1
|
Dicklin MR, Anthony JC, Winters BL, Maki KC. ω-3 Polyunsaturated Fatty Acid Status Testing in Humans: A Narrative Review of Commercially Available Options. J Nutr 2024; 154:1487-1504. [PMID: 38522783 DOI: 10.1016/j.tjnut.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
There is an increasing body of evidence supporting a link between low intakes of ω-3 long-chain polyunsaturated fatty acids (LCPUFA) and numerous diseases and health conditions. However, few people are achieving the levels of fish/seafood or eicosapentaenoic acid and docosahexaenoic acid intake recommended in national and international guidelines. Knowledge of a person's ω-3 LCPUFA status will benefit the interpretation of research results and could be expected to lead to an increased effort to increase intake. Dietary intake survey methods are often used as a surrogate for measuring ω-3 PUFA tissue status and its impact on health and functional outcomes. However, because individuals vary widely in their ability to digest and absorb ω-3 PUFA, analytical testing of biological samples is desirable to accurately evaluate ω-3 PUFA status. Adipose tissue is the reference biospecimen for measuring tissue fatty acids, but less-invasive methods, such as measurements in whole blood or its components (e.g., plasma, serum, red blood cell membranes) or breast milk are often used. Numerous commercial laboratories provide fatty acid testing of blood and breast milk samples by different methods and present their results in a variety of reports such as a full fatty acid profile, ω-3 and ω-6 fatty acid profiles, fatty acid ratios, as well as the Omega-3 Index, the Holman Omega-3 Test, OmegaScore, and OmegaCheck, among others. This narrative review provides information about the different ways to measure ω-3 LCPUFA status (including both dietary assessments and selected commercially available analytical tests of blood and breast milk samples) and discusses evidence linking increased ω-3 LCPUFA intake or status to improved health, focusing on cardiovascular, neurological, pregnancy, and eye health, in support of recommendations to increase ω-3 LCPUFA intake and testing.
Collapse
Affiliation(s)
| | | | | | - Kevin C Maki
- Midwest Biomedical Research, Addison, IL, United States; Indiana University School of Public Health, Bloomington, IN, United States.
| |
Collapse
|
2
|
Liu H, Wang F, Xia H, Pan D, Yang L, Wang S, Zhao F, Sun G. Comparison of the effects of 3 kinds of oils rich in omega-3 polyunsaturated fatty acids on glycolipid metabolism and lipoprotein subfractions. FOOD SCIENCE AND HUMAN WELLNESS 2023; 12:2221-2231. [DOI: 10.1016/j.fshw.2023.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2024]
|
3
|
Kim CY, Larsen HJ, Spitalnik SL, Hod EA, Francis RO, Hudson KE, Gordy DE, Stone EF, Peltier S, Amireault P, D’Alessandro A, Zimring JC, Buehler PW, Fu X, Thomas T. Low-Dose Dietary Fish Oil Improves RBC Deformability without Improving Post-Transfusion Recovery in Mice. Nutrients 2023; 15:4456. [PMID: 37892532 PMCID: PMC10610231 DOI: 10.3390/nu15204456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFAs) are important modulators of red blood cell (RBC) rheology. Dietary LC-PUFAs are readily incorporated into the RBC membrane, improving RBC deformability, fluidity, and hydration. Female C57BL/6J mice consumed diets containing increasing amounts of fish oil (FO) ad libitum for 8 weeks. RBC deformability, filterability, and post-transfusion recovery (PTR) were evaluated before and after cold storage. Lipidomics and lipid peroxidation markers were evaluated in fresh and stored RBCs. High-dose dietary FO (50%, 100%) was associated with a reduction in RBC quality (i.e., in vivo lifespan, deformability, lipid peroxidation) along with a reduced 24 h PTR after cold storage. Low-dose dietary FO (6.25-12.5%) improved the filterability of fresh RBCs and reduced the lipid peroxidation of cold-stored RBCs. Although low doses of FO improved RBC deformability and reduced oxidative stress, no improvement was observed for the PTR of stored RBCs. The improvement in RBC deformability observed with low-dose FO supplementation could potentially benefit endurance athletes and patients with conditions resulting from reduced perfusion, such as peripheral vascular disease.
Collapse
Affiliation(s)
- Christopher Y. Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY 10032, USA
| | | | - Steven L. Spitalnik
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Eldad A. Hod
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Richard O. Francis
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Krystalyn E. Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Dominique E. Gordy
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Elizabeth F. Stone
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Sandy Peltier
- Biologie Intégrée du Globule Rouge, Institut National de la Santé et de la Recherche Médicale, Université Paris Cité et Université des Antilles, 75014 Paris, France
| | - Pascal Amireault
- Biologie Intégrée du Globule Rouge, Institut National de la Santé et de la Recherche Médicale, Université Paris Cité et Université des Antilles, 75014 Paris, France
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Institut Imagine, INSERM, Université Paris Cité, 75005 Paris, France
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - James C. Zimring
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Paul W. Buehler
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xiaoyun Fu
- Bloodworks Research Institute, Seattle, WA 98102, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Tiffany Thomas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY 10032, USA
| |
Collapse
|
4
|
Razquin C, Ruiz-Canela M, Wernitz A, Toledo E, Corella D, Alonso-Gómez Á, Fitó M, Gómez-Gracia E, Estruch R, Fiol M, Lapetra J, Serra-Majem L, Ros E, Arós F, Salas-Salvadó J, Schulze MB, Martinez-Gonzalez MA. Effects of Supplemented Mediterranean Diets on Plasma-Phospholipid Fatty Acid Profiles and Risk of Cardiovascular Disease after 1 Year of Intervention in the PREDIMED Trial. Clin Chem 2023; 69:283-294. [PMID: 36683466 DOI: 10.1093/clinchem/hvac221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/09/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Plasma fatty acids (FAs) have been associated with cardiovascular disease (CVD) risk. Diet and endogenous metabolism influence the FA profile of the plasma phospholipid (PL) fraction. In the PREDIMED trial, we examined 1-year changes in the FA profile of plasma PL according to a nutritional intervention with Mediterranean diets, either supplemented with extra-virgin olive oil (MedDiet + EVOO) or mixed nuts (MedDiet + nuts), in a high cardiovascular risk population. We also analyzed if 1-year changes in PL FAs were associated with subsequent cardiovascular risk. METHODS We included 779 participants in our case-cohort study: 185 incident cases and 594 participants in the subcohort (including 31 overlapping cases). The end point was the incidence of CVD. We measured the FAs of plasma PL at baseline and after 1 year of intervention. RESULTS MedDiet + EVOO increased C17:0 and C20:3n9 in linear regression models [β coefficientperSD : 0.215 (95% CI, 0.032-0.399) and 0.271 (0.107-0.434), respectively] and decreased 16:1n7 and C22:4n6 [βperSD: -0.239 (95% CI, -0.416 to -0.061) and -0.287 (95% CI, -0.460 to -0.113), respectively] vs the control group. MedDiet + nuts increased C18:3n3 [βperSD: 0.382 (95% CI, 0.225 - 0.539)], C18:2n6 [βper SD: 0.250 (95% CI, 0.073 - 0.428)], C18:0 [βperSD: 0.268 (95% CI, 0.085-0.452)], and C22:0 [βper SD: 0.216 (95% CI, 0.031-0.402)]; and decreased the sum of six n6 FAs [βper SD: -0.147 (95% CI, -0.268 to -0.027)] vs the control group. The 1-year increase in C18:2n6 was inversely associated with the subsequent CVD risk (HRperSD: 0.64 (95% CI, 0.44-0.92)). CONCLUSIONS MedDiet interventions changed n6 FAs and C16:1n7c; other changes were specific for each group: MedDiet + EVOO increased C17:0 and C20:3n9, and MedDiet + Nuts C18:3n3, C18:2n6, C18:0, and C22:0 FAs.
Collapse
Affiliation(s)
- Cristina Razquin
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Ruiz-Canela
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Andreas Wernitz
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Estefania Toledo
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Dolores Corella
- Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine, Universidad de Valencia, Valencia, Spain
| | - Ángel Alonso-Gómez
- Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, Hospital Universitario de Álava, Vitoria, Spain
| | - Montse Fitó
- Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Enrique Gómez-Gracia
- Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology, Virgen de la Victoria Hospital, Biomedical Research Institute of Málaga, University of Málaga, Málaga, Spain
| | - Ramón Estruch
- Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Hospital Clinic, Institut d'Investigacions Biomèdiques Augist Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Miquel Fiol
- Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Hospital Son Espases, Palma de Mallorca, Spain
| | - José Lapetra
- Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Family Medicine-Research Unit, Distrito Sanitario Atención Primaria Sevilla, Sevilla, Spain
| | - Lluis Serra-Majem
- Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Emilio Ros
- Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Lipid Clinic, Department of Endocrinology and Nutrition, Agust Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Fernando Arós
- Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, Hospital Universitario de Álava, Vitoria, Spain
| | - Jordi Salas-Salvadó
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Unitat de Nutrició Humana, Departament de Bioquimica i Biotecnologia, Universitat Rovira i Virgili, Reus, Spain
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Unit of Cardiovascular Risk and Nutrition, German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Miguel A Martinez-Gonzalez
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, USA
| |
Collapse
|
5
|
Seufert AL, Hickman JW, Traxler SK, Peterson RM, Waugh TA, Lashley SJ, Shulzhenko N, Napier RJ, Napier BA. Enriched dietary saturated fatty acids induce trained immunity via ceramide production that enhances severity of endotoxemia and clearance of infection. eLife 2022; 11:e76744. [PMID: 36264059 PMCID: PMC9642993 DOI: 10.7554/elife.76744] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Trained immunity is an innate immune memory response that is induced by a primary inflammatory stimulus that sensitizes monocytes and macrophages to a secondary pathogenic challenge, reprogramming the host response to infection and inflammatory disease. Dietary fatty acids can act as inflammatory stimuli, but it is unknown if they can act as the primary stimuli to induce trained immunity. Here we find mice fed a diet enriched exclusively in saturated fatty acids (ketogenic diet; KD) confer a hyper-inflammatory response to systemic lipopolysaccharide (LPS) and increased mortality, independent of diet-induced microbiome and hyperglycemia. We find KD alters the composition of the hematopoietic stem cell compartment and enhances the response of bone marrow macrophages, monocytes, and splenocytes to secondary LPS challenge. Lipidomics identified enhanced free palmitic acid (PA) and PA-associated lipids in KD-fed mice serum. We found pre-treatment with physiologically relevant concentrations of PA induces a hyper-inflammatory response to LPS in macrophages, and this was dependent on the synthesis of ceramide. In vivo, we found systemic PA confers enhanced inflammation and mortality in response to systemic LPS, and this phenotype was not reversible for up to 7 days post-PA-exposure. Conversely, we find PA exposure enhanced clearance of Candida albicans in Rag1-/- mice. Lastly, we show that oleic acid, which depletes intracellular ceramide, reverses PA-induced hyper-inflammation in macrophages and enhanced mortality in response to LPS. These implicate enriched dietary SFAs, and specifically PA, in the induction of long-lived innate immune memory and highlight the plasticity of this innate immune reprogramming by dietary constituents.
Collapse
Affiliation(s)
- Amy L Seufert
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortlandUnited States
| | - James W Hickman
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortlandUnited States
| | - Ste K Traxler
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortlandUnited States
| | - Rachael M Peterson
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortlandUnited States
| | - Trent A Waugh
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortlandUnited States
| | | | - Natalia Shulzhenko
- Department of Biomedical Sciences, Oregon State UniversityCorvallisUnited States
| | - Ruth J Napier
- VA Portland Health Care SystemPortlandUnited States
- Department of Molecular Microbiology and Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Brooke A Napier
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortlandUnited States
| |
Collapse
|
6
|
Yang F, Chen G. The nutritional functions of dietary sphingomyelin and its applications in food. Front Nutr 2022; 9:1002574. [PMID: 36337644 PMCID: PMC9626766 DOI: 10.3389/fnut.2022.1002574] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids are common structural components of cell membranes and are crucial for cell functions in physiological and pathophysiological conditions. Sphingomyelin and its metabolites, such as sphingoid bases, ceramide, ceramide-1-phosphate, and sphingosine-1-phosphate, play signaling roles in the regulation of human health. The diverse structures of sphingolipids elicit various functions in cellular membranes and signal transduction, which may affect cell growth, differentiation, apoptosis, and maintain biological activities. As nutrients, dietary sphingomyelin and its metabolites have wide applications in the food and pharmaceutical industry. In this review, we summarized the distribution, classifications, structures, digestion, absorption and metabolic pathways of sphingolipids, and discussed the nutritional functioning of sphingomyelin in chronic metabolic diseases. The possible implications of dietary sphingomyelin in the modern food preparations including dairy products and infant formula, skin improvement, delivery system and oil organogels are also evaluated. The production of endogenous sphingomyelin is linked to pathological changes in obesity, diabetes, and atherosclerosis. However, dietary supplementations of sphingomyelin and its metabolites have been shown to maintain cholesterol homeostasis and lipid metabolism, and to prevent or treat these diseases. This seemly paradoxical phenomenon shows that dietary sphingomyelin and its metabolites are candidates for food additives and functional food development for the prevention and treatment of chronic metabolic diseases in humans.
Collapse
Affiliation(s)
- Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Fang Yang,
| | - Guoxun Chen
- Department of Nutrition, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
7
|
Giuffrida F, Fleith M, Goyer A, Samuel TM, Elmelegy-Masserey I, Fontannaz P, Cruz-Hernandez C, Thakkar SK, Monnard C, De Castro CA, Lavalle L, Rakza T, Agosti M, Al-Jashi I, Pereira AB, Costeira MJ, Marchini G, Vanpee M, Stiris T, Stoicescu S, Silva MG, Picaud JC, Martinez-Costa C, Domellöf M, Billeaud C. Human milk fatty acid composition and its association with maternal blood and adipose tissue fatty acid content in a cohort of women from Europe. Eur J Nutr 2022; 61:2167-2182. [PMID: 35072787 PMCID: PMC9106604 DOI: 10.1007/s00394-021-02788-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Human milk (HM) composition is influenced by factors, like maternal diet and body stores, among other factors. For evaluating the influence of maternal fatty acid (FA) status on milk FA composition, the correlation between FA content in HM and in maternal plasma, erythrocytes, and adipose tissue was investigated. METHODS 223 European women who delivered at term, provided HM samples over first four months of lactation. Venous blood and adipose tissue (only from mothers who consented and underwent a C-section delivery) were sampled at delivery. FAs were assessed in plasma, erythrocytes, adipose tissue, and HM. Evolution of HM FAs over lactation and correlations between FA content in milk and tissues and between mother's blood and cord blood were established. RESULTS During lactation, arachidonic acid (ARA) and docosahexaenoic acid (DHA) significantly decreased, while linoleic acid (LA), alpha-linolenic acid (ALA), and eicosapentaenoic acid (EPA) remained stable. Positive correlations were observed between HM and adipose tissue for palmitic, stearic, oleic, and polyunsaturated fatty acids (PUFAs). Correlations were found between milk and plasma for oleic, LA, ARA, ALA, DHA, monounsaturated fatty acids (MUFAs), and PUFAs. No correlation was observed between erythrocytes and HM FAs. LA and ALA were more concentrated in maternal blood than in infant blood, contrary to ARA and DHA, supporting that biomagnification of LCPUFAs may have occurred during pregnancy. CONCLUSIONS These data show that maternal adipose tissue rather than erythrocytes may serve as reservoir of PUFAs and LCPUFAs for human milk. Plasma also supplies PUFAs and LCPUFAs to maternal milk. If both, adipose tissue and plasma PUFAs, are reflection of dietary intake, it is necessary to provide PUFAs and LCPUFAs during pregnancy or even before conception and lactation to ensure availability for mothers and enough supply for the infant via HM.
Collapse
Affiliation(s)
| | - Mathilde Fleith
- Nestlé Research, Vers-chez les-Blanc, 1000 Lausanne 26, Switzerland
| | - Amélie Goyer
- Nestlé Research, Vers-chez les-Blanc, 1000 Lausanne 26, Switzerland
| | - Tinu Mary Samuel
- Nestlé Product Technology Center-Nutrition, Société des Produits Nestlé S.A., 1800 Vevey, Switzerland
| | | | - Patric Fontannaz
- Nestlé Research, Vers-chez les-Blanc, 1000 Lausanne 26, Switzerland
| | | | | | | | | | - Luca Lavalle
- Nestlé Research, Vers-chez les-Blanc, 1000 Lausanne 26, Switzerland
| | - Thameur Rakza
- Centre d’Investigation Clinique de Lille, Hôpital Jeanne de Flandre, 59777 Lille, France
| | | | | | | | | | | | | | | | | | | | - Jean-Charles Picaud
- Hospices Civils de Lyon, Neonatology, Hôpital de La Croix Rousse, Hospices civils de Lyon, 69004 Lyon, France
- Univ. Lyon, Carmen Laboratory, INSERM, INRA, Université Claude Bernard Lyon 1, 69921 Oullins, France
| | | | - Magnus Domellöf
- Department of Clinical Sciences/Pediatrics, Umeå University, Umeå, Sweden
| | - Claude Billeaud
- Neonatology & Nutrition, CIC Pédiatrique 1401 Inserm, CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
8
|
Ren XL, Liu Y, Chu WJ, Li ZW, Zhang SS, Zhou ZL, Tang J, Yang B. Blood levels of omega-6 fatty acids and coronary heart disease: a systematic review and metaanalysis of observational epidemiology. Crit Rev Food Sci Nutr 2022; 63:7983-7995. [PMID: 35380474 DOI: 10.1080/10408398.2022.2056867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Individual omega-6 polyunsaturated fatty acids (PUFAs), principally linoleic acid (LA) and arachidonic acid (AA), may have differential impacts on cardiovascular risk. We aimed to summarize the up-to-date epidemiology evidence on the relationship between blood levels of omega-6 PUFAs and the risk of coronary heart disease (CHD). Population-based studies determining PUFA levels in blood were identified until May 2021 in PubMed, Embase, Web of Science, and Cochrane Library. Random-effects meta-analyses of cohorts comparing the highest versus lowest category were conducted to combine study-specific risk ratios (RRs) with 95% confidence intervals (CIs). Blood levels of omega-6 PUFAs were compared between the CHD case and non-case, presented as a weight mean difference (WMD). Twenty-one cohorts and eleven case-control studies were included. The WMD was -0.71 (95% CI: -1.20, -0.21) for LA and 0.08 (95% CI: -0.28, 0.43) for AA. LA levels were inversely associated with total CHD risk (RR: 0.85, 95% CI: 0.71, 1.00), but not AA. Each one-SD increase in LA levels resulted in 10% reductions in the risk of fatal CHD (RR: 0.90, 95% CI: 0.86, 0.95), but not in non-fatal CHD. Such findings highlight that the current recommendation for optimal intakes of omega-6 PUFAs (most LA) may offer a coronary benefit in primary prevention.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2056867 .
Collapse
Affiliation(s)
- Xiao-Li Ren
- The Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
- Institute of Lipids Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yang Liu
- The 1st School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Wei-Jie Chu
- The 1st School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Ze-Wang Li
- The 1st School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Shuang-Shuang Zhang
- The 1st School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Zhi-Liang Zhou
- Institute of Lipids Medicine, Wenzhou Medical University, Wenzhou, China
- The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jun Tang
- Institute of Lipids Medicine, Wenzhou Medical University, Wenzhou, China
- Department of Food Science & Nutrition, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Lipids Medicine, Wenzhou Medical University, Wenzhou, China
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Bioaccumulation of Blood Long-Chain Fatty Acids during Hemodialysis. Metabolites 2022; 12:metabo12030269. [PMID: 35323712 PMCID: PMC8949028 DOI: 10.3390/metabo12030269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/01/2023] Open
Abstract
Long-chain fatty acids (LCFAs) serve as energy sources, components of cell membranes, and precursors for signaling molecules. Uremia alters LCFA metabolism so that the risk of cardiovascular events in chronic kidney disease (CKD) is increased. End-stage renal disease (ESRD) patients undergoing dialysis are particularly affected and their hemodialysis (HD) treatment could influence blood LCFA bioaccumulation and transformation. We investigated blood LCFA in HD patients and studied LCFA profiles in vivo by analyzing arterio–venous (A–V) LFCA differences in upper limbs. We collected arterial and venous blood samples from 12 ESRD patients, before and after HD, and analyzed total LCFA levels in red blood cells (RBCs) and plasma by LC–MS/MS tandem mass spectrometry. We observed that differences in arterial and venous LFCA contents within RBCs (RBC LCFA A–V differences) were affected by HD treatment. Numerous saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) n-6 showed negative A–V differences, accumulated during peripheral tissue perfusion of the upper limbs, in RBCs before HD. HD reduced these differences. The omega-3 quotient in the erythrocyte membranes was not affected by HD in either arterial or venous blood. Our data demonstrate that A–V differences in fatty acids status of LCFA are present and active in mature erythrocytes and their bioaccumulation is sensitive to single HD treatment.
Collapse
|
10
|
Richardson CE, Krishnan S, Gray IJ, Keim NL, Newman JW. The Omega-3 Index Response to an 8 Week Randomized Intervention Containing Three Fatty Fish Meals Per Week Is Influenced by Adiposity in Overweight to Obese Women. Front Nutr 2022; 9:810003. [PMID: 35187036 PMCID: PMC8855121 DOI: 10.3389/fnut.2022.810003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/12/2022] [Indexed: 01/13/2023] Open
Abstract
BackgroundThe Dietary Guidelines for Americans (DGA) recommends consuming ~225 g/wk of a variety of seafood providing >1.75 g/wk of long-chain omega-3 fatty acids to reduce cardiovascular disease risk, however individual responses to treatment vary.ObjectiveThis study had three main objectives. First, to determine if a DGA-conforming diet (DGAD), in comparison to a typical American diet (TAD), can increase the omega-3 index (OM3I), i.e., the red blood cell mol% of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA). Second, to identify factors explaining variability in the OM3I response to dietary treatment. Third to identify factors associated with the baseline OM3I.DesignThis is a secondary analysis of a randomized, double-blind 8 wk dietary intervention of overweight/obese women fed an 8d rotating TAD (n = 20) or DGAD (n = 22) registered at www.clinicaltrials.gov as NCT02298725. The DGAD-group consumed 240 g/wk of Atlantic farmed salmon and albacore tuna in three meals with an estimated EPA + DHA of 3.7 ± 0.6 g/wk. The TAD-group consumed ~160 g/wk of farmed white shrimp and a seafood salad containing imitation crab in three meal with an estimated EPA + DHA of 0.45 ± 0.05 g/wk. Habitual diet was determined at baseline, and body composition was determined at 0 and 8wks. Red blood cell fatty acids were measured at 0, 2 and 8 wk.ResultsAt 8 wk, the TAD-group OM3I was unchanged (5.90 ± 1.35–5.80 ± 0.76%), while the DGAD-group OM3I increased (5.63 ± 1.27–7.33 ± 1.36%; p < 0.001). In the DGAD-group 9 of 22 participants achieved an OM3I >8%. Together, body composition and the baseline OM3I explained 83% of the response to treatment variability. Baseline OM3I (5.8 ± 1.3%; n = 42) was negatively correlated to the android fat mass (p = 0.0007) and positively correlated to the FFQ estimated habitual (EPA+DHA) when expressed as a ratio to total dietary fat (p = 0.006).ConclusionsAn 8 wk TAD did not change the OM3I of ~6%, while a DGAD with 240 g/wk of salmon and albacore tuna increased the OM3I. Body fat distribution and basal omega-3 status are primary factors influencing the OM3I response to dietary intake in overweight/obese women.
Collapse
Affiliation(s)
| | - Sridevi Krishnan
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Ira J. Gray
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS) Western Human Nutrition Research Center, Davis, CA, United States
| | - Nancy L. Keim
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS) Western Human Nutrition Research Center, Davis, CA, United States
| | - John W. Newman
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS) Western Human Nutrition Research Center, Davis, CA, United States
- *Correspondence: John W. Newman
| |
Collapse
|
11
|
Kim CY, Johnson H, Peltier S, Spitalnik SL, Hod EA, Francis RO, Hudson KE, Stone EF, Gordy DE, Fu X, Zimring JC, Amireault P, Buehler PW, Wilson RB, D'Alessandro A, Shchepinov MS, Thomas T. Deuterated Linoleic Acid Attenuates the RBC Storage Lesion in a Mouse Model of Poor RBC Storage. Front Physiol 2022; 13:868578. [PMID: 35557972 PMCID: PMC9086239 DOI: 10.3389/fphys.2022.868578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Long-chain polyunsaturated fatty acids (PUFAs) are important modulators of red blood cell (RBC) rheology. Dietary PUFAs are readily incorporated into the RBC membrane, improving RBC deformability, fluidity, and hydration. However, enriching the lipid membrane with PUFAs increases the potential for peroxidation in oxidative environments (e.g., refrigerated storage), resulting in membrane damage. Substitution of bis-allylic hydrogens with deuterium ions in PUFAs decreases hydrogen abstraction, thereby inhibiting peroxidation. If lipid peroxidation is a causal factor in the RBC storage lesion, incorporation of deuterated linoleic acid (DLA) into the RBC membrane should decrease lipid peroxidation, thereby improving RBC lifespan, deformability, filterability, and post-transfusion recovery (PTR) after cold storage. Study Design and Methods: Mice associated with good (C57BL/6J) and poor (FVB) RBC storage quality received diets containing 11,11-D2-LA Ethyl Ester (1.0 g/100 g diet; deuterated linoleic acid) or non-deuterated LA Ethyl Ester (control) for 8 weeks. Deformability, filterability, lipidomics, and lipid peroxidation markers were evaluated in fresh and stored RBCs. Results: DLA was incorporated into RBC membranes in both mouse strains. DLA diet decreased lipid peroxidation (malondialdehyde) by 25.4 and 31% percent in C57 mice and 12.9 and 79.9% in FVB mice before and after cold storage, respectively. In FVB, but not C57 mice, deformability filterability, and post-transfusion recovery were significantly improved. Discussion: In a mouse model of poor RBC storage, with elevated reactive oxygen species production, DLA attenuated lipid peroxidation and significantly improved RBC storage quality.
Collapse
Affiliation(s)
- Christopher Y Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Hannah Johnson
- Bloodworks Research Institute, Seattle, WA, United States
| | - Sandy Peltier
- Institut National de la Transfusion Sanguine, Paris, France
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Eldad A Hod
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Richard O Francis
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Elizabeth F Stone
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Dominique E Gordy
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Xiaoyun Fu
- Bloodworks Research Institute, Seattle, WA, United States
| | - James C Zimring
- University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Pascal Amireault
- Institut National de la Transfusion Sanguine, Paris, France.,X U1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Université de Paris, Paris, France
| | - Paul W Buehler
- University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robert B Wilson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, United States
| | | | - Tiffany Thomas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| |
Collapse
|
12
|
Ooi KLM, Vacy K, Boon WC. Fatty acids and beyond: Age and Alzheimer's disease related changes in lipids reveal the neuro-nutraceutical potential of lipids in cognition. Neurochem Int 2021; 149:105143. [PMID: 34311029 DOI: 10.1016/j.neuint.2021.105143] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/19/2022]
Abstract
Lipids are essential in maintaining brain function, and lipid profiles have been reported to be altered in aged and Alzheimer's disease (AD) brains as compared to healthy mature brains. Both age and AD share common metabolic hallmarks such as increased oxidative stress and perturbed metabolic function, and age remains the most strongly correlated risk factor for AD, a neurodegenerative disease. A major accompanying pathological symptom of these conditions is cognitive impairment, which is linked with changes in lipid metabolism. Thus, nutraceuticals that affect brain lipid metabolism or lipid levels as a whole have the potential to ameliorate cognitive decline. Lipid analyses and lipidomic studies reveal changes in specific lipid types with aging and AD, which can identify potential lipid-based nutraceuticals to restore the brain to a healthy lipid phenotype. The brain lipid profile can be influenced directly with dietary administration of lipids themselves, although because of synergistic effects of nutrients it may be more useful to consider a multi-component diet rather than single nutrient supplementation. Gut microbiota also serve as a source of beneficial lipids, and the value of treatments that manipulate the composition of gut microbiome should not be ignored. Lastly, instead of direct supplementation, compounds that affect pathways involved with lipid metabolism should also be considered as a way of manipulating lipid levels to improve cognition. In this review, we briefly discuss the role of lipids in the brain, the changing lipid profile in AD, current research on lipid-based nutraceuticals and their therapeutic potential to combat cognitive impairment.
Collapse
Affiliation(s)
- Kei-Lin Murata Ooi
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Kristina Vacy
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Wah Chin Boon
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia; School of Biosciences, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
13
|
Lee SM, Son YK, Kim SE, Kim YH, Park Y, An WS. Effect of pravastatin on erythrocyte membrane fatty acid contents in patients with chronic kidney disease. Kidney Res Clin Pract 2021; 40:392-400. [PMID: 34078022 PMCID: PMC8476301 DOI: 10.23876/j.krcp.20.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/21/2021] [Indexed: 12/03/2022] Open
Abstract
Background Statin treatment has decreased the risk of cardiovascular events in patients with chronic kidney disease (CKD). Erythrocyte membrane oleic acid level is higher in patients with acute coronary syndrome. This study aimed to evaluate the effect of pravastatin on the erythrocyte membrane fatty acid (FA) contents in patients with CKD. Methods Sixty-two patients were enrolled from January 2017 to March 2019 (NCT02992548). Pravastatin was initially administered at a dose of 20 mg for 24 weeks. The pravastatin dose was increased to 40 mg after 12 weeks if it was necessary to control dyslipidemia. The primary outcome was change in erythrocyte membrane FA, including oleic acid, after pravastatin treatment for 24 weeks. Results Forty-five patients finished this study, and there was no adverse effect related to pravastatin. Compared with baseline, total cholesterol and low-density lipoprotein cholesterol levels were significantly decreased after pravastatin treatment. Compared with baseline, saturated FA, oleic acid, and arachidonic acid levels were significantly increased and polyunsaturated FA and linoleic acid (LA) levels were significantly decreased after pravastatin treatment. There was also a decrease in eicosapentaenoic acid after pravastatin treatment in CKD patients with estimated glomerular filtration rate < 60 mL/min/1.73 m2. Conclusion Administration of pravastatin in patients with CKD leads to a decrease in FA known to be protective against the risk of CVD. Omega-3 FA or LA supplementation might be necessary to recover changes in erythrocyte membrane FA contents when pravastatin is used for treating dyslipidemia in patients with CKD.
Collapse
Affiliation(s)
- Su Mi Lee
- Department of Internal Medicine, Dong-A University, Busan, Republic of Korea
| | - Young Ki Son
- Department of Internal Medicine, Dong-A University, Busan, Republic of Korea
| | - Seong Eun Kim
- Department of Internal Medicine, Dong-A University, Busan, Republic of Korea
| | - Yeong Hoon Kim
- Department of Internal Medicine, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, Seoul, Republic of Korea
| | - Won Suk An
- Department of Internal Medicine, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
14
|
Monteiro JP, Maciel E, Melo T, Flanagan C, Urbani N, Neves J, Domingues MR. The plasma phospholipidome of Tursiops truncatus: From physiological insight to the design of prospective tools for managed cetacean monitorization. Lipids 2021; 56:461-473. [PMID: 34036588 DOI: 10.1002/lipd.12307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/13/2023]
Abstract
Plasma biochemical analysis remains one of the established ways of monitoring captive marine mammal health. More recently, complementary plasma lipidomic analysis has proven to be a valid tool in disease diagnosis and prevention, with the potential to validate and complement common biochemical analysis, providing a more integrative approach. In this study, we thoroughly characterized the plasma polar lipid content of Tursiops truncatus, the most common cetacean species held under human care. Our results showed that phosphatidylcholine, lysophosphatidylcholine, and sphingomyelins (CerPCho) are the most represented phospholipid classes in T. truncatus plasma. Palmitic, oleic, and stearic acids are the major fatty acid (FA) present esterified to the plasma polar lipids of this species, although some n-3 species are also remarkably present, namely eicosapentaenoic and docosahexaenoic acids. The polar lipidome identified by HILIC LC-MS allowed identifying 304 different lipid species. These species belong to the phosphatidylcholine (103 lipid species), lysophosphatidylcholine (35), phosphatidylethanolamine (71), lysophosphatidylethanolamine (20), phosphatidylglycerol (13), lysophosphatidylglycerol (5), phosphatidylinositol (15), lysophosphatidylinositol (3), phosphatidylserine (6) lysophosphatidylserine (1), and sphimgomyelin (32) classes. This was the first time that the dolphin plasma phospholipid profile was characterized, providing a knowledge that will be important to further understand lipid metabolism and physiological regulation in small cetaceans. Furthermore, this study proved the practicability of the use of plasma lipid profiling for health assessment in marine mammals under human care.
Collapse
Affiliation(s)
- João P Monteiro
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Elisabete Maciel
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | | | | | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
15
|
Influence of Antiplatelet Agents on the Lipid Composition of Platelet Plasma Membrane: A Lipidomics Approach with Ticagrelor and Its Active Metabolite. Int J Mol Sci 2021; 22:ijms22031432. [PMID: 33572690 PMCID: PMC7866994 DOI: 10.3390/ijms22031432] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022] Open
Abstract
Lipids contained in the plasma membrane of platelets play an important role in platelet function. Modifications in the lipid composition can fluidify or rigidify the environment around embedded receptors, in order to facilitate the access of the receptor by the drug. However, data concerning the lipid composition of platelet plasma membrane need to be updated. In addition, data on the impact of drugs on plasma membrane composition, in particular antiplatelet agents, remain sparse. After isolation of platelet plasma membrane, we assessed, using lipidomics, the effect of ticagrelor, a P2Y12 antagonist, and its active metabolite on the lipid composition of these plasma membranes. We describe the exact lipid composition of plasma membrane, including all sub-species. Ticagrelor and its active metabolite significantly increased cholesterol and phosphatidylcholine ether with short saturated acyl chains 16:0/16:0, and decreased phosphatidylcholine, suggesting overall rigidification of the membrane. Furthermore, ticagrelor and its active metabolite decreased some arachidonylated plasmalogens, suggesting a decrease in availability of arachidonic acid from the membrane phospholipids for synthesis of biologically active mediators. To conclude, ticagrelor and its active metabolite seem to influence the lipid environment of receptors embedded in the lipid bilayer and modify the behavior of the plasma membrane.
Collapse
|
16
|
Mouillot T, Rizk M, Pais de Barros JP, Gilloteau A, Busson A, Bernard-Chabert B, Thiefin G, Barraud H, Bronowicki JP, Richou C, Di Martino V, Doffoel M, Minello A, Latournerie M, Jouve JL, Brondel L, Brindisi MC, Petit JM, Hillon P, Cottet V. Fatty acid composition of the erythrocyte membrane and risk of hepatocellular carcinoma in cirrhotic patients. Aliment Pharmacol Ther 2020; 52:1503-1515. [PMID: 32780481 DOI: 10.1111/apt.16022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/05/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Disturbances in fatty acid (FA) metabolism have been reported in cirrhosis, but the role of FAs in the development of hepatocellular carcinoma (HCC) is still unclear. Biomarkers are a promising means to explore the associations between exogenous intake or endogenous production of FAs and cancer risk. AIM To estimate the relationship between fatty acid content in erythrocyte membranes and HCC risk in cirrhotic patients METHODS: The "CiRCE" case-control study recruited cirrhotic patients from six French hospitals between 2008 and 2012. Cases were cirrhotic patients with HCC (n = 349); controls were cirrhotic patients without HCC at inclusion (n = 550). FA composition of phospholipids in erythrocyte membranes was determined by high performance gas chromatography. Odds ratios for HCC risk according to FA concentrations were estimated with multivariable logistic regression. RESULTS HCC patients were older and more often men (P < 0.001). In both groups, saturated FAs represented more than 39% of all FAs in erythrocyte membranes, mono-unsaturated FAs around 14%, and polyunsaturated FAs around 46%. High levels of C15:0 + C17:0, C20:1 n-9, C18:2 n-6 and C20:2 n-6 were associated with higher risk of HCC. The levels of C18:0 and C20:4 n-6 were lower in HCC cases than in controls. CONCLUSIONS The FA composition of erythrocyte membranes differed according to the presence of HCC with higher levels of saturated FAs, linoleic and eicosadienoic acids, and lower levels of stearic and arachidonic acids. These alterations may reflect particular dietary patterns and/or altered FA metabolism. Further investigations are warranted.
Collapse
|
17
|
Nakharuthai C, Rodrigues PM, Schrama D, Kumkhong S, Boonanuntanasarn S. Effects of Different Dietary Vegetable Lipid Sources on Health Status in Nile Tilapia ( Oreochromis niloticus): Haematological Indices, Immune Response Parameters and Plasma Proteome. Animals (Basel) 2020; 10:E1377. [PMID: 32784430 PMCID: PMC7460521 DOI: 10.3390/ani10081377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
This study aimed to investigate the effects of DLs, including palm oil (PO; an SFAs), linseed oil (LO; n-3 PUFAs) and soybean oil (SBO; n-6 PUFAs) on the health status of Nile tilapia (Oreochromis niloticus) during adulthood. Three experimental diets incorporating PO, LO or SBO were fed to adult Nile tilapia for a period of 90 days, and haematological and innate immune parameters were evaluated. Proteome analysis was also conducted to evaluate the effects of DLs on plasma proteins. The tested DLs had no significant effects on red blood cell (RBC) count, haematocrit, haemoglobin, and total immunoglobulin and lysozyme activity. Dietary LO led to increased alternative complement 50 activity (ACH50), and proteome analysis revealed that PO and SBO enhanced A2ML, suggesting that different DLs promote immune system via different processes. Dietary LO or SBO increased the expression of several proteins involved in coagulation activity such as KNG1, HRG and FGG. Increased HPX in fish fed with PO suggests that SFAs are utilised in heme lipid-oxidation. Overall, DLs with distinct fatty acids (FAs) affect several parameters corresponding to health status in Nile tilapia, and dietary LO and SBO seemed to strengthen health in this species.
Collapse
Affiliation(s)
- Chatsirin Nakharuthai
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand; (C.N.); (S.K.)
| | - Pedro M. Rodrigues
- Universidade do Algarve, Centro de Ciências do Mar do Algarve (CCMAR), Campus de Gambelas, Edificio 7, 8005-139 Faro, Portugal; (P.M.R.); (D.S.)
| | - Denise Schrama
- Universidade do Algarve, Centro de Ciências do Mar do Algarve (CCMAR), Campus de Gambelas, Edificio 7, 8005-139 Faro, Portugal; (P.M.R.); (D.S.)
| | - Suksan Kumkhong
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand; (C.N.); (S.K.)
| | - Surintorn Boonanuntanasarn
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand; (C.N.); (S.K.)
| |
Collapse
|
18
|
Lipets EN, Antonova OA, Shustova ON, Losenkova KV, Mazurov AV, Ataullakhanov FI. Use of Thrombodynamics for revealing the participation of platelet, erythrocyte, endothelial, and monocyte microparticles in coagulation activation and propagation. PLoS One 2020; 15:e0227932. [PMID: 32469873 PMCID: PMC7259734 DOI: 10.1371/journal.pone.0227932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 05/13/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND OBJECTIVE For many pathological states, microparticles are supposed to be one of the causes of hypercoagulation. Although there are some indirect data about microparticles participation in coagulation activation and propagation, the integral hemostasis test Thrombodynamics allows to measure micropaticles participation in these two coagulation phases directly. Demonstrates microparticles participation in coagulation activation by influence on the appearance of coagulation centres in the plasma volume and the rate of clot growth from the surface with immobilized tissue factor.Methods: Microparticles were obtained from platelets and erythrocytes by stimulation with thrombin receptor-activating peptide (SFLLRN) and calcium ionophore (A23187), respectively, from monocytes, endothelial HUVEC culture and monocytic THP cell culture by stimulation with lipopolysaccharides. Microparticles were counted by flow cytometry and titrated in microparticle-depleted normal plasma in the Thrombodynamics test. RESULTS Monocyte microparticles induced the appearance of clotting centres through the TF pathway at concentrations approximately 100-fold lower than platelet and erythrocyte microparticles, which activated plasma by the contact pathway. For endothelial microparticles, both activation pathways were essential, and their activity was intermediate. Monocyte microparticles induced plasma clotting by the appearance of hundreds of clots with an extremely slow growth rate, while erythrocyte microparticles induced the appearance of a few clots with a growth rate similar to that from surface covered with high-density tissue factor. Patterns of clotting induced by platelet and endothelial microparticles were intermediate. Platelet, erythrocyte and endothelial microparticles impacts on the rate of clot growth from the surface with tissue factor did not differ significantly within the 0-200·103/ul range of microparticles concentrations. However, at concentrations greater than 500·103/ul, erythrocyte microparticles increased the stationary clot growth rate to significantly higher levels than do platelet microparticles or artificial phospholipid vesicles consisting of phosphatidylcholine and phosphatidylserine. CONCLUSION Microparticles of different origins demonstrated qualitatively different characteristics related to coagulation activation and propagation.
Collapse
Affiliation(s)
- E. N. Lipets
- Department of Biophysics, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russian Federation
| | - O. A. Antonova
- Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Russian Ministry of Health, Moscow, Russian Federation
| | - O. N. Shustova
- Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Russian Ministry of Health, Moscow, Russian Federation
| | - K. V. Losenkova
- Medicity Research Laboratory, University of Turku, Turku, Finland
| | - A. V. Mazurov
- Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Russian Ministry of Health, Moscow, Russian Federation
| | - F. I. Ataullakhanov
- Department of Biophysics, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russian Federation
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| |
Collapse
|
19
|
Weijers RNM. Fundamentals about onset and progressive disease character of type 2 diabetes mellitus. World J Diabetes 2020; 11:165-181. [PMID: 32477453 PMCID: PMC7243486 DOI: 10.4239/wjd.v11.i5.165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 04/08/2020] [Indexed: 02/05/2023] Open
Abstract
ResearchGate is a world wide web for scientists and researchers to share papers, ask and answer questions, and find collaborators. As one of the more than 15 million members, the author uploads research output and reads and responds to some of the questions raised, which are related to type 2 diabetes. In that way, he noticed a serious gap of knowledge of this disease among medical professionals over recent decades. The main aim of the current study is to remedy this situation through providing a comprehensive review on recent developments in biochemistry and molecular biology, which can be helpful for the scientific understanding of the molecular nature of type 2 diabetes. To fill up the shortcomings in the curricula of medical education, and to familiarize the medical community with a new concept of the onset of type 2 diabetes, items are discussed like: Insulin resistance, glucose effectiveness, insulin sensitivity, cell membranes, membrane flexibility, unsaturation index (UI; number of carbon-carbon double bonds per 100 acyl chains of membrane phospholipids), slow-down principle, effects of temperature acclimation on phospholipid membrane composition, free fatty acids, energy transport, onset of type 2 diabetes, metformin, and exercise. Based on the reviewed data, a new model is presented with proposed steps in the development of type 2 diabetes, a disease arising as a result of a hypothetical hereditary anomaly, which causes hyperthermia in and around the mitochondria. Hyperthermia is counterbalanced by the slow-down principle, which lowers the amount of carbon-carbon double bonds of membrane phospholipid acyl chains. The accompanying reduction in the UI lowers membrane flexibility, promotes a redistribution of the lateral pressure in cell membranes, and thereby reduces the glucose transporter protein pore diameter of the transmembrane glucose transport channel of all Class I GLUT proteins. These events will set up a reduction in transmembrane glucose transport. So, a new blood glucose regulation system, effective in type 2 diabetes and its prediabetic phase, is based on variations in the acyl composition of phospholipids and operates independent of changes in insulin and glucose concentration. UI assessment is currently arising as a promising analytical technology for a membrane flexibility analysis. An increase in mitochondrial heat production plays a pivotal role in the existence of this regulation system.
Collapse
Affiliation(s)
- Rob NM Weijers
- Teaching Hospital, Onze Lieve Vrouwe Gasthuis, Amsterdam 1090, Netherlands
| |
Collapse
|
20
|
Visioli F, Davalos A, López de las Hazas M, Crespo MC, Tomé‐Carneiro J. An overview of the pharmacology of olive oil and its active ingredients. Br J Pharmacol 2020; 177:1316-1330. [PMID: 31270815 PMCID: PMC7056466 DOI: 10.1111/bph.14782] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
Abstract
In addition to providing sensory stimuli, usually taste, smell and sight, olive oil contains a range of minor components, mostly phenolic in nature. These components are endowed with pharmacological or pharma‐nutritional properties that are the subject of active research worldwide. Based on our more than 25 years of experience in this field, we critically focus on what we believe are the most pharmacologically prominent actions of the constituents of olive oil. Most of the effects are due to the phenolic compounds in extra virgin olive oil, such as hydroxytyrosol and oleocanthal (which are often mis‐categorized as in vivo antioxidants) and concern the cardiovascular system. Other potentially beneficial activities are still to be investigated in depth. We conclude that—in the context of a proper diet that includes high‐quality products—the use of high‐quality olive oil contributes to achieving and sustaining overall health.Linked ArticlesThis article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc
Collapse
Affiliation(s)
- Francesco Visioli
- Laboratory of Functional FoodsInstituto Madrileño de Estudios Avanzados (IMDEA)‐Alimentación, CEI UAM+CSICMadridSpain
- Department of Molecular MedicineUniversity of PadovaPadovaItaly
| | - Alberto Davalos
- Laboratory of Epigenetics of Lipid MetabolismInstituto Madrileño de Estudios Avanzados (IMDEA)‐Alimentación, CEI UAM+CSICMadridSpain
| | - María‐Carmen López de las Hazas
- Laboratory of Epigenetics of Lipid MetabolismInstituto Madrileño de Estudios Avanzados (IMDEA)‐Alimentación, CEI UAM+CSICMadridSpain
| | - María Carmen Crespo
- Laboratory of Functional FoodsInstituto Madrileño de Estudios Avanzados (IMDEA)‐Alimentación, CEI UAM+CSICMadridSpain
| | - Joao Tomé‐Carneiro
- Laboratory of Functional FoodsInstituto Madrileño de Estudios Avanzados (IMDEA)‐Alimentación, CEI UAM+CSICMadridSpain
| |
Collapse
|
21
|
Girelli D, Lupo A, Trevisan MT, Olivieri O, Bernich P, Zorzan P, Bassi A, Stanzial AM, Ferrari S, Corrocher R. Red Blood Cell Susceptibility to Lipid Peroxidation, Membrane Lipid Composition, and Antioxidant Enzymes in Continuous Ambulatory Peritoneal Dialysis Patients. Perit Dial Int 2020. [DOI: 10.1177/089686089201200204] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
ObjectiveTo investigate the overall susceptibility of red blood cells (RBC) to lipid peroxidation from patients on continuous ambulatory peritoneal dialysis (CAPD).MethodsThe following parameters were measured: RBC malondialdehyde (MDA) production after oxidative stress with H2O2, RBC antioxidant enzymes glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), and RBC membrane lipid composition. The levels of plasma vitamin E and serum selenium were also as sayed.PatientsEleven patients on continuous ambulatory peritoneal dialysis. Twenty-one healthy blood donors of similar age were used as normal controls.ResultsThe MDA formation after H2O2 stimulation was normal in CAPD patients (0.79±0.1 μmol/gHb versus 0.78±0.1 in the control group). RBC from CAPD patients also showed a normal SOD activity, a more than adequate vitamin E status, and a peculiar pattern of membrane lipids, with reduced polyunsaturated fatty acids (p<0.001) and increased monounsaturated fatty acids (p<0.001). Both RBC GSH-Px activity, a selenium-dependent enzyme, and serum selenium levels were significantly lower in CAPD patients, and a significant positive correlation (r=0.68; p<0.02) between the two parameters was found.ConclusionsThis study found a normal sensitivity to oxidant stress in RBC from a group of CAPD patients, despite an impaired GSH-Px activity. The peculiar lipid pattern of RBC membrane, characterized by reduced PUFA and increased MUFA content, may contribute, in addition to adequate SOD activity and vitamin E status, to normal RBC lipid peroxidation.
Collapse
Affiliation(s)
| | - Antonio Lupo
- Institute of Medical Pathology, Medical Nephrology, University of Verona, Italy
| | | | | | - Patrizia Bernich
- Institute of Medical Pathology, Medical Nephrology, University of Verona, Italy
| | - Paola Zorzan
- Institute of Clinical Chemistry, University of Verona, Italy
| | - Antonella Bassi
- Institute of Clinical Chemistry, University of Verona, Italy
| | | | - Silvana Ferrari
- Institute of Clinical Chemistry, University of Verona, Italy
| | | |
Collapse
|
22
|
Gong H, Zhang J, Hu X, Li Z, Fa K, Liu H, Waigh TA, McBain A, Lu JR. Hydrophobic Control of the Bioactivity and Cytotoxicity of de Novo-Designed Antimicrobial Peptides. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34609-34620. [PMID: 31448889 DOI: 10.1021/acsami.9b10028] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antimicrobial peptides (AMPs) can target bacterial membranes and kill bacteria through membrane structural damage and cytoplasmic leakage. A group of surfactant-like cationic AMPs was developed from substitutions to selective amino acids in the general formula of G(IIKK)3I-NH2, (called G3, a de novo AMP), to explore the correlation between AMP hydrophobicity and bioactivity. A threshold surface pressure over 12 mN/m was required to cause measurable antimicrobial activity and this corresponded to a critical AMP concentration. Greater surface activity exhibited stronger antimicrobial activity but had the drawback of worsening hemolytic activity. Small unilamellar vesicles (SUVs) with specific lipid compositions were used to model bacterial and host mammalian cell membranes by mimicking the main structural determinants of the charge and composition. Leakage from the SUVs of encapsulated carboxyfluorescein measured by fluorescence spectroscopy indicated a negative correlation between hydrophobicity and model membrane selectivity, consistent with measurements of the zeta potential that demonstrated the extent of AMP binding onto model SUV lipid bilayers. Experiments with model lipid membranes thus explained the trend of minimum inhibitory concentrations and selectivity measured from real cell systems and demonstrated the dominant influence of hydrophobicity. This work provides useful guidance for the improvement of the potency of AMPs via structural design, whilst taking due consideration of cytotoxicity.
Collapse
|
23
|
van der Laan T, Kloots T, Beekman M, Kindt A, Dubbelman AC, Harms A, van Duijn CM, Slagboom PE, Hankemeier T. Fast LC-ESI-MS/MS analysis and influence of sampling conditions for gut metabolites in plasma and serum. Sci Rep 2019; 9:12370. [PMID: 31451722 PMCID: PMC6710273 DOI: 10.1038/s41598-019-48876-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022] Open
Abstract
In the past few years, the gut microbiome has been shown to play an important role in various disorders including in particular cardiovascular diseases. Especially the metabolite trimethylamine-N-oxide (TMAO), which is produced by gut microbial metabolism, has repeatedly been associated with an increased risk for cardiovascular events. Here we report a fast liquid chromatography tandem mass spectrometry (LC-MS/MS) method that can analyze the five most important gut metabolites with regards to TMAO in three minutes. Fast liquid chromatography is unconventionally used in this method as an on-line cleanup step to remove the most important ion suppressors leaving the gut metabolites in a cleaned flow through fraction, also known as negative chromatography. We compared different blood matrix types to recommend best sampling practices and found citrated plasma samples demonstrated lower concentrations for all analytes and choline concentrations were significantly higher in serum samples. We demonstrated the applicability of our method by investigating the effect of a standardized liquid meal (SLM) after overnight fasting of 25 healthy individuals on the gut metabolite levels. The SLM did not significantly change the levels of gut metabolites in serum.
Collapse
Affiliation(s)
- Tom van der Laan
- Analytical Biosciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Tim Kloots
- Analytical Biosciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands
- BioMedical Metabolomics Facility Leiden, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Marian Beekman
- Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Alida Kindt
- Analytical Biosciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Anne-Charlotte Dubbelman
- Analytical Biosciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Amy Harms
- Analytical Biosciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands
- BioMedical Metabolomics Facility Leiden, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, 3015 GE, The Netherlands
| | - P Eline Slagboom
- Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Thomas Hankemeier
- Analytical Biosciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands.
- BioMedical Metabolomics Facility Leiden, Leiden University, Leiden, 2333 CC, The Netherlands.
| |
Collapse
|
24
|
Bestard-Escalas J, Maimó-Barceló A, Pérez-Romero K, Lopez DH, Barceló-Coblijn G. Ins and Outs of Interpreting Lipidomic Results. J Mol Biol 2019; 431:5039-5062. [PMID: 31422112 DOI: 10.1016/j.jmb.2019.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Membrane lipids are essential for life; however, research on how cells regulate cell lipid composition has been falling behind for quite some time. One reason was the difficulty in establishing analytical methods able to cope with the cell lipid repertoire. Development of a diversity of mass spectrometry-based technologies, including imaging mass spectrometry, has helped to demonstrate beyond doubt that the cell lipidome is not only greatly cell type dependent but also highly sensitive to any pathophysiological alteration such as differentiation or tumorigenesis. Interestingly, the current popularization of metabolomic studies among numerous disciplines has led many researchers to rediscover lipids. Hence, it is important to underscore the peculiarities of these metabolites and their metabolism, which are both radically different from protein and nucleic acid metabolism. Once differences in lipid composition have been established, researchers face a rather complex scenario, to investigate the signaling pathways and molecular mechanisms accounting for their results. Thus, a detail often overlooked, but of crucial relevance, is the complex networks of enzymes involved in controlling the level of each one of the lipid species present in the cell. In most cases, these enzymes are redundant and promiscuous, complicating any study on lipid metabolism, since the modification of one particular lipid enzyme impacts simultaneously on many species. Altogether, this review aims to describe the difficulties in delving into the regulatory mechanisms tailoring the lipidome at the activity, genetic, and epigenetic level, while conveying the numerous, stimulating, and sometimes unexpected research opportunities afforded by this type of studies.
Collapse
Affiliation(s)
- Joan Bestard-Escalas
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Albert Maimó-Barceló
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Karim Pérez-Romero
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Daniel H Lopez
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Gwendolyn Barceló-Coblijn
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain.
| |
Collapse
|
25
|
Omega-3 Fatty Acids Survey in Men under Active Surveillance for Prostate Cancer: from Intake to Prostate Tissue Level. Nutrients 2019; 11:nu11071616. [PMID: 31315273 PMCID: PMC6683032 DOI: 10.3390/nu11071616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 01/05/2023] Open
Abstract
Dietary omega-3 fatty acids (ω3), particularly long-chain ω3 (LCω3), have protective effects against prostate cancer (PCa) in experimental studies. Observational studies are conflicting, possibly because of the biomarker used. This study aimed at evaluating associations between grade reclassification and ω3 levels assessed in prostatic tissue, red blood cells (RBC), and diet. We conducted a validation cross-sectional study nested within a phase II clinical trial. We identified 157 men diagnosed with low-risk PCa who underwent a first active surveillance repeat prostate biopsy session. Fatty acid (FA) intake was assessed using a food frequency questionnaire and their levels measured in prostate tissue and RBC. Associations were evaluated using logistic regression. At first repeat biopsy session, 39 (25%) men had high-grade PCa (grade group ≥2). We found that high LCω3-eicosapentaenoic acid (EPA) level in prostate tissue (odds ratio (OR) 0.25; 95% (confidence interval (CI) 0.08–0.79; p-trend = 0.03) was associated with lower odds of high-grade PCa. Similar results were observed for LCω3 dietary intake (OR 0.30; 95% CI 0.11-0.83; p-trend = 0.02) but no association for RBC. LCω3-EPA levels in the target prostate tissue are inversely associated with high-grade PCa in men with low-risk PCa, supporting that prostate tissue FA, but not RBC FA, is a reliable biomarker of PCa risk.
Collapse
|
26
|
Cho Y, Woo JH, Kwon OS, Yoon SS, Son J. Alterations in phospholipid profiles of erythrocytes deep-frozen without cryoprotectants. Drug Test Anal 2019; 11:1231-1237. [PMID: 30950199 DOI: 10.1002/dta.2600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 11/09/2022]
Abstract
The erythrocyte membrane is composed of a phospholipid bilayer, which is known to undergo physicochemical changes during storage at low temperatures. This study was conducted to identify marker phospholipids that indicate alteration during deep-frozen storage and to determine the amount of marker phospholipids. Our research suggested a method to detect phospholipids by profiling analysis of thermally injured red blood cells (RBCs) without protecting agents. Human blood was stored at -80°C for 72 days. The RBC membrane phospholipids were extracted through a modified Bligh and Dyer method. Six selected phospholipids were analyzed and quantified using liquid chromatography-tandem mass spectrometry, and an in vitro model system was developed. The intracellular level of N-nervonoyl-D-erythro-sphingosylphosphorylcholine significantly increased in the thermally injured RBCs, and multiple biomarker candidates were evaluated by profiling analysis and mass spectrometry technology for targeted metabolomics.
Collapse
Affiliation(s)
- Yoeseph Cho
- Doping Control Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, Republic of Korea.,Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Republic of Korea
| | - Ji-Hye Woo
- Doping Control Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, Republic of Korea
| | - Oh-Seung Kwon
- Doping Control Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, Republic of Korea.,Department of Biological Chemistry, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Sang Sun Yoon
- Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Republic of Korea
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, Republic of Korea.,Department of Biological Chemistry, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
27
|
Radziwon A, Cho WJ, Szkotak A, Suh M, MacDonald IM. Crystals and Fatty Acid Abnormalities Are Not Present in Circulating Cells From Choroideremia Patients. Invest Ophthalmol Vis Sci 2019; 59:4464-4470. [PMID: 30193321 DOI: 10.1167/iovs.18-25112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To confirm whether choroideremia (CHM) is a systemic disease characterized by blood lipid abnormalities and crystals found in, or associated with, circulating peripheral blood cells of patients. Methods Peripheral blood samples obtained from three subjects with confirmed mutations in the CHM gene and three age-matched normal controls were processed for transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Fatty acids from plasma of nine male CHM subjects were analyzed and compared to reference values for a sample from a Canadian population. Results Intracellular crystals were not observed in the cells from choroideremia-affected males. No crystals were found adherent to the external plasma membrane of red blood cells. Fatty acid profiles of patients were similar to reference values, with the exception of lower levels of nervonic acid. Conclusions This investigation failed to observe crystals previously reported in peripheral circulating blood cells derived from CHM subjects, and showed no significant fatty acid abnormalities, not supporting the view of CHM as a systemic disease.
Collapse
Affiliation(s)
- Alina Radziwon
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Woo Jung Cho
- Imaging Core Facility, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Artur Szkotak
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Miyoung Suh
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ian M MacDonald
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
28
|
Argov-Argaman N. Symposium review: Milk fat globule size: Practical implications and metabolic regulation. J Dairy Sci 2019; 102:2783-2795. [PMID: 30639008 DOI: 10.3168/jds.2018-15240] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
Abstract
Milk fat globule (MFG) size ranges over 3 orders of magnitude, from less than 200 nm to over 15 µm. The significance of MFG size derives from its tight association with its lipidome and proteome. More specifically, small MFG have relatively higher content of membrane compared with large globules, and this membrane exerts diverse positive health effects, as reported in human and animal studies. In addition, MFG size has industrial significance, as it affects the physicochemical and sensory characteristics of dairy products. Studies on the size regulation of MFG are scarce, mainly because various confounders indirectly affect MFG size. Because MFG size is determined before and during its secretion from mammary epithelial cells, studies on the size regulation of its precursors, the intracellular lipid droplets (LD), have been used as a proxy for understanding the mechanisms controlling MFG size. In this review, we provide evidence for 2 distinct mechanisms regulating LD size in mammary epithelial cells: co-regulation of fat content and triglyceride-synthesis capacity of the cells, and fusion between LD. The latter is controlled by the membrane's polar lipid composition and involves mitochondrial enzymes. Accordingly, this review also discusses MFG size regulation in the in vivo metabolic context, as MFG morphometric features are often modulated under conditions that involve animals' altered energy status.
Collapse
Affiliation(s)
- Nurit Argov-Argaman
- Department of Animal Science, the Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Israel, POB 76100.
| |
Collapse
|
29
|
Nemkov T, Reisz JA, Xia Y, Zimring JC, D’Alessandro A. Red blood cells as an organ? How deep omics characterization of the most abundant cell in the human body highlights other systemic metabolic functions beyond oxygen transport. Expert Rev Proteomics 2018; 15:855-864. [DOI: 10.1080/14789450.2018.1531710] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Aurora, CO, USA
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Aurora, CO, USA
| | - Yang Xia
- Department of Biochemistry, University of Texas Houston – McGovern Medical School , Houston, TX, USA
| | | | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Aurora, CO, USA
| |
Collapse
|
30
|
Kim OY, Lee SM, An WS. Impact of Blood or Erythrocyte Membrane Fatty Acids for Disease Risk Prediction: Focusing on Cardiovascular Disease and Chronic Kidney Disease. Nutrients 2018; 10:E1454. [PMID: 30301276 PMCID: PMC6213250 DOI: 10.3390/nu10101454] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022] Open
Abstract
Fatty acids (FAs) are essential nutrients and main constituents of cell membranes that are involved in the signaling pathway and associated with health conditions. We investigated if blood or erythrocyte membrane FAs can predict the risk of cardiovascular disease (CVD), chronic kidney disease (CKD), and related complications. Omega-3 (n-3) FAs are important predictors for metabolic syndrome, diabetes, CVD, and CKD risks, and the n-3 index is also a good biomarker for sudden cardiac death in coronary artery disease. Linoleic acid, which is one of the major n-6 FAs reflecting recent dietary FA intake, may predict CVD risk and mortality in the general population and patients with CKD. Monounsaturated FAs (MUFAs) are also related to diabetes or diabetic nephropathy. Oleic acid, a major MUFA, is an emerging marker that is related to acute coronary syndrome, low glomerular filtration rate, and vascular calcification in patients with CKD, and can be modified by n-3 FA supplementation. Saturated FAs, trans-FAs, and FA desaturation/elongation are associated with CVD risk; however, few studies have been conducted on patients with CKD. In summary, blood or erythrocyte membrane FA measurements are important for CVD and CKD risk prediction and management. Further studies are needed to elucidate the FAs for their risk predictions.
Collapse
Affiliation(s)
- Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea.
- Center for Silver-targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Busan 49315, Korea.
| | - Su Mi Lee
- Department of Internal Medicine, Dong-A University, Busan 49201, Korea.
| | - Won Suk An
- Department of Internal Medicine, Dong-A University, Busan 49201, Korea.
| |
Collapse
|
31
|
Dugas LR, Lie L, Plange-Rhule J, Bedu-Addo K, Bovet P, Lambert EV, Forrester TE, Luke A, Gilbert JA, Layden BT. Gut microbiota, short chain fatty acids, and obesity across the epidemiologic transition: the METS-Microbiome study protocol. BMC Public Health 2018; 18:978. [PMID: 30081857 PMCID: PMC6090745 DOI: 10.1186/s12889-018-5879-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/24/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND While some of the variance observed in adiposity and weight change within populations can be accounted for by traditional risk factors, a new factor, the gut microbiota, has recently been associated with obesity. However, the causal mechanisms through which the gut microbiota and its metabolites, short chain fatty acids (SCFAs) influence obesity are unknown, as are the individual obesogenic effects of the individual SCFAs (butyrate, acetate and propionate). This study, METS-Microbiome, proposes to examine the influence of novel risk factors, the gut microbiota and SCFAs, on obesity, adiposity and weight change in an international established cohort spanning the epidemiologic transition. METHODS The parent study; Modeling the Epidemiologic Transition Study (METS) is a well-established and ongoing prospective cohort study designed to assess the association between body composition, physical activity, and relative weight, weight gain and cardiometabolic disease risk in five diverse population-based samples in 2500 people of African descent. The cohort has been prospectively followed since 2009. Annual measures of obesity risk factors, including body composition, objectively measured physical activity and dietary intake, components which vary across the spectrum of social and economic development. In our new study; METS-Microbiome, in addition to continuing yearly measures of obesity risk, we will also measure gut microbiota and stool SCFAs in all contactable participants, and follow participants for a further 3 years, thus providing one of the largest gut microbiota population-based studies to date. DISCUSSION This new study capitalizes upon an existing, extensively well described cohort of adults of African-origin, with significant variability as a result of the widespread geographic distributions, and therefore variation in the environmental covariate exposures. The METS-Microbiome study will substantially advance the understanding of the role gut microbiota and SCFAs play in the development of obesity and provide novel obesity therapeutic targets targeting SCFAs producing features of the gut microbiota. TRIAL REGISTRATION Registered NCT03378765 Date first posted: December 20, 2017.
Collapse
Affiliation(s)
- Lara R. Dugas
- Public Health Sciences, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Avenue, Maywood, IL 60153 USA
| | - Louise Lie
- Public Health Sciences, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Avenue, Maywood, IL 60153 USA
| | - Jacob Plange-Rhule
- Department of Physiology, SMS, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kweku Bedu-Addo
- Department of Physiology, SMS, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Pascal Bovet
- Institute of Social & Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
- Ministry of Health, Republic of Seychelles, Lausanne, Switzerland
| | - Estelle V. Lambert
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Terrence E. Forrester
- Solutions for Developing Countries, University of the West Indies, Mona, Kingston Jamaica
| | - Amy Luke
- Public Health Sciences, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Avenue, Maywood, IL 60153 USA
| | - Jack A. Gilbert
- Microbiome Center, Department of Surgery, University of Chicago, Chicago, IL USA
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL USA
| |
Collapse
|
32
|
Yang B, Ren XL, Wang ZY, Wang L, Zhao F, Guo XJ, Li D. Biomarker of long-chain n-3 fatty acid intake and breast cancer: Accumulative evidence from an updated meta-analysis of epidemiological studies. Crit Rev Food Sci Nutr 2018; 59:3152-3164. [PMID: 29902077 DOI: 10.1080/10408398.2018.1485133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objective: We aimed to summarize the up-to-date epidemiology evidence on biomarkers of long-chain (LC) n-3 fatty acid (FA) intake in relation to breast cancer (BC).Methods: Epidemiology studies determining FA levels in biospecimen (circulating blood or adipose tissue (AT)) were identified from PubMed, EMBASE, and Cochrane Library databases until March 2018. Multivariate-adjusted risk ratios (RRs) with 95% confidence intervals (CIs) were pooled using a random-effect model. Difference in biospecimen proportions of LC n-3 FA between BC cases and non-cases were analyzed as a standardized mean difference (SMD).Results: Thirteen cohort and eleven case-control studies were eligible for the present meta-analysis. The estimated SMD was -0.14 (95% CI: -0.27, -0.11) for LC n-3 FA and -0.27 (95% CI: -0.42, -0.11) for LC n-3/n-6 FA ratio. When comparing the top tertiles with the bottom baseline levels, circulating LC n-3 FA was significantly associated with a lower risk of BC (RR: 0.84, 95% CI: 0.74, 0.96), but not AT (RR: 1.02, 95% CI: 0.70, 1.48). Significant inverse dose-response associations were observed for each 1% increment of circulating 20:5n-3 and 22:6n-3.Conclusion: This meta-analysis highlights that circulating LC n-3 FA as a biomarker of intake may be an independent predictive factor for BC, especially 20:5n-3 and 22:6n-3.
Collapse
Affiliation(s)
- Bo Yang
- Institute of Lipids Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xiao L Ren
- Institute of Lipids Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Zhi Y Wang
- Department of Emergency Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, Tennessee, USA
| | - Feng Zhao
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Xiao J Guo
- Institute of Lipids Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| |
Collapse
|
33
|
Fusconi E, Pala V, Riboli E, Vineis P, Sacerdote C, Del Pezzo M, Santucci de Magistris M, Palli D, Masala G, Sieri S, Foggetti CE, Giurdanella MC, Tumino R, Krogh V. Relationship between Plasma Fatty Acid Composition and Diet over Previous Years in the Italian Centers of the European Prospective Investigation into Cancer and Nutrition (EPIC). TUMORI JOURNAL 2018; 89:624-35. [PMID: 14870827 DOI: 10.1177/030089160308900606] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fatty acid levels in plasma phospholipids were related to food intake over the previous year as estimated by semiquantitative food frequency questionnaires compiled by 280 men and 246 women from the EPIC centers of Varese, Turin, Florence and Ragusa (Italy). Fatty acid content was determined by gas chromatography and analyzed in relation to age, sex and center. The most important finding was that plasma monounsaturated fatty acid levels, mainly oleic acid, were associated with olive oil consumption (r = 0.28 men, r = 0.19 women, both P <0.01). To our knowledge, this is the first time that these nonessential plasma fatty acids have been related to their dietary source in a population eating a varied and freely chosen diet. We confirmed that long-chain n-3 fatty acids in plasma phospholipids are associated with fish consumption and that odd chain 15: 0 and 17: 0 fatty acid levels are associated with dairy products and pizza-with-mozzarella consumption. N-6 polyunsaturated fatty acid levels reflected dietary intake of seed oils, mayonnaise and biscuits. Alcohol intake was positively associated with palmitic and palmitoleic acid and negatively associated with linoleic acid. These associations suggest indirect relations between alcohol consumption and other features of diet, and also that ethanol has an effect on fat metabolism. We found numerous indirect relationships (ie, not due to dietary consumption of food sources of the fatty acids) between plasma fatty acids and diet, which we propose as due to the influence of complex life-style factors.
Collapse
Affiliation(s)
- Elisabetta Fusconi
- UO Epidemiologia, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Vorselen D, Marchetti M, López-Iglesias C, Peters PJ, Roos WH, Wuite GJL. Multilamellar nanovesicles show distinct mechanical properties depending on their degree of lamellarity. NANOSCALE 2018; 10:5318-5324. [PMID: 29504612 DOI: 10.1039/c7nr09224e] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Small multilamellar vesicles may have benefits over unilamellar vesicles for drug delivery, such as an increased volume for hydrophobic drugs. In addition, their altered mechanical properties might be beneficial for cellular uptake. Here, we show how atomic force microscopy (AFM) can be used to detect and characterize multilamellar vesicles. We quantify the size of each break event occurring during AFM nanoindentations, which shows good agreement with the thickness of supported lipid bilayers. Analyzing the size and number of these events for individual vesicles allows us to distinguish between vesicles consisting of 1 up to 5 bilayers. We validate these results by comparison with correlative cryo-electron microscopy (cryo-EM) data at the vesicle population level. Finally, we quantify the vesicle geometry and mechanical properties, and show that with additional bilayers adherent vesicles are more spherical and stiffer. Surprisingly, at ∼20% stiffening for each additional bilayer, the vesicle stiffness scales only weakly with lamellarity. Our results show the potential of AFM for studying liposomal nanoparticles and suggest that small multilamellar vesicles may have beneficial mechanical properties for cellular uptake.
Collapse
Affiliation(s)
- Daan Vorselen
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit, Amsterdam, 1081 HV, The Netherlands.
| | | | | | | | | | | |
Collapse
|
35
|
Duan RD. Alkaline sphingomyelinase (NPP7) in hepatobiliary diseases: A field that needs to be closely studied. World J Hepatol 2018; 10:246-253. [PMID: 29527260 PMCID: PMC5838443 DOI: 10.4254/wjh.v10.i2.246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
Alkaline sphingomyelinase cleaves phosphocholine from sphingomyelin, platelet-activating factor, lysophosphatidylcholine, and less effectively phosphatidylcholine. The enzyme shares no structure similarities with acid or neutral sphingomyelinase but belongs to ecto-nucleotide pyrophosphatase/phosphodiesterase (NPP) family and therefore is also called NPP7 nowadays. The enzyme is expressed in the intestinal mucosa in many species and additionally in human liver. The enzyme in the intestinal tract has been extensively studied but not that in human liver. Studies on intestinal alkaline sphingomyelinase show that it inhibits colonic tumorigenesis and inflammation, hydrolyses dietary sphingomyelin, and stimulates cholesterol absorption. The review aims to summarize the current knowledge on liver alkaline sphingomyelinase in human and strengthen the necessity for close study on this unique human enzyme in hepatobiliary diseases.
Collapse
Affiliation(s)
- Rui-Dong Duan
- Gastroenterology and Nutrition Lab, Department of Clinical Sciences, Lund University, Lund S-22184, Sweden
| |
Collapse
|
36
|
Abstract
BACKGROUND The contribution of hypoxic conditions to the chemical composition of membranes is not completely established. Plasmalogens, containing an alkenyl group with aldehydogenic ether linkage, are significant components of membrane lipids and their level can change in oxygen deficiency. METHODS Analysis of plasmalogens in red blood cells was performed in patients (n = 17) with coronary heart disease, stable angina (functional class II-III) and coronary atherosclerosis. The control group consisted of 17 healthy volunteers. In addition, isolated blood samples of seven healthy volunteers were analysed before and after 180 min incubation at 37 °C. Fatty acid ethyl esters and diethyl acetals of fatty aldehydes, obtained during sample preparation from red blood cells, were analysed by capillary gas-liquid chromatography. Quantitative assessment of the change of the plasmalogen levels was evaluated as change of the share of fatty aldehyde diethyl acetals in the total sum of fatty aldehyde diethyl acetals and fatty acid ethyl esters. RESULTS In comparison with the healthy volunteers, an increase in plasmalogen content of red blood cells and a reduction of the pH of the blood plasma in the group of patients with coronary heart disease were detected. In experimental hypoxia, there was an increase in the plasmalogen content of the red blood cells and a plasma pH decrease in all samples subjected to the incubation. CONCLUSIONS The results indicate changes in the physicochemical properties of the cell membrane in hypoxia. One of the most likely reasons of the increase of plasmalogen content in the membranes may be a more significant increase in activity of calcium-dependent phospholipases in comparison with the activity of calcium-independent plasmalogen phospholipases.
Collapse
|
37
|
Colombo C, Muti P, Pala V, Cavalleri A, Venturelli E, Locardi M, Berrino F, Secreto G. Plant-Based Diet, Serum Fatty Acid Profile, and Free Radicals in Postmenopausal Women: The Diet and Androgens (DIANA) Randomized Trial. Int J Biol Markers 2018; 20:169-76. [PMID: 16240844 DOI: 10.1177/172460080502000304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
High calorie and fat consumption and the production of free radicals are two major mechanistic pathways between diet and disease. In this study we evaluated the effect of a plant-based diet poor in animal fat and rich in (n-3) fatty acids on fatty acids of serum phospholipids and on the production of reactive oxygen metabolites (ROMs). One hundred and four healthy female postmenopausal volunteers were recruited and randomized to a dietary intervention or a control group. Dietary intervention included a program of food education and biweekly common meals for 18 weeks. When the intervention and control groups were compared, it was seen that dietary intervention resulted in a significant reduction of saturated fatty acids (-1.5%) and a significant increase in (n-3) fatty acids (+20.6%), in particular docosahexaenoic acid (+24.8%). We observed that arachidonic acid decreased (–7.7%), while (n-6) fatty acids did not, and the (n-3)/(n-6) polyunsaturated ratio increased significantly (+24.1%). As expected, ROMs decreased significantly in the intervention group (-6%). The results indicated that a plant-based diet can improve the serum fatty acid profile and decrease ROMs production. These results suggest that a plant-based diet may reduce the body's exposure to oxidative stress.
Collapse
Affiliation(s)
- C Colombo
- Hormone Research Laboratory, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Adipose tissue ATGL modifies the cardiac lipidome in pressure-overload-induced left ventricular failure. PLoS Genet 2018; 14:e1007171. [PMID: 29320510 PMCID: PMC5779697 DOI: 10.1371/journal.pgen.1007171] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/23/2018] [Accepted: 12/25/2017] [Indexed: 01/08/2023] Open
Abstract
Adipose tissue lipolysis occurs during the development of heart failure as a consequence of chronic adrenergic stimulation. However, the impact of enhanced adipose triacylglycerol hydrolysis mediated by adipose triglyceride lipase (ATGL) on cardiac function is unclear. To investigate the role of adipose tissue lipolysis during heart failure, we generated mice with tissue-specific deletion of ATGL (atATGL-KO). atATGL-KO mice were subjected to transverse aortic constriction (TAC) to induce pressure-mediated cardiac failure. The cardiac mouse lipidome and the human plasma lipidome from healthy controls (n = 10) and patients with systolic heart failure (HFrEF, n = 13) were analyzed by MS-based shotgun lipidomics. TAC-induced increases in left ventricular mass (LVM) and diastolic LV inner diameter were significantly attenuated in atATGL-KO mice compared to wild type (wt) -mice. More importantly, atATGL-KO mice were protected against TAC-induced systolic LV failure. Perturbation of lipolysis in the adipose tissue of atATGL-KO mice resulted in the prevention of the major cardiac lipidome changes observed after TAC in wt-mice. Profound changes occurred in the lipid class of phosphatidylethanolamines (PE) in which multiple PE-species were markedly induced in failing wt-hearts, which was attenuated in atATGL-KO hearts. Moreover, selected heart failure-induced PE species in mouse hearts were also induced in plasma samples from patients with chronic heart failure. TAC-induced cardiac PE induction resulted in decreased PC/ PE-species ratios associated with increased apoptotic marker expression in failing wt-hearts, a process absent in atATGL-KO hearts. Perturbation of adipose tissue lipolysis by ATGL-deficiency ameliorated pressure-induced heart failure and the potentially deleterious cardiac lipidome changes that accompany this pathological process, namely the induction of specific PE species. Non-cardiac ATGL-mediated modulation of the cardiac lipidome may play an important role in the pathogenesis of chronic heart failure.
Collapse
|
39
|
Tsukamoto I, Sugawara S. Low levels of linoleic acid and α-linolenic acid and high levels of arachidonic acid in plasma phospholipids are associated with hypertension. Biomed Rep 2017; 8:69-76. [PMID: 29387391 DOI: 10.3892/br.2017.1015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022] Open
Abstract
Dietary fat is an important determinant in the development and progression of high blood pressure (BP), a major risk factor for cardiovascular diseases and mortality. The aim of the present study was to determine the association between plasma phospholipid fatty acids and hypertension in Japanese men. The plasma level of linoleic acid (LA) in the subjects with hypertension (systolic BP ≥140 mmHg and/or diastolic BP ≥90 mmHg) was identified to be significantly higher than that in the healthy controls. Following adjustment for age, body mass index, physical activity, smoking status, alcohol consumption, salt intake, and serum levels of glucose and hemoglobin A1c, higher plasma levels of LA and α-linolenic acid (ALA), and lower levels of arachidonic acid (AA) were significantly associated with a lower prevalence of hypertension. The odds ratio (OR) for the highest quartile (Q4) versus the lowest quartile (Q1) of LA was 0.17 (P=0.003), the OR for Q4 versus Q1 of ALA was 0.26 (P=0.042) and the OR for Q4 versus Q1 of AA was 2.04 (P=0.047). These results indicate that elevated levels of LA and ALA, and reduced levels of AA in the plasma prevent hypertension.
Collapse
Affiliation(s)
- Ikuyo Tsukamoto
- Department of Food Science and Nutrition, Nara Women's University, Kitauoya-Nishimachi, Nara 630-8506, Japan.,Faculty of Clinical Nutrition, Hiroshima International University, Hirokoshingai, Kure, Hiroshima 737-0112, Japan
| | - Shiori Sugawara
- Department of Food Science and Nutrition, Nara Women's University, Kitauoya-Nishimachi, Nara 630-8506, Japan.,Department of Health and Nutrition, Sendai Shirayuri Women's College, Honda-Cho, Izumi-ku, Sendai 981-3107, Japan
| |
Collapse
|
40
|
Zheng JS, Li K, Huang T, Chen Y, Xie H, Xu D, Sun J, Li D. Genetic Risk Score of Nine Type 2 Diabetes Risk Variants that Interact with Erythrocyte Phospholipid Alpha-Linolenic Acid for Type 2 Diabetes in Chinese Hans: A Case-Control Study. Nutrients 2017; 9:nu9040376. [PMID: 28398239 PMCID: PMC5409715 DOI: 10.3390/nu9040376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/10/2017] [Accepted: 03/28/2017] [Indexed: 11/16/2022] Open
Abstract
Modulation of n-3 fatty acids on genetic susceptibility to type 2 diabetes (T2D) is still not clear. In a case-control study of 622 Chinese T2D patients and 293 healthy controls, a genetic risk score (GRS) was created based on nine T2D genetic variants. Logistic regression was used to examine the interaction of the GRS with erythrocyte phospholipid n-3 fatty acids for T2D risk. Every 1-unit (corresponding to 1 risk allele) increase in GRS was associated with 12% (Odds ratio (OR): 1.12; 95% confidence intervals (CI): 1.04–1.20) higher risk of T2D. Compared with the lowest quartile, participants had lower T2D risk in the 2nd (OR: 0.55; 95% CI: 0.36–0.84), 3rd (OR: 0.58; 95% CI: 0.38–0.88) and 4th (OR: 0.67; 95% CI: 0.44–1.03) quartile of alpha-linolenic acid (ALA) levels. Significant interaction (p-interaction = 0.029) of GRS with ALA for T2D risk was observed. Higher ALA levels were associated with lower T2D risk only among participants within the lowest GRS tertile, with ORs 0.51 (95% CI: 0.26–1.03), 0.44 (95% CI: 0.22–0.89) and 0.49 (95% CI: 0.25–0.96) for the 2nd, 3rd and 4th ALA quartile, compared with the 1st. This study suggests that higher erythrocyte ALA levels are inversely associated with T2D risk only among participants with low T2D genetic risk, with high genetic risk abolishing the ALA-T2D association.
Collapse
Affiliation(s)
- Ju-Sheng Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| | - Kelei Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Tao Huang
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore.
| | - Yanqiu Chen
- Clinical Nutrition Center, Huadong Hospital, Fudan University, Shanghai 200040, China.
| | - Hua Xie
- Clinical Nutrition Center, Huadong Hospital, Fudan University, Shanghai 200040, China.
| | - Danfeng Xu
- Clinical Nutrition Center, Huadong Hospital, Fudan University, Shanghai 200040, China.
| | - Jianqin Sun
- Clinical Nutrition Center, Huadong Hospital, Fudan University, Shanghai 200040, China.
| | - Duo Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
41
|
Complex Relation Between Diet and Phospholipid Fatty Acids in Children With Cystic Fibrosis. J Pediatr Gastroenterol Nutr 2017; 64:598-604. [PMID: 28333826 DOI: 10.1097/mpg.0000000000001356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Altered total plasma n-6 and n-3 fatty acids are common in cystic fibrosis (CF). Whether alterations extend to plasma phosphatidylcholine (PC) and phosphatidylethanolamine (PE) and are explained by diet is unclear. The present study was to describe the dietary intake of a large group of children with CF and to determine whether dietary fat composition explains differences in plasma PC and PE fatty acids between children with and without CF. METHODS Dietary intake was assessed using a food frequency questionnaire. Venous blood was collected. Plasma PC and PE were separately analyzed for fatty acids. RESULTS Children with CF, n = 74, consumed more calories and fat (g/day and % energy), with significantly more saturates mainly from dairy foods and less polyunsaturates including linoleic acid (LA), arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) (% fat) than reference children, n = 71. A subset of children with CF, not differing in dietary intake from the larger group, had significantly lower LA and DHA, but higher EPA in plasma PC and had higher LA and lower ARA and DHA in plasma PE, compared to a subset of reference children. In both groups, LA intake and LA in plasma PC and PE were not associated. EPA and DHA intakes were positively associated with EPA and DHA, respectively, in plasma PC, but not PE, in reference children only. CONCLUSIONS The fatty acid composition of plasma PC and PE is altered in CF. Fatty acid differences between children with and without CF are inconsistent between PC and PE and are not explained by dietary fat.
Collapse
|
42
|
Vorselen D, MacKintosh FC, Roos WH, Wuite GJ. Competition between Bending and Internal Pressure Governs the Mechanics of Fluid Nanovesicles. ACS NANO 2017; 11:2628-2636. [PMID: 28273422 PMCID: PMC5371924 DOI: 10.1021/acsnano.6b07302] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 03/08/2017] [Indexed: 05/24/2023]
Abstract
Nanovesicles (∼100 nm) are ubiquitous in cell biology and an important vector for drug delivery. Mechanical properties of vesicles are known to influence cellular uptake, but the mechanism by which deformation dynamics affect internalization is poorly understood. This is partly due to the fact that experimental studies of the mechanics of such vesicles remain challenging, particularly at the nanometer scale where appropriate theoretical models have also been lacking. Here, we probe the mechanical properties of nanoscale liposomes using atomic force microscopy (AFM) indentation. The mechanical response of the nanovesicles shows initial linear behavior and subsequent flattening corresponding to inward tether formation. We derive a quantitative model, including the competing effects of internal pressure and membrane bending, that corresponds well to these experimental observations. Our results are consistent with a bending modulus of the lipid bilayer of ∼14kbT. Surprisingly, we find that vesicle stiffness is pressure dominated for adherent vesicles under physiological conditions. Our experimental method and quantitative theory represents a robust approach to study the mechanics of nanoscale vesicles, which are abundant in biology, as well as being of interest for the rational design of liposomal vectors for drug delivery.
Collapse
Affiliation(s)
- Daan Vorselen
- Department
of Physics and Astronomy and LaserLab, Vrije
Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Department
of Oral Function and Restorative Dentistry, Academic Centre for Dentistry
Amsterdam (ACTA), Research Institute MOVE, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, 1081 LA, The Netherlands
| | - Fred C. MacKintosh
- Department
of Physics and Astronomy and LaserLab, Vrije
Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Departments
of Chemical & Biomolecular Engineering, Chemistry, and Physics
& Astronomy, Rice University, Houston, Texas 77005, United States
- Center
for Theoretical Biophysics, Rice University, Houston, Texas 77030, United States
| | - Wouter H. Roos
- Department
of Physics and Astronomy and LaserLab, Vrije
Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, Nijenborgh
4, Groningen, 9747 AG, The Netherlands
| | - Gijs J.L. Wuite
- Department
of Physics and Astronomy and LaserLab, Vrije
Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
| |
Collapse
|
43
|
Characterization of lipid rafts in human platelets using nuclear magnetic resonance: A pilot study. Biochem Biophys Rep 2017; 10:132-136. [PMID: 28955740 PMCID: PMC5614646 DOI: 10.1016/j.bbrep.2017.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/28/2017] [Accepted: 03/15/2017] [Indexed: 11/23/2022] Open
Abstract
Lipid microdomains (‘lipid rafts’) are plasma membrane subregions, enriched in cholesterol and glycosphingolipids, which participate dynamically in cell signaling and molecular trafficking operations. One strategy for the study of the physicochemical properties of lipid rafts in model membrane systems has been the use of nuclear magnetic resonance (NMR), but until now this spectroscopic method has not been considered a clinically relevant tool. We performed a proof-of-concept study to test the feasibility of using NMR to study lipid rafts in human tissues. Platelets were selected as a cost-effective and minimally invasive model system in which lipid rafts have previously been studied using other approaches. Platelets were isolated from plasma of medication-free adult research participants (n=13) and lysed with homogenization and sonication. Lipid-enriched fractions were obtained using a discontinuous sucrose gradient. Association of lipid fractions with GM1 ganglioside was tested using HRP-conjugated cholera toxin B subunit dot blot assays. 1H high resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR) spectra obtained with single-pulse Bloch decay experiments yielded spectral linewidths and intensities as a function of temperature. Rates of lipid lateral diffusion that reported on raft size were measured with a two-dimensional stimulated echo longitudinal encode-decode NMR experiment. We found that lipid fractions at 10–35% sucrose density associated with GM1 ganglioside, a marker for lipid rafts. NMR spectra of the membrane phospholipids featured a prominent ‘centerband’ peak associated with the hydrocarbon chain methylene resonance at 1.3 ppm; the linewidth (full width at half-maximum intensity) of this ‘centerband’ peak, together with the ratio of intensities between the centerband and ‘spinning sideband’ peaks, agreed well with values reported previously for lipid rafts in model membranes. Decreasing temperature produced decreases in the 1.3 ppm peak intensity and a discontinuity at ~18 °C, for which the simplest explanation is a phase transition from Ld to Lo phases indicative of raft formation. Rates of lateral diffusion of the acyl chain lipid signal at 1.3 ppm, a quantitative measure of microdomain size, were consistent with lipid molecules organized in rafts. These results show that HRMAS NMR can characterize lipid microdomains in human platelets, a methodological advance that could be extended to other tissues in which membrane biochemistry may have physiological and pathophysiological relevance. Lipid raft properties have been studied mainly in model membranes or cell cultures. We report a novel 1H NMR approach to lipid raft characterization in human platelets. We find spectroscopy, diffusion, and phase transitions consistent with lipid rafts. NMR plus bioassays may be used to study raft-mediated cell function in human tissues.
Collapse
|
44
|
Ryman V, Packiriswamy N, Norby B, Schmidt S, Lock A, Sordillo L. Supplementation of linoleic acid (C18:2n-6) or α-linolenic acid (C18:3n-3) changes microbial agonist-induced oxylipid biosynthesis. J Dairy Sci 2017; 100:1870-1887. [DOI: 10.3168/jds.2016-11599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/18/2016] [Indexed: 12/25/2022]
|
45
|
Rai S, Bhatnagar S. Novel Lipidomic Biomarkers in Hyperlipidemia and Cardiovascular Diseases: An Integrative Biology Analysis. ACTA ACUST UNITED AC 2017; 21:132-142. [DOI: 10.1089/omi.2016.0178] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sneha Rai
- Computational and Structural Biology Laboratory, Division of Biological Sciences and Engineering, Netaji Subhas Institute of Technology, Dwarka, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biological Sciences and Engineering, Netaji Subhas Institute of Technology, Dwarka, India
| |
Collapse
|
46
|
Jeffery L, Fisk HL, Calder PC, Filer A, Raza K, Buckley CD, McInnes I, Taylor PC, Fisher BA. Plasma Levels of Eicosapentaenoic Acid Are Associated with Anti-TNF Responsiveness in Rheumatoid Arthritis and Inhibit the Etanercept-driven Rise in Th17 Cell Differentiation in Vitro. J Rheumatol 2017; 44:748-756. [PMID: 28202745 DOI: 10.3899/jrheum.161068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To determine whether levels of plasma n-3 polyunsaturated fatty acids are associated with response to antitumor necrosis factor (anti-TNF) agents in rheumatoid arthritis (RA), and whether this putative effect may have its basis in altering anti-TNF-driven Th17 cell differentiation. METHODS Plasma was collected at baseline and after 3 months of anti-TNF treatment in 22 patients with established RA, and fatty acid composition of the phosphatidylcholine (PC) component was measured. CD4+CD25- T cells and monocytes were purified from the blood of healthy donors and cocultured in the presence of anti-CD3, with or without etanercept (ETN), eicosapentaenoic acid (EPA), or the control fatty acid, linoleic acid (LA). Expression of interleukin 17 and interferon-γ was measured by intracellular staining and flow cytometry. RESULTS Plasma PC EPA levels and the EPA/arachidonic acid ratio correlated inversely with change in the Disease Activity Score at 28 joints (DAS28) at 3 months (-0.51, p = 0.007 and -0.48, p = 0.01, respectively), indicating that higher plasma EPA was associated with a greater reduction in DAS28. Plasma PC EPA was positively associated with European League Against Rheumatism response (p = 0.02). An increase in Th17 cells post-therapy has been associated with nonresponse to anti-TNF. ETN increased Th17 frequencies in vitro. Physiological concentrations of EPA, but not LA, prevented this. CONCLUSION EPA status was associated with clinical improvements to anti-TNF therapy in vivo and prevented the effect of ETN on Th17 cells in vitro. EPA supplementation might be a simple way to improve anti-TNF outcomes in patients with RA by suppressing Th17 frequencies.
Collapse
Affiliation(s)
- Louisa Jeffery
- From the Rheumatology Research Group and Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), University of Birmingham, Birmingham; Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton; UK National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust; University of Southampton, Southampton; Glasgow Biomedical Research Centre, University of Glasgow, Glasgow; Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.,L. Jeffery, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; H.L. Fisk, BSc, Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, and University of Southampton; P.C. Calder, PhD, Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, and University of Southampton; A. Filer, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; K. Raza, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; C.D. Buckley, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; I. McInnes, PhD, Glasgow Biomedical Research Centre, University of Glasgow; P.C. Taylor, PhD, Kennedy Institute of Rheumatology, University of Oxford; B.A. Fisher, MD(Res), Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham
| | - Helena L Fisk
- From the Rheumatology Research Group and Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), University of Birmingham, Birmingham; Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton; UK National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust; University of Southampton, Southampton; Glasgow Biomedical Research Centre, University of Glasgow, Glasgow; Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.,L. Jeffery, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; H.L. Fisk, BSc, Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, and University of Southampton; P.C. Calder, PhD, Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, and University of Southampton; A. Filer, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; K. Raza, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; C.D. Buckley, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; I. McInnes, PhD, Glasgow Biomedical Research Centre, University of Glasgow; P.C. Taylor, PhD, Kennedy Institute of Rheumatology, University of Oxford; B.A. Fisher, MD(Res), Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham
| | - Philip C Calder
- From the Rheumatology Research Group and Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), University of Birmingham, Birmingham; Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton; UK National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust; University of Southampton, Southampton; Glasgow Biomedical Research Centre, University of Glasgow, Glasgow; Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.,L. Jeffery, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; H.L. Fisk, BSc, Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, and University of Southampton; P.C. Calder, PhD, Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, and University of Southampton; A. Filer, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; K. Raza, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; C.D. Buckley, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; I. McInnes, PhD, Glasgow Biomedical Research Centre, University of Glasgow; P.C. Taylor, PhD, Kennedy Institute of Rheumatology, University of Oxford; B.A. Fisher, MD(Res), Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham
| | - Andrew Filer
- From the Rheumatology Research Group and Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), University of Birmingham, Birmingham; Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton; UK National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust; University of Southampton, Southampton; Glasgow Biomedical Research Centre, University of Glasgow, Glasgow; Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.,L. Jeffery, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; H.L. Fisk, BSc, Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, and University of Southampton; P.C. Calder, PhD, Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, and University of Southampton; A. Filer, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; K. Raza, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; C.D. Buckley, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; I. McInnes, PhD, Glasgow Biomedical Research Centre, University of Glasgow; P.C. Taylor, PhD, Kennedy Institute of Rheumatology, University of Oxford; B.A. Fisher, MD(Res), Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham
| | - Karim Raza
- From the Rheumatology Research Group and Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), University of Birmingham, Birmingham; Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton; UK National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust; University of Southampton, Southampton; Glasgow Biomedical Research Centre, University of Glasgow, Glasgow; Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.,L. Jeffery, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; H.L. Fisk, BSc, Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, and University of Southampton; P.C. Calder, PhD, Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, and University of Southampton; A. Filer, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; K. Raza, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; C.D. Buckley, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; I. McInnes, PhD, Glasgow Biomedical Research Centre, University of Glasgow; P.C. Taylor, PhD, Kennedy Institute of Rheumatology, University of Oxford; B.A. Fisher, MD(Res), Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham
| | - Christopher D Buckley
- From the Rheumatology Research Group and Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), University of Birmingham, Birmingham; Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton; UK National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust; University of Southampton, Southampton; Glasgow Biomedical Research Centre, University of Glasgow, Glasgow; Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.,L. Jeffery, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; H.L. Fisk, BSc, Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, and University of Southampton; P.C. Calder, PhD, Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, and University of Southampton; A. Filer, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; K. Raza, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; C.D. Buckley, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; I. McInnes, PhD, Glasgow Biomedical Research Centre, University of Glasgow; P.C. Taylor, PhD, Kennedy Institute of Rheumatology, University of Oxford; B.A. Fisher, MD(Res), Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham
| | - Iain McInnes
- From the Rheumatology Research Group and Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), University of Birmingham, Birmingham; Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton; UK National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust; University of Southampton, Southampton; Glasgow Biomedical Research Centre, University of Glasgow, Glasgow; Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.,L. Jeffery, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; H.L. Fisk, BSc, Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, and University of Southampton; P.C. Calder, PhD, Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, and University of Southampton; A. Filer, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; K. Raza, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; C.D. Buckley, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; I. McInnes, PhD, Glasgow Biomedical Research Centre, University of Glasgow; P.C. Taylor, PhD, Kennedy Institute of Rheumatology, University of Oxford; B.A. Fisher, MD(Res), Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham
| | - Peter C Taylor
- From the Rheumatology Research Group and Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), University of Birmingham, Birmingham; Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton; UK National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust; University of Southampton, Southampton; Glasgow Biomedical Research Centre, University of Glasgow, Glasgow; Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.,L. Jeffery, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; H.L. Fisk, BSc, Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, and University of Southampton; P.C. Calder, PhD, Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, and University of Southampton; A. Filer, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; K. Raza, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; C.D. Buckley, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; I. McInnes, PhD, Glasgow Biomedical Research Centre, University of Glasgow; P.C. Taylor, PhD, Kennedy Institute of Rheumatology, University of Oxford; B.A. Fisher, MD(Res), Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham
| | - Benjamin A Fisher
- From the Rheumatology Research Group and Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), University of Birmingham, Birmingham; Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton; UK National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust; University of Southampton, Southampton; Glasgow Biomedical Research Centre, University of Glasgow, Glasgow; Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK. .,L. Jeffery, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; H.L. Fisk, BSc, Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, and University of Southampton; P.C. Calder, PhD, Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, and University of Southampton; A. Filer, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; K. Raza, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; C.D. Buckley, PhD, Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham; I. McInnes, PhD, Glasgow Biomedical Research Centre, University of Glasgow; P.C. Taylor, PhD, Kennedy Institute of Rheumatology, University of Oxford; B.A. Fisher, MD(Res), Rheumatology Research Group and Arthritis Research UK RACE, University of Birmingham.
| |
Collapse
|
47
|
Tordiffe ASW, Wachter B, Heinrich SK, Reyers F, Mienie LJ. Comparative Serum Fatty Acid Profiles of Captive and Free-Ranging Cheetahs (Acinonyx jubatus) in Namibia. PLoS One 2016; 11:e0167608. [PMID: 27992457 PMCID: PMC5167222 DOI: 10.1371/journal.pone.0167608] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/17/2016] [Indexed: 01/09/2023] Open
Abstract
Cheetahs (Acinonyx jubatus) are highly specialised large felids, currently listed as vulnerable on the IUCN red data list. In captivity, they are known to suffer from a range of chronic non-infectious diseases. Although low heterozygosity and the stress of captivity have been suggested as possible causal factors, recent studies have started to focus on the contribution of potential dietary factors in the pathogenesis of these diseases. Fatty acids are an important component of the diet, not only providing a source of metabolisable energy, but serving other important functions in hormone production, cellular signalling as well as providing structural components in biological membranes. To develop a better understanding of lipid metabolism in cheetahs, we compared the total serum fatty acid profiles of 35 captive cheetahs to those of 43 free-ranging individuals in Namibia using gas chromatography-mass spectrometry. The unsaturated fatty acid concentrations differed most remarkably between the groups, with all of the polyunsaturated and monounsaturated fatty acids, except arachidonic acid and hypogeic acid, detected at significantly lower concentrations in the serum of the free-ranging animals. The influence of age and sex on the individual fatty acid concentrations was less notable. This study represents the first evaluation of the serum fatty acids of free-ranging cheetahs, providing critical information on the normal fatty acid profiles of free-living, healthy individuals of this species. The results raise several important questions about the potential impact of dietary fatty acid composition on the health of cheetahs in captivity.
Collapse
Affiliation(s)
- Adrian S. W. Tordiffe
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
- Department of Research and Scientific Services, National Zoological Gardens of South Africa, Pretoria, South Africa
- Centre for Human Metabonomics, Faculty of Natural Sciences, North-West University, Potchefstroom, South Africa
- * E-mail:
| | - Bettina Wachter
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Sonja K. Heinrich
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Fred Reyers
- Idexx Laboratories (Pty) Ltd, Woodmead Willow Office Park, Johannesburg, South Africa
| | - Lodewyk J. Mienie
- Centre for Human Metabonomics, Faculty of Natural Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
48
|
Thorseng T, Witte DR, Vistisen D, Borch-Johnsen K, Bjerregaard P, Jørgensen ME. The association between n-3 fatty acids in erythrocyte membranes and insulin resistance: The inuit health in transition study. Int J Circumpolar Health 2016; 68:327-36. [DOI: 10.3402/ijch.v68i4.17373] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Moukarzel S, Dyer RA, Keller BO, Elango R, Innis SM. Human Milk Plasmalogens Are Highly Enriched in Long-Chain PUFAs. J Nutr 2016; 146:2412-2417. [PMID: 27733524 DOI: 10.3945/jn.116.236802] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/09/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Human milk contains unique glycerophospholipids, including ethanolamine-containing plasmalogens (Pls-PEs) in the milk fat globule membrane, which have been implicated in infant brain development. Brain Pls-PEs accumulate postnatally and are enriched in long-chain polyunsaturated fatty acids (LC-PUFAs), particularly docosahexaenoic acid (DHA). Fatty acid (FA) composition of Pls-PEs in milk is poorly understood because of the analytical challenges in separating Pls-PEs from other phospholipids in the predominating presence of triacylglycerols. The variability of Pls-PE FAs and the potential role of maternal diet remain unknown. OBJECTIVES Our primary objectives were to establish improved methodology for extracting Pls-PEs from human milk, enabling FA analysis, and to compare FA composition between Pls-PEs and 2 major milk phospholipids, phosphatidylcholine and phosphatidylethanolamine. Our secondary objective was to explore associations between maternal DHA intake and DHA in milk phospholipids and variability in phospholipid-DHA within a woman. METHODS Mature milk was collected from 25 women, with 4 providing 3 milk samples on 3 separate days. Lipids were extracted, and phospholipids were removed by solid phase extraction. Pls-PEs were separated by using normal-phase HPLC, recovered and analyzed for FAs by GLC. Diet was assessed by using a validated food-frequency questionnaire. RESULTS Pls-PE concentration in human milk was significantly higher in LC-PUFAs than phosphatidylethanolamine and phosphatidylcholine, including arachidonic acid (AA) and DHA. The mean ± SD concentration of AAs in Pls-PEs was ∼2.5-fold higher than in phosphatidylethanolamine (10.5 ± 1.71 and 3.82 ± 0.92 g/100 g, respectively). DHA in Pls-PEs varied across women (0.95-6.51 g/100 g), likely independent of maternal DHA intake. Pls-PE DHA also varied within a woman across days (CV ranged from 9.8% to 28%). CONCLUSIONS Human milk provides the infant with LC-PUFAs from multiple lipid pools, including a source from Pls-PEs. The biological determinants of Pls-PE FAs and physiological relevance to the breastfed infant remain to be elucidated.
Collapse
Affiliation(s)
| | | | - Bernd O Keller
- Child and Family Research Institute, BC Children's Hospital, Vancouver, Canada
| | - Rajavel Elango
- Department of Pediatrics and .,School of Population and Public Health, University of British Columbia, Vancouver, Canada; and.,Child and Family Research Institute, BC Children's Hospital, Vancouver, Canada
| | - Sheila M Innis
- Department of Pediatrics and.,Child and Family Research Institute, BC Children's Hospital, Vancouver, Canada
| |
Collapse
|
50
|
Zacek P, Bukowski M, Rosenberger TA, Picklo M. Quantitation of isobaric phosphatidylcholine species in human plasma using a hybrid quadrupole linear ion-trap mass spectrometer. J Lipid Res 2016; 57:2225-2234. [PMID: 27688258 PMCID: PMC5321225 DOI: 10.1194/jlr.d070656] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/13/2016] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylcholine (PC) species in human plasma are used as biomarkers of disease. PC biomarkers are often limited by the inability to separate isobaric PCs. In this work, we developed a targeted shotgun approach for analysis of isobaric and isomeric PCs. This approach is comprised of two MS methods: a precursor ion scanning (PIS) of mass m/z 184 in positive mode (PIS m/z +184) and MS3 fragmentation in negative mode, both performed on the same instrument, a hybrid triple quadrupole ion-trap mass spectrometer. The MS3 experiment identified the FA composition and the relative abundance of isobaric and sn-1, sn-2 positional isomeric PC species, which were subsequently combined with absolute quantitative data obtained by PIS m/z +184 scan. This approach was applied to the analysis of a National Institute of Standards and Technology human blood plasma standard reference material (SRM 1950). We quantified more than 70 PCs and confirmed that a majority are present in isobaric and isomeric mixtures. The FA content determined by this method was comparable to that obtained using GC with flame ionization detection, supporting the quantitative nature of this MS method. This methodology will provide more in-depth biomarker information for clinical and mechanistic studies.
Collapse
Affiliation(s)
- Petr Zacek
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203 .,Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic, 16610 Prague 6, Czech Republic
| | - Michael Bukowski
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203
| | - Thad A Rosenberger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, University of North Dakota; Grand Forks, ND 58201
| | - Matthew Picklo
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203.,Department of Chemistry, University of North Dakota; Grand Forks, ND 58201
| |
Collapse
|