effectively inactivate SARS-CoV-2 in liquids and dried droplets, and provide a foundation for understanding the factors which affect the efficacy of different wavelengths in real-world settings.
Collapse
Affiliation(s)
- Michael A Schuit
- National Biodefense Analysis and Countermeasures Center, Operated by Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, 8300 Research Plaza, Frederick, MD 21702, USA.
| | - Thomas C Larason
- National Institute of Standards and Technology (NIST), U.S. Department of Commerce (DoC), 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Melissa L Krause
- National Biodefense Analysis and Countermeasures Center, Operated by Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, 8300 Research Plaza, Frederick, MD 21702, USA
| | - Brian M Green
- National Biodefense Analysis and Countermeasures Center, Operated by Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, 8300 Research Plaza, Frederick, MD 21702, USA
| | - Brian P Holland
- National Biodefense Analysis and Countermeasures Center, Operated by Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, 8300 Research Plaza, Frederick, MD 21702, USA
| | - Stewart P Wood
- National Biodefense Analysis and Countermeasures Center, Operated by Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, 8300 Research Plaza, Frederick, MD 21702, USA
| | - Steven Grantham
- National Institute of Standards and Technology (NIST), U.S. Department of Commerce (DoC), 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Yuqin Zong
- National Institute of Standards and Technology (NIST), U.S. Department of Commerce (DoC), 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Clarence J Zarobila
- National Institute of Standards and Technology (NIST), U.S. Department of Commerce (DoC), 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Denise L Freeburger
- National Biodefense Analysis and Countermeasures Center, Operated by Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, 8300 Research Plaza, Frederick, MD 21702, USA
| | - David M Miller
- National Biodefense Analysis and Countermeasures Center, Operated by Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, 8300 Research Plaza, Frederick, MD 21702, USA
| | - Jordan K Bohannon
- National Biodefense Analysis and Countermeasures Center, Operated by Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, 8300 Research Plaza, Frederick, MD 21702, USA
| | - Shanna A Ratnesar-Shumate
- National Biodefense Analysis and Countermeasures Center, Operated by Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, 8300 Research Plaza, Frederick, MD 21702, USA
| | - Ernest R Blatchley
- Lyles School of Civil Engineering, Purdue University, 610 Purdue Mall, West Lafayette, IN, USA; Division of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Xing Li
- Lyles School of Civil Engineering, Purdue University, 610 Purdue Mall, West Lafayette, IN, USA
| | - Paul A Dabisch
- National Biodefense Analysis and Countermeasures Center, Operated by Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, 8300 Research Plaza, Frederick, MD 21702, USA
| | - C Cameron Miller
- National Institute of Standards and Technology (NIST), U.S. Department of Commerce (DoC), 100 Bureau Drive, Gaithersburg, MD 20899, USA
| |
Collapse
|
19
|
Air dispersal of respiratory viruses other than severe acute respiratory coronavirus virus 2 (SARS-CoV-2) and the implication on hospital infection control. Infect Control Hosp Epidemiol 2022; 44:768-773. [PMID: 35811422 PMCID: PMC9304945 DOI: 10.1017/ice.2022.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: Air dispersal of respiratory viruses other than SARS-CoV-2 has not been systematically reported. The incidence and factors associated with air dispersal of respiratory viruses are largely unknown. Methods: We performed air sampling by collecting 72,000 L of air over 6 hours for pediatric and adolescent patients infected with parainfluenza virus 3 (PIF3), respiratory syncytial virus (RSV), rhinovirus, and adenovirus. The patients were singly or 2-patient cohort isolated in airborne infection isolation rooms (AIIRs) from December 3, 2021, to January 26, 2022. The viral load in nasopharyngeal aspirates (NPA) and air samples were measured. Factors associated with air dispersal were investigated and analyzed. Results: Of 20 singly isolated patients with median age of 30 months (range, 3 months–15 years), 7 (35%) had air dispersal of the viruses compatible with their NPA results. These included 4 (40%) of 10 PIF3-infected patients, 2 (66%) of 3 RSV-infected patients, and 1 (50%) of 2 adenovirus-infected patients. The mean viral load in their room air sample was 1.58×103 copies/mL. Compared with 13 patients (65%) without air dispersal, these 7 patients had a significantly higher mean viral load in their NPA specimens (6.15×107 copies/mL vs 1.61×105 copies/mL; P < .001). Another 14 patients were placed in cohorts as 7 pairs infected with the same virus (PIF3, 2 pairs; RSV, 3 pairs; rhinovirus, 1 pair; and adenovirus, 1 pair) in double-bed AIIRs, all of which had air dispersal. The mean room air viral load in 2-patient cohorts was significantly higher than in rooms of singly isolated patients (1.02×104 copies/mL vs 1.58×103 copies/mL; P = .020). Conclusion: Air dispersal of common respiratory viruses may have infection prevention and public health implications.
Collapse
|
20
|
Jia W, Wei J, Cheng P, Wang Q, Li Y. Exposure and respiratory infection risk via the short-range airborne route. BUILDING AND ENVIRONMENT 2022; 219:109166. [PMID: 35574565 PMCID: PMC9085449 DOI: 10.1016/j.buildenv.2022.109166] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/16/2022] [Accepted: 05/02/2022] [Indexed: 05/09/2023]
Abstract
Leading health authorities have suggested short-range airborne transmission as a major route of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, there is no simple method to assess the short-range airborne infection risk or identify its governing parameters. We proposed a short-range airborne infection risk assessment model based on the continuum model and two-stage jet model. The effects of ventilation, physical distance and activity intensity on the short-range airborne exposure were studied systematically. The results suggested that increasing physical distance and ventilation reduced short-range airborne exposure and infection risk. However, a diminishing return phenomenon was observed when the ventilation rate or physical distance was beyond a certain threshold. When the infectious quantum concentration was less than 1 quantum/L at the mouth, our newly defined threshold distance and threshold ventilation rate were independent of quantum concentration. We estimated threshold distances of 0.59, 1.1, 1.7 and 2.6 m for sedentary/passive, light, moderate and intense activities, respectively. At these distances, the threshold ventilation was estimated to be 8, 20, 43, and 83 L/s per person, respectively. The findings show that both physical distancing and adequate ventilation are essential for minimising infection risk, especially in high-intensity activity or densely populated spaces.
Collapse
Affiliation(s)
- Wei Jia
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jianjian Wei
- Institute of Refrigeration and Cryogenics/Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Pan Cheng
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Qun Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yuguo Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
21
|
Wang Y, Liu Z, Liu H, Wu M, He J, Cao G. Droplet aerosols transportation and deposition for three respiratory behaviors in a typical negative pressure isolation ward. BUILDING AND ENVIRONMENT 2022; 219:109247. [PMID: 35669356 PMCID: PMC9159814 DOI: 10.1016/j.buildenv.2022.109247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 05/28/2023]
Abstract
Negative pressure isolation wards could provide safety for health care workers (HCWs) and patients infected with SARS-CoV-2. However, respiratory behavior releases aerosols containing pathogens, resulting in a potential risk of infection for HCWs. In this study, the spatiotemporal distribution of droplet aerosols in a typical negative pressure isolation ward was investigated using a full-scale experiment. In this experiment, artificial saliva was used to simulate the breathing behavior, which can reflect the effect of evaporation on droplet aerosols. Moreover, numerical simulations were used to compare the transport of droplet aerosols released by the three respiratory behaviors (breathing, speaking, and coughing). The results showed that droplet aerosols generated by coughing and speaking can be removed and deposited more quickly. Because reduction in the suspension proportion per unit time was much higher than that in the case of breathing. Under the air supply inlets, there was significant aerosol deposition on the floor, while the breathing area possessed higher aerosol concentrations. The risk of aerosol resuspension and potential infection increased significantly when HCWs moved frequently to these areas. Finally, more than 20% of the droplet aerosols escaped from the ward when the number of suspended aerosols in the aerosol space was 1%.
