1
|
Katsanos CS, Tran L, Hoffman N, Roust LR, De Filippis E, Mandarino LJ, Johnsson K, Belohlavek M, Buras MR. Impaired Suppression of Plasma Lipid Extraction and its Partitioning Away from Muscle by Insulin in Humans with Obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598550. [PMID: 38915696 PMCID: PMC11195248 DOI: 10.1101/2024.06.11.598550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Context Humans with obesity and insulin resistance exhibit lipid accumulation in skeletal muscle, but the underlying biological mechanisms responsible for the accumulation of lipid in the muscle of these individuals remain unknown. Objective We investigated how plasma insulin modulates the extraction of circulating triglycerides (TGs) and non-esterified fatty acids (NEFAs) from ingested and endogenous origin in the muscle of lean, insulin-sensitive humans (Lean-IS) and contrasted these responses to those in humans with obesity and insulin resistance (Obese-IR). Methods The studies were performed in a postprandial state associated with steady-state plasma TG concentrations. The arterio-venous blood sampling technique was employed to determine the extraction of circulating lipids across the forearm muscle before and after insulin infusion. We distinguished kinetics of TGs and NEFAs from ingested origin from those from endogenous origin across muscle by incorporating stable isotope-labeled triolein in the ingested fat. Results Insulin infusion rapidly suppressed the extraction of plasma TGs from endogenous, but not ingested, origin in the muscle of the Lean-IS, but this response was absent in the muscle of the Obese-IR. Furthermore, in the muscle of the Lean-IS, insulin infusion decreased the extraction of circulating NEFAs from both ingested and endogenous origin; however, this response was absent for NEFAs from ingested origin in the muscle of the Obese-IR subjects. Conclusions Partitioning of circulating lipids away from the skeletal muscle when plasma insulin increases during the postprandial period is impaired in humans with obesity and insulin resistance.
Collapse
|
2
|
Smith ME, Bazinet RP. Unraveling brain palmitic acid: Origin, levels and metabolic fate. Prog Lipid Res 2024; 96:101300. [PMID: 39222711 DOI: 10.1016/j.plipres.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
In the human brain, palmitic acid (16:0; PAM) comprises nearly half of total brain saturates and has been identified as the third most abundant fatty acid overall. Brain PAM supports the structure of membrane phospholipids, provides energy, and regulates protein stability. Sources underlying the origin of brain PAM are both diet and endogenous synthesis via de novo lipogenesis (DNL), primarily from glucose. However, studies investigating the origin of brain PAM are limited to tracer studies utilizing labelled (14C/11C/3H/2H) PAM, and results vary based on the model and tracer used. Nevertheless, there is evidence PAM is synthesized locally in the brain, in addition to obtained directly from the diet. Herein, we provide an overview of brain PAM origin, entry to the brain, metabolic fate, and factors influencing brain PAM kinetics and levels, the latter in the context of age, as well as neurological diseases and psychiatric disorders. Additionally, we briefly summarize the role of PAM in signaling at the level of the brain. We add to the literature a rudimentary summary on brain PAM metabolism.
Collapse
Affiliation(s)
- Mackenzie E Smith
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
3
|
Uchida Y, Tsuji K, Ochi E. Effects of Omega-3 fatty acids supplementation and resistance training on skeletal muscle. Clin Nutr ESPEN 2024; 61:189-196. [PMID: 38777432 DOI: 10.1016/j.clnesp.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND & AIMS The aim of this study was to investigate the omega-3 fatty acids supplementation, and resistance training on muscle strength and mass. METHODS A review was conducted by searching relevant randomized controlled trials investigating the effects of omega-3 fatty acids supplementation and resistance training on skeletal muscle strength and mass. Three experts independently performed a thorough examination of the literature database and conducted the systematic review and meta-analysis. RESULTS Four studies were ultimately included in the systematic review after screening. The results of the meta-analysis revealed that the supplementation of omega-3 fatty acids and resistance training significantly improved muscle strength compared to the placebo-controlled group. However, no significant effects were observed in the effect for muscle mass. CONCLUSIONS The interventions of omega-3 fatty acids supplementation and resistance training show promise as a countermeasure against muscular dysfunction. While further research is warranted to investigate its effects on skeletal muscle mass, the findings of this study hold implications for maintaining and/or improving the quality of life to elderly people.
Collapse
Affiliation(s)
- Yuta Uchida
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
| | | | - Eisuke Ochi
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan; Graduate School of Sports and Health Studies, Hosei University, Tokyo, Japan.
| |
Collapse
|
4
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
5
|
Blaauw R, Calder PC, Martindale RG, Berger MM. Combining proteins with n-3 PUFAs (EPA + DHA) and their inflammation pro-resolution mediators for preservation of skeletal muscle mass. Crit Care 2024; 28:38. [PMID: 38302945 PMCID: PMC10835849 DOI: 10.1186/s13054-024-04803-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
The optimal feeding strategy for critically ill patients is still debated, but feeding must be adapted to individual patient needs. Critically ill patients are at risk of muscle catabolism, leading to loss of muscle mass and its consequent clinical impacts. Timing of introduction of feeding and protein targets have been explored in recent trials. These suggest that "moderate" protein provision (maximum 1.2 g/kg/day) is best during the initial stages of illness. Unresolved inflammation may be a key factor in driving muscle catabolism. The omega-3 (n-3) fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are substrates for synthesis of mediators termed specialized pro-resolving mediators or SPMs that actively resolve inflammation. There is evidence from other settings that high-dose oral EPA + DHA increases muscle protein synthesis, decreases muscle protein breakdown, and maintains muscle mass. SPMs may be responsible for some of these effects, especially upon muscle protein breakdown. Given these findings, provision of EPA and DHA as part of medical nutritional therapy in critically ill patients at risk of loss of muscle mass seems to be a strategy to prevent the persistence of inflammation and the related anabolic resistance and muscle loss.
Collapse
Affiliation(s)
- Renée Blaauw
- Division of Human Nutrition, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Philip C Calder
- Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Mette M Berger
- Faculty of Biology and Medicine, Lausanne University, Lausanne, Switzerland.
| |
Collapse
|
6
|
Gasch K, Hykollari A, Habe M, Haubensak P, Painer-Gigler J, Smith S, Stalder G, Arnold W. Summer fades, deer change: Photoperiodic control of cellular seasonal acclimatization of skeletal muscle. iScience 2024; 27:108619. [PMID: 38155774 PMCID: PMC10753075 DOI: 10.1016/j.isci.2023.108619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023] Open
Abstract
We found major seasonal changes of polyunsaturated fatty acids (PUFAs) in muscular phospholipids (PL) in a large non-hibernating mammal, the red deer (Cervus elaphus). Dietary supply of essential linoleic acid (LA) and α-linolenic acid (ALA) had no, or only weak influence, respectively. We further found correlations of PL PUFA concentrations with the activity of key metabolic enzymes, independent of higher winter expression. Activity of the sarcoplasmic reticulum (SR) Ca++-ATPase increased with SR PL concentrations of n-6 PUFA, and of cytochrome c oxidase and citrate synthase, indicators of ATP-production, with concentrations of eicosapentaenoic acid in mitochondrial PL. All detected cyclic molecular changes were controlled by photoperiod and are likely of general relevance for mammals living in seasonal environments, including humans. During winter, these changes at the molecular level presumably compensate for Arrhenius effects in the colder peripheral body parts and thus enable a thrifty life at lower body temperature.
Collapse
Affiliation(s)
- Kristina Gasch
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Alba Hykollari
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Manuela Habe
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Patricia Haubensak
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Johanna Painer-Gigler
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Steve Smith
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Gabrielle Stalder
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Walter Arnold
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| |
Collapse
|
7
|
Lin D, Zhou J, Cao Y, Wang Z, Hsu YC, Zheng F, Li H, Sun S, Ren H, Deng L, Chen F, Wang M. Echo time optimization for in-vivo measurement of unsaturated lipid resonances using J-difference-edited MRS. Magn Reson Med 2023; 90:2217-2232. [PMID: 37496253 DOI: 10.1002/mrm.29807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE Measuring lipid composition provides more information than just total lipid content. Hence, the non-invasive measurement of unsaturated lipid protons with both high efficiency and precision is of pressing need. This study was to optimize echo time (TE) for the best resolving of J-difference editing of unsaturated lipid resonances. METHODS The TE dependence of J-difference-edited (JDE) MRS was verified in the density-matrix simulation, soybean oil phantom, in-vivo experiments of white adipose tissue (WAT), and skeletal muscles using single-voxel MEGA-PRESS sequence at 3T. The peak SNRs and Cramér-Rao lower bounds (CRLBs) acquired at the proposed TE of 45 ms and previously published TE of 70 ms were compared (eight pairs) in WAT, extramyocelluar lipids (EMCLs), and intramyocellular lipids (IMCLs). The lipid composition in skeletal muscles was compared between healthy males (n = 7) and females (n = 7). RESULTS The optimal TE was suggested as 45 ms. Compared to 70 ms, the mean signal gains at TE of 45 ms were 151% in WAT, 168% in EMCL, 204% in IMCL for allylic resonance, and 52% in EMCL for diallylic resonance. CRLBs were significantly reduced at TE of 45 ms in WAT, EMCL, IMCL for allylic resonance and in EMCL for diallylic resonance. With TE of 45 ms, significant gender differences were found in the lipid composition in EMCL pools, while no difference in IMCL pools. CONCLUSION The JDE-MRS protocol with TE of 45 ms allows improved quantification of unsaturated lipid resonances in vivo and future lipid metabolism investigations.
Collapse
Affiliation(s)
- Dingyi Lin
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiaqiang Zhou
- School of Medicine, Sir Run Run Shaw Hospital, Department of Endocrinology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yang Cao
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ziyan Wang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthineers Itd, Shanghai, China
| | - Fenping Zheng
- School of Medicine, Sir Run Run Shaw Hospital, Department of Endocrinology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Li
- School of Medicine, Sir Run Run Shaw Hospital, Department of Endocrinology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuiya Sun
- School of Medicine, Sir Run Run Shaw Hospital, Department of Endocrinology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Ren
- School of Medicine, Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liping Deng
- School of Medicine, Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Chen
- School of Medicine, the First Affiliated Hospital, Department of Radiology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Wang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Sir Run Run Shaw Hospital, Department of Endocrinology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Chen DK, Metherel AH, Rezaei K, Parzanini C, Chen CT, Ramsden CE, Horowitz M, Faurot KR, MacIntosh B, Zamora D, Bazinet RP. Analysis of omega-3 and omega-6 polyunsaturated fatty acid metabolism by compound-specific isotope analysis in humans. J Lipid Res 2023; 64:100424. [PMID: 37572791 PMCID: PMC10507585 DOI: 10.1016/j.jlr.2023.100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023] Open
Abstract
Natural variations in the 13C:12C ratio (carbon-13 isotopic abundance [δ13C]) of the food supply have been used to determine the dietary origin and metabolism of fatty acids, especially in the n-3 PUFA biosynthesis pathway. However, n-6 PUFA metabolism following linoleic acid (LNA) intake remains under investigation. Here, we sought to use natural variations in the δ13C signature of dietary oils and fatty fish to analyze n-3 and n-6 PUFA metabolism following dietary changes in LNA and eicosapentaenoic acid (EPA) + DHA in adult humans. Participants with migraine (aged 38.6 ± 2.3 years, 93% female, body mass index of 27.0 ± 1.1 kg/m2) were randomly assigned to one of three dietary groups for 16 weeks: 1) low omega-3, high omega-6 (H6), 2) high omega-3, high omega-6 (H3H6), or 3) high omega-3, low omega-6 (H3). Blood was collected at baseline, 4, 10, and 16 weeks. Plasma PUFA concentrations and δ13C were determined. The H6 intervention exhibited increases in plasma LNA δ13C signature over time; meanwhile, plasma LNA concentrations were unchanged. No changes in plasma arachidonic acid δ13C or concentration were observed. Participants on the H3H6 and H3 interventions demonstrated increases in plasma EPA and DHA concentration over time. Plasma δ13C-EPA increased in total lipids of the H3 group and phospholipids of the H3H6 group compared with baseline. Compound-specific isotope analysis supports a tracer-free technique that can track metabolism of dietary fatty acids in humans, provided that the isotopic signature of the dietary source is sufficiently different from plasma δ13C.
