1
|
Sribnick EA, Warner T, Hall MW. Granulocyte- Macrophage Colony-Stimulating Factor Reverses Immunosuppression Acutely Following a Traumatic Brain Injury and Hemorrhage Polytrauma in a Juvenile Male Rat Model. J Neurotrauma 2024; 41:e1708-e1718. [PMID: 38623766 PMCID: PMC11564832 DOI: 10.1089/neu.2023.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Traumatic brain injury (TBI) is a common cause of morbidity and mortality in children. We have previously shown that TBI with a concurrent extracranial injury reliably leads to post-injury suppression of the innate and adaptive immune systems. In patients with post-injury immune suppression, if immune function could be preserved, this might represent a therapeutic opportunity. As such, we examined, in an animal injury model, whether systemic administration of granulocyte macrophage colony-stimulating factor (GM-CSF) could reverse post-injury immune suppression and whether treatment was associated with neuroinflammation or functional deficit. Prepubescent male rats were injured using a controlled cortical impact model and then subjected to removal of 25% blood volume (TBI/H). Sham animals underwent surgery without injury induction, and the treatment groups were sham and injured animals treated with either saline vehicle or 50 μg/kg GM-CSF. GM-CSF was administered following injury and then daily until sacrifice at post-injury day (PID) 7. Immune function was measured by assessing tumor necrosis factor-α (TNF-α) levels in whole blood and spleen following ex vivo stimulation with pokeweed mitogen (PWM). Brain samples were assessed by multiplex enzyme-linked immunosorbent assay (ELISA) for cytokine levels and by immunohistochemistry for microglia and astrocyte proliferation. Neuronal cell count was examined using cresyl violet staining. Motor coordination was evaluated using the Rotarod performance test. Treatment with GM-CSF was associated with a significantly increased response to PWM in both whole blood and spleen. GM-CSF in injured animals did not lead to increases in levels of pro-inflammatory cytokines in brain samples but was associated with significant increases in counted astrocytes. Finally, while injured animals treated with saline showed a significant impairment on behavioral testing, injured animals treated with GM-CSF performed similarly to uninjured animals. GM-CSF treatment in animals with combined injury led to increased systemic immune cell response in whole blood and spleen in the acute phase following injury. Improved immune response was not associated with elevated pro-inflammatory cytokine levels in the brain or functional impairment.
Collapse
Affiliation(s)
- Eric A Sribnick
- Department of Surgery, Division of Neurosurgery, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Center for Clinical and Translation Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Timothy Warner
- Center for Clinical and Translation Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mark W Hall
- Center for Clinical and Translation Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, Division of Critical Care, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
2
|
Sun M, Baker TL, Wilson CT, Brady RD, Yamakawa GR, Wright DK, Mychasiuk R, Vo A, Wilson T, Allen J, McDonald SJ, Shultz SR. Treatment with the vascular endothelial growth factor-A antibody, bevacizumab, has sex-specific effects in a rat model of mild traumatic brain injury. J Cereb Blood Flow Metab 2024; 44:542-555. [PMID: 37933736 PMCID: PMC10981407 DOI: 10.1177/0271678x231212377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023]
Abstract
Mild traumatic brain injury (mTBI) involves damage to the cerebrovascular system. Vascular endothelial growth factor-A (VEGF-A) is an important modulator of vascular health and VEGF-A promotes the brain's ability to recover after more severe forms of brain injury; however, the role of VEGF-A in mTBI remains poorly understood. Bevacizumab (BEV) is a monoclonal antibody that binds to VEGF-A and neutralises its actions. To better understand the role of VEGF-A in mTBI recovery, this study examined how BEV treatment affected outcomes in rats given a mTBI. Adult Sprague-Dawley rats were assigned to sham-injury + vehicle treatment (VEH), sham-injury + BEV treatment, mTBI + VEH treatment, mTBI + BEV treatment groups. Treatment was administered intracerebroventricularly via a cannula beginning at the time of injury and continuing until the end of the study. Rats underwent behavioral testing after injury and were euthanized on day 11. In both females and males, BEV had a negative impact on cognitive function. mTBI and BEV treatment increased the expression of inflammatory markers in females. In males, BEV treatment altered markers related to hypoxia and vascular health. These novel findings of sex-specific responses to BEV and mTBI provide important insights into the role of VEGF-A in mTBI.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Tamara L Baker
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Campbell T Wilson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Anh Vo
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Trevor Wilson
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Josh Allen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Health Sciences, Vancouver Island University, Nanaimo, BC, Canada
| |
Collapse
|
3
|
Li GS, Yang YZ, Ma GR, Li PF, Cheng QH, Zhang AR, Zhang ZZ, Zhang FK, Yang X, Fan H, Guo HZ. Rheumatoid arthritis is a protective factor against Alzheimer's disease: a bidirectional two-sample Mendelian randomization study. Inflammopharmacology 2024; 32:863-871. [PMID: 38151584 DOI: 10.1007/s10787-023-01397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Epidemiological evidence suggests that there is an association between rheumatoid arthritis (RA) and Alzheimer's disease (AD). However, the causal relationship between RA and AD remains unclear. Therefore, this study aimed to investigate the causal relationship between RA and AD. METHODS Using publicly available genome-wide association study datasets, bidirectional two-sample Mendelian randomization (TSMR) was performed using the inverse-variance weighted (IVW), weighted median, MR‒Egger regression, simple mode, and weighted mode methods. RESULTS The results of MR for the causal effect of RA on AD (IVW, odds ratio [OR] = 0.959, 95% confidence interval [CI]: 0.941-0.978, P = 2.752E-05; weighted median, OR = 0.960, 95% CI: 0.937-0.984, P = 0.001) revealed a causal association between genetic susceptibility to RA and an increased risk of AD. The results of MR for the causal effect of AD on RA (IVW, OR = 0.978, 95% CI: 0.906-1.056, P = 0.576; weighted median, OR = 0.966, 95% CI: 0.894-1.043, P = 0.382) indicated that there was no causal association between genetic susceptibility to AD and an increased risk of RA. CONCLUSIONS The results of this two-way two-sample Mendelian randomization analysis revealed a causal association between genetic susceptibility to RA and a reduced risk of AD but did not reveal a causal association between genetic susceptibility to AD and an increased or reduced risk of RA.
Collapse
Affiliation(s)
- Guo-Shuai Li
- Gansu Wuwei Hospital of Traditional Chinese Medicine, Wuwei, China
| | - Yong-Ze Yang
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Guo-Rong Ma
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Peng-Fei Li
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Qing-Hao Cheng
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - An-Ren Zhang
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Zhuang-Zhuang Zhang
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Fu-Kang Zhang
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xin Yang
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Hua Fan
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Hong-Zhang Guo
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Gržeta Krpan N, Harej Hrkać A, Janković T, Dolenec P, Bekyarova E, Parpura V, Pilipović K. Chemically Functionalized Single-Walled Carbon Nanotubes Prevent the Reduction in Plasmalemmal Glutamate Transporter EAAT1 Expression in, and Increase the Release of Selected Cytokines from, Stretch-Injured Astrocytes in Vitro. Cells 2024; 13:225. [PMID: 38334617 PMCID: PMC10854924 DOI: 10.3390/cells13030225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
We tested the effects of water-soluble single-walled carbon nanotubes, chemically functionalized with polyethylene glycol (SWCNT-PEG), on primary mouse astrocytes exposed to a severe in vitro simulated traumatic brain injury (TBI). The application of SWCNT-PEG in the culture media of injured astrocytes did not affect cell damage levels, when compared to those obtained from injured, functionalization agent (PEG)-treated cells. Furthermore, SWCNT-PEG did not change the levels of oxidatively damaged proteins in astrocytes. However, this nanomaterial prevented the reduction in plasmalemmal glutamate transporter EAAT1 expression caused by the injury, rendering the level of EAAT1 on par with that of control, uninjured PEG-treated astrocytes; in parallel, there was no significant change in the levels of GFAP. Additionally, SWCNT-PEG increased the release of selected cytokines that are generally considered to be involved in recovery processes following injuries. As a loss of EAATs has been implicated as a culprit in the suffering of human patients from TBI, the application of SWCNT-PEG could have valuable effects at the injury site, by preventing the loss of astrocytic EAAT1 and consequently allowing for a much-needed uptake of glutamate from the extracellular space, the accumulation of which leads to unwanted excitotoxicity. Additional potential therapeutic benefits could be reaped from the fact that SWCNT-PEG stimulated the release of selected cytokines from injured astrocytes, which would promote recovery after injury and thus counteract the excess of proinflammatory cytokines present in TBI.
Collapse
Affiliation(s)
- Nika Gržeta Krpan
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Anja Harej Hrkać
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Petra Dolenec
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Elena Bekyarova
- Department of Chemistry, University of California, Riverside, CA 92521, USA;
| | - Vladimir Parpura
- International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| |
Collapse
|
5
|
Olson KE, Abdelmoaty MM, Namminga KL, Lu Y, Obaro H, Santamaria P, Mosley RL, Gendelman HE. An open-label multiyear study of sargramostim-treated Parkinson's disease patients examining drug safety, tolerability, and immune biomarkers from limited case numbers. Transl Neurodegener 2023; 12:26. [PMID: 37217980 PMCID: PMC10201023 DOI: 10.1186/s40035-023-00361-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND The clinical utility and safety of sargramostim has previously been reported in cancer, acute radiation syndrome, autoimmune disease, inflammatory conditions, and Alzheimer's disease. The safety, tolerability, and mechanisms of action in Parkinson's disease (PD) during extended use has not been evaluated. METHODS As a primary goal, safety and tolerability was assessed in five PD patients treated with sargramostim (Leukine®, granulocyte-macrophage colony-stimulating factor) for 33 months. Secondary goals included numbers of CD4+ T cells and monocytes and motor functions. Hematologic, metabolic, immune, and neurological evaluations were assessed during a 5-day on, 2-day off therapeutic regimen given at 3 μg/kg. After 2 years, drug use was discontinued for 3 months. This was then followed by an additional 6 months of treatment. RESULTS Sargramostim-associated adverse events included injection-site reactions, elevated total white cell counts, and bone pain. On drug, blood analyses and metabolic panels revealed no untoward side effects linked to long-term treatment. Unified Parkinson's Disease Rating Scale scores remained stable throughout the study while regulatory T cell number and function were increased. In the initial 6 months of treatment, transcriptomic and proteomic monocyte tests demonstrated autophagy and sirtuin signaling. This finding paralleled anti-inflammatory and antioxidant activities within both the adaptive and innate immune profile arms. CONCLUSIONS Taken together, the data affirmed long-term safety as well as immune and anti-inflammatory responses reflecting clinical stability in PD under the sargramostim treatment. Confirmation in larger patient populations is planned in a future phase II evaluation. TRIAL REGISTRATION ClinicalTrials.gov: NCT03790670, Date of Registration: 01/02/2019, URL: https://clinicaltrials.gov/ct2/show/NCT03790670?cond=leukine+parkinson%27s&draw=2&rank=2 .
Collapse
Affiliation(s)
- Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mai M Abdelmoaty
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Krista L Namminga
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Helen Obaro
- Great Plains Center for Clinical and Translational Research, Nebraska Medicine, Omaha, NE, USA
| | - Pamela Santamaria
- Neurology Consultants of Nebraska, PC and Nebraska Medicine, Omaha, NE, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
6
|
Huie JR, Nielson JL, Wolfsbane J, Andersen CR, Spratt HM, DeWitt DS, Ferguson AR, Hawkins BE. Data-driven approach to integrating genomic and behavioral preclinical traumatic brain injury research. Front Bioeng Biotechnol 2023; 10:887898. [PMID: 36704298 PMCID: PMC9871446 DOI: 10.3389/fbioe.2022.887898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/07/2022] [Indexed: 01/12/2023] Open
Abstract
Understanding recovery from TBI is complex, involving multiple systems and modalities. The current study applied modern data science tools to manage this complexity and harmonize large-scale data to understand relationships between gene expression and behavioral outcomes in a preclinical model of chronic TBI (cTBI). Data collected by the Moody Project for Translational TBI Research included rats with no injury (naïve animals with similar amounts of anesthetic exposure to TBI and sham-injured animals), sham injury, or lateral fluid percussion TBI, followed by recovery periods up to 12 months. Behavioral measures included locomotor coordination (beam balance neuroscore) and memory and cognition assessments (Morris water maze: MWM) at multiple timepoints. Gene arrays were performed using hippocampal and cortical samples to probe 45,610 genes. To reduce the high dimensionality of molecular and behavioral domains and uncover gene-behavior associations, we performed non-linear principal components analyses (NL-PCA), which de-noised the data. Genomic NL-PCA unveiled three interpretable eigengene components (PC2, PC3, and PC4). Ingenuity pathway analysis (IPA) identified the PCs as an integrated stress response (PC2; EIF2-mTOR, corticotropin signaling, etc.), inflammatory factor translation (PC3; PI3K-p70S6K signaling), and neurite growth inhibition (PC4; Rho pathways). Behavioral PCA revealed three principal components reflecting the contribution of MWM overall speed and distance, neuroscore/beam walk, and MWM platform measures. Integrating the genomic and behavioral domains, we then performed a 'meta-PCA' on individual PC scores for each rat from genomic and behavioral PCAs. This meta-PCA uncovered three unique multimodal PCs, characterized by robust associations between inflammatory/stress response and neuroscore/beam walk performance (meta-PC1), stress response and MWM performance (meta-PC2), and stress response and neuroscore/beam walk performance (meta-PC3). Multivariate analysis of variance (MANOVA) on genomic-behavioral meta-PC scores tested separately on cortex and hippocampal samples revealed the main effects of TBI and recovery time. These findings are a proof of concept for the integration of disparate data domains for translational knowledge discovery, harnessing the full syndromic space of TBI.