Collapse
Affiliation(s)
- Yongxin Wang
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Zhijian Liu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Haiyang Liu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Minnan Wu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Junzhou He
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Guoqing Cao
- Institute of Building Environment and Energy, China Academy of Building Research, Beijing, 100013, PR China
| |
Collapse
|
22
|
van Beest MRRS, Arpino F, Hlinka O, Sauret E, van Beest NRTP, Humphries RS, Buonanno G, Morawska L, Governatori G, Motta N. Influence of indoor airflow on particle spread of a single breath and cough in enclosures: Does opening a window really 'help'? ATMOSPHERIC POLLUTION RESEARCH 2022; 13:101473. [PMID: 35692900 PMCID: PMC9167821 DOI: 10.1016/j.apr.2022.101473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
The spread of respiratory diseases via aerosol particles in indoor settings is of significant concern. The SARS-CoV-2 virus has been found to spread widely in confined enclosures like hotels, hospitals, cruise ships, prisons, and churches. Particles exhaled from a person indoors can remain suspended long enough for increasing the opportunity for particles to spread spatially. Careful consideration of the ventilation system is essential to minimise the spread of particles containing infectious pathogens. Previous studies have shown that indoor airflow induced by opened windows would minimise the spread of particles. However, how outdoor airflow through an open window influences the indoor airflow has not been considered. The aim of this study is to provide a clear understanding of the indoor particle spread across multiple rooms, in a situation similar to what is found in quarantine hotels and cruise ships, using a combination of HVAC (Heating, Ventilation and Air-Conditioning) ventilation and an opening window. Using a previously validated mathematical model, we used 3D CFD (computational fluid dynamics) simulations to investigate to what extent different indoor airflow scenarios contribute to the transport of a single injection of particles ( 1 . 3 μ m ) in a basic 3D multi-room indoor environment. Although this study is limited to short times, we demonstrate that in certain conditions approximately 80% of the particles move from one room to the corridor and over 60% move to the nearby room within 5 to 15 s. Our results provide additional information to help identifying relevant recommendations to limit particles from spreading in enclosures.
Collapse
Affiliation(s)
- M R R S van Beest
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Australia
- Software Systems Group, CSIRO | DATA61, Brisbane, Queensland, Australia
| | - F Arpino
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
| | - O Hlinka
- Information Management & Technology (IM&T), CSIRO, Pullenvale, Queensland, Australia
| | - E Sauret
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - N R T P van Beest
- Software Systems Group, CSIRO | DATA61, Brisbane, Queensland, Australia
| | - R S Humphries
- Climate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia
| | - G Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
| | - L Morawska
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, Australia
| | - G Governatori
- Software Systems Group, CSIRO | DATA61, Brisbane, Queensland, Australia
| | - N Motta
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
23
|
Baselga M, Alba JJ, Schuhmacher AJ. The Control of Metabolic CO 2 in Public Transport as a Strategy to Reduce the Transmission of Respiratory Infectious Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6605. [PMID: 35682191 PMCID: PMC9180361 DOI: 10.3390/ijerph19116605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023]
Abstract
The global acceptance of the SARS-CoV-2 airborne transmission led to prevention measures based on quality control and air renewal. Among them, carbon dioxide (CO2) measurement has positioned itself as a cost-efficiency, reliable, and straightforward method to assess indoor air renewal indirectly. Through the control of CO2, it is possible to implement and validate the effectiveness of prevention measures to reduce the risk of contagion of respiratory diseases by aerosols. Thanks to the method scalability, CO2 measurement has become the gold standard for diagnosing air quality in shared spaces. Even though collective transport is considered one of the environments with the highest rate of COVID-19 propagation, little research has been done where the air inside vehicles is analyzed. This work explores the generation and accumulation of metabolic CO2 in a tramway (Zaragoza, Spain) operation. Importantly, we propose to use the indicator ppm/person as a basis for comparing environments under different conditions. Our study concludes with an experimental evaluation of the benefit of modifying some parameters of the Heating-Ventilation-Air conditioning (HVAC) system. The study of the particle retention efficiency of the implemented filters shows a poor air cleaning performance that, at present, can be counteracted by opening windows. Seeking a post-pandemic scenario, it will be crucial to seek strategies to improve air quality in public transport to prevent the transmission of infectious diseases.
Collapse
Affiliation(s)
- Marta Baselga
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (M.B.); (J.J.A.)
| | - Juan J. Alba
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (M.B.); (J.J.A.)
- Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - Alberto J. Schuhmacher
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (M.B.); (J.J.A.)
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), 500018 Zaragoza, Spain
| |
Collapse
|
24
|
Droplets Transmission Mechanism in a Commercial Wide-Body Aircraft Cabin. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
COVID-19 is a respiratory infectious disease that spreads readily between people, and an urgent issue of passengers’ exposure risk assessment in commercial aircraft has been raised because an aircraft cabin as a confined space may carry and transmit the disease worldwide. In this study, the droplets transmission process under different ventilation systems in a twin-aisle wide-body aircraft was studied using CFD simulations and the infection risk of passengers was assessed by the improved Wells–Riley model. Numerical results found that the transmission mechanism of droplets in the aircraft cabin was different depending on the type of ventilation systems and the location of the infectious source. Annular airflow could effectively enhance the ability of droplets transmission, while direct airflow, represented by displacement ventilation, could significantly inhibit droplets transmission. Accordingly, a new type of ventilation system was proposed based on the concept that the overall space is organized by annular airflow and the local area is direct airflow. Compared with sidewall mixing ventilation system, the infection risk of the new ventilation system presented in this study is reduced by 27%.
Collapse
|
25
|
Baselga M, Güemes A, Alba JJ, Schuhmacher AJ. SARS-CoV-2 Droplet and Airborne Transmission Heterogeneity. J Clin Med 2022; 11:2607. [PMID: 35566733 PMCID: PMC9099777 DOI: 10.3390/jcm11092607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022] Open
Abstract
The spread dynamics of the SARS-CoV-2 virus have not yet been fully understood after two years of the pandemic. The virus's global spread represented a unique scenario for advancing infectious disease research. Consequently, mechanistic epidemiological theories were quickly dismissed, and more attention was paid to other approaches that considered heterogeneity in the spread. One of the most critical advances in aerial pathogens transmission was the global acceptance of the airborne model, where the airway is presented as the epicenter of the spread of the disease. Although the aerodynamics and persistence of the SARS-CoV-2 virus in the air have been extensively studied, the actual probability of contagion is still unknown. In this work, the individual heterogeneity in the transmission of 22 patients infected with COVID-19 was analyzed by close contact (cough samples) and air (environmental samples). Viral RNA was detected in 2/19 cough samples from patient subgroups, with a mean Ct (Cycle Threshold in Quantitative Polymerase Chain Reaction analysis) of 25.7 ± 7.0. Nevertheless, viral RNA was only detected in air samples from 1/8 patients, with an average Ct of 25.0 ± 4.0. Viral load in cough samples ranged from 7.3 × 105 to 8.7 × 108 copies/mL among patients, while concentrations between 1.1-4.8 copies/m3 were found in air, consistent with other reports in the literature. In patients undergoing follow-up, no viral load was found (neither in coughs nor in the air) after the third day of symptoms, which could help define quarantine periods in infected individuals. In addition, it was found that the patient's Ct should not be considered an indicator of infectiousness, since it could not be correlated with the viral load disseminated. The results of this work are in line with proposed hypotheses of superspreaders, which can attribute part of the heterogeneity of the spread to the oversized emission of a small percentage of infected people.
Collapse
Affiliation(s)
- Marta Baselga
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (M.B.); (A.G.); (J.J.A.)
| | - Antonio Güemes
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (M.B.); (A.G.); (J.J.A.)
- Department of Surgery, University of Zaragoza, 50009 Zaragoza, Spain
| | - Juan J. Alba
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (M.B.); (A.G.); (J.J.A.)
- Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - Alberto J. Schuhmacher
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (M.B.); (A.G.); (J.J.A.)
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), 50018 Zaragoza, Spain
| |
Collapse
|
26
|
Esther CR, O'Neal WK, Anderson WH, Kesimer M, Ceppe A, Doerschuk CM, Alexis NE, Hastie AT, Barr RG, Bowler RP, Wells JM, Oelsner EC, Comellas AP, Tesfaigzi Y, Kim V, Paulin LM, Cooper CB, Han MK, Huang YJ, Labaki WW, Curtis JL, Boucher RC. Identification of Sputum Biomarkers Predictive of Pulmonary Exacerbations in COPD. Chest 2022; 161:1239-1249. [PMID: 34801592 PMCID: PMC9131049 DOI: 10.1016/j.chest.2021.10.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/15/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Improved understanding of the pathways associated with airway pathophysiologic features in COPD will identify new predictive biomarkers and novel therapeutic targets. RESEARCH QUESTION Which physiologic pathways are altered in the airways of patients with COPD and will predict exacerbations? STUDY DESIGN AND METHODS We applied a mass spectrometric panel of metabolomic biomarkers related to mucus hydration and inflammation to sputa from the multicenter Subpopulations and Intermediate Outcome Measures in COPD Study. Biomarkers elevated in sputa from patients with COPD were evaluated for relationships to measures of COPD disease severity and their ability to predict future exacerbations. RESULTS Sputum supernatants from 980 patients were analyzed: 77 healthy nonsmokers, 341 smokers with preserved spirometry, and 562 patients with COPD (178 with Global Initiative on Chronic Obstructive Lung Disease [GOLD] stage 1 disease, 303 with GOLD stage 2 disease, and 81 with GOLD stage 3 disease) were analyzed. Biomarkers from multiple pathways were elevated in COPD and correlated with sputum neutrophil counts. Among the most significant analytes (false discovery rate, 0.1) were sialic acid, hypoxanthine, xanthine, methylthioadenosine, adenine, and glutathione. Sialic acid and hypoxanthine were associated strongly with measures of disease severity, and elevation of these biomarkers was associated with shorter time to exacerbation and improved prediction models of future exacerbations. INTERPRETATION Biomarker evaluation implicated pathways involved in mucus hydration, adenosine metabolism, methionine salvage, and oxidative stress in COPD airway pathophysiologic characteristics. Therapies that target these pathways may be of benefit in COPD, and a simple model adding sputum-soluble phase biomarkers improves prediction of pulmonary exacerbations. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT01969344; URL: www. CLINICALTRIALS gov.