Collapse
Affiliation(s)
- Daniel K Chen
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Adam H Metherel
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Kimia Rezaei
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Camilla Parzanini
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Chuck T Chen
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Christopher E Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging and National Institute on Alcohol Abuse and Alcoholism, NIH, Baltimore, MD, USA
| | - Mark Horowitz
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging and National Institute on Alcohol Abuse and Alcoholism, NIH, Baltimore, MD, USA
| | - Keturah R Faurot
- Department of Physical Medicine and Rehabilitation, Program on Integrative Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Beth MacIntosh
- Department of Physical Medicine and Rehabilitation, Program on Integrative Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA; Metabolic and Nutrition Research Core, UNC Medical Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Daisy Zamora
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging and National Institute on Alcohol Abuse and Alcoholism, NIH, Baltimore, MD, USA; Department of Psychiatry, UNC School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Richard P Bazinet
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Tsuji K, Tsuchiya Y, Yokoi K, Yanagimoto K, Ueda H, Ochi E. Eicosapentaenoic Acid and Medium-Chain Triacylglycerol Structured Lipids Improve Endurance Performance. Nutrients 2023; 15:3692. [PMID: 37686724 PMCID: PMC10489969 DOI: 10.3390/nu15173692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
PURPOSE The effects of intake of STGs containing esterified eicosapentaenoic acid (EPA) and medium-chain triglycerides (MCTs) on cardiorespiratory endurance have not yet been reported. This study aimed to examine the efficacy of interesterified structured lipids EPA and MCTs on cardiorespiratory endurance. METHODS This 8-week randomized double-blind placebo-controlled parallel-group study involved 19 healthy men. The participants were randomly assigned to a group that received interesterified structured lipids EPA and MCTs (STG group, 9 participants) or a group receiving a PM of EPA and MCTs (PM group, 10 participants). The outcome measures were time to exhaustion (TTE) and time to reach the anaerobic threshold in the peak oxygen uptake (VO2peak) test, VO2peak, and anaerobic threshold. RESULTS The increase in TTE in the VO2peak test after the intervention period compared with before the intervention period was significantly greater in the STG group (53 ± 53 s) than in the PM group (-10 ± 63 s; p < 0.05). Similarly, the increase in time to reach the anaerobic threshold was significantly greater in the STG group (82 ± 55 s) than in the PM group (-26 ± 52 s; p < 0.001). CONCLUSION This study demonstrated that the consumption of interesterified structured lipids EPA and MCTs improved endurance in humans.
Collapse
Affiliation(s)
- Katsunori Tsuji
- Sports Research Center, Hosei University, Kawasaki 211-0065, Japan;
| | - Yosuke Tsuchiya
- Center for Liberal Arts, Laboratory of Health and Sports Sciences, Meiji Gakuin University, Yokohama 244-8539, Japan;
| | - Kaori Yokoi
- Food Function R&D Center, Nissui Corporation, Tokyo 105-8676, Japan; (K.Y.); (K.Y.)
| | - Kenichi Yanagimoto
- Food Function R&D Center, Nissui Corporation, Tokyo 105-8676, Japan; (K.Y.); (K.Y.)
| | - Hisashi Ueda
- Faculty of Health and Medical Science, Department of Medical Sports, Teikyo Heisei University, Ichihara 290-0193, Japan;
| | - Eisuke Ochi
- Sports Research Center, Hosei University, Kawasaki 211-0065, Japan;
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo 184-8584, Japan
- Graduate School of Sports and Health Studies, Hosei University, Tokyo 194-0298, Japan
| |
Collapse
|
10
|
Miro C, Nappi A, Sagliocchi S, Di Cicco E, Murolo M, Torabinejad S, Acampora L, Pastore A, Luciano P, La Civita E, Terracciano D, Stornaiuolo M, Dentice M, Cicatiello AG. Thyroid Hormone Regulates the Lipid Content of Muscle Fibers, Thus Affecting Physical Exercise Performance. Int J Mol Sci 2023; 24:12074. [PMID: 37569453 PMCID: PMC10418733 DOI: 10.3390/ijms241512074] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Skeletal muscle (SkM) lipid composition plays an essential role in physiological muscle maintenance and exercise performance. Thyroid hormones (THs) regulate muscle formation and fuel energy utilization by modulating carbohydrates and lipid and protein metabolism. The best-known effects of THs in SkM include the promotion of mitochondrial biogenesis, the fiber-type switch from oxidative to glycolytic fibers, and enhanced angiogenesis. To assess the role of THs on the lipidic composition of SkM fibers, we performed lipidomic analyses of SkM cells and tissues, glucose tolerance experiments, and exercise performance tests. Our data demonstrated that TH treatment induces remodeling of the lipid profile and changes the proportion of fatty acids in SkM. In brief, THs significantly reduced the ratio of stearic/oleic acid in the muscle similar to what is induced by physical activity. The increased proportion of unsaturated fatty acids was linked to an improvement in insulin sensitivity and endurance exercise. These findings point to THs as critical endocrine factors affecting exercise performance and indicate that homeostatic maintenance of TH signals, by improving cell permeability and receptor stability at the cell membrane, is crucial for muscle physiology.
Collapse
Affiliation(s)
- Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (S.S.); (E.D.C.); (M.M.); (S.T.); (L.A.); (M.D.); (A.G.C.)
| | - Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (S.S.); (E.D.C.); (M.M.); (S.T.); (L.A.); (M.D.); (A.G.C.)
| | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (S.S.); (E.D.C.); (M.M.); (S.T.); (L.A.); (M.D.); (A.G.C.)
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (S.S.); (E.D.C.); (M.M.); (S.T.); (L.A.); (M.D.); (A.G.C.)
| | - Melania Murolo
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (S.S.); (E.D.C.); (M.M.); (S.T.); (L.A.); (M.D.); (A.G.C.)
| | - Sepehr Torabinejad
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (S.S.); (E.D.C.); (M.M.); (S.T.); (L.A.); (M.D.); (A.G.C.)
| | - Lucia Acampora
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (S.S.); (E.D.C.); (M.M.); (S.T.); (L.A.); (M.D.); (A.G.C.)
| | - Arianna Pastore
- Department of Pharmacy, University of Naples “Federico II”, 80149 Naples, Italy; (A.P.); (P.L.); (M.S.)
| | - Paolo Luciano
- Department of Pharmacy, University of Naples “Federico II”, 80149 Naples, Italy; (A.P.); (P.L.); (M.S.)
| | - Evelina La Civita
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (D.T.)
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (D.T.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples “Federico II”, 80149 Naples, Italy; (A.P.); (P.L.); (M.S.)
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (S.S.); (E.D.C.); (M.M.); (S.T.); (L.A.); (M.D.); (A.G.C.)
- CEINGE–Biotecnologie Avanzate S.c.a.r.l., 80131 Naples, Italy
| | - Annunziata Gaetana Cicatiello
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (S.S.); (E.D.C.); (M.M.); (S.T.); (L.A.); (M.D.); (A.G.C.)
| |
Collapse
|
11
|
Shan K, Feng N, Zhu D, Qu H, Fu G, Li J, Cui J, Chen H, Wang R, Qi Y, Chen YQ. Free docosahexaenoic acid promotes ferroptotic cell death via lipoxygenase dependent and independent pathways in cancer cells. Eur J Nutr 2022; 61:4059-4075. [PMID: 35804267 DOI: 10.1007/s00394-022-02940-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 06/15/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Ferroptosis is a form of regulated cell death that has the potential to be targeted as a cancer therapeutic strategy. But cancer cells have a wide range of sensitivities to ferroptosis, which limits its therapeutic potential. Accumulation of lipid peroxides determines the occurrence of ferroptosis. However, the type of lipid involved in peroxidation and the mechanism of lipid peroxide accumulation are less studied. METHODS The effects of fatty acids (10 μM) with different carbon chain length and unsaturation on ferroptosis were evaluated by MTT and LDH release assay in cell lines derived from prostate cancer (PC3, 22RV1, DU145 and LNCaP), colorectal cancer (HT-29), cervical cancer (HeLa) and liver cancer (HepG2). Inhibitors of apoptosis, necroptosis, autophagy and ferroptosis were used to determine the type of cell death. Then the regulation of reactive oxygen species (ROS) and lipid peroxidation by docosahexaenoic acid (DHA) was measured by HPLC-MS and flow cytometry. The avtive form of DHA was determined by siRNA mediated gene silencing. The role of lipoxygenases was checked by inhibitors and gene silencing. Finally, the effect of DHA on ferroptosis-mediated tumor killing was verified in xenografts. RESULTS The sensitivity of ferroptosis was positively correlated with the unsaturation of exogenously added fatty acid. DHA (22:6 n-3) sensitized cancer cells to ferroptosis-inducing reagents (FINs) at the highest level in vitro and in vivo. In this process, DHA increased ROS accumulation, lipid peroxidation and protein oxidation independent of its membrane receptor, GPR120. Inhibition of long chain fatty acid-CoA ligases and lysophosphatidylcholine acyltransferases didn't affect the role of DHA. DHA-involved ferroptosis can be induced in both arachidonate lipoxygenase 5 (ALOX5) negative and positive cells. Down regulation of ALOX5 inhibited ferroptosis, while overexpression of ALOX5 promoted ferroptosis. CONCLUSION DHA can effectively promote ferroptosis-mediated tumor killing by increasing intracellular lipid peroxidation. Both ALOX5 dependent and independent pathways are involved in DHA-FIN induced ferroptosis. And during this process, free DHA plays an important role.
Collapse
Affiliation(s)
- Kai Shan
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Ninghan Feng
- Department of Urology, Wuxi No. 2 People's Hospital, Wuxi, 214000, Jiangsu Province, China
| | - Doudou Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Hongyan Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Guoling Fu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Jiaqi Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Jing Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Heyan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Rong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Yumin Qi
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
12
|
Peoples GE, Larsen P, Bowes HM, Coombes J, Drain JR, Groeller H, McLennan PL. The influence of a basic military training diet on whole blood fatty acid profile and the Omega-3 Index of Australian Army recruits. Appl Physiol Nutr Metab 2021; 47:151-158. [PMID: 34587469 DOI: 10.1139/apnm-2021-0459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study described the whole blood fatty acid profile and Omega-3 Index (O3I) of Australian Army recruits at the commencement and completion of basic military training (BMT). Eighty (80) males (17-34 y, 77.4±13.0 kg, 43.5±4.3 mL/kg/min) and 37 females (17-45 y, 64.3±8.8 kg, 39.3±2.7 mL/kg/min) volunteered to participate (N=117). Whole blood samples of each recruit were collected using a finger prick in weeks 1 and 11 (n=82) and analysed via gas chromatography for the relative proportions of each fatty acid (mean [95% CI]). The macronutrient characteristics of the diet offerings was also determined. At commencement there was a low omega-3 status (sum of omega-3; 4.95% [4.82-5.07]) and O3I (5.03% [4.90-5.16]) and no recruit recorded an O3I >8% (desirable). The omega-6/omega-3 (7.04 [6.85-7.23]) and arachidonic acid / eicosapentaenoic acid (AA/EPA) (18.70 [17.86-19.53]) ratios for the cohort were also undesirable. The BMT mess menu provided a maximum of 190 mg/day of eicosapentaenoic acid (EPA) and 260 mg/day of docosahexaenoic acid (DHA). The O3I of the recruits was lower by week 11 (4.62% [4.51-4.78], p<0.05), the omega-6/omega-3 increased (7.27 [7.07-7.47] p<0.05) and the AA/EPA remained elevated (17.85 [16.89-18.81]). In conclusion, Australian Army recruits' omega-3 status remained undesirable during BMT and deserves nutritional attention. Novelty Bullets • Australian Army recruits' Omega-3 Index, at the commencement of BMT, was reflective of the Western-style diet. • The BMT diet offered minimum opportunity for daily EPA and DHA consumption. • Every recruit experienced a further reduction of their Omega-3 Index during BMT.