Collapse
Affiliation(s)
- J. Russell Huie
- Weill Institutes for Neurosciences, Brain and Spinal Injury Center, Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, United States,San Francisco Veterans Administration Medical Center, San Francisco, CA, United States,*Correspondence: J. Russell Huie,
| | - Jessica L. Nielson
- Department of Psychiatry and Behavioral Sciences, Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States
| | - Jorden Wolfsbane
- The Moody Project for Translational Traumatic Brain Injury Research, Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Clark R. Andersen
- Office of Biostatistics, Department of Preventive Medicine Population Health, University of Texas Medical Branch, Galveston, TX, United States,Biostatistics Department, UT MD Anderson, Houston, TX, United States
| | - Heidi M. Spratt
- Office of Biostatistics, Department of Preventive Medicine Population Health, University of Texas Medical Branch, Galveston, TX, United States
| | - Douglas S. DeWitt
- The Moody Project for Translational Traumatic Brain Injury Research, Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Adam R. Ferguson
- Weill Institutes for Neurosciences, Brain and Spinal Injury Center, Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, United States,San Francisco Veterans Administration Medical Center, San Francisco, CA, United States
| | - Bridget E. Hawkins
- The Moody Project for Translational Traumatic Brain Injury Research, Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States,Research Innovation and Scientific Excellence (RISE) Center, School of Nursing, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
7
|
Sun M, Baker TL, Wilson CT, Brady RD, Mychasiuk R, Yamakawa GR, Vo A, Wilson T, McDonald SJ, Shultz SR. Treatment with vascular endothelial growth factor-A worsens cognitive recovery in a rat model of mild traumatic brain injury. Front Mol Neurosci 2022; 15:937350. [PMID: 36385769 PMCID: PMC9643175 DOI: 10.3389/fnmol.2022.937350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/29/2022] [Indexed: 09/08/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is a common and unmet clinical issue, with limited treatments available to improve recovery. The cerebrovascular system is vital to provide oxygen and nutrition to the brain, and a growing body of research indicates that cerebrovascular injury contributes to mTBI symptomatology. Vascular endothelial growth factor-A (VEGF-A) is a potent promoter of angiogenesis and an important modulator of vascular health. While indirect evidence suggests that increased bioavailability of VEGF-A may be beneficial after mTBI, the direct therapeutic effects of VEGF-A in this context remains unknown. This study therefore aimed to determine whether intracerebroventricular administration of recombinant VEGF-A could improve recovery from mTBI in a rat model. Male and female Sprague-Dawley rats were assigned to four groups: sham + vehicle (VEH), sham + VEGF-A, mTBI + VEH, mTBI + VEGF-A. The mTBI was induced using the lateral impact model, and treatment began at the time of the injury and continued until the end of the study. Rats underwent behavioral testing between days 1 and 10 post-injury, and were euthanized on day 11 for post-mortem analysis. In males, the mTBI + VEGF-A group had significantly worse cognitive recovery in the water maze than all other groups. In females, the VEGF treatment worsened cognitive performance in the water maze regardless of mTBI or sham injury. Analysis of hippocampal tissue found that these cognitive deficits occurred in the presence of gene expression changes related to neuroinflammation and hypoxia in both male and female rats. These findings indicate that the VEGF-A treatment paradigm tested in this study failed to improve mTBI outcomes in either male or female rats.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Tamara L. Baker
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Campbell T. Wilson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rhys D. Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Glenn R. Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Anh Vo
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Trevor Wilson
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
- Health and Human Services, Vancouver Island University, Nanaimo, BC, Canada
| |
Collapse
|
8
|
Chen Z, Liu H, Ye Y, Chen D, Lu Q, Lu X, Huang C. Granulocyte-macrophage colony-stimulating factor-triggered innate immune tolerance against chronic stress-induced behavioral abnormalities in mice. Int Immunopharmacol 2022; 109:108924. [PMID: 35704970 DOI: 10.1016/j.intimp.2022.108924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 11/05/2022]
Abstract
Pre-stimulation of the innate immune is considered a potential strategy to prevent chronic stress-induced behavioral abnormalities in animals. In this study, we investigated whether granulocyte-macrophage colony-stimulating factor (GM-CSF), an immunostimulant used in the clinic to treat diseases of the hematopoietic system, can prevent chronic stress-induced behavioral abnormalities in mice. Our results showed that a single intraperitoneal injection of GM-CSF (100 μg/kg) one day before stress exposure prevented the depression- and anxiety-like behaviors induced by chronic social defeat stress (CSDS) in mice, including preventing the CSDS-induced increase in the immobility time in the tail suspension test and forced swimming test and decrease in the time spent in the interaction zone in the social interaction test, as well as preventing the CSDS-induced decrease in the time spent (i) in open arms in the elevated plus maze test, (ii) on the illuminated side in the light-dark test, and (iii) in the central region of the open field test. The single GM-CSF preinjection (100 μg/kg) also prevented the CSDS-induced increase in the expression levels of interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) mRNA in the hippocampus and medial prefrontal cortex of the mice. Further analysis showed that the preventive effect of GM-CSF on CSDS-induced depression- and anxiety-like behaviors and neuroinflammatory responses was abolished by pretreatment with minocycline (an innate immune inhibitor). These results indicate that a single low dose of GM-CSF before injection could be a potential way to prevent behavioral abnormalities induced by chronic stress in mice.
Collapse
Affiliation(s)
- Zhuo Chen
- Invasive Technology Department, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001, China.
| | - Huijun Liu
- Department of Pharmacy, Yancheng First Hopital, the Fourth Affiliated Hospital of Nantong University, #66 Renmin South Road, Yancheng 224008, Jiangsu, China
| | - Ying Ye
- Department of Ultrasound, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, Jiangsu, China
| | - Dongjian Chen
- Invasive Technology Department, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001, China
| | - Qun Lu
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, #60 Middle Qingnian Road, Nantong 226006, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
9
|
Vinh To X, Mohamed AZ, Cumming P, Nasrallah FA. Subacute cytokine changes after a traumatic brain injury predict chronic brain microstructural alterations on advanced diffusion imaging in the male rat. Brain Behav Immun 2022; 102:137-150. [PMID: 35183698 DOI: 10.1016/j.bbi.2022.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The process of neuroinflammation occurring after traumatic brain injury (TBI) has received significant attention as a potential prognostic indicator and interventional target to improve patients' outcomes. Indeed, many of the secondary consequences of TBI have been attributed to neuroinflammation and peripheral inflammatory changes. However, inflammatory biomarkers in blood have not yet emerged as a clinical tool for diagnosis of TBI and predicting outcome. The controlled cortical impact model of TBI in the rodent gives reliable readouts of the dynamics of post-TBI neuroinflammation. We now extend this model to include a panel of plasma cytokine biomarkers measured at different time points post-injury, to test the hypothesis that these markers can predict brain microstructural outcome as quantified by advanced diffusion-weighted magnetic resonance imaging (MRI). METHODS Fourteen 8-10-week-old male rats were randomly assigned to sham surgery (n = 6) and TBI (n = 8) treatment with a single moderate-severe controlled cortical impact. We collected blood samples for cytokine analysis at days 1, 3, 7, and 60 post-surgery, and carried out standard structural and advanced diffusion-weighted MRI at day 60. We then utilized principal component regression to build an equation predicting different aspects of microstructural changes from the plasma inflammatory marker concentrations measured at different time points. RESULTS The TBI group had elevated plasma levels of IL-1β and several neuroprotective cytokines and chemokines (IL-7, CCL3, and GM-CSF) compared to the sham group from days 3 to 60 post-injury. The plasma marker panels obtained at day 7 were significantly associated with the outcome at day 60 of the trans-hemispheric cortical map transfer process that is a frequent finding in unilateral TBI models. DISCUSSION These results confirm and extend prior studies showing that day 7 post-injury is a critical temporal window for the reorganisation process following TBI. High plasma level of IL-1β and low plasma levels of the neuroprotective IL-7, CCL3, and GM-CSF of TBI animals at day 60 were associated with greater TBI pathology.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Abdalla Z Mohamed
- The Queensland Brain Institute, The University of Queensland, Queensland, Australia; Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland; School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Fatima A Nasrallah
- The Queensland Brain Institute, The University of Queensland, Queensland, Australia; The Centre for Advanced Imaging, The University of Queensland, Queensland, Australia.
| |
Collapse
|
10
|
Golub VM, Reddy DS. Post-Traumatic Epilepsy and Comorbidities: Advanced Models, Molecular Mechanisms, Biomarkers, and Novel Therapeutic Interventions. Pharmacol Rev 2022; 74:387-438. [PMID: 35302046 PMCID: PMC8973512 DOI: 10.1124/pharmrev.121.000375] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Post-traumatic epilepsy (PTE) is one of the most devastating long-term, network consequences of traumatic brain injury (TBI). There is currently no approved treatment that can prevent onset of spontaneous seizures associated with brain injury, and many cases of PTE are refractory to antiseizure medications. Post-traumatic epileptogenesis is an enduring process by which a normal brain exhibits hypersynchronous excitability after a head injury incident. Understanding the neural networks and molecular pathologies involved in epileptogenesis are key to preventing its development or modifying disease progression. In this article, we describe a critical appraisal of the current state of PTE research with an emphasis on experimental models, molecular mechanisms of post-traumatic epileptogenesis, potential biomarkers, and the burden of PTE-associated comorbidities. The goal of epilepsy research is to identify new therapeutic strategies that can prevent PTE development or interrupt the epileptogenic process and relieve associated neuropsychiatric comorbidities. Therefore, we also describe current preclinical and clinical data on the treatment of PTE sequelae. Differences in injury patterns, latency period, and biomarkers are outlined in the context of animal model validation, pathophysiology, seizure frequency, and behavior. Improving TBI recovery and preventing seizure onset are complex and challenging tasks; however, much progress has been made within this decade demonstrating disease modifying, anti-inflammatory, and neuroprotective strategies, suggesting this goal is pragmatic. Our understanding of PTE is continuously evolving, and improved preclinical models allow for accelerated testing of critically needed novel therapeutic interventions in military and civilian persons at high risk for PTE and its devastating comorbidities.
Collapse
Affiliation(s)
- Victoria M Golub
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
11
|
Thergarajan P, Hudson MR, Carmichael I, Clasadonte J, Dedeurwaerdere S, O'Brien TJ, Jones NC, Ali I. Characterising seizure development, behavioural comorbidities and neuroinflammation in a self-sustained electrical status epilepticus model of mesial temporal lobe epilepsy in C57BL/6J mice. Neurobiol Dis 2022; 168:105688. [DOI: 10.1016/j.nbd.2022.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
|
12
|
Sharma R, Casillas-Espinosa PM, Dill LK, Rewell SSJ, Hudson MR, O'Brien TJ, Shultz SR, Semple BD. Pediatric traumatic brain injury and a subsequent transient immune challenge independently influenced chronic outcomes in male mice. Brain Behav Immun 2022; 100:29-47. [PMID: 34808288 DOI: 10.1016/j.bbi.2021.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 01/30/2023] Open
Abstract
Traumatic brain injury (TBI) is a major contributor to death and disability worldwide. Children are at particularly high risk of both sustaining a TBI and experiencing serious long-term consequences, such as cognitive deficits, mental health problems and post-traumatic epilepsy. Severe TBI patients are highly susceptible to nosocomial infections, which are mostly acquired within the first week of hospitalization post-TBI. Yet the potential chronic impact of such acute infections following pediatric TBI remains unclear. In this study, we hypothesized that a peripheral immune challenge, such as lipopolysaccharide (LPS)-mimicking a hospital-acquired infection-would worsen inflammatory, neurobehavioral, and seizure outcomes after experimental pediatric TBI. To test this, three-week old male C57Bl/6J mice received a moderate controlled cortical impact or sham surgery, followed by 1 mg/kg i.p. LPS (or 0.9% saline vehicle) at 4 days TBI. Mice were randomized to four groups; sham-saline, sham-LPS, TBI-saline or TBI-LPS (n = 15/group). Reduced general activity and increased anxiety-like behavior were observed within 24 h in LPS-treated mice, indicating a transient sickness response. LPS-treated mice also exhibited a reduction in body weights, which persisted chronically. From 2 months post-injury, mice underwent a battery of tests for sensorimotor, cognitive, and psychosocial behaviors. TBI resulted in hyperactivity and spatial memory deficits, independent of LPS; whereas LPS resulted in subtle deficits in spatial memory retention. At 5 months post-injury, video-electroencephalographic recordings were obtained to evaluate both spontaneous seizure activity as well as the evoked seizure response to pentylenetetrazol (PTZ). TBI increased susceptibility to PTZ-evoked seizures; whereas LPS appeared to increase the incidence of spontaneous seizures. Post-mortem analyses found that TBI, but not LPS, resulted in robust glial reactivity and loss of cortical volume. A TBI × LPS interaction in hippocampal volume suggested that TBI-LPS mice had a subtle increase in ipsilateral hippocampus tissue loss; however, this was not reflected in neuronal cell counts. Both TBI and LPS independently had modest effects on chronic hippocampal gene expression. Together, contrary to our hypothesis, we observed minimal synergy between TBI and LPS. Instead, pediatric TBI and a subsequent transient immune challenge independently influenced chronic outcomes. These findings have implications for future preclinical modeling as well as acute post-injury patient management.