Collapse
Affiliation(s)
- Charles R Esther
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Wanda K O'Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Wayne H Anderson
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mehmet Kesimer
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Agathe Ceppe
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Claire M Doerschuk
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Neil E Alexis
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Annette T Hastie
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC
| | - R Graham Barr
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | | | - J Michael Wells
- Lung Health Center, Division of Pulmonary Allergy and Critical Care, University of Alabama at Birmingham, Birmingham, AL
| | - Elizabeth C Oelsner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Alejandro P Comellas
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa, Iowa City, IA
| | - Yohannes Tesfaigzi
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Victor Kim
- Pulmonary and Critical Care Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Laura M Paulin
- Department of Medicine and Epidemiology, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine, Hanover, NH
| | - Christopher B Cooper
- Department of Medicine and Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - MeiLan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan Ann Arbor, Ann Arbor, MI
| | - Yvonne J Huang
- Division of Pulmonary and Critical Care Medicine, University of Michigan Ann Arbor, Ann Arbor, MI
| | - Wassim W Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan Ann Arbor, Ann Arbor, MI
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan Ann Arbor, Ann Arbor, MI; Medicine Service, VA Ann Arbor Healthcare System, Ann Arbor, MI
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
27
|
Melzow F, Mertens S, Todorov H, Groneberg DA, Paris S, Gerber A. Aerosol exposure of staff during dental treatments: a model study. BMC Oral Health 2022; 22:128. [PMID: 35428223 PMCID: PMC9012061 DOI: 10.1186/s12903-022-02155-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/05/2022] [Indexed: 12/20/2022] Open
Abstract
Background Due to exposure to potentially infectious aerosols during treatments, the dental personnel is considered being at high risk for aerosol transmitted diseases like COVID-19. The aim of this study was to evaluate aerosol exposure during different dental treatments as well as the efficacy of dental suction to reduce aerosol spreading.
Methods Dental powder-jet (PJ; Air-Flow®), a water-cooled dental handpiece with a diamond bur (HP) and water-cooled ultrasonic scaling (US) were used in a simulation head, mounted on a dental unit in various treatment settings. The influence of the use of a small saliva ejector (SE) and high-volume suction (HVS) was evaluated. As a proxy of aerosols, air-born particles (PM10) were detected using a Laser Spectrometer in 30 cm distance from the mouth. As control, background particle counts (BC) were measured before and after experiments. Results With only SE, integrated aerosol levels [median (Q25/Q75) µg/m3 s] for PJ [91,246 (58,213/118,386) µg/m3 s, p < 0.001, ANOVA] were significantly increased compared to BC [7243 (6501/8407) µg/m3 s], whilst HP [11,119 (7190/17,234) µg/m3 s, p > 0.05] and US [6558 (6002/7066) µg/m3 s; p > 0.05] did not increase aerosol levels significantly. The use of HVS significantly decreased aerosol exposure for PJ [37,170 (29,634/51,719) µg/m3 s; p < 0.01] and HP [5476 (5066/5638) µg/m3 s; p < 0.001] compared to SE only, even reaching lower particle counts than BC levels for HP usage (p < 0.001). Conclusions To reduce the exposure to potentially infectious aerosols, HVS should be used during aerosol-forming dental treatments.
Collapse
|
28
|
Guo W, Fu Y, Jia R, Guo Z, Su C, Li J, Zhao X, Jin Y, Li P, Fan J, Zhang C, Qu P, Cui H, Gao S, Cheng H, Li J, Li X, Lu B, Xu X, Wang Z. Visualization of the infection risk assessment of SARS-CoV-2 through aerosol and surface transmission in a negative-pressure ward. ENVIRONMENT INTERNATIONAL 2022; 162:107153. [PMID: 35202929 PMCID: PMC8858715 DOI: 10.1016/j.envint.2022.107153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/22/2022] [Accepted: 02/16/2022] [Indexed: 06/10/2023]
Abstract
Since December 2019, coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a great challenge to the world's public health system. Nosocomial infections have occurred frequently in medical institutions worldwide during this pandemic. Thus, there is an urgent need to construct an effective surveillance and early warning system for pathogen exposure and infection to prevent nosocomial infections in negative-pressure wards. In this study, visualization and construction of an infection risk assessment of SARS-CoV-2 through aerosol and surface transmission in a negative-pressure ward were performed to describe the distribution regularity and infection risk of SARS-CoV-2, the critical factors of infection, the air changes per hour (ACHs) and the viral variation that affect infection risk. The SARS-CoV-2 distribution data from this model were verified by field test data from the Wuhan Huoshenshan Hospital ICU ward. ACHs have a great impact on the infection risk from airborne exposure, while they have little effect on the infection risk from surface exposure. The variant strains demonstrated significantly increased viral loads and risks of infection. The level of protection for nurses and surgeons should be increased when treating patients infected with variant strains, and new disinfection methods, electrostatic adsorption and other air purification methods should be used in all human environments. The results of this study may provide a theoretical reference and technical support for reducing the occurrence of nosocomial infections.
Collapse
Affiliation(s)
- Weiqi Guo
- Academy of Military Sciences, Beijing, China
| | - Yingying Fu
- Academy of Military Sciences, Beijing, China
| | - Rui Jia
- China Biotechnology Co. LTD, Beijing, China
| | | | - Chen Su
- Academy of Military Sciences, Beijing, China
| | - Jiaming Li
- Academy of Military Sciences, Beijing, China
| | - Xiuguo Zhao
- Academy of Military Sciences, Beijing, China
| | - Yifei Jin
- Academy of Military Sciences, Beijing, China
| | - Penghui Li
- Academy of Military Sciences, Beijing, China
| | - Jinbo Fan
- Academy of Military Sciences, Beijing, China
| | - Cheng Zhang
- Academy of Military Sciences, Beijing, China
| | - Pengtao Qu
- Academy of Military Sciences, Beijing, China
| | - Huan Cui
- Academy of Military Sciences, Beijing, China
| | - Sheng Gao
- Academy of Military Sciences, Beijing, China
| | | | - Jingjing Li
- Academy of Military Sciences, Beijing, China
| | - Xiang Li
- Academy of Military Sciences, Beijing, China
| | - Bing Lu
- Academy of Military Sciences, Beijing, China.
| | - Xinxi Xu
- Academy of Military Sciences, Beijing, China.
| | | |
Collapse
|
29
|
Baig TA, Zhang M, Smith BL, King MD. Environmental Effects on Viable Virus Transport and Resuspension in Ventilation Airflow. Viruses 2022; 14:616. [PMID: 35337023 PMCID: PMC8950092 DOI: 10.3390/v14030616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
To understand how SARS-CoV-2 spreads indoors, in this study bovine coronavirus was aerosolized as simulant into a plexiglass chamber with coupons of metal, wood and plastic surfaces. After aerosolization, chamber and coupon surfaces were swiped to quantify the virus concentrations using quantitative polymerase chain reaction (qPCR). Bio-layer interferometry showed stronger virus association on plastic and metal surfaces, however, higher dissociation from wood in 80% relative humidity. Virus aerosols were collected with the 100 L/min wetted wall cyclone and the 50 L/min MD8 air sampler and quantitated by qPCR. To monitor the effect of the ventilation on the virus movement, PRD1 bacteriophages as virus simulants were disseminated in a ¾ scale air-conditioned hospital test room with twelve PM2.5 samplers at 15 L/min. Higher virus concentrations were detected above the patient's head and near the foot of the bed with the air inlet on the ceiling above, exhaust bottom left on the wall. Based on room layout, air measurements and bioaerosol collections computational flow models were created to visualize the movement of the virus in the room airflow. The addition of air curtain at the door minimized virus concentration while having the inlet and exhaust on the ceiling decreased overall aerosol concentration. Controlled laboratory experiments were conducted in a plexiglass chamber to gain more insight into the fundamental behavior of aerosolized SARS-CoV-2 and understand its fate and transport in the ambient environment of the hospital room.