Collapse
Affiliation(s)
| | | | | | | | - Jace R Drain
- Defence Science and Technology Group, 2222, Melbourne, Australia;
| | - Herbert Groeller
- University of Wollongong, School of Medicine, Wollongong, New South Wales, Australia.,University of Wollongong, 8691, Wollongong, New South Wales, Australia;
| | | |
Collapse
|
13
|
The Importance of Lipidomic Approach for Mapping and Exploring the Molecular Networks Underlying Physical Exercise: A Systematic Review. Int J Mol Sci 2021; 22:ijms22168734. [PMID: 34445440 PMCID: PMC8395903 DOI: 10.3390/ijms22168734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Maintaining appropriate levels of physical exercise is an optimal way for keeping a good state of health. At the same time, optimal exercise performance necessitates an integrated organ system response. In this respect, physical exercise has numerous repercussions on metabolism and function of different organs and tissues by enhancing whole-body metabolic homeostasis in response to different exercise-related adaptations. Specifically, both prolonged and intensive physical exercise produce vast changes in multiple and different lipid-related metabolites. Lipidomic technologies allow these changes and adaptations to be clarified, by using a biological system approach they provide scientific understanding of the effect of physical exercise on lipid trajectories. Therefore, this systematic review aims to indicate and clarify the identifying biology of the individual response to different exercise workloads, as well as provide direction for future studies focused on the body’s metabolome exercise-related adaptations. It was performed using five databases (Medline (PubMed), Google Scholar, Embase, Web of Science, and Cochrane Library). Two author teams reviewed 105 abstracts for inclusion and at the end of the screening process 50 full texts were analyzed. Lastly, 14 research articles specifically focusing on metabolic responses to exercise in healthy subjects were included. The Oxford quality scoring system scale was used as a quality measure of the reviews. Information was extracted using the participants, intervention, comparison, outcomes (PICOS) format. Despite that fact that it is well-known that lipids are involved in different sport-related changes, it is unclear what types of lipids are involved. Therefore, we analyzed the characteristic lipid species in blood and skeletal muscle, as well as their alterations in response to chronic and acute exercise. Lipidomics analyses of the studies examined revealed medium- and long-chain fatty acids, fatty acid oxidation products, and phospholipids qualitative changes. The main cumulative evidence indicates that both chronic and acute bouts of exercise determine significant changes in lipidomic profiles, but they manifested in very different ways depending on the type of tissue examined. Therefore, this systematic review may offer the possibility to fully understand the individual lipidomics exercise-related response and could be especially important to improve athletic performance and human health.
Collapse
|
14
|
Fasting increases 18:2-containing phosphatidylcholines to complement the decrease in 22:6-containing phosphatidylcholines in mouse skeletal muscle. PLoS One 2021; 16:e0255178. [PMID: 34310656 PMCID: PMC8312970 DOI: 10.1371/journal.pone.0255178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/10/2021] [Indexed: 12/15/2022] Open
Abstract
Fasting stimulates catabolic reactions in skeletal muscle to survive nutrient deprivation. Cellular phospholipids have large structural diversity due to various polar-heads and acyl-chains that affect many cellular functions. Skeletal muscle phospholipid profiles have been suggested to be associated with muscle adaptations to nutritional and environmental status. However, the effect of fasting on skeletal muscle phospholipid profiles remains unknown. Here, we analyzed phospholipids using liquid chromatography mass spectrometry. We determined that fasting resulted in a decrease in 22:6-containing phosphatidylcholines (PCs) (22:6-PCs) and an increase in 18:2-containing PCs (18:2-PCs). The fasting-induced increase in 18:2-PCs was sufficient to complement 22:6-PCs loss, resulting in the maintenance of the total amount of polyunsaturated fatty acid (PUFA)-containing PCs. Similar phospholipid alterations occurred in insulin-deficient mice, which indicate that these observed phospholipid perturbations were characteristic of catabolic skeletal muscle. In lysophosphatidic acid acyltransferase 3-knockout muscles that mostly lack 22:6-PCs, other PUFA-containing PCs, mainly 18:2-PCs, accumulated. This suggests a compensatory mechanism for skeletal muscles to maintain PUFA-containing PCs.
Collapse
|
15
|
Kim J, Yoon JH. Does Obesity Affect the Severity of Exercise-Induced Muscle Injury? J Obes Metab Syndr 2021; 30:132-140. [PMID: 33820879 PMCID: PMC8277587 DOI: 10.7570/jomes20100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/21/2020] [Accepted: 01/02/2021] [Indexed: 12/11/2022] Open
Abstract
This literature review investigates the effects of obesity on exercise-induced muscle injury and reexamines the potential mechanisms of exercise-induced muscle injury related to obesity. Several studies reported that high body mass index and percent body fat can significantly affect the markers of muscle injury after exercise, including maximal strength, delayed onset muscle soreness, creatinine kinase level, and myoglobin level. The potential mechanisms resulting in these outcomes include structural changes in the cell membrane induced by high fat levels, increased inflammatory responses due to adipose tissues, reduced muscle satellite cell activation and myogenesis due to lipid overload, differences in muscle fiber distributions, and sedentary behaviors. These mechanisms, however, must be verified through more research. As obesity is a potential risk factor increasing the severity of exercise-induced muscle injuries, the exercise intensity and duration for obese patients must be carefully selected, and a preconditioning intervention (e.g., low-intensity eccentric training) may be considered before or during the early stages of the exercise program.
Collapse
Affiliation(s)
- Jooyoung Kim
- Office of Academic Affairs, Konkuk University, Chungju, Korea
| | - Jin Hwan Yoon
- Department of Sport Science, College of Life Science and Nano Technology, Hannam University, Daejeon, Korea
| |
Collapse
|
16
|
Anthony R, Brown MA, Walton KL, McLennan PL, Peoples GE. A daily dose of fish oil increased the omega‐3 index in older adults and reduced their heart rate during a walking activity: A pilot study. NUTR BULL 2021. [DOI: 10.1111/nbu.12497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryan Anthony
- Centre for Medical and Exercise Physiology School of Medicine University of Wollongong Wollongong NSW Australia
| | - Marc A. Brown
- Centre for Medical and Exercise Physiology School of Medicine University of Wollongong Wollongong NSW Australia
| | - Karen L. Walton
- Discipline of Nutrition and Dietetics School of Medicine University of Wollongong Wollongong NSW Australia
- Illawarra Health and Medical Research Institute University of Wollongong Wollongong NSW Australia
| | - Peter L. McLennan
- Centre for Medical and Exercise Physiology School of Medicine University of Wollongong Wollongong NSW Australia
| | - Gregory E. Peoples
- Centre for Medical and Exercise Physiology School of Medicine University of Wollongong Wollongong NSW Australia
| |
Collapse
|
17
|
Mitchell CM, Piaggi P, O’Brien DM, Krakoff J, Votruba SB. Metabolic Characterization of Meat, Fish, and Soda Intake in Males: Secondary Results from a Randomized Inpatient Pilot Study. Obesity (Silver Spring) 2021; 29:995-1002. [PMID: 33938613 PMCID: PMC9528993 DOI: 10.1002/oby.23167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVE This study aimed to evaluate whether a 12-week, weight-maintaining, macronutrient-stable dietary intervention that varies only by meat, fish, or soda consumption alters 24-hour energy expenditure (24hrEE) and substrate oxidation. METHODS Healthy males were recruited to participate in a 12-week inpatient study and were randomized to a weight-maintaining dietary intervention that contained varying combinations of meat (0% or 19%), fish (0% or 6%), or soda (0% or 14%) in a factorial design. Macronutrient composition across dietary intervention groups was as follows: 50% of energy from carbohydrates, 30% of energy from fat, and 20% of energy from protein. Whole-room indirect calorimetry at baseline and week 12 were used to measure 24hrEE and substrate oxidation. RESULTS Twenty-six males (mean [SEM], age: 46.6 [10.4] years; BMI: 26.9 [4.1] kg/m2 ) completed all measurements. Fish consumption resulted in higher 24hrEE by 126 (55) kcal/d compared with no fish consumption (P = 0.03), whereas 24hrEE for soda consumption was 132 (56) kcal/d (P = 0.03) lower. Approximately 80% of the decrease in 24hrEE with soda consumption was due to lower awake-inactive energy expenditure (EE; P = 0.001). No specific EE component accounted for the differences observed with fish consumption. CONCLUSIONS The data indicate that dietary sources of protein and carbohydrates appear to influence 24hrEE and inactive EE.
Collapse
Affiliation(s)
- Cassie M. Mitchell
- 4212 N. 16 Street, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, 85016 USA
| | - Paolo Piaggi
- 4212 N. 16 Street, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, 85016 USA
| | - Diane M. O’Brien
- 230 Artic Health Research Building, Center for Alaska Native Health Research, Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Jonathan Krakoff
- 4212 N. 16 Street, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, 85016 USA
| | - Susanne B. Votruba
- 4212 N. 16 Street, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, 85016 USA
| |
Collapse
|
18
|
Tsuchiya Y, Ueda H, Yanagimoto K, Kato A, Ochi E. 4-week eicosapentaenoic acid-rich fish oil supplementation partially protects muscular damage following eccentric contractions. J Int Soc Sports Nutr 2021; 18:18. [PMID: 33648546 PMCID: PMC7923476 DOI: 10.1186/s12970-021-00411-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/26/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND We previously showed 8-week of fish oil supplementation attenuated muscle damage. However, the effect of a shorter period of fish oil supplementation is unclear. The present study investigated the effect of fish oil, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), for 4 weeks on muscular damage caused by eccentric contractions (ECCs) of the elbow flexors. METHODS Twenty-two untrained men were recruited in this double-blind, placebo-controlled, parallel design study and the subjects were randomly assigned to the EPA and DHA group (EPA and DHA, n = 11) and placebo group (PL, n = 11). They consumed either EPA 600 mg and DHA 260 mg per day or placebo supplement for 4 weeks prior to exercise. Subjects performed 60 ECCs at 100 % maximal voluntary contraction (MVC) using a dumbbell. Changes in MVC torque, range of motion (ROM), upper arm circumference, muscle soreness, echo intensity, muscle thickness, serum creatine kinase (CK), and interleukin-6 (IL-6) were assessed before exercise; immediately after exercise; and 1, 2, 3, and 5 days after exercise. RESULTS ROM was significantly higher in the EPA and DHA group than in the PL group immediately after performing ECCs (p < 0.05). No differences between groups were observed in terms of MVC torque, upper arm circumference, muscle soreness, echo intensity, and thickness. A significant difference was observed in serum CK 3 days after ECCs (p < 0.05). CONCLUSIONS We concluded that shorter period EPA and DHA supplementation benefits joint flexibility and protection of muscle fiber following ECCs.
Collapse
Affiliation(s)
- Yosuke Tsuchiya
- Laboratory of Health and Sports Sciences, Meiji Gakuin University, Kanagawa, Japan
| | - Hisashi Ueda
- Faculty of Health and Medical Science, Teikyo Heisei University, Chiba, Japan
| | | | - Ayaka Kato
- Food Function R&D Center, Nippon Suisan Kaisha, Ltd, Tokyo, Japan
| | - Eisuke Ochi
- Faculty of Bioscience and Applied Chemistry, Hosei University, 3-7-2, Kajino, Koganei, 184-8584, Tokyo, Japan.