Collapse
Affiliation(s)
- Rishabh Sharma
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Prahran, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia
| | - Larissa K Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Prahran, VIC, Australia
| | - Sarah S J Rewell
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Prahran, VIC, Australia
| | - Matthew R Hudson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Prahran, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Prahran, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Prahran, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
13
|
Granulocyte Colony-Stimulating Factor for Treatment of Patients with Chronic Traumatic Brain Injury: A Preliminary Pre-Post Study. Brain Sci 2021; 11:brainsci11111441. [PMID: 34827440 PMCID: PMC8615826 DOI: 10.3390/brainsci11111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022] Open
Abstract
Chronic traumatic brain injury (TBI) can cause permanent disability and thereby negatively affect patients, families, and society. Currently, there is no effective treatment for patients with chronic TBI. One possible option is granulocyte colony-stimulating factor (G-CSF), which has potential neuroregenerative and neuroprotective effects through its ability to mobilize hematopoietic stem cells and increase neurogenic growth factor levels. Previous studies have shown that G-CSF administration is safe for patients with neurological diseases such as stroke and dementia. The present study aimed to explore the safety and efficacy of G-CSF use in patients with chronic TBI. Methods: 38 patients with chronic TBI were administered 3-day rounds of G-CSF (10 μg/kg per day) once a month for 6 months. These patients were clinically evaluated using the modified Rankin scale (mRS) and Karnofsky Performance Score (KPS). Laboratory measures of the leucocyte counts and differential count percentage were also assessed. Results: At the 6-month follow-up, further assessment showed that patients tolerated the treatment well with only mild and transient side effects being observed. Further clinical evaluation showed significant improvements in mRS and KPS after G-CSF treatment. Laboratory results also confirmed the action of the medication, with increased leukocytosis and band forms. Conclusions: The results suggest that 6-month chronic G-CSF treatment is safe for patients with chronic TBI and may provide clinical benefits and neurological improvements. The adverse effects of the treatment, however, are transient and usually tolerable. Thus, these preliminary findings suggest that future clinical trials of G-CSF use in patients with chronic TBI are warranted.
Collapse
|
14
|
Ahmed MM, Johnson NR, Boyd TD, Coughlan C, Chial HJ, Potter H. Innate Immune System Activation and Neuroinflammation in Down Syndrome and Neurodegeneration: Therapeutic Targets or Partners? Front Aging Neurosci 2021; 13:718426. [PMID: 34603007 PMCID: PMC8481947 DOI: 10.3389/fnagi.2021.718426] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Innate immune system activation and inflammation are associated with and may contribute to clinical outcomes in people with Down syndrome (DS), neurodegenerative diseases such as Alzheimer's disease (AD), and normal aging. In addition to serving as potential diagnostic biomarkers, innate immune system activation and inflammation may play a contributing or causal role in these conditions, leading to the hypothesis that effective therapies should seek to dampen their effects. However, recent intervention studies with the innate immune system activator granulocyte-macrophage colony-stimulating factor (GM-CSF) in animal models of DS, AD, and normal aging, and in an AD clinical trial suggest that activating the innate immune system and inflammation may instead be therapeutic. We consider evidence that DS, AD, and normal aging are accompanied by innate immune system activation and inflammation and discuss whether and when during the disease process it may be therapeutically beneficial to suppress or promote such activation.
Collapse
Affiliation(s)
- Md. Mahiuddin Ahmed
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Noah R. Johnson
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Timothy D. Boyd
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Partner Therapeutics, Inc., Lexington, MA, United States
| | - Christina Coughlan
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Heidi J. Chial
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Huntington Potter
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
15
|
Brady RD, Bird S, Sun M, Yamakawa GR, Major BP, Mychasiuk R, O'Brien TJ, McDonald SJ, Shultz SR. Activation of the Protein Kinase R-Like Endoplasmic Reticulum Kinase (PERK) Pathway of the Unfolded Protein Response after Experimental Traumatic Brain Injury and Treatment with a PERK Inhibitor. Neurotrauma Rep 2021; 2:330-342. [PMID: 34318301 PMCID: PMC8310749 DOI: 10.1089/neur.2021.0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neurodegeneration after traumatic brain injury (TBI) is increasingly recognized as a key factor contributing to poor chronic outcomes. Activation (i.e., phosphorylation) of the protein kinase R-like endoplasmic reticulum kinase (PERK) pathway has been implicated in neurodegenerative conditions with pathological similarities to TBI and may be a potential target to improve TBI outcomes. Here, we aimed to determine whether a moderate TBI would induce activation of the PERK pathway and whether treatment with the PERK inhibitor, GSK2606414, would improve TBI recovery. Male mice were administered a lateral fluid percussion injury (FPI) or sham injury and were euthanized at either 2 h, 24 h, or 1 week post-injury (n = 5 per injury group and time point) to assess changes in the PERK pathway. In the injured cortex, there was increased phosphorylated-PERK at 2 h post-FPI and increased phosphorylation of eukaryotic translation initiation factor α at 24 h post-FPI. We next examined the effect of acute treatment with GSK2606414 on pathological and behavioral outcomes at 4 weeks post-injury. Thus, there were a total of four groups: sham + VEH (n = 9); sham + GSK4606414 (n = 10); FPI + VEH (n = 9); and FPI + GSK2606414 (n = 9). GSK2606414 (50 mg/kg) or vehicle treatment was delivered by oral gavage beginning at 30 min post-injury, followed by two further treatments at 12-h increments. There were no significant effects of GSK2606414 on any of the outcomes assessed, which could be attributable to several reasons. For example, activation of PERK may not be a significant contributor to the neurological consequences 4 weeks post-FPI in mice. Further research is required to elucidate the role of the PERK pathway in TBI and whether interventions that target this pathway are beneficial.
Collapse
Affiliation(s)
- Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Stefanie Bird
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Brendan P Major
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
16
|
Construction of Recombinant Human GM-CSF and GM-CSF-ApoA-I Fusion Protein and Evaluation of Their Biological Activity. Pharmaceuticals (Basel) 2021; 14:ph14050459. [PMID: 34068113 PMCID: PMC8152757 DOI: 10.3390/ph14050459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/04/2022] Open
Abstract
In this study, two strains of the yeast P. pastoris were constructed, one of which produced authentic recombinant human granulocyte-macrophage colony-stimulating factor (ryGM-CSF), and the other was a chimera consisting of ryGM-CSF genetically fused with mature human apolipoprotein A-I (ApoA-I) (ryGM-CSF-ApoA-I). Both forms of the cytokine were secreted into the culture medium. The proteins’ yield during cultivation in flasks was 100 and 60 mg/L for ryGM-CSF and ryGM-CSF-ApoA-I, respectively. Both forms of recombinant GM-CSF stimulated the proliferation of human TF-1 erythroleukemia cells; however, the amount of chimera required was 10-fold that of authentic GM-CSF to induce a similar proliferative effect. RyGM-CSF exhibited a 2-fold proliferative effect on BFU-E (burst-forming units—erythroid) at a concentration 1.7 fold less than non-glycosylated E. coli-derived GM-CSF. The chimera together with authentic ryGM-CSF increased the number of both erythroid precursors and BMC granulocytes after 48 h of incubation of human bone marrow cells (BMCs). In addition, the chimeric form of ryGM-CSF was more effective at increasing the viability of the total amount of BMCs, decreasing apoptosis compared to the authentic form. ryGM-CSF-ApoA-I normalized the proliferation, maturation, and segmentation of neutrophils within the physiological norm, preserving the pool of blast cells under conditions of impaired granulopoiesis. The chimera form of GM-CSF exhibited the properties of a multilinear growth factor, modulating the activity of GM-CSF and, perhaps, it may be more suitable for the normalization of granulopoiesis.
Collapse
|
17
|
Postolache TT, Wadhawan A, Can A, Lowry CA, Woodbury M, Makkar H, Hoisington AJ, Scott AJ, Potocki E, Benros ME, Stiller JW. Inflammation in Traumatic Brain Injury. J Alzheimers Dis 2021; 74:1-28. [PMID: 32176646 DOI: 10.3233/jad-191150] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is an increasing evidence that inflammation contributes to clinical and functional outcomes in traumatic brain injury (TBI). Many successful target-engaging, lesion-reducing, symptom-alleviating, and function-improving interventions in animal models of TBI have failed to show efficacy in clinical trials. Timing and immunological context are paramount for the direction, quality, and intensity of immune responses to TBI and the resulting neuroanatomical, clinical, and functional course. We present components of the immune system implicated in TBI, potential immune targets, and target-engaging interventions. The main objective of our article is to point toward modifiable molecular and cellular mechanisms that may modify the outcomes in TBI, and contribute to increasing the translational value of interventions that have been identified in animal models of TBI.
Collapse
Affiliation(s)
- Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, USA
| | - Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Saint Elizabeths Hospital, Department of Psychiatry, Washington, DC, USA
| | - Adem Can
- School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Christopher A Lowry
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA.,Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Margaret Woodbury
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Hina Makkar
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew J Hoisington
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA.,Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH, USA
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Michael E Benros
- Copenhagen Research Center for Mental Health-CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - John W Stiller
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Maryland State Athletic Commission, Baltimore, MD, USA.,Saint Elizabeths Hospital, Neurology Consultation Services, Washington, DC, USA
| |
Collapse
|
18
|
Potter H, Woodcock JH, Boyd TD, Coughlan CM, O'Shaughnessy JR, Borges MT, Thaker AA, Raj BA, Adamszuk K, Scott D, Adame V, Anton P, Chial HJ, Gray H, Daniels J, Stocker ME, Sillau SH. Safety and efficacy of sargramostim (GM-CSF) in the treatment of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12158. [PMID: 33778150 PMCID: PMC7988877 DOI: 10.1002/trc2.12158] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Inflammatory markers have long been observed in the brain, cerebrospinal fluid (CSF), and plasma of Alzheimer's disease (AD) patients, suggesting that inflammation contributes to AD and might be a therapeutic target. However, non-steroidal anti-inflammatory drug trials in AD and mild cognitive impairment (MCI) failed to show benefit. Our previous work seeking to understand why people with the inflammatory disease rheumatoid arthritis are protected from AD found that short-term treatment of transgenic AD mice with the pro-inflammatory cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) led to an increase in activated microglia, a 50% reduction in amyloid load, an increase in synaptic area, and improvement in spatial memory to normal. These results called into question the consensus view that inflammation is solely detrimental in AD. Here, we tested our hypothesis that modulation of the innate immune system might similarly be used to treat AD in humans by investigating the ability of GM-CSF/sargramostim to safely ameliorate AD symptoms/pathology. METHODS A randomized, double-blind, placebo-controlled trial was conducted in mild-to-moderate AD participants (NCT01409915). Treatments (20 participants/group) occurred 5 days/week for 3 weeks plus two follow-up (FU) visits (FU1 at 45 days and FU2 at 90 days) with neurological, neuropsychological, blood biomarker, and imaging assessments. RESULTS Sargramostim treatment expectedly changed innate immune system markers, with no drug-related serious adverse events or amyloid-related imaging abnormalities. At end of treatment (EOT), the Mini-Mental State Examination score of the sargramostim group increased compared to baseline (P = .0074) and compared to placebo (P = .0370); the treatment effect persisted at FU1 (P = .0272). Plasma markers of amyloid beta (Aβ40 [decreased in AD]) increased 10% (P = .0105); plasma markers of neurodegeneration (total tau and UCH-L1) decreased 24% (P = .0174) and 42% (P = .0019), respectively, after sargramostim treatment compared to placebo. DISCUSSION The innate immune system is a viable target for therapeutic intervention in AD. An extended treatment trial testing the long-term safety and efficacy of GM-CSF/sargramostim in AD is warranted.