Collapse
Affiliation(s)
| | | | | | - Maria D. King
- Aerosol Technology Laboratory, Biological & Agricultural Engineering Department, Texas A&M University, College Station, TX 77843, USA; (T.A.B.); (M.Z.); (B.L.S.)
| |
Collapse
|
30
|
Haworth JJ, Pitcher CK, Ferrandino G, Hobson AR, Pappan KL, Lawson JLD. Breathing new life into clinical testing and diagnostics: perspectives on volatile biomarkers from breath. Crit Rev Clin Lab Sci 2022; 59:353-372. [PMID: 35188863 DOI: 10.1080/10408363.2022.2038075] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human breath offers several benefits for diagnostic applications, including simple, noninvasive collection. Breath is a rich source of clinically-relevant biological information; this includes a volatile fraction, where greater than 1,000 volatile organic compounds (VOCs) have been described so far, and breath aerosols that carry nucleic acids, proteins, signaling molecules, and pathogens. Many of these factors, especially VOCs, are delivered to the lung by the systemic circulation, and diffusion of candidate biomarkers from blood into breath allows systematic profiling of organismal health. Biomarkers on breath offer the capability to advance early detection and precision medicine in areas of global clinical need. Breath tests are noninvasive and can be performed at home or in a primary care setting, which makes them well-suited for the kind of public screening program that could dramatically improve the early detection of conditions such as lung cancer. Since measurements of VOCs on breath largely report on metabolic changes, this too aids in the early detection of a broader range of illnesses and can be used to detect metabolic shifts that could be targeted through precision medicine. Furthermore, the ability to perform frequent sampling has envisioned applications in monitoring treatment responses. Breath has been investigated in respiratory, liver, gut, and neurological diseases and in contexts as diverse as infectious diseases and cancer. Preclinical research studies using breath have been ongoing for some time, yet only a few breath-based diagnostics tests are currently available and in widespread clinical use. Most recently, tests assessing the gut microbiome using hydrogen and methane on breath, in addition to tests using urea to detect Helicobacter pylori infections have been released, yet there are many more applications of breath tests still to be realized. Here, we discuss the strengths of breath as a clinical sampling matrix and the technical challenges to be addressed in developing it for clinical use. Historically, a lack of standardized methodologies has delayed the discovery and validation of biomarker candidates, resulting in a proliferation of early-stage pilot studies. We will explore how advancements in breath collection and analysis are in the process of driving renewed progress in the field, particularly in the context of gastrointestinal and chronic liver disease. Finally, we will provide a forward-looking outlook for developing the next generation of clinically relevant breath tests and how they may emerge into clinical practice.
Collapse
|
31
|
Leonardi AJ, Mishra AK. A Sanitation Argument for Clean Indoor Air: Meeting a Requisite for Safe Public Spaces. Front Public Health 2022; 10:805780. [PMID: 35237550 PMCID: PMC8883285 DOI: 10.3389/fpubh.2022.805780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Asit Kumar Mishra
- MaREI Centre, Ryan Institute & School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
32
|
Vlaskin MS. Review of air disinfection approaches and proposal for thermal inactivation of airborne viruses as a life-style and an instrument to fight pandemics. APPLIED THERMAL ENGINEERING 2022; 202:117855. [PMID: 34867067 PMCID: PMC8628600 DOI: 10.1016/j.applthermaleng.2021.117855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/20/2021] [Accepted: 11/24/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 (Coronavirus Disease 2019) pandemic highlighted the importance of air biosecurity because SARS-CoV-2 is mainly transmitted from person to person via airborne droplets. Preventing infectious droplets from entering the body is one of the best ways to protect against infection. This paper reviews the transmission patterns of airborne pathogens and air disinfection methods. A particular emphasis is put on studies devoted to the thermal inactivation of viruses. These reviews reveal that air heat treatment has not been seriously considered as a possible air disinfection approach. Simple calculations show that the energy input required for thermal disinfection of human's air daily consumption is almost the same as for daily water consumption (by heat treatment from room temperature to 100 °C). Moreover, it is possible to organize a continuous heat recovery from the air already heated during disinfection to the inlet air, thus significantly increasing the energy efficiency. Therefore, I propose a solution for the thermal inactivation of airborne pathogens based on air heating and its subsequent cooling in a heat exchanger with heat recovery. Such a solution could be used to create mobile personal and stationary indoor air disinfectors, as well as heating, ventilation, and air conditioning systems. Thermal disinfection of air to breathe might one day be part of people's daily life like thermal disinfection of drinking water. Aside from limiting infectious disease transmission, thermal inactivation might be the basis for developing inhaled vaccines using thermally inactivated whole pathogens.
Collapse
Affiliation(s)
- Mikhail S Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 13/2 Izhorskaya St, Moscow 125412, Russia
| |
Collapse
|
33
|
Denpetkul T, Pumkaew M, Sittipunsakda O, Leaungwutiwong P, Mongkolsuk S, Sirikanchana K. Effects of face masks and ventilation on the risk of SARS-CoV-2 respiratory transmission in public toilets: a quantitative microbial risk assessment. JOURNAL OF WATER AND HEALTH 2022; 20:300-313. [PMID: 36366988 DOI: 10.2166/wh.2022.190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Public toilets may increase the risk of COVID-19 infection via airborne transmission; however, related research is limited. We aimed to estimate SARS-CoV-2 infection risk through respiratory transmission using a quantitative microbial risk assessment framework by retrieving SARS-CoV-2 concentrations from the swab tests of 251 Thai patients. Three virus-generating scenarios were investigated: an infector breathing, breathing with a cough, and breathing with a sneeze. The infection risk (95th percentile) was as high as 10-1 with breathing and increased to 1 with a cough or a sneeze. No significant gender differences for toilet users (receptors) were noted. The highest risk scenario, namely breathing with a sneeze, was further evaluated for risk mitigation measures. Mitigation to a lower risk under 10-3 succeeded only when the infector and the receptor both wore N95 respirators or surgical masks. Ventilation of up to 20 air changes per hour (ACH) did not decrease the risk. However, an extended waiting time of 10 min between an infector and a receptor resulted in approximately 1.0-log10 further risk reduction when both wore masks with the WHO-recommended 12 ACH. The volume of expelled droplets, virus concentrations, and receptor dwell time were identified as the main contributors to transmission risk.
Collapse
Affiliation(s)
- Thammanitchpol Denpetkul
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Monchai Pumkaew
- Environmental Engineering and Disaster Management Program, School of Multidisciplinary, Mahidol University, Kanchanaburi Campus, Sai Yok, Kanchanaburi 71150, Thailand
| | - Oranoot Sittipunsakda
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand 10400
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand E-mail: ; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand E-mail: ; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
| |
Collapse
|
34
|
Varga CM, Kwiatkowski KJ, Pedro MJ, Groepenhoff H, Rose EA, Gray C, Pinkerton KD, McBride MG, Paridon SM. Observation of Aerosol Generation by Human Subjects During Cardiopulmonary Exercise Testing Using a High-Powered Laser Technique: A Pilot Project. J Med Biol Eng 2022; 42:1-10. [PMID: 35095378 PMCID: PMC8783785 DOI: 10.1007/s40846-021-00675-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022]
|
35
|
da Silva PG, Gonçalves J, Lopes AIB, Esteves NA, Bamba GEE, Nascimento MSJ, Branco PTBS, Soares RRG, Sousa SIV, Mesquita JR. Evidence of Air and Surface Contamination with SARS-CoV-2 in a Major Hospital in Portugal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19010525. [PMID: 35010785 PMCID: PMC8744945 DOI: 10.3390/ijerph19010525] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023]
Abstract
As the third wave of the COVID-19 pandemic hit Portugal, it forced the country to reintroduce lockdown measures due to hospitals reaching their full capacities. Under these circumstances, environmental contamination by SARS-CoV-2 in different areas of one of Portugal's major Hospitals was assessed between 21 January and 11 February 2021. Air samples (n = 44) were collected from eleven different areas of the Hospital (four COVID-19 and seven non-COVID-19 areas) using Coriolis® μ and Coriolis® Compact cyclone air sampling devices. Surface sampling was also performed (n = 17) on four areas (one COVID-19 and three non-COVID-19 areas). RNA extraction followed by a one-step RT-qPCR adapted for quantitative purposes were performed. Of the 44 air samples, two were positive for SARS-CoV-2 RNA (6575 copies/m3 and 6662.5 copies/m3, respectively). Of the 17 surface samples, three were positive for SARS-CoV-2 RNA (200.6 copies/cm2, 179.2 copies/cm2, and 201.7 copies/cm2, respectively). SARS-CoV-2 environmental contamination was found both in air and on surfaces in both COVID-19 and non-COVID-19 areas. Moreover, our results suggest that longer collection sessions are needed to detect point contaminations. This reinforces the need to remain cautious at all times, not only when in close contact with infected individuals. Hand hygiene and other standard transmission-prevention guidelines should be continuously followed to avoid nosocomial COVID-19.