- Graduate School of Sports and Health Studies, Hosei University, Tokyo, Japan.
| |
Collapse
|
19
|
PUFA Treatment Affects C2C12 Myocyte Differentiation, Myogenesis Related Genes and Energy Metabolism. Genes (Basel) 2021; 12:genes12020192. [PMID: 33525599 PMCID: PMC7910949 DOI: 10.3390/genes12020192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are the main components of cell membrane affecting its fluidity, signaling processes and play a vital role in muscle cell development. The effects of docosahexaenoic acid (DHA) on myogenesis are well known, while the effects of arachidonic acid (AA) are largely unclear. The purpose of this study is to evaluate the effect of two PUFAs (DHA and AA) on cell fate during myogenic processes, Wnt signaling and energy metabolism by using the C2C12 cells. The cells were treated with different concentrations of AA or DHA for 48 h during the differentiation period. PUFA treatment increased mRNA level of myogenic factor 5 (Myf5), which is involved in early stage of myoblast proliferation. Additionally, PUFA treatment prevented myoblast differentiation, indicated by decreased myotube fusion index and differentiation index in parallel with reduced mRNA levels of myogenin (MyoG). After PUFA withdrawal, some changes in cell morphology and myosin heavy chain mRNA levels were still observed. Expression of genes associated with Wnt signaling pathway, and energy metabolism changed in PUFA treatment in a dose and time dependent manner. Our data suggests that PUFAs affect the transition of C2C12 cells from proliferation to differentiation phase by prolonging proliferation and preventing differentiation.
Collapse
|
20
|
Senoo N, Miyoshi N, Kobayashi E, Morita A, Tanihata J, Takeda S, Miura S. Glycerophospholipid profile alterations are associated with murine muscle-wasting phenotype. Muscle Nerve 2020; 62:413-418. [PMID: 32496590 DOI: 10.1002/mus.26993] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/21/2020] [Accepted: 05/30/2020] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Phospholipids are essential components of cellular membranes and are closely associated with cellular functions, but relationships involving skeletal muscle phospholipid profiles and their physiological phenotypes have remained unclear. METHODS We carried out comprehensive phospholipid analyses using liquid chromatography-tandem mass spectrometry to determine the phospholipid profiles of skeletal muscles derived from muscle-wasting mouse models, including denervated and Duchenne muscular dystrophy mouse models (mdx) as well as rescued mdx mice expressing truncated dystrophin. RESULTS Consistent phosphatidylcholine and phosphatidylethanolamine alterations in skeletal muscles isolated from denervated and mdx mice were observed. Notably, the levels of these phospholipids binding polyunsaturated fatty acids were reduced in denervated and mdx muscles. Moreover, rescuing the mdx pathology by expressing truncated dystrophin led to the restoration of phospholipid profiles. DISCUSSION Our findings support the hypothesis that phospholipid profiles of the skeletal muscle may be associated with skeletal muscle function.
Collapse
Affiliation(s)
- Nanami Senoo
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Noriyuki Miyoshi
- Laboratory of Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Eri Kobayashi
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Akihito Morita
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center for Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Department of Cell Physiology, Jikei University School of Medicine, Tokyo, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center for Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Shinji Miura
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
21
|
The effect of high doses of ω-3 fatty acid on the structure of the gastrocnemius muscle and on the lipidic profile of Wistar rats submitted to swimming. Nutrition 2020; 78:110832. [PMID: 32544851 DOI: 10.1016/j.nut.2020.110832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/16/2020] [Accepted: 03/22/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Evidence suggests that ω-3 fatty acids (FA) may have an anabolic effect on skeletal muscle. However, questions about dosage, frequency, combined protein supplementation, or different physical exercises remain unanswered. The aim of this study was to quantify by stereology whether supplementation with high dosages of ω-3 FA combined with swimming has an anabolic effect on the skeletal musculature and on the lipid profile of rats. METHODS Sixty male Wistar rats were divided into four groups: placebo sedentary (PS), ω-3 FA sedentary (ω-3 S), placebo exercise (PE), and ω-3 FA exercise (ω-3 E). The animals in the PE and ω-3 E groups were submitted to swimming 5 d/wk, with an overload of 15% of body weight. The animals received ω-3 FA or olive oil (placebo) by gavage. After sacrifice, blood samples and the gastrocnemius muscle were collected for analysis. RESULTS Results from this study did not show a difference in the cross-sectional areas of the gastrocnemius muscle between groups. The administration of high doses of ω-3 FA reduced plasmatic concentrations of low-density lipoprotein. Additionally, an interaction effect was observed between physical exercise and supplementation with ω-3 on levels of high-density lipoprotein. Therefore, the association between these two treatments increased high-density lipoprotein levels. CONCLUSIONS The administration of high doses of ω-3 associated with physical activity may be beneficial in the treatment of dyslipidemia. High doses of ω-3 FA do not cause muscle mass alteration.
Collapse
|
22
|
Effect of Body Fat Percentage on Muscle Damage Induced by High-Intensity Eccentric Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103476. [PMID: 32429389 PMCID: PMC7277746 DOI: 10.3390/ijerph17103476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022]
Abstract
This study aimed to investigate the impact of percent body fat (%BF) on muscle damage after high-intensity eccentric exercise. Thirty healthy male undergraduates (mean age: 22.0 ± 2 years, height: 176.9 ± 5 cm, weight: 75.8 ± 11.6 kg) participated in this study, and they were classified according to their %BF into a high %fat group (HFG, ≥20%, n = 15) and a low %fat group (LFG, ≤15%, n = 15). For eccentric exercise, two sets of 25 reps were performed on a modified preacher curl machine using the elbow flexor muscle. Maximal isometric strength, muscle soreness (passive and active), creatine kinase (CK), and myoglobin (Mb) were measured as indices of muscle damage. The data were analyzed with repeated measures ANOVA. The results show that there is a significant group–time interaction for both CK and Mb after eccentric exercise (p = 0.007, p = 0.015, respectively), with a greater increase in the HFG than in the LFG. However, there was no significant group–time interaction for maximal isometric strength and muscle soreness (passive and active) (p > 0.05). These results suggest that %BF is a factor that alters the muscle damage indices CK and Mb, which indicate membrane disruption, after eccentric exercise.
Collapse
|
23
|
García-Rayado G, Varela-Moreiras G, Lanas Á, Ferrández Á, Balza-Lareu N, Cervera JI, Bodenlle-Bello MP, Argüelles-Arias AM, Latorre P, Udaondo-Cascante MA, Soria-de-la-Cruz MJ, Lariño-Noia J, García-Figueiras R, Gil-García-Ollauri C, Ituarte-Uriarte R, Rosales-Alexander CL, Soriano J, Rodríguez-Peláez M, Mesa-Álvarez A, Oblitas E, Menso MM, Bertoletti F, Rodríguez-Prada JI, Guzmán-Suárez S, Closa D, de-Madaria E. Dietary Fat Patterns and Outcomes in Acute Pancreatitis in Spain. Front Med (Lausanne) 2020; 7:126. [PMID: 32328495 PMCID: PMC7160296 DOI: 10.3389/fmed.2020.00126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/20/2020] [Indexed: 12/25/2022] Open
Abstract
Background/Objective: Evidence from basic and clinical studies suggests that unsaturated fatty acids (UFAs) might be relevant mediators of the development of complications in acute pancreatitis (AP). Objective: The aim of this study was to analyze outcomes in patients with AP from regions in Spain with different patterns of dietary fat intake. Materials and Methods: A retrospective analysis was performed with data from 1,655 patients with AP from a Spanish prospective cohort study and regional nutritional data from a Spanish cross-sectional study. Nutritional data considered in the study concern the total lipid consumption, detailing total saturated fatty acids, UFAs and monounsaturated fatty acids (MUFAs) consumption derived from regional data and not from the patient prospective cohort. Two multivariable analysis models were used: (1) a model with the Charlson comorbidity index, sex, alcoholic etiology, and recurrent AP; (2) a model that included these variables plus obesity. Results: In multivariable analysis, patients from regions with high UFA intake had a significantly increased frequency of local complications, persistent organ failure (POF), mortality, and moderate-to-severe disease in the model without obesity and a higher frequency of POF in the model with obesity. Patients from regions with high MUFA intake had significantly more local complications and moderate-to-severe disease; this significance remained for moderate-to-severe disease when obesity was added to the model. Conclusions: Differences in dietary fat patterns could be associated with different outcomes in AP, and dietary fat patterns may be a pre-morbid factor that determines the severity of AP. UFAs, and particulary MUFAs, may influence the pathogenesis of the severity of AP.
Collapse
Affiliation(s)
- Guillermo García-Rayado
- Service of Digestive Diseases, University Clinic Hospital Lozano Blesa, Aragón Health Research Institute (IIS Aragón), CIBERehd, Zaragoza, Spain
| | | | - Ángel Lanas
- Service of Digestive Diseases, University Clinic Hospital Lozano Blesa, Aragón Health Research Institute (IIS Aragón), CIBERehd, Zaragoza, Spain
| | - Ángel Ferrández
- Service of Digestive Diseases, University Clinic Hospital Lozano Blesa, Aragón Health Research Institute (IIS Aragón), CIBERehd, Zaragoza, Spain
| | | | - Juan I Cervera
- Department of Radiology, Hospital Clínico Universitario, Valencia, Spain
| | | | | | - Patricia Latorre
- Department of Gastroenterology, Hospital Universitario Doctor Peset, Valencia, Spain
| | | | | | - José Lariño-Noia
- Department of Gastroenterology and Hepatology, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Roberto García-Figueiras
- Department of Radiology, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | - Jordi Soriano
- Department of Gastroenterology, Hospital Universitari Doctor Josep Trueta, Girona, Spain
| | - María Rodríguez-Peláez
- Department of Gastroenterology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Alicia Mesa-Álvarez
- Department of Radiology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Elida Oblitas
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - María M Menso
- Department of Radiology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Federico Bertoletti
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | - Daniel Closa
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC-IDIBAPS), Barcelona, Spain
| | - Enrique de-Madaria
- Department of Gastroenterology, Alicante University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante, Spain
| |
Collapse
|
24
|
Arias-Fernández L, Struijk EA, Rodríguez-Artalejo F, Lopez-Garcia E, Lana A. Habitual dietary fat intake and risk of muscle weakness and lower-extremity functional impairment in older adults: A prospective cohort study. Clin Nutr 2020; 39:3663-3670. [PMID: 32273201 DOI: 10.1016/j.clnu.2020.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/04/2020] [Accepted: 03/20/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Fatty acid supplementation increases muscle mass and function in older adults, but the effect of habitual dietary intake is uncertain. Therefore, the objective of this study was to examine the association between habitual dietary fat intake and risk of muscle weakness and lower-extremity functional impairment (LEFI) in older adults. METHODS Prospective study with 1873 individuals aged ≥60 years from the Seniors-ENRICA cohort. In 2008-10 and 2012, a validated face-to-face diet history was used to record the one-year consumption of up to 880 foods. Then, fatty acids, other nutrients and energy intake were estimated using standard food composition tables. Means of intake between these years were calculated to represent cumulative consumption over the follow-up. Study participants were followed up through 2015 to assess incident muscle weakness (lowest quintile of grip strength) and incident LEFI (Short Physical Performance Battery score ≤6). Analyses were performed with Cox regression and adjusted for the main confounders, including other types of fatty acids. RESULTS Over a median follow-up of 5.2 years, 331 participants developed muscle weakness and 397 LEFI. Intake of saturated fatty acids (SFA) did not show an association with muscle weakness but was associated with higher risk of LEFI (multivariable hazard ratio (HR) for tertile 3 vs. tertile 1: 1.15; 95% confidence interval: 1.05-2.01; p-trend = 0.02). This association was mostly due to consumption of Spanish cold cuts and pastry and, to a lesser extent, dairy. Monounsaturated fatty acids (MUFA) intake was associated with lower risk of muscle weakness (HR t3 vs. t1: 0.73; 0.54-0.99; p trend = 0.04), and intake of n-3 polyunsaturated fatty acids (PUFA) was associated with reduced risk of both muscle weakness (0.70; 0.52-0.95; p-trend = 0.02) and LEFI (0.49; 0.35-0.68; p-trend <0.001). Olive oil and blue fish, the main sources of MUFA and PUFA, were also associated with lower risk of muscle weakness and LEFI. CONCLUSIONS Habitual intake of SFA was associated with increased risk of LEFI. By contrast, habitual intake of MUFA and PUFA were associated with lower risk of physical performance impairment.