Collapse
Affiliation(s)
- Huntington Potter
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
- Linda Crnic Institute for Down SyndromeUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Jonathan H. Woodcock
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
| | - Timothy D. Boyd
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
- Linda Crnic Institute for Down SyndromeUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Christina M. Coughlan
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
- Linda Crnic Institute for Down SyndromeUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - John R. O'Shaughnessy
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
| | - Manuel T. Borges
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- Department of RadiologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Ashesh A. Thaker
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- Department of RadiologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | | | | | | | - Vanesa Adame
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
- Linda Crnic Institute for Down SyndromeUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Paige Anton
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
- Linda Crnic Institute for Down SyndromeUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Heidi J. Chial
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
- Linda Crnic Institute for Down SyndromeUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Helen Gray
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
| | - Joseph Daniels
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
| | - Michelle E. Stocker
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
| | - Stefan H. Sillau
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterAuroraColoradoUSA
| |
Collapse
|
19
|
Pignataro G, Cataldi M, Taglialatela M. Neurological risks and benefits of cytokine-based treatments in coronavirus disease 2019: from preclinical to clinical evidence. Br J Pharmacol 2021; 179:2149-2174. [PMID: 33512003 DOI: 10.1111/bph.15397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/15/2022] Open
Abstract
Immunodeficiency and hyperinflammation are responsible for the most frequent and life-threatening forms of coronavirus disease 2019 (COVID-19). Therefore, cytokine-based treatments targeting immuno-inflammatory mechanisms are currently undergoing clinical scrutiny in COVID-19-affected patients. In addition, COVID-19 patients also exhibit a wide range of neurological manifestations (neuro-COVID), which may also benefit from cytokine-based treatments. In fact, such drugs have shown some clinical efficacy also in neuroinflammatory diseases. On the other hand, anti-cytokine drugs are endowed with significant neurological risks, mainly attributable to their immunodepressant effects. Therefore, the aim of the present manuscript is to briefly describe the role of specific cytokines in neuroinflammation, to summarize the efficacy in preclinical models of neuroinflammatory diseases of drugs targeting these cytokines and to review the clinical data regarding the neurological effects of these drugs currently being investigated against COVID-19, in order to raise awareness about their potentially beneficial and/or detrimental neurological consequences.
Collapse
Affiliation(s)
- Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, University of Naples "Federico II", Naples, Italy
| | - Mauro Cataldi
- Division of Pharmacology, Department of Neuroscience, University of Naples "Federico II", Naples, Italy
| | - Maurizio Taglialatela
- Division of Pharmacology, Department of Neuroscience, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
20
|
Shultz SR, McDonald SJ, Corrigan F, Semple BD, Salberg S, Zamani A, Jones NC, Mychasiuk R. Clinical Relevance of Behavior Testing in Animal Models of Traumatic Brain Injury. J Neurotrauma 2020; 37:2381-2400. [DOI: 10.1089/neu.2018.6149] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Frances Corrigan
- Department of Anatomy, University of South Australia, Adelaide, South Australia, Australia
| | - Bridgette D. Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Akram Zamani
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Nigel C. Jones
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
21
|
Li S, Weinstein G, Zare H, Teumer A, Völker U, Friedrich N, Knol MJ, Satizabal CL, Petyuk VA, Adams HHH, Launer LJ, Bennett DA, De Jager PL, Grabe HJ, Ikram MA, Gudnason V, Yang Q, Seshadri S. The genetics of circulating BDNF: towards understanding the role of BDNF in brain structure and function in middle and old ages. Brain Commun 2020; 2:fcaa176. [PMID: 33345186 PMCID: PMC7734441 DOI: 10.1093/braincomms/fcaa176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/04/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in brain development and function. Substantial amounts of BDNF are present in peripheral blood, and may serve as biomarkers for Alzheimer's disease incidence as well as targets for intervention to reduce Alzheimer's disease risk. With the exception of the genetic polymorphism in the BDNF gene, Val66Met, which has been extensively studied with regard to neurodegenerative diseases, the genetic variation that influences circulating BDNF levels is unknown. We aimed to explore the genetic determinants of circulating BDNF levels in order to clarify its mechanistic involvement in brain structure and function and Alzheimer's disease pathophysiology in middle-aged and old adults. Thus, we conducted a meta-analysis of genome-wide association study of circulating BDNF in 11 785 middle- and old-aged individuals of European ancestry from the Age, Gene/Environment Susceptibility-Reykjavik Study (AGES), the Framingham Heart Study (FHS), the Rotterdam Study and the Study of Health in Pomerania (SHIP-Trend). Furthermore, we performed functional annotation analysis and related the genetic polymorphism influencing circulating BDNF to common Alzheimer's disease pathologies from brain autopsies. Mendelian randomization was conducted to examine the possible causal role of circulating BDNF levels with various phenotypes including cognitive function, stroke, diabetes, cardiovascular disease, physical activity and diet patterns. Gene interaction networks analysis was also performed. The estimated heritability of BDNF levels was 30% (standard error = 0.0246, P-value = 4 × 10-48). We identified seven novel independent loci mapped near the BDNF gene and in BRD3, CSRNP1, KDELC2, RUNX1 (two single-nucleotide polymorphisms) and BDNF-AS. The expression of BDNF was associated with neurofibrillary tangles in brain tissues from the Religious Orders Study and Rush Memory and Aging Project (ROSMAP). Seven additional genes (ACAT1, ATM, NPAT, WDR48, TTC21A, SCN114 and COX7B) were identified through expression and protein quantitative trait loci analyses. Mendelian randomization analyses indicated a potential causal role of BDNF in cardioembolism. Lastly, Ingenuity Pathway Analysis placed circulating BDNF levels in four major networks. Our study provides novel insights into genes and molecular pathways associated with circulating BDNF levels and highlights the possible involvement of plaque instability as an underlying mechanism linking BDNF with brain neurodegeneration. These findings provide a foundation for a better understanding of BDNF regulation and function in the context of brain aging and neurodegenerative pathophysiology.
Collapse
Affiliation(s)
- Shuo Li
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Galit Weinstein
- School of Public Health, University of Haifa, Haifa 3498838, Israel
| | - Habil Zare
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, 78229 TX, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Uwe Völker
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Germany
| | - Maria J Knol
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, 78229 TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX 78229, USA
- The Framingham Study, Framingham, MA 01702, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Hieab H H Adams
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Lenore J Launer
- Department of Health and Human Services, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - David A Bennett
- Department of Neurology, Rush University Medical Center, Chicago, IL 60612, USA
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Philip L De Jager
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY 10032, USA
- Program in Population and Medical Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany
- German Center for Neurodegererative Diseases (DZNE), Rostock/Greifswald, Germany
| | - M Arfan Ikram
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands
| | - Vilmundur Gudnason
- Faculty of Medicine, School of Health Sciences, University of Iceland, 101 Reykjavik, Iceland
- Icelandic Heart Association, 201 Kopavogur, Iceland
| | - Qiong Yang
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, 78229 TX, USA
- The Framingham Study, Framingham, MA 01702, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
22
|
Olson KE, Namminga KL, Schwab AD, Thurston MJ, Lu Y, Woods A, Lei L, Shen W, Wang F, Joseph SB, Gendelman HE, Mosley RL. Neuroprotective Activities of Long-Acting Granulocyte-Macrophage Colony-Stimulating Factor (mPDM608) in 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Intoxicated Mice. Neurotherapeutics 2020; 17:1861-1877. [PMID: 32638217 PMCID: PMC7851309 DOI: 10.1007/s13311-020-00877-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Loss of dopaminergic neurons along the nigrostriatal axis, neuroinflammation, and peripheral immune dysfunction are the pathobiological hallmarks of Parkinson's disease (PD). Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been successfully tested for PD treatment. GM-CSF is a known immune modulator that induces regulatory T cells (Tregs) and serves as a neuronal protectant in a broad range of neurodegenerative diseases. Due to its short half-life, limited biodistribution, and potential adverse effects, alternative long-acting treatment schemes are of immediate need. A long-acting mouse GM-CSF (mPDM608) was developed through Calibr, a Division of Scripps Research. Following mPDM608 treatment, complete hematologic and chemistry profiles and T-cell phenotypes and functions were determined. Neuroprotective and anti-inflammatory capacities of mPDM608 were assessed in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice that included transcriptomic immune profiles. Treatment with a single dose of mPDM608 resulted in dose-dependent spleen and white blood cell increases with parallel enhancements in Treg numbers and immunosuppressive function. A shift in CD4+ T-cell gene expression towards an anti-inflammatory phenotype corresponded with decreased microgliosis and increased dopaminergic neuronal cell survival. mPDM608 elicited a neuroprotective peripheral immune transformation. The observed phenotypic shift and neuroprotective response was greater than observed with recombinant GM-CSF (rGM-CSF) suggesting human PDM608 as a candidate for PD treatment.
Collapse
Affiliation(s)
- Katherine E. Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Krista L. Namminga
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Aaron D. Schwab
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Mackenzie J. Thurston
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Ashley Woods
- Calibr, a Division of Scripps Research, La Jolla, CA 92037 USA
| | - Lei Lei
- Calibr, a Division of Scripps Research, La Jolla, CA 92037 USA
| | - Weijun Shen
- Calibr, a Division of Scripps Research, La Jolla, CA 92037 USA
| | - Feng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Sean B. Joseph
- Calibr, a Division of Scripps Research, La Jolla, CA 92037 USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 6898-5880 USA
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 6898-5880 USA
| |
Collapse
|
23
|
Baker TL, Sun M, Semple BD, Tyebji S, Tonkin CJ, Mychasiuk R, Shultz SR. Catastrophic consequences: can the feline parasite Toxoplasma gondii prompt the purrfect neuroinflammatory storm following traumatic brain injury? J Neuroinflammation 2020; 17:222. [PMID: 32711529 PMCID: PMC7382044 DOI: 10.1186/s12974-020-01885-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/02/2020] [Indexed: 12/02/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality worldwide; however, treatment development is hindered by the heterogenous nature of TBI presentation and pathophysiology. In particular, the degree of neuroinflammation after TBI varies between individuals and may be modified by other factors such as infection. Toxoplasma gondii, a parasite that infects approximately one-third of the world’s population, has a tropism for brain tissue and can persist as a life-long infection. Importantly, there is notable overlap in the pathophysiology between TBI and T. gondii infection, including neuroinflammation. This paper will review current understandings of the clinical problems, pathophysiological mechanisms, and functional outcomes of TBI and T. gondii, before considering the potential synergy between the two conditions. In particular, the discussion will focus on neuroinflammatory processes such as microglial activation, inflammatory cytokines, and peripheral immune cell recruitment that occur during T. gondii infection and after TBI. We will present the notion that these overlapping pathologies in TBI individuals with a chronic T. gondii infection have the strong potential to exacerbate neuroinflammation and related brain damage, leading to amplified functional deficits. The impact of chronic T. gondii infection on TBI should therefore be investigated in both preclinical and clinical studies as the possible interplay could influence treatment strategies.
Collapse
Affiliation(s)
- Tamara L Baker
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Shiraz Tyebji
- Division of Infectious Diseases and Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Christopher J Tonkin
- Division of Infectious Diseases and Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia. .,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
24
|
Selvakumar GP, Ahmed ME, Iyer SS, Thangavel R, Kempuraj D, Raikwar SP, Bazley K, Wu K, Khan A, Kukulka K, Bussinger B, Zaheer S, Burton C, James D, Zaheer A. Absence of Glia Maturation Factor Protects from Axonal Injury and Motor Behavioral Impairments after Traumatic Brain Injury. Exp Neurobiol 2020; 29:230-248. [PMID: 32565489 PMCID: PMC7344375 DOI: 10.5607/en20017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) causes disability and death, accelerating the progression towards Alzheimer's disease and Parkinson's disease (PD). TBI causes serious motor and cognitive impairments, as seen in PD that arise during the period of the initial insult. However, this has been understudied relative to TBI induced neuroinflammation, motor and cognitive decline that progress towards PD. Neuronal ubiquitin-C-terminal hydrolase- L1 (UCHL1) is a thiol protease that breaks down ubiquitinated proteins and its level represents the severity of TBI. Previously, we demonstrated the molecular action of glia maturation factor (GMF); a proinflammatory protein in mediating neuroinflammation and neuronal loss. Here, we show that the weight drop method induced TBI neuropathology using behavioral tests, western blotting, and immunofluorescence techniques on sections from wild type (WT) and GMF-deficient (GMF-KO) mice. Results reveal a significant improvement in substantia nigral tyrosine hydroxylase and dopamine transporter expression with motor behavioral performance in GMF-KO mice following TBI. In addition, a significant reduction in neuroinflammation was manifested, as shown by activation of nuclear factor-kB, reduced levels of inducible nitric oxide synthase, and cyclooxygenase- 2 expressions. Likewise, neurotrophins including brain-derived neurotrophic factor and glial-derived neurotrophic factor were significantly improved in GMF-KO mice than WT 72 h post-TBI. Consistently, we found that TBI enhances GFAP and UCHL-1 expression and reduces the number of dopaminergic TH-positive neurons in WT compared to GMF-KO mice 72 h post-TBI. Interestingly, we observed a reduction of THpositive tanycytes in the median eminence of WT than GMF-KO mice. Overall, we found that absence of GMF significantly reversed these neuropathological events and improved behavioral outcome. This study provides evidence that PD-associated pathology progression can be initiated upon induction of TBI.
Collapse
Affiliation(s)
- Govindhasamy Pushpavathi Selvakumar
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Mohammad Ejaz Ahmed
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Shankar S Iyer
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Ramasamy Thangavel
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Sudhanshu P Raikwar
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Kieran Bazley
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Kristopher Wu
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Asher Khan
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Klaudia Kukulka
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Bret Bussinger
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Smita Zaheer
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | - Asgar Zaheer
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
25
|
Zeng XJ, Li P, Ning YL, Zhao Y, Peng Y, Yang N, Xu YW, Chen JF, Zhou YG. A 2A R inhibition in alleviating spatial recognition memory impairment after TBI is associated with improvement in autophagic flux in RSC. J Cell Mol Med 2020; 24:7000-7014. [PMID: 32394486 PMCID: PMC7299719 DOI: 10.1111/jcmm.15361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 01/12/2020] [Accepted: 04/16/2020] [Indexed: 01/08/2023] Open
Abstract
Spatial recognition memory impairment is an important complication after traumatic brain injury (TBI). We previously found that spatial recognition memory impairment can be alleviated in adenosine A2A receptor knockout (A2AR KO) mice after TBI, but the mechanism remains unclear. In the current study, we used manganese‐enhanced magnetic resonance imaging and the Y‐maze test to determine whether the electrical activity of neurons in the retrosplenial cortex (RSC) was reduced and spatial recognition memory was impaired in wild‐type (WT) mice after moderate TBI. Furthermore, spatial recognition memory was damaged by optogenetically inhibiting the electrical activity of RSC neurons in WT mice. Additionally, the electrical activity of RSC neurons was significantly increased and spatial recognition memory impairment was reduced in A2AR KO mice after moderate TBI. Specific inhibition of A2AR in the ipsilateral RSC alleviated the impairment in spatial recognition memory in WT mice. In addition, A2AR KO improved autophagic flux in the ipsilateral RSC after injury. In primary cultured neurons, activation of A2AR reduced lysosomal‐associated membrane protein 1 and cathepsin D (CTSD) levels, increased phosphorylated protein kinase A and phosphorylated extracellular signal‐regulated kinase 2 levels, reduced transcription factor EB (TFEB) nuclear localization and impaired autophagic flux. These results suggest that the impairment of spatial recognition memory after TBI may be associated with impaired autophagic flux in the RSC and that A2AR activation may reduce lysosomal biogenesis through the PKA/ERK2/TFEB pathway to impair autophagic flux.
Collapse
Affiliation(s)
- Xu-Jia Zeng
- State Key Laboratory of Trauma, Burn, and Combined Injury, Department of Occupational Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Ping Li
- State Key Laboratory of Trauma, Burn, and Combined Injury, Department of Occupational Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Ya-Lei Ning
- State Key Laboratory of Trauma, Burn, and Combined Injury, Department of Occupational Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yan Zhao
- State Key Laboratory of Trauma, Burn, and Combined Injury, Department of Occupational Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yan Peng
- State Key Laboratory of Trauma, Burn, and Combined Injury, Department of Occupational Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Nan Yang
- State Key Laboratory of Trauma, Burn, and Combined Injury, Department of Occupational Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Ya-Wei Xu
- State Key Laboratory of Trauma, Burn, and Combined Injury, Department of Occupational Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Jiang-Fan Chen
- Department of Neurology and Pharmacology, Boston University School of Medicine, Boston, MA, USA
| | - Yuan-Guo Zhou
- State Key Laboratory of Trauma, Burn, and Combined Injury, Department of Occupational Disease, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
26
|
Brady RD, Wong KR, Robinson DL, Mychasiuk R, McDonald SJ, D'Cunha RA, Yamakawa GR, Sun M, Wark JD, Lee PVS, O'Brien TJ, Casillas-Espinosa PM, Shultz SR. Bone Health in Rats With Temporal Lobe Epilepsy in the Absence of Anti-Epileptic Drugs. Front Pharmacol 2019; 10:1278. [PMID: 31749702 PMCID: PMC6842946 DOI: 10.3389/fphar.2019.01278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/07/2019] [Indexed: 01/18/2023] Open
Abstract
Rationale: Epilepsy patients often exhibit reduced bone mineral density and are at an increased risk of bone fracture. Whether these bone abnormalities are due to the use of anti-epileptic drugs (AED’s) or the disease itself is unknown. For example, although decreased bone health in epilepsy patients is generally attributed to the use of AED’s, seizures can also trigger a number of physiological processes that have the potential to affect bone. Therefore, to assess whether bone abnormalities occur in epilepsy in the absence of AED’s, the current study investigated mechanical characteristics and trabecular bone morphology in rats with chronic temporal lobe epilepsy. Methods: Ten-week old male Wistar rats underwent kainic acid-induced status epilepticus (SE; n = 7) or a sham procedure (n = 9). Rats were implanted with EEG recording electrodes at nine weeks post-SE, and video-EEG was continuously recorded for one week at 10- and 22-weeks post-SE to confirm that SE rats had spontaneous seizures. Open-field testing to assess locomotion was conducted at 23-weeks post-SE. At 24-weeks post-SE, rats were euthanized and tibia were extracted to determine trabecular morphology by micro-computed tomography (µCT), while femurs were used to investigate mechanical properties via 3-point bending. Results: All post-SE rats had spontaneous seizures at 10- and 22-weeks post-SE, while none of the sham rats had seizures. µCT trabecular analysis of tibia revealed no differences in total volume, bone volume, bone volume fraction, trabecular number, or trabecular separation between post-SE or sham rats, although post-SE rats did have increased trabecular thickness. There were also no group differences in total distance travelled in the open field suggesting that activity levels did not account for the increased trabecular thickness. In addition, no differences in mechanical properties of femurs were observed between the two groups. Conclusion: There was a lack of overt bone abnormalities in rats with chronic temporal lobe epilepsy in the absence of AED treatment. Although further studies are still needed, these findings may have important implications towards understanding the source (e.g., AED treatments) of bone abnormalities in epilepsy patients.
Collapse
Affiliation(s)
- Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Ker Rui Wong
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Dale L Robinson
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Ryan A D'Cunha
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - John D Wark
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Peter Vee Sin Lee
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
27
|
Targeting high-mobility group box protein 1 (HMGB1) in pediatric traumatic brain injury: Chronic neuroinflammatory, behavioral, and epileptogenic consequences. Exp Neurol 2019; 320:112979. [DOI: 10.1016/j.expneurol.2019.112979] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/29/2019] [Accepted: 06/18/2019] [Indexed: 11/18/2022]
|
28
|
Tan XL, Zheng P, Wright DK, Sun M, Brady RD, Liu S, McDonald SJ, Mychasiuk R, Cenap S, Jones NC, O’Brien TJ, Shultz SR. The genetic ablation of tau improves long-term, but not short-term, functional outcomes after experimental traumatic brain injury in mice. Brain Inj 2019; 34:131-139. [DOI: 10.1080/02699052.2019.1667539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xin Lin Tan
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Ping Zheng
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - David K. Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Mujun Sun
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Rhys D. Brady
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Shijie Liu
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Sitare Cenap
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia
| | - Nigel C. Jones
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Terence J. O’Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Sandy R. Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
29
|
Sun M, Brady RD, Casillas-Espinosa PM, Wright DK, Semple BD, Kim HA, Mychasiuk R, Sobey CG, O'Brien TJ, Vinh A, McDonald SJ, Shultz SR. Aged rats have an altered immune response and worse outcomes after traumatic brain injury. Brain Behav Immun 2019; 80:536-550. [PMID: 31039431 DOI: 10.1016/j.bbi.2019.04.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/28/2019] [Accepted: 04/26/2019] [Indexed: 12/14/2022] Open
Abstract
Initial studies suggest that increased age is associated with worse outcomes after traumatic brain injury (TBI), though the pathophysiological mechanisms responsible for this remain unclear. Immunosenescence (i.e., dysregulation of the immune system due to aging) may play a significant role in influencing TBI outcomes. This study therefore examined neurological outcomes and immune response in young-adult (i.e., 10 weeks old) compared to middle-aged (i.e., 1 year old) rats following a TBI (i.e., fluid percussion) or sham-injury. Rats were euthanized at either 24 h or one-week post-injury to analyze immune cell populations in the brain and periphery via flow cytometry, as well as telomere length (i.e., a biomarker of neurological health). Behavioral testing, as well as volumetric and diffusion-weighted MRI, were also performed in the one-week recovery rats to assess for functional deficits and brain damage. Middle-aged rats had worse sensorimotor deficits and shorter telomeres after TBI compared to young rats. Both aging and TBI independently worsened cognitive function and cortical volume. These changes occurred in the presence of fewer total leukocytes, fewer infiltrating myeloid cells, and fewer microglia in the brains of middle-aged TBI rats compared to young rats. These findings indicate that middle-aged rats have worse sensorimotor deficits and shorter telomeres after TBI than young rats, and this may be related to an altered neuroimmune response. Although further studies are required, these findings have important implications for understanding the pathophysiology and optimal treatment strategies in TBI patients across the life span.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Hyun Ah Kim
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Antony Vinh
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
30
|
Saletti PG, Ali I, Casillas-Espinosa PM, Semple BD, Lisgaras CP, Moshé SL, Galanopoulou AS. In search of antiepileptogenic treatments for post-traumatic epilepsy. Neurobiol Dis 2019; 123:86-99. [PMID: 29936231 PMCID: PMC6309524 DOI: 10.1016/j.nbd.2018.06.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/20/2018] [Indexed: 11/28/2022] Open
Abstract
Post-traumatic epilepsy (PTE) is diagnosed in 20% of individuals with acquired epilepsy, and can impact significantly the quality of life due to the seizures and other functional or cognitive and behavioral outcomes of the traumatic brain injury (TBI) and PTE. There is no available antiepileptogenic or disease modifying treatment for PTE. Animal models of TBI and PTE have been developed, offering useful insights on the value of inflammatory, neurodegenerative pathways, hemorrhages and iron accumulation, calcium channels and other target pathways that could be used for treatment development. Most of the existing preclinical studies test efficacy towards pathologies of functional recovery after TBI, while a few studies are emerging testing the effects towards induced or spontaneous seizures. Here we review the existing preclinical trials testing new candidate treatments for TBI sequelae and PTE, and discuss future directions for efforts aiming at developing antiepileptogenic and disease-modifying treatments.
Collapse
Affiliation(s)
- Patricia G Saletti
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Idrish Ali
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia
| | - Christos Panagiotis Lisgaras
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Solomon L Moshé
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA; Dominick P. Purpura Department of Neuroscience, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Einstein/Montefiore Epilepsy Center, Montefiore Medical Center, Bronx, NY, USA; Department of Pediatrics, Albert Einstein College of Medicine, Einstein/Montefiore Epilepsy Center, Montefiore Medical Center, Bronx, NY, USA
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA; Dominick P. Purpura Department of Neuroscience, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Einstein/Montefiore Epilepsy Center, Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
31
|
Sun M, Brady RD, van der Poel C, Apted D, Semple BD, Church JE, O'Brien TJ, McDonald SJ, Shultz SR. A Concomitant Muscle Injury Does Not Worsen Traumatic Brain Injury Outcomes in Mice. Front Neurol 2018; 9:1089. [PMID: 30619048 PMCID: PMC6297867 DOI: 10.3389/fneur.2018.01089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/28/2018] [Indexed: 01/20/2023] Open
Abstract
Traumatic brain injury (TBI) often involves multitrauma in which concurrent extracranial injury occurs. We previously demonstrated that a long bone fracture exacerbates neuroinflammation and functional outcomes in mice given a TBI. Whether other forms of concomitant peripheral trauma that are common in the TBI setting, such as skeletal muscle injury, have similar effects is unknown. As such, here we developed a novel mouse multitrauma model by combining a closed-skull TBI with a cardiotoxin (CTX)-induced muscle injury to investigate whether muscle injury affects TBI outcomes. Adult male mice were assigned to four groups: sham-TBI + sham-muscle injury (SHAM); sham-TBI + CTX-muscle injury (CTX); TBI + sham-muscle injury (TBI); TBI + CTX-muscle injury (MULTI). Some mice were euthanized at 24 h post-injury to assess neuroinflammation and cerebral edema. The remaining mice underwent behavioral testing after a 30-day recovery period, and were euthanized at 35 days post-injury for post-mortem analysis. At 24 h post-injury, both TBI and MULTI mice had elevated edema, increased expression of GFAP (i.e., a marker for reactive astrocytes), and increased mRNA levels of inflammatory chemokines. There was also an effect of injury on cytokine levels at 35 days post-injury. However, the TBI and MULTI mice did not significantly differ on any of the measures assessed. These initial findings suggest that a concomitant muscle injury does not significantly affect preclinical TBI outcomes. Future studies should investigate the combination of different injury models, additional outcomes, and other post-injury time points.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Rhys D Brady
- Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Chris van der Poel
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Danielle Apted
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Bridgette D Semple
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia.,Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jarrod E Church
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia.,Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia.,Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Clausen F, Marklund N, Hillered L. Acute Inflammatory Biomarker Responses to Diffuse Traumatic Brain Injury in the Rat Monitored by a Novel Microdialysis Technique. J Neurotrauma 2018; 36:201-211. [PMID: 29790398 DOI: 10.1089/neu.2018.5636] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neuroinflammation is a major contributor to the progressive brain injury process induced by traumatic brain injury (TBI), and may play an important role in the pathophysiology of axonal injury. The immediate neuroinflammatory cascade cannot be characterized in the human setting. Therefore, we used the midline fluid percussion injury model of diffuse TBI in rats and a novel microdialysis (MD) method providing stable diffusion-driven biomarker sampling. Immediately post-injury, bilateral amphiphilic tri-block polymer coated MD probes (100 kDa cut off membrane) were inserted and perfused with Dextran 500 kDa-supplemented artificial cerebrospinal fluid (CSF) to optimize protein capture. Six hourly samples were analyzed for 27 inflammatory biomarkers (9 chemokines, 13 cytokines, and 5 growth factors) using a commercial multiplex biomarker kit. TBI (n = 6) resulted in a significant increase compared with sham-injured controls (n = 6) for five chemokines (eotaxin/CCL11, fractalkine/CX3CL1, LIX/CXCL5, monocyte chemoattractant protein [MCP]1α/CCL2, macrophage inflammatory protein [MIP]1α /CCL3), 10 cytokines (interleukin [IL]-1α, IL-1β, IL-4, IL-6, IL-10, IL-13, IL-17α, IL-18, interferon [IFN]-γ, tumor necrosis factor [TNF]-α), and four growth factors (epidermal growth factor [EGF], granulocyte-macrophage colony-stimulating factor [GM-CSF], leptin, vascular endothelial growth factor [VEGF]). Therefore, diffuse TBI was associated with an increased level of 18 of the 27 inflammatory biomarkers at one through six time points, during the observation period whereas the remaining 9 biomarkers were unaltered. The study shows that diffuse TBI induces an acute increase in a number of inflammatory biomarkers. The novel MD technique provides stable MD sampling suitable for further studies on the early neuroinflammatory cascade in TBI.
Collapse
Affiliation(s)
- Fredrik Clausen
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Niklas Marklund
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Lars Hillered
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Tan XL, Sun M, Brady RD, Liu S, Llanos R, Cheung S, Wright DK, Casillas-Espinosa PM, Sashindranath M, O'Brien TJ, McDonald SJ, Turner BJ, Shultz SR. Transactive Response DNA-Binding Protein 43 Abnormalities after Traumatic Brain Injury. J Neurotrauma 2018; 36:87-99. [PMID: 29901412 DOI: 10.1089/neu.2017.5491] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Initial studies have found some evidence for transactive response DNA-binding protein 43 (TDP-43) abnormalities after traumatic brain injury (TBI), and the presence of protein inclusions consisting of TDP-43 are a pathological hallmark of amyotrophic lateral sclerosis (ALS), a condition associated with TBI. However, no study has characterized changes in TDP-43 phosphorylation, mislocalization, and fragmentation (i.e., abnormalities linked to hallmark TDP-43 pathology) after TBI, and how these relate to functional outcomes. Further, how TBI affects an individual with a known predisposition to TDP-43 pathology is unknown. Therefore, this study examined the effects of TBI on TDP-43 post-translational processing, localization, and behavioral outcomes in wild-type (WT) mice and mutant TDP-43A315T mice (i.e., mice predisposed to TDP-43 pathology) at 24 h and 1 week after TBI. Post-mortem brain tissue from human patients with acute TBI was also examined. Western blots found that WT mice given TBI had increased TDP-43 phosphorylation, mislocalization, and fragmentation compared with sham-injured WT mice. The TDP-43A315T mice given a TBI had exacerbated TDP-43 abnormalities, worse cell death, and cognitive deficits compared with all other groups. In the human TBI patients, the only significant finding was increased nuclear accumulation of phosphorylated TDP-43 fragments. The discrepancy between the robust mouse findings and the largely non-significant human findings may be due to factors including heterogeneity in clinical TBI, the small group sizes, and temporal complexities with TDP-43 abnormalities. These findings indicate that TBI can induce a number of TDP-43 abnormalities that may contribute to the neurological consequences of TBI, though further research is still needed.
Collapse
Affiliation(s)
- Xin Lin Tan
- 1 Department of Medicine, The University of Melbourne , Parkville, Victoria, Australia
| | - Mujun Sun
- 1 Department of Medicine, The University of Melbourne , Parkville, Victoria, Australia
| | - Rhys D Brady
- 1 Department of Medicine, The University of Melbourne , Parkville, Victoria, Australia
- 2 Department of Neuroscience, Monash University , Melbourne, Victoria, Australia
| | - Shijie Liu
- 2 Department of Neuroscience, Monash University , Melbourne, Victoria, Australia
| | - Roxana Llanos
- 3 Life and Environmental Sciences, Deakin University , Burwood, Victoria, Australia
| | - Steve Cheung
- 3 Life and Environmental Sciences, Deakin University , Burwood, Victoria, Australia
| | - David K Wright
- 2 Department of Neuroscience, Monash University , Melbourne, Victoria, Australia
| | - Pablo M Casillas-Espinosa
- 1 Department of Medicine, The University of Melbourne , Parkville, Victoria, Australia
- 2 Department of Neuroscience, Monash University , Melbourne, Victoria, Australia
| | - Maithili Sashindranath
- 4 Australian Center for Blood Disease, Monash University , Melbourne, Victoria, Australia
| | - Terence J O'Brien
- 1 Department of Medicine, The University of Melbourne , Parkville, Victoria, Australia
- 2 Department of Neuroscience, Monash University , Melbourne, Victoria, Australia
| | - Stuart J McDonald
- 5 Physiology, Anatomy, and Microbiology, La Trobe University , Bundoora, Victoria, Australia
| | - Bradley J Turner
- 6 The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria, Australia
| | - Sandy R Shultz
- 1 Department of Medicine, The University of Melbourne , Parkville, Victoria, Australia
- 2 Department of Neuroscience, Monash University , Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Semple BD, Zamani A, Rayner G, Shultz SR, Jones NC. Affective, neurocognitive and psychosocial disorders associated with traumatic brain injury and post-traumatic epilepsy. Neurobiol Dis 2018; 123:27-41. [PMID: 30059725 DOI: 10.1016/j.nbd.2018.07.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
Survivors of traumatic brain injury (TBI) often develop chronic neurological, neurocognitive, psychological, and psychosocial deficits that can have a profound impact on an individual's wellbeing and quality of life. TBI is also a common cause of acquired epilepsy, which is itself associated with significant behavioral morbidity. This review considers the clinical and preclinical evidence that post-traumatic epilepsy (PTE) acts as a 'second-hit' insult to worsen chronic behavioral outcomes for brain-injured patients, across the domains of emotional, cognitive, and psychosocial functioning. Surprisingly, few well-designed studies have specifically examined the relationship between seizures and behavioral outcomes after TBI. The complex mechanisms underlying these comorbidities remain incompletely understood, although many of the biological processes that precipitate seizure occurrence and epileptogenesis may also contribute to the development of chronic behavioral deficits. Further, the relationship between PTE and behavioral dysfunction is increasingly recognized to be a bidirectional one, whereby premorbid conditions are a risk factor for PTE. Clinical studies in this arena are often challenged by the confounding effects of anti-seizure medications, while preclinical studies have rarely examined an adequately extended time course to fully capture the time course of epilepsy development after a TBI. To drive the field forward towards improved treatment strategies, it is imperative that both seizures and neurobehavioral outcomes are assessed in parallel after TBI, both in patient populations and preclinical models.
Collapse
Affiliation(s)
- Bridgette D Semple
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, VIC, Australia.
| | - Akram Zamani
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, Australia.
| | - Genevieve Rayner
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre (Austin Campus), Heidelberg, VIC, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia; Comprehensive Epilepsy Program, Alfred Health, Australia.
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, VIC, Australia.
| | - Nigel C Jones
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, VIC, Australia.
| |
Collapse
|
35
|
Wright DK, Liu S, van der Poel C, McDonald SJ, Brady RD, Taylor L, Yang L, Gardner AJ, Ordidge R, O'Brien TJ, Johnston LA, Shultz SR. Traumatic Brain Injury Results in Cellular, Structural and Functional Changes Resembling Motor Neuron Disease. Cereb Cortex 2018; 27:4503-4515. [PMID: 27566977 DOI: 10.1093/cercor/bhw254] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 07/23/2016] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) has been suggested to increase the risk of amyotrophic lateral sclerosis (ALS). However, this link remains controversial and as such, here we performed experimental moderate TBI in rats and assessed for the presence of ALS-like pathological and functional abnormalities at both 1 and 12 weeks post-injury. Serial in-vivo magnetic resonance imaging (MRI) demonstrated that rats given a TBI had progressive atrophy of the motor cortices and degeneration of the corticospinal tracts compared with sham-injured rats. Immunofluorescence analyses revealed a progressive reduction in neurons, as well as increased phosphorylated transactive response DNA-binding protein 43 (TDP-43) and cytoplasmic TDP-43, in the motor cortex of rats given a TBI. Rats given a TBI also had fewer spinal cord motor neurons, increased expression of muscle atrophy markers, and altered muscle fiber contractile properties compared with sham-injured rats at 12 weeks, but not 1 week, post-injury. All of these changes occurred in the presence of persisting motor deficits. These findings resemble some of the pathological and functional abnormalities common in ALS and support the notion that TBI can result in a progressive neurodegenerative disease process pathologically bearing similarities to a motor neuron disease.
Collapse
Affiliation(s)
- David K Wright
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia.,Animal Imaging Facility, Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Shijie Liu
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Chris van der Poel
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Rhys D Brady
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Lily Taylor
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Li Yang
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia.,Department of Histology and Embryology, Kunming Medical University, Kunming 650000, China
| | - Andrew J Gardner
- Centre for Translational Neuroscience and Mental Health, Department of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Roger Ordidge
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Leigh A Johnston
- Animal Imaging Facility, Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia.,Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
36
|
Kiyota T, Machhi J, Lu Y, Dyavarshetty B, Nemati M, Yokoyama I, Mosley RL, Gendelman HE. Granulocyte-macrophage colony-stimulating factor neuroprotective activities in Alzheimer's disease mice. J Neuroimmunol 2018; 319:80-92. [PMID: 29573847 PMCID: PMC5916331 DOI: 10.1016/j.jneuroim.2018.03.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/27/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022]
Abstract
We investigated the effects of granulocyte-macrophage colony stimulating factor (GM-CSF) on behavioral and pathological outcomes in Alzheimer's disease (AD) and non-transgenic mice. GM-CSF treatment in AD mice reduced brain amyloidosis, increased plasma Aβ, and rescued cognitive impairment with increased hippocampal expression of calbindin and synaptophysin and increased levels of doublecortin-positive cells in the dentate gyrus. These data extend GM-CSF pleiotropic neuroprotection mechanisms in AD and include regulatory T cell-mediated immunomodulation of microglial function, Aβ clearance, maintenance of synaptic integrity, and induction of neurogenesis. Together these data support further development of GM-CSF as a neuroprotective agent for AD.
Collapse
Affiliation(s)
- Tomomi Kiyota
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bhagyalaxmi Dyavarshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maryam Nemati
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Izumi Yokoyama
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - R L Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
37
|
McColl TJ, Brady RD, Shultz SR, Lovick L, Webster KM, Sun M, McDonald SJ, O'Brien TJ, Semple BD. Mild Traumatic Brain Injury in Adolescent Mice Alters Skull Bone Properties to Influence a Subsequent Brain Impact at Adulthood: A Pilot Study. Front Neurol 2018; 9:372. [PMID: 29887828 PMCID: PMC5980957 DOI: 10.3389/fneur.2018.00372] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/07/2018] [Indexed: 12/24/2022] Open
Abstract
Mild traumatic brain injuries (mTBI) are common during adolescence, and limited clinical evidence suggests that a younger age at first exposure to a mTBI may lead to worse long-term outcomes. In this study, we hypothesized that a mTBI during adolescence would predispose toward poorer neurobehavioral and neuropathological outcomes after a subsequent injury at adulthood. Mice received a mild weight drop injury (mTBI) at adolescence (postnatal day 35; P35) and/or at adulthood (P70). Mice were randomized to 6 groups: 'sham' (sham-surgery at P35 only); 'P35' (mTBI at P35 only); 'P35 + sham' (mTBI at P35 + sham at P70); 'sham + P70' (sham at P35 + mTBI at P70); 'sham + sham' (sham at both P35 and P70); or 'P35 + P70' (mTBI at both P35 and P70). Acute apnea and an extended righting reflex time confirmed a mTBI injury at P35 and/or P70. Cognitive, psychosocial, and sensorimotor function was assessed over 1-week post-injury. Injured groups performed similarly to sham controls across all tasks. Immunofluorescence staining at 1 week detected an increase in glial activation markers in Sham + P70 brains only. Strikingly, 63% of Sham + P70 mice exhibited a skull fracture at impact, compared to 13% of P35 + P70 mice. Micro computed tomography of parietal skull bones found that a mTBI at P35 resulted in increased bone volume and strength, which may account for the difference in fracture incidence. In summary, a single mTBI to the adolescent mouse brain did not exacerbate the cerebral effects of a subsequent mTBI in adulthood. However, the head impact at P35 induced significant changes in skull bone structure and integrity. These novel findings support future investigation into the consequences of mTBI on skull bone.
Collapse
Affiliation(s)
- Thomas J McColl
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Rhys D Brady
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Sandy R Shultz
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Lauren Lovick
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Kyria M Webster
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Mujun Sun
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Terence J O'Brien
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bridgette D Semple
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
38
|
Ouyang W, Wu W, Fan Z, Wang J, Pan H, Yang W. Modified device for fluid percussion injury in rodents. J Neurosci Res 2018; 96:1412-1429. [DOI: 10.1002/jnr.24261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Wei Ouyang
- College of Physical Education and Health Sciences; Zhejiang Normal University; Jinhua Zhejiang China
| | - Wenhui Wu
- School of Physical Education and Health; East China Jiaotong University; Nanchang Jiangxi China
| | - Zhiheng Fan
- College of Physical Education and Health Sciences; Zhejiang Normal University; Jinhua Zhejiang China
| | - Jihui Wang
- College of Physical Education and Health Sciences; Zhejiang Normal University; Jinhua Zhejiang China
| | - Huiju Pan
- College of Physical Education and Health Sciences; Zhejiang Normal University; Jinhua Zhejiang China
| | - Weibin Yang
- Affiliated Sports Medicine Hospital, Zhejiang College of Sports; Hangzhou Zhejiang China
| |
Collapse
|
39
|
Sun M, McDonald SJ, Brady RD, O'Brien TJ, Shultz SR. The influence of immunological stressors on traumatic brain injury. Brain Behav Immun 2018; 69:618-628. [PMID: 29355823 DOI: 10.1016/j.bbi.2018.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/13/2018] [Accepted: 01/14/2018] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, and typically involves a robust immune response. Although a great deal of preclinical research has been conducted to identify an effective treatment, all phase III clinical trials have been unsuccessful to date. These translational shortcomings are in part due to a failure to recognize and account for the heterogeneity of TBI, including how extracranial factors can influence the aftermath of TBI. For example, most preclinical studies have utilized isolated TBI models in young adult males, while clinical trials typically involve highly heterogeneous patient populations (e.g., different mechanisms of injury, a range of ages, presence of polytrauma or infection). This paper will review the current, albeit limited literature related to how TBI is affected by common concomitant immunological stressors. In particular, discussion will focus on whether extracranial trauma (i.e., polytrauma), infection, and age/immunosenescence can influence TBI pathophysiology, and thereby may result in a different brain injury than what would have occurred in an isolated TBI. It is concluded that these immunological stressors are all likely to be TBI modifiers that should be further studied and could impact translational treatment strategies.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Rhys D Brady
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
40
|
Bhowmick S, D'Mello V, Ponery N, Abdul-Muneer PM. Neurodegeneration and Sensorimotor Deficits in the Mouse Model of Traumatic Brain Injury. Brain Sci 2018; 8:brainsci8010011. [PMID: 29316623 PMCID: PMC5789342 DOI: 10.3390/brainsci8010011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/27/2017] [Accepted: 01/04/2018] [Indexed: 01/05/2023] Open
Abstract
Traumatic brain injury (TBI) can result in persistent sensorimotor and cognitive deficits, which occur through a cascade of deleterious pathophysiological events over time. In this study, we investigated the hypothesis that neurodegeneration caused by TBI leads to impairments in sensorimotor function. TBI induces the activation of the caspase-3 enzyme, which triggers cell apoptosis in an in vivo model of fluid percussion injury (FPI). We analyzed caspase-3 mediated apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and poly (ADP-ribose) polymerase (PARP) and annexin V western blotting. We correlated the neurodegeneration with sensorimotor deficits by conducting the animal behavioral tests including grid walk, balance beam, the inverted screen test, and the climb test. Our study demonstrated that the excess cell death or neurodegeneration correlated with the neuronal dysfunction and sensorimotor impairments associated with TBI.
Collapse
Affiliation(s)
- Saurav Bhowmick
- Laboratory of CNS Injury and Repair, Neuroscience Institute, JFK Medical Center, 65 James St, Edison, NJ 08820, USA.
| | - Veera D'Mello
- Laboratory of CNS Injury and Repair, Neuroscience Institute, JFK Medical Center, 65 James St, Edison, NJ 08820, USA.
| | - Nizmi Ponery
- Laboratory of CNS Injury and Repair, Neuroscience Institute, JFK Medical Center, 65 James St, Edison, NJ 08820, USA.
| | - P M Abdul-Muneer
- Laboratory of CNS Injury and Repair, Neuroscience Institute, JFK Medical Center, 65 James St, Edison, NJ 08820, USA.
| |
Collapse
|
41
|
Johnstone MR, Sun M, Taylor CJ, Brady RD, Grills BL, Church JE, Shultz SR, McDonald SJ. Gambogic amide, a selective TrkA agonist, does not improve outcomes from traumatic brain injury in mice. Brain Inj 2017; 32:257-268. [PMID: 29227174 DOI: 10.1080/02699052.2017.1394492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES There is evidence that treatment with nerve growth factor (NGF) may reduce neuroinflammation and apoptosis after a traumatic brain injury (TBI). NGF is thought to exert its effects via binding to either TrkA or p75 neurotrophin receptors. This study aimed to investigate the effects of a selective TrkA agonist, gambogic amide (GA), on TBI pathology and outcomes in mice following lateral fluid percussion injury. METHODS Male C57BL/6 mice were given either a TBI or sham injury, and then received subcutaneous injections of either 2 mg/kg of GA or vehicle at 1, 24, and 48 h post-injury. Following behavioural studies, mice were euthanized at 72 h post-injury for analysis of neuroinflammatory, apoptotic, and neurite outgrowth markers. RESULTS Behavioural testing revealed that GA did not mitigate motor deficits after TBI. TBI caused an increase in cortical and hippocampal expression of several markers of neuroinflammation and apoptosis compared to sham groups. GA treatment did not attenuate these increases in expression, possibly contributed to by our finding of TrkA receptor down-regulation post-TBI. CONCLUSIONS These findings suggest that GA treatment may not be suitable for attenuating TBI pathology and improving outcomes.
Collapse
Affiliation(s)
- Maddison R Johnstone
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| | - Mujun Sun
- b Department of Medicine , The Royal Melbourne Hospital, The University of Melbourne , Parkville , VIC , Australia
| | - Caroline J Taylor
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| | - Rhys D Brady
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia.,b Department of Medicine , The Royal Melbourne Hospital, The University of Melbourne , Parkville , VIC , Australia
| | - Brian L Grills
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| | - Jarrod E Church
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| | - Sandy R Shultz
- b Department of Medicine , The Royal Melbourne Hospital, The University of Melbourne , Parkville , VIC , Australia.,c Department of Neuroscience , Central Clinical School, Monash University , Melbourne , VIC , Australia
| | - Stuart J McDonald
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| |
Collapse
|
42
|
Sun M, Brady RD, Wright DK, Kim HA, Zhang SR, Sobey CG, Johnstone MR, O'Brien TJ, Semple BD, McDonald SJ, Shultz SR. Treatment with an interleukin-1 receptor antagonist mitigates neuroinflammation and brain damage after polytrauma. Brain Behav Immun 2017; 66:359-371. [PMID: 28782716 DOI: 10.1016/j.bbi.2017.08.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/22/2017] [Accepted: 08/02/2017] [Indexed: 01/18/2023] Open
Abstract
Traumatic brain injury (TBI) and long bone fracture are common in polytrauma. This injury combination in mice results in elevated levels of the pro-inflammatory cytokine interleukin-1β (IL-1β) and exacerbated neuropathology when compared to isolated-TBI. Here we examined the effect of treatment with an IL-1 receptor antagonist (IL-1ra) in mice given a TBI and a concomitant tibial fracture (i.e., polytrauma). Adult male C57BL/6 mice were given sham-injuries or polytrauma and treated with saline-vehicle or IL-1ra (100mg/kg). Treatments were subcutaneously injected at 1, 6, and 24h, and then once daily for one week post-injury. 7-8 mice/group were euthanized at 48h post-injury. 12-16 mice/group underwent behavioral testing at 12weeks post-injury and MRI at 14weeks post-injury before being euthanized at 16weeks post-injury. At 48h post-injury, markers for activated microglia and astrocytes, as well as neutrophils and edema, were decreased in polytrauma mice treated with IL-1ra compared to polytrauma mice treated with vehicle. At 14weeks post-injury, MRI analysis demonstrated that IL-1ra treatment after polytrauma reduced volumetric loss in the injured cortex and mitigated track-weighted MRI markers for axonal injury. As IL-1ra (Anakinra) is approved for human use, it may represent a promising therapy in polytrauma cases involving TBI and fracture.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia
| | - Rhys D Brady
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC 3083, Australia
| | - David K Wright
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3052, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Departments of Neuroscience and Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Hyun Ah Kim
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC 3083, Australia
| | - Shenpeng R Zhang
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC 3083, Australia; Department of Pharmacology, Monash University, Melbourne, VIC 3800, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC 3083, Australia
| | - Maddison R Johnstone
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC 3083, Australia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Bridgette D Semple
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC 3083, Australia
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
43
|
Cline MM, Ostlie MA, Cross CG, Garwin GG, Minoshima S, Cross DJ. Assessing Spatial Memory Impairment in a Mouse Model of Traumatic Brain Injury Using a Radial Water Tread Maze. J Vis Exp 2017. [PMID: 28745642 DOI: 10.3791/55986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Despite the recent increase in use of mouse models in scientific research, researchers continue to use cognitive tasks that were originally designed and validated for rat use. The Radial Water Tread (RWT) maze test of spatial memory (designed specifically for mice and requiring no swimming) has been shown previously to successfully distinguish between controlled cortical impact-induced TBI mice and sham controls. Here, a detailed protocol for this task is presented. The RWT maze capitalizes on the natural tendency of mice to avoid open areas in favor of hugging the sides of an apparatus (thigmotaxis). The walls of the maze are lined with nine escape holes placed above the floor of the apparatus, and mice are trained to use visual cues to locate the escape hole that leads out of the maze. The maze is filled with an inch of cold water, sufficient to motivate escape but not deep enough to require that the mouse swim. The acquisition period takes only four training days, with a test of memory retention on day five and a long-term memory test on day 12. The results reported here suggest that the RWT maze is a feasible alternative to rat-validated, swimming-based cognitive tests in the assessment of spatial memory deficits in mouse models of TBI.
Collapse
Affiliation(s)
| | | | - Chloe G Cross
- Geriatric Research Education and Clinical Center (GRECC), VA Puget Sound
| | | | | | | |
Collapse
|
44
|
Kast RE, Hill QA, Wion D, Mellstedt H, Focosi D, Karpel-Massler G, Heiland T, Halatsch ME. Glioblastoma-synthesized G-CSF and GM-CSF contribute to growth and immunosuppression: Potential therapeutic benefit from dapsone, fenofibrate, and ribavirin. Tumour Biol 2017; 39:1010428317699797. [PMID: 28459367 DOI: 10.1177/1010428317699797] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Increased ratio of circulating neutrophils to lymphocytes is a common finding in glioblastoma and other cancers. Data reviewed establish that any damage to brain tissue tends to cause an increase in G-CSF and/or GM-CSF (G(M)-CSF) synthesized by the brain. Glioblastoma cells themselves also synthesize G(M)-CSF. G(M)-CSF synthesized by brain due to damage by a growing tumor and by the tumor itself stimulates bone marrow to shift hematopoiesis toward granulocytic lineages away from lymphocytic lineages. This shift is immunosuppressive and generates the relative lymphopenia characteristic of glioblastoma. Any trauma to brain-be it blunt, sharp, ischemic, infectious, cytotoxic, tumor encroachment, or radiation-increases brain synthesis of G(M)-CSF. G(M)-CSF are growth and motility enhancing factors for glioblastomas. High levels of G(M)-CSF contribute to the characteristic neutrophilia and lymphopenia of glioblastoma. Hematopoietic bone marrow becomes entrained with, directed by, and contributes to glioblastoma pathology. The antibiotic dapsone, the lipid-lowering agent fenofibrate, and the antiviral drug ribavirin are Food and Drug Administration- and European Medicines Agency-approved medicines that have potential to lower synthesis or effects of G(M)-CSF and thus deprive a glioblastoma of some of the growth promoting contributions of bone marrow and G(M)-CSF.
Collapse
Affiliation(s)
| | - Quentin A Hill
- 2 Department of Haematology, St James's University Hospital, Leeds Teaching Hospitals, Leeds, UK
| | - Didier Wion
- 3 INSERM U1205, Centre de Recherche Biomédicale Edmond J. Safra, Grenoble, France
| | - Håkan Mellstedt
- 4 Department of Oncology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Daniele Focosi
- 5 North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | | | - Tim Heiland
- 6 Department of Neurosurgery, University of Ulm, Ulm, Germany
| | | |
Collapse
|
45
|
McKee CA, Lukens JR. Emerging Roles for the Immune System in Traumatic Brain Injury. Front Immunol 2016. [PMID: 27994591 DOI: 10.3389/fimmu.201600556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Traumatic brain injury (TBI) affects an ever-growing population of all ages with long-term consequences on health and cognition. Many of the issues that TBI patients face are thought to be mediated by the immune system. Primary brain damage that occurs at the time of injury can be exacerbated and prolonged for months or even years by chronic inflammatory processes, which can ultimately lead to secondary cell death, neurodegeneration, and long-lasting neurological impairment. Researchers have turned to rodent models of TBI in order to understand how inflammatory cells and immunological signaling regulate the post-injury response and recovery mechanisms. In addition, the development of numerous methods to manipulate genes involved in inflammation has recently expanded the possibilities of investigating the immune response in TBI models. As results from these studies accumulate, scientists have started to link cells and signaling pathways to pro- and anti-inflammatory processes that may contribute beneficial or detrimental effects to the injured brain. Moreover, emerging data suggest that targeting aspects of the immune response may offer promising strategies to treat TBI. This review will cover insights gained from studies that approach TBI research from an immunological perspective and will summarize our current understanding of the involvement of specific immune cell types and cytokines in TBI pathogenesis.
Collapse
Affiliation(s)
- Celia A McKee
- Department of Neuroscience, Center for Brain Immunology and Glia, School of Medicine, University of Virginia , Charlottesville, VA , USA
| | - John R Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia, School of Medicine, University of Virginia , Charlottesville, VA , USA
| |
Collapse
|
46
|
McKee CA, Lukens JR. Emerging Roles for the Immune System in Traumatic Brain Injury. Front Immunol 2016; 7:556. [PMID: 27994591 PMCID: PMC5137185 DOI: 10.3389/fimmu.2016.00556] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) affects an ever-growing population of all ages with long-term consequences on health and cognition. Many of the issues that TBI patients face are thought to be mediated by the immune system. Primary brain damage that occurs at the time of injury can be exacerbated and prolonged for months or even years by chronic inflammatory processes, which can ultimately lead to secondary cell death, neurodegeneration, and long-lasting neurological impairment. Researchers have turned to rodent models of TBI in order to understand how inflammatory cells and immunological signaling regulate the post-injury response and recovery mechanisms. In addition, the development of numerous methods to manipulate genes involved in inflammation has recently expanded the possibilities of investigating the immune response in TBI models. As results from these studies accumulate, scientists have started to link cells and signaling pathways to pro- and anti-inflammatory processes that may contribute beneficial or detrimental effects to the injured brain. Moreover, emerging data suggest that targeting aspects of the immune response may offer promising strategies to treat TBI. This review will cover insights gained from studies that approach TBI research from an immunological perspective and will summarize our current understanding of the involvement of specific immune cell types and cytokines in TBI pathogenesis.
Collapse
Affiliation(s)
- Celia A. McKee
- Department of Neuroscience, Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - John R. Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
47
|
Brady R, Grills B, Romano T, Wark J, O’Brien T, Shultz S, McDonald S. Sodium selenate treatment mitigates reduction of bone volume following traumatic brain injury in rats. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2016; 16:369-376. [PMID: 27973389 PMCID: PMC5259578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Administration of sodium selenate to rats given traumatic brain injury (TBI) attenuates brain damage and improves long-term behavioural outcomes. We have previously provided evidence that TBI causes bone loss in rats, however the effect of sodium selenate treatment on bone quantity following TBI is unknown. METHODS Rats were randomly assigned into sham injury or fluid percussion injury (FPI) groups and administered saline or sodium selenate for 12 weeks post-injury. Femora were analysed using histomorphometry, peripheral quantitative computed tomography (pQCT) and biomechanical testing. RESULTS Distal metaphyseal trabecular bone volume fraction of FPI-selenate rats was higher than FPI-vehicle rats (41.8%; p<0.01), however, femora from selenate-treated groups were shorter in length (4.3%; p<0.01) and had increased growth plate width (22.1%; p<0.01), indicating that selenate impaired long bone growth. pQCT analysis demonstrated that distal metaphyseal cortical thickness was decreased in TBI rats compared to shams (11.7%; p<0.05), however selenate treatment to TBI animals offset this reduction (p<0.05). At the midshaft we observed no differences in biomechanical measures. CONCLUSION These are the first findings to indicate that mitigating TBI-induced neuropathology may have the added benefit of preventing osteoporosis and associated fracture risk following TBI.
Collapse
Affiliation(s)
- R.D. Brady
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC, 3086
| | - B.L. Grills
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC, 3086
| | - T. Romano
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC, 3086
| | - J.D. Wark
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3010, Australia
| | - T.J. O’Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3010, Australia
| | - S.R. Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3010, Australia
| | - S.J. McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC, 3086,Corresponding author: Stuart McDonald, Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC, 3086, Australia E-mail:
| |
Collapse
|
48
|
Sex-dependent changes in neuronal morphology and psychosocial behaviors after pediatric brain injury. Behav Brain Res 2016; 319:48-62. [PMID: 27829127 DOI: 10.1016/j.bbr.2016.10.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 12/12/2022]
Abstract
Chronic social behavior problems after pediatric traumatic brain injury (TBI) significantly contribute to poor quality of life for survivors. Using a well-characterized mouse model of early childhood TBI, we have previously demonstrated that young brain-injured mice develop social deficits by adulthood. As biological sex may influence both normal and aberrant social development, we here evaluated potential sex differences in post-TBI psychosocial deficits by comparing the behavior of male and female mice at adulthood (8 weeks post-injury). Secondly, we hypothesized that pediatric TBI would influence neuronal morphology identified by Golgi-Cox staining in the hippocampus and prefrontal cortex, regions involved in social cognition and behavior, before the onset of social problems (3 weeks post-injury). Morphological analysis of pyramidal neurons in the ipsilateral prefrontal cortex and granule cells of the hippocampal dentate gyrus revealed a reduction in dendritic complexity after pediatric TBI. This was most apparent in TBI males, whereas neurons from females were less affected. At adulthood, consistent with previous studies, TBI males showed deficits in sociability and social recognition. TBI females also showed a reduction in sociability, but intact social recognition and increased sociosexual avoidance. Together, these findings indicate that sex is a determinant of regional neuroplasticity and social outcomes after pediatric TBI. Reduced neuronal complexity in the prefrontal cortex and hippocampus, several weeks after injury in male mice, appears to precede the subsequent emergence of social deficits. Sex-specific alterations in the social brain network are thus implicated as an underlying mechanism of social dysfunction after pediatric TBI.
Collapse
|
49
|
Brady RD, Shultz SR, Sun M, Romano T, van der Poel C, Wright DK, Wark JD, O'Brien TJ, Grills BL, McDonald SJ. Experimental Traumatic Brain Injury Induces Bone Loss in Rats. J Neurotrauma 2016; 33:2154-2160. [PMID: 25686841 DOI: 10.1089/neu.2014.3836] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Few studies have investigated the influence of traumatic brain injury (TBI) on bone homeostasis; however, pathophysiological mechanisms involved in TBI have potential to be detrimental to bone. The current study assessed the effect of experimental TBI in rats on the quantity and quality of two different weight-bearing bones, the femur and humerus. Rats were randomly assigned into either sham or lateral fluid percussion injury (FPI) groups. Open-field testing to assess locomotion was conducted at 1, 4, and 12 weeks post-injury, with the rats killed at 1 and 12 weeks post-injury. Bones were analyzed using peripheral quantitative computed tomography (pQCT), histomorphometric analysis, and three-point bending. pQCT analysis revealed that at 1 and 12 weeks post-injury, the distal metaphyseal region of femora from FPI rats had reduced cortical content (10% decrease at 1 week, 8% decrease at 12 weeks; p < 0.01) and cortical thickness (10% decrease at 1 week, 11% decrease at 12 weeks p < 0.001). There was also a 23% reduction in trabecular bone volume ratio at 1 week post-injury and a 27% reduction at 12 weeks post-injury in FPI rats compared to sham (p < 0.001). There were no differences in bone quantity and mechanical properties of the femoral midshaft between sham and TBI animals. There were no differences in locomotor outcomes, which suggested that post-TBI changes in bone were not attributed to immobility. Taken together, these findings indicate that this rat model of TBI was detrimental to bone and suggests a link between TBI and altered bone remodeling.
Collapse
Affiliation(s)
- Rhys D Brady
- 1 Department of Physiology, Anatomy and Microbiology, La Trobe University , Bundoora, VIC, Australia
| | - Sandy R Shultz
- 2 Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne , Parkville, VIC, Australia
| | - Mujun Sun
- 2 Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne , Parkville, VIC, Australia
| | - Tania Romano
- 1 Department of Physiology, Anatomy and Microbiology, La Trobe University , Bundoora, VIC, Australia
| | - Chris van der Poel
- 1 Department of Physiology, Anatomy and Microbiology, La Trobe University , Bundoora, VIC, Australia
| | - David K Wright
- 3 Anatomy and Neuroscience, The University of Melbourne , Parkville, VIC, Australia .,4 The Florey Institute of Neuroscience and Mental Health, The University of Melbourne , Parkville, VIC, Australia
| | - John D Wark
- 2 Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne , Parkville, VIC, Australia
| | - Terence J O'Brien
- 2 Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne , Parkville, VIC, Australia
| | - Brian L Grills
- 1 Department of Physiology, Anatomy and Microbiology, La Trobe University , Bundoora, VIC, Australia
| | - Stuart J McDonald
- 1 Department of Physiology, Anatomy and Microbiology, La Trobe University , Bundoora, VIC, Australia
| |
Collapse
|
50
|
Shultz SR, McDonald SJ, Vonder Haar C, Meconi A, Vink R, van Donkelaar P, Taneja C, Iverson GL, Christie BR. The potential for animal models to provide insight into mild traumatic brain injury: Translational challenges and strategies. Neurosci Biobehav Rev 2016; 76:396-414. [PMID: 27659125 DOI: 10.1016/j.neubiorev.2016.09.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 09/07/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
Abstract
Mild traumatic brain injury (mTBI) is a common health problem. There is tremendous variability and heterogeneity in human mTBI, including mechanisms of injury, biomechanical forces, injury severity, spatial and temporal pathophysiology, genetic factors, pre-injury vulnerability and resilience factors, and clinical outcomes. Animal models greatly reduce this variability and heterogeneity, and provide a means to study mTBI in a rigorous, controlled, and efficient manner. Rodent models, in particular, are time- and cost-efficient, and they allow researchers to measure morphological, cellular, molecular, and behavioral variables in a single study. However, inter-species differences in anatomy, morphology, metabolism, neurobiology, and lifespan create translational challenges. Although the term "mild" TBI is used often in the pre-clinical literature, clearly defined criteria for mild, moderate, and severe TBI in animal models have not been agreed upon. In this review, we introduce current issues facing the mTBI field, summarize the available research methodologies and previous studies in mTBI animal models, and discuss how a translational research approach may be useful in advancing our understanding and management of mTBI.
Collapse
Affiliation(s)
- Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Cole Vonder Haar
- Department of Psychology, The University of British Columbia, Vancouver, BC, Canada
| | - Alicia Meconi
- Division of Medical Sciences, The University of Victoria, Victoria, BC, Canada
| | - Robert Vink
- Division of Health Sciences, The University of South Australia, Adelaide, SA, Australia
| | - Paul van Donkelaar
- School of Health and Exercise Sciences, The University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Chand Taneja
- Division of Medical Sciences, The University of Victoria, Victoria, BC, Canada
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, and MassGeneral Hospital for Children™ Sports Concussion Program, Boston, MA, USA
| | - Brian R Christie
- Division of Medical Sciences, The University of Victoria, Victoria, BC, Canada
| |
Collapse
|