Collapse
Affiliation(s)
- Priscilla Gomes da Silva
- ICBAS–School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal;
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, 4050-600 Porto, Portugal
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (P.T.B.S.B.); (S.I.V.S.)
| | - José Gonçalves
- Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain;
- Department of Chemical Engineering, University of Valladolid, 47011 Valladolid, Spain
| | - Ariana Isabel Brito Lopes
- Unidade Local de Saúde do Alto Minho E.P.E., 4904-858 Viana do Castelo, Portugal; (A.I.B.L.); (N.A.E.); (G.E.E.B.)
| | - Nury Alves Esteves
- Unidade Local de Saúde do Alto Minho E.P.E., 4904-858 Viana do Castelo, Portugal; (A.I.B.L.); (N.A.E.); (G.E.E.B.)
| | - Gustavo Emanuel Enes Bamba
- Unidade Local de Saúde do Alto Minho E.P.E., 4904-858 Viana do Castelo, Portugal; (A.I.B.L.); (N.A.E.); (G.E.E.B.)
| | | | - Pedro T. B. S. Branco
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (P.T.B.S.B.); (S.I.V.S.)
| | - Ruben R. G. Soares
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Sofia I. V. Sousa
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (P.T.B.S.B.); (S.I.V.S.)
| | - João R. Mesquita
- ICBAS–School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal;
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, 4050-600 Porto, Portugal
- Correspondence:
| |
Collapse
|
36
|
Luescher AM, Koch J, Stark WJ, Grass RN. Silica-encapsulated DNA tracers for measuring aerosol distribution dynamics in real-world settings. INDOOR AIR 2022; 32:e12945. [PMID: 34676590 PMCID: PMC9298268 DOI: 10.1111/ina.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Aerosolized particles play a significant role in human health and environmental risk management. The global importance of aerosol-related hazards, such as the circulation of pathogens and high levels of air pollutants, have led to a surging demand for suitable surrogate tracers to investigate the complex dynamics of airborne particles in real-world scenarios. In this study, we propose a novel approach using silica particles with encapsulated DNA (SPED) as a tracing agent for measuring aerosol distribution indoors. In a series of experiments with a portable setup, SPED were successfully aerosolized, recaptured, and quantified using quantitative polymerase chain reaction (qPCR). Position dependency and ventilation effects within a confined space could be shown in a quantitative fashion achieving detection limits below 0.1 ng particles per m3 of sampled air. In conclusion, SPED show promise for a flexible, cost-effective, and low-impact characterization of aerosol dynamics in a wide range of settings.
Collapse
Affiliation(s)
- Anne M. Luescher
- Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
| | - Julian Koch
- Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
| | - Wendelin J. Stark
- Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
| | - Robert N. Grass
- Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
| |
Collapse
|
37
|
Jarvis MC. Drying of virus-containing particles: modelling effects of droplet origin and composition. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1987-1996. [PMID: 34754455 PMCID: PMC8569499 DOI: 10.1007/s40201-021-00750-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/17/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND PURPOSE Virus-containing aerosol droplets emitted by breathing, speech or coughing dry rapidly to equilibrium with ambient relative humidity (RH), increasing in solute concentration with effects on virus survival and decreasing in diameter with effects on sedimentation and respiratory uptake. The aim of this paper is to model the effect of ionic and macromolecular solutes on droplet drying and solute concentration. METHODS Deliquescence-efflorescence concepts and Kohler theory were used to simulate the evolution of solute concentrations and water activity in respiratory droplets, starting from efflorescence data on mixed NaCl/KCl aerosols and osmotic pressure data on respiratory macromolecules. RESULTS In NaCl/KCl solutions total salt concentrations were shown to reach 10-13 M at the efflorescence RH of 40-55%, depending on the K:Na ratio. Dependence on K:Na ratio implies that the evaporation curves differ between aerosols derived from saliva and from airway surfaces. The direct effect of liquid droplet size through the Kelvin term was shown to be smaller and restricted to the evolution of breath emissions. Modelling the effect of proteins and glycoproteins showed that salts determine drying equilibria down to the efflorescence RH, and macromolecules at lower RH. CONCLUSION Differences in solute composition between airway surfaces and saliva are predicted to lead to different drying behaviour of droplets emitted by breathing, speech and coughing. These differences may influence the inactivation of viruses.
Collapse
Affiliation(s)
- Michael C. Jarvis
- School of Chemistry, Glasgow University, Glasgow, Scotland G12 8QQ UK
| |
Collapse
|
38
|
Saw LH, Leo BF, Nor NSM, Yip CW, Ibrahim N, Hamid HHA, Latif MT, Lin CY, Nadzir MSM. Modeling aerosol transmission of SARS-CoV-2 from human-exhaled particles in a hospital ward. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53478-53492. [PMID: 34036501 PMCID: PMC8148403 DOI: 10.1007/s11356-021-14519-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/17/2021] [Indexed: 06/04/2023]
Abstract
The COVID-19 pandemic has plunged the world into uncharted territory, leaving people feeling helpless in the face of an invisible threat of unknown duration that could adversely impact the national economic growths. According to the World Health Organization (WHO), the SARS-CoV-2 spreads primarily through droplets of saliva or discharge from the mouth or nose when an infected person coughs or sneezes. However, the transmission of the SARS-CoV-2 through aerosols remains unclear. In this study, computational fluid dynamic (CFD) is used to complement the investigation of the SARS-CoV-2 transmission through aerosol. The Lagrangian particle tracking method was used to analyze the dispersion of the exhaled particles from a SARS-CoV-2-positive patient under different exhale activities and different flow rates of chilled (cooling) air supply. Air sampling of the SARS-CoV-2 patient ward was conducted for 48-h measurement intervals to collect the indoor air sample for particulate with diameter less than 2.5 μm. Then, the reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was conducted to analyze the collected air sample. The simulation demonstrated that the aerosol transmission of the SARS-CoV-2 virus in an enclosed room (such as a hospital ward) is highly possible.
Collapse
Affiliation(s)
- Lip Huat Saw
- Lee Kong Chian, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
| | - Bey Fen Leo
- Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Norefrina Shafinaz Md Nor
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Chee Wai Yip
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Nazlina Ibrahim
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Haris Hafizal Abd Hamid
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mohd Talib Latif
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Chin Yik Lin
- Department of Geology, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohd Shahrul Mohd Nadzir
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
39
|
Schmitt J, Wang J. Quantitative modeling of the impact of facemasks and associated leakage on the airborne transmission of SARS-CoV-2. Sci Rep 2021; 11:19403. [PMID: 34593891 PMCID: PMC8484595 DOI: 10.1038/s41598-021-98895-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/16/2021] [Indexed: 12/28/2022] Open
Abstract
The ongoing worldwide outbreak of COVID-19 has set personal protective equipment in the spotlight. A significant number of countries impose the use of facemasks in public spaces and encourage it in the private sphere. Even in countries where relatively high vaccination rates are achieved at present, breakthrough infections have been frequently reported and usage of facemasks in certain settings has been recommended again. Alternative solutions, including community masks fabricated using various materials, such as cotton or jersey, have emerged alongside facemasks following long-established standards (e.g., EN 149, EN 14683). In the present work, we present a computational model to calculate the ability of different types of facemasks to reduce the exposure to virus-laden respiratory particles, with a focus on the relative importance of the filtration properties and the fitting on the wearer's face. The model considers the facemask and the associated leakage, the transport of respiratory particles and their accumulation around the emitter, as well as the fraction of the inhaled particles deposited in the respiratory system. Different levels of leakages are considered to represent the diversity of fittings likely to be found among a population of non-trained users. The leakage prevails over the filtration performance of a facemask in determining the exposure level, and the ability of a face protection to limit leakages needs to be taken into account to accurately estimate the provided protection. Filtering facepieces (FFP) provide a better protection efficiency than surgical and community masks due to their higher filtration efficiency and their ability to provide a better fit and thus reduce the leakages. However, an improperly-fitted FFP mask loses a critical fraction of its protection efficiency, which may drop below the protection level provided by properly-worn surgical and community masks.
Collapse
Affiliation(s)
- Jean Schmitt
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, 8093, Zurich, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dubendorf, Switzerland
| | - Jing Wang
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, 8093, Zurich, Switzerland.
