1
|
Li X, Liu Q, Wang L, Bu T, Yang X, Gao S, Yun D, Sun F. PPM1G dephosphorylates α-catenin to maintain the integrity of adherens junctions and regulates apoptosis in Sertoli cells. Mol Cell Endocrinol 2025; 600:112493. [PMID: 39952314 DOI: 10.1016/j.mce.2025.112493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Protein phosphatase, Mg2+/Mn2+ dependent, 1G (PPM1G) regulates protein function via dephosphorylation. PPM1G participates in the assembly of adherens junctions by dephosphorylating α-catenin. Here, we demonstrated through siRNA transfection and intratesticular injection that PPM1G is critical for maintaining blood-testis barrier function and regulating Sertoli cell apoptosis. We observed that upon knocking down Ppm1g in rat testes, the function of the blood testis barrier was compromised, and the localization of α-catenin and β-catenin became aberrant. Further investigation in rat Sertoli cells revealed that after Ppm1g knockdown, the level of phosphorylated α-catenin increased, and it failed to properly aggregate at the cell membrane; instead, it was mislocalized to the cytoplasm. The actin to which catenin is attached also exhibited a disordered arrangement in the absence of PPM1G. Additionally, through RNA sequencing and bioinformatics analysis, we identified genes associated with Sertoli cell dysfunction induced by Ppm1g knockdown and identified a set of genes involved in regulating intercellular junctions. Subsequent validation revealed that after Ppm1g knockdown, the expression of the junction-related protein JAM2 was reduced, and Sertoli cells underwent apoptosis. Overall, we identified a gene, Ppm1g, which may be involved in maintaining the normal function of the blood-testis barrier and influencing the survival of Sertoli cells by regulating apoptotic pathways.
Collapse
Affiliation(s)
- Xinyao Li
- Department of General Surgery, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China
| | - Qian Liu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Lingling Wang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Tiao Bu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, 57 South Renming Avenue, Xiashan District, Zhanjiang City, 524000, Guandong Province, China
| | - Xiwen Yang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China
| | - Sheng Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Damin Yun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Fei Sun
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
2
|
Velatooru LR, Arroyave E, Rippee-Brooks MD, Burch M, Yang E, Zhu B, Walker DH, Zhang Y, Fang R. Rickettsia disrupts and reduces endothelial tight junction protein zonula occludens-1 in association with inflammasome activation. Infect Immun 2025; 93:e0046824. [PMID: 39679710 PMCID: PMC11784141 DOI: 10.1128/iai.00468-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024] Open
Abstract
Rickettsia spp. cause life-threatening diseases in humans. The fundamental pathophysiological changes in fatal rickettsial diseases are disrupted endothelial barrier and increased microvascular permeability. However, it remains largely unclear how rickettsiae induce microvascular endothelial injury. In the present study, we demonstrated that Rickettsia conorii infection disrupts the continuous immunofluorescence expression of the interendothelial tight junction protein, zonula occludens-1 (ZO-1), in infected monolayers of microvascular endothelial cells (MVECs), accompanied by significantly diminished total expression levels of ZO-1. Interestingly, R. conorii activated inflammasome in MVECs, as evidenced by cleaved caspase-1 and IL-1β in the cell lysates in association with significantly elevated expression levels of nucleotide binding and oligomerization domain, leucine-rich repeat, and pyrin containing protein 3 (NLRP3). Furthermore, selective inhibition of NLRP3 by MCC950 significantly suppressed the activation and cleavage of caspase-1 induced by R. conorii in endothelial cells, which further prevented the disruption of interendothelial junctions and reduction of ZO-1 expression. Of note, pharmaceutical inhibition of NLRP3 mitigated the disrupted endothelial integrity caused by R. conorii, measured by fluorescein isothiocyanate-dextran passage in a Transwell assay, independent of bacterial growth and cellular cytotoxicity. Taken together, our results suggest that R. conorii affected microvascular endothelial junction integrity likely via diminishing and interrupting the junctional protein ZO-1 in association with activating NLRP3 inflammasome. These data not only highlight the potential of ZO-1 as a biomarker for Rickettsia-induced microvascular injury but also provide insight into targeting NLRP3 inflammasome/ZO-1 signaling as a potentially adjunctive therapeutic approach for severe rickettsioses.
Collapse
Affiliation(s)
- Loka Reddy Velatooru
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Esteban Arroyave
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Megan Burch
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Ethan Yang
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Bing Zhu
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - David H. Walker
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Rong Fang
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
3
|
Kizhatil K, Clark GM, Sunderland DK, Bhandari A, Horbal LJ, Balasubramanian R, John SWM. FYN regulates aqueous humor outflow and IOP through the phosphorylation of VE-CADHERIN. Nat Commun 2025; 16:51. [PMID: 39746990 PMCID: PMC11696269 DOI: 10.1038/s41467-024-55232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Schlemm's canal endothelial cells (SECs) serve as the final barrier to aqueous humor (AQH) drainage from the eye. SECs adjust permeability to AQH outflow to modulate intraocular pressure (IOP). The broad identification of IOP-related genes implicates SECs in glaucoma. However, the molecular mechanisms by which SECs sense and respond to pressure changes to regulate fluid permeability and IOP remain largely undefined. We hypothesize that mechano-responsive phosphorylation of the cell adhesion molecule VE-CADHERIN (CDH5) in SECs, by FYN and possibly other SRC family kinases, regulates adherens junction (AJ) permeability to AQH in response to IOP. On experimentally raising IOP in mouse eyes, AJ permeability, CDH5 phosphorylation, and FYN activation at the AJ all increase. FYN null mutant mice display disrupted IOP regulation and reduced AQH outflow. These findings demonstrate an important role of mechanotransducive signaling within SECs in maintaining IOP homeostasis and implicate FYN as a potential target for developing IOP-lowering treatments.
Collapse
Affiliation(s)
- Krishnakumar Kizhatil
- Department of Ophthalmology and Visual Sciences, The Ohio State Medical Center, Columbus, Ohio, 43210, USA.
| | | | | | - Aakriti Bhandari
- The Jackson Laboratory, Bar Harbor, Maine, 04609, USA
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Logan J Horbal
- The Jackson Laboratory, Bar Harbor, Maine, 04609, USA
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Simon W M John
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA.
- Zuckerman Mind Brain Behavior Institute, New York, NY, 10027, USA.
| |
Collapse
|
4
|
Nasim S, Bichsel C, Pinto A, Alexandrescu S, Kozakewich H, Bischoff J. Similarities and differences between brain and skin GNAQ p.R183Q driven capillary malformations. Angiogenesis 2024; 27:931-941. [PMID: 39343803 DOI: 10.1007/s10456-024-09950-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Capillary malformations (CM) are congenital vascular irregularities of capillary and venous blood vessels that appear in the skin, leptomeninges of the brain, and the choroid of the eye in the disorder known as Sturge Weber Syndrome (SWS). More common are non-syndromic CM found only in the skin, without brain or ocular involvement. A somatic activating mutation in GNAQ (p.R183Q) is found in ~ 90% of syndromic and non-syndromic CM specimens and is present in CD31pos endothelial cells isolated from brain and skin CM specimens. Endothelial expression of the GNAQ p.R183Q variant is sufficient to form CM-like vessels in mice. Given the distinct features and functions of blood vessels in the brain versus the skin, we examined the features of CM vessels in both tissues to gain insights into the pathogenesis of CM. Herein, we present morphologic characteristics of CM observed in specimens from brain and skin. The GNAQ p.R183Q variant allelic frequency in each specimen was determined by droplet digital PCR. Sections were stained for endothelial cells, tight junctions, mural cells, and macrophages to assess the endothelium as well as perivascular constituents. CM blood vessels in brain and skin were enlarged, exhibited fibrin leakage and reduced zona occludin-1 and claudin-5, and were surrounded by MRC1pos/LYVE1pos macrophages. In contrast, the CMs from brain and skin differ in endothelial sprouting activity and localization of mural cells. These characteristics might be helpful in the development of targeted and/or tissue specific therapies to prevent or reverse non-syndromic and syndromic CM.
Collapse
Affiliation(s)
- Sana Nasim
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Colette Bichsel
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- CSEM SA, Hegenheimermattweg 167 A, 4123, Allschwil, Switzerland
| | - Anna Pinto
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Harry Kozakewich
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Guillot P, Celle S, Barth N, Roche F, Perek N. 'Selected' Exosomes from Sera of Elderly Severe Obstructive Sleep Apnea Patients and Their Impact on Blood-Brain Barrier Function: A Preliminary Report. Int J Mol Sci 2024; 25:11058. [PMID: 39456840 PMCID: PMC11507461 DOI: 10.3390/ijms252011058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) affects a large part of the aging population. It is characterized by chronic intermittent hypoxia and associated with neurocognitive dysfunction. One hypothesis is that the blood-brain barrier (BBB) functions could be altered by exosomes. Exosomes are nanovesicles found in biological fluids. Through the study of exosomes and their content in tau and amyloid beta (Aβ), the aim of this study was to show how exosomes could be used as biomarkers of OSAS and of their cognitive disorders. Two groups of 15 volunteers from the PROOF cohort were selected: severe apnea (AHI > 30) and control (AHI < 5). After exosome isolation from blood serum, we characterized and quantified them (CD81, CD9, CD63) by western blot and ELISAs and put them 5 h in contact with an in vitro BBB model. The apparent permeability of the BBB was measured using sodium-fluorescein and TEER. Cell ELISAs were performed on tight junctions (ZO-1, claudin-5, occludin). The amount of tau and Aβ proteins found in the exosomes was quantified using ELISAs. Compared to controls, OSAS patients had a greater quantity of exosomes, tau, and Aβ proteins in their blood sera, which induced an increase in BBB permeability in the model and was reflected by a loss of tight junction' expression. Elderly patients suffering severe OSAS released more exosomes in serum from the brain compartment than controls. Such exosomes increased BBB permeability. The impact of such alterations on the risk of developing cognitive dysfunction and/or neurodegenerative diseases is questioned.
Collapse
Affiliation(s)
- Pauline Guillot
- Gérontopôle AURA, 42000 Saint-Etienne, France;
- Inserm, U1059, Sainbiose, Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42000 Saint-Etienne, France; (S.C.); (F.R.); (N.P.)
- Faculté de Médecine Jacques Lisfranc, Université Jean Monnet, 42000 Saint-Etienne, France
| | - Sebastien Celle
- Inserm, U1059, Sainbiose, Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42000 Saint-Etienne, France; (S.C.); (F.R.); (N.P.)
- Physiologie Clinique et de l’Exercice, Centre Visas, CHU Saint Etienne, 42000 Saint-Etienne, France
| | - Nathalie Barth
- Gérontopôle AURA, 42000 Saint-Etienne, France;
- Chaire Santé des Ainés, Ingénierie de la Prévention, Université Jen Monnet, 42000 Saint-Etienne, France
| | - Frederic Roche
- Inserm, U1059, Sainbiose, Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42000 Saint-Etienne, France; (S.C.); (F.R.); (N.P.)
- Faculté de Médecine Jacques Lisfranc, Université Jean Monnet, 42000 Saint-Etienne, France
- Physiologie Clinique et de l’Exercice, Centre Visas, CHU Saint Etienne, 42000 Saint-Etienne, France
| | - Nathalie Perek
- Inserm, U1059, Sainbiose, Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42000 Saint-Etienne, France; (S.C.); (F.R.); (N.P.)