Collapse
Affiliation(s)
- Lucía Arias-Fernández
- Department of Medicine, Preventive Medicine and Public Health Area, School of Medicine and Health Sciences, Universidad de Oviedo /ISPA, Spain; Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid/IdiPAZ, Spain
| | - Ellen A Struijk
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid/IdiPAZ, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Fernando Rodríguez-Artalejo
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid/IdiPAZ, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain; IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Esther Lopez-Garcia
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid/IdiPAZ, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain; IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain.
| | - Alberto Lana
- Department of Medicine, Preventive Medicine and Public Health Area, School of Medicine and Health Sciences, Universidad de Oviedo /ISPA, Spain; Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid/IdiPAZ, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| |
Collapse
|
25
|
Antunes MM, Godoy G, de Almeida-Souza CB, da Rocha BA, da Silva-Santi LG, Masi LN, Carbonera F, Visentainer JV, Curi R, Bazotte RB. A high-carbohydrate diet induces greater inflammation than a high-fat diet in mouse skeletal muscle. ACTA ACUST UNITED AC 2020; 53:e9039. [PMID: 32077465 PMCID: PMC7025447 DOI: 10.1590/1414-431x20199039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/16/2019] [Indexed: 01/09/2023]
Abstract
We previously reported that both the high-carbohydrate diet (HCD) and high-fat diet (HFD) given for two months promote lipid deposition and inflammation in the liver and brain of mice. The results obtained indicate a tissue-specific response to both diets. Herein, we compared the effects of HCD and HFD on fatty acid (FA) composition and inflammation in the gastrocnemius muscle. Male Swiss mice were fed with HCD or HFD for 1 or 2 months. Saturated FA (SFA), monounsaturated FA (MUFA), n-3 polyunsaturated FA (n-3 PUFA), and n-6 PUFA were quantified. The activities of stearoyl-CoA desaturase 1 (SCD-1), Δ-6 desaturase (D6D), elongase 6, and de novo lipogenesis (DNL) were estimated. As for indicators of the inflammatory tissue state, we measured myeloperoxidase (MPO) activity and gene expression of F4/80, tumor necrosis factor-α (TNF-α), interleukin (IL)-4, IL-6, and IL-10. The HCD led to a lower deposition of SFA, MUFA, n-3 PUFA, and n-6 PUFA compared to HFD. However, the HCD increased arachidonic acid levels, SFA/n-3 PUFA ratio, DNL, SCD-1, D6D, and MPO activities, and expression of IL-6, contrasting with the general idea that increased lipid deposition is associated with more intense inflammation. The HCD was more potent to induce skeletal muscle inflammation than the HFD, regardless of the lower lipid accumulation.
Collapse
Affiliation(s)
- M M Antunes
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - G Godoy
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - C B de Almeida-Souza
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - B A da Rocha
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - L G da Silva-Santi
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - L N Masi
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - F Carbonera
- Departmento de Química, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - J V Visentainer
- Departmento de Química, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - R Curi
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - R B Bazotte
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá, Maringá, PR, Brasil
| |
Collapse
|
26
|
Else PL. The highly unnatural fatty acid profile of cells in culture. Prog Lipid Res 2019; 77:101017. [PMID: 31809755 DOI: 10.1016/j.plipres.2019.101017] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/02/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Abstract
The fatty acid profile of cells in culture are unlike those of natural cells with twice the monounsaturated (MUFA) and half the polyunsaturated fatty acids (PUFA) level (Mol%). This is not due to cell lines primarily being derived from cancers but is due to limited access to lipid and an inability to make PUFA de novo as vertebrate cells. Classic culture methods use media with 10% serum (the only exogenous source of lipid). Fetal bovine serum (FBS), the serum of choice has a low level of lipid and cholesterol compared to other sera and at 10% of media provides 2-3% of the fatty acid and cholesterol, 1% of the PUFA and 0.3% of the essential fatty acid linoleic acid (18:2n-6) available to cells in the body. Since vertebrate cell lines cannot make PUFA they synthesise MUFA, offsetting their PUFA deficit and reducing their fatty acid diversity. Stem and primary cells in culture appear to be similarly affected, with a rapid loss of their natural fatty acid compositions. The unnatural lipid composition of cells in culture has substantial implications for examining natural stems cell in culture, and for investigations of cellular mechanisms using cell lines based on the pervasive influence of fats.
Collapse
Affiliation(s)
- Paul L Else
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW 2522, Australia.
| |
Collapse
|
27
|
The relationships between sarcopenic skeletal muscle loss during ageing and macronutrient metabolism, obesity and onset of diabetes. Proc Nutr Soc 2019; 79:158-169. [PMID: 31685055 DOI: 10.1017/s0029665119001150] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Skeletal muscle is integral to the metabolism and utilisation of macronutrients; however, substantial muscle loss and morphological changes occur with ageing. These are associated with loss of muscle function and accelerate rapidly from the age of 60 years, leading to the conditions of sarcopenia and frailty. As the relationship between muscle ageing and macronutrient metabolism and utilisation has seen limited research to date, this review focuses on the interactions between skeletal muscle changes during ageing, metabolism and utilisation of fat, carbohydrates and overall energy expenditure.Skeletal muscle contributes less to resting energy expenditure during ageing, potentially contributing to onset of obesity from middle age. Age-related changes to skeletal muscle lead to glucose dysregulation, with consequent reduction in glycaemic control, increased insulin resistance and ultimately onset of type-2 diabetes. Recent studies indicate that high total fat and SFA intake are detrimental to skeletal muscle, while higher intakes of PUFA are protective. Age-associated changes in skeletal muscle may also reduce total fatty acid utilisation.In conclusion, further research is needed to understand the relationships between macronutrient metabolism and utilisation and age-related changes to skeletal muscle. No dietary recommendations exist specifically for skeletal muscle health during ageing, but we advise individuals to follow healthy eating guidelines, by consuming sufficient protein, fruit and vegetables, and limited SFA and to maintain physically active lifestyles. Clinicians responsible for managing type-2 diabetes need to be aware of growing evidence relating age-related skeletal muscle changes to diabetes onset and progression.
Collapse
|
28
|
Weiss-Hersh K, Garcia AL, Marosvölgyi T, Szklenár M, Decsi T, Rühl R. Saturated and monounsaturated fatty acids in membranes are determined by the gene expression of their metabolizing enzymes SCD1 and ELOVL6 regulated by the intake of dietary fat. Eur J Nutr 2019; 59:2759-2769. [PMID: 31676951 PMCID: PMC7413877 DOI: 10.1007/s00394-019-02121-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE We investigated the effect of dietary fats on the incorporation of saturated (SAFAs) and monounsaturated dietary fatty acids (MUFAs) into plasma phospholipids and the regulation of the expression of lipid-metabolizing enzymes in the liver. METHODS Mice were fed different diets containing commonly used dietary fats/oils (coconut fat, margarine, fish oil, sunflower oil, or olive oil) for 4 weeks (n = 6 per diet group). In a second experiment, mice (n = 6 per group) were treated for 7 days with synthetic ligands to activate specific nuclear hormone receptors (NHRs) and the hepatic gene expression of CYP26A1 was investigated. Hepatic gene expression of stearoyl-coenzyme A desaturase 1 (SCD1), elongase 6 (ELOVL6), and CYP26A1 was examined using quantitative real-time PCR (QRT-PCR). Fatty acid composition in mouse plasma phospholipids was analyzed by gas chromatography (GC). RESULTS We found significantly reduced hepatic gene expression of SCD1 and ELOVL6 after the fish oil diet compared with the other diets. This resulted in reduced enzyme-specific fatty acid ratios, e.g., 18:1n9/18:0 for SCD1 and 18:0/16:0 and 18:1n7/16:1n7 for ELOVL6 in plasma phospholipids. Furthermore, CYP26A1 a retinoic acid receptor-specific target was revealed as a new player mediating the suppressive effect of fish oil-supplemented diet on SCD1 and ELOVL6 hepatic gene expression. CONCLUSION Plasma levels of MUFAs and SAFAs strongly reflect an altered hepatic fatty acid-metabolizing enzyme expression after supplementation with different dietary fats/oils.
Collapse
Affiliation(s)
- Kathrin Weiss-Hersh
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Ada L Garcia
- Human Nutrition, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | | | - Tamás Decsi
- Department of Paediatrics, University of Pécs, Pécs, Hungary
| | - Ralph Rühl
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.,Paprika Bioanalytics BT, Debrecen, Hungary
| |
Collapse
|
29
|
Pla-Pagà L, Companys J, Calderón-Pérez L, Llauradó E, Solà R, Valls RM, Pedret A. Effects of hesperidin consumption on cardiovascular risk biomarkers: a systematic review of animal studies and human randomized clinical trials. Nutr Rev 2019; 77:845-864. [DOI: 10.1093/nutrit/nuz036] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
Context
The cardioprotective effects of the flavonoid hesperidin, which is present in citrus products, are controversial and unclear. This systematic review was conducted in accordance with the PRISMA 2015 guidelines.
Objective
To evaluate the current evidence from animal and human clinical studies and thus determine whether the consumption of hesperidin exerts beneficial effects on cardiovascular risk factors.
Data sources
PICOS (Population, Intervention, Comparison, Outcome, and Study Design) criteria defined the research question. Searches of the PubMed and Cochrane Plus databases were conducted and studies that met the inclusion criteria and were published in English in the last 15 years were included.
Data extraction
The first author, year of publication, study design, characteristics of animals and humans, intervention groups, dose of hesperidin, route of administration, duration of the intervention, cardiovascular risk biomarkers assessed, and results observed were extracted from the included articles.
Results
A total of 12 animal studies and 11 randomized clinical trials met the inclusion criteria. In the animal studies, the glucose, total and LDL cholesterol, and triglyceride levels decreased with chronic flavonoid consumption. In the human studies, endothelial function improved with flavonoid consumption, whereas no conclusive results were observed for the other biomarkers.
Conclusions
Animal studies have revealed that hesperidin and hesperetin consumption reduces glucose levels and various lipid profile parameters. However, a definitive conclusion cannot be drawn from the existing human clinical trials. Further research is needed to confirm whether the findings observed in animal models can also be observed in humans.
Systematic Review Registration
Prospero registration number CRD42018088942.
Collapse
Affiliation(s)
- L Pla-Pagà
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-SALUT), Reus, Spain
- Hospital Universitari Sant Joan, Reus, Spain
| | - J Companys
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-SALUT), Reus, Spain
| | - L Calderón-Pérez
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-SALUT), Reus, Spain
| | - E Llauradó
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-SALUT), Reus, Spain
| | - R Solà
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-SALUT), Reus, Spain
- Hospital Universitari Sant Joan, Reus, Spain
| | - R M Valls
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-SALUT), Reus, Spain
| | - A Pedret
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-SALUT), Reus, Spain
| |
Collapse
|
30
|
Saturated fatty acids induce NLRP3 activation in human macrophages through K + efflux resulting from phospholipid saturation and Na, K-ATPase disruption. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1017-1030. [PMID: 30953761 DOI: 10.1016/j.bbalip.2019.04.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/29/2022]
Abstract
NLRP3 inflammasome plays a key role in Western diet-induced systemic inflammation and was recently shown to mediate long-lasting trained immunity in myeloid cells. Saturated fatty acids (SFAs) are sterile triggers able to induce the assembly of the NLRP3 inflammasome in macrophages, leading to IL-1β secretion while unsaturated ones (UFAs) prevent SFAs-mediated NLRP3 activation. Unlike previous studies using LPS-primed bone marrow derived macrophages, we do not see any ROS or IRE-1α involvement in SFAs-mediated NLRP3 activation in human monocytes-derived macrophages. Rather we show that SFAs need to enter the cells and to be activated into acyl-CoA to lead to NLRP3 activation in human macrophages. However, their β-oxidation is dispensable. Instead, they are channeled towards phospholipids but redirected towards lipid droplets containing triacylglycerol in the presence of UFAs. Lipidomic analyses and Laurdan fluorescence experiments demonstrate that SFAs induce a dramatic saturation of phosphatidylcholine (PC) correlated with a loss of membrane fluidity, both events inhibited by UFAs. The silencing of CCTα, the key enzyme in PC synthesis, prevents SFA-mediated NLRP3 activation, demonstrating the essential role of the de novo PC synthesis. This SFA-induced membrane remodeling promotes a disruption of the plasma membrane Na, K-ATPase, instigating a K+ efflux essential and sufficient for NLRP3 activation. This work opens novel therapeutic avenues to interfere with Western diet-associated diseases such as those targeting the glycerolipid pathway.
Collapse
|
31
|
Gerling CJ, Mukai K, Chabowski A, Heigenhauser GJF, Holloway GP, Spriet LL, Jannas-Vela S. Incorporation of Omega-3 Fatty Acids Into Human Skeletal Muscle Sarcolemmal and Mitochondrial Membranes Following 12 Weeks of Fish Oil Supplementation. Front Physiol 2019; 10:348. [PMID: 30984028 PMCID: PMC6449797 DOI: 10.3389/fphys.2019.00348] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/14/2019] [Indexed: 11/13/2022] Open
Abstract
Fish oil (FO) supplementation in humans results in the incorporation of omega-3 fatty acids (FAs) eicosapentaenoic acid (EPA; C20:5) and docosahexaenoic acid (DHA; C20:6) into skeletal muscle membranes. However, despite the importance of membrane composition in structure–function relationships, a paucity of information exists regarding how different muscle membranes/organelles respond to FO supplementation. Therefore, the purpose of the present study was to determine the effects 12 weeks of FO supplementation (3g EPA/2g DHA daily) on the phospholipid composition of sarcolemmal and mitochondrial fractions, as well as whole muscle responses, in healthy young males. FO supplementation increased the total phospholipid content in whole muscle (57%; p < 0.05) and the sarcolemma (38%; p = 0.05), but did not alter the content in mitochondria. The content of omega-3 FAs, EPA and DHA, were increased (+3-fold) in whole muscle, and mitochondrial membranes, and as a result the omega-6/omega-3 ratios were dramatically decreased (-3-fold), while conversely the unsaturation indexes were increased. Intriguingly, before supplementation the unsaturation index (UI) of sarcolemmal membranes was ∼3 times lower (p < 0.001) than either whole muscle or mitochondrial membranes. While supplementation also increased DHA within sarcolemmal membranes, EPA was not altered, and as a result the omega-6/omega-3 ratio and UI of these membranes were not altered. All together, these data revealed that mitochondrial and sarcolemmal membranes display unique phospholipid compositions and responses to FO supplementation.
Collapse
Affiliation(s)
- Christopher J Gerling
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Kazutaka Mukai
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | | | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Lawrence L Spriet
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Sebastian Jannas-Vela
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.,Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
32
|
Granic A, Mendonça N, Sayer AA, Hill TR, Davies K, Siervo M, Mathers JC, Jagger C. Effects of dietary patterns and low protein intake on sarcopenia risk in the very old: The Newcastle 85+ study. Clin Nutr 2019; 39:166-173. [PMID: 30709690 PMCID: PMC6961212 DOI: 10.1016/j.clnu.2019.01.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/10/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023]
Abstract
Background Sarcopenia, a progressive age-related loss of skeletal muscle mass and strength, leads to disability, falls, and hospitalisation. Individual variation in sarcopenia onset may be partly explained by lifestyle factors such as physical activity and diet. Healthy dietary patterns (DPs) have been linked to better physical functioning in older adults, but their role in sarcopenia in the very old (aged ≥85) is unknown. Aims To investigate the association between DPs and the risk of sarcopenia over 3 years, and to determine whether protein intake influences this relationship in community-dwelling older adults from the Newcastle 85 + Study. Methods The analytic sample consisted of 757 participants (61.2% women) who had dietary assessment at baseline. After two-step clustering with 30 food groups to derive DPs, we used logistic regression to determine the risk of prevalent and incident sarcopenia across DPs in all participants, and in those with low (<1 g/kg adjusted body weight/day [g/kg aBW/d]) and good protein intake (≥1 g/kg aBW/d). Results We identified three DPs (DP1: ‘Low Red Meat’, DP2: ‘Traditional British’ and DP3: ‘Low Butter’) that varied by unsaturated fat spreads/oils, butter, red meat, gravy and potato consumption. Compared with participants in DP3, those in DP2 had an increased risk of prevalent (OR = 2.42, 95% CI: 1.15–5.09, p = 0.02) but not 3-year incident sarcopenia (OR = 1.67, 0.59–4.67, p = 0.33) adjusted for socio-demographic, anthropometry, health and lifestyle factors. Furthermore, DP2 was associated with an increased risk of prevalent sarcopenia at baseline (OR = 2.14, 1.01–4.53, p = 0.05) and 3-year follow-up (OR = 5.45, 1.81–16.39, p = 0.003) after adjustment for key covariates in participants with good protein intake. Conclusion A DP high in foods characteristic of a traditional British diet (butter, red meat, gravy and potato) was associated with an increased risk of sarcopenia even when overall protein intake was good. The results need to be replicated in other cohorts of the very old to understand the role of DPs in sarcopenia onset and management.
Collapse
Affiliation(s)
- Antoneta Granic
- AGE Research Group, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle Upon Tyne, United Kingdom; Newcastle University Institute for Ageing, Newcastle Upon Tyne, United Kingdom.
| | - Nuno Mendonça
- Newcastle University Institute for Ageing, Newcastle Upon Tyne, United Kingdom; Institute of Health & Society, Newcastle University, Newcastle Upon Tyne, United Kingdom; Human Nutrition Research Centre, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Avan A Sayer
- AGE Research Group, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle Upon Tyne, United Kingdom; Newcastle University Institute for Ageing, Newcastle Upon Tyne, United Kingdom
| | - Tom R Hill
- Human Nutrition Research Centre, Newcastle University, Newcastle Upon Tyne, United Kingdom; Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Karen Davies
- AGE Research Group, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle Upon Tyne, United Kingdom; Newcastle University Institute for Ageing, Newcastle Upon Tyne, United Kingdom
| | - Mario Siervo
- Newcastle University Institute for Ageing, Newcastle Upon Tyne, United Kingdom; Human Nutrition Research Centre, Newcastle University, Newcastle Upon Tyne, United Kingdom; Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - John C Mathers
- Newcastle University Institute for Ageing, Newcastle Upon Tyne, United Kingdom; Human Nutrition Research Centre, Newcastle University, Newcastle Upon Tyne, United Kingdom; Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Carol Jagger
- Newcastle University Institute for Ageing, Newcastle Upon Tyne, United Kingdom; Institute of Health & Society, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
33
|
Fappi A, Neves JDC, Kawasaki KA, Bacelar L, Sanches LN, P. da Silva F, Larina‐Neto R, Chadi G, Zanoteli E. Omega-3 multiple effects increasing glucocorticoid-induced muscle atrophy: autophagic, AMPK and UPS mechanisms. Physiol Rep 2019; 7:e13966. [PMID: 30648357 PMCID: PMC6333722 DOI: 10.14814/phy2.13966] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022] Open
Abstract
Muscle atrophy occurs in many conditions, including use of glucocorticoids. N-3 (omega-3) is widely consumed due its healthy properties; however, concomitant use with glucocorticoids can increase its side effects. We evaluated the influences of N-3 on glucocorticoid atrophy considering IGF-1, Myostatin, MEK/ERK, AMPK pathways besides the ubiquitin-proteasome system (UPS) and autophagic/lysosomal systems. Sixty animals constituted six groups: CT, N-3 (EPA 100 mg/kg/day for 40 days), DEXA 1.25 (DEXA 1.25 mg/kg/day for 10 days), DEXA 1.25 + N3 (EPA for 40 days + DEXA 1.25 mg/kg/day for the last 10 days), DEXA 2.5 (DEXA 2.5 mg/kg/day for 10 days), and DEXA 2.5 + N3 (EPA for 40 days + DEXA 2.5 mg/kg/day for 10 days). Results: N-3 associated with DEXA increases atrophy (fibers 1 and 2A), FOXO3a, P-SMAD2/3, Atrogin-1/MAFbx (mRNA) expression, and autophagic protein markers (LC3II, LC3II/LC3I, LAMP-1 and acid phosphatase). Additionally, N-3 supplementation alone decreased P-FOXO3a, PGC1-alpha, and type 1 muscle fiber area. Conclusion: N-3 supplementation increases muscle atrophy caused by DEXA in an autophagic, AMPK and UPS process.
Collapse
Affiliation(s)
- Alan Fappi
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Juliana de C. Neves
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Karine A. Kawasaki
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Luana Bacelar
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Leandro N. Sanches
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Felipe P. da Silva
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Rubens Larina‐Neto
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Gerson Chadi
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Edmar Zanoteli
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| |
Collapse
|
34
|
Ruiz M, Bodhicharla R, Svensk E, Devkota R, Busayavalasa K, Palmgren H, Ståhlman M, Boren J, Pilon M. Membrane fluidity is regulated by the C. elegans transmembrane protein FLD-1 and its human homologs TLCD1/2. eLife 2018; 7:e40686. [PMID: 30509349 PMCID: PMC6279351 DOI: 10.7554/elife.40686] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/04/2018] [Indexed: 12/15/2022] Open
Abstract
Dietary fatty acids are the main building blocks for cell membranes in animals, and mechanisms must therefore exist that compensate for dietary variations. We isolated C. elegans mutants that improved tolerance to dietary saturated fat in a sensitized genetic background, including eight alleles of the novel gene fld-1 that encodes a homolog of the human TLCD1 and TLCD2 transmembrane proteins. FLD-1 is localized on plasma membranes and acts by limiting the levels of highly membrane-fluidizing long-chain polyunsaturated fatty acid-containing phospholipids. Human TLCD1/2 also regulate membrane fluidity by limiting the levels of polyunsaturated fatty acid-containing membrane phospholipids. FLD-1 and TLCD1/2 do not regulate the synthesis of long-chain polyunsaturated fatty acids but rather limit their incorporation into phospholipids. We conclude that inhibition of FLD-1 or TLCD1/2 prevents lipotoxicity by allowing increased levels of membrane phospholipids that contain fluidizing long-chain polyunsaturated fatty acids. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Mario Ruiz
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Rakesh Bodhicharla
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Emma Svensk
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Ranjan Devkota
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Kiran Busayavalasa
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Henrik Palmgren
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
- Diabetes Bioscience, Cardiovascular, Renal and Metabolism, IMED Biotech UnitAstraZenecaGothenburgSweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of MedicineUniversity of GothenburgGothenburgSweden
| | - Jan Boren
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of MedicineUniversity of GothenburgGothenburgSweden
| | - Marc Pilon
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
35
|
Philpott JD, Witard OC, Galloway SD. Applications of omega-3 polyunsaturated fatty acid supplementation for sport performance. Res Sports Med 2018; 27:219-237. [DOI: 10.1080/15438627.2018.1550401] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jordan D. Philpott
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| | - Oliver C. Witard
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| | - Stuart D.R. Galloway
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| |
Collapse
|
36
|
Ochi E, Yanagimoto K, Morishima T, Tsuchiya Y. Eicosapentaenoic Acid-Rich Fish Oil Supplementation Inhibits the Decrease in Concentric Work Output and Muscle Swelling of the Elbow Flexors. J Am Coll Nutr 2018; 38:125-131. [DOI: 10.1080/07315724.2018.1470042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Eisuke Ochi
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
- Sports Research Center, Hosei University, Tokyo, Japan
| | | | | | - Yosuke Tsuchiya
- Faculty of Modern Life, Teikyo Heisei University, Tokyo, Japan
| |
Collapse
|
37
|
Plasma lipid profiling of tissue-specific insulin resistance in human obesity. Int J Obes (Lond) 2018; 43:989-998. [PMID: 30242234 DOI: 10.1038/s41366-018-0189-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/25/2018] [Accepted: 07/22/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND/OBJECTIVES Obesity-associated insulin resistance (IR) may develop in multiple organs, representing different aetiologies towards cardiometabolic diseases. This study aimed to identify distinct plasma lipid profiles in overweight/obese individuals who show muscle-IR and/or liver-IR. SUBJECTS/METHODS Baseline data of the European multicenter DiOGenes project were used (n = 640; 401 women, nondiabetic BMI: 27-45 kg/m2). Muscle insulin sensitivity index (MISI) and hepatic insulin resistance index (HIRI) were derived from a 5-point oral glucose tolerance test. The 140 plasma lipids were quantified by liquid chromatography-mass spectrometry. Linear mixed models were used to evaluate associations between MISI, HIRI and plasma lipids. RESULTS MISI was comparable between sexes while HIRI and triacylglycerol (TAG) levels were lower in women than in men. MISI was associated with higher lysophosphatidylcholine (LPC) levels (standardized (std)β = 0.126; FDR-p = 0.032). Sex interactions were observed for associations between HIRI, TAG and diacylglycerol (DAG) lipid classes. In women, but not in men, HIRI was associated with higher levels of TAG (44 out of 55 species) and both DAG species (stdβ: 0.139-0.313; FDR-p < 0.05), a lower odd-chain/even-chain TAG ratio (stdβ = -0.182; FDR-p = 0.005) and a lower very-long-chain/long-chain TAG ratio (stdβ = -0.156; FDR-p = 0.037). CONCLUSIONS In overweight/obese individuals, muscle insulin sensitivity is associated with higher plasma LPC concentrations. Women have less hepatic IR and lower TAG than men. Nevertheless, hepatic IR is associated with higher plasma TAG and DAG concentrations and a lower abundance of odd-chain and very-long-chain TAG in women, but not in men. This suggests a more pronounced worsening of plasma lipid profile in women with the progression of hepatic IR.
Collapse
|
38
|
Fatty Acid Metabolism Disorder as a Factor in Atherogenesis. ROMANIAN JOURNAL OF DIABETES NUTRITION AND METABOLIC DISEASES 2018. [DOI: 10.2478/rjdnmd-2018-0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Abstract
Background and aims: The study aims to analyze of fatty acid (FA) composition of arteries and blood plasma in atherosclerosis.
Material and method: The blood plasma in patients with coronary atherosclerosis was studied, the blood from healthy volunteers was used as control. There were also analyzed arteries of patients with severe atherosclerotic lesions and arteries of people with significantly less atherosclerotic changes.
Results: The received data indicates that there is a rather active penetration of FA from blood plasma lipoproteins into intima of arteries. Penetration of FA from blood lipoproteins into the depth of atherosclerotic aorta and an atherosclerotic plaque appears to be small and does not effect on their fatty acid composition, which is similar to that of free FA of blood plasma. The evidence of the increased activity of desaturases and fatty acid synthases in atherosclerotic and intact arteries in patients with severe atherosclerotic vascular lesions was obtained. This increase in activity may be related by relatively low content of polyunsaturated linoleic acid in blood plasma in atherosclerosis.
Conclusions: The increased activity of desaturases and fatty acid synthases as well as arterial wall hypoxia must promote accumulation of lipids in vascular wall by increasing the synthesis and inhibition of FA oxidation including free FA coming from blood.
Collapse
|
39
|
Coelho OGL, Cândido FG, Alfenas RDCG. Dietary fat and gut microbiota: mechanisms involved in obesity control. Crit Rev Food Sci Nutr 2018; 59:3045-3053. [DOI: 10.1080/10408398.2018.1481821] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Flávia Galvão Cândido
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Minas Gerais, Brasil
| | | |
Collapse
|
40
|
High Body Mass Index Is Associated with the Extent of Muscle Damage after Eccentric Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071378. [PMID: 29966377 PMCID: PMC6068684 DOI: 10.3390/ijerph15071378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 11/16/2022]
Abstract
Purpose: The present study aimed to investigate the effects of body mass index (BMI), which is an obesity index, on the change in the muscle damage index after eccentric exercise. Methods: Forty healthy male university students participated in this study and were classified into normal (BMI 18.5⁻22.9 kg/m², n = 20) and high BMI groups (BMI ≥ 25 kg/m², n = 20). For eccentric exercise, a modified preacher curl machine was used. Participants performed two exercise sets with 25 repetitions in each set. With regard to the muscle damage index, maximum strength, muscle soreness, and the creatine kinase (CK) level were measured. Results: Loss of maximum strength, muscle soreness, and the CK level were higher in the high BMI group than in the normal BMI group (p < 0.05, p < 0.05, and p < 0.01, respectively). Conclusions: In conclusion, BMI is one of the potential factors related to muscle damage after eccentric exercise.
Collapse
|
41
|
Horowitz JF, Ortega JF, Hinko A, Li M, Nelson RK, Mora-Rodriguez R. Changes in markers for cardio-metabolic disease risk after only 1-2 weeks of a high saturated fat diet in overweight adults. PLoS One 2018; 13:e0198372. [PMID: 29949578 PMCID: PMC6021040 DOI: 10.1371/journal.pone.0198372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/17/2018] [Indexed: 12/30/2022] Open
Abstract
Purpose Diets high in saturated fat acids (SFA) have been linked with cardio-metabolic disease risk. The purpose of this study was to determine whether only 1–2 weeks of a high SFA diet could impact disease risk factors in overweight adults who normally eat a relatively low proportion of SFA (i.e., <40% of dietary fat). Methods Twelve overweight (BMI: 27±1 kg/m2) young adults were studied before and after a 2-week diet that increased the proportion of SFA (<40% to 60% of dietary fat), while maintaining their daily intake of total fat, carbohydrate, protein, and calories. Insulin resistance, blood pressure, plasma markers of liver damage, total plasma cholesterol concentrations, and fatty acid profile within plasma and skeletal muscle lipid pools were assessed before and after the intervention. Results Total plasma cholesterol concentration increased (148±5 vs. 164±8 mg/dl; P<0.05) after only one week, due exclusively to an increase in LDL-cholesterol (78±4 vs. 95±7 mg/dl; P<0.05). After two weeks, plasma aspartate amino transferase (AST) concentration increased (P<0.05) but we found no change in insulin resistance, or resting blood pressure. The diet increase the proportion of SFA in plasma (35±1% vs. 39±2%; P<0.05) and the intramyocellular triglyceride pool (32±1% vs. 37±1%; P<0.05) suggesting the fatty acids in these pools may readily exchange. Conclusions Although blood lipids remain within normal clinical range, increasing saturated fat in diet for only 2 weeks raises plasma markers of cardiovascular risk (LDL-cholesterol) and liver damage (AST). In overweight, but healthy-young adults SFA accumulate in plasma and muscle after only 1–2 weeks of dietary increase.
Collapse
Affiliation(s)
- Jeffrey F. Horowitz
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| | - Juan F. Ortega
- Exercise Physiology Lab, University of Castilla-La Mancha, Toledo, Spain
| | - Alexander Hinko
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Minghua Li
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rachael K. Nelson
- College Health Professions, Health Sciences Department, Central Michigan University, Mt. Pleasant, Michigan, United States of America
| | | |
Collapse
|
42
|
Jeromson S, Mackenzie I, Doherty MK, Whitfield PD, Bell G, Dick J, Shaw A, Rao FV, Ashcroft SP, Philp A, Galloway SDR, Gallagher I, Hamilton DL. Lipid remodeling and an altered membrane-associated proteome may drive the differential effects of EPA and DHA treatment on skeletal muscle glucose uptake and protein accretion. Am J Physiol Endocrinol Metab 2018; 314:E605-E619. [PMID: 28655718 DOI: 10.1152/ajpendo.00438.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In striated muscle, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have differential effects on the metabolism of glucose and differential effects on the metabolism of protein. We have shown that, despite similar incorporation, treatment of C2C12 myotubes (CM) with EPA but not DHA improves glucose uptake and protein accretion. We hypothesized that these differential effects of EPA and DHA may be due to divergent shifts in lipidomic profiles leading to altered proteomic profiles. We therefore carried out an assessment of the impact of treating CM with EPA and DHA on lipidomic and proteomic profiles. Fatty acid methyl esters (FAME) analysis revealed that both EPA and DHA led to similar but substantials changes in fatty acid profiles with the exception of arachidonic acid, which was decreased only by DHA, and docosapentanoic acid (DPA), which was increased only by EPA treatment. Global lipidomic analysis showed that EPA and DHA induced large alterations in the cellular lipid profiles and in particular, the phospholipid classes. Subsequent targeted analysis confirmed that the most differentially regulated species were phosphatidylcholines and phosphatidylethanolamines containing long-chain fatty acids with five (EPA treatment) or six (DHA treatment) double bonds. As these are typically membrane-associated lipid species we hypothesized that these treatments differentially altered the membrane-associated proteome. Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics of the membrane fraction revealed significant divergence in the effects of EPA and DHA on the membrane-associated proteome. We conclude that the EPA-specific increase in polyunsaturated long-chain fatty acids in the phospholipid fraction is associated with an altered membrane-associated proteome and these may be critical events in the metabolic remodeling induced by EPA treatment.
Collapse
Affiliation(s)
- Stewart Jeromson
- Health and Exercise Sciences Research Group, University of Stirling , Stirling , United Kingdom
| | - Ivor Mackenzie
- Department of Diabetes and Cardiovascular Science, University of Highlands and Islands , Inverness , United Kingdom
| | - Mary K Doherty
- Department of Diabetes and Cardiovascular Science, University of Highlands and Islands , Inverness , United Kingdom
| | - Phillip D Whitfield
- Department of Diabetes and Cardiovascular Science, University of Highlands and Islands , Inverness , United Kingdom
| | - Gordon Bell
- Institute of Aquaculture, University of Stirling , Stirling , United Kingdom
| | - James Dick
- Institute of Aquaculture, University of Stirling , Stirling , United Kingdom
| | - Andy Shaw
- Health and Exercise Sciences Research Group, University of Stirling , Stirling , United Kingdom
| | - Francesco V Rao
- DC Biosciences, Limited, Dundee Technopole, Dundee , United Kingdom
| | - Stephen P Ashcroft
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham , Birmingham , United Kingdom
| | - Andrew Philp
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham , Birmingham , United Kingdom
| | - Stuart D R Galloway
- Health and Exercise Sciences Research Group, University of Stirling , Stirling , United Kingdom
| | - Iain Gallagher
- Health and Exercise Sciences Research Group, University of Stirling , Stirling , United Kingdom
| | - D Lee Hamilton
- Health and Exercise Sciences Research Group, University of Stirling , Stirling , United Kingdom
| |
Collapse
|
43
|
Raouf J, Idborg H, Englund P, Alexanderson H, Dastmalchi M, Jakobsson PJ, Lundberg IE, Korotkova M. Targeted lipidomics analysis identified altered serum lipid profiles in patients with polymyositis and dermatomyositis. Arthritis Res Ther 2018; 20:83. [PMID: 29720222 PMCID: PMC5932839 DOI: 10.1186/s13075-018-1579-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/27/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Polymyositis (PM) and dermatomyositis (DM) are severe chronic autoimmune diseases, characterized by muscle fatigue and low muscle endurance. Conventional treatment includes high doses of glucocorticoids and immunosuppressive drugs; however, few patients recover full muscle function. One explanation of the persistent muscle weakness could be altered lipid metabolism in PM/DM muscle tissue as we previously reported. Using a targeted lipidomic approach we aimed to characterize serum lipid profiles in patients with PM/DM compared to healthy individuals (HI) in a cross-sectional study. Also, in the longitudinal study we compared serum lipid profiles in patients newly diagnosed with PM/DM before and after immunosuppressive treatment. METHODS Lipidomic profiles were analyzed in serum samples from 13 patients with PM/DM, 12 HI and 8 patients newly diagnosed with PM/DM before and after conventional immunosuppressive treatment using liquid chromatography tandem mass spectrometry (LC-MS/MS) and a gas-chromatography flame ionization detector (GC-FID). Functional Index (FI), as a test of muscle performance and serum levels of creatine kinase (s-CK) as a proxy for disease activity were analyzed. RESULTS The fatty acid (FA) composition of total serum lipids was altered in patients with PM/DM compared to HI; the levels of palmitic (16:0) acid were significantly higher while the levels of arachidonic (20:4, n-6) acid were significantly lower in patients with PM/DM. The profiles of serum phosphatidylcholine and triacylglycerol species were changed in patients with PM/DM compared to HI, suggesting disproportionate levels of saturated and polyunsaturated FAs that might have negative effects on muscle performance. After immunosuppressive treatment the total serum lipid levels of eicosadienoic (20:2, n-6) and eicosapentaenoic (20:5, n-3) acids were increased and serum phospholipid profiles were altered in patients with PM/DM. The correlation between FI or s-CK and levels of several lipid species indicate the important role of lipid changes in muscle performance and inflammation. CONCLUSIONS Serum lipids profiles are significantly altered in patients with PM/DM compared to HI. Moreover, immunosuppressive treatment in patients newly diagnosed with PM/DM significantly affected serum lipid profiles. These findings provide new evidence of the dysregulated lipid metabolism in patients with PM/DM that could possibly contribute to low muscle performance.
Collapse
Affiliation(s)
- Joan Raouf
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Helena Idborg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Petter Englund
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Helene Alexanderson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Maryam Dastmalchi
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Ingrid E Lundberg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Marina Korotkova
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden.
| |
Collapse
|
44
|
Sullivan EM, Pennington ER, Green WD, Beck MA, Brown DA, Shaikh SR. Mechanisms by Which Dietary Fatty Acids Regulate Mitochondrial Structure-Function in Health and Disease. Adv Nutr 2018; 9:247-262. [PMID: 29767698 PMCID: PMC5952932 DOI: 10.1093/advances/nmy007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/02/2018] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are the energy-producing organelles within a cell. Furthermore, mitochondria have a role in maintaining cellular homeostasis and proper calcium concentrations, building critical components of hormones and other signaling molecules, and controlling apoptosis. Structurally, mitochondria are unique because they have 2 membranes that allow for compartmentalization. The composition and molecular organization of these membranes are crucial to the maintenance and function of mitochondria. In this review, we first present a general overview of mitochondrial membrane biochemistry and biophysics followed by the role of different dietary saturated and unsaturated fatty acids in modulating mitochondrial membrane structure-function. We focus extensively on long-chain n-3 (ω-3) polyunsaturated fatty acids and their underlying mechanisms of action. Finally, we discuss implications of understanding molecular mechanisms by which dietary n-3 fatty acids target mitochondrial structure-function in metabolic diseases such as obesity, cardiac-ischemia reperfusion injury, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and select cancers.
Collapse
Affiliation(s)
- E Madison Sullivan
- Department of Biochemistry and Molecular Biology and
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Edward Ross Pennington
- Department of Biochemistry and Molecular Biology and
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - William D Green
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - Melinda A Beck
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech Corporate Research Center, Blacksburg, VA
| | - Saame Raza Shaikh
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| |
Collapse
|
45
|
Sissener NH. Are we what we eat? Changes to the feed fatty acid composition of farmed salmon and its effects through the food chain. ACTA ACUST UNITED AC 2018. [PMID: 29514891 DOI: 10.1242/jeb.161521] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
'Are we what we eat?' Yes and no. Although dietary fat affects body fat, there are many modifying mechanisms. In Atlantic salmon, there is a high level of retention of the n-3 fatty acid (FA) docosahexaenoic acid (DHA, 22:6n-3) relative to the dietary content, whereas saturated FAs never seem to increase above a specified level, which is probably an adaptation to low and fluctuating body temperature. Net production of eicosapentaenoic acid (EPA, 20:5n-3) and especially DHA occurs in salmon when dietary levels are low; however, this synthesis is not sufficient to maintain EPA and DHA at similar tissue levels to those of a traditional fish oil-fed farmed salmon. The commercial diets of farmed salmon have changed over the past 15 years towards a more plant-based diet owing to the limited availability of the marine ingredients fish meal and fish oil, resulting in decreased EPA and DHA and increased n-6 FAs. Salmon is part of the human diet, leading to the question 'Are we what the salmon eats?' Dietary intervention studies using salmon have shown positive effects on FA profiles and health biomarkers in humans; however, most of these studies used salmon that were fed high levels of marine ingredients. Only a few human intervention studies and mouse trials have explored the effects of the changing feed composition of farmed salmon. In conclusion, when evaluating feed ingredients for farmed fish, effects throughout the food chain on fish health, fillet composition and human health need to be considered.
Collapse
Affiliation(s)
- Nini H Sissener
- Fish Nutrition, Requirements and Welfare, Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817 Bergen, Norway
| |
Collapse
|
46
|
Gianfrancesco MA, Paquot N, Piette J, Legrand-Poels S. Lipid bilayer stress in obesity-linked inflammatory and metabolic disorders. Biochem Pharmacol 2018; 153:168-183. [PMID: 29462590 DOI: 10.1016/j.bcp.2018.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
Abstract
The maintenance of the characteristic lipid compositions and physicochemical properties of biological membranes is essential for their proper function. Mechanisms allowing to sense and restore membrane homeostasis have been identified in prokaryotes for a long time and more recently in eukaryotes. A membrane remodeling can result from aberrant metabolism as seen in obesity. In this review, we describe how such lipid bilayer stress can account for the modulation of membrane proteins involved in the pathogenesis of obesity-linked inflammatory and metabolic disorders. We address the case of the Toll-like receptor 4 that is implicated in the obesity-related low grade inflammation and insulin resistance. The lipid raft-mediated TLR4 activation is promoted by an enrichment of the plasma membrane with saturated lipids or cholesterol increasing the lipid phase order. We discuss of the plasma membrane Na, K-ATPase that illustrates a new concept according to which direct interactions between specific residues and particular lipids determine both stability and activity of the pump in parallel with indirect effects of the lipid bilayer. The closely related sarco(endo)-plasmic Ca-ATPase embedded in the more fluid ER membrane seems to be more sensitive to a lipid bilayer stress as demonstrated by its inactivation in cholesterol-loaded macrophages or its inhibition mediated by an increased PtdCho/PtdEtn ratio in obese mice hepatocytes. Finally, we describe the model recently proposed for the activation of the conserved IRE-1 protein through alterations in the ER membrane lipid packing and thickness. Such IRE-1 activation could occur in response to abnormal lipid synthesis and membrane remodeling as observed in hepatocytes exposed to excess nutrients. Since the IRE-1/XBP1 branch also stimulates the lipid synthesis, this pathway could create a vicious cycle "lipogenesis-ER lipid bilayer stress-lipogenesis" amplifying hepatic ER pathology and the obesity-linked systemic metabolic defects.
Collapse
Affiliation(s)
- Marco A Gianfrancesco
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University Hospital of Liège, Liège, Belgium
| | - Nicolas Paquot
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University Hospital of Liège, Liège, Belgium
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Sylvie Legrand-Poels
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Laboratory of Virology and Immunology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium.
| |
Collapse
|
47
|
Thankamony A, Kemp GJ, Koulman A, Bokii V, Savage DB, Boesch C, Hodson L, Dunger DB, Sleigh A. Compositional marker in vivo reveals intramyocellular lipid turnover during fasting-induced lipolysis. Sci Rep 2018; 8:2750. [PMID: 29426847 PMCID: PMC5807358 DOI: 10.1038/s41598-018-21170-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/30/2018] [Indexed: 01/28/2023] Open
Abstract
Intramyocellular lipid (IMCL) is of particular metabolic interest, but despite many proton magnetic resonance spectroscopy (1H MRS) studies reporting IMCL content measured by the methylene (CH2) resonance signal, little is known about its composition. Here we validated IMCL CH3:CH2 ratio as a compositional marker using 1H MRS at short echo time, and investigated IMCL content and composition during a 28-hour fast in 24 healthy males. Increases in IMCL CH2 relative to the creatine and phosphocreatine resonance (Cr) at 3.0 ppm (an internal standard) correlated with circulating free fatty acid (FA) concentrations, supporting the concept of increased FA influx into IMCL. Significant decreases in IMCL CH3:CH2 ratio indicated a less unsaturated IMCL pool after fasting, and this compositional change related inversely to IMCL baseline composition, suggesting a selective efflux of unsaturated shorter-chain FA from the IMCL pool. This novel in vivo evidence reveals IMCL turnover during extended fasting, consistent with the concept of a flexible, responsive myocellular lipid store. There were also differences between soleus and tibialis anterior in basal IMCL composition and in response to fasting. We discuss the potential of this marker for providing insights into normal physiology and mechanisms of disease.
Collapse
Affiliation(s)
- Ajay Thankamony
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Graham J Kemp
- Department of Musculoskeletal Biology, University of Liverpool and MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool, UK
| | - Albert Koulman
- National Institute for Health Research Biomedical Research Centre (NIHR BRC) Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Cambridge, UK.,Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Vlada Bokii
- Wolfson Brain Imaging Centre, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - David B Savage
- Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Chris Boesch
- Department of Clinical Research and Radiology, AMSM, University Bern, Bern, Switzerland
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - David B Dunger
- Department of Paediatrics, University of Cambridge, Cambridge, UK.,Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Alison Sleigh
- Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK. .,Wolfson Brain Imaging Centre, University of Cambridge School of Clinical Medicine, Cambridge, UK. .,National Institute for Health Research/Wellcome Trust Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
48
|
Fallone CJ, McKay RT, Yahya A. Long TE STEAM and PRESS for estimating fat olefinic/methyl ratios and relative ω-3 fat content at 3T. J Magn Reson Imaging 2017; 48:169-177. [DOI: 10.1002/jmri.25920] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/22/2017] [Indexed: 02/05/2023] Open
Affiliation(s)
- Clara J. Fallone
- Department of Oncology; University of Alberta; Edmonton Alberta Canada
| | - Ryan T. McKay
- Department of Chemistry; University of Alberta; Edmonton Alberta Canada
| | - Atiyah Yahya
- Department of Oncology; University of Alberta; Edmonton Alberta Canada
- Department of Medical Physics; Cross Cancer Institute; Edmonton Alberta Canada
| |
Collapse
|
49
|
Zhang J, Cui L, Ma J, Chen C, Yang B, Huang L. Transcriptome analyses reveal genes and pathways associated with fatty acid composition traits in pigs. Anim Genet 2017; 48:645-652. [DOI: 10.1111/age.12597] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2017] [Indexed: 11/30/2022]
Affiliation(s)
- J. Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; 330045 Nanchang China
| | - L. Cui
- State Key Laboratory for Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; 330045 Nanchang China
| | - J. Ma
- State Key Laboratory for Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; 330045 Nanchang China
| | - C. Chen
- State Key Laboratory for Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; 330045 Nanchang China
| | - B. Yang
- State Key Laboratory for Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; 330045 Nanchang China
| | - L. Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; 330045 Nanchang China
| |
Collapse
|
50
|
Lipidomics reveals diurnal lipid oscillations in human skeletal muscle persisting in cellular myotubes cultured in vitro. Proc Natl Acad Sci U S A 2017; 114:E8565-E8574. [PMID: 28973848 DOI: 10.1073/pnas.1705821114] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Circadian clocks play an important role in lipid homeostasis, with impact on various metabolic diseases. Due to the central role of skeletal muscle in whole-body metabolism, we aimed at studying muscle lipid profiles in a temporal manner. Moreover, it has not been shown whether lipid oscillations in peripheral tissues are driven by diurnal cycles of rest-activity and food intake or are able to persist in vitro in a cell-autonomous manner. To address this, we investigated lipid profiles over 24 h in human skeletal muscle in vivo and in primary human myotubes cultured in vitro. Glycerolipids, glycerophospholipids, and sphingolipids exhibited diurnal oscillations, suggesting a widespread circadian impact on muscle lipid metabolism. Notably, peak levels of lipid accumulation were in phase coherence with core clock gene expression in vivo and in vitro. The percentage of oscillating lipid metabolites was comparable between muscle tissue and cultured myotubes, and temporal lipid profiles correlated with transcript profiles of genes implicated in their biosynthesis. Lipids enriched in the outer leaflet of the plasma membrane oscillated in a highly coordinated manner in vivo and in vitro. Lipid metabolite oscillations were strongly attenuated upon siRNA-mediated clock disruption in human primary myotubes. Taken together, our data suggest an essential role for endogenous cell-autonomous human skeletal muscle oscillators in regulating lipid metabolism independent of external synchronizers, such as physical activity or food intake.
Collapse
|