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dubendorf, Switzerland.
| |
Collapse
|
40
|
Brass A, Shoubridge AP, Crotty M, Morawska L, Bell SC, Qiao M, Woodman RJ, Whitehead C, Inacio MC, Miller C, Corlis M, Larby N, Elms L, Sims SK, Taylor SL, Flynn E, Papanicolas LE, Rogers GB. Prevention of SARS-CoV-2 (COVID-19) transmission in residential aged care using ultraviolet light (PETRA): a two-arm crossover randomised controlled trial protocol. BMC Infect Dis 2021; 21:967. [PMID: 34535091 PMCID: PMC8446719 DOI: 10.1186/s12879-021-06659-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/06/2021] [Indexed: 01/24/2023] Open
Abstract
Background SARS-CoV-2 poses a considerable threat to those living in residential aged care facilities (RACF). RACF COVID-19 outbreaks have been characterised by the rapid spread of infection and high rates of severe disease and associated mortality. Despite a growing body of evidence supporting airborne transmission of SARS-CoV-2, current infection control measures in RACF including hand hygiene, social distancing, and sterilisation of surfaces, focus on contact and droplet transmission. Germicidal ultraviolet (GUV) light has been used widely to prevent airborne pathogen transmission. Our aim is to investigate the efficacy of GUV technology in reducing the risk of SARS-CoV-2 infection in RACF. Methods A multicentre, two-arm double-crossover, randomised controlled trial will be conducted to determine the efficacy of GUV devices to reduce respiratory viral transmission in RACF, as an adjunct to existing infection control measures. The study will be conducted in partnership with three aged care providers in metropolitan and regional South Australia. RACF will be separated into paired within-site zones, then randomised to intervention order (GUV or control). The initial 6-week period will be followed by a 2-week washout before crossover to the second 6-week period. After accounting for estimated within-zone and within-facility correlations of infection, and baseline infection rates (10 per 100 person-days), a sample size of n = 8 zones (n = 40 residents/zone) will provide 89% power to detect a 50% reduction in symptomatic infection rate. The primary outcome will be the incidence rate ratio of combined symptomatic respiratory infections for intervention versus control. Secondary outcomes include incidence rates of hospitalisation for complications associated with respiratory infection; respiratory virus detection in facility air and fomite samples; rates of laboratory confirmed respiratory illnesses and genomic characteristics. Discussion Measures that can be deployed rapidly into RACF, that avoid the requirement for changes in resident and staff behaviour, and that are effective in reducing the risk of airborne SARS-CoV-2 transmission, would provide considerable benefit in safeguarding a highly vulnerable population. In addition, such measures might substantially reduce rates of other respiratory viruses, which contribute considerably to resident morbidity and mortality. Trial registration Australian and New Zealand Clinical Trials Registry ACTRN12621000567820 (registered on 14th May, 2021).
Collapse
Affiliation(s)
- Amanda Brass
- The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,The Microbiome and Host Health Programme, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Andrew P Shoubridge
- The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia. .,The Microbiome and Host Health Programme, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.
| | - Maria Crotty
- The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,Southern Adelaide Local Health Network, SA Health, Adelaide, SA, Australia
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Scott C Bell
- The Prince Charles Hospital, Brisbane, QLD, Australia.,Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Ming Qiao
- SA Pathology, SA Health, Adelaide, SA, Australia
| | - Richard J Woodman
- The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,Flinders Centre for Epidemiology and Biostatistics, Flinders University, Adelaide, SA, Australia
| | - Craig Whitehead
- The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,Southern Adelaide Local Health Network, SA Health, Adelaide, SA, Australia
| | - Maria C Inacio
- The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,Registy of Senior Australians, SAHMRI, Adelaide, SA, Australia
| | - Caroline Miller
- The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,School of Public Health, University of Adelaide, Adelaide, SA, Australia
| | - Megan Corlis
- Australian Nursing & Midwifery Federation, Adelaide, SA, Australia.,UniSA Allied Health & Human Performance, University of South Australia, Adelaide, SA, Australia
| | - Nicolas Larby
- Aged Care Property Services Management, Adelaide, SA, Australia
| | - Levi Elms
- The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,The Microbiome and Host Health Programme, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Sarah K Sims
- The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,The Microbiome and Host Health Programme, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Steven L Taylor
- The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,The Microbiome and Host Health Programme, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.,College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Erin Flynn
- The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,The Microbiome and Host Health Programme, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.,National Centre for Epidemiology & Population Health, The Australian National University, Canberra, ACT, Australia
| | - Lito E Papanicolas
- The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,The Microbiome and Host Health Programme, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.,SA Pathology, SA Health, Adelaide, SA, Australia
| | - Geraint B Rogers
- The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,The Microbiome and Host Health Programme, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.,College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
41
|
Naunheim MR, Bock J, Doucette PA, Hoch M, Howell I, Johns MM, Johnson AM, Krishna P, Meyer D, Milstein CF, Nix J, Pitman MJ, Robinson-Martin T, Rubin AD, Sataloff RT, Sims HS, Titze IR, Carroll TL. Safer Singing During the SARS-CoV-2 Pandemic: What We Know and What We Don't. J Voice 2021; 35:765-771. [PMID: 32753296 PMCID: PMC7330568 DOI: 10.1016/j.jvoice.2020.06.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 01/12/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - John Nix
- University of Texas at San Antonio, San Antonio, TX
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang CC, Prather KA, Sznitman J, Jimenez JL, Lakdawala SS, Tufekci Z, Marr LC. Airborne transmission of respiratory viruses. Science 2021; 373:eabd9149. [PMID: 34446582 PMCID: PMC8721651 DOI: 10.1126/science.abd9149] [Citation(s) in RCA: 544] [Impact Index Per Article: 181.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The COVID-19 pandemic has revealed critical knowledge gaps in our understanding of and a need to update the traditional view of transmission pathways for respiratory viruses. The long-standing definitions of droplet and airborne transmission do not account for the mechanisms by which virus-laden respiratory droplets and aerosols travel through the air and lead to infection. In this Review, we discuss current evidence regarding the transmission of respiratory viruses by aerosols-how they are generated, transported, and deposited, as well as the factors affecting the relative contributions of droplet-spray deposition versus aerosol inhalation as modes of transmission. Improved understanding of aerosol transmission brought about by studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection requires a reevaluation of the major transmission pathways for other respiratory viruses, which will allow better-informed controls to reduce airborne transmission.
Collapse
Affiliation(s)
- Chia C Wang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan 804, Republic of China.
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
- Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan 804, Republic of China
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan 804, Republic of China
| | - Kimberly A Prather
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA.
| | - Josué Sznitman
- Department of Biomedical Engineering, Israel Institute of Technology, Haifa 32000, Israel
| | - Jose L Jimenez
- Department of Biomedical Engineering, Israel Institute of Technology, Haifa 32000, Israel
- Department of Chemistry and CIRES, University of Colorado, Boulder, CO 80309, USA
| | - Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Zeynep Tufekci
- School of Information and Department of Sociology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Linsey C Marr
- Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan 804, Republic of China
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
43
|
Wang CC, Prather KA, Sznitman J, Jimenez JL, Lakdawala SS, Tufekci Z, Marr LC. Airborne transmission of respiratory viruses. Science 2021. [PMID: 34446582 DOI: 10.1126/science:abd9149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The COVID-19 pandemic has revealed critical knowledge gaps in our understanding of and a need to update the traditional view of transmission pathways for respiratory viruses. The long-standing definitions of droplet and airborne transmission do not account for the mechanisms by which virus-laden respiratory droplets and aerosols travel through the air and lead to infection. In this Review, we discuss current evidence regarding the transmission of respiratory viruses by aerosols-how they are generated, transported, and deposited, as well as the factors affecting the relative contributions of droplet-spray deposition versus aerosol inhalation as modes of transmission. Improved understanding of aerosol transmission brought about by studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection requires a reevaluation of the major transmission pathways for other respiratory viruses, which will allow better-informed controls to reduce airborne transmission.
Collapse
Affiliation(s)
- Chia C Wang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan 804, Republic of China.
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
- Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan 804, Republic of China
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan 804, Republic of China
| | - Kimberly A Prather
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA.
| | - Josué Sznitman
- Department of Biomedical Engineering, Israel Institute of Technology, Haifa 32000, Israel
| | - Jose L Jimenez
- Department of Biomedical Engineering, Israel Institute of Technology, Haifa 32000, Israel
- Department of Chemistry and CIRES, University of Colorado, Boulder, CO 80309, USA
| | - Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Zeynep Tufekci
- School of Information and Department of Sociology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Linsey C Marr
- Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan 804, Republic of China
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
44
|
Abstract
Human respiratory virus infections lead to a spectrum of respiratory symptoms and disease severity, contributing to substantial morbidity, mortality and economic losses worldwide, as seen in the COVID-19 pandemic. Belonging to diverse families, respiratory viruses differ in how easy they spread (transmissibility) and the mechanism (modes) of transmission. Transmissibility as estimated by the basic reproduction number (R0) or secondary attack rate is heterogeneous for the same virus. Respiratory viruses can be transmitted via four major modes of transmission: direct (physical) contact, indirect contact (fomite), (large) droplets and (fine) aerosols. We know little about the relative contribution of each mode to the transmission of a particular virus in different settings, and how its variation affects transmissibility and transmission dynamics. Discussion on the particle size threshold between droplets and aerosols and the importance of aerosol transmission for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus is ongoing. Mechanistic evidence supports the efficacies of non-pharmaceutical interventions with regard to virus reduction; however, more data are needed on their effectiveness in reducing transmission. Understanding the relative contribution of different modes to transmission is crucial to inform the effectiveness of non-pharmaceutical interventions in the population. Intervening against multiple modes of transmission should be more effective than acting on a single mode.
Collapse
Affiliation(s)
- Nancy H L Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
45
|
Modeling Aerial Transmission of Pathogens (Including the SARS-CoV-2 Virus) through Aerosol Emissions from E-Cigarettes. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We examine the plausibility of aerial transmission of pathogens (including the SARS-CoV-2 virus) through respiratory droplets that might be carried by exhaled e-cigarette aerosol (ECA). Given the lack of empiric evidence on this phenomenon, we consider available evidence on cigarette smoking and respiratory droplet emission from mouth breathing through a mouthpiece as convenient proxies to infer the capacity of vaping to transport pathogens in respiratory droplets. Since both exhaled droplets and ECA droplets are within the Stokes regime, the ECA flow acts effectively as a visual tracer of the expiratory flow. To infer quantitatively the direct exposure distance, we consider a model that approximates exhaled ECA flow as an axially symmetric intermittent steady starting jet evolving into an unstable puff, an evolution that we corroborate by comparison with photographs and videos of actual vapers. On the grounds of all this theoretical modeling, we estimate for low-intensity vaping (practiced by 80–90% of vapers) the emission of 6–210 (median 39.9, median deviation 67.3) respiratory submicron droplets per puff and a horizontal distance spread of 1–2 m, with intense vaping possibly emitting up to 1000 droplets per puff in the submicron range with a distance spread over 2 m. The optical visibility of the ECA flow has important safety implications, as bystanders become instinctively aware of the scope and distance of possible direct contagion through the vaping jet.
Collapse
|
46
|
Smolinska A, Jessop DS, Pappan KL, De Saedeleer A, Kang A, Martin AL, Allsworth M, Tyson C, Bos MP, Clancy M, Morel M, Cooke T, Dymond T, Harris C, Galloway J, Bresser P, Dijkstra N, Jagesar V, Savelkoul PHM, Beuken EVH, Nix WHV, Louis R, Delvaux M, Calmes D, Ernst B, Pollini S, Peired A, Guiot J, Tomassetti S, Budding AE, McCaughan F, Marciniak SJ, van der Schee MP. The SARS-CoV-2 viral load in COVID-19 patients is lower on face mask filters than on nasopharyngeal swabs. Sci Rep 2021; 11:13476. [PMID: 34188082 PMCID: PMC8242000 DOI: 10.1038/s41598-021-92665-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/08/2021] [Indexed: 11/22/2022] Open
Abstract
Face masks and personal respirators are used to curb the transmission of SARS-CoV-2 in respiratory droplets; filters embedded in some personal protective equipment could be used as a non-invasive sample source for applications, including at-home testing, but information is needed about whether filters are suited to capture viral particles for SARS-CoV-2 detection. In this study, we generated inactivated virus-laden aerosols of 0.3–2 microns in diameter (0.9 µm mean diameter by mass) and dispersed the aerosolized viral particles onto electrostatic face mask filters. The limit of detection for inactivated coronaviruses SARS-CoV-2 and HCoV-NL63 extracted from filters was between 10 to 100 copies/filter for both viruses. Testing for SARS-CoV-2, using face mask filters and nasopharyngeal swabs collected from hospitalized COVID-19-patients, showed that filter samples offered reduced sensitivity (8.5% compared to nasopharyngeal swabs). The low concordance of SARS-CoV-2 detection between filters and nasopharyngeal swabs indicated that number of viral particles collected on the face mask filter was below the limit of detection for all patients but those with the highest viral loads. This indicated face masks are unsuitable to replace diagnostic nasopharyngeal swabs in COVID-19 diagnosis. The ability to detect nucleic acids on face mask filters may, however, find other uses worth future investigation.
Collapse
Affiliation(s)
- Agnieszka Smolinska
- Owlstone Medical Ltd., Cambridge, Cambridgeshire, UK.,Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands
| | | | - Kirk L Pappan
- Owlstone Medical Ltd., Cambridge, Cambridgeshire, UK
| | | | - Amerjit Kang
- Owlstone Medical Ltd., Cambridge, Cambridgeshire, UK
| | | | - Max Allsworth
- Owlstone Medical Ltd., Cambridge, Cambridgeshire, UK
| | | | | | | | - Mike Morel
- Cambridge Clinical Laboratories Ltd., Cambridge, Cambridgeshire, UK
| | - Tony Cooke
- Cambridge Clinical Laboratories Ltd., Cambridge, Cambridgeshire, UK
| | - Tom Dymond
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Claire Harris
- Department of Medicine, Addenbrooke's Hospital, Cambridge, UK.,University of Cambridge, Cambridge, UK
| | - Jacqui Galloway
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | - Paul H M Savelkoul
- Department of Medical Microbiology, Maastricht University Medical Center, Care and Public Health Research Institute (Caphri), Maastricht, The Netherlands
| | - Erik V H Beuken
- Department of Medical Microbiology, Maastricht University Medical Center, Care and Public Health Research Institute (Caphri), Maastricht, The Netherlands
| | - Wesley H V Nix
- Department of Medical Microbiology, Maastricht University Medical Center, Care and Public Health Research Institute (Caphri), Maastricht, The Netherlands
| | - Renaud Louis
- Repiratory Department, CHU Liège, Liège, Belgium
| | | | | | - Benoit Ernst
- Repiratory Department, CHU Liège, Liège, Belgium
| | - Simona Pollini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Anna Peired
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Julien Guiot
- Repiratory Department, CHU Liège, Liège, Belgium
| | - Sara Tomassetti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Interventional Pulmonology Unit, Careggi University Hospital, Florence, Italy
| | | | - Frank McCaughan
- Department of Medicine, Addenbrooke's Hospital, Cambridge, UK.,University of Cambridge, Cambridge, UK
| | - Stefan J Marciniak
- Department of Medicine, Addenbrooke's Hospital, Cambridge, UK.,University of Cambridge, Cambridge, UK
| | | |
Collapse
|
47
|
Ji B, Zhao Y, Esteve-Núñez A, Liu R, Yang Y, Nzihou A, Tai Y, Wei T, Shen C, Yang Y, Ren B, Wang X, Wang Y. Where do we stand to oversee the coronaviruses in aqueous and aerosol environment? Characteristics of transmission and possible curb strategies. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 413:127522. [PMID: 33132743 PMCID: PMC7590645 DOI: 10.1016/j.cej.2020.127522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 05/08/2023]
Abstract
By 17 October 2020, the severe acute respiratory syndrome coronavirus (SARS-CoV-2) has caused confirmed infection of more than 39,000,000 people in 217 countries and territories globally and still continues to grow. As environmental professionals, understanding how SARS-CoV-2 can be transmitted via water and air environment is a concern. We have to be ready for focusing our attention to the prompt diagnosis and potential infection control procedures of the virus in integrated water and air system. This paper reviews the state-of-the-art information from available sources of published papers, newsletters and large number of scientific websites aimed to provide a comprehensive profile on the transmission characteristics of the coronaviruses in water, sludge, and air environment, especially the water and wastewater treatment systems. The review also focused on proposing the possible curb strategies to monitor and eventually cut off the coronaviruses under the authors' knowledge and understanding.
Collapse
Affiliation(s)
- Bin Ji
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yaqian Zhao
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
- Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Ranbin Liu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Center of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China
| | - Yang Yang
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, PR China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, PR China
| | - Ange Nzihou
- Université de Toulouse, IMT Mines Albi, RAPSODEE CNRS, UMR-5302, Jarlard, Albi 81013 Cedex 09, France
| | - Yiping Tai
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, PR China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, PR China
| | - Ting Wei
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
- Chemical Engineering Department, University of Alcalá, Madrid, Spain
| | - Cheng Shen
- Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- School of Environment and Natural Resources, Zhejiang University Sci. & Technol./Zhejiang Prov, Key Lab. of Recycling & Ecotreatment Waste, Hangzhou 310023, Zhejiang, PR China
| | - Yan Yang
- Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Baimimng Ren
- Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- Université de Toulouse, IMT Mines Albi, RAPSODEE CNRS, UMR-5302, Jarlard, Albi 81013 Cedex 09, France
- School of Water and Environment, Chang'an University, Xi'an 710061, PR China
| | - Xingxing Wang
- Xi'an Hospital of Traditional Chinese Medicine, Xi 'an 710021, PR China
| | - Ya'e Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| |
Collapse
|
48
|
Niazi S, Groth R, Spann K, Johnson GR. The role of respiratory droplet physicochemistry in limiting and promoting the airborne transmission of human coronaviruses: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:115767. [PMID: 33243541 PMCID: PMC7645283 DOI: 10.1016/j.envpol.2020.115767] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/16/2020] [Accepted: 09/29/2020] [Indexed: 05/19/2023]
Abstract
Whether virulent human pathogenic coronaviruses (SARS-CoV, MERS-CoV, SARS-CoV-2) are effectively transmitted by aerosols remains contentious. Transmission modes of the novel coronavirus have become a hot topic of research with the importance of airborne transmission controversial due to the many factors that can influence virus transmission. Airborne transmission is an accepted potential route for the spread of some viral infections (measles, chickenpox); however, aerosol features and infectious inoculum vary from one respiratory virus to another. Infectious virus-laden aerosols can be produced by natural human respiratory activities, and their features are vital determinants for virus carriage and transmission. Physicochemical characteristics of infectious respiratory aerosols can influence the efficiency of virus transmission by droplets. This critical review identifies studies reporting instances of infected patients producing airborne human pathogenic coronaviruses, and evidence for the role of physical/chemical characteristics of human-generated droplets in altering embedded viruses' viability. We also review studies evaluating these viruses in the air, field studies and available evidence about seasonality patterns. Ultimately the literature suggests that a proportion of virulent human coronaviruses can plausibly be transmitted via the air, even though this might vary in different conditions. Evidence exists for respirable-sized airborne droplet nuclei containing viral RNA, although this does not necessarily imply that the virus is transmittable, capable of replicating in a recipient host, or that inoculum is sufficient to initiate infection. However, evidence suggests that coronaviruses can survive in simulated droplet nuclei for a significant time (>24 h). Nevertheless, laboratory nebulized virus-laden aerosols might not accurately model the complexity of human carrier aerosols in studying airborne viral transport. In summary, there is disagreement on whether wild coronaviruses can be transmitted via an airborne path and display seasonal patterns. Further studies are therefore required to provide supporting evidence for the role of airborne transmission and assumed mechanisms underlying seasonality.
Collapse
Affiliation(s)
- Sadegh Niazi
- Queensland University of Technology (QUT), Science and Engineering Faculty, School of Earth and Atmospheric Sciences, Brisbane, Australia
| | - Robert Groth
- Queensland University of Technology (QUT), Science and Engineering Faculty, School of Earth and Atmospheric Sciences, Brisbane, Australia
| | - Kirsten Spann
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Brisbane, Australia
| | - Graham R Johnson
- Queensland University of Technology (QUT), Science and Engineering Faculty, School of Earth and Atmospheric Sciences, Brisbane, Australia.
| |
Collapse
|
49
|
Lomonaco T, Salvo P, Ghimenti S, Biagini D, Vivaldi F, Bonini A, Fuoco R, Di Francesco F. Stability of volatile organic compounds in sorbent tubes following SARS-CoV-2 inactivation procedures. J Breath Res 2021; 15. [PMID: 33752195 DOI: 10.1088/1752-7163/abf0b4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/22/2021] [Indexed: 12/18/2022]
Abstract
COVID-19 is a highly transmissible respiratory illness that has rapidly spread all over the world causing more than 115 million cases and 2.5 million deaths. Most epidemiological projections estimate that the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus causing the infection will circulate in the next few years and raise enormous economic and social issues. COVID-19 has a dramatic impact on health care systems and patient management, and is delaying or stopping breath research activities due to the risk of infection to the operators following contact with patients, potentially infected samples or contaminated equipment. In this scenario, we investigated whether virus inactivation procedures, based on a thermal treatment (60 °C for 1 h) or storage of tubes at room temperature for 72 h, could be used to allow the routine breath analysis workflow to carry on with an optimal level of safety during the pandemic. Tests were carried out using dry and humid gaseous samples containing about 100 representative chemicals found in exhaled breath and ambient air. Samples were collected in commercially available sorbent tubes, i.e. Tenax GR and a combination of Tenax TA, Carbograph 1TD and Carboxen 1003. Our results showed that all compounds were stable at room temperature up to 72 h and that sample humidity was the key factor affecting the stability of the compounds upon thermal treatment. Tenax GR-based sorbent tubes were less impacted by the thermal treatment, showing variations in the range 20%-30% for most target analytes. A significant loss of aldehydes and sulphur compounds was observed using carbon molecular sieve-based tubes. In this case, a dry purge step before inactivation at 60 °C significantly reduced the loss of the target analytes, whose variations were comparable to the method variability. Finally, a breath analysis workflow including a SARS-CoV-2 inactivation treatment is proposed.
Collapse
Affiliation(s)
- Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Pietro Salvo
- Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Silvia Ghimenti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Federico Vivaldi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Andrea Bonini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Roger Fuoco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| |
Collapse
|
50
|
Schuit M, Biryukov J, Beck K, Yolitz J, Bohannon J, Weaver W, Miller D, Holland B, Krause M, Freeburger D, Williams G, Wood S, Graham A, Rosovitz MJ, Bazinet A, Phillips A, Lovett S, Garcia K, Abbott E, Wahl V, Ratnesar-Shumate S, Dabisch P. The stability of an isolate of the SARS-CoV-2 B.1.1.7 lineage in aerosols is similar to three earlier isolates. J Infect Dis 2021; 224:1641-1648. [PMID: 33822064 PMCID: PMC8083468 DOI: 10.1093/infdis/jiab171] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/29/2021] [Indexed: 12/03/2022] Open
Abstract
Background Our laboratory previously examined the influence of environmental conditions on the stability of an early isolate of SARS-CoV-2 (hCoV-19/USA/WA-1/2020) in aerosols generated from culture medium or simulated saliva. However, genetic differences have emerged among SARS-CoV-2 lineages, and it is possible that these differences may affect environmental stability and the potential for aerosol transmission. Methods The influence of temperature, relative humidity, and simulated sunlight on the decay of four SARS-CoV-2 isolates in aerosols, including one belonging to the recently emerged B.1.1.7 lineage, were compared in a rotating drum chamber. Aerosols were generated from simulated respiratory tract lining fluid to represent aerosols originating from the deep lung. Results No differences in the stability of the isolates were observed in the absence of simulated sunlight at either 20°C or 40°C. However, a small but statistically significant difference in the stability was observed between some isolates in simulated sunlight at 20°C and 20% relative humidity. . Conclusions The stability of SARS-CoV-2 in aerosols does not vary greatly among currently circulating lineages, including B.1.1.7, suggesting that the increased transmissibility associated with recent SARS-CoV-2 lineages is not due to enhanced survival in the environment.
Collapse
Affiliation(s)
- Michael Schuit
- National Biodefense Analysis and Countermeasures Center, operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA
| | - Jennifer Biryukov
- National Biodefense Analysis and Countermeasures Center, operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA
| | - Katie Beck
- National Biodefense Analysis and Countermeasures Center, operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA
| | - Jason Yolitz
- National Biodefense Analysis and Countermeasures Center, operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA
| | - Jordan Bohannon
- National Biodefense Analysis and Countermeasures Center, operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA
| | - Wade Weaver
- National Biodefense Analysis and Countermeasures Center, operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA
| | - David Miller
- National Biodefense Analysis and Countermeasures Center, operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA
| | - Brian Holland
- National Biodefense Analysis and Countermeasures Center, operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA
| | - Melissa Krause
- National Biodefense Analysis and Countermeasures Center, operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA
| | - Denise Freeburger
- National Biodefense Analysis and Countermeasures Center, operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA
| | - Gregory Williams
- National Biodefense Analysis and Countermeasures Center, operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA
| | - Stewart Wood
- National Biodefense Analysis and Countermeasures Center, operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA
| | - Amanda Graham
- National Biodefense Analysis and Countermeasures Center, operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA
| | - M J Rosovitz
- National Biodefense Analysis and Countermeasures Center, operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA
| | - Adam Bazinet
- National Biodefense Analysis and Countermeasures Center, operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA
| | - Aaron Phillips
- National Biodefense Analysis and Countermeasures Center, operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA
| | - Sean Lovett
- National Biodefense Analysis and Countermeasures Center, operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA
| | - Karla Garcia
- National Biodefense Analysis and Countermeasures Center, operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA
| | - Elyse Abbott
- National Biodefense Analysis and Countermeasures Center, operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA
| | - Victoria Wahl
- National Biodefense Analysis and Countermeasures Center, operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA
| | - Shanna Ratnesar-Shumate
- National Biodefense Analysis and Countermeasures Center, operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA
| | - Paul Dabisch
- National Biodefense Analysis and Countermeasures Center, operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA
| |
Collapse
|