- Faculté de Médecine Jacques Lisfranc, Université Jean Monnet, 42000 Saint-Etienne, France
| |
Collapse
|
6
|
Miki R, Matsuo S, Ushida T, Tano S, Imai K, Nawa A, Kajiyama H, Kotani T. TJP1 suppresses trophoblast cell invasion by expressing E2F8 in the human placenta. Mol Cell Endocrinol 2024; 591:112277. [PMID: 38795825 DOI: 10.1016/j.mce.2024.112277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Adequate extravillous trophoblast (EVT) invasion into the maternal decidua is important for human placental development. We identified that E2F transcription factor 8 (E2F8) suppresses EVT invasion, and that tight junction protein-1 (TJP1) is a potential downstream target gene of E2F8. We investigated the role of TJP1 in the human placenta and regulation of TJP1 expression by E2F8. TJP1 expression decreased in E2F8 knockdown HTR-8/SVneo cells. TJP1 and E2F8 were co-expressed in villi in the first-trimester placenta and in EVTs and villi in the third-trimester placenta. TJP1 was significantly increased in the pre-eclamptic compared with control placenta. TJP1 knockdown increased the invasion of HTR-8/SVneo cells, while TJP1 overexpression inhibited cell invasion. Halo-E2F8 overexpression significantly increased TJP1 expression and TJP1 transcription compared with control placenta. Our findings suggest that E2F8 promotes TJP1 transcription, and that TJP1 expression by E2F8 inhibits EVT invasion. TJP1 and E2F8 may be related to pre-eclampsia pathogenesis.
Collapse
Affiliation(s)
- Rika Miki
- Laboratory of Bell Research Center Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan.
| | - Seiko Matsuo
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan; Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Aichi, 466-8560, Japan
| | - Sho Tano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Kenji Imai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Akihiro Nawa
- Laboratory of Bell Research Center Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan; Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Aichi, 466-8560, Japan.
| |
Collapse
|
7
|
Yao Q, Wu H, Ren H, Cao J, Shao Y, Liu G, Lu P. Inhibition of Experimental Corneal Neovascularization by the Tight Junction Protein ZO-1. J Ocul Pharmacol Ther 2024; 40:379-388. [PMID: 39172123 DOI: 10.1089/jop.2023.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Purpose: To explore the effects of the tight junction protein zonula occludens 1 (ZO-1) on experimental corneal neovascularization (CNV). Methods: CNV models were established in the left eyes of BALB/c mice using NaOH. Anti-ZO-1 neutralizing antibody was topically applied to the burnt corneas after modeling thrice a day for 1 week. CD31 expression was analyzed to calculate the ratio of CNV number to area using a corneal whole-mount fluorescent immunohistochemical assay. Messenger ribonucleic acid (mRNA) and protein expression levels of ZO-1, vascular endothelial growth factor (VEGF), interleukin (IL)-1β, IL-6, IL-8, IL-18, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor alpha (TNF-α), phosphorylated protein kinase C (pPKC), and clusterin in burned corneas were detected by reverse transcriptase polymerase chain reaction (PCR) and western blot analyses. Infiltration of neutrophils, macrophages, and progenitor cells was examined by flow cytometry. Results: CNV was obviously greater in 45 s than in 15 s alkali injury group. In another experiment, CNV was obviously greater in the ZO-1 antibody group than in the vehicle-treated group. Corneal mRNA and protein expression levels of VEGF, IL-1β, IL-6, IL-8, IL-18, and MCP-1 were significantly higher in the ZO-1 antibody group than in the control group. Infiltration of neutrophils, macrophages, and progenitor cells was significantly greater in the ZO-1 antibody group than in the control group. TNF-α expression was much higher in 45 s than in 15 s alkali injury group. However, protein expression of pPKC and clusterin was much lower in 45 s than in 15 s alkali injury group. Conclusions: Anti-ZO-1 neutralizing antibody-treated mice exhibited enhanced alkali-induced CNV through enhanced intracorneal infiltration of progenitor and inflammatory cells.
Collapse
Affiliation(s)
- Qingying Yao
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongya Wu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hang Ren
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiufa Cao
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Shao
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gaoqin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Nasim S, Bichsel C, Pinto A, Alexandrescu S, Kozakewich H, Bischoff J. Similarities and differences between brain and skin GNAQ p.R183Q driven capillary malformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599711. [PMID: 38948880 PMCID: PMC11213000 DOI: 10.1101/2024.06.19.599711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Capillary malformations (CM) are congenital vascular irregularities of capillary and venous blood vessels that appear in the skin, leptomeninges of the brain, and the choroid of the eye in the disorder known as Sturge Weber Syndrome (SWS). More common are non-syndromic CM found only in the skin, without brain or ocular involvement. A somatic activating mutation in GNAQ (p.R183Q) is found in ~90% of syndromic and non-syndromic CM specimens and is present in CD31pos endothelial cells isolated from brain and skin CM specimens. Endothelial expression of the GNAQ p.R183Q variant is sufficient to form CM-like vessels in mice. Given the distinct features and functions of blood vessels in the brain versus the skin, we examined the features of CM vessels in both tissues to gain insights into the pathogenesis of CM. Herein, we present morphologic characteristics of CM observed in specimen from brain and skin. The GNAQ p.R183Q variant allelic frequency in each specimen was determined by droplet digital PCR. Sections were stained for endothelial cells, tight junctions, mural cells, and macrophages to assess the endothelium as well as perivascular constituents. CM blood vessels in brain and skin were enlarged, exhibited fibrin leakage and reduced zona occludin-1, and were surrounded by MRC1pos/LYVE1pos macrophages. In contrast, the CMs from brain and skin differ in endothelial sprouting activity and localization of mural cells. These characteristics might be helpful in the development of targeted and/or tissue specific therapies to prevent or reverse non-syndromic and syndromic CM.
Collapse
Affiliation(s)
- Sana Nasim
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Colette Bichsel
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Anna Pinto
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Harry Kozakewich
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Joyce Bischoff
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
9
|
El Bakkouri Y, Chidiac R, Delisle C, Corriveau J, Cagnone G, Gaonac'h-Lovejoy V, Chin A, Lécuyer É, Angers S, Joyal JS, Topisirovic I, Hulea L, Dubrac A, Gratton JP. ZO-1 interacts with YB-1 in endothelial cells to regulate stress granule formation during angiogenesis. Nat Commun 2024; 15:4405. [PMID: 38782923 PMCID: PMC11116412 DOI: 10.1038/s41467-024-48852-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Zonula occludens-1 (ZO-1) is involved in the regulation of cell-cell junctions between endothelial cells (ECs). Here we identify the ZO-1 protein interactome and uncover ZO-1 interactions with RNA-binding proteins that are part of stress granules (SGs). Downregulation of ZO-1 increased SG formation in response to stress and protected ECs from cellular insults. The ZO-1 interactome uncovered an association between ZO-1 and Y-box binding protein 1 (YB-1), a constituent of SGs. Arsenite treatment of ECs decreased the interaction between ZO-1 and YB-1, and drove SG assembly. YB-1 expression is essential for SG formation and for the cytoprotective effects induced by ZO-1 downregulation. In the developing retinal vascular plexus of newborn mice, ECs at the front of growing vessels express less ZO-1 but display more YB-1-positive granules than ECs located in the vascular plexus. Endothelial-specific deletion of ZO-1 in mice at post-natal day 7 markedly increased the presence of YB-1-positive granules in ECs of retinal blood vessels, altered tip EC morphology and vascular patterning, resulting in aberrant endothelial proliferation, and arrest in the expansion of the retinal vasculature. Our findings suggest that, through its interaction with YB-1, ZO-1 controls SG formation and the response of ECs to stress during angiogenesis.
Collapse
Affiliation(s)
- Yassine El Bakkouri
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Rony Chidiac
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Chantal Delisle
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jeanne Corriveau
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Gael Cagnone
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Vanda Gaonac'h-Lovejoy
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Ashley Chin
- Institut de recherches cliniques de Montréal (IRCM), Montreal, QC, Canada
| | - Éric Lécuyer
- Institut de recherches cliniques de Montréal (IRCM), Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | | | - Jean-Sébastien Joyal
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada and Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Laura Hulea
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, Quebec, Canada and Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Alexandre Dubrac
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jean-Philippe Gratton
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
- Centre d'Innovation Biomédicale (CIB), Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
10
|
Citi S, Fromm M, Furuse M, González-Mariscal L, Nusrat A, Tsukita S, Turner JR. A short guide to the tight junction. J Cell Sci 2024; 137:jcs261776. [PMID: 38712627 PMCID: PMC11128289 DOI: 10.1242/jcs.261776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
Tight junctions (TJs) are specialized regions of contact between cells of epithelial and endothelial tissues that form selective semipermeable paracellular barriers that establish and maintain body compartments with different fluid compositions. As such, the formation of TJs represents a critical step in metazoan evolution, allowing the formation of multicompartmental organisms and true, barrier-forming epithelia and endothelia. In the six decades that have passed since the first observations of TJs by transmission electron microscopy, much progress has been made in understanding the structure, function, molecular composition and regulation of TJs. The goal of this Perspective is to highlight the key concepts that have emerged through this research and the future challenges that lie ahead for the field.
Collapse
Affiliation(s)
- Sandra Citi
- Department of Molecular and Cellular Biology, University of Geneva, 30 Quai Ernest Ansermet, 1205 Geneva, Switzerland
| | - Michael Fromm
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Charité – Universitätsmedizin Berlin,Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, 5-1 Higashiyama Myodajii, Okazaki 444-8787, Japan
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), Av. Instituto Politécnico Nacional 2508, Mexico City 07360, México
| | - Asma Nusrat
- Mucosal Biology and Inflammation Research Group, Department of Pathology, University of Michigan, 109 Zina Pitcher Place, 4057 Biomedical Science Research Building, Ann Arbor, MI 48109-2200, USA
| | - Sachiko Tsukita
- Advanced Comprehensive Research Organization (ACRO),Teikyo University, Kaga 2-21-1, Itabashi-ku, Tokyo 173-0003, Japan
| | - Jerrold R. Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 01125, USA
| |
Collapse
|
11
|
Haas AJ, Karakus M, Zihni C, Balda MS, Matter K. ZO-1 Regulates Hippo-Independent YAP Activity and Cell Proliferation via a GEF-H1- and TBK1-Regulated Signalling Network. Cells 2024; 13:640. [PMID: 38607079 PMCID: PMC11011562 DOI: 10.3390/cells13070640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Tight junctions are a barrier-forming cell-cell adhesion complex and have been proposed to regulate cell proliferation. However, the underlying mechanisms are not well understood. Here, we used cells deficient in the junction scaffold ZO-1 alone or together with its paralog ZO-2, which disrupts the junctional barrier. We found that ZO-1 knockout increased cell proliferation, induced loss of cell density-dependent proliferation control, and promoted apoptosis and necrosis. These phenotypes were enhanced by double ZO-1/ZO-2 knockout. Increased proliferation was dependent on two transcriptional regulators: YAP and ZONAB. ZO-1 knockout stimulated YAP nuclear translocation and activity without changes in Hippo-dependent phosphorylation. Knockout promoted TANK-binding kinase 1 (TBK1) activation and increased expression of the RhoA activator GEF-H1. Knockdown of ZO-3, another paralog interacting with ZO1, was sufficient to induce GEF-H1 expression and YAP activity. GEF-H1, TBK1, and mechanotransduction at focal adhesions were found to cooperate to activate YAP/TEAD in ZO-1-deficient cells. Thus, ZO-1 controled cell proliferation and Hippo-independent YAP activity by activating a GEF-H1- and TBK1-regulated mechanosensitive signalling network.
Collapse
Affiliation(s)
| | | | | | - Maria S. Balda
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (A.J.H.); (M.K.); (C.Z.)
| | - Karl Matter
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (A.J.H.); (M.K.); (C.Z.)
| |
Collapse
|
12
|
Mak S, Hammes A. Canonical and Non-Canonical Localization of Tight Junction Proteins during Early Murine Cranial Development. Int J Mol Sci 2024; 25:1426. [PMID: 38338705 PMCID: PMC10855338 DOI: 10.3390/ijms25031426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
This study investigates the intricate composition and spatial distribution of tight junction complex proteins during early mouse neurulation. The analyses focused on the cranial neural tube, which gives rise to all head structures. Neurulation brings about significant changes in the neuronal and non-neuronal ectoderm at a cellular and tissue level. During this process, precise coordination of both epithelial integrity and epithelial dynamics is essential for accurate tissue morphogenesis. Tight junctions are pivotal for epithelial integrity, yet their complex composition in this context remains poorly understood. Our examination of various tight junction proteins in the forebrain region of mouse embryos revealed distinct patterns in the neuronal and non-neuronal ectoderm, as well as mesoderm-derived mesenchymal cells. While claudin-4 exhibited exclusive expression in the non-neuronal ectoderm, we demonstrated a neuronal ectoderm specific localization for claudin-12 in the developing cranial neural tube. Claudin-5 was uniquely present in mesenchymal cells. Regarding the subcellular localization, canonical tight junction localization in the apical junctions was predominant for most tight junction complex proteins. ZO-1 (zona occludens protein-1), claudin-1, claudin-4, claudin-12, and occludin were detected at the apical junction. However, claudin-1 and occludin also appeared in basolateral domains. Intriguingly, claudin-3 displayed a non-canonical localization, overlapping with a nuclear lamina marker. These findings highlight the diverse tissue and subcellular distribution of tight junction proteins and emphasize the need for their precise regulation during the dynamic processes of forebrain development. The study can thereby contribute to a better understanding of the role of tight junction complex proteins in forebrain development.
Collapse
Affiliation(s)
- Shermin Mak
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany;
- Institute for Biology, Free University of Berlin, 14159 Berlin, Germany
| | - Annette Hammes
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany;
| |
Collapse
|
13
|
Lin Q, Cao J, Yu J, Zhu Y, Shen Y, Wang S, Wang Y, Liu Z, Chang Y. YAP-mediated trophoblast dysfunction: the common pathway underlying pregnancy complications. Cell Commun Signal 2023; 21:353. [PMID: 38098027 PMCID: PMC10722737 DOI: 10.1186/s12964-023-01371-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/29/2023] [Indexed: 12/17/2023] Open
Abstract
Yes-associated protein (YAP) is a pivotal regulator in cellular proliferation, survival, differentiation, and migration, with significant roles in embryonic development, tissue repair, and tumorigenesis. At the maternal-fetal interface, emerging evidence underscores the importance of precisely regulated YAP activity in ensuring successful pregnancy initiation and progression. However, despite the established association between YAP dysregulation and adverse pregnancy outcomes, insights into the impact of aberrant YAP levels in fetal-derived, particularly trophoblast cells, and the ensuing dysfunction at the maternal-fetal interface remain limited. This review comprehensively examines YAP expression and its regulatory mechanisms in trophoblast cells throughout pregnancy. We emphasize its integral role in placental development and maternal-fetal interactions and delve into the correlations between YAP dysregulation and pregnancy complications. A nuanced understanding of YAP's functions during pregnancy could illuminate intricate molecular mechanisms and pave the way for innovative prevention and treatment strategies for pregnancy complications. Video Abstract.
Collapse
Affiliation(s)
- Qimei Lin
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Jiasong Cao
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Jing Yu
- School of Clinical Medicine, Tianjin Medical University, Tianjin, 300070, China
| | - Yu Zhu
- School of Clinical Medicine, Tianjin Medical University, Tianjin, 300070, China
| | - Yongmei Shen
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Shuqi Wang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Yixin Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhen Liu
- Academy of Clinical Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China.
- Academy of Clinical Medicine, Medical College, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
14
|
Gong X, Wang N, Zhu H, Tang N, Wu K, Meng Q. Anti-NMDAR antibodies, the blood-brain barrier, and anti-NMDAR encephalitis. Front Neurol 2023; 14:1283511. [PMID: 38145121 PMCID: PMC10748502 DOI: 10.3389/fneur.2023.1283511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/03/2023] [Indexed: 12/26/2023] Open
Abstract
Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is an antibody-related autoimmune encephalitis. It is characterized by the existence of antibodies against NMDAR, mainly against the GluN1 subunit, in cerebrospinal fluid (CSF). Recent research suggests that anti-NMDAR antibodies may reduce NMDAR levels in this disorder, compromising synaptic activity in the hippocampus. Although anti-NMDAR antibodies are used as diagnostic indicators, the origin of antibodies in the central nervous system (CNS) is unclear. The blood-brain barrier (BBB), which separates the brain from the peripheral circulatory system, is crucial for antibodies and immune cells to enter or exit the CNS. The findings of cytokines in this disorder support the involvement of the BBB. Here, we aim to review the function of NMDARs and the relationship between anti-NMDAR antibodies and anti-NMDAR encephalitis. We summarize the present knowledge of the composition of the BBB, especially by emphasizing the role of BBB components. Finally, we further provide a discussion on the impact of BBB dysfunction in anti-NMDAR encephalitis.
Collapse
Affiliation(s)
- Xiarong Gong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Department of MR, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Niya Wang
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Hongyan Zhu
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Ning Tang
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Kunhua Wu
- Department of MR, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Qiang Meng
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
15
|
Bora K, Kushwah N, Maurya M, Pavlovich MC, Wang Z, Chen J. Assessment of Inner Blood-Retinal Barrier: Animal Models and Methods. Cells 2023; 12:2443. [PMID: 37887287 PMCID: PMC10605292 DOI: 10.3390/cells12202443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Proper functioning of the neural retina relies on the unique retinal environment regulated by the blood-retinal barrier (BRB), which restricts the passage of solutes, fluids, and toxic substances. BRB impairment occurs in many retinal vascular diseases and the breakdown of BRB significantly contributes to disease pathology. Understanding the different molecular constituents and signaling pathways involved in BRB development and maintenance is therefore crucial in developing treatment modalities. This review summarizes the major molecular signaling pathways involved in inner BRB (iBRB) formation and maintenance, and representative animal models of eye diseases with retinal vascular leakage. Studies on Wnt/β-catenin signaling are highlighted, which is critical for retinal and brain vascular angiogenesis and barriergenesis. Moreover, multiple in vivo and in vitro methods for the detection and analysis of vascular leakage are described, along with their advantages and limitations. These pre-clinical animal models and methods for assessing iBRB provide valuable experimental tools in delineating the molecular mechanisms of retinal vascular diseases and evaluating therapeutic drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
16
|
Jia M, Reynolds KL, Wong EA. Effects of high incubation temperature on tight junction proteins in the yolk sac and small intestine of embryonic broilers. Poult Sci 2023; 102:102875. [PMID: 37406432 PMCID: PMC10339051 DOI: 10.1016/j.psj.2023.102875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023] Open
Abstract
During the transition from incubation to hatch, the chicks shift from obtaining nutrients from the yolk sac to the intestine. The yolk sac tissue (YST) and small intestine serve as biological barriers between the yolk or gut contents and the blood circulation. These barriers must maintain structural integrity for optimal nutrient uptake as well as protection from pathogens. The objective of this study was to investigate the effect of high incubation temperature on mRNA abundance of the tight junction (TJ) proteins zona occludens 1 (ZO1), occludin (OCLN), claudin 1 (CLDN1), and junctional adhesion molecules A and 2 (JAMA, JAM2) and the heat shock proteins (HSP70 and HSP90) in the YST and small intestine of embryonic broilers. Broiler eggs were incubated at 37.5°C. On embryonic day 12 (E12), half of the eggs were switched to 39.5°C. YST samples were collected from E7 to day of hatch (DOH), while small intestinal samples were collected from E17 to DOH. The temporal expression of TJ protein mRNA from E7 to DOH at 37.5°C and the effect of incubation temperature from E13 to DOH were analyzed by one-way and two-way ANOVA, respectively and Tukey's test. Significance was set at P < 0.05. The temporal expression pattern of ZO1, OCLN, and CLDN1 mRNA showed a pattern of decreased expression from E7 to E13 followed by an increase to DOH. High incubation temperature caused an upregulation of ZO1 and JAM2 mRNA in the YST and small intestine. Using in situ hybridization, OCLN and JAMA mRNA were detected in the epithelial cells of the YST. In addition, JAMA mRNA was detected in epithelial cells of the small intestine, whereas JAM2 mRNA was detected in the vascular system of the villi and lamina propria. In conclusion, the YST expressed mRNA for TJ proteins and high incubation temperature increased ZO1 and JAM2 mRNA. This suggests that the TJ in the vasculature of the YST and intestine is affected by high incubation temperature.
Collapse
Affiliation(s)
- M Jia
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - K L Reynolds
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - E A Wong
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
17
|
Peña-Corona SI, Vargas-Estrada D, Juárez-Rodríguez I, Retana-Márquez S, Mendoza-Rodríguez CA. Bisphenols as promoters of the dysregulation of cellular junction proteins of the blood-testis barrier in experimental animals: A systematic review of the literature. J Biochem Mol Toxicol 2023; 37:e23416. [PMID: 37352109 DOI: 10.1002/jbt.23416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/03/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
Daily, people are exposed to chemicals and environmental compounds such as bisphenols (BPs). These substances are present in more than 80% of human fluids. Human exposure to BPs is associated with male reproductive health disorders. Some of the main targets of BPs are intercellular junction proteins of the blood-testis barrier (BTB) in Sertoli cells because BPs alter the expression or induce aberrant localization of these proteins. In this systematic review, we explore the effects of BP exposure on the expression of BTB junction proteins and the characteristics of in vivo studies to identify potential gaps and priorities for future research. To this end, we conducted a systematic review of articles. Thirteen studies met our inclusion criteria. In most studies, animals treated with bisphenol-A (BPA) showed decreased occludin expression at all tested doses. However, bisphenol-AF treatment did not alter occludin expression. Cx43, ZO-1, β-catenin, nectin-3, cortactin, paladin, and claudin-11 expression also decreased in some tested doses of BP, while N-cadherin and FAK expression increased. BP treatment did not alter the expression of α and γ catenin, E-cadherin, JAM-A, and Arp 3. However, the expression of all these proteins was altered when BPA was administered to neonatal rodents in microgram doses. The results show significant heterogeneity between studies. Thus, it is necessary to perform more research to characterize the changes in BTB protein expression induced by BPs in animals to highlight future research directions that can inform the evaluation of risk of toxicity in humans.
Collapse
Affiliation(s)
- Sheila I Peña-Corona
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Dinorah Vargas-Estrada
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ivan Juárez-Rodríguez
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Socorro Retana-Márquez
- Departamento Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | | |
Collapse
|
18
|
Yu S, He J, Xie K. Zonula Occludens Proteins Signaling in Inflammation and Tumorigenesis. Int J Biol Sci 2023; 19:3804-3815. [PMID: 37564207 PMCID: PMC10411466 DOI: 10.7150/ijbs.85765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Tight junction (TJ) is the barrier of epithelial and endothelial cells to maintain paracellular substrate transport and cell polarity. As one of the TJ cytoplasmic adaptor proteins adjacent to cell membrane, zonula occludens (ZO) proteins are responsible for connecting transmembrane TJ proteins and cytoplasmic cytoskeleton, providing a binding platform for transmembrane TJ proteins to maintain the barrier function. In addition to the basic structural function, ZO proteins play important roles in signal regulation such as cell proliferation and motility, the latter including cell migration, invasion and metastasis, to influence embryonic development, tissue homeostasis, damage repair, inflammation, tumorigenesis, and cancer progression. In this review, we will focus on the signal regulating function of ZO proteins in inflammation and tumorigenesis, and discuss the limitations of previous research and future challenges in ZO protein research.
Collapse
Affiliation(s)
- Sen Yu
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Jie He
- The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangdong, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
- The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangdong, China
| |
Collapse
|
19
|
Schmidt A, Finegan T, Häring M, Kong D, Fletcher AG, Alam Z, Grosshans J, Wolf F, Peifer M. Polychaetoid/ZO-1 strengthens cell junctions under tension while localizing differently than core adherens junction proteins. Mol Biol Cell 2023; 34:ar81. [PMID: 37163320 PMCID: PMC10398881 DOI: 10.1091/mbc.e23-03-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023] Open
Abstract
During embryonic development, dramatic cell shape changes and movements reshape the embryonic body plan. These require robust but dynamic linkage between the cell-cell adherens junctions and the force-generating actomyosin cytoskeleton. Our view of this linkage has evolved, and we now realize linkage is mediated by mechanosensitive multiprotein complexes assembled via multivalent connections. Here we combine genetic, cell biological, and modeling approaches to define the mechanism of action and functions of an important player, Drosophila polychaetoid, homologue of mammalian ZO-1. Our data reveal that Pyd reinforces cell junctions under elevated tension, and facilitates cell rearrangements. Pyd is important to maintain junctional contractility and in its absence cell rearrangements stall. We next use structured illumination microscopy to define the molecular architecture of cell-cell junctions during these events. The cadherin-catenin complex and Cno both localize to puncta along the junctional membrane, but are differentially enriched in different puncta. Pyd, in contrast, exhibits a distinct localization to strands that extend out from the region occupied by core junction proteins. We then discuss the implications for the protein network at the junction-cytoskeletal interface, suggesting different proteins localize and function in distinct ways, perhaps in distinct subcomplexes, but combine to produce robust connections.
Collapse
Affiliation(s)
- Anja Schmidt
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Tara Finegan
- Department of Biology, University of Rochester, Rochester, New York 14627-0211
| | - Matthias Häring
- Göttingen Campus Institute for Dynamics of Biological Networks, Georg August University, 37075 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Institute for Dynamics of Complex Systems, Georg August University, 37077 Göttingen, Germany
| | - Deqing Kong
- Department of Biology, Philipps University, 35043 Marburg, Germany
| | - Alexander G Fletcher
- School of Mathematics and Statistics and Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Zuhayr Alam
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Jörg Grosshans
- Department of Biology, Philipps University, 35043 Marburg, Germany
| | - Fred Wolf
- Göttingen Campus Institute for Dynamics of Biological Networks, Georg August University, 37075 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Institute for Dynamics of Complex Systems, Georg August University, 37077 Göttingen, Germany
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
20
|
Schmidt A, Finegan T, Häring M, Kong D, Fletcher AG, Alam Z, Grosshans J, Wolf F, Peifer M. Polychaetoid/ZO-1 strengthens cell junctions under tension while localizing differently than core adherens junction proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530634. [PMID: 36909597 PMCID: PMC10002719 DOI: 10.1101/2023.03.01.530634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
During embryonic development dramatic cell shape changes and movements re-shape the embryonic body plan. These require robust but dynamic linkage between the cell-cell adherens junctions and the force-generating actomyosin cytoskeleton. Our view of this linkage has evolved, and we now realize linkage is mediated by a mechanosensitive multiprotein complex assembled via multivalent connections. Here we combine genetic, cell biological and modeling approaches to define the mechanism of action and functions of an important player, Drosophila Polychaetoid, homolog of mammalian ZO-1. Our data reveal that Pyd reinforces cell junctions under elevated tension, and facilitates cell rearrangements. Pyd is important to maintain junctional contractility and in its absence cell rearrangements stall. We next use structured illumination microscopy to define the molecular architecture of cell-cell junctions during these events. The cadherin-catenin complex and Cno both localize to puncta along the junctional membrane, but are differentially enriched in different puncta. Pyd, in contrast, exhibits a distinct localization to strands that extend out from the region occupied by core junction proteins. We then discuss the implications for the protein network at the junction-cytoskeletal interface, suggesting different proteins localize and function in distinct ways but combine to produce robust connections.
Collapse
Affiliation(s)
- Anja Schmidt
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Tara Finegan
- Department of Biology, University of Rochester, Rochester, New York, USA 14627-0211
| | - Matthias Häring
- Göttingen Campus Institute for Dynamics of Biological Networks, Georg August University, Hermann Rein Str. 3, 37075 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Hermann Rein St. 3, 37075 Göttingen, German
- Institute for Dynamics of Complex Systems, Georg August University, Friedrich Hund Pl. 1, 37077 Göttingen, Germany
| | - Deqing Kong
- Department of Biology, Philipps University, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Alexander G Fletcher
- School of Mathematics and Statistics & Bateson Centre, University of Sheffield, Sheffield, UK
| | - Zuhayr Alam
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Jörg Grosshans
- Department of Biology, Philipps University, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Fred Wolf
- Göttingen Campus Institute for Dynamics of Biological Networks, Georg August University, Hermann Rein Str. 3, 37075 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Hermann Rein St. 3, 37075 Göttingen, German
- Institute for Dynamics of Complex Systems, Georg August University, Friedrich Hund Pl. 1, 37077 Göttingen, Germany
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
21
|
Wadey KS, Somos A, Leyden G, Blythe H, Chan J, Hutchinson L, Poole A, Frankow A, Johnson JL, George SJ. Pro-inflammatory role of Wnt/β-catenin signaling in endothelial dysfunction. Front Cardiovasc Med 2023; 9:1059124. [PMID: 36794234 PMCID: PMC9923234 DOI: 10.3389/fcvm.2022.1059124] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023] Open
Abstract
Background Endothelial dysfunction is a critical component of both atherosclerotic plaque formation and saphenous vein graft failure. Crosstalk between the pro-inflammatory TNF-α-NFκB signaling axis and the canonical Wnt/β-catenin signaling pathway potentially plays an important role in regulating endothelial dysfunction, though the exact nature of this is not defined. Results In this study, cultured endothelial cells were challenged with TNF-α and the potential of a Wnt/β-catenin signaling inhibitor, iCRT-14, in reversing the adverse effects of TNF-α on endothelial physiology was evaluated. Treatment with iCRT-14 lowered nuclear and total NFκB protein levels, as well as expression of NFκB target genes, IL-8 and MCP-1. Inhibition of β-catenin activity with iCRT-14 suppressed TNF-α-induced monocyte adhesion and decreased VCAM-1 protein levels. Treatment with iCRT-14 also restored endothelial barrier function and increased levels of ZO-1 and focal adhesion-associated phospho-paxillin (Tyr118). Interestingly, inhibition of β-catenin with iCRT-14 enhanced platelet adhesion in cultured TNF-α-stimulated endothelial cells and in an ex vivo human saphenous vein model, most likely via elevating levels of membrane-tethered vWF. Wound healing was moderately retarded by iCRT-14; hence, inhibition of Wnt/β-catenin signaling may interfere with re-endothelialisation in grafted saphenous vein conduits. Conclusion Inhibition of the Wnt/β-catenin signaling pathway with iCRT-14 significantly recovered normal endothelial function by decreasing inflammatory cytokine production, monocyte adhesion and endothelial permeability. However, treatment of cultured endothelial cells with iCRT-14 also exerted a pro-coagulatory and moderate anti-wound healing effect: these factors may affect the suitability of Wnt/β-catenin inhibition as a therapy for atherosclerosis and vein graft failure.
Collapse
Affiliation(s)
- Kerry S. Wadey
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom,*Correspondence: Kerry S. Wadey,
| | - Alexandros Somos
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Genevieve Leyden
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Hazel Blythe
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Jeremy Chan
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Lawrence Hutchinson
- School of Physiology, Pharmacology and Neuroscience, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Alastair Poole
- School of Physiology, Pharmacology and Neuroscience, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Aleksandra Frankow
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Jason L. Johnson
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Sarah J. George
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
22
|
Brunner N, Stein L, Amasheh S. Cellular Distribution Pattern of tjp1 (ZO-1) in Xenopus laevis Oocytes Heterologously Expressing Claudins. J Membr Biol 2023; 256:51-61. [PMID: 35737002 PMCID: PMC9884258 DOI: 10.1007/s00232-022-00251-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023]
Abstract
Epithelial barriers constitute a fundamental requirement in every organism, as they allow the separation of different environments and set boundaries against noxious and other adverse effectors. In many inflammatory and degenerative diseases, epithelial barrier function is impaired because of a disturbance of the paracellular seal. Recently, the Xenopus laevis oocyte has been established as a heterologous expression model for the analysis of transmembrane tight junction protein interactions and is currently considered to be a suitable screening model for barrier effectors. A prerequisite for this application is a physiological anchoring of claudins to the cytoskeleton via the major scaffolding protein tjp1 (tight junction protein 1, ZO-1). We have analyzed the oocyte model with regard to the interaction of heterologously expressed claudins and tjp1. Our experiments have revealed endogenous tjp1 expression in protein and mRNA analyses of unfertilized Xenopus laevis oocytes expressing human claudin 1 (CLDN1) to claudin 5 (CLDN5). The amphibian cell model can therefore be used for the analysis of claudin interactions.
Collapse
Affiliation(s)
- Nora Brunner
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Laura Stein
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Salah Amasheh
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| |
Collapse
|
23
|
Zhou H, Zhao C, Wang P, Yang W, Zhu H, Zhang S. Regulators involved in trophoblast syncytialization in the placenta of intrauterine growth restriction. Front Endocrinol (Lausanne) 2023; 14:1107182. [PMID: 36798658 PMCID: PMC9927020 DOI: 10.3389/fendo.2023.1107182] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Placental dysfunction refers to the insufficiency of placental perfusion and chronic hypoxia during early pregnancy, which impairs placental function and causes inadequate supply of oxygen and nutrients to the fetus, affecting fetal development and health. Fetal intrauterine growth restriction, one of the most common outcomes of pregnancy-induced hypertensions, can be caused by placental dysfunction, resulting from deficient trophoblast syncytialization, inadequate trophoblast invasion and impaired vascular remodeling. During placental development, cytotrophoblasts fuse to form a multinucleated syncytia barrier, which supplies oxygen and nutrients to meet the metabolic demands for fetal growth. A reduction in the cell fusion index and the number of nuclei in the syncytiotrophoblast are found in the placentas of pregnancies complicated by IUGR, suggesting that the occurrence of IUGR may be related to inadequate trophoblast syncytialization. During the multiple processes of trophoblasts syncytialization, specific proteins and several signaling pathways are involved in coordinating these events and regulating placental function. In addition, epigenetic modifications, cell metabolism, senescence, and autophagy are also involved. Study findings have indicated several abnormally expressed syncytialization-related proteins and signaling pathways in the placentas of pregnancies complicated by IUGR, suggesting that these elements may play a crucial role in the occurrence of IUGR. In this review, we discuss the regulators of trophoblast syncytialization and their abnormal expression in the placentas of pregnancies complicated by IUGR.
Collapse
Affiliation(s)
- Hanjing Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Chenqiong Zhao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Peixin Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Haiyan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Songying Zhang, ; Haiyan Zhu,
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Songying Zhang, ; Haiyan Zhu,
| |
Collapse
|
24
|
Canse C, Yildirim E, Yaba A. Overview of junctional complexes during mammalian early embryonic development. Front Endocrinol (Lausanne) 2023; 14:1150017. [PMID: 37152932 PMCID: PMC10158982 DOI: 10.3389/fendo.2023.1150017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 05/09/2023] Open
Abstract
Cell-cell junctions form strong intercellular connections and mediate communication between blastomeres during preimplantation embryonic development and thus are crucial for cell integrity, polarity, cell fate specification and morphogenesis. Together with cell adhesion molecules and cytoskeletal elements, intercellular junctions orchestrate mechanotransduction, morphokinetics and signaling networks during the development of early embryos. This review focuses on the structure, organization, function and expressional pattern of the cell-cell junction complexes during early embryonic development. Understanding the importance of dynamic junction formation and maturation processes will shed light on the molecular mechanism behind developmental abnormalities of early embryos during the preimplantation period.
Collapse
Affiliation(s)
- Ceren Canse
- Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Ecem Yildirim
- Department of Histology and Embryology, Yeditepe University Faculty of Medicine, Istanbul, Türkiye
| | - Aylin Yaba
- Department of Histology and Embryology, Yeditepe University Faculty of Medicine, Istanbul, Türkiye
- *Correspondence: Aylin Yaba,
| |
Collapse
|
25
|
Huang J, Ge S, Luo D, Du R, Wang Y, Liu W, Wang G, Yin T. The endothelium permeability after bioresorbable scaffolds implantation caused by the heterogeneous expression of tight junction proteins. Mater Today Bio 2022; 16:100410. [PMID: 36090609 PMCID: PMC9450163 DOI: 10.1016/j.mtbio.2022.100410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022]
Abstract
As one of the main functions of vascular endothelial cells, Vascular permeability is determined by four tight junction proteins (TJPs): Zonula Occludens-1 (ZO-1), Claudin-5, Occludin and Tricellulin. The barrier function of blood vessels will be reconstructed after they are damaged by endothelial mechanical injuries caused by vascular interventions. In this study, the effects of balloon expansion (transient mechanical injury) on four TJPs and vascular permeability were compared with those of poly-l-lactic acid bioresorbable scaffolds (BRSs) implantation (continuous mechanical stimulation). We found that BRSs do not affect vascular permeability, while the recovery of vascular barrier function was found to be only related to the mechanical injuries and repair of endothelium. Mechanical stimulation affects and accelerates the recovery process of vascular permeability with the heterogeneous expression levels of TJPs induced after BRSs implantation. Different TJPs have different sensitivity to different loyal mechanical stimuli. ZO-1 is more sensitive to shear stress and tension than to static pressure. Occludin is sensitive to static pressure and shear stress. Tricellulin is more sensitive to tension stretching. Compared with the other three TJPs, Claudin-5 can respond to mechanical stimulation, with relatively low sensitivity, though. This difference in sensitivity determines the heterogeneous expression of TJPs. Mechanical stimulation of different kinds and strengths can also cause different cell morphological changes and inflammatory reactions. As an important element affecting endothelial function, the mechanical factors emerging after BRSs implantation are worthy of more attention. The repair of vascular permeability is directly related to the type of vascular injuries, while BRSs implantation has little effect on vascular permeability. Transient and persistent mechanical stimulation is the main reason to influence the expression of TJPs. Heterogeneous expression of TJPs caused by their different sensitivity to the form of mechanical stimuli.
Collapse
|
26
|
Godbole NM, Chowdhury AA, Chataut N, Awasthi S. Tight Junctions, the Epithelial Barrier, and Toll-like Receptor-4 During Lung Injury. Inflammation 2022; 45:2142-2162. [PMID: 35779195 PMCID: PMC9649847 DOI: 10.1007/s10753-022-01708-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Lung epithelium is constantly exposed to the environment and is critically important for the orchestration of initial responses to infectious organisms, toxins, and allergic stimuli, and maintenance of normal gaseous exchange and pulmonary function. The integrity of lung epithelium, fluid balance, and transport of molecules is dictated by the tight junctions (TJs). The TJs are formed between adjacent cells. We have focused on the topic of the TJ structure and function in lung epithelial cells. This review includes a summary of the last twenty years of literature reports published on the disrupted TJs and epithelial barrier in various lung conditions and expression and regulation of specific TJ proteins against pathogenic stimuli. We discuss the molecular signaling and crosstalk among signaling pathways that control the TJ structure and function. The Toll-like receptor-4 (TLR4) recognizes the pathogen- and damage-associated molecular patterns released during lung injury and inflammation and coordinates cellular responses. The molecular aspects of TLR4 signaling in the context of TJs or the epithelial barrier are not fully known. We describe the current knowledge and possible networking of the TLR4-signaling with cellular and molecular mechanisms of TJs, lung epithelial barrier function, and resistance to treatment strategies.
Collapse
Affiliation(s)
- Nachiket M Godbole
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Asif Alam Chowdhury
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Neha Chataut
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
27
|
ZO-1 Guides Tight Junction Assembly and Epithelial Morphogenesis via Cytoskeletal Tension-Dependent and -Independent Functions. Cells 2022; 11:cells11233775. [PMID: 36497035 PMCID: PMC9740252 DOI: 10.3390/cells11233775] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Formation and maintenance of tissue barriers require the coordination of cell mechanics and cell-cell junction assembly. Here, we combined methods to modulate ECM stiffness and to measure mechanical forces on adhesion complexes to investigate how tight junctions regulate cell mechanics and epithelial morphogenesis. We found that depletion of the tight junction adaptor ZO-1 disrupted junction assembly and morphogenesis in an ECM stiffness-dependent manner and led to a stiffness-dependant reorganisation of active myosin. Both junction formation and morphogenesis were rescued by inhibition of actomyosin contractility. ZO-1 depletion also impacted mechanical tension at cell-matrix and E-cadherin-based cell-cell adhesions. The effect on E-cadherin also depended on ECM stiffness and correlated with effects of ECM stiffness on actin cytoskeleton organisation. However, ZO-1 knockout also revealed tension-independent functions of ZO-1. ZO-1-deficient cells could assemble functional barriers at low tension, but their tight junctions remained corrupted with strongly reduced and discontinuous recruitment of junctional components. Our results thus reveal that reciprocal regulation between ZO-1 and cell mechanics controls tight junction assembly and epithelial morphogenesis, and that, in a second, tension-independent step, ZO-1 is required to assemble morphologically and structurally fully assembled and functionally normal tight junctions.
Collapse
|
28
|
Podyacheva E, Toropova Y. SIRT1 activation and its effect on intercalated disc proteins as a way to reduce doxorubicin cardiotoxicity. Front Pharmacol 2022; 13:1035387. [PMID: 36408244 PMCID: PMC9672938 DOI: 10.3389/fphar.2022.1035387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
According to the World Health Organization, the neoplasm is one of the main reasons for morbidity and mortality worldwide. At the same time, application of cytostatic drugs like an independent type of cancer treatment and in combination with surgical methods, is often associated with the development of cardiovascular complications both in the early and in the delayed period of treatment. Doxorubicin (DOX) is the most commonly used cytotoxic anthracycline antibiotic. DOX can cause both acute and delayed side effects. The problem is still not solved, as evidenced by the continued activity of researchers in terms of developing approaches for the prevention and treatment of cardiovascular complications. It is known, the heart muscle consists of cardiomyocytes connected by intercalated discs (ID), which ensure the structural, electrical, metabolic unity of the heart. Various defects in the ID proteins can lead to the development of cardiovascular diseases of various etiologies, including DOX-induced cardiomyopathy. The search for ways to influence the functioning of ID proteins of the cardiac muscle can become the basis for the creation of new therapeutic approaches to the treatment and prevention of cardiac pathologies. SIRT1 may be an interesting cardioprotective variant due to its wide functional significance. SIRT1 activation triggers nuclear transcription programs that increase the efficiency of cellular, mitochondrial metabolism, increases resistance to oxidative stress, and promotes cell survival. It can be assumed that SIRT1 can not only provide a protective effect at the cardiomyocytes level, leading to an improvement in mitochondrial and metabolic functions, reducing the effects of oxidative stress and inflammatory processes, but also have a protective effect on the functioning of IDs structures of the cardiac muscle.
Collapse
|
29
|
Goncalves A, Antonetti DA. Transgenic animal models to explore and modulate the blood brain and blood retinal barriers of the CNS. Fluids Barriers CNS 2022; 19:86. [PMID: 36320068 PMCID: PMC9628113 DOI: 10.1186/s12987-022-00386-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
The unique environment of the brain and retina is tightly regulated by blood-brain barrier and the blood-retinal barrier, respectively, to ensure proper neuronal function. Endothelial cells within these tissues possess distinct properties that allow for controlled passage of solutes and fluids. Pericytes, glia cells and neurons signal to endothelial cells (ECs) to form and maintain the barriers and control blood flow, helping to create the neurovascular unit. This barrier is lost in a wide range of diseases affecting the central nervous system (CNS) and retina such as brain tumors, stroke, dementia, and in the eye, diabetic retinopathy, retinal vein occlusions and age-related macular degeneration to name prominent examples. Recent studies directly link barrier changes to promotion of disease pathology and degradation of neuronal function. Understanding how these barriers form and how to restore these barriers in disease provides an important point for therapeutic intervention. This review aims to describe the fundamentals of the blood-tissue barriers of the CNS and how the use of transgenic animal models led to our current understanding of the molecular framework of these barriers. The review also highlights examples of targeting barrier properties to protect neuronal function in disease states.
Collapse
Affiliation(s)
- Andreia Goncalves
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, 1000 Wall St Rm, Ann Arbor, MI, 7317, USA
| | - David A Antonetti
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, 1000 Wall St Rm, Ann Arbor, MI, 7317, USA.
| |
Collapse
|
30
|
Miyata S. Glial functions in the blood-brain communication at the circumventricular organs. Front Neurosci 2022; 16:991779. [PMID: 36278020 PMCID: PMC9583022 DOI: 10.3389/fnins.2022.991779] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The circumventricular organs (CVOs) are located around the brain ventricles, lack a blood-brain barrier (BBB) and sense blood-derived molecules. This review discusses recent advances in the importance of CVO functions, especially glial cells transferring periphery inflammation signals to the brain. The CVOs show size-limited vascular permeability, allowing the passage of molecules with molecular weight <10,000. This indicates that the lack of an endothelial cell barrier does not mean the free movement of blood-derived molecules into the CVO parenchyma. Astrocytes and tanycytes constitute a dense barrier at the distal CVO subdivision, preventing the free diffusion of blood-derived molecules into neighboring brain regions. Tanycytes in the CVOs mediate communication between cerebrospinal fluid and brain parenchyma via transcytosis. Microglia and macrophages of the CVOs are essential for transmitting peripheral information to other brain regions via toll-like receptor 2 (TLR2). Inhibition of TLR2 signaling or depletion of microglia and macrophages in the brain eliminates TLR2-dependent inflammatory responses. In contrast to TLR2, astrocytes and tanycytes in the CVOs of the brain are crucial for initiating lipopolysaccharide (LPS)-induced inflammatory responses via TLR4. Depletion of microglia and macrophages augments LPS-induced fever and chronic sickness responses. Microglia and macrophages in the CVOs are continuously activated, even under normal physiological conditions, as they exhibit activated morphology and express the M1/M2 marker proteins. Moreover, the microglial proliferation occurs in various regions, such as the hypothalamus, medulla oblongata, and telencephalon, with a marked increase in the CVOs, due to low-dose LPS administration, and after high-dose LPS administration, proliferation is seen in most brain regions, except for the cerebral cortex and hippocampus. A transient increase in the microglial population is beneficial during LPS-induced inflammation for attenuating sickness response. Transient receptor potential receptor vanilloid 1 expressed in astrocytes and tanycytes of the CVOs is responsible for thermoregulation upon exposure to a warm environment less than 37°C. Alternatively, Nax expressed in astrocytes and tanycytes of the CVOs is crucial for maintaining body fluid homeostasis. Thus, recent findings indicate that glial cells in the brain CVOs are essential for initiating neuroinflammatory responses and maintaining body fluid and thermal homeostasis.
Collapse
|
31
|
Renaud SJ, Jeyarajah MJ. How trophoblasts fuse: an in-depth look into placental syncytiotrophoblast formation. Cell Mol Life Sci 2022; 79:433. [PMID: 35859055 PMCID: PMC11072895 DOI: 10.1007/s00018-022-04475-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/07/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
In humans, cell fusion is restricted to only a few cell types under normal conditions. In the placenta, cell fusion is a critical process for generating syncytiotrophoblast: the giant multinucleated trophoblast lineage containing billions of nuclei within an interconnected cytoplasm that forms the primary interface separating maternal blood from fetal tissue. The unique morphology of syncytiotrophoblast ensures that nutrients and gases can be efficiently transferred between maternal and fetal tissue while simultaneously restricting entry of potentially damaging substances and maternal immune cells through intercellular junctions. To maintain integrity of the syncytiotrophoblast layer, underlying cytotrophoblast progenitor cells terminate their capability for self-renewal, upregulate expression of genes needed for differentiation, and then fuse into the overlying syncytium. These processes are disrupted in a variety of obstetric complications, underscoring the importance of proper syncytiotrophoblast formation for pregnancy health. Herein, an overview of key mechanisms underlying human trophoblast fusion and syncytiotrophoblast development is discussed.
Collapse
Affiliation(s)
- Stephen J Renaud
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada.
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada
| |
Collapse
|
32
|
Yazici D, Ogulur I, Kucukkase O, Li M, Rinaldi AO, Pat Y, Wallimann A, Wawrocki S, Sozener ZC, Buyuktiryaki B, Sackesen C, Akdis M, Mitamura Y, Akdis C. Epithelial barrier hypothesis and the development of allergic and autoimmune diseases. ALLERGO JOURNAL 2022. [DOI: 10.1007/s15007-022-5033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Kuo WT, Odenwald MA, Turner JR, Zuo L. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival. Ann N Y Acad Sci 2022; 1514:21-33. [PMID: 35580994 PMCID: PMC9427709 DOI: 10.1111/nyas.14798] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Epithelial cells are the first line of mucosal defense. In the intestine, a single layer of epithelial cells must establish a selectively permeable barrier that supports nutrient absorption and waste secretion while preventing the leakage of potentially harmful luminal materials. Key to this is the tight junction, which seals the paracellular space and prevents unrestricted leakage. The tight junction is a protein complex established by interactions between members of the claudin, zonula occludens, and tight junction-associated MARVEL protein (TAMP) families. Claudins form the characteristic tight junction strands seen by freeze-fracture microscopy and create paracellular channels, but the functions of ZO-1 and occludin, founding members of the zonula occludens and TAMP families, respectively, are less well defined. Recent studies have revealed that these proteins have essential noncanonical (nonbarrier) functions that allow them to regulate epithelial apoptosis and proliferation, facilitate viral entry, and organize specialized epithelial structures. Surprisingly, neither is required for intestinal barrier function or overall health in the absence of exogenous stressors. Here, we provide a brief overview of ZO-1 and occludin canonical (barrier-related) functions, and a more detailed examination of their noncanonical functions.
Collapse
Affiliation(s)
- Wei-Ting Kuo
- Graduate Institute of Oral Biology, National Taiwan University, Taipei, Taiwan.,Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Li Zuo
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Anhui Medical University, Hefei, China
| |
Collapse
|
34
|
Li M, Yuan J, Hou Q, Zhao Y, Zhong L, Dai X, Chen H, Fu X. Characterization of the Skin Bacteriome and Histology Changes in Diabetic Pigs. INT J LOW EXTR WOUND 2022:15347346221100887. [PMID: 35548944 DOI: 10.1177/15347346221100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chronic wound is one of the most common complications that are associated with diabetes. The cutaneous microbiome is known to play essential roles in the regulation of barrier function and protecting against potential assault. Thus, it is necessary to gain a better understanding of the relationship between microbial community and skin structures in unwounded diabetic skin to explore possible preventive strategies. To achieve the same, a pig diabetic model was built in the present study. Further,16S rDNA sequencing was used to characterize the skin bacteriome. It was observed that the pigs showed skin bacteriome similar to humans in the non-diabetes group, while it varied in the case of diabetes. Further, the β-diversity analysis showed that the bacterial community was significantly different under the diabetes group. More species differences were identified between the two groups at genus level. The predictive function analysis also showed the involvement of significantly different pathways of microbial gene function in diabetes. In agreement with this, skin histology analysis also showed signs of reduced epidermal thickness and rete ridges in diabetic skin. Less proliferation of keratinocytes and impaired TJ barrier was also detected. This evidence suggested that pigs might serve as the best surrogate for cutaneous microbiome studies. Altogether, the present study reported that the skin bacteriome and histology changed significantly in unwounded diabetic skin, which provided a theoretical basis for the regulation of disordered skin bacteriome. The findings of the study would assist in the improvement of the skin environment and prevention of skin infection and chronic wounds.
Collapse
Affiliation(s)
- Meirong Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
- Central Laboratory, Trauma Treatment Center, Central Laboratory, 104607Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Jifang Yuan
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
- Central Laboratory, Trauma Treatment Center, Central Laboratory, 104607Chinese PLA General Hospital, Hainan Hospital, Sanya, China
- Laboratory Animal Center, Medical Innovation Research Division of 104607Chinese PLA General Hospital, Beijing, P. R. China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Yali Zhao
- Central Laboratory, Trauma Treatment Center, Central Laboratory, 104607Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Lingzhi Zhong
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Xin Dai
- Laboratory Animal Center, Medical Innovation Research Division of 104607Chinese PLA General Hospital, Beijing, P. R. China
| | - Hua Chen
- Laboratory Animal Center, Medical Innovation Research Division of 104607Chinese PLA General Hospital, Beijing, P. R. China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| |
Collapse
|
35
|
Solaymani-Mohammadi S. Mucosal Defense Against Giardia at the Intestinal Epithelial Cell Interface. Front Immunol 2022; 13:817468. [PMID: 35250996 PMCID: PMC8891505 DOI: 10.3389/fimmu.2022.817468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/31/2022] [Indexed: 02/05/2023] Open
Abstract
Human giardiasis, caused by the protozoan parasite Giardia duodenalis (syn. Giardia lamblia, Giardia intestinalis, Lamblia intestinalis), is one of the most commonly-identified parasitic diseases worldwide. Chronic G. duodenalis infections cause a malabsorption syndrome that may lead to failure to thrive and/or stunted growth, especially in children in developing countries. Understanding the parasite/epithelial cell crosstalk at the mucosal surfaces of the small intestine during human giardiasis may provide novel insights into the mechanisms underlying the parasite-induced immunopathology and epithelial tissue damage, leading to malnutrition. Efforts to identify new targets for intervening in the development of intestinal immunopathology and the progression to malnutrition are critical. Translating these findings into a clinical setting will require analysis of these pathways in cells and tissues from humans and clinical trials could be devised to determine whether interfering with unwanted mucosal immune responses developed during human giardiasis provide better therapeutic benefits and clinical outcomes for G. duodenalis infections in humans.
Collapse
Affiliation(s)
- Shahram Solaymani-Mohammadi
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
36
|
Cingulin binds to the ZU5 domain of scaffolding protein ZO-1 to promote its extended conformation, stabilization, and tight junction accumulation. J Biol Chem 2022; 298:101797. [PMID: 35259394 PMCID: PMC9010756 DOI: 10.1016/j.jbc.2022.101797] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
Zonula occludens-1 (ZO-1), the major scaffolding protein of tight junctions (TJs), recruits the cytoskeleton-associated proteins cingulin (CGN) and paracingulin (CGNL1) to TJs by binding to their N-terminal ZO-1 interaction motif. The conformation of ZO-1 can be either folded or extended, depending on cytoskeletal tension and intramolecular and intermolecular interactions, and only ZO-1 in the extended conformation recruits the transcription factor DbpA to TJs. However, the sequences of ZO-1 that interact with CGN and CGNL1 and the role of TJ proteins in ZO-1 TJ assembly are not known. Here, we used glutathione-S-transferase pulldowns and immunofluorescence microscopy to show that CGN and CGNL1 bind to the C-terminal ZU5 domain of ZO-1 and that this domain is required for CGN and CGNL1 recruitment to TJs and to phase-separated ZO-1 condensates in cells. We show that KO of CGN, but not CGNL1, results in decreased accumulation of ZO-1 at TJs. Furthermore, ZO-1 lacking the ZU5 domain showed decreased accumulation at TJs, was detectable along lateral contacts, had a higher mobile fraction than full-length ZO-1 by fluorescence recovery after photobleaching analysis, and had a folded conformation, as determined by structured illumination microscopy of its N-terminal and C-terminal ends. The CGN–ZU5 interaction promotes the extended conformation of ZO-1, since binding of the CGN–ZO-1 interaction motif region to ZO-1 resulted in its interaction with DbpA in cells and in vitro. Together, these results show that binding of CGN to the ZU5 domain of ZO-1 promotes ZO-1 stabilization and accumulation at TJs by promoting its extended conformation.
Collapse
|
37
|
Chen J, Wang X, He Q, Harris RC. TAZ is important for maintenance of the integrity of podocytes. Am J Physiol Renal Physiol 2022; 322:F419-F428. [PMID: 35157550 PMCID: PMC8934679 DOI: 10.1152/ajprenal.00426.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022] Open
Abstract
The podocyte is an important component of the glomerular filtration barrier, and maintenance of the integrity of its highly specified structure and function is critical for normal kidney function. Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) are two crucial effectors of the Hippo signaling pathway, and recent studies have shown that podocyte-specific YAP deletion causes podocyte apoptosis and the development of focal segmental glomerulosclerosis followed by progressive renal failure. In the present study, we investigated a potential role of the YAP paralog TAZ in podocytes. TAZ was found to be constitutively active in podocytes, and mice with podocyte-specific deletion of TAZ (TazpodKO) developed proteinuria starting at 4 wk of age and had increased podocyte apoptosis. Using primary cultured podocytes or immortalized mouse podocytes from Tazflox/flox mice, we found that TAZ is a transcriptional activator for TEAD-dependent expression of synaptopodin, zonula occludens-1, and zonula occludens-2. This is the first study to determine that TAZ plays an important role in the maintenance of the structure and function of podocytes.NEW & NOTEWORTHY Podocytes play an important role in maintaining the integrity of the structure and function of the kidney. We observed that mice with selective deletion of transcriptional coactivator with PDZ-binding motif (TAZ) in podocytes developed proteinuria. TAZ is constitutively active and critical for expression of synaptopodin, zonula occludens-1, and zonula occludens-2 in podocytes. The findings of this study implicate TAZ as an important mediator of podocyte structural integrity and provide further insights into the role of Hippo-Yes-associated protein/TAZ in podocyte biology.
Collapse
Affiliation(s)
- Jianchun Chen
- United States Department of Veterans Affairs, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xiaoyong Wang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qian He
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Raymond C Harris
- United States Department of Veterans Affairs, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
38
|
Gueniot F, Rubin S, Bougaran P, Abelanet A, Morel JL, Bontempi B, Proust C, Dufourcq P, Couffinhal T, Duplàa C. Targeting Pdzrn3 maintains adult blood-brain barrier and central nervous system homeostasis. J Cereb Blood Flow Metab 2022; 42:613-629. [PMID: 34644209 PMCID: PMC9051145 DOI: 10.1177/0271678x211048981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Blood brain barrier (BBB) disruption is a critical component of the pathophysiology of cognitive impairment of vascular etiology (VCI) and associated with Alzheimer's disease (AD). The Wnt pathway plays a crucial role in BBB maintenance, but there is limited data on its role in cognitive pathologies. The E3 ubiquitin ligase PDZRN3 is a regulator of the Wnt pathway. In a murine model of VCI, overexpressing Pdzrn3 in endothelial cell (EC) exacerbated BBB hyperpermeability and accelerated cognitive decline. We extended these observations, in both VCI and AD models, showing that EC-specific depletion of Pdzrn3, reinforced the BBB, with a decrease in vascular permeability and a subsequent spare in cognitive decline. We found that in cerebral vessels, Pdzrn3 depletion protects against AD-induced Wnt target gene alterations and enhances endothelial tight junctional proteins. Our results provide evidence that Wnt signaling could be a molecular link regulating BBB integrity and cognitive decline under VCI and AD pathologies.
Collapse
Affiliation(s)
- Florian Gueniot
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Sebastien Rubin
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Pauline Bougaran
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Alice Abelanet
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | | | | | - Carole Proust
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Pascale Dufourcq
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France.,Service de Biochimie clinique, CHU de Bordeaux, Bordeaux, France
| | - Thierry Couffinhal
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France.,Service des Maladies cardiaques et vasculaires, CHU de Bordeaux, Bordeaux, France
| | - Cecile Duplàa
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| |
Collapse
|
39
|
Multi-Layered Human Blood Vessels-on-Chip Design Using Double Viscous Finger Patterning. Biomedicines 2022; 10:biomedicines10040797. [PMID: 35453546 PMCID: PMC9027030 DOI: 10.3390/biomedicines10040797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/26/2022] Open
Abstract
Blood vessel-on-a-chip models aim at reproducing vascular functions. However, very few efficient methods have been designed to address the need for biological replicates in medium- to high-throughput screenings. Here, vessels-on-chip were designed in polydimethylsiloxane-glass chips using the viscous finger patterning technique which was adapted to create channels with various internal diameters inside a collagen solution and to simultaneously seed cells. This method was refined to create blood vessels composed of two concentric, distinct, and closely appositioned layers of human endothelial and perivascular cells arranged around a hollow lumen. These approaches allowed the formation of structurally correct blood vessels-on-chips which were constituted of either only endothelial cells or of both cell types in order to distinguish the vascular barrier reactivity to drugs in the presence or not of perivascular cells. The established vessels showed a tight vascular barrier, as assessed by immunostaining of the adherens junctions, and were reactive to the natural vasopermeant thrombin and to inflammatory cytokines. The presence of perivascular cells markedly increased the tightness of the vascular barrier and lowered its response to thrombin. The design allowed us to simultaneously challenge in real-time several tens of 3D-reconstituted, multicellular blood vessels in a standard multiwell plate format suitable for high-throughput drug screening.
Collapse
|
40
|
Zhao R, Trainor PA. Epithelial to mesenchymal transition during mammalian neural crest cell delamination. Semin Cell Dev Biol 2022; 138:54-67. [PMID: 35277330 DOI: 10.1016/j.semcdb.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/18/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is a well-defined cellular process that was discovered in chicken embryos and described as "epithelial to mesenchymal transformation" [1]. During EMT, epithelial cells lose their epithelial features and acquire mesenchymal character with migratory potential. EMT has subsequently been shown to be essential for both developmental and pathological processes including embryo morphogenesis, wound healing, tissue fibrosis and cancer [2]. During the past 5 years, interest and study of EMT especially in cancer biology have increased exponentially due to the implied role of EMT in multiple aspects of malignancy such as cell invasion, survival, stemness, metastasis, therapeutic resistance and tumor heterogeneity [3]. Since the process of EMT in embryogenesis and cancer progression shares similar phenotypic changes, core transcription factors and molecular mechanisms, it has been proposed that the initiation and development of carcinoma could be attributed to abnormal activation of EMT factors usually required for normal embryo development. Therefore, developmental EMT mechanisms, whose timing, location, and tissue origin are strictly regulated, could prove useful for uncovering new insights into the phenotypic changes and corresponding gene regulatory control of EMT under pathological conditions. In this review, we initially provide an overview of the phenotypic and molecular mechanisms involved in EMT and discuss the newly emerging concept of epithelial to mesenchymal plasticity (EMP). Then we focus on our current knowledge of a classic developmental EMT event, neural crest cell (NCC) delamination, highlighting key differences in our understanding of NCC EMT between mammalian and non-mammalian species. Lastly, we highlight available tools and future directions to advance our understanding of mammalian NCC EMT.
Collapse
Affiliation(s)
- Ruonan Zhao
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
41
|
Chopra N, Menounos S, Choi JP, Hansbro PM, Diwan AD, Das A. Blood-Spinal Cord Barrier: Its Role in Spinal Disorders and Emerging Therapeutic Strategies. NEUROSCI 2022; 3:1-27. [PMID: 39484675 PMCID: PMC11523733 DOI: 10.3390/neurosci3010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/14/2021] [Indexed: 11/03/2024] Open
Abstract
The blood-spinal cord barrier (BSCB) has been long thought of as a functional equivalent to the blood-brain barrier (BBB), restricting blood flow into the spinal cord. The spinal cord is supported by various disc tissues that provide agility and has different local immune responses compared to the brain. Though physiologically, structural components of the BSCB and BBB share many similarities, the clinical landscape significantly differs. Thus, it is crucial to understand the composition of BSCB and also to establish the cause-effect relationship with aberrations and spinal cord dysfunctions. Here, we provide a descriptive analysis of the anatomy, current techniques to assess the impairment of BSCB, associated risk factors and impact of spinal disorders such as spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS), peripheral nerve injury (PNI), ischemia reperfusion injury (IRI), degenerative cervical myelopathy (DCM), multiple sclerosis (MS), spinal cavernous malformations (SCM) and cancer on BSCB dysfunction. Along with diagnostic and mechanistic analyses, we also provide an up-to-date account of available therapeutic options for BSCB repair. We emphasize the need to address BSCB as an individual entity and direct future research towards it.
Collapse
Affiliation(s)
- Neha Chopra
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Spiro Menounos
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
| | - Jaesung P Choi
- Centre for Inflammation, Faculty of Science, Centenary Institute, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2050, Australia; (J.P.C.); (P.M.H.)
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, Centenary Institute, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2050, Australia; (J.P.C.); (P.M.H.)
| | - Ashish D Diwan
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Abhirup Das
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| |
Collapse
|
42
|
Siqueira M, Stipursky J. BLOOD BRAIN BARRIER AS AN INTERFACE FOR ALCOHOL INDUCED NEUROTOXICITY DURING DEVELOPMENT. Neurotoxicology 2022; 90:145-157. [DOI: 10.1016/j.neuro.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/15/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
|
43
|
Altered Expression of Zonula occludens-1 Affects Cardiac Na + Channels and Increases Susceptibility to Ventricular Arrhythmias. Cells 2022; 11:cells11040665. [PMID: 35203314 PMCID: PMC8870063 DOI: 10.3390/cells11040665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022] Open
Abstract
Zonula occludens-1 (ZO-1) is an intracellular scaffolding protein that orchestrates the anchoring of membrane proteins to the cytoskeleton in epithelial and specialized tissue including the heart. There is clear evidence to support the central role of intracellular auxiliary proteins in arrhythmogenesis and previous studies have found altered ZO-1 expression associated with atrioventricular conduction abnormalities. Here, using human cardiac tissues, we identified all three isoforms of ZO-1, canonical (Transcript Variant 1, TV1), CRA_e (Transcript Variant 4, TV4), and an additionally expressed (Transcript Variant 3, TV3) in non-failing myocardium. To investigate the role of ZO-1 on ventricular arrhythmogenesis, we generated a haploinsufficient ZO-1 mouse model (ZO-1+/-). ZO-1+/- mice exhibited dysregulated connexin-43 protein expression and localization at the intercalated disc. While ZO-1+/- mice did not display abnormal cardiac function at baseline, adrenergic challenge resulted in rhythm abnormalities, including premature ventricular contractions and bigeminy. At baseline, ventricular myocytes from the ZO-1+/- mice displayed prolonged action potential duration and spontaneous depolarizations, with ZO-1+/- cells displaying frequent unsolicited (non-paced) diastolic depolarizations leading to spontaneous activity with multiple early afterdepolarizations (EADs). Mechanistically, ZO-1 deficient myocytes displayed a reduction in sodium current density (INa) and an increased sensitivity to isoproterenol stimulation. Further, ZO-1 deficient myocytes displayed remodeling in ICa current, likely a compensatory change. Taken together, our data suggest that ZO-1 deficiency results in myocardial substrate susceptible to triggered arrhythmias.
Collapse
|
44
|
Pokharel S, Gliyazova NS, Dandepally SR, Williams AL, Ibeanu GC. Neuroprotective effects of an in vitro BBB permeable phenoxythiophene sulfonamide small molecule in glutamate-induced oxidative injury. Exp Ther Med 2022; 23:79. [PMID: 34938365 PMCID: PMC8688931 DOI: 10.3892/etm.2021.11002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) play a central role in oxidative stress-associated neuronal cell death during ischemia. Further investigation into the inhibition of excessive ROS generation post-stroke is urgently required for the treatment of ischemic stroke. In the present study, the neuroprotective properties of the blood-brain barrier (BBB) penetrant B355227 were investigated. B355227 is a chemical analogue of B355252, and the role of the phenoxythiophene sulfonamide compound B355227 was further investigated in a glutamate-induced oxidative injury model. An in vitro model of the BBB was established in the immortalized mouse brain capillary endothelial cell line, bEnd.3. Formation of barrier in Transwell inserts was confirmed using EVOM resistance meter and Caffeine, Imatinib and Axitinib were used to validate the efficacy of the model. The validated BBB assay in combination with high performance liquid chromatography were used to analyse and verify the permeability of B355227 through the barrier. The integrity of the cell junctions after the BBB assays were confirmed using immunofluorescence to visualize the expression of the barrier junction protein zonula occludens-1. Cell survival was measured with Resazurin, a redox indicator dye, in HT22, a hippocampal neuronal cell treated with 5 mM glutamate or co-treated with the B355227 recovered from the BBB permeability experiment. Changes in glutathione levels were detected using a glutathione detection kit, while analyses of ROS, calcium (Ca2+), and mitochondrial membrane potential (MMP) were accomplished with the fluorescent dyes 2',7'-dichlorofluorescein diacetate, Fura-2 AM and MitoTracker Red dyes, respectively. Immunoblotting was also performed to detect the expression and activation of Erk1/2, p-38, JNK, Bax and Bcl-2. The results of the present study demonstrated that B355227 crossed the BBB in vitro and protected HT22 from oxidative injury induced by glutamate exposure. Treatment of cells with B355227 blocked the glutamate-dependent depletion of intracellular glutathione and significantly reduced ROS production. Increased Ca2+ influx and subsequent collapse of the MMP was attenuated by B355227. Furthermore, the results of the present study demonstrated that B355227 protected against oxidative stress via the MAPK pathway, by increasing the activation of Erk1/2, JNK and P38, and restoring anti-apoptotic Bcl-2. Collectively, the results of the present study indicate that B355227 has potent antioxidant and neuroprotective attributes in glutamate-induced neuronal cell death. Further investigation into the role of B355227 in the modulation of glutamate-dependent oxidative stress is required.
Collapse
Affiliation(s)
- Smritee Pokharel
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
| | - Nailya S. Gliyazova
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
| | - Srinivasa R. Dandepally
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
| | - Alfred L. Williams
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
- Department of Pharmaceutical Science, North Carolina Central University, Durham, NC 27707, USA
| | - Gordon C. Ibeanu
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
- Department of Pharmaceutical Science, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
45
|
Hudson N, Campbell M. Tight Junctions of the Neurovascular Unit. Front Mol Neurosci 2021; 14:752781. [PMID: 34867185 PMCID: PMC8640090 DOI: 10.3389/fnmol.2021.752781] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The homeostatic balance of the brain and retina is maintained by the presence of the blood-brain and inner blood-retinal barrier (BBB/iBRB, respectively) which are highly specialized barriers. Endothelial cells forming the lining of these blood vessels are interconnected by the presence of tight junctions which form the BBB and iBRB. These tight junctions, formed of numerous interacting proteins, enable the entry of molecules into neural tissues while restricting the entry of harmful material such as anaphylatoxins, bacteria and viruses. If the tight junction complex becomes dysregulated due to changes in expression levels of one or more of the components, this can have detrimental effects leading to brain and retinal pathology.
Collapse
Affiliation(s)
- Natalie Hudson
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin, Ireland
| | - Matthew Campbell
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin, Ireland
| |
Collapse
|
46
|
Kuo WT, Zuo L, Odenwald MA, Madha S, Singh G, Gurniak CB, Abraham C, Turner JR. The Tight Junction Protein ZO-1 Is Dispensable for Barrier Function but Critical for Effective Mucosal Repair. Gastroenterology 2021; 161:1924-1939. [PMID: 34478742 PMCID: PMC8605999 DOI: 10.1053/j.gastro.2021.08.047] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUNDS & AIMS Increased permeability is implicated in the pathogenesis of intestinal disease. In vitro and in vivo studies have linked down-regulation of the scaffolding protein ZO-1, encoded by the TJP1 gene, to increased tight junction permeability. This has not, however, been tested in vivo. Here, we assessed the contributions of ZO-1 to in vivo epithelial barrier function and mucosal homeostasis. METHODS Public Gene Expression Omnibus data sets and biopsy specimens from patients with inflammatory bowel disease (IBD) and healthy control individuals were analyzed. Tjp1f/f;vil-CreTg mice with intestinal epithelial-specific ZO-1 knockout (ZO-1KO.IEC) mice and Tjp1f/f mice littermates without Cre expression were studied using chemical and immune-mediated models of disease as well as colonic stem cell cultures. RESULTS ZO-1 transcript and protein expression were reduced in biopsy specimens from patients with IBD. Despite mildly increased intestinal permeability, ZO-1KO.IEC mice were healthy and did not develop spontaneous disease. ZO-1KO.IEC mice were, however, hypersensitive to mucosal insults and displayed defective repair. Furthermore, ZO-1-deficient colonic epithelia failed to up-regulate proliferation in response to damage in vivo or Wnt signaling in vitro. ZO-1 was associated with centrioles in interphase cells and mitotic spindle poles during division. In the absence of ZO-1, mitotic spindles failed to correctly orient, resulting in mitotic catastrophe and abortive proliferation. ZO-1 is, therefore, critical for up-regulation of epithelial proliferation and successful completion of mitosis. CONCLUSIONS ZO-1 makes critical, tight junction-independent contributions to Wnt signaling and mitotic spindle orientation. As a result, ZO-1 is essential for mucosal repair. We speculate that ZO-1 down-regulation may be one cause of ineffective mucosal healing in patients with IBD.
Collapse
Affiliation(s)
- Wei-Ting Kuo
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Li Zuo
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Anhui Medical University, Hefei, Anhui, China
| | | | - Shariq Madha
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gurminder Singh
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Pathology, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
47
|
Alizadeh A, Akbari P, Garssen J, Fink-Gremmels J, Braber S. Epithelial integrity, junctional complexes, and biomarkers associated with intestinal functions. Tissue Barriers 2021; 10:1996830. [PMID: 34719339 PMCID: PMC9359365 DOI: 10.1080/21688370.2021.1996830] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An intact intestinal barrier is crucial for immune homeostasis and its impairment activates the immune system and may result in chronic inflammation. The epithelial cells of the intestinal barrier are connected by tight junctions, which form an anastomosing network sealing adjacent epithelial cells. Tight junctions are composed of transmembrane and cytoplasmic scaffolding proteins. Transmembrane tight junction proteins at the apical-lateral membrane of the cell consist of occludin, claudins, junctional adhesion molecules, and tricellulin. Cytoplasmic scaffolding proteins, including zonula occludens, cingulin and afadin, provide a direct link between transmembrane tight junction proteins and the intracellular cytoskeleton. Each individual component of the tight junction network closely interacts with each other to form an efficient intestinal barrier. This review aims to describe the molecular structure of intestinal epithelial tight junction proteins and to characterize their organization and interaction. Moreover, clinically important biomarkers associated with impairment of gastrointestinal integrity are discussed.
Collapse
Affiliation(s)
- Arash Alizadeh
- Division of Pharmacology and Toxicology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Peyman Akbari
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Department of Immunology, Danone Nutricia Research, Utrecht, The Netherlands
| | - Johanna Fink-Gremmels
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
48
|
Fu Y, Luo L, Fan Y, Tang M. Downregulation of secreted protein acidic and rich in cysteine in human trabecular meshwork cells. Exp Ther Med 2021; 22:1126. [PMID: 34504578 PMCID: PMC8383334 DOI: 10.3892/etm.2021.10560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 06/30/2021] [Indexed: 11/06/2022] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC) may play a notable role in aqueous humor outflow through the trabecular meshwork (TM). SPARC is a potential therapeutic target in glaucoma, and the mechanism by which it regulates intraocular pressure remains unclear. The present study aimed to observe the effects of SPARC in human TM cells (HTMCs) in vitro. SPARC was downregulated by recombinant lentiviral vectors in HTMCs, and the subsequent levels of F-actin expression, zonula occludens-1 (ZO-1) expression and cellular phagocytosis were observed and calculated. It was revealed that after 48 h of culture, the expression levels of SPARC, F-actin and ZO-1 were significantly decreased in the lentivirus group compared with those in the blank control and empty vector control groups. The downregulation of SPARC promoted phagocytosis in HTMCs after 24 or 48 h of culture. This indicated that the downregulation of SPARC decreased the expression levels of the cytoskeleton-associated proteins F-actin and ZO-1, promoted phagocytosis in HTMCs and may affect the outflow of aqueous humor via the TM pathway.
Collapse
Affiliation(s)
- Yang Fu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, P.R. China.,Shanghai Key Laboratory of Fundus Disease, Shanghai General Hospital, Shanghai 200080, P.R. China
| | - Liying Luo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, P.R. China.,Shanghai Key Laboratory of Fundus Disease, Shanghai General Hospital, Shanghai 200080, P.R. China
| | - Ying Fan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, P.R. China.,Shanghai Key Laboratory of Fundus Disease, Shanghai General Hospital, Shanghai 200080, P.R. China
| | - Min Tang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, P.R. China.,Shanghai Key Laboratory of Fundus Disease, Shanghai General Hospital, Shanghai 200080, P.R. China
| |
Collapse
|
49
|
Zhou C, Su M, Sun P, Tang X, Yin KJ. Nitro-oleic acid-mediated blood-brain barrier protection reduces ischemic brain injury. Exp Neurol 2021; 346:113861. [PMID: 34499902 DOI: 10.1016/j.expneurol.2021.113861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/28/2021] [Accepted: 09/05/2021] [Indexed: 10/20/2022]
Abstract
Nitro-oleic acid (OA-NO2), a nitroalkene formed in nitric oxide-dependent oxidative reactions, has been found in human plasma and is thought to regulate pathophysiological functions. Recently, accumulating evidence suggests that OA-NO2 may function as an anti-inflammatory mediator, and ameliorate the progression of diabetes and cardiovascular diseases. However, the role of OA-NO2 in ischemic brain injury remains unexplored. In this study, C57BL/6 mice were subjected to 1 h transient middle cerebral artery occlusion (MCAO) and followed by 1- 7 days of reperfusion. These mice were treated with vehicle, OA, or OA-NO2 (10 mg/kg) via tail vein injection at 2 h after the onset of MCAO. Our results show that intravenous administration of OA-NO2 led to reduced BBB leakage in ischemic brains, reduced brain infarct, and improved sensorimotor functions in response to ischemic insults when compared to OA and vehicle controls. Also, OA-NO2 significantly reduced BBB leakage-triggered infiltration of neutrophils and macrophages in the ischemic brains. Moreover, OA-NO2 treatment reduced the M1-type microglia and increased M2-type microglia. Mechanistically, OA-NO2 alleviated the decline of mRNA and protein level of major endothelial TJs including ZO-1 in stroke mice. Treatment of OA-NO2 also significantly inhibited stroke-induced inflammatory mediators, iNOS, E-selectin, P-selectin, and ICAM1, in mouse brains. In conclusion, OA-NO2 preserves BBB integrity and confers neurovascular protection in ischemic brain damage. OA-NO2-mediated brain protection may help us to develop a novel therapeutic strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Chao Zhou
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15261, USA; Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Moxi Su
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15261, USA; Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ping Sun
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15261, USA; Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xuelian Tang
- Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ke-Jie Yin
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15261, USA; Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
50
|
Karasek C, Ashry M, Driscoll CS, Knott JG. A tale of two cell-fates: role of the Hippo signaling pathway and transcription factors in early lineage formation in mouse preimplantation embryos. Mol Hum Reprod 2021; 26:653-664. [PMID: 32647873 PMCID: PMC7473788 DOI: 10.1093/molehr/gaaa052] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/18/2020] [Indexed: 12/26/2022] Open
Abstract
In mammals, the first cell-fate decision occurs during preimplantation embryo development when the inner cell mass (ICM) and trophectoderm (TE) lineages are established. The ICM develops into the embryo proper, while the TE lineage forms the placenta. The underlying molecular mechanisms that govern lineage formation involve cell-to-cell interactions, cell polarization, cell signaling and transcriptional regulation. In this review, we will discuss the current understanding regarding the cellular and molecular events that regulate lineage formation in mouse preimplantation embryos with an emphasis on cell polarity and the Hippo signaling pathway. Moreover, we will provide an overview on some of the molecular tools that are used to manipulate the Hippo pathway and study cell-fate decisions in early embryos. Lastly, we will provide exciting future perspectives on transcriptional regulatory mechanisms that modulate the activity of the Hippo pathway in preimplantation embryos to ensure robust lineage segregation.
Collapse
Affiliation(s)
- Challis Karasek
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Mohamed Ashry
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Chad S Driscoll
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Jason G Knott